-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBinPathORam_test.cpp
1049 lines (895 loc) · 34.3 KB
/
BinPathORam_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "BinPathORam.h"
#include "HierBinPathORam.h"
#include "UnifiedBinPathORam.h"
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cstring>
#include <memory.h>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <vector>
using namespace std;
//#define NDEBUG
#include <assert.h>
int workingSetInMB = 8;
int oramSizeInMB = 16;
int levels = 0;
int dataBlockSize = 64;
int posBlockSize = 32;
int dataZ = 3;
int posZ = 3;
int superBlockSize = 1;
int maxLCSZ = ORAM_LCSZ;
int onchipPosMapSize = 512 * 1024;
int runlength = 4;
bool worstCase = 0;
int histSize = 1000;
short integrity = 0;
double RAWA = 1.0;
int ExtraDummy = 4; // this is X
double RAWEarlyReshuffleRate = 1.0;
int LogBurstLength = 0;
ofstream fout;
string outFileName("./exp_res/result_");
void SingleORAMTest();
void RAWORAMTest();
void RAWPPORAMTest();
void RAWBurstORAMTest(double);
void HierORAMTest();
void UnifiedORAMTest();
void BESecureTest();
int LocalCacheHist(const char * filename);
void SimDRAMLatency();
void Miscellany();
int main(int argc, char* argv[])
{
bool illegal_arg = false;
for (int n = 2; n < argc; n++)
{
assert(argv[n][0] == '-');
switch (argv[n][1])
{
case 's' :
workingSetInMB = atoi(&argv[n][2]);
break;
case 'S' :
oramSizeInMB = atoi(&argv[n][2]);
break;
case 'L' :
levels = atoi(&argv[n][2]);
break;
case 'B' :
dataBlockSize = atoi(&argv[n][2]);
break;
case 'b' :
posBlockSize = atoi(&argv[n][2]);
break;
case 'Z' :
dataZ = atoi(&argv[n][2]);
break;
case 'z' :
posZ = atoi(&argv[n][2]);
break;
case 'p' :
superBlockSize = atoi(&argv[n][2]);
break;
case 'm' :
maxLCSZ = atoi(&argv[n][2]);
break;
case 'w' :
assert(argv[n][2] == '0' || argv[n][2] == '1');
worstCase = argv[n][2] - '0';
break;
case 'r' :
runlength = atoi(&argv[n][2]);
break;
case 'h' :
histSize = atoi(&argv[n][2]);
break;
case 'i':
assert(atoi(&argv[n][2]) < 3);
integrity = atoi(&argv[n][2]);
break;
case 'A' :
RAWA = atof(&argv[n][2]);
break;
case 'X' :
ExtraDummy = atoi(&argv[n][2]);
break;
case 'x' :
RAWEarlyReshuffleRate = atof(&argv[n][2]);
break;
case 't' :
LogBurstLength = atoi(&argv[n][2]);
break;
default :
illegal_arg = true;
}
}
if (argc < 2)
illegal_arg = true;
if (illegal_arg)
{
cout<< "Usage: ./BinPathORam_test test_type arg_list\n"
<< "\t-s : working set in MB\n"
<< "\t-S : ORAM tree size in MB, incompatible with -L\n"
<< "\t-L : levels, incompatible with -S\n"
<< "\t-B : data ORAM block size in Bytes\n"
<< "\t-b : PosMap ORAM block size in Bytes\n"
<< "\t-Z : data ORAM blocks per bucket\n"
<< "\t-z : PosMap ORAM blocks per bucket\n"
<< "\t-m : max Stash size\n"
<< "\t-w : simulate worst case?\n"
<< "\t-r : simulation length\n"
<< "\t-i : integrity verification\n";
exit(0);
}
outFileName.append(argv[1]);
for (int i = 2; i < argc; i++)
outFileName.append(argv[i]);
ifstream try_read(outFileName.c_str());
if (try_read.good())
{
// cout<<outFileName.c_str()<<" exists"<<endl;
try_read.close();
// exit(0);
}
fout.open(outFileName.c_str(), ios_base::out);
fout.close();
if (! strcmp(argv[1], "single"))
SingleORAMTest();
else if (! strcmp(argv[1], "raw"))
RAWORAMTest();
else if (! strcmp(argv[1], "rawpp"))
RAWPPORAMTest();
else if (! strcmp(argv[1], "rawburst"))
{
RAWBurstORAMTest(0.053687091);
RAWBurstORAMTest(0.107374182);
RAWBurstORAMTest(0.161061274);
RAWBurstORAMTest(0.214748365);
RAWBurstORAMTest(0.268435456);
RAWBurstORAMTest(0.536870912);
}
else if (! strcmp(argv[1], "hier"))
HierORAMTest();
else if (! strcmp(argv[1], "BEsecure"))
BESecureTest();
else if (! strcmp(argv[1], "localcache"))
{
int sum = 0;
for (int i = 0; i < 1; i++)
sum += LocalCacheHist(outFileName.c_str());
cout << sum / 1 << endl;
}
else if (! strcmp(argv[1], "dramsim"))
SimDRAMLatency();
else if (! strcmp(argv[1], "miscellany"))
Miscellany();
return 0;
}
