-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPeano_mult.v
937 lines (880 loc) · 78 KB
/
Peano_mult.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
Require Import FV.ZFLib.
Require Import FV.MathematicalInduction.
Require Import FV.Peano.
Require Import FV.Peano_plus.
Lemma mult_unique:
[[ZF;;is_natural_number N;;is_plus e N|--∀x,∀y,is_mult x e N/\is_mult y e N->x=y]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult x e N|--∀y,is_legal_mult y e N -> x⊆y]]by Tauto.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult y e N|--∀x,is_legal_mult x e N -> y⊆x]]by Tauto.
universal instantiation H y.
universal instantiation H0 x.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult x e N;;is_mult y e N|-- x ⊆ y /\ y ⊆ x ]] by Tauto.
pose proof subset_subset_equal.
universal instantiation H4 x y.
assert [[ZF;;is_natural_number N;;is_plus e N|--is_mult x e N/\is_mult y e N->x=y]] by Tauto.
universal generalization H6 x y.
The conclusion is already proved.
Qed.
Lemma in_mult_exists_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,x∈N->∃z,z∈N/\in_rel3 x ∅ z f]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,x∈N->in_rel3 x ∅ ∅ f]]by Tauto.
universal instantiation H x. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N|--∅∈N/\in_rel3 x ∅ ∅ f]]by Tauto.
pose proof equal_rev.
universal instantiation H1 z [[∅]]. clear H1.
apply PEq_sub [[∅]] z [[z∈N/\in_rel3 x ∅ z f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N;;z=∅|--z∈N/\in_rel3 x ∅ z f]]by Tauto.
existential generalization H3 [[∃z,z∈N/\in_rel3 x ∅ z f]]. clear H3.
existential instantiation H4 [[∃x,x=∅]]. clear H4.
pose proof equal_zero_exists.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N->∃z,z∈N/\in_rel3 x ∅ z f]]by Tauto.
universal generalization H5 x. clear H0 H H2 H1 H3 H4 H5.
The conclusion is already proved.
Qed.
Lemma in_mult_exists_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀y,y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)->y∪{y}∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y∪{y} z f)]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,x∈N/\y∈N/\z∈N/\a∈N->in_rel3 x y z f->in_rel3 z x a e->in_rel3 x y∪{y} a f]]by Tauto.
universal instantiation H x y z a. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\y∈N/\z∈N/\in_rel3 x y z f;;a∈N/\in_rel3 z x a e|--a∈N/\in_rel3 x y∪{y} a f]]by Tauto. clear H0.
existential generalization H [[∃z,z∈N/\in_rel3 x y∪{y} z f]]. clear H.
pose proof in_plus_exists.
universal instantiation H z x. clear H.
existential instantiation H0 [[∃a,a∈N/\in_rel3 z x a e]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\y∈N;;z∈N/\in_rel3 x y z f|--∃z,z∈N/\in_rel3 x y∪{y} z f]]by Tauto. clear H1 H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈N->(∃z,z∈N/\in_rel3 x y z f)|--∀x,x∈N->∃z,z∈N/\in_rel3 x y z f]]by Tauto.
universal instantiation H x. clear H.
existential instantiation H0 [[∃z,z∈N/\in_rel3 x y z f]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈N->(∃z,z∈N/\in_rel3 x y z f);;y∈N|--x∈N->(∃z,z∈N/\in_rel3 x y∪{y} z f)]]by Tauto. clear H1 H.
universal generalization H0 x. clear H0.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H0 y. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)->y∪{y}∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y∪{y} z f)]]by Tauto. clear H H1.
universal generalization H0 y.
The conclusion is already proved.
Qed.
Lemma in_mult_exists:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,x∈N/\y∈N->∃z,z∈N/\in_rel3 x y z f]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;; is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)|--∀y,y∈X<->y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof in_mult_exists_zero.
assert [[ZF;;is_natural_number N;; is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)|--∅ ∈ X]] by Tauto. clear H1 H2.
pose proof in_mult_exists_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 y.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)|--
n∈N -> n∈X->n∪{n}∈X]]by Tauto. clear H2 H1 H5.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)|--∀n,n∈N->n∈X]]by Tauto.
universal instantiation H0 y. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)|--y∈N->(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)]]by Tauto.
existential instantiation H0 [[∃X,∀y,y∈ X <-> y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)]].
apply separation [[∃X,∀y,y∈X <-> y∈N/\(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N->(∀x,x∈N->∃z,z∈N/\in_rel3 x y z f)]]by Tauto.
universal generalization H7 y. clear H H3 H4 H1 H2 H0 H5 H6 H7.
universal instantiation H8 y.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;y∈N|--∀x,x∈N->∃z,z∈N/\in_rel3 x y z f]]by Tauto.
universal instantiation H0 x.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N->∃z,z∈N/\in_rel3 x y z f]]by Tauto.
universal generalization H2 x y.
