-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrevised_DEG_down_stream_pipeline.R
248 lines (229 loc) · 14.1 KB
/
revised_DEG_down_stream_pipeline.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
setwd("D:/work/tnbc_cell/mapped/svm")
countData <- read.table(file = "whole_exp.txt" , header = TRUE, sep = '\t',row.names = 1)
countData <- countData[,sort(names(countData))]
names(countData) <-(gsub("\\.", "\\-", names(countData)))
colData <- read.table(file = "revised_drug_response.txt", header = TRUE, sep = '\t',stringsAsFactors = F)
gene_ref <- read.csv("D:/work/tnbc_cell/mapped/Ensemble_genes_99_Human_genes(GRCh38.p13)mart_export.txt",header = T,stringsAsFactors = F, sep = "\t")
gene_ref <- gene_ref[,4:5]
gene_ref <- unique(gene_ref)
library(DESeq2); library(dplyr); library(tidyverse); library(ggplot2); library(ComplexHeatmap); library(pheatmap); library(pathfindR); library(e1071);library(org.Hs.eg.db)
# Starting Iterative steps with first drug with the
# column indice of 2 in colData
j <- 2
repeat {
i <- names(colData[j])
colData_tmp <- as.data.frame(colData %>% select("Cells", all_of(i)))
colData_tmp[,2] <- as.factor(colData_tmp[,2])
dataset <- DESeqDataSetFromMatrix(countData = countData,colData = colData_tmp,design = formula(paste("~", i)))
dds <- DESeq(dataset,minReplicatesForReplace = Inf)
vsd <- vst(dds,blind = F)
results_tmp <- results(dds, contrast=c(i, "R", "S"),cooksCutoff = T, independentFiltering=T, pAdjustMethod = "bonferroni", alpha = 0.05)
results_tmp <- na.omit(results_tmp[order(results_tmp$padj),])
##### padj part #####
# This part is for strictly adjusted p-values due to multiple testing
results_tmp_padj <- results_tmp[results_tmp$padj <= 0.1,]
# Replace Ensembl Gene Symbol IDs (ENSG000...s) to Offical Gene Symbols
mat <- assay(vsd[rownames(results_tmp_padj),])
tmp <- rownames_to_column(as.data.frame(mat))
tmp <- left_join(tmp, gene_ref,by = c( "rowname" = "Gene.stable.ID"))
rownames(tmp) <- make.unique(tmp$Gene.name)
mat<- tmp[,2:18]
anno <-as.data.frame(colData(vsd)[, c("Cells", i)])
pheatmap(mat = mat, annotation_col = anno, clustering_distance_rows = "manhattan",clustering_distance_cols = "manhattan", clustering_method = "ward.D2")
setwd("D:/work/tnbc_cell/mapped/svm/padj")
write.table(tmp, sep = "\t", row.names = F,col.names = T,quote = F,paste0(i, "_padj.txt"))
setwd("D:/work/tnbc_cell/mapped/svm")
##### This part is for combined filtering of lfc and p-value####
# and then applying SVM-RFE algorithm with sigFeature package
results_tmp_p_lfc <- results_tmp[results_tmp$pvalue <= 0.05 & results_tmp$log2FoldChange <= -1.5 |results_tmp$pvalue <= 0.05 & results_tmp$log2FoldChange >= 1.5,]
####
##### selection with logfc and p-value filtering #####
results_tmp_p_lfc <- na.omit(results_tmp_p_lfc[order(results_tmp_p_lfc$pvalue),])
results_tmp_p_lfc <- results_tmp_p_lfc[1:100,]
mat <- assay(vsd[rownames(results_tmp_p_lfc),])
tmp <- rownames_to_column(as.data.frame(mat))
tmp <- left_join(tmp, gene_ref,by = c( "rowname" = "Gene.stable.ID"))
rownames(tmp) <- make.unique(tmp$Gene.name)
mat<- tmp[,2:18]
anno <-as.data.frame(colData(vsd)[, c("Cells", i)])
pheatmap(mat = mat, annotation_col = anno,cutree_rows = 4, cutree_cols = 4,fontsize_row = 7.5, clustering_distance_rows = "manhattan",clustering_distance_cols = "manhattan", clustering_method = "ward.D2")
setwd("D:/work/tnbc_cell/mapped/svm/p_lfc")
write.table(tmp, sep = "\t", row.names = F,col.names = T,quote = F,paste0(i, "_p_lfc.txt"))
setwd("D:/work/tnbc_cell/mapped/svm")
##### pathfindR Enrichment Part ####
results_tmp_p_lfc <- results_tmp[results_tmp$pvalue <= 0.05 & results_tmp$log2FoldChange <= -1.5 |results_tmp$pvalue <= 0.05 & results_tmp$log2FoldChange >= 1.5,]
tmp <- rownames_to_column(as.data.frame(results_tmp_p_lfc))
tmp <- left_join(tmp, gene_ref,by = c( "rowname" = "Gene.stable.ID"))
tmp <- tmp %>% select(Gene.name, log2FoldChange,pvalue)
# assign(paste0("pf_",i),run_pathfindR(tmp,p_val_threshold = 0.05,visualize_enriched_terms = F,output_dir = i))
term_gene_graph(get(paste0("pf_",i)),use_description = T)
j <- as.numeric(match(i,names(colData)))
j <- j+1
if(j > 54) {
break
}
}
### This part is added to results later on ####
setwd("D:/work/tnbc_cell/mapped/svm/term_graphs/")
j <- 2
repeat {
i <- names(colData[j])
svg(paste0(i,"_term_graph.svg"),width = 8, height = 10)
term_gene_graph(get(paste0("pf_",i)),use_description = T)
dev.off()
j <- as.numeric(match(i,names(colData)))