int64_t divceil(int64_t x, int64_t y) { return x < 0? 0 : (x + y - 1) / y; }
int64_t roundto(int64_t x, int64_t y) { return divceil(x, y) * y; }
int ModelEarlyReshuffle(double prob, int level)
{
int res = 0;
const int rand_max = RAND_MAX / 2;
for (int j = 0; j < level; j++)
if (rand() % rand_max < rand_max * prob)
res++;
return res;
}
void RAWPPORAMTest()
{
const int PinBW = 16; // Bytes per cycle
bool unified_oram = false;
bool use_plb = unified_oram;
BinPathORam PathORam, RAWORam;
int PathORamHalfLat = 0, ROR_Lat = 0, ROR_XOR_Lat = 0, ROW_Lat = 0, RW_Lat = 0, RW_Bkt_Lat = 0, RW_Pos_Bkt_Lat = 0;
int RAWLevelCount = 0, RAWPosLevelCount = 0;
int hierarchy = 0;
int ZplusA = dataZ + RAWA;
int ZplusAplusX = ZplusA + ExtraDummy;
if (unified_oram)
{
// Path ORAM latency
int PathORamZ = 4;
PathORam.Configure(workingSetInMB * (int64_t) 1024 * 1024, workingSetInMB * 2 * (int64_t) 1024 * 1024, dataBlockSize, PathORamZ);
int PathORamLevelCount = PathORam.GetLevelCount();
int PathH_Bkt = 64 + PathORamZ * 2 * roundto(PathORam.GetLevelCount(), 32);
PathORamHalfLat = divceil(PathH_Bkt, 8); + PathORamZ * dataBlockSize; // encSeed + Z(U+L+B)
PathORamHalfLat = divceil(PathORamHalfLat, PinBW) * PathORamLevelCount;
// RAW ORAM latency
RAWORam.Configure(workingSetInMB * (int64_t) 1024 * 1024, oramSizeInMB * (int64_t) 1024 * 1024, dataBlockSize, dataZ);
RAWLevelCount = RAWORam.GetLevelCount();
// RO overhead per level in Bytes
int RORH_Bkt = 64 + ZplusAplusX + dataZ * roundto(RAWLevelCount, 32) + dataZ * (HighestBit(ZplusAplusX) + 1); // one encseed, valid, Z * U + Z * log(Z+A+X)
int RORD_Bkt = dataBlockSize;
int ROWH_Bkt = 1; // update valid bits in the clear
int RWH_Bkt = RORH_Bkt + dataZ * roundto(RAWLevelCount, 32); // extra: Z*L
RWH_Bkt = divceil(RWH_Bkt, 8);
ROWH_Bkt = divceil(ROWH_Bkt, 8);
RORH_Bkt = divceil(RORH_Bkt, 8);
// RW overhead per level in Bytes
int RWR_Bkt = RWH_Bkt + dataZ * dataBlockSize;
int RWW_Bkt = RWH_Bkt + ZplusAplusX * dataBlockSize; // header, Z leaf labels, Z+A+X blocks
// latency per level
int ROR_Bkt_Lat = divceil(RORH_Bkt, PinBW) + divceil(RORD_Bkt, PinBW);
int ROW_Bkt_Lat = divceil(ROWH_Bkt, PinBW);
ROR_Lat = ROR_Bkt_Lat * RAWLevelCount;
ROW_Lat = ROW_Bkt_Lat * RAWLevelCount;
ROR_XOR_Lat = divceil(RORH_Bkt, PinBW) * RAWLevelCount + divceil(RORD_Bkt, PinBW); // latency with XOR
RW_Bkt_Lat = divceil(RWR_Bkt, PinBW) + divceil(RWW_Bkt, PinBW);
RW_Lat = RW_Bkt_Lat * RAWLevelCount;
}
else
{
// recursive Path ORAM
int PathORamZ = 4;
uint64_t workingSet = workingSetInMB * (int64_t) 1024 * 1024;
double ORAMUtil[10] = {workingSetInMB * 1.0 / oramSizeInMB, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
int HORamBlockSize[10] = {dataBlockSize};
int HORamBlocksPerBucket[10] = {PathORamZ};
for (int i = 1; i < 10; i++)
HORamBlockSize[i] = posBlockSize, HORamBlocksPerBucket[i] = PathORamZ;
HierBinPathORam PathORam;
PathORam.Configure(workingSet, ORAMUtil, HORamBlockSize, HORamBlocksPerBucket, onchipPosMapSize);
hierarchy = PathORam.GetHierarchy();
for (int h = 0; h < hierarchy; h++)
{
int PathH_Bkt = 64 + PathORamZ * 2 * roundto(PathORam.GetLevelCount(h), 32);
PathORamHalfLat += (divceil(PathH_Bkt, 8) + PathORamZ * PathORam.GetBlockSize(h)) * PathORam.GetLevelCount(h);
}
PathORamHalfLat = divceil(PathORamHalfLat, PinBW);
PathORamHalfLat = 5028 / 2;
// recursive RAW ORAM
HORamBlocksPerBucket[0] = dataZ;
for (int i = 1; i < 10; i++)
HORamBlocksPerBucket[i] = dataZ;
HierBinPathORam RAWORam;
RAWORam.Configure(workingSet, ORAMUtil, HORamBlockSize, HORamBlocksPerBucket, onchipPosMapSize);
hierarchy = RAWORam.GetHierarchy();
RAWLevelCount = RAWORam.GetLevelCount(0);
for (int h = 1; h < hierarchy; h++)
RAWPosLevelCount += RAWORam.GetLevelCount(h);
for (int h = 0; h < hierarchy; h++)
{
int this_level_count = RAWORam.GetLevelCount(h);
int this_block_size = RAWORam.GetBlockSize(h);
// RO overhead per level in Bytes
int RORH_Bkt = 64 + ZplusAplusX + dataZ * roundto(this_level_count, 32) + dataZ * (HighestBit(ZplusAplusX) + 1); // one encseed, valid, Z * U + Z * log(Z+A+X)
