forked from restrepd-zz/drta
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdrta_read_Intan_RHD2000_header.m
1240 lines (1064 loc) · 56.2 KB
/
drta_read_Intan_RHD2000_header.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [draq_p,draq_d]=drta_read_Intan_RHD2000_header(filename, which_protocol, handles)
% read_Intan_RHD2000_file
%
% Version 2.0, 20 October 2016
%
% Reads Intan Technologies RHD2000 data file generated by evaluation board
% GUI or Intan Recording Controller. Data are parsed and placed into
% variables that appear in the base MATLAB workspace. Therefore, it is
% recommended to execute a 'clear' command before running this program tort
% clear all other variables from the base workspace.
%
% Example:
% >> clear
% >> read_Intan_RHD2000_file
% >> whos
% >> amplifier_channels(1)
% >> plot(t_amplifier, amplifier_data(1,:))
% [file, path, filterindex] = ...
% uigetfile('*.rhd', 'Select an RHD2000 Data File', 'MultiSelect', 'off')
%
% if (file == 0)
% return;
% end
% Read most recent file automatically.
% path = 'C:\Users\Reid\Documents\RHD2132\testing\';
% d = dir([path '*.rhd']);
% file = d(end).name;
tic;
fid = fopen(filename, 'r');
s = dir(filename);
filesize = s.bytes;
% Check 'magic number' at beginning of file to make sure this is an Intan
% Technologies RHD2000 data file.
magic_number = fread(fid, 1, 'uint32');
if magic_number ~= hex2dec('c6912702')
error('Unrecognized file type.');
end
% Read version number.
data_file_main_version_number = fread(fid, 1, 'int16');
data_file_secondary_version_number = fread(fid, 1, 'int16');
fprintf(1, '\n');
fprintf(1, 'Reading Intan Technologies RHD2000 Data File, Version %d.%d\n', ...
data_file_main_version_number, data_file_secondary_version_number);
fprintf(1, '\n');
if (data_file_main_version_number == 1)
num_samples_per_data_block = 60;
else
num_samples_per_data_block = 128;
end
% Read information of sampling rate and amplifier frequency settings.
sample_rate = fread(fid, 1, 'single');
dsp_enabled = fread(fid, 1, 'int16');
actual_dsp_cutoff_frequency = fread(fid, 1, 'single');
actual_lower_bandwidth = fread(fid, 1, 'single')
actual_upper_bandwidth = fread(fid, 1, 'single')
desired_dsp_cutoff_frequency = fread(fid, 1, 'single');
desired_lower_bandwidth = fread(fid, 1, 'single');
desired_upper_bandwidth = fread(fid, 1, 'single');
fprintf(1, 'Sample rate = %d\nLower bandwidth = %d\nUpper_bandwidth = %d\n', ...
sample_rate, actual_lower_bandwidth,actual_upper_bandwidth);
% This tells us if a software 50/60 Hz notch filter was enabled during
% the data acquisition.
notch_filter_mode = fread(fid, 1, 'int16');
notch_filter_frequency = 0;
if (notch_filter_mode == 1)
notch_filter_frequency = 50;
elseif (notch_filter_mode == 2)
notch_filter_frequency = 60;
end
desired_impedance_test_frequency = fread(fid, 1, 'single');
actual_impedance_test_frequency = fread(fid, 1, 'single');
% Place notes in data strucure
notes = struct( ...
'note1', fread_QString(fid), ...
'note2', fread_QString(fid), ...
'note3', fread_QString(fid) );
% If data file is from GUI v1.1 or later, see if temperature sensor data
% was saved.
num_temp_sensor_channels = 0;
if ((data_file_main_version_number == 1 && data_file_secondary_version_number >= 1) ...
|| (data_file_main_version_number > 1))
num_temp_sensor_channels = fread(fid, 1, 'int16');
end
% If data file is from GUI v1.3 or later, load eval board mode.
eval_board_mode = 0;
if ((data_file_main_version_number == 1 && data_file_secondary_version_number >= 3) ...
|| (data_file_main_version_number > 1))
eval_board_mode = fread(fid, 1, 'int16');
end
% If data file is from v2.0 or later (Intan Recording Controller),
% load name of digital reference channel.
if (data_file_main_version_number > 1)
reference_channel = fread_QString(fid);
end
% Place frequency-related information in data structure.
frequency_parameters = struct( ...
'amplifier_sample_rate', sample_rate, ...
'aux_input_sample_rate', sample_rate / 4, ...
'supply_voltage_sample_rate', sample_rate / num_samples_per_data_block, ...
'board_adc_sample_rate', sample_rate, ...
'board_dig_in_sample_rate', sample_rate, ...
'desired_dsp_cutoff_frequency', desired_dsp_cutoff_frequency, ...
'actual_dsp_cutoff_frequency', actual_dsp_cutoff_frequency, ...
'dsp_enabled', dsp_enabled, ...
'desired_lower_bandwidth', desired_lower_bandwidth, ...
'actual_lower_bandwidth', actual_lower_bandwidth, ...
'desired_upper_bandwidth', desired_upper_bandwidth, ...
'actual_upper_bandwidth', actual_upper_bandwidth, ...
'notch_filter_frequency', notch_filter_frequency, ...
'desired_impedance_test_frequency', desired_impedance_test_frequency, ...