The conclusion is already proved.
Qed.
Lemma is_mult_inversion:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,x∈N/\y∈N/\z∈N/\in_rel3 x y z f -> (y=∅/\z=∅)\/(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y=v∪{v}/\in_rel3 w u z e)]].
Proof.
apply separation [[∃h,∀x,x∈h<->x∈f/\¬x=d]].
assert [[ZF;;∀x,x∈h <-> x∈f /\ ¬x=d|--∀x,x∈h <-> x∈f /\ ¬x=d]]by Tauto.
universal instantiation H0 g.
assert [[ZF;;x∈N;;is_triple g x ∅ ∅;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀ x,x∈N->in_rel3 x ∅ ∅ f]]by Tauto.
universal instantiation H2 x. clear H2.
assert [[ZF;;x∈N;;is_triple g x ∅ ∅;;is_natural_number N;;is_plus e N;;is_mult f e N|--∃u,is_triple u x ∅ ∅/\u∈f]]by Tauto. clear H3.
pose proof triple_injection.
universal instantiation H3 x [[∅]] [[∅]] u g. clear H3.
apply PEq_sub u g [[g∈f]].
assert [[ZF;;x∈N;;is_triple g x ∅ ∅;;is_natural_number N;;is_plus e N;;is_mult f e N;;is_triple u x ∅ ∅/\u∈f|--g∈f]]by Tauto. clear H4 H3.
existential instantiation H5 [[∃u,is_triple u x ∅ ∅/\u∈f]]. clear H5.
assert [[ZF;;x∈N;;is_triple g x ∅ ∅;;is_natural_number N;;is_plus e N;;is_mult f e N|--g∈f]]by Tauto. clear H2 H3.
apply PEq_sub g d [[is_triple d x ∅ ∅]].
pose proof triple_inversion.
universal instantiation H3 a b c x [[∅]] [[∅]] d. clear H3.
apply PEq_sub x c [[b=c]].
pose proof equal_rev.
universal instantiation H6 c x. clear H6.
assert [[ZF;;g=d;;is_triple g x ∅ ∅;;is_triple d a b c|--b=∅/\c=∅]] by Tauto. clear H2 H5 H3 H7.
assert [[ZF;;is_triple g x ∅ ∅;;is_triple d a b c;;¬(b=∅/\c=∅)|--¬g=d]]by Tauto. clear H6.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;a∈N/\b∈N/\c∈N;;is_triple d a b c/\d∈f;;¬(b=∅/\c=∅)/\¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e);;∀x,x∈h <-> x∈f /\ ¬x=d;;x∈N;;is_triple g x ∅ ∅|--is_triple g x ∅ ∅ /\ g∈h]]by Tauto. clear H4 H2.
existential generalization H3 [[∃ g,is_triple g x ∅ ∅/\g∈h]]. clear H3.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;a∈N/\b∈N/\c∈N;;is_triple d a b c/\d∈f;;¬(b=∅/\c=∅)/\¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e);;∀x,x∈h <-> x∈f /\ ¬x=d;;x∈N;;is_triple g x ∅ ∅|--in_rel3 x ∅ ∅ h]]by Tauto. clear H2.
existential instantiation H3 [[∃u, is_triple u x ∅ ∅]]. clear H3.
pose proof triple_exists.
universal instantiation H3 x [[∅]] [[∅]]. clear H3.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;a∈N/\b∈N/\c∈N;;is_triple d a b c/\d∈f;;¬(b=∅/\c=∅)/\¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e);;∀x,x∈h <-> x∈f /\ ¬x=d|--x∈N->in_rel3 x ∅ ∅ h]]by Tauto. clear H2 H4.
universal generalization H3 x. clear H3.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;in_rel3 u v w h|--∃g, is_triple g u v w /\ g ∈ h]]by Tauto.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;is_triple g u v w /\ g ∈ h|--is_triple g u v w/\g∈f]]by Tauto.