int ROWH_Bkt = 1;
int RWH_Bkt = RORH_Bkt + dataZ * roundto(this_level_count, 32); // extra: Z*L
RWH_Bkt = divceil(RWH_Bkt, 8);
ROWH_Bkt = divceil(ROWH_Bkt, 8);
RORH_Bkt = divceil(RORH_Bkt, 8);
int RWR_Bkt = RWH_Bkt + dataZ * this_block_size;
int RWW_Bkt = RWH_Bkt + ZplusAplusX * this_block_size; // header, Z leaf labels, Z+A+X blocks
// latency per level
int ROR_Bkt_Lat = divceil(RORH_Bkt, PinBW) + divceil(this_block_size, PinBW);
int ROW_Bkt_Lat = divceil(ROWH_Bkt, PinBW);
// RW overhead per level in Bytes
ROR_Lat += ROR_Bkt_Lat * this_level_count;
ROW_Lat += ROW_Bkt_Lat * this_level_count;
ROR_XOR_Lat = divceil(RORH_Bkt, PinBW) * this_level_count + divceil(this_block_size, PinBW); // latency with XOR
int this_bkt_lat = divceil(RWR_Bkt, PinBW) + divceil(RWW_Bkt, PinBW);
RW_Lat += this_bkt_lat * this_level_count;
if (h==0)
RW_Bkt_Lat = this_bkt_lat;
else
RW_Pos_Bkt_Lat = this_bkt_lat;
}
}
int DRAM_Lat = 50;
cout << "Path ORAM half latency = " << PathORamHalfLat << endl;
cout << "RAW ORAM RO_R latency = " << ROR_Lat << endl;
cout << "RAW ORAM RO_W latency = " << ROW_Lat << endl;
cout << "RAW ORAM RWBk latency = " << RW_Bkt_Lat << endl;
cout << "RAW ORAM RW.. latency = " << RW_Lat << endl;
uint64_t TraceSegSize = 100000;
int * read_addr = new int [TraceSegSize];
int * idle_time = new int [TraceSegSize];
ifstream traceFile;
UnifiedBinPathORam * UORam = new UnifiedBinPathORam;
if (unified_oram)
{
UORam->Configure(workingSetInMB * (int64_t) 1024 * 1024, oramSizeInMB * (int64_t) 1024 * 1024, dataBlockSize, dataZ, onchipPosMapSize, 1, 0);
hierarchy = UORam->GetHierarchy();
if (use_plb)
{
UORam->SetPLB(8192, dataBlockSize, 1);
uint64_t page_size = dataBlockSize;
for (int i = 1; i < hierarchy; i++)
page_size *= UORam->GetPosMapScaleFactor();
ORamVALookup(0, page_size);
}
}
ofstream fout;
fout.open("trace_sim.out");
fout << "bench runtime:DRAM Path RAW RAW_wd RAW_XOR resptime:Path RAW RAW_wd RAW_XOR\n";
cout << "bench runtime:DRAM Path RAW RAW_wd RAW_XOR resptime:Path RAW RAW_wd RAW_XOR\n";
fout.close();
string benches[12] = {"tpcc", "ycsb", "astar", "bzip2", "gcc", "gobmk", "h264ref", "libquantum", "mcf", "omnetpp", "perlbench", "sjeng"};
for (int bench_id = 0; bench_id < 12; bench_id++)
{
// read trace
string traceFileName = string("input/");
traceFileName.append(benches[bench_id]).append(".trace");
traceFile.open(traceFileName.c_str());
// statistics to gather
uint64_t TotalTime_RAW = 0, TotalTime_RAW_wd = 0, TotalTime_RAW_XOR = 0, TotalTime_RAW_wd_XOR = 0, TotalTime_Path = 0, TotalTime_DRAM = 0;
uint64_t NewTotalTime_RAW = 0, NewTotalTime_RAW_wd = 0, NewTotalTime_RAW_XOR = 0, NewTotalTime_RAW_wd_XOR = 0, NewTotalTime_Path = 0, NewTotalTime_DRAM = 0;
uint64_t TotalRespTime_RAW = 0, TotalRespTime_RAW_wd = 0, TotalRespTime_RAW_XOR = 0, TotalRespTime_RAW_wd_XOR = 0, TotalRespTime_Path = 0, TotalRespTime_DRAM = 0;
uint64_t RWAccessCount_RAW = 0, RWAccessCount_RAW_wd = 0, RWAccessCount_RAW_XOR = 0, RWAccessCount_RAW_wd_XOR = 0;
uint64_t ROAccessCount = 0, ORAMAccessCount = 0;
int RW_Lat_Done_wd = 0, RW_Lat_Done_wd_XOR = 0;
int thisTraceSegSize = TraceSegSize;
while (thisTraceSegSize == TraceSegSize)
{
// read in some traces
thisTraceSegSize = 0;
assert(traceFile.good());
for (uint64_t i = 0; i < TraceSegSize && !traceFile.eof(); i++, thisTraceSegSize++)
{
// if (i == 0) cout << "reading more traces from " << traceFile.tellg() << endl;
uint64_t addr_in, idle_time_in;
traceFile >> addr_in >> idle_time_in;
if (bench_id < 2)
addr_in = ORamVALookup(addr_in, 4096) / 64;
assert(addr_in < 2147483646 && idle_time_in < 10000000);
read_addr[i] = addr_in;
idle_time[i] = idle_time_in;
}
if (traceFile.eof( ))
thisTraceSegSize--;
for (uint64_t i = 0; i < thisTraceSegSize; i++, ORAMAccessCount++)
{
int hier_to_access = 1;
if (unified_oram)
{
assert(use_plb);
// access plb to figure out how many uoram accesses should be made
