forked from Ultimaker/CuraEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskin.cpp
701 lines (628 loc) · 32.4 KB
/
skin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
//Copyright (c) 2018 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <cmath> // std::ceil
#include "Application.h" //To get settings.
#include "ExtruderTrain.h"
#include "skin.h"
#include "sliceDataStorage.h"
#include "settings/EnumSettings.h" //For EFillMethod.
#include "settings/types/AngleRadians.h" //For the infill support angle.
#include "settings/types/Ratio.h"
#include "utils/math.h"
#include "utils/polygonUtils.h"
#define MIN_AREA_SIZE (0.4 * 0.4)
namespace cura
{
coord_t SkinInfillAreaComputation::getSkinLineWidth(const SliceMeshStorage& mesh, const LayerIndex& layer_nr)
{
coord_t skin_line_width = mesh.settings.get<coord_t>("skin_line_width");
if (layer_nr == 0)
{
const ExtruderTrain& train_skin = mesh.settings.get<ExtruderTrain&>("top_bottom_extruder_nr");
skin_line_width *= train_skin.settings.get<Ratio>("initial_layer_line_width_factor");
}
return skin_line_width;
}
coord_t SkinInfillAreaComputation::getWallLineWidth0(const SliceMeshStorage& mesh, const LayerIndex& layer_nr)
{
coord_t wall_line_width_0 = mesh.settings.get<coord_t>("wall_line_width_0");
if (layer_nr == 0)
{
const ExtruderTrain& train_wall_0 = mesh.settings.get<ExtruderTrain&>("wall_0_extruder_nr");
wall_line_width_0 *= train_wall_0.settings.get<Ratio>("initial_layer_line_width_factor");
}
return wall_line_width_0;
}
coord_t SkinInfillAreaComputation::getWallLineWidthX(const SliceMeshStorage& mesh, const LayerIndex& layer_nr)
{
coord_t wall_line_width_x = mesh.settings.get<coord_t>("wall_line_width_x");
if (layer_nr == 0)
{
const ExtruderTrain& train_wall_x = mesh.settings.get<ExtruderTrain&>("wall_x_extruder_nr");
wall_line_width_x *= train_wall_x.settings.get<Ratio>("initial_layer_line_width_factor");
}
return wall_line_width_x;
}
coord_t SkinInfillAreaComputation::getInfillSkinOverlap(const SliceMeshStorage& mesh, const LayerIndex& layer_nr, const coord_t& innermost_wall_line_width)
{
coord_t infill_skin_overlap = 0;
{ // compute infill_skin_overlap
const ExtruderTrain& train_infill = mesh.settings.get<ExtruderTrain&>("infill_extruder_nr");
const Ratio infill_line_width_factor = (layer_nr == 0) ? train_infill.settings.get<Ratio>("initial_layer_line_width_factor") : Ratio(1.0);
const bool infill_is_dense = mesh.settings.get<coord_t>("infill_line_distance") < mesh.settings.get<coord_t>("infill_line_width") * infill_line_width_factor + 10;
if (!infill_is_dense && mesh.settings.get<EFillMethod>("infill_pattern") != EFillMethod::CONCENTRIC)
{
infill_skin_overlap = innermost_wall_line_width / 2;
}
}
return infill_skin_overlap;
}
SkinInfillAreaComputation::SkinInfillAreaComputation(const LayerIndex& layer_nr, SliceMeshStorage& mesh, bool process_infill)
: layer_nr(layer_nr)
, mesh(mesh)
, bottom_layer_count(mesh.settings.get<size_t>("bottom_layers"))
, top_layer_count(mesh.settings.get<size_t>("top_layers"))
, wall_line_count(mesh.settings.get<size_t>("wall_line_count"))
, skin_line_width(getSkinLineWidth(mesh, layer_nr))
, wall_line_width_0(getWallLineWidth0(mesh, layer_nr))
, wall_line_width_x(getWallLineWidthX(mesh, layer_nr))
, innermost_wall_line_width((wall_line_count == 1) ? wall_line_width_0 : wall_line_width_x)
, infill_skin_overlap(getInfillSkinOverlap(mesh, layer_nr, innermost_wall_line_width))
, skin_inset_count(mesh.settings.get<size_t>("skin_outline_count"))
, no_small_gaps_heuristic(mesh.settings.get<bool>("skin_no_small_gaps_heuristic"))
, process_infill(process_infill)