existential generalization H4 [[∃g,is_triple g u v w/\g∈f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;is_triple g u v w /\ g ∈ h|--in_rel3 u v w f]]by Tauto. clear H4 H5.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀u,∀v,∀w,∀a,u∈N/\v∈N/\w∈N/\a∈N->(in_rel3 u v w f ->in_rel3 w u a e->in_rel3 u v∪{v} a f)]]by Tauto.
universal instantiation H4 u v w m. clear H4.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;is_triple g u v w /\ g ∈ h|--m∈N/\in_rel3 w u m e -> in_rel3 u v∪{v} m f]]by Tauto. clear H6 H5.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;is_triple g u v w /\ g ∈ h;;m∈N/\in_rel3 w u m e|--∃X, is_triple X u v∪{v} m /\ X∈f]]by Tauto. clear H4.
apply PEq_sub X d [[is_triple d u v∪{v} m]].
pose proof triple_inversion.
universal instantiation H6 a b c u [[v∪{v}]] m d. clear H6.
assert [[ZF;;X=d;;is_triple X u v∪{v} m;;is_triple d a b c|--a=u/\b=v∪{v}/\c=m]]by Tauto. clear H4 H7.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d;;is_triple g u v w /\ g ∈ h|--is_triple g u v w/\g∈f]]by Tauto.
existential generalization H4 [[∃g,is_triple g u v w/\g∈f]]. clear H4.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d;;is_triple g u v w /\ g ∈ h|--in_rel3 u v w f]]by Tauto. clear H7.
pose proof equal_rev.
universal instantiation H7 c m. clear H7.
apply PEq_sub m c [[in_rel3 w u c e]].
assert [[ZF;;X=d;;is_triple X u v∪{v} m;;is_triple d a b c;;in_rel3 w u m e|--a=u/\b=v∪{v}/\in_rel3 w u c e]]by Tauto. clear H6 H8 H7.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d;;is_triple g u v w/\g∈h;;X=d;;is_triple X u v∪{v} m;;u∈N/\v∈N/\w∈N;;m∈N/\in_rel3 w u m e;;is_triple d a b c|--u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e]]by Tauto. clear H4 H9.
existential generalization H6 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e]]. clear H6.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d;;is_triple g u v w/\g∈h;;is_triple X u v∪{v} m;;u∈N/\v∈N/\w∈N;;m∈N/\in_rel3 w u m e;;is_triple d a b c;;¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)|--¬X=d]]by Tauto. clear H4.
universal instantiation H0 X.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d;;is_triple g u v w/\g∈h;;is_triple X u v∪{v} m/\X∈f;;u∈N/\v∈N/\w∈N;;m∈N/\in_rel3 w u m e;;is_triple d a b c;;¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)|--is_triple X u v∪{v} m/\X∈h]]by Tauto. clear H6 H4.
existential generalization H7 [[∃X,is_triple X u v∪{v} m/\X∈h]]. clear H7.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d;;is_triple g u v w/\g∈h;;is_triple X u v∪{v} m/\X∈f;;u∈N/\v∈N/\w∈N;;m∈N/\in_rel3 w u m e;;is_triple d a b c;;¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)|--in_rel3 u v∪{v} m h]]by Tauto. clear H4.
existential instantiation H6 [[∃X,is_triple X u v∪{v} m/\X∈f]]. clear H6.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;m∈N/\in_rel3 w u m e;;is_triple g u v w/\g∈h;;is_triple d a b c;;¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)|--in_rel3 u v∪{v} m h]]by Tauto. clear H5 H4.
existential instantiation H6 [[∃g,is_triple g u v w/\g∈h]]. clear H6.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;u∈N/\v∈N/\w∈N;;m∈N/\in_rel3 w u m e;;in_rel3 u v w h;;is_triple d a b c;;¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)|--in_rel3 u v∪{v} m h]]by Tauto. clear H3 H4.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,x∈h<->x∈f/\¬x=d;;is_triple d a b c;;¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)|--u∈N/\v∈N/\w∈N/\m∈N->in_rel3 u v w h->in_rel3 w u m e->in_rel3 u v∪{v} m h]]by Tauto. clear H5.
universal generalization H3 u v w m. clear H3.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;a∈N/\b∈N/\c∈N;;is_triple d a b c/\d∈f;;¬(b=∅/\c=∅)/\¬(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e);;∀x,x∈h<->x∈f/\¬x=d|--is_legal_mult h e N]]by Tauto. clear H1 H2 H4.