UORam->GenerateAddr(read_addr[i]);
hier_to_access = UORam->ReadPLB() + 1;
for (int i = hier_to_access - 1; i > 0; i--)
UORam->UpdatePLB(i);
}
for (int h = 0; h < hier_to_access; h++)
{
int this_idle_time;
if (h == 0)
this_idle_time = idle_time[i];
else
this_idle_time = 0;
// RAW ORAM without de-amortization
if (ROAccessCount - RWAccessCount_RAW * RAWA >= 0)
{
NewTotalTime_RAW += max(this_idle_time, ROW_Lat + RW_Lat);
RWAccessCount_RAW++;
}
else
NewTotalTime_RAW += max(this_idle_time, ROW_Lat);
NewTotalTime_RAW += DRAM_Lat + ROR_Lat; // online latency
// RAW ORAM with de-amortization
if (ROAccessCount - RWAccessCount_RAW_wd * RAWA >= 0)
{
NewTotalTime_RAW_wd += max(this_idle_time, ROW_Lat + RW_Lat - RW_Lat_Done_wd);
RWAccessCount_RAW_wd++;
RW_Lat_Done_wd = 0;
}
else
{
NewTotalTime_RAW_wd += max(this_idle_time, ROW_Lat);
RW_Lat_Done_wd += max(0, this_idle_time - ROW_Lat);
}
NewTotalTime_RAW_wd += DRAM_Lat + ROR_Lat; // online latency
// RAW ORAM without de-amortization but with XOR
if (ROAccessCount - RWAccessCount_RAW_XOR * RAWA >= 0)
{
NewTotalTime_RAW_XOR += max(this_idle_time, ROW_Lat + RW_Lat);
RWAccessCount_RAW_XOR++;
}
else
NewTotalTime_RAW_XOR += max(this_idle_time, ROW_Lat);
NewTotalTime_RAW_XOR += DRAM_Lat + ROR_XOR_Lat; // online latency
// RAW ORAM with de-amortization and XOR
if (ROAccessCount - RWAccessCount_RAW_wd_XOR * RAWA >= 0)
{
NewTotalTime_RAW_wd_XOR += max(this_idle_time, ROW_Lat + RW_Lat - RW_Lat_Done_wd_XOR);
RWAccessCount_RAW_wd_XOR++;
RW_Lat_Done_wd_XOR = 0;
}
else
{
NewTotalTime_RAW_wd_XOR += max(this_idle_time, ROW_Lat);
RW_Lat_Done_wd_XOR += max(0, this_idle_time - ROW_Lat);
}
NewTotalTime_RAW_wd_XOR += DRAM_Lat + ROR_XOR_Lat; // online latency
// Path ORAM
NewTotalTime_Path += max(this_idle_time, PathORamHalfLat);
NewTotalTime_Path += DRAM_Lat + PathORamHalfLat;
// early reshuffle for RAW
if (unified_oram)
{
NewTotalTime_RAW += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW_wd += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW_XOR += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW_wd_XOR += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
}
else
{
NewTotalTime_RAW += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW_wd += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW_XOR += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW_wd_XOR += (RW_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount);
NewTotalTime_RAW += (RW_Pos_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWPosLevelCount);
NewTotalTime_RAW_wd += (RW_Pos_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWPosLevelCount);
NewTotalTime_RAW_XOR += (RW_Pos_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWPosLevelCount);
NewTotalTime_RAW_wd_XOR += (RW_Pos_Bkt_Lat) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWPosLevelCount);
}
}
// DRAM
NewTotalTime_DRAM += idle_time[i];
NewTotalTime_DRAM += DRAM_Lat; // a flat DRAM latency
// record response time
TotalRespTime_RAW += NewTotalTime_RAW - (TotalTime_RAW + idle_time[i]);
TotalRespTime_RAW_wd += NewTotalTime_RAW_wd - (TotalTime_RAW_wd + idle_time[i]);
TotalRespTime_RAW_XOR += NewTotalTime_RAW_XOR - (TotalTime_RAW_XOR + idle_time[i]);
TotalRespTime_RAW_wd_XOR += NewTotalTime_RAW_wd_XOR - (TotalTime_RAW_wd_XOR + idle_time[i]);
TotalRespTime_Path += NewTotalTime_Path - (TotalTime_Path + idle_time[i]);
// update time
TotalTime_RAW = NewTotalTime_RAW;
TotalTime_RAW_wd = NewTotalTime_RAW_wd;
TotalTime_RAW_XOR = NewTotalTime_RAW_XOR;
TotalTime_RAW_wd_XOR = NewTotalTime_RAW_wd_XOR;
TotalTime_Path = NewTotalTime_Path;
TotalTime_DRAM = NewTotalTime_DRAM;
ROAccessCount += hier_to_access;
}
}
traceFile.close();
TotalRespTime_Path /= ORAMAccessCount;
TotalRespTime_RAW /= ORAMAccessCount;
TotalRespTime_RAW_wd /= ORAMAccessCount;
TotalRespTime_RAW_XOR /= ORAMAccessCount;
TotalRespTime_RAW_wd_XOR /= ORAMAccessCount;
fout.open("trace_sim.out", ios::out | ios::app);