'actual_impedance_test_frequency', actual_impedance_test_frequency );
% Define data structure for spike trigger settings.
spike_trigger_struct = struct( ...
'voltage_trigger_mode', {}, ...
'voltage_threshold', {}, ...
'digital_trigger_channel', {}, ...
'digital_edge_polarity', {} );
new_trigger_channel = struct(spike_trigger_struct);
spike_triggers = struct(spike_trigger_struct);
% Define data structure for data channels.
channel_struct = struct( ...
'native_channel_name', {}, ...
'custom_channel_name', {}, ...
'native_order', {}, ...
'custom_order', {}, ...
'board_stream', {}, ...
'chip_channel', {}, ...
'port_name', {}, ...
'port_prefix', {}, ...
'port_number', {}, ...
'electrode_impedance_magnitude', {}, ...
'electrode_impedance_phase', {} );
new_channel = struct(channel_struct);
% Create structure arrays for each type of data channel.
amplifier_channels = struct(channel_struct);
aux_input_channels = struct(channel_struct);
supply_voltage_channels = struct(channel_struct);
board_adc_channels = struct(channel_struct);
board_dig_in_channels = struct(channel_struct);
board_dig_out_channels = struct(channel_struct);
amplifier_index = 1;
aux_input_index = 1;
supply_voltage_index = 1;
board_adc_index = 1;
board_dig_in_index = 1;
board_dig_out_index = 1;
% Read signal summary from data file header.
number_of_signal_groups = fread(fid, 1, 'int16');
for signal_group = 1:number_of_signal_groups
signal_group_name = fread_QString(fid);
signal_group_prefix = fread_QString(fid);
signal_group_enabled = fread(fid, 1, 'int16');
signal_group_num_channels = fread(fid, 1, 'int16');
signal_group_num_amp_channels = fread(fid, 1, 'int16');
if (signal_group_num_channels > 0 && signal_group_enabled > 0)
new_channel(1).port_name = signal_group_name;
new_channel(1).port_prefix = signal_group_prefix;
new_channel(1).port_number = signal_group;
for signal_channel = 1:signal_group_num_channels
new_channel(1).native_channel_name = fread_QString(fid);
new_channel(1).custom_channel_name = fread_QString(fid);
new_channel(1).native_order = fread(fid, 1, 'int16');
new_channel(1).custom_order = fread(fid, 1, 'int16');
signal_type = fread(fid, 1, 'int16');
channel_enabled = fread(fid, 1, 'int16');
new_channel(1).chip_channel = fread(fid, 1, 'int16');
new_channel(1).board_stream = fread(fid, 1, 'int16');
new_trigger_channel(1).voltage_trigger_mode = fread(fid, 1, 'int16');
new_trigger_channel(1).voltage_threshold = fread(fid, 1, 'int16');
new_trigger_channel(1).digital_trigger_channel = fread(fid, 1, 'int16');
new_trigger_channel(1).digital_edge_polarity = fread(fid, 1, 'int16');
new_channel(1).electrode_impedance_magnitude = fread(fid, 1, 'single');
new_channel(1).electrode_impedance_phase = fread(fid, 1, 'single');
if (channel_enabled)
switch (signal_type)
case 0
amplifier_channels(amplifier_index) = new_channel;
spike_triggers(amplifier_index) = new_trigger_channel;
amplifier_index = amplifier_index + 1;
case 1
aux_input_channels(aux_input_index) = new_channel;
aux_input_index = aux_input_index + 1;
case 2
supply_voltage_channels(supply_voltage_index) = new_channel;
supply_voltage_index = supply_voltage_index + 1;
case 3
board_adc_channels(board_adc_index) = new_channel;
board_adc_index = board_adc_index + 1;
case 4
board_dig_in_channels(board_dig_in_index) = new_channel;
board_dig_in_index = board_dig_in_index + 1;
case 5
board_dig_out_channels(board_dig_out_index) = new_channel;
board_dig_out_index = board_dig_out_index + 1;
otherwise
error('Unknown channel type');
end
end
end
end
end
% Summarize contents of data file.
num_amplifier_channels = amplifier_index - 1;
num_aux_input_channels = aux_input_index - 1;
num_supply_voltage_channels = supply_voltage_index - 1;
num_board_adc_channels = board_adc_index - 1;
num_board_dig_in_channels = board_dig_in_index - 1;
num_board_dig_out_channels = board_dig_out_index - 1;
%
% fprintf(1, 'Found %d amplifier channel%s.\n', ...
% num_amplifier_channels, plural(num_amplifier_channels));
% fprintf(1, 'Found %d auxiliary input channel%s.\n', ...
% num_aux_input_channels, plural(num_aux_input_channels));
% fprintf(1, 'Found %d supply voltage channel%s.\n', ...
% num_supply_voltage_channels, plural(num_supply_voltage_channels));
% fprintf(1, 'Found %d board ADC channel%s.\n', ...
% num_board_adc_channels, plural(num_board_adc_channels));
% fprintf(1, 'Found %d board digital input channel%s.\n', ...
% num_board_dig_in_channels, plural(num_board_dig_in_channels));
% fprintf(1, 'Found %d board digital output channel%s.\n', ...
% num_board_dig_out_channels, plural(num_board_dig_out_channels));
% fprintf(1, 'Found %d temperature sensors channel%s.\n', ...