assert [[ZF;;is_plus e N;;is_mult f e N|--∀x,is_legal_mult x e N -> f⊆x]]by Tauto.
universal instantiation H1 h. clear H1.
assert [[ZF;;is_plus e N;;is_mult f e N;;is_legal_mult h e N|--∀z,z∈f->z∈h]]by Tauto. clear H2.
universal instantiation H1 d. clear H1.
universal instantiation H0 d.
apply PEq_refl d.
assert [[ZF;;∀x,x∈h<->x∈f/\¬x=d|--¬d∈h]]by Tauto. clear H1 H4.
assert [[ZF;;is_plus e N;;is_mult f e N;;is_legal_mult h e N;;∀x,x∈h<->x∈f/\¬x=d|--¬d∈f]]by Tauto. clear H2 H5.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;a∈N/\b∈N/\c∈N;;is_triple d a b c/\d∈f;;∀x,x∈h<->x∈f/\¬x=d|--(b=∅/\c=∅)\/(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)]]by Tauto. clear H0 H3 H1.
existential instantiation H2 [[∃h,∀ x, x ∈ h <-> x ∈ f /\ ¬ x = d]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;a∈N/\b∈N/\c∈N;;is_triple d a b c/\d∈f|--(b=∅/\c=∅)\/(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)]]by Tauto. clear H H2 H0.
existential instantiation H1 [[∃u,is_triple u a b c /\ u ∈ f]].
assert [[ZF;;in_rel3 a b c f|--∃u,is_triple u a b c /\ u ∈ f]]by Tauto.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--a∈N/\b∈N/\c∈N/\in_rel3 a b c f->(b=∅/\c=∅)\/(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\b=v∪{v}/\in_rel3 w u c e)]]by Tauto.
universal generalization H2 a b c.
The conclusion is already proved.
Qed.
Lemma mult_func_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀z,x∈N/\z∈N/\in_rel3 x ∅ z f->z=∅]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)]] by Tauto.
universal instantiation H m. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀n,n∈N->in_rel3 n ∅ ∅ f]] by Tauto.
universal instantiation H n. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;n∈N|--∃u, is_triple u n ∅ ∅ /\ u ∈ f]] by Tauto.
clear H1.
pose proof triple_injection.
universal instantiation H1 n [[∅]] [[∅]] u m. clear H1.
apply PEq_sub u m [[m ∈ f]].
assert [[ZF;;is_triple u n ∅ ∅ /\ u ∈ f;;is_triple m n ∅ ∅|--m∈f]]by Tauto. clear H2 H1.
existential instantiation H3 [[∃ u, is_triple u n ∅ ∅ /\ u ∈ f]]. clear H3.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--n∈N/\is_triple m n ∅ ∅->m∈f]] by Tauto. clear H H1.
pose proof triple_inversion.
universal instantiation H x [[∅]] z n [[∅]] [[∅]] m. clear H.
assert [[ZF;;is_triple m n ∅ ∅|--x∈N/\z∈N/\is_triple m x ∅ z -> z = ∅]] by Tauto.
universal generalization H x z. clear H1 H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;n∈N;;is_triple m n ∅ ∅|--is_triple m n ∅ ∅/\m∈h]] by Tauto.
existential generalization H [[∃ m, is_triple m n ∅ ∅ /\ m ∈ h]]. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;n∈N;;is_triple m n ∅ ∅|--in_rel3 n ∅ ∅ h]] by Tauto.
existential instantiation H [[∃ u, is_triple u n ∅ ∅]]. clear H.
pose proof triple_exists.
universal instantiation H n [[∅]] [[∅]]. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--n∈N -> in_rel3 n ∅ ∅ h]] by Tauto.
universal generalization H n. clear H2 H3 H1 H4 H5 H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀a,∀b,∀c,∀d,a∈N/\b∈N/\c∈N/\d∈N->in_rel3 a b c f -> in_rel3 c a d e->in_rel3 a b∪{b} d f]] by Tauto.
universal instantiation H a b c d. clear H.
assert [[ZF;;is_triple m a b c/\m∈h;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--is_triple m a b c/\m∈f]] by Tauto.
existential generalization H [[∃v, is_triple v a b c/\v∈f]]. clear H.
