-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
157 lines (134 loc) · 5.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.optim as optim
from net import DatasetRNN, collate_fn_RNN_pos
from net import Match_LSTM
import pickle
import os
import pandas as pd
DIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# torch.manual_seed(1)
EMBEDDING_DIM = 300
pos_dim = 50
num_layers = 2
HIDDEN_DIM = 512
BATCH_SIZE = 64
num_words = 8000
Net = Match_LSTM
# ['baidubaike', 'renmin', 'sogounews', 'weibo', 'wiki', 'zhihu']
with open(DIR + '/data_deal/%d/weight_baidubaike.pkl' % num_words, 'rb') as f:
weight = pickle.load(f)
weight = torch.FloatTensor(weight).to(device)
# 导入预处理标签
with open(DIR + '/data_deal/p.pkl', 'rb') as f:
p_index, index_p = pickle.load(f)
# 导入文本编码、词典
with open(DIR + '/data_deal/%d/word_index.pkl' % num_words, 'rb') as f:
word_index = pickle.load(f)
with open(DIR + '/data_deal/pos_index.pkl', 'rb') as f:
pos_index = pickle.load(f)
with open(DIR + '/data_deal/%d/train_data_process.pkl' % num_words, 'rb') as f:
train_data_process = pickle.load(f)
with open(DIR + '/data_deal/%d/dev_data_process.pkl' % num_words, 'rb') as f:
dev_data_process = pickle.load(f)
with open(DIR + '/data_deal/%d/test1_data_process.pkl' % num_words, 'rb') as f:
test1_data_process = pickle.load(f)
trainloader = torch.utils.data.DataLoader(
dataset=DatasetRNN(train_data_process),
batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn_RNN_pos)
devloader = torch.utils.data.DataLoader(
dataset=DatasetRNN(dev_data_process),
batch_size=1, shuffle=False, collate_fn=collate_fn_RNN_pos)
spo_lists_labels = [i['spo_list_raw'] for i in dev_data_process]
def train(epochs=5, mask=True):
# vocab_size还有pad和unknow,要+2
model = Net(vocab_size=len(word_index) + 2,
pos_size=len(pos_index) + 2,
tag_to_ix=p_index,
embedding_dim=EMBEDDING_DIM,
pos_dim=pos_dim,
num_layers=num_layers,
hidden_dim=HIDDEN_DIM,
mask=mask,
s_weight=2.5,
o_weight=1,
weight=weight,
device=device).to(device)
# 优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
score = []
for epoch in range(epochs):
print('Start Epoch: %d\n' % (epoch + 1))
sum_loss = 0.0
model.train()
for i, data in enumerate(trainloader):
model.zero_grad()
text_seqs, pos_seqs, s_B_labels, s_E_labels, s_B_E_ins, o_B_labels, o_E_labels = data
text_seqs = text_seqs.to(device)
pos_seqs = pos_seqs.to(device)
s_B_labels = s_B_labels.to(device)
s_E_labels = s_E_labels.to(device)
s_B_E_ins = s_B_E_ins.to(device)
o_B_labels = o_B_labels.to(device)
o_E_labels = o_E_labels.to(device)
# 损失函数
loss = model.cal_total_loss(text_seqs, pos_seqs, s_B_labels, s_E_labels,
s_B_E_ins, o_B_labels, o_E_labels)
loss.backward()
optimizer.step()
sum_loss += loss.item()
if (i + 1) % 100 == 0:
print('\nEpoch: %d ,batch: %d, loss = %f' % (epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0
# 不调试forward保存建议整个网络,调试的话建议保存网络参数
torch.save(model, './models/%d/%03d.pth' % (num_words, epoch + 1))
# dev得分
model.eval()
p_len = 0.001
l_len = 0.001
correct_len = 0.001
spo_list_all = []
for idx, data in enumerate(devloader):
text_seqs, pos_seqs, s_B_labels, s_E_labels, s_B_E_ins, o_B_labels, o_E_labels = data
text_seqs = text_seqs.to(device)
pos_seqs = pos_seqs.to(device)
spo_list = model(text_seqs,
pos_seqs,
dev_data_process[idx]['text'],
index_p)
spo_list_all.append(spo_list)
set_p = set(spo_list)
set_l = set(spo_lists_labels[idx])
p_len += len(set_p)
l_len += len(set_l)
correct_len += len(set_p.intersection(set_l))
if (idx + 1) % 1000 == 0:
print('finish dev %d' % (idx + 1))
Precision = correct_len / p_len
Recall = correct_len / l_len
F1 = 2 * Precision * Recall / (Precision + Recall)
score.append([epoch + 1, Precision, Recall, F1])
print('\nEpoch: %d ,Precision:%f, Recall:%f, F1:%f' % (epoch + 1, Precision, Recall, F1))
score_df = pd.DataFrame(score, columns=['Epoch', 'Precision', 'Recall', 'F1'])
print(score_df)
score_df.to_csv('./models/%d/dev.csv' % (num_words), index=False)
with open('./models/%d/dev_%03d.pkl' % (num_words, epoch + 1), 'wb') as f:
pickle.dump(spo_list_all, f)
# test1
model.eval()
spo_list_all = []
for idx, i in enumerate(test1_data_process):
text = i['text']
text_seqs = [i['text_seq']]
pos_seqs = [i['pos_seq']]
text_seqs = torch.LongTensor(text_seqs).to(device)
pos_seqs = torch.LongTensor(pos_seqs).to(device)
spo_list = model(text_seqs,
pos_seqs,
text,
index_p)
spo_list_all.append(spo_list)
with open('./models/%d/test1_%03d.pkl' % (num_words, epoch + 1), 'wb') as f:
pickle.dump(spo_list_all, f)
if __name__ == '__main__':
train(epochs=20, mask=True)