-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pop.py
331 lines (270 loc) · 14.2 KB
/
main_pop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import sys
import argparse
import pickle
import time
import datetime
# from model_pop import *
from model_v1 import *
import numpy as np
from data import *
import warnings
warnings.filterwarnings("ignore")
print(torch.__version__)
def init_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='diginetica', help='yoochoose1_64/diginetica/sample')
'''训练基本参数'''
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--l2', type=float, default=1e-5, help='l2 penalty') # [0.001, 0.0005, 0.0001, 0.00005, 0.00001]
parser.add_argument('--lr', type=float, default=0.01, help='learning rate') # [0.001, 0.0005, 0.0001]
parser.add_argument('--lr_dc', type=float, default=0.1, help='learning rate decay rate')
parser.add_argument('--lr_dc_epoch', type=list, default=[3, 6, 9, 12], help='the epoch which the learning rate decay')
# parser.add_argument('--lr_dc_epoch', type=list, default=[5, 10, 15], help='the epoch which the learning rate decay')
parser.add_argument('--patience', type=int, default=4)
'''模型超参数'''
parser.add_argument('--anchor_num', type=int, default=10, help='number of cluster')
parser.add_argument('--anchor_method', default='infor', help='local/global')
parser.add_argument('--hidden_size', type=int, default=100)
parser.add_argument('--routing_iter', type=int, default=4)
parser.add_argument('--hop', type=int, default=1) # 1 or 2 or 3
parser.add_argument('--sample_num', type=int, default=12)
parser.add_argument('--n_sample', type=int, default=12)
parser.add_argument('--topk', type=list, default=[20], help='topk recommendation') # [5, 10, 20]
parser.add_argument('--validation', default='test', help='validation/test')
parser.add_argument('--valid_portion', type=float, default=0.1, help='split the portion of training set as validation set')
parser.add_argument('--log', type=bool, default=True)
# parser.add_argument('--log', type=bool, default=False)
parser.add_argument('--save_path', default='model_save', help='save model root path')
# parser.add_argument('--save_path', default=None, help='save model root path')
parser.add_argument('--save_epochs', default=[3, 6, 9, 12], type=list)
# parser.add_argument('--save_epochs', default=[5, 10, 15], type=list)
opt = parser.parse_args()
if opt.log:
path = 'log_v1/' + opt.dataset
if not os.path.exists(path):
os.makedirs(path)
file = path + '/' + datetime.datetime.now().strftime('%Y%m%d%H%M%S') + '_K' + str(opt.anchor_num) + \
'_hop' + str(opt.hop) + '_' + opt.validation + '.txt'
f = open(file, 'w')
print('log file is ', file)
print('log file is ', file, file=f)
else:
f = sys.stdout
if opt.validation == 'test':
print('Now is testset')
print('Now is testset', file=f)
else:
print('Now is validationset')
print('Now is validationset', file=f)
print(opt)
print(opt, file=f)
USE_CUDA = torch.cuda.is_available()
device = torch.device('cuda' if USE_CUDA else 'cpu')
# if opt.save_path is not None:
if opt.save_path is not None and opt.dataset != 'sample':
save_path = opt.save_path + '/' + opt.dataset
save_dir = save_path + '/' + datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
print('save dir: ', save_dir)
print('save dir: ', save_dir, file=f)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
def main():
t0 = time.time()
init_seed(2021)
train_data = pickle.load(open('datasets/' + opt.dataset + '/train.txt', 'rb'))
if opt.validation == 'validation':
train_data, valid_data = split_validation(train_data, opt.valid_portion)
test_data = valid_data
else:
test_data = pickle.load(open('datasets/' + opt.dataset + '/test.txt', 'rb'))
# test_data = pickle.load(open('datasets/' + opt.dataset + '/test.txt', 'rb'))
adj_items = pickle.load(open('datasets/' + opt.dataset + '/adj_' + str(opt.n_sample) + '.pkl', 'rb'))
weight_items = pickle.load(open('datasets/' + opt.dataset + '/num_' + str(opt.n_sample) + '.pkl', 'rb'))
param = pickle.load(open('datasets/' + opt.dataset + '/parm' + '.pkl', 'rb'))
num_items, max_length, item2idx, idx2items = param['num_items'], param['max_length'], param['item2idx'], param[