assert [[ZF;;is_triple m a b c/\m∈h;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;a∈N/\b∈N/\c∈N;;d∈N/\in_rel3 c a d e|--∃v, is_triple v a b∪{b} d /\ v ∈ f]]by Tauto. clear H1 H2.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)]] by Tauto.
universal instantiation H1 v. clear H1.
pose proof not_empty.
universal instantiation H1 b. clear H1.
pose proof triple_inversion.
universal instantiation H1 a [[b∪{b}]] d x [[∅]] z v. clear H1.
assert [[ZF;;is_triple v a b∪{b} d|--x∈N/\z∈N/\is_triple v x ∅ z -> z=∅]]by Tauto. clear H3 H4.
universal generalization H1 x z. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;is_triple v a b∪{b} d/\v∈f|--is_triple v a b∪{b} d/\v∈h]]by Tauto. clear H3.
existential generalization H1 [[∃v, is_triple v a b∪{b} d/\v∈h]]. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;is_triple v a b∪{b} d/\v∈f|--in_rel3 a b∪{b} d h]]by Tauto. clear H2 H3.
existential instantiation H1 [[∃v, is_triple v a b∪{b} d/\v∈f]]. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;is_triple m a b c/\m∈h|--a∈N/\b∈N/\c∈N/\d∈N->in_rel3 c a d e->in_rel3 a b∪{b} d h]]by Tauto. clear H H2.
existential instantiation H1 [[∃m, is_triple m a b c/\m∈h]]. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--a∈N/\b∈N/\c∈N/\d∈N->in_rel3 a b c h->in_rel3 c a d e->in_rel3 a b∪{b} d h]]by Tauto. clear H.
universal generalization H1 a b c d. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--is_legal_mult h e N]]by Tauto. clear H0 H6 H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀y,is_legal_mult y e N->f⊆y]]by Tauto.
universal instantiation H h. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--f⊆h]] by Tauto. clear H1 H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)]]by Tauto.
universal instantiation H0 m. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--∀m,m∈f->m∈h]]by Tauto.
universal instantiation H0 m. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;m∈f|--(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)]]by Tauto. clear H H1 H2.
universal instantiation H0 x z. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅);;x∈N/\z∈N;;is_triple m x ∅ z/\m∈f|--z=∅]]by Tauto. clear H.
existential instantiation H0 [[∃m,is_triple m x ∅ z/\m∈f]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)|--x∈N/\z∈N/\in_rel3 x ∅ z f->z=∅]]by Tauto. clear H.
universal generalization H0 x z. clear H0.
existential instantiation H [[∃h,∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)]]. clear H.
apply separation [[∃h,∀m,m∈h<->m∈f/\(∀x,∀z,x∈N/\z∈N/\is_triple m x ∅ z->z=∅)]].
The conclusion is already proved.
Qed.
Lemma mult_func_zero_alter:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∅∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x ∅ z f/\in_rel3 x ∅ a f->z=a)]].
Proof.
pose proof mult_func_zero.
universal instantiation H x z.
universal instantiation H x a. clear H.
pose proof equal_rev.
universal instantiation H a [[∅]]. clear H.
apply PEq_sub [[∅]] a [[z=a]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\z∈N/\a∈N/\in_rel3 x ∅ z f/\in_rel3 x ∅ a f->z=a]]by Tauto.
universal generalization H3 x z a.
The conclusion is already proved.
Qed.
Lemma mult_func_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀y,y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)->y∪{y}∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y∪{y} z f/\in_rel3 x y∪{y} a f->z=a)]].
Proof.
pose proof is_mult_inversion.
universal instantiation H x [[y∪{y}]] z.
universal instantiation H x [[y∪{y}]] a.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H2 y. clear H2.
pose proof not_empty.
universal instantiation H2 y. clear H2.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\y∈N/\z∈N/\a∈N;;in_rel3 x y∪{y} z f;;in_rel3 x y∪{y} a f|--(∃ u, ∃ v, ∃ w, u∈N/\v∈N/\w∈N/\in_rel3 u v w f /\ x = u /\ y∪{y} = v∪{v} /\ in_rel3 w u z e)/\(∃ u, ∃ v, ∃ w, u∈N/\v∈N/\w∈N/\in_rel3 u v w f /\ x = u /\ y∪{y} = v∪{v} /\ in_rel3 w u a e)]]by Tauto. clear H H0 H1 H4.
pose proof Sn_inversion.
universal instantiation H y v. clear H.
pose proof equal_rev.