% num_temp_sensor_channels, plural(num_temp_sensor_channels));
% fprintf(1, '\n');
% Determine how many samples the data file contains.
% Each data block contains num_samples_per_data_block amplifier samples.
bytes_per_block = num_samples_per_data_block * 4; % timestamp data
bytes_per_block = bytes_per_block + num_samples_per_data_block * 2 * num_amplifier_channels;
% Auxiliary inputs are sampled 4x slower than amplifiers
bytes_per_block = bytes_per_block + (num_samples_per_data_block / 4) * 2 * num_aux_input_channels;
% Supply voltage is sampled once per data block
bytes_per_block = bytes_per_block + 1 * 2 * num_supply_voltage_channels;
% Board analog inputs are sampled at same rate as amplifiers
bytes_per_block = bytes_per_block + num_samples_per_data_block * 2 * num_board_adc_channels;
% Board digital inputs are sampled at same rate as amplifiers
if (num_board_dig_in_channels > 0)
bytes_per_block = bytes_per_block + num_samples_per_data_block * 2;
end
% Board digital outputs are sampled at same rate as amplifiers
if (num_board_dig_out_channels > 0)
bytes_per_block = bytes_per_block + num_samples_per_data_block * 2;
end
% Temp sensor is sampled once per data block
if (num_temp_sensor_channels > 0)
bytes_per_block = bytes_per_block + 1 * 2 * num_temp_sensor_channels;
end
% How many data blocks remain in this file?
data_present = 0;
bytes_remaining = filesize - ftell(fid);
if (bytes_remaining > 0)
data_present = 1;
end
num_data_blocks = bytes_remaining / bytes_per_block;
num_amplifier_samples = num_samples_per_data_block * num_data_blocks;
num_aux_input_samples = (num_samples_per_data_block / 4) * num_data_blocks;
num_supply_voltage_samples = 1 * num_data_blocks;
num_board_adc_samples = num_samples_per_data_block * num_data_blocks;
num_board_dig_in_samples = num_samples_per_data_block * num_data_blocks;
num_board_dig_out_samples = num_samples_per_data_block * num_data_blocks;
record_time = num_amplifier_samples / sample_rate;
% if (data_present)
% fprintf(1, 'File contains %0.3f seconds of data. Amplifiers were sampled at %0.2f kS/s.\n', ...
% record_time, sample_rate / 1000);
% fprintf(1, '\n');
% else
% fprintf(1, 'Header file contains no data. Amplifiers were sampled at %0.2f kS/s.\n', ...
% sample_rate / 1000);
% fprintf(1, '\n');
% end
if (data_present)
% Pre-allocate memory for data.
% fprintf(1, 'Allocating memory for data...\n');
%The following are read, but are not stored
% t_amplifier = zeros(1, num_amplifier_samples);
% amplifier_data = zeros(num_amplifier_channels, num_amplifier_samples);
% aux_input_data = zeros(num_aux_input_channels, num_aux_input_samples);
% supply_voltage_data = zeros(num_supply_voltage_channels, num_supply_voltage_samples);
% temp_sensor_data = zeros(num_temp_sensor_channels, num_supply_voltage_samples);
% board_adc_data = zeros(num_board_adc_channels, num_board_adc_samples);
% board_dig_out_data = zeros(num_board_dig_out_channels, num_board_dig_out_samples);
% board_dig_out_raw = zeros(1, num_board_dig_out_samples);
amplifier_data = zeros(num_amplifier_channels, num_samples_per_data_block);
aux_input_data = zeros(num_aux_input_channels, num_samples_per_data_block);
supply_voltage_data = zeros(num_supply_voltage_channels, 1);
temp_sensor_data = zeros(num_temp_sensor_channels, 1);
board_adc_data = zeros(num_board_adc_channels, num_samples_per_data_block);
board_dig_out_data = zeros(num_board_dig_out_channels, int64(num_board_dig_out_samples));
board_dig_out_raw = zeros(1, num_samples_per_data_block);
%We do read in all the t_amplifier and dig data to allow determining the time gaps and the trials
t_amplifier = zeros(1, int64(num_amplifier_samples));
switch which_protocol
case {1,3,5,6,7,8}
board_dig_in_raw = zeros(1, int64(num_board_dig_in_samples));
end
board_dig_in_data = zeros(num_board_dig_in_channels, int64(num_board_dig_in_samples));
% Read sampled data from file.
% fprintf(1, 'Reading data from file...\n');
amplifier_index = 1;
aux_input_index = 1;
supply_voltage_index = 1;
board_adc_index = 1;
board_dig_in_index = 1;
board_dig_out_index = 1;
print_increment = 10;
percent_done = print_increment;
for i=1:num_data_blocks
% In version 1.2, we moved from saving timestamps as unsigned
% integeters to signed integers to accomidate negative (adjusted)
% timestamps for pretrigger data.
if ((data_file_main_version_number == 1 && data_file_secondary_version_number >= 2) ...