'idx2item']
anchors = pickle.load(open('anchors/' + opt.dataset + '/anchors_' +
opt.anchor_method + '_' + str(opt.anchor_num) + '.pkl', 'rb'))
train_data = transfer2idx(train_data, item2idx)
test_data = transfer2idx(test_data, item2idx)
# 按每条session的最长长度进行padding
train_data = Data(train_data, num_items)
test_data = Data(test_data, num_items)
train_slices = train_data.generate_batch(opt.batch_size)
test_slices = test_data.generate_batch(opt.batch_size)
adj_items, weight_items = handle_adj(adj_items, weight_items, num_items, opt.sample_num)
model = NRPOPSess(opt, num_items, adj_items, anchors, device=device)
model = model.to(device)
print(model)
print(model, file=f)
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr, weight_decay=opt.l2)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=opt.lr_dc_epoch, gamma=opt.lr_dc)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=opt.lr_dc)
best_result = {}
best_epoch = {}
for k in opt.topk:
best_result[k] = [0, 0]
best_epoch[k] = [0, 0]
bad_counter = 0
# tau = [1.0, 1.0, 1.0, 0.6, 0.6, 0.6, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
for epoch in range(opt.epochs):
# tau = max(1.0 - epoch * 0.1, 0.1)
tau = 1.0
st = time.time()
print('-------------------------------------------')
print('-------------------------------------------', file=f)
print('tau: %0.2f' % tau, file=f)
print('epoch: ', epoch)
print('epoch: ', epoch, file=f)
hit, mrr = train_test(model, train_data, test_data, train_slices, test_slices, optimizer, scheduler, tau)
scheduler.step()
# if opt.save_path is not None and epoch in opt.save_epochs:
if opt.save_path is not None and epoch in opt.save_epochs and opt.dataset != 'sample':
save_file = save_dir + '/epoch-' + str(epoch) + '.pt'
torch.save(model, save_file)
# print('save success! :)')
print('save success! :)', file=f)
bad_counter += 1
for k in opt.topk:
if hit[k] > best_result[k][0]:
best_result[k][0] = hit[k]
best_epoch[k][0] = epoch
bad_counter = 0
if mrr[k] > best_result[k][1]:
best_result[k][1] = mrr[k]
best_epoch[k][1] = epoch
bad_counter = 0
print('Hit@%d:\t%0.4f %%\tMRR@%d:\t%0.4f %%\t[%0.2f s]' % (k, hit[k], k, mrr[k], (time.time() - st)))
print('Hit@%d:\t%0.4f %%\tMRR@%d:\t%0.4f %%\t[%0.2f s]' % (k, hit[k], k, mrr[k], (time.time() - st)), file=f)
if bad_counter > opt.patience:
break
print('------------------best result-------------------')
print('------------------best result-------------------', file=f)
for k in opt.topk:
print('Best Result: Hit@%d: %0.4f %%\tMRR@%d: %0.4f %%\t[%0.2f s]' %
(k, best_result[k][0], k, best_result[k][1], (time.time() - t0)))
print('Best Result: Hit@%d: %0.4f %%\tMRR@%d: %0.4f %%\t[%0.2f s]' %
(k, best_result[k][0], k, best_result[k][1], (time.time() - t0)), file=f)
print('Best Epoch: Hit@%d: %d\tMRR@%d: %d\t[%0.2f s]' % (
k, best_epoch[k][0], k, best_epoch[k][1], (time.time() - t0)))
print('Best Epoch: Hit@%d: %d\tMRR@%d: %d\t[%0.2f s]' % (
k, best_epoch[k][0], k, best_epoch[k][1], (time.time() - t0)), file=f)
print('------------------------------------------------')
print('------------------------------------------------', file=f)
print('Run time: %0.2f s' % (time.time() - t0))
print('Run time: %0.2f s' % (time.time() - t0), file=f)
def train_test(model, train_data, test_data, train_slices, test_slices, optimizer, scheduler, tau):
# print('start training: ', datetime.datetime.now())
print('start training: ', datetime.datetime.now(), file=f)
model.train()
# scheduler.step()
total_loss = []
total_loss_item = []
total_loss_pop = []
total_loss_con = []
beta = 1.0
for index in train_slices:
optimizer.zero_grad()
# scores, targets = forward(model, index, train_data, tau)
# loss = model.loss_function(scores, targets - 1)
scores, scores_item, scores_pop, targets = forward(model, index, train_data, tau)
# scores, scores_item, scores_pop, con_loss, targets = forward(model, index, train_data, tau)
loss = model.loss_function(scores, targets - 1)
loss_item = model.loss_function1(scores_item, targets - 1)
loss_pop = model.loss_function2(scores_pop, targets - 1)
loss = loss + loss_item + loss_pop
loss.backward()