, top_reference_wall_expansion(mesh.settings.get<coord_t>("top_skin_preshrink"))
, bottom_reference_wall_expansion(mesh.settings.get<coord_t>("bottom_skin_preshrink"))
, top_skin_expand_distance(mesh.settings.get<coord_t>("top_skin_expand_distance"))
, bottom_skin_expand_distance(mesh.settings.get<coord_t>("bottom_skin_expand_distance"))
, top_reference_wall_idx(getReferenceWallIdx(top_reference_wall_expansion))
, bottom_reference_wall_idx(getReferenceWallIdx(bottom_reference_wall_expansion))
{
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
Polygons SkinInfillAreaComputation::getWalls(const SliceLayerPart& part_here, int layer2_nr, unsigned int wall_idx)
{
Polygons result;
if (layer2_nr >= static_cast<int>(mesh.layers.size()))
{
return result;
}
const SliceLayer& layer2 = mesh.layers[layer2_nr];
for (const SliceLayerPart& part2 : layer2.parts)
{
if (part_here.boundaryBox.hit(part2.boundaryBox))
{
if (wall_idx <= 0)
{
result.add(part2.outline);
}
else if (wall_idx <= part2.insets.size())
{
result.add(part2.insets[wall_idx - 1]); // -1 because it's a 1-based index
}
}
}
return result;
};
int SkinInfillAreaComputation::getReferenceWallIdx(coord_t& preshrink) const
{
for (int wall_idx = wall_line_count; wall_idx > 0; wall_idx--)
{
coord_t wall_line_width = (wall_idx > 1)? wall_line_width_x : wall_line_width_0;
int next_wall_idx = wall_idx - 1;
coord_t next_wall_line_width = (next_wall_idx > 1)? wall_line_width_x : (next_wall_idx == 0)? 0 : wall_line_width_0;
coord_t diff_to_next_wall = (wall_line_width + next_wall_line_width) / 2;
if (std::abs(preshrink - diff_to_next_wall) <= 10)
{ // snap preshrink to closest wall
preshrink = 0;
return next_wall_idx;
}
if (preshrink < diff_to_next_wall)
{
return wall_idx;
}
preshrink -= diff_to_next_wall;
}
return 0;
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* generateSkinAreas reads data from mesh.layers.parts[*].insets and writes to mesh.layers[n].parts[*].skin_parts
* generateSkinInsets only read/writes the skin_parts from the current layer.
*
* generateSkins therefore reads (depends on) data from mesh.layers[*].parts[*].insets and writes mesh.layers[n].parts[*].skin_parts
*/
void SkinInfillAreaComputation::generateSkinsAndInfill()
{
generateSkinAndInfillAreas();
SliceLayer* layer = &mesh.layers[layer_nr];
for (unsigned int part_nr = 0; part_nr < layer->parts.size(); part_nr++)
{
SliceLayerPart& part = layer->parts[part_nr];
generateSkinInsetsAndInnerSkinInfill(&part);
generateRoofing(part);
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* generateSkinAreas reads data from mesh.layers[*].parts[*].insets and writes to mesh.layers[n].parts[*].skin_parts
*/
void SkinInfillAreaComputation::generateSkinAndInfillAreas()
{
SliceLayer& layer = mesh.layers[layer_nr];
if (!process_infill && bottom_layer_count == 0 && top_layer_count == 0)
{
return;
}
for (unsigned int part_nr = 0; part_nr < layer.parts.size(); part_nr++)
{
SliceLayerPart& part = layer.parts[part_nr];
if (part.insets.size() < wall_line_count)
{
continue; // the last wall is not present, the part should only get inter perimeter gaps, but no skin or infill.
}
generateSkinAndInfillAreas(part);
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* generateSkinAreas reads data from mesh.layers[*].parts[*].insets and writes to mesh.layers[n].parts[*].skin_parts
*/
void SkinInfillAreaComputation::generateSkinAndInfillAreas(SliceLayerPart& part)
{
Polygons original_outline = part.insets.back().offset(-innermost_wall_line_width / 2);
// make a copy of the outline which we later intersect and union with the resized skins to ensure the resized skin isn't too large or removed completely.