fout << benches[bench_id] << ' ' << TotalTime_DRAM << ' ' << TotalTime_Path << ' ' << TotalTime_RAW << ' ' << TotalTime_RAW_wd << ' ' << TotalTime_RAW_XOR << ' ' << TotalTime_RAW_wd_XOR << ' ' << TotalRespTime_Path << ' ' << TotalRespTime_RAW << ' ' << TotalRespTime_RAW_wd << ' ' << TotalRespTime_RAW_XOR << ' ' << TotalRespTime_RAW_wd_XOR << endl;
cout << benches[bench_id] << ' ' << TotalTime_DRAM << ' ' << TotalTime_Path << ' ' << TotalTime_RAW << ' ' << TotalTime_RAW_wd << ' ' << TotalTime_RAW_XOR << ' ' << TotalTime_RAW_wd_XOR << ' ' << TotalRespTime_Path << ' ' << TotalRespTime_RAW << ' ' << TotalRespTime_RAW_wd << ' ' << TotalRespTime_RAW_XOR << ' ' << TotalRespTime_RAW_wd_XOR << endl;
fout.close();
}
}
void RAWBurstORAMTest(double PinBW)
{
// RAW ORAM configuration
BinPathORam RAWORam;
workingSetInMB = 32 * 1024 * 1024; // 32TB
oramSizeInMB = 2 * workingSetInMB;
dataBlockSize = 4096;
RAWORam.Configure(workingSetInMB * (int64_t) 1024 * 1024, oramSizeInMB * (int64_t) 1024 * 1024, dataBlockSize, dataZ);
int64_t RAWLevelCount = RAWORam.GetLevelCount();
int64_t ZplusA = RAWORam.GetBlocksPerBucket() + RAWA;
int64_t ZplusAplusX = ZplusA + ExtraDummy;
RAWLevelCount = RAWLevelCount - LogBurstLength; // tree top caching
int64_t Blk_Lat = dataBlockSize * 8 / PinBW;
cout << "Blk_Lat = " << Blk_Lat << endl;
uint64_t TraceSegSize = 32768;
uint64_t TotalAccessCount = 88322452;
int64_t * req_size = new int64_t [TraceSegSize];
int64_t * req_time = new int64_t [TraceSegSize];
int64_t * resp_time_raw = new int64_t [TotalAccessCount];
int64_t * resp_time_opt = new int64_t [TotalAccessCount];
ifstream traceFile;
ofstream fout;
fout.open("netapp_trace_sim.out");
// netapp trace simulation
// read trace
string traceFileName = string("input/data_merged_0925_1009");
traceFile.open(traceFileName.c_str());
char tmp[255];
traceFile.getline(tmp, 255);
// statistics to gather
int64_t TotalTime_RAW = 0, TotalTime_Opt = 0;
int64_t TotalRespTime_RAW = 0, TotalRespTime_Opt = 0;
int64_t ROAccessCount = 0, RWAccessCount = 0;
int64_t RWBktCount = RAWLevelCount * (dataZ + ZplusAplusX), RWBktCountMax = RAWLevelCount * (dataZ + ZplusAplusX);
bool outstandingRWAccess = false;
int64_t thisTraceSegSize = TraceSegSize;
while (thisTraceSegSize == TraceSegSize)
{
// read in some traces
thisTraceSegSize = 0;
assert(traceFile.good());
for (uint64_t i = 0; i < TraceSegSize && !traceFile.eof(); i++, thisTraceSegSize++)
{
//if (i == 0) cout << "reading more traces from line " << ROAccessCount << endl;
assert(traceFile.good());
int64_t offset; // useless
traceFile >> tmp[0] >> tmp[1] >> req_time[i] >> tmp[2] >> req_size[i] >> tmp[3] >> offset;
if (req_size[i] <= 0)
i--, thisTraceSegSize--;
// cout << ROAccessCount + i << ' ' << traceFile.eof() << tmp[0] << ' '<< req_time[i] << ' ' << req_size[i] << ' ' << offset << endl;
}
if (traceFile.eof())
thisTraceSegSize--;
for (uint64_t i = 0; i < thisTraceSegSize; i++)
{
// RAW ORAM with delayed eviction
int64_t idle_time = req_time[i] - TotalTime_RAW; // use this idle period to do RW access
while (idle_time > 0 && outstandingRWAccess)
{
int64_t rw_blk;
rw_blk = divceil(idle_time, Blk_Lat);
//rw_blk = idle_time / Blk_Lat;
rw_blk = min(rw_blk, RWBktCountMax - RWBktCount);
RWBktCount += rw_blk;
idle_time -= rw_blk * Blk_Lat;
if (RWBktCount == RWBktCountMax) // finished 1 RW
{
RWAccessCount++;
RWBktCount = 0;
outstandingRWAccess = ROAccessCount - RWAccessCount * RAWA > 0;
}
}
TotalTime_RAW = max(req_time[i], req_time[i] - idle_time);
if (ROAccessCount - RWAccessCount * RAWA >= ((int64_t) RAWA) << LogBurstLength) // too many delayed RWs, need to perform 1 RW
{
TotalTime_RAW += Blk_Lat * (RWBktCountMax-RWBktCount);
RWAccessCount++;
RWBktCount = 0;
outstandingRWAccess = ROAccessCount - RWAccessCount * RAWA > 0;
}
TotalTime_Opt = max(req_time[i], TotalTime_Opt);
// now we can serve this request, at t = TotalTime
int64_t this_req_size = divceil(req_size[i], 8 * dataBlockSize); // req_size is in bits !