|| (data_file_main_version_number > 1))
t_amplifier(amplifier_index:(amplifier_index + num_samples_per_data_block - 1)) = fread(fid, num_samples_per_data_block, 'int32');
else
t_amplifier(amplifier_index:(amplifier_index + num_samples_per_data_block - 1)) = fread(fid, num_samples_per_data_block, 'uint32');
end
draq_d.offset_start_ch(i)=ftell(fid);
if (num_amplifier_channels > 0)
%amplifier_data(:, amplifier_index:(amplifier_index + num_samples_per_data_block - 1)) = fread(fid, [num_samples_per_data_block, num_amplifier_channels], 'uint16')';
amplifier_data = fread(fid, [num_samples_per_data_block, num_amplifier_channels], 'uint16')';
end
draq_d.offset_end_ch(i)=ftell(fid);
if (num_aux_input_channels > 0)
aux_input_data = fread(fid, [(num_samples_per_data_block / 4), num_aux_input_channels], 'uint16')';
%aux_input_data(:, aux_input_index:(aux_input_index + (num_samples_per_data_block / 4) - 1)) = fread(fid, [(num_samples_per_data_block / 4), num_aux_input_channels], 'uint16')';
end
if (num_supply_voltage_channels > 0)
supply_voltage_data = fread(fid, [1, num_supply_voltage_channels], 'uint16')';
end
if (num_temp_sensor_channels > 0)
temp_sensor_data = fread(fid, [1, num_temp_sensor_channels], 'int16')';
end
draq_d.offset_start_adc(i)=ftell(fid);
if (num_board_adc_channels > 0)
switch which_protocol
case {1,3,5,6,7,8}
board_adc_data = fread(fid, [num_samples_per_data_block, num_board_adc_channels], 'uint16')';
case {2,4}
board_adc_data(:, board_adc_index:(board_adc_index + num_samples_per_data_block - 1)) = fread(fid, [num_samples_per_data_block, num_board_adc_channels], 'uint16')';
end
end
draq_d.offset_end_adc(i)=ftell(fid);
draq_d.offset_start_dig(i)=ftell(fid);
if (num_board_dig_in_channels > 0)
switch which_protocol
case {1,3,5,6,7,8}
board_dig_in_raw(board_dig_in_index:(board_dig_in_index + num_samples_per_data_block - 1)) = fread(fid, num_samples_per_data_block, 'uint16');
case {2,4}
board_dig_in_raw = fread(fid, num_samples_per_data_block, 'uint16');
end
end
draq_d.offset_end_dig(i)=ftell(fid);
if (num_board_dig_out_channels > 0)
board_dig_out_raw = fread(fid, num_samples_per_data_block, 'uint16')';
end
amplifier_index = amplifier_index + num_samples_per_data_block;
aux_input_index = aux_input_index + (num_samples_per_data_block / 4);
supply_voltage_index = supply_voltage_index + 1;
board_adc_index = board_adc_index + num_samples_per_data_block;
board_dig_in_index = board_dig_in_index + num_samples_per_data_block;
board_dig_out_index = board_dig_out_index + num_samples_per_data_block;
fraction_done = 100 * (i / num_data_blocks);
if (fraction_done >= percent_done)
fprintf(1, '%d%% done...\n', percent_done);
percent_done = percent_done + print_increment;
end
end
% Make sure we have read exactly the right amount of data.
bytes_remaining = filesize - ftell(fid);
if (bytes_remaining ~= 0)
%error('Error: End of file not reached.');
end
end
% Close data file.
fclose(fid);
if (data_present)
fprintf(1, 'Parsing data...\n');
switch which_protocol
case {1,3,5,6,7,8}
% Extract digital input channels to separate variables.
for i=1:num_board_dig_in_channels
mask = 2^(board_dig_in_channels(i).native_order) * ones(size(board_dig_in_raw));
board_dig_in_data(i, :) = (bitand(board_dig_in_raw, mask) > 0);
end
try
for i=1:num_board_dig_out_channels
mask = 2^(board_dig_out_channels(i).native_order) * ones(size(board_dig_out_raw));
board_dig_out_data(i, :) = (bitand(board_dig_out_raw, mask) > 0);
end
catch
end
end
% Scale voltage levels appropriately.
amplifier_data = 0.195 * (amplifier_data - 32768); % units = microvolts
aux_input_data = 37.4e-6 * aux_input_data; % units = volts
supply_voltage_data = 74.8e-6 * supply_voltage_data; % units = volts
if (eval_board_mode == 1)
board_adc_data = 152.59e-6 * (board_adc_data - 32768); % units = volts
elseif (eval_board_mode == 13) % Intan Recording Controller
board_adc_data = 312.5e-6 * (board_adc_data - 32768); % units = volts
else
board_adc_data = 50.354e-6 * board_adc_data; % units = volts
end
temp_sensor_data = temp_sensor_data / 100; % units = deg C
% Check for gaps in timestamps.
num_gaps = sum(diff(t_amplifier) ~= 1);
if (num_gaps == 0)
fprintf(1, 'No missing timestamps in data.\n');
else
fprintf(1, 'Warning: %d gaps in timestamp data found. Time scale will not be uniform!\n', ...
num_gaps);
end
% Scale time steps (units = seconds).