Polygons upskin;
if (top_layer_count > 0)
{
upskin = Polygons(original_outline);
}
Polygons downskin;
if (bottom_layer_count > 0)
{
downskin = Polygons(original_outline);
}
calculateBottomSkin(part, downskin);
calculateTopSkin(part, upskin);
applySkinExpansion(original_outline, upskin, downskin);
// now combine the resized upskin and downskin
Polygons skin = upskin.unionPolygons(downskin);
skin.removeSmallAreas(MIN_AREA_SIZE);
if (process_infill)
{ // process infill when infill density > 0
// or when other infill meshes want to modify this infill
generateInfill(part, skin);
}
for (PolygonsPart& skin_area_part : skin.splitIntoParts())
{
part.skin_parts.emplace_back();
part.skin_parts.back().outline = skin_area_part;
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
void SkinInfillAreaComputation::calculateBottomSkin(const SliceLayerPart& part, Polygons& downskin)
{
if (static_cast<int>(layer_nr - bottom_layer_count) >= 0 && bottom_layer_count > 0)
{
Polygons not_air = getWalls(part, layer_nr - bottom_layer_count, bottom_reference_wall_idx).offset(bottom_reference_wall_expansion);
if (!no_small_gaps_heuristic)
{
for (int downskin_layer_nr = layer_nr - bottom_layer_count + 1; downskin_layer_nr < layer_nr; downskin_layer_nr++)
{
not_air = not_air.intersection(getWalls(part, downskin_layer_nr, bottom_reference_wall_idx).offset(bottom_reference_wall_expansion));
}
}
const double min_infill_area = mesh.settings.get<double>("min_infill_area");
if (min_infill_area > 0.0)
{
not_air.removeSmallAreas(min_infill_area);
}
downskin = downskin.difference(not_air); // skin overlaps with the walls
}
}
void SkinInfillAreaComputation::calculateTopSkin(const SliceLayerPart& part, Polygons& upskin)
{
if (static_cast<int>(layer_nr + top_layer_count) < static_cast<int>(mesh.layers.size()) && top_layer_count > 0)
{
Polygons not_air = getWalls(part, layer_nr + top_layer_count, top_reference_wall_idx).offset(top_reference_wall_expansion);
if (!no_small_gaps_heuristic)
{
for (int upskin_layer_nr = layer_nr + 1; upskin_layer_nr < layer_nr + top_layer_count; upskin_layer_nr++)
{
not_air = not_air.intersection(getWalls(part, upskin_layer_nr, top_reference_wall_idx).offset(top_reference_wall_expansion));
}
}
// Prevent removing top skin layers
Polygons upskin_before(upskin.difference(not_air));
const double min_infill_area = mesh.settings.get<double>("min_infill_area");
if (min_infill_area > 0.0)
{
not_air.removeSmallAreas(min_infill_area);
}
upskin = upskin.difference(not_air); // skin overlaps with the walls
upskin = upskin.unionPolygons(upskin_before); // in some cases the top skin layer might be removed. To prevent it add them back
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
void SkinInfillAreaComputation::applySkinExpansion(const Polygons& original_outline, Polygons& upskin, Polygons& downskin)
{
// First we set the amount of distance we want to expand, as indicated in settings
coord_t top_outset = top_skin_expand_distance;
coord_t bottom_outset = bottom_skin_expand_distance;
coord_t top_min_width = mesh.settings.get<coord_t>("min_skin_width_for_expansion") / 2;
coord_t bottom_min_width = top_min_width;
// Compensate for the pre-shrink applied because of the Skin Removal Width.
// The skin removal width is satisfied by applying a close operation and
// it's done in the calculateTopSkin and calculateBottomSkin, by expanding the infill.