assert(this_req_size > 0);
for (int j = 0; j < this_req_size; j++)
{
// RAW ORAM
TotalTime_RAW += Blk_Lat; // online latency
resp_time_raw[ROAccessCount] = TotalTime_RAW - req_time[i];
TotalRespTime_RAW += resp_time_raw[i];
TotalTime_RAW += Blk_Lat * (dataZ + ZplusAplusX) * ModelEarlyReshuffle(RAWEarlyReshuffleRate / RAWA, RAWLevelCount); // early reshuffle
// Optimal, no ORAM
TotalTime_Opt += Blk_Lat; // online latency
resp_time_opt[ROAccessCount] = TotalTime_Opt - req_time[i];
TotalRespTime_Opt += resp_time_opt[i];
ROAccessCount++;
}
outstandingRWAccess = ROAccessCount - RWAccessCount * RAWA > 0;
}
}
double resp_time_90, resp_time_95, resp_time_99, resp_time_999;
vector<int64_t> resp_time_sort_vec;
resp_time_sort_vec.assign(resp_time_raw, resp_time_raw + ROAccessCount);
sort (resp_time_sort_vec.begin(), resp_time_sort_vec.end());
resp_time_90 = 50 + resp_time_sort_vec[ROAccessCount * .90] / 1000000.0;
resp_time_95 = 50 + resp_time_sort_vec[ROAccessCount * .95] / 1000000.0;
resp_time_99 = 50 + resp_time_sort_vec[ROAccessCount * .99] / 1000000.0;
resp_time_999 = 50 + resp_time_sort_vec[ROAccessCount * .999] / 1000000.0;
cout << PinBW << ' ' << resp_time_90 << ' ' << resp_time_95 << ' ' << resp_time_99 << ' ' << resp_time_999 << endl;
/*
resp_time_sort_vec.assign(resp_time_opt, resp_time_opt + ROAccessCount);
sort (resp_time_sort_vec.begin(), resp_time_sort_vec.end());
resp_time_90 = 50 + resp_time_sort_vec[ROAccessCount * .90] / 1000000.0;
resp_time_95 = 50 + resp_time_sort_vec[ROAccessCount * .95] / 1000000.0;
resp_time_99 = 50 + resp_time_sort_vec[ROAccessCount * .99] / 1000000.0;
resp_time_999 = 50 + resp_time_sort_vec[ROAccessCount * .999] / 1000000.0;
cout << PinBW << ' ' << resp_time_90 << ' ' << resp_time_95 << ' ' << resp_time_99 << ' ' << resp_time_999 << endl;
*/
fout.close();
resp_time_sort_vec.clear();
delete []req_size;
delete []req_time;
delete []resp_time_raw;
delete []resp_time_opt;
}
void HierORAMTest()
{
uint64_t workingSet = workingSetInMB * ((uint64_t) 1024) * 1024;
double ORAMUtil[10] = {workingSetInMB * 1.0 / oramSizeInMB, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
int HORamBlockSize[10] = {dataBlockSize};
int HORamBlocksPerBucket[10] = {dataZ};
for (int i = 1; i < 10; i++)
HORamBlockSize[i] = posBlockSize, HORamBlocksPerBucket[i] = posZ;
int AES_pad_in_bits = 8 * 8; //
int chunk_size_in_bytes = 64; // should be multiple of DRAM access width
int bucket_size_in_chunks[10];
HierBinPathORam HORam;
HORam.Configure(workingSet, ORAMUtil, HORamBlockSize, HORamBlocksPerBucket, onchipPosMapSize);
fout.open(outFileName.c_str(), ios_base::out);
cout << "Final position map size = " << HORam.GetFinalPositionMapSize() / 1024 << " KB" << endl;
fout<<"Progress Useful / Total"<<endl;
fout.close();
HORam.Initialize();
for (int i = 0; i < HORam.GetHierarchy(); i++)
HORam.ORam[i]->SetMaxStashSize(maxLCSZ);
int64_t BlockID;
uint64_t validBlockCount = HORam.ORam[0]->GetValidBlockCount();
assert(RAND_MAX > validBlockCount);
uint64_t RecordInterval = validBlockCount >> 2;
for (uint64_t k = 0; k < validBlockCount; k++)
{
HORam.Access(k, -1, BinPathORam::write);
HORam.BackgroundEvict();
if (k % RecordInterval == RecordInterval - 1)
{
fout.open(outFileName.c_str(), ios_base::app);
fout<< k / RecordInterval << '\t' << HORam.GetNumAccess() << '\t' << HORam.GetNumDummy() << '\t' << k * 1.0 / HORam.GetNumAccess() <<endl;