universal instantiation H x u.
universal instantiation H y v. clear H.
apply PEq_sub v y [[in_rel3 u y w f]].
apply PEq_sub u x [[in_rel3 x y w f]].
apply PEq_sub u x [[in_rel3 w x z e]].
assert [[ZF;;in_rel3 u v w f /\ x = u /\ y∪{y} = v∪{v} /\ in_rel3 w u z e|--in_rel3 x y w f/\in_rel3 w x z e]]by Tauto. clear H0 H1 H4 H H5 H6.
pose proof Sn_inversion.
universal instantiation H y c. clear H.
pose proof equal_rev.
universal instantiation H x b.
universal instantiation H y c. clear H.
apply PEq_sub c y [[in_rel3 b y d f]].
apply PEq_sub b x [[in_rel3 x y d f]].
apply PEq_sub b x [[in_rel3 d x a e]].
assert [[ZF;;in_rel3 b c d f /\ x = b /\ y∪{y} = c∪{c} /\ in_rel3 d b a e|--in_rel3 x y d f/\in_rel3 d x a e]]by Tauto. clear H0 H1 H4 H H5 H6.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀ x,∀ z,∀ a, x ∈ N /\ z ∈ N /\ a ∈ N /\ in_rel3 x y z f /\ in_rel3 x y a f -> z = a|--∀ x,∀ z,∀ a, x ∈ N /\ z ∈ N /\ a ∈ N /\ in_rel3 x y z f /\ in_rel3 x y a f -> z = a]]by Tauto.
universal instantiation H x w d. clear H.
apply PEq_sub w d [[in_rel3 d x z e]].
pose proof plus_func.
universal instantiation H1 d x z a. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a;;x∈N/\y∈N/\z∈N/\a∈N;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u z e;;b∈N/\c∈N/\d∈N/\in_rel3 b c d f/\x=b/\y∪{y}=c∪{c}/\in_rel3 d b a e|--z=a]]by Tauto. clear H7 H8 H0 H H4.
existential instantiation H1 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u a e]]. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a;;x∈N/\y∈N/\z∈N/\a∈N;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u z e|--(∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u a e)->z=a]]by Tauto. clear H.
existential instantiation H0 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u z e]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a;;y∈N|--x∈N/\z∈N/\a∈N/\in_rel3 x y∪{y} z f/\in_rel3 x y∪{y} a f->z=a]]by Tauto. clear H2 H.
universal generalization H0 x z a. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)->y∪{y}∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y∪{y} z f/\in_rel3 x y∪{y} a f->z=a)]]by Tauto.
universal generalization H0 y.
The conclusion is already proved.
Qed.
Lemma mult_func:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,x∈N/\y∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)|--∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof mult_func_zero_alter.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)|--∅∈X]] by Tauto. clear H1 H2.
pose proof mult_func_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 y.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)|-- n∈ N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H1 H5.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)|--∀n,n∈N->n∈X]]by Tauto.
universal instantiation H0 y. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)|--y∈N->(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)]]by Tauto.
existential instantiation H0 [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)]].
apply separation [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N->(∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a)]]by Tauto.
universal generalization H7 y. clear H H3 H4 H1 H2 H0 H5 H6 H7.
universal instantiation H8 y.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;y∈N|--∀x,∀z,∀a,x∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a]]by Tauto.
universal instantiation H0 x z a.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\z∈N/\a∈N/\in_rel3 x y z f/\in_rel3 x y a f->z=a]]by Tauto.
universal generalization H2 x y z a.
The conclusion is already proved.
Qed.
Lemma mult_dist_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 ∅ z d e/\in_rel3 x ∅ a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,x∈N->in_rel3 x ∅ ∅ f]]by Tauto.
universal instantiation H x. clear H.
pose proof mult_func.
universal instantiation H x [[∅]] [[∅]] a. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\a∈N/\in_rel3 x ∅ a f->∅=a]]by Tauto. clear H0 H1.
pose proof plus_func_zero.
universal instantiation H0 z d. clear H0.
pose proof mult_func.
universal instantiation H0 x d b c. clear H0.
apply PEq_sub z d [[in_rel3 x d b f]].
assert [[ZF;;is_natural_number N;;is_plus e N|--∀x,x∈N->in_rel3 ∅ x x e]]by Tauto.
universal instantiation H3 b. clear H3.
apply PEq_sub b c [[in_rel3 ∅ b c e]].
apply PEq_sub [[∅]] a [[in_rel3 a b c e]].
assert [[ZF;;is_natural_number N;;is_plus e N;;in_rel3 x d b f;;b∈N;;b=c;;∅=a|--in_rel3 a b c e]]by Tauto. clear H4 H3 H5.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 ∅ z d e/\in_rel3 x ∅ a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]]by Tauto.
universal generalization H3 x z a b c d.