// The inset of that close operation is applied in calculateTopSkin and calculateBottomSkin
// The outset of the close operation is applied at the same time as the skin expansion.
top_outset += top_reference_wall_expansion;
bottom_outset += bottom_reference_wall_expansion;
// Calculate the shrinkage needed to fulfill the minimum skin with for expansion
top_min_width = std::max(coord_t(0), top_min_width - top_reference_wall_expansion / 2); // if the min width is smaller than the pre-shrink then areas smaller than min_width will exist
bottom_min_width = std::max(coord_t(0), bottom_min_width - bottom_reference_wall_expansion / 2); // if the min width is smaller than the pre-shrink then areas smaller than min_width will exist
// skin areas are to be enlarged by skin_expand_distance but before they are expanded
// the skin areas are shrunk by min_width so that very narrow regions of skin
// (often caused by the model's surface having a steep incline) are not expanded
top_outset += top_min_width; // increase the expansion distance to compensate for the min_width shrinkage
bottom_outset += bottom_min_width; // increase the expansion distance to compensate for the min_width shrinkage
// Execute shrinkage and expansion in the same operation
if (top_outset)
{
upskin = upskin.offset(-top_min_width).offset(top_outset).unionPolygons(upskin).intersection(original_outline);
}
if (bottom_outset)
{
downskin = downskin.offset(-bottom_min_width).offset(bottom_outset).unionPolygons(downskin).intersection(original_outline);
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
void SkinInfillAreaComputation::generateSkinInsetsAndInnerSkinInfill(SliceLayerPart* part)
{
for (SkinPart& skin_part : part->skin_parts)
{
generateSkinInsets(skin_part);
generateInnerSkinInfill(skin_part);
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
void SkinInfillAreaComputation::generateSkinInsets(SkinPart& skin_part)
{
for (size_t inset_idx = 0; inset_idx < skin_inset_count; inset_idx++)
{
skin_part.insets.push_back(Polygons());
if (inset_idx == 0)
{
//The 10 micron reduced inset is to prevent rounding errors from creating gaps that get filled by the fill small gaps routine.
skin_part.insets[0] = skin_part.outline.offset(-skin_line_width / 2 + 10);
}
else
{
skin_part.insets[inset_idx] = skin_part.insets[inset_idx - 1].offset(-skin_line_width);
}
// optimize polygons: remove unnecessary verts
skin_part.insets[inset_idx].simplify();
if (skin_part.insets[inset_idx].size() < 1)
{
skin_part.insets.pop_back();
return; // don't generate inner_infill areas if the innermost inset was too small
}
}
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
void SkinInfillAreaComputation::generateInnerSkinInfill(SkinPart& skin_part)
{
if (skin_part.insets.empty())
{
skin_part.inner_infill = skin_part.outline;
return;
}
const Polygons& innermost_inset = skin_part.insets.back();
skin_part.inner_infill = innermost_inset.offset(-skin_line_width / 2);
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* generateInfill read mesh.layers[n].parts[*].{insets,skin_parts,boundingBox} and write mesh.layers[n].parts[*].infill_area
*/
void SkinInfillAreaComputation::generateInfill(SliceLayerPart& part, const Polygons& skin)
{
if (part.insets.size() < wall_line_count)
{
return; // the last wall is not present, the part should only get inter perimeter gaps, but no infill.
}
const size_t wall_line_count = mesh.settings.get<size_t>("wall_line_count");
const coord_t infill_line_distance = mesh.settings.get<coord_t>("infill_line_distance");
coord_t offset_from_inner_wall = -infill_skin_overlap;
if (wall_line_count > 0)
{ // calculate offset_from_inner_wall
coord_t extra_perimeter_offset = 0; // to align concentric polygons across layers
const EFillMethod fill_pattern = mesh.settings.get<EFillMethod>("infill_pattern");
if (fill_pattern == EFillMethod::CONCENTRIC
&& infill_line_distance > mesh.settings.get<coord_t>("infill_line_width") * 2)
{
if (mesh.settings.get<bool>("alternate_extra_perimeter")
&& layer_nr % 2 == 0)
{ // compensate shifts otherwise caused by alternating an extra perimeter
extra_perimeter_offset = -innermost_wall_line_width;
}
if (layer_nr == 0)
{ // compensate for shift caused by walls being expanded by the initial line width multiplier
const coord_t normal_wall_line_width_0 = mesh.settings.get<coord_t>("wall_line_width_0");
const coord_t normal_wall_line_width_x = mesh.settings.get<coord_t>("wall_line_width_x");
const coord_t normal_walls_width = normal_wall_line_width_0 + (wall_line_count - 1) * normal_wall_line_width_x;
const coord_t walls_width = normal_walls_width * mesh.settings.get<Ratio>("initial_layer_line_width_factor");
extra_perimeter_offset += walls_width - normal_walls_width;
while (extra_perimeter_offset > 0)
{
extra_perimeter_offset -= infill_line_distance;
}
}
}
offset_from_inner_wall += extra_perimeter_offset - innermost_wall_line_width / 2;
}
Polygons infill = part.insets.back().offset(offset_from_inner_wall);
infill = infill.difference(skin);
infill.removeSmallAreas(MIN_AREA_SIZE);
part.infill_area = infill.offset(infill_skin_overlap);
}
/*
* This function is executed in a parallel region based on layer_nr.