optimizer.step()
total_loss.append(loss.item())
total_loss_item.append(loss_item.item())
total_loss_pop.append(loss_pop.item())
# total_loss_con.append(con_loss.item())
#
# print('Loss:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss), optimizer.state_dict()['param_groups'][0]['lr']))
print('Loss:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss), optimizer.state_dict()['param_groups'][0]['lr']), file=f)
# print('LossIte:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss_item), optimizer.state_dict()['param_groups'][0]['lr']))
print('LossIte:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss_item), optimizer.state_dict()['param_groups'][0]['lr']), file=f)
# print('LossPop:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss_pop), optimizer.state_dict()['param_groups'][0]['lr']))
print('LossPop:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss_pop), optimizer.state_dict()['param_groups'][0]['lr']), file=f)
# print('LossCon:\t%.8f\tlr:\t%0.8f' % (np.mean(total_loss_con), optimizer.state_dict()['param_groups'][0]['lr']))
# print('----------------')
print('----------------', file=f)
# print('start predicting: ', datetime.datetime.now())
print('start predicting: ', datetime.datetime.now(), file=f)
hit_dic, mrr_dic = {}, {}
hit_ite, mrr_ite = {}, {}
hit_pop, mrr_pop = {}, {}
for k in opt.topk:
hit_dic[k] = []
mrr_dic[k] = []
hit_ite[k] = []
mrr_ite[k] = []
hit_pop[k] = []
mrr_pop[k] = []
with torch.no_grad():
model.eval()
for index in test_slices:
# tes_scores, tes_targets = forward(model, index, test_data, tau)
tes_scores, tes_scores_item, tes_scores_pop, tes_targets = forward(model, index, test_data, tau)
# tes_scores, tes_scores_item, tes_scores_pop, _, tes_targets = forward(model, index, test_data, tau)
for k in opt.topk:
predict = tes_scores.cpu().topk(k)[1]
predict = predict.cpu()
for pred, target in zip(predict, tes_targets.cpu()):
hit_dic[k].append(np.isin(target - 1, pred))
if len(np.where(pred == target - 1)[0]) == 0:
mrr_dic[k].append(0)
else:
mrr_dic[k].append(1 / (np.where(pred == target - 1)[0][0] + 1))
for k in opt.topk:
predict = tes_scores_item.cpu().topk(k)[1]
predict = predict.cpu()
for pred, target in zip(predict, tes_targets.cpu()):
hit_ite[k].append(np.isin(target - 1, pred))
if len(np.where(pred == target - 1)[0]) == 0:
mrr_ite[k].append(0)
else:
mrr_ite[k].append(1 / (np.where(pred == target - 1)[0][0] + 1))
for k in opt.topk:
predict = tes_scores_pop.cpu().topk(k)[1]
predict = predict.cpu()
for pred, target in zip(predict, tes_targets.cpu()):
hit_pop[k].append(np.isin(target - 1, pred))
if len(np.where(pred == target - 1)[0]) == 0:
mrr_pop[k].append(0)
else:
mrr_pop[k].append(1 / (np.where(pred == target - 1)[0][0] + 1))
for k in opt.topk:
hit_dic[k] = np.mean(hit_dic[k]) * 100
mrr_dic[k] = np.mean(mrr_dic[k]) * 100
hit_ite[k] = np.mean(hit_ite[k]) * 100
mrr_ite[k] = np.mean(mrr_ite[k]) * 100
hit_pop[k] = np.mean(hit_pop[k]) * 100
mrr_pop[k] = np.mean(mrr_pop[k]) * 100
# print('HitIte@%d:\t%0.4f %%\tMRRIte@%d:\t%0.4f %%\t' % (k, hit_ite[k], k, mrr_ite[k]))
print('HitIte@%d:\t%0.4f %%\tMRRIte@%d:\t%0.4f %%\t' % (k, hit_ite[k], k, mrr_ite[k]), file=f)
# print('HitPop@%d:\t%0.4f %%\tMRRPop@%d:\t%0.4f %%\t' % (k, hit_pop[k], k, mrr_pop[k]))
print('HitPop@%d:\t%0.4f %%\tMRRPop@%d:\t%0.4f %%\t' % (k, hit_pop[k], k, mrr_pop[k]), file=f)
return hit_dic, mrr_dic
def forward(model, index, data, tau):
inp_sess, targets, mask_1, mask_inf, lengths = data.get_slice_sess_mask(index)
inp_sess = torch.LongTensor(inp_sess).to(device)
lengths = torch.LongTensor(lengths).to(device)
targets = torch.LongTensor(targets).to(device)
mask_1 = torch.FloatTensor(mask_1).to(device)
mask_inf = torch.FloatTensor(mask_inf).to(device)
# scores = model(inp_sess, lengths, mask_inf, mask_1, tau)
# return scores, targets
scores, scores_item, scores_pop = model(inp_sess, lengths, mask_inf, mask_1, tau)
return scores, scores_item, scores_pop, targets
# scores, scores_item, scores_pop, con_loss = model(inp_sess, lengths, mask_inf, mask_1, tau)
# return scores, scores_item, scores_pop, con_loss, targets
main()
if opt.log:
f.close()