fout.close();
}
}
fout.open(outFileName.c_str(), ios_base::app);
fout << endl;
fout.close();
uint64_t Total = runlength * validBlockCount;
for (uint64_t k = validBlockCount; k < Total; k++)
{
BlockID = rand() % validBlockCount;
if (worstCase)
BlockID = k % validBlockCount;
HORam.Access(BlockID, -1, BinPathORam::read);
HORam.BackgroundEvict();
if (k % RecordInterval == RecordInterval - 1)
{
fout.open(outFileName.c_str(), ios_base::app);
fout<< k / RecordInterval << '\t' << HORam.GetNumAccess() << '\t' << HORam.GetNumDummy() << '\t' << k * 1.0 / HORam.GetNumAccess() <<endl;
fout.close();
}
}
fout.open(outFileName.c_str(), ios_base::app);
fout << endl << Total * 1.0 / HORam.GetNumAccess() <<endl;
fout.close();
}
void SingleORAMTest()
{
BinPathORam ORam;
ORam.Configure(workingSetInMB * (int64_t) 1024 * 1024, oramSizeInMB * (int64_t) 1024 * 1024, dataBlockSize, dataZ);
ORam.Initialize();
int64_t BlockID;
int validBlockCount = ORam.GetValidBlockCount();
assert(RAND_MAX > validBlockCount);
ORam.SetMaxStashSize(maxLCSZ);
int RecordInterval = validBlockCount >> 2;
fout.open(outFileName.c_str(), ios_base::out);
fout<<"Progress Rate / Total"<<endl;
fout.close();
for (uint64_t k = 0; k < validBlockCount; k++)
{
ORam.Access(k, -1, BinPathORam::write, NULL);
ORam.BackgroundEvict();
if (k % RecordInterval == RecordInterval - 1)
{
fout.open(outFileName.c_str(), ios_base::app);
fout<< k / RecordInterval << '\t' << ORam.GetNumAccess() << '\t' << ORam.GetNumDummy() << '\t' << k * 1.0 / ORam.GetNumAccess() <<endl;
fout.close();
}
}
fout.open(outFileName.c_str(), ios_base::app);
fout << endl;
fout.close();
int64_t total_traffic = 0, total_levels = 0;
ORam.EnableHistogram(1000, 2);
uint64_t Total = runlength * validBlockCount;
for (uint64_t k = validBlockCount; k < Total; k++)
{
BlockID = rand() % validBlockCount;
if (worstCase)
BlockID = k % validBlockCount;
total_traffic += ORam.BackgroundEvict();
total_traffic += ORam.Access(BlockID, -1, BinPathORam::read, NULL);
ORam.RecordHistogram();
total_levels += ORam.GetCurPathLength();
if (k % RecordInterval == RecordInterval - 1)
{
fout.open(outFileName.c_str(), ios_base::app);
fout<< (k - validBlockCount) / RecordInterval << '\t' << total_traffic * 1.0 / (k - validBlockCount) <<endl;
fout.close();
}
}
ORam.DumpHistogram("PathLoad.txt");
double ave_traffic = total_traffic * 1.0 / (Total - validBlockCount);
fout.open(outFileName.c_str(), ios_base::app);
fout << "Access overhead: \t" << ave_traffic << "\t\t"<< ave_traffic / total_levels * (Total - validBlockCount) << endl;
fout.close();
cout << "Access overhead: \t" << ave_traffic << "\t\t"<< ave_traffic / total_levels * (Total - validBlockCount) << endl;
cout<< Total / RecordInterval << '\t' << ORam.GetNumAccess() << '\t' << ORam.GetNumDummy() << '\t' << Total * 1.0 / ORam.GetNumAccess() <<endl;
}
inline uint64_t ReverseBit(uint64_t input, int n)
{
uint64_t output;
for (int i = 0; i < n; i++)
{
output <<= 1;
output += input & 1;
input >>= 1;
}
return output;
}
void RAWORAMTest()
{
BinPathORam ORam;
// ORam.Configure(workingSetInMB * (int64_t) 1024 * 1024, oramSizeInMB * (int64_t) 1024 * 1024, dataBlockSize, dataZ);
int ORamLevels = levels;
ORam.Configure((1 << ORamLevels) / 4 * RAWA, ORamLevels, dataZ); // (1 << ORamLevels) / 4 * RAWA, 0r 25% util is what's proven.