* When modifying make sure any changes does not introduce data races.
*
* this function may only read/write the skin and infill from the *current* layer.
*/
void SkinInfillAreaComputation::generateRoofing(SliceLayerPart& part)
{
const size_t roofing_layer_count = mesh.settings.get<size_t>("roofing_layer_count");
const size_t wall_idx = std::min(size_t(2), mesh.settings.get<size_t>("wall_line_count"));
for (SkinPart& skin_part : part.skin_parts)
{
Polygons roofing;
if (roofing_layer_count > 0)
{
Polygons no_air_above = getWalls(part, layer_nr + roofing_layer_count, wall_idx);
if (!no_small_gaps_heuristic)
{
for (int layer_nr_above = layer_nr + 1; layer_nr_above < layer_nr + roofing_layer_count; layer_nr_above++)
{
Polygons outlines_above = getWalls(part, layer_nr_above, wall_idx);
no_air_above = no_air_above.intersection(outlines_above);
}
}
if (layer_nr > 0)
{
// if the skin has air below it then cutting it into regions could cause a region
// to be wholely or partly above air and it may not be printable so restrict
// the regions that have air above (the visible regions) to not include any area that
// has air below (fixes https://github.com/Ultimaker/Cura/issues/2656)
// set air_below to the skin area for the current layer that has air below it
Polygons air_below = getWalls(part, layer_nr, wall_idx).difference(getWalls(part, layer_nr - 1, wall_idx));
if (!air_below.empty())
{
// add the polygons that have air below to the no air above polygons
no_air_above = no_air_above.unionPolygons(air_below);
}
}
skin_part.roofing_fill = skin_part.inner_infill.difference(no_air_above);
skin_part.inner_infill = skin_part.inner_infill.intersection(no_air_above);
}
}
}
void SkinInfillAreaComputation::generateInfillSupport(SliceMeshStorage& mesh)
{
const coord_t layer_height = mesh.settings.get<coord_t>("layer_height");
const AngleRadians support_angle = mesh.settings.get<AngleRadians>("infill_support_angle");
const double tan_angle = tan(support_angle) - 0.01; //The X/Y component of the support angle. 0.01 to make 90 degrees work too.
const coord_t max_dist_from_lower_layer = tan_angle * layer_height; //Maximum horizontal distance that can be bridged.