t_amplifier = t_amplifier / sample_rate;
t_aux_input = t_amplifier(1:4:end);
t_supply_voltage = t_amplifier(1:num_samples_per_data_block:end);
t_board_adc = t_amplifier;
t_dig = t_amplifier;
t_temp_sensor = t_supply_voltage;
end
fprintf(1, 'Finding full trials...\n');
draq_p.dgordra=3; %3 is rhd
draq_p.show_plot=0;
draq_p.ActualRate=frequency_parameters.board_adc_sample_rate;
draq_p.srate=frequency_parameters.board_adc_sample_rate;
switch which_protocol
case {1,5,6,7}
%dropcspm and dropc_conc
% draq_p.sec_before_trigger=6;
% draq_p.sec_per_trigger=9;
draq_p.sec_before_trigger=handles.pre_dt;
draq_p.sec_per_trigger=handles.trial_duration;
case 2
%laser(Ming)
draq_p.sec_before_trigger=2;
draq_p.sec_per_trigger=9;
case 3
%dropcnsampler
draq_p.sec_before_trigger=handles.pre_dt;
draq_p.sec_per_trigger=handles.trial_duration;
case 4
%laser(Merouann)
draq_p.sec_before_trigger=10;
draq_p.sec_per_trigger=21;
case 8
%working memory
draq_p.sec_before_trigger=2;
draq_p.sec_per_trigger=13.5;
end
draq_p.pre_gain=0;
draq_p.scaling=1;
draq_p.offset=0;
draq_d.noTrials=0;
draq_d.trig=1;
draq_d.num_amplifier_channels=num_amplifier_channels;
draq_d.num_samples_per_data_block=num_samples_per_data_block;
draq_d.num_board_adc_channels=num_board_adc_channels;
draq_d.num_board_dig_in_channels=num_board_dig_in_channels;
draq_d.eval_board_mode=eval_board_mode;
draq_d.board_dig_in_channels=board_dig_in_channels;
if ~isempty(board_dig_in_data)
switch which_protocol
case {1,3,6}
digital_input=board_dig_in_data(1,:)+2*board_dig_in_data(2,:)+4*board_dig_in_data(3,:)...
+8*board_dig_in_data(4,:)+16*board_dig_in_data(5,:)+32*board_dig_in_data(6,:)...
+64*board_dig_in_data(7,:);
digital_input_ns=board_dig_in_data(1,:)+2*board_dig_in_data(2,:)+4*board_dig_in_data(3,:)...
+8*board_dig_in_data(4,:)+16*board_dig_in_data(5,:);
digital_input_no2=2*board_dig_in_data(2,:)+4*board_dig_in_data(3,:)...
+8*board_dig_in_data(4,:)+16*board_dig_in_data(5,:)+32*board_dig_in_data(6,:);
otherwise
for ii=1:num_board_dig_in_channels
if ii==1
digital_input=board_dig_in_data(1,:);
else
digital_input=digital_input+(2^(ii-1))*board_dig_in_data(ii,:);
end
end
if num_board_dig_in_channels>=2
for ii=2:num_board_dig_in_channels
if ii==2
digital_input_no2=2*board_dig_in_data(2,:);
else
digital_input=digital_input+(2^(ii-1))*board_dig_in_data(ii,:);
end
end
% digital_input_no2=2*board_dig_in_data(2,:)+4*board_dig_in_data(3,:)...
% +8*board_dig_in_data(4,:)+16*board_dig_in_data(5,:)+32*board_dig_in_data(6,:);
end
end
else
digital_input=[];
end
%Find the trials
at_end=0;
ii=1;
trials_to_sort=[];
full_trial_start=[];
full_trial_end=[];
switch which_protocol
case {1,5,6,8}
%Find the full trials (excluding short trials)
while at_end==0
%Find trial (skip changes in the signal that are not actually bonified
%trials
found_bonified=0;
switch which_protocol
case 1
%The trial starts with an output of 6
delta_ii_first=find(digital_input_no2(ii:end)==6,1,'first');
if ~isempty(delta_ii_first)
%The final valve on step has to last at least 0.9 sec
ii_step=find(digital_input_no2(ii+delta_ii_first-1:end)>6,1,'first');
if ~isempty(ii_step)
dt_step1=ii_step/draq_p.ActualRate;
if (dt_step1>0.9)&(digital_input_no2(ii+delta_ii_first-1+ii_step-1)==18)
%Is there an odor on for >2.4 sec and <4 sec
ii_odor_on=find(digital_input_no2(ii+delta_ii_first-1+ii_step-1:end)<18,1,'first');
if ~isempty(ii_odor_on)
if ~(((ii_odor_on/draq_p.ActualRate)<2.4)||((ii_odor_on/draq_p.ActualRate)>4))
found_bonified=1;
end
end
end
end
end
case 5
%The trial starts with an output of 1
delta_ii_first=find(digital_input(ii:end)==1,1,'first');
if ~isempty(delta_ii_first)
%The final valve on step has to last at least 0.9 sec
ii_step=find(digital_input(ii+delta_ii_first-1:end)>1,1,'first');
if ~isempty(ii_step)
dt_step1=ii_step/draq_p.ActualRate;
if (dt_step1>0.9)&(digital_input(ii+delta_ii_first-1+ii_step-1)>=2)&(digital_input(ii+delta_ii_first-1+ii_step-1)<=7)
%Is there an odor on for >2.4 sec and <4 sec