j <- j+1
if(j >= 54) {
break
}
}
#### ######
####
####
####
j <- 2
##### Run this part until you obtain the J = 54. Somehow Repeat function makes failure on svg()
##### No time to look further in this loop issue.
i <- names(colData[j])
pdf(paste0(i,"_full_term_graph.pdf"),width = 12, height = 12,family = "serif")
term_gene_graph(get(paste0("pf_",i)),use_description = T,num_terms = Inf)
dev.off()
j <- as.numeric(match(i,names(colData)))
j <- j+1
#### Lastly comparison of the 2 most KEGG pathway enriched
#### drugs that are targetting same pathways
pdf.options(family = "serif")
# Modify "combined_results_graph" function to only highlight commonly upregulated or downregulated DEGs
########
combined_results_graph <- function (combined_df, selected_terms = "common", use_description = FALSE,
layout = "stress", node_size = "num_genes")
{
if (!is.logical(use_description)) {
stop("`use_description` must either be TRUE or FALSE!")
}
ID_column <- ifelse(use_description, "Term_Description",
"ID")
val_node_size <- c("num_genes", "p_val")
if (!node_size %in% val_node_size) {
stop("`node_size` should be one of ", paste(dQuote(val_node_size),
collapse = ", "))
}
if (!is.data.frame(combined_df))
stop("`combined_df` should be a data frame")
necessary_cols <- c(ID_column, "combined_p", "Up_regulated_A",
"Down_regulated_A", "Up_regulated_B", "Down_regulated_B")
if (!all(necessary_cols %in% colnames(combined_df))) {
stop(paste(c("All of", paste(necessary_cols, collapse = ", "),
"must be present in `results_df`!"), collapse = " "))
}
if (any(selected_terms == "common")) {
combined_df <- combined_df[combined_df$status == "common",
]
}
else {
if (!any(selected_terms %in% combined_df[, ID_column]))
stop("None of the `selected_terms` are in the combined results!")
combined_df <- combined_df[combined_df[, ID_column] %in%
selected_terms, ]
}
graph_df <- data.frame()
for (i in base::seq_len(nrow(combined_df))) {
up_genes <- c(unlist(strsplit(combined_df$Up_regulated_A[i],
", ")), unlist(strsplit(combined_df$Up_regulated_B[i],
", ")))
down_genes <- c(unlist(strsplit(combined_df$Down_regulated_A[i],
", ")), unlist(strsplit(combined_df$Down_regulated_B[i],
", ")))
genes <- c(up_genes, down_genes)
genes <- genes[!is.na(genes)]
for (gene in genes) {
graph_df <- rbind(graph_df, data.frame(Term = combined_df[i,
ID_column], Gene = gene, stringsAsFactors = FALSE))
}
}
graph_df <- unique(graph_df)
up_genes_A <- unlist(lapply(combined_df$Up_regulated_A, function(x) unlist(strsplit(x,
", "))))
down_genes_A <- unlist(lapply(combined_df$Down_regulated_A,
function(x) unlist(strsplit(x, ", "))))
up_genes_B <- unlist(lapply(combined_df$Up_regulated_B, function(x) unlist(strsplit(x,
", "))))
down_genes_B <- unlist(lapply(combined_df$Down_regulated_B,
function(x) unlist(strsplit(x, ", "))))
terms_A <- combined_df[!is.na(combined_df$lowest_p_A) & is.na(combined_df$lowest_p_B),
ID_column]
terms_B <- combined_df[is.na(combined_df$lowest_p_A) & !is.na(combined_df$lowest_p_B),
ID_column]
g <- igraph::graph_from_data_frame(graph_df, directed = FALSE)
igraph::V(g)$type <- ifelse(names(igraph::V(g)) %in% terms_A,
"A-only term", ifelse(names(igraph::V(g)) %in%
terms_B, "B-only term", ifelse(names(igraph::V(g)) %in%
combined_df[, ID_column], "common term", "gene")))
if (node_size == "num_genes") {
sizes <- igraph::degree(g)
sizes <- ifelse(grepl("term", igraph::V(g)$type),
sizes, 2)
size_label <- "# genes"
}
else {
idx <- match(names(igraph::V(g)), combined_df[, ID_column])
sizes <- -log10(combined_df$combined_p[idx])
sizes[is.na(sizes)] <- 2
size_label <- "-log10(p)"
}
igraph::V(g)$size <- sizes
igraph::V(g)$label.cex <- 0.5
igraph::V(g)$frame.color <- "gray"
cond_up_A <- names(igraph::V(g)) %in% up_genes_A