for (int layer_idx = mesh.layers.size() - 2; layer_idx >= 0; layer_idx--)
{
SliceLayer& layer = mesh.layers[layer_idx];
SliceLayer& layer_above = mesh.layers[layer_idx + 1];
Polygons inside_above;
Polygons infill_above;
for (SliceLayerPart& part_above : layer_above.parts)
{
inside_above.add(part_above.infill_area);
infill_above.add(part_above.getOwnInfillArea());
}
for (SliceLayerPart& part : layer.parts)
{
const Polygons& infill_area = part.infill_area;
if (infill_area.empty())
{
continue;
}
const Polygons unsupported = infill_area.offset(-max_dist_from_lower_layer);
const Polygons basic_overhang = unsupported.difference(inside_above);
const Polygons overhang_extented = basic_overhang.offset(max_dist_from_lower_layer + 50); // +50 for easier joining with support from layer above
const Polygons full_overhang = overhang_extented.difference(inside_above);
const Polygons infill_support = infill_above.unionPolygons(full_overhang);
part.infill_area_own = infill_support.intersection(part.getOwnInfillArea());
}
}
}
void SkinInfillAreaComputation::generateGradualInfill(SliceMeshStorage& mesh)
{
// no early-out for this function; it needs to initialize the [infill_area_per_combine_per_density]
float layer_skip_count = 8; // skip every so many layers as to ignore small gaps in the model making computation more easy
if (!mesh.settings.get<bool>("skin_no_small_gaps_heuristic"))
{
layer_skip_count = 1;
}
const coord_t gradual_infill_step_height = mesh.settings.get<coord_t>("gradual_infill_step_height");
const size_t gradual_infill_step_layer_count = round_divide(gradual_infill_step_height, mesh.settings.get<coord_t>("layer_height")); // The difference in layer count between consecutive density infill areas
// make gradual_infill_step_height divisible by layer_skip_count
float n_skip_steps_per_gradual_step = std::max(1.0f, std::ceil(gradual_infill_step_layer_count / layer_skip_count)); // only decrease layer_skip_count to make it a divisor of gradual_infill_step_layer_count
layer_skip_count = gradual_infill_step_layer_count / n_skip_steps_per_gradual_step;
const size_t max_infill_steps = mesh.settings.get<size_t>("gradual_infill_steps");
const LayerIndex min_layer = mesh.settings.get<size_t>("bottom_layers");
const LayerIndex max_layer = mesh.layers.size() - 1 - mesh.settings.get<size_t>("top_layers");
for (LayerIndex layer_idx = 0; layer_idx < static_cast<LayerIndex>(mesh.layers.size()); layer_idx++)
{ // loop also over layers which don't contain infill cause of bottom_ and top_layer to initialize their infill_area_per_combine_per_density
SliceLayer& layer = mesh.layers[layer_idx];
for (SliceLayerPart& part : layer.parts)
{
assert(part.infill_area_per_combine_per_density.size() == 0 && "infill_area_per_combine_per_density is supposed to be uninitialized");
const Polygons& infill_area = part.getOwnInfillArea();
if (infill_area.size() == 0 || layer_idx < min_layer || layer_idx > max_layer)
{ // initialize infill_area_per_combine_per_density empty
part.infill_area_per_combine_per_density.emplace_back(); // create a new infill_area_per_combine
part.infill_area_per_combine_per_density.back().emplace_back(); // put empty infill area in the newly constructed infill_area_per_combine
// note: no need to copy part.infill_area, cause it's the empty vector anyway
continue;
}
Polygons less_dense_infill = infill_area; // one step less dense with each infill_step
for (size_t infill_step = 0; infill_step < max_infill_steps; infill_step++)
{
LayerIndex min_layer = layer_idx + infill_step * gradual_infill_step_layer_count + static_cast<size_t>(layer_skip_count);
LayerIndex max_layer = layer_idx + (infill_step + 1) * gradual_infill_step_layer_count;
for (float upper_layer_idx = min_layer; upper_layer_idx <= max_layer; upper_layer_idx += layer_skip_count)
{
if (upper_layer_idx >= mesh.layers.size())
{
less_dense_infill.clear();
break;
}
const SliceLayer& upper_layer = mesh.layers[static_cast<size_t>(upper_layer_idx)];
Polygons relevent_upper_polygons;
for (const SliceLayerPart& upper_layer_part : upper_layer.parts)
{
if (!upper_layer_part.boundaryBox.hit(part.boundaryBox))
{
continue;
}
relevent_upper_polygons.add(upper_layer_part.getOwnInfillArea());
}
less_dense_infill = less_dense_infill.intersection(relevent_upper_polygons);
}
if (less_dense_infill.size() == 0)
{
break;
}
// add new infill_area_per_combine for the current density
part.infill_area_per_combine_per_density.emplace_back();
std::vector<Polygons>& infill_area_per_combine_current_density = part.infill_area_per_combine_per_density.back();
const Polygons more_dense_infill = infill_area.difference(less_dense_infill);
infill_area_per_combine_current_density.push_back(more_dense_infill);
}
part.infill_area_per_combine_per_density.emplace_back();
std::vector<Polygons>& infill_area_per_combine_current_density = part.infill_area_per_combine_per_density.back();
infill_area_per_combine_current_density.push_back(infill_area);
part.infill_area_own = nullptr; // clear infill_area_own, it's not needed any more.
assert(part.infill_area_per_combine_per_density.size() != 0 && "infill_area_per_combine_per_density is now initialized");
}
}
}
void SkinInfillAreaComputation::combineInfillLayers(SliceMeshStorage& mesh)
{
if (mesh.layers.empty() || mesh.layers.size() - 1 < static_cast<size_t>(mesh.settings.get<size_t>("top_layers")) || mesh.settings.get<coord_t>("infill_line_distance") == 0) //No infill is even generated.