ii_odor_on=find(digital_input(ii+delta_ii_first-1+ii_step-1:end)~=digital_input(ii+delta_ii_first-1+ii_step-1),1,'first');
if ~isempty(ii_odor_on)
if ~(((ii_odor_on/draq_p.ActualRate)<2.4)||((ii_odor_on/draq_p.ActualRate)>4))
found_bonified=1;
end
end
end
end
end
case 6
%dropcspm_hf
%The trial starts with an output of 6
delta_ii_first=find(digital_input_no2(ii:end)==6,1,'first');
if ~isempty(delta_ii_first)
%The final valve on step has to last at least 0.5 sec
ii_step=find(digital_input_no2(ii+delta_ii_first-1:end)>6,1,'first');
if ~isempty(ii_step)
dt_step1=ii_step/draq_p.ActualRate;
if (dt_step1>0.5)&(digital_input_no2(ii+delta_ii_first-1+ii_step-1)==18)
%Is there an odor on for >2.4 sec and <5.5 sec
ii_odor_on=find(digital_input_no2(ii+delta_ii_first-1+ii_step-1:end)<18,1,'first');
if ~isempty(ii_odor_on)
if (((ii_odor_on/draq_p.ActualRate)>1)||((ii_odor_on/draq_p.ActualRate)<5.5))
found_bonified=1;
end
end
end
end
end
case 8
%Working memory
%The trial starts with an output of 1
shift_digital_input=bitand(digital_input,1+2+4+8+16);
delta_ii_first=find(shift_digital_input(ii:end)==1,1,'first');
if ~isempty(delta_ii_first)
%The final valve on step has to last at least 0.9 sec
ii_step=find(shift_digital_input(ii+delta_ii_first-1:end)>1,1,'first');
if ~isempty(ii_step)
dt_step1=ii_step/draq_p.ActualRate;
if (dt_step1>0.05)&(shift_digital_input(ii+delta_ii_first-1+ii_step-1)>=2)&(shift_digital_input(ii+delta_ii_first-1+ii_step-1)<=7)
%Is there an odor on for >2.4 sec and <4 sec
ii_odor_on=find(shift_digital_input(ii+delta_ii_first-1+ii_step-1:end)~=shift_digital_input(ii+delta_ii_first-1+ii_step-1),1,'first');
if ~isempty(ii_odor_on)
if (ii_odor_on/draq_p.ActualRate)>0.5
found_bonified=1;
end
end
end
end
end
end
if found_bonified==1
%Found a bonified digital signal
%Find the interval
switch which_protocol
case 8
ii=ii+delta_ii_first-1;
delta_ii_last=(draq_p.sec_per_trigger-draq_p.sec_before_trigger)*draq_p.ActualRate;
if ii+delta_ii_last<length(shift_digital_input)
%Full trial
draq_d.noTrials=draq_d.noTrials+1;
%Trial start time goes in column 1
trials_to_sort(draq_d.noTrials,1)=((ii-draq_p.sec_before_trigger*draq_p.ActualRate)/draq_p.ActualRate);
%Block no at start of trial goes in column 2
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
%Block no at end of trial goes in column 3
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
full_trial_start(draq_d.noTrials)=ii-draq_p.sec_before_trigger*draq_p.ActualRate;
full_trial_end(draq_d.noTrials)=full_trial_start(draq_d.noTrials)+draq_p.sec_per_trigger*draq_p.ActualRate;
% figure(11)
% plot([1:length(shift_digital_input(floor(trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate):ceil((trials_to_sort(draq_d.noTrials,1)+draq_p.sec_per_trigger)*draq_p.ActualRate)))]/draq_p.ActualRate...
% ,shift_digital_input(floor(trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate):ceil((trials_to_sort(draq_d.noTrials,1)+draq_p.sec_per_trigger)*draq_p.ActualRate)))
% pffft=1;
ii=ii+delta_ii_last;
else
at_end=1;
end
otherwise
ii=ii+delta_ii_first;
delta_ii_last=find(digital_input(ii:end)<1,1,'first');
if ~isempty(delta_ii_last)
ii=ii+delta_ii_last;
if (delta_ii_last/draq_p.ActualRate)>1
if found_bonified==1
%Full trial
draq_d.noTrials=draq_d.noTrials+1;
%Trial start time goes in column 1
trials_to_sort(draq_d.noTrials,1)=(ii/draq_p.ActualRate)-(draq_p.sec_before_trigger+0.5);
%Block no at start of trial goes in column 2
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
%Block no at end of trial goes in column 3
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
full_trial_start(draq_d.noTrials)=ii-draq_p.ActualRate*(draq_p.sec_before_trigger+0.5);
full_trial_end(draq_d.noTrials)=full_trial_start(draq_d.noTrials)+draq_p.sec_per_trigger*draq_p.ActualRate;
% figure(11)
% plot([1:length(digital_input(floor(trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate):ceil((trials_to_sort(draq_d.noTrials,1)+draq_p.sec_per_trigger)*draq_p.ActualRate)))]/draq_p.ActualRate...