cond_up_B <- names(igraph::V(g)) %in% up_genes_B
cond_down_A <- names(igraph::V(g)) %in% down_genes_A
cond_down_B <- names(igraph::V(g)) %in% down_genes_B
missing_A <- !cond_up_A & !cond_down_A
missing_B <- !cond_up_B & !cond_down_B
up_cond <- (cond_up_A & cond_up_B) #| (missing_A & cond_up_B) |
#(cond_up_A & missing_B)
down_cond <- (cond_down_A & cond_down_B) #| (missing_A & cond_down_B) |
#(cond_down_A & missing_B)
igraph::V(g)$for_coloring <- ifelse(igraph::V(g)$type ==
"common term", "Common term", ifelse(igraph::V(g)$type ==
"A-only term", "A-only term", ifelse(igraph::V(g)$type ==
"B-only term", "B-only term", ifelse(up_cond,
"Up gene", ifelse(down_cond, "Down gene",
"Conflict or NPiB")))))
p <- ggraph::ggraph(g, layout = layout)
p <- p + ggraph::geom_edge_link(alpha = 0.8, colour = "darkgrey")
p <- p + ggraph::geom_node_point(ggplot2::aes_(color = ~for_coloring,
size = ~size))
p <- p + ggplot2::scale_size(range = c(5, 10), breaks = round(seq(round(min(igraph::V(g)$size)),
round(max(igraph::V(g)$size)), length.out = 4)), name = size_label)
p <- p + ggplot2::theme_void()
p <- p + ggraph::geom_node_text(ggplot2::aes_(label = ~name),
nudge_y = 0.2)
vertex_cols <- c(`Common term` = "#FCCA46", `A-only term` = "#9FB8AD",
`B-only term` = "#619B8A", `Up gene` = "green",
`Down gene` = "red", `Conflict or NPiB` = "gray")
p <- p + ggplot2::scale_colour_manual(values = vertex_cols,
name = NULL)
# p <- p + ggplot2::ggtitle("Combined Terms Graph")
p <- p + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5))
return(p)
}
##############
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_ABT737,result_B = pf_Navitoclax),use_description = T) # Apoptosis Regulation
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_RO.3306,result_B = pf_Wee1.Inhibitor),use_description = T) # Cell Cycle
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Entinostat,result_B = pf_Vorinostat),use_description = T) # Chromatin histone acetylation
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_BDP.00009066,result_B = pf_GSK269962A),use_description = T) # Cytoskeleton
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Epirubicin,result_B = pf_Irinotecan),use_description = T) # DNA Replication
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Alisertib,result_B = pf_Tozasertib),use_description = T) # Mitosis
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Sapitinib,result_B = pf_Afatinib),use_description = T) # EGFR Signalling
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Afuresertib,result_B = pf_Ipatasertib),use_description = T) # PI3K/MTOR Signalling
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Trametinib,result_B = pf_VX.11e),use_description = T) # RTK Signalling
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_NU7441,result_B = pf_VE821),use_description = T) # Genome_Integrity
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_BMS.536924,result_B = pf_NVP.ADW742),use_description = T) # IGF1R Signalling
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Dactolisib,result_B = pf_AZD8186),use_description = T)
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_Crizotinib,result_B = pf_AZD4547),use_description = T)
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_AZ6102,result_B = pf_WIKI4),use_description = T)
## intersection of the most similar drugs
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_AZD4547,result_B = pf_ZM447439),use_description = T)
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_AZD6738,result_B = pf_Pevonedistat),use_description = T)
combined_results_graph(node_size = "p_val",combine_pathfindR_results(result_A = pf_NVP.ADW742,result_B = pf_WIKI4),use_description = T)