ORam.Initialize();
int64_t BlockID;
int validBlockCount = ORam.GetValidBlockCount();
assert(RAND_MAX > validBlockCount);
// ORam.SetMaxStashSize(maxLCSZ);
int RecordInterval = validBlockCount >> 2;
double EvictRate = (double) RAWA;
uint64_t EvictCounter = 0;
uint64_t ROCounter = 0;
int LeafBase = 1 << (ORamLevels - 1);
LeafBase --;
double AveStashOccupancy = 0;
int64_t total_traffic = 0, total_levels = 0;
uint64_t Total = runlength * validBlockCount;
ORam.EnableHistogram(1000, 2);
for (uint64_t k = 0; k < 2 * validBlockCount; k++)
{
ORam.AccessOneBlock(k % validBlockCount, -1, BinPathORam::write);
ROCounter++;
if (ROCounter > EvictRate * EvictCounter)
{
uint64_t EvictPath = ReverseBit(EvictCounter, ORamLevels - 1);
assert(EvictPath < LeafBase + 1);
EvictPath += LeafBase;
EvictCounter++;
ORam.Access(-1, EvictPath, BinPathORam::dummy, NULL);
}
}
for (uint64_t k = validBlockCount; k < Total; k++)
{
BlockID = rand() % validBlockCount;
if (worstCase)
BlockID = k % validBlockCount;
total_traffic += ORam.AccessOneBlock(BlockID, -1, BinPathORam::read);
total_levels += ORam.GetCurPathLength();
ROCounter++;
while (ROCounter > EvictRate * EvictCounter)
{
uint64_t EvictPath = ReverseBit(EvictCounter, ORamLevels - 1);
assert(EvictPath < LeafBase + 1);
EvictPath += LeafBase;
EvictCounter++;
//total_traffic += ORam.Access(-1, EvictPath, BinPathORam::dummy, NULL);
total_traffic += ORam.ForegroundEvict1(EvictPath);
AveStashOccupancy += ORam.GetCurLocalCacheSize();
ORam.RecordHistogram();
}
}
ORam.DumpHistogram("PathLoad.txt");
double ave_traffic = total_traffic * 1.0 / (Total - validBlockCount);
AveStashOccupancy /= (Total - validBlockCount) / EvictRate;
cout << "Access overhead: " << ave_traffic << "\t"<< ave_traffic / total_levels * (Total - validBlockCount) << "\nMaximum/Ave Stash: " << ORam.GetPeakLocalCacheSize() << '\t' << AveStashOccupancy << endl;
}
void BESecureTest()
{
/* int workingSetInMB = 16;
int oramSizeInMB = 63;
int dataBlockSize = 1;
int dataZ = 1;
int superBlockSize = 1;
int maxLCSZ = 2;
int runlength = 100;
bool worstCase = 1;
*/
srand (time(NULL));
BinPathORam ORam;
ORam.Configure(workingSetInMB, oramSizeInMB, dataBlockSize, dataZ);
ORam.Initialize();
int BlockID;
int blockCount = ORam.GetValidBlockCount();
assert(RAND_MAX > blockCount);
fout.open("./common_path.txt", ios_base::app);
ORam.SetMaxStashSize(maxLCSZ);
int RecordInterval = blockCount >> 2;
for (int k = 0; k < blockCount; k++)
{
ORam.Access(k, -1, BinPathORam::write, NULL);
ORam.InsecureBackgroundEvict();
// ORam.BackgroundEvict();
}
uint64_t Total = runlength * ORam.GetValidBlockCount();
for (uint64_t k = blockCount; k < Total; k++)
{
BlockID = rand() % blockCount;
if (worstCase)
BlockID = k % blockCount;
ORam.Access(BlockID, -1, BinPathORam::read, NULL);
ORam.InsecureBackgroundEvict();
// ORam.BackgroundEvict();
}
uint64_t sum = 0;
// for (int i = 1; i < ORam.ServerSees.size(); i++)
// sum += ORam.GetLevelCount() - HighestBit(ORam.ServerSees[i] ^ ORam.ServerSees[i-1]);
for (int i = 0; i < ORam.ServerSees.size(); i++)
for (int j = i+1; j < i + 2 * workingSetInMB + 1&& i < ORam.ServerSees.size(); j++)
sum += ORam.GetLevelCount() - HighestBit(ORam.ServerSees[i] ^ ORam.ServerSees[j]);
cout << sum * 1.0 / ORam.ServerSees.size() / workingSetInMB / 2 << endl;
fout << sum * 1.0 / ORam.ServerSees.size() / workingSetInMB / 2 << endl;
}
int LocalCacheHist(const char * filename)
{
srand (time(NULL));
BinPathORam ORam;
if (!levels)
ORam.Configure(workingSetInMB * (uint64_t) 1024 * 1024, oramSizeInMB * (uint64_t) 1024 * 1024, dataBlockSize, dataZ);
else
ORam.Configure(workingSetInMB, levels, dataZ);
ORam.Initialize();
int BlockID;
int validBlockCount = ORam.GetValidBlockCount();
assert(RAND_MAX > validBlockCount);
int RecordInterval = validBlockCount << 3;
for (int k = 0; k < validBlockCount; k++)
{
ORam.Access(k, -1, BinPathORam::write, NULL);
}
ORam.EnableHistogram(histSize, 2);
uint64_t Total = runlength * validBlockCount;
for (uint64_t k = validBlockCount; k < Total; k++)
{
BlockID = rand() % validBlockCount;
if (worstCase)
BlockID = k % validBlockCount;
ORam.Access(BlockID, -1, BinPathORam::read, NULL);
if (k % RecordInterval == RecordInterval - 1)
ORam.DumpHistogram(filename);
}
return ORam.GetPeakLocalCacheSize();
}
void SimDRAMLatency()
{
#ifdef USE_DRAMSIM2
uint64_t workingSet = workingSetInMB * ((uint64_t) 1024) * 1024;
double ORAMUtil[10] = {workingSetInMB * 1.0 / oramSizeInMB, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
int HORamBlockSize[10] = {dataBlockSize};
int HORamBlocksPerBucket[10] = {dataZ};
for (int i = 1; i < 10; i++)
HORamBlockSize[i] = posBlockSize, HORamBlocksPerBucket[i] = posZ;
HierBinPathORam HORam;