% ,digital_input(floor(trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate):ceil((trials_to_sort(draq_d.noTrials,1)+draq_p.sec_per_trigger)*draq_p.ActualRate)))
% pffft=1;
end
end
else
at_end=1;
end
end
else
if isempty(delta_ii_first)
at_end=1;
else
ii=ii+delta_ii_first;
delta_ii_last=find(digital_input(ii:end)<1,1,'first');
if ~isempty(delta_ii_last)
ii=ii+delta_ii_last;
else
at_end=1;
end
end
end
if isempty(delta_ii_first)
at_end=1;
end
end
full_trials=draq_d.noTrials;
fprintf(1, 'Found %d full trials...\n',full_trials);
% fprintf(1, 'Finding short trials...\n');
%
%
% at_end=0;
% ii=1;
%
% while at_end==0
% delta_ii_first=find(digital_input(ii:end)>=1,1,'first');
% %Found a digital signal
% if ~isempty(delta_ii_first)
% %Find the interval
% ii=ii+delta_ii_first;
% delta_ii_last=find(digital_input(ii:end)<1,1,'first');
% if ~isempty(delta_ii_last)
% isthere=find((ii-full_trial_start>0)&(ii-full_trial_end<0));
% ii=ii+delta_ii_last;
% if isempty(isthere)
% if (delta_ii_last/draq_p.ActualRate)>1
% %Short trial
% draq_d.noTrials=draq_d.noTrials+1;
% %Trial start time goes in column 1
% trials_to_sort(draq_d.noTrials,1)=(ii/draq_p.ActualRate)-(draq_p.sec_before_trigger-1.5);
% %Block no at start of trial go in column 2
% trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
% %Block no at end of trial go in column 3
% trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
% end
% end
% else
% at_end=1;
% end
%
% else
% at_end=1;
% end
% figure(10)
% plot(digital_input(ii-(draq_p.sec_before_trigger+1)*draq_p.ActualRate: ii-(draq_p.sec_before_trigger+1)*draq_p.ActualRate+draq_p.sec_per_trigger*draq_p.ActualRate))
% pffft=1;
% end
%
% short_trials=draq_d.noTrials-full_trials;
% fprintf(1, 'Found %d short trials ...\n',short_trials);
% %Find empty trials
% last_trial=draq_d.noTrials;
%
% trials_to_sort=sortrows(trials_to_sort);
%
% fprintf(1, 'Finding inter trials...\n');
%
% %Empty trial before the first trial
% if trials_to_sort(1,1)>draq_p.sec_per_trigger+draq_p.sec_before_trigger
% draq_d.noTrials=draq_d.noTrials+1;
% trials_to_sort(draq_d.noTrials,1)= trials_to_sort(1,1)-draq_p.sec_per_trigger;
% trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
% trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
%
% % figure(10)
% % % plot(digital_input(ii-(draq_p.sec_before_trigger+1)*draq_p.ActualRate: ii-(draq_p.sec_before_trigger+1)*draq_p.ActualRate+draq_p.sec_per_trigger*draq_p.ActualRate))
% % plot(digital_input(floor(trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate):ceil((trials_to_sort(draq_d.noTrials,1)+draq_p.sec_per_trigger)*draq_p.ActualRate)))
% % pffft=1;
%
% end
%
% %Empty trials between tirals
% for ii=2:last_trial
% if (trials_to_sort(ii,1)-trials_to_sort(ii-1,1)-draq_p.sec_per_trigger)>2*draq_p.sec_per_trigger
%
% %Trial after this trial
% if ii~=last_trial
% draq_d.noTrials=draq_d.noTrials+1;
% trials_to_sort(draq_d.noTrials,1)= trials_to_sort(ii-1,1)+1.2*draq_p.sec_per_trigger;
% trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
% trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
%
% figure(10)
% % plot(digital_input(ii-(draq_p.sec_before_trigger+1)*draq_p.ActualRate: ii-(draq_p.sec_before_trigger+1)*draq_p.ActualRate+draq_p.sec_per_trigger*draq_p.ActualRate))
% plot(digital_input(floor(trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate):ceil((trials_to_sort(draq_d.noTrials,1)+draq_p.sec_per_trigger)*draq_p.ActualRate)))
% pffft=1;
%
% end
%
% % %Trial before this trial
% % draq_d.noTrials=draq_d.noTrials+1;
% % trials_to_sort(draq_d.noTrials,1)= trials_to_sort(ii,1)-draq_p.sec_per_trigger;
% % trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
% % trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
% %
% end
% end
%
% fprintf(1, 'Found %d inter trials ...\n',draq_d.noTrials-full_trials);
case 2
draq_d.max_laser=max(board_adc_data(4,:));
draq_d.min_laser=min(board_adc_data(4,:));
%Find the full trials (excluding short trials)
while at_end==0
delta_ii_first=find(board_adc_data(4,ii:end)>=0.5*(draq_d.max_laser-draq_d.min_laser)+draq_d.min_laser,1,'first');
%Found a digital signal
if ~isempty(delta_ii_first)
%Find the interval
ii=ii+delta_ii_first;
if ii+(draq_p.sec_per_trigger-draq_p.sec_before_trigger)*draq_p.ActualRate<length(board_adc_data(4,:))
%Full trial
draq_d.noTrials=draq_d.noTrials+1;
%Trial start time goes in column 1