{
return;
}
const coord_t layer_height = mesh.settings.get<coord_t>("layer_height");
const size_t amount = std::max(1U, round_divide(mesh.settings.get<coord_t>("infill_sparse_thickness"), std::max(layer_height, coord_t(1)))); //How many infill layers to combine to obtain the requested sparse thickness.
if(amount <= 1) //If we must combine 1 layer, nothing needs to be combined. Combining 0 layers is invalid.
{
return;
}
/* We need to round down the layer index we start at to the nearest
divisible index. Otherwise we get some parts that have infill at divisible
layers and some at non-divisible layers. Those layers would then miss each
other. */
LayerIndex min_layer = static_cast<LayerIndex>(mesh.settings.get<size_t>("bottom_layers") + amount) - 1;
min_layer -= min_layer % amount; //Round upwards to the nearest layer divisible by infill_sparse_combine.
LayerIndex max_layer = static_cast<LayerIndex>(mesh.layers.size()) - 1 - mesh.settings.get<size_t>("top_layers");
max_layer -= max_layer % amount; //Round downwards to the nearest layer divisible by infill_sparse_combine.
for(LayerIndex layer_idx = min_layer; layer_idx <= max_layer; layer_idx += amount) //Skip every few layers, but extrude more.
{
SliceLayer* layer = &mesh.layers[layer_idx];
for(size_t combine_count_here = 1; combine_count_here < amount; combine_count_here++)
{
if(layer_idx < static_cast<LayerIndex>(combine_count_here))
{
break;
}
LayerIndex lower_layer_idx = layer_idx - combine_count_here;
if (lower_layer_idx < min_layer)
{
break;
}
SliceLayer* lower_layer = &mesh.layers[lower_layer_idx];
for (SliceLayerPart& part : layer->parts)
{
for (unsigned int density_idx = 0; density_idx < part.infill_area_per_combine_per_density.size(); density_idx++)
{ // go over each density of gradual infill (these density areas overlap!)
std::vector<Polygons>& infill_area_per_combine = part.infill_area_per_combine_per_density[density_idx];
Polygons result;
for (SliceLayerPart& lower_layer_part : lower_layer->parts)
{
if (part.boundaryBox.hit(lower_layer_part.boundaryBox))
{
Polygons intersection = infill_area_per_combine[combine_count_here - 1].intersection(lower_layer_part.infill_area).offset(-200).offset(200);
result.add(intersection); // add area to be thickened
infill_area_per_combine[combine_count_here - 1] = infill_area_per_combine[combine_count_here - 1].difference(intersection); // remove thickened area from less thick layer here
unsigned int max_lower_density_idx = density_idx;
// Generally: remove only from *same density* areas on layer below
// If there are no same density areas, then it's ok to print them anyway
// Don't remove other density areas
if (density_idx == part.infill_area_per_combine_per_density.size() - 1)
{
// For the most dense areas on a given layer the density of that area is doubled.
// This means that - if the lower layer has more densities -
// all those lower density lines are included in the most dense of this layer.
// We therefore compare the most dense are on this layer with all densities
// of the lower layer with the same or higher density index
max_lower_density_idx = lower_layer_part.infill_area_per_combine_per_density.size() - 1;
}
for (size_t lower_density_idx = density_idx; lower_density_idx <= max_lower_density_idx && lower_density_idx < lower_layer_part.infill_area_per_combine_per_density.size(); lower_density_idx++)
{
std::vector<Polygons>& lower_infill_area_per_combine = lower_layer_part.infill_area_per_combine_per_density[lower_density_idx];
lower_infill_area_per_combine[0] = lower_infill_area_per_combine[0].difference(intersection); // remove thickened area from lower (single thickness) layer
}
}
}
infill_area_per_combine.push_back(result);
}
}
}
}
}
}//namespace cura