trials_to_sort(draq_d.noTrials,1)=(ii/draq_p.ActualRate)-(draq_p.sec_before_trigger+1);
%Block no at start of trial go in column 2
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
%Block no at end of trial go in column 3
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
full_trial_start(draq_d.noTrials)=ii-draq_p.ActualRate*(draq_p.sec_before_trigger+1);
full_trial_end(draq_d.noTrials)=full_trial_start(draq_d.noTrials)+draq_p.sec_per_trigger*draq_p.ActualRate;
ii=ii+ceil((draq_p.sec_per_trigger-draq_p.sec_before_trigger)*draq_p.ActualRate);
else
at_end=1;
end
else
at_end=1;
end
end
full_trials=draq_d.noTrials;
fprintf(1, 'Found %d full trials...\n',full_trials);
%Find empty trials
last_trial=draq_d.noTrials;
trials_to_sort=sortrows(trials_to_sort);
fprintf(1, 'Finding inter trials...\n');
%Empty trial before the first trial
if trials_to_sort(1,1)>draq_p.sec_per_trigger+draq_p.sec_before_trigger
draq_d.noTrials=draq_d.noTrials+1;
trials_to_sort(draq_d.noTrials,1)= trials_to_sort(1,1)-draq_p.sec_per_trigger;
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
end
%Empty trials between tirals
for ii=2:last_trial
if (trials_to_sort(ii,1)-trials_to_sort(ii-1,1)-draq_p.sec_per_trigger)>draq_p.sec_per_trigger
%Trial after the last one
if ii~=last_trial
draq_d.noTrials=draq_d.noTrials+1;
trials_to_sort(draq_d.noTrials,1)= trials_to_sort(ii-1,1)+draq_p.sec_per_trigger;
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
end
%Trial before the next one
draq_d.noTrials=draq_d.noTrials+1;
trials_to_sort(draq_d.noTrials,1)= trials_to_sort(ii,1)-draq_p.sec_per_trigger;
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
end
end
fprintf(1, 'Found %d inter trials ...\n',draq_d.noTrials-full_trials);
case 3
%dropcnsampler
%Find the full trials (excluding short trials)
while at_end==0
delta_ii_first=find(digital_input_ns(ii:end)==16,1,'first');
%Found the end of an odor on?
if ~isempty(delta_ii_first)
%Find the end of odor on
ii=ii+delta_ii_first;
delta_ii_last=find(digital_input_ns(ii:end)~=16,1,'first');
%Was it found?
if ~isempty(delta_ii_last)
ii=ii+delta_ii_last;
%Is it too close to the beggining?
if (ii-(draq_p.sec_before_trigger*draq_p.ActualRate))>0
%Is is too close to the end?
if (ii+((draq_p.sec_per_trigger-draq_p.sec_before_trigger)*draq_p.ActualRate))<length(digital_input_ns)
%Full trial
draq_d.noTrials=draq_d.noTrials+1;
%Trial start time goes in column 1
trials_to_sort(draq_d.noTrials,1)=(ii/draq_p.ActualRate)-(draq_p.sec_before_trigger+1);
%Block no at start of trial go in column 2
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
%Block no at end of trial go in column 3
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
full_trial_start(draq_d.noTrials)=ii-draq_p.ActualRate*(draq_p.sec_before_trigger+1);
full_trial_end(draq_d.noTrials)=full_trial_start(draq_d.noTrials)+draq_p.sec_per_trigger*draq_p.ActualRate;
% figure(1)
% plot(digital_input_ns(full_trial_start(draq_d.noTrials):full_trial_end(draq_d.noTrials)))
else
at_end=1;
end
end
else
at_end=1;
end
else
at_end=1;
end
end
full_trials=draq_d.noTrials;
fprintf(1, 'Found %d full trials...\n',full_trials);
case 4
draq_d.max_laser=max(board_adc_data(1,:));
draq_d.min_laser=min(board_adc_data(1,:));
%Find the full trials (excluding short trials)
while at_end==0
delta_ii_first=find(board_adc_data(1,ii:end)>=0.5*(draq_d.max_laser-draq_d.min_laser)+draq_d.min_laser,1,'first');
%Found a digital signal
if ~isempty(delta_ii_first)
%Find the interval
ii=ii+delta_ii_first;
if ii+(draq_p.sec_per_trigger-draq_p.sec_before_trigger)*draq_p.ActualRate<length(board_adc_data(1,:))
%Full trial
draq_d.noTrials=draq_d.noTrials+1;
%Trial start time goes in column 1
trials_to_sort(draq_d.noTrials,1)=(ii/draq_p.ActualRate)-(draq_p.sec_before_trigger+1);
%Block no at start of trial go in column 2
trials_to_sort(draq_d.noTrials,2)=ceil((trials_to_sort(draq_d.noTrials,1)*draq_p.ActualRate)/num_samples_per_data_block);
%Block no at end of trial go in column 3
trials_to_sort(draq_d.noTrials,3)=trials_to_sort(draq_d.noTrials,2)+ceil((draq_p.sec_per_trigger*draq_p.ActualRate)/num_samples_per_data_block);
full_trial_start(draq_d.noTrials)=ii-draq_p.ActualRate*(draq_p.sec_before_trigger+1);
full_trial_end(draq_d.noTrials)=full_trial_start(draq_d.noTrials)+draq_p.sec_per_trigger*draq_p.ActualRate;
ii=ii+ceil((draq_p.sec_per_trigger-draq_p.sec_before_trigger)*draq_p.ActualRate);
else
at_end=1;
end
else
at_end=1;
end