The conclusion is already proved.
Qed.
Lemma mult_dist_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀y,y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)->y∪{y}∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]].
Proof.
assert [[ZF;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e|--∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]]by Tauto.
universal instantiation H x z q b n w. clear H.
pose proof plus_same.
universal instantiation H q b n x a c.
assert [[ZF;;is_natural_number N;;is_plus e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e|--x∈N/\z∈N/\q∈N/\a∈N/\b∈N/\c∈N/\n∈N/\w∈N/\in_rel3 y z w e/\in_rel3 x y q f/\in_rel3 x z b f/\in_rel3 x w n f/\in_rel3 q x a e/\in_rel3 n x c e->in_rel3 a b c e]]by Tauto. clear H H0 H1.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H y. clear H.
pose proof not_empty.
universal instantiation H y.
universal instantiation H w. clear H.
pose proof Sn_inversion.
universal instantiation H y u.
universal instantiation H y p.
universal instantiation H m w. clear H.
pose proof equal_rev.
universal instantiation H y u.
universal instantiation H z v.
universal instantiation H d [[w∪{w}]].
universal instantiation H x g.
universal instantiation H d [[m∪{m}]].
universal instantiation H x h.
universal instantiation H y p. clear H.
assert [[ZF;;y∪{y}=u∪{u}|--u=y]]by Tauto.
assert [[ZF;;y∪{y}=p∪{p}|--p=y]]by Tauto. clear H4 H5 H7 H13.
apply PEq_sub u y [[in_rel3 y v w e]].
apply PEq_sub v z [[in_rel3 y z w e]].
assert [[ZF;;in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v|--in_rel3 y z w e]]by Tauto. clear H8 H H4 H5.
apply PEq_sub g x [[in_rel3 x m n f]].
apply PEq_sub g x [[in_rel3 n x c e]].
assert [[ZF;;in_rel3 g m n f/\x=g/\in_rel3 n g c e|--in_rel3 x m n f/\in_rel3 n x c e]]by Tauto. clear H10 H H4.
apply PEq_sub h x [[in_rel3 x p q f]].
apply PEq_sub p y [[in_rel3 x y q f]].
apply PEq_sub h x [[in_rel3 q x a e]].
assert [[ZF;;in_rel3 h p q f/\x=h/\y∪{y}=p∪{p}/\in_rel3 q h a e|--in_rel3 x y q f/\in_rel3 q x a e]]by Tauto. clear H12 H14 H H4 H8.
apply PEq_sub d [[w∪{w}]] [[m∪{m}=w∪{w}]].
apply PEq_sub m w [[in_rel3 x w n f]].
assert [[ZF;;d=w∪{w};;d=m∪{m};;in_rel3 x m n f|--in_rel3 x w n f]]by Tauto. clear H6 H9 H11 H H4.
assert [[ZF;;is_natural_number N;;is_plus e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e;;x∈N/\z∈N/\q∈N/\a∈N/\b∈N/\c∈N/\n∈N/\w∈N;;in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v;;in_rel3 h p q f/\x=h/\y∪{y}=p∪{p}/\in_rel3 q h a e;;in_rel3 x z b f;;in_rel3 g m n f/\x=g/\in_rel3 n g c e;;d=w∪{w};;d=m∪{m}|--in_rel3 a b c e]]by Tauto. clear H7 H5 H10 H8.
assert [[ZF;;is_natural_number N;;is_plus e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e;;x∈N/\z∈N/\a∈N/\b∈N/\c∈N;;in_rel3 x z b f;;u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w};;h∈N/\p∈N/\q∈N/\in_rel3 h p q f/\x=h/\y∪{y}=p∪{p}/\in_rel3 q h a e;;g∈N/\m∈N/\n∈N/\in_rel3 g m n f/\x=g/\d=m∪{m}/\in_rel3 n g c e|--in_rel3 a b c e]]by Tauto. clear H.
pose proof equal_rev.
universal instantiation H d [[w∪{w}]]. clear H.
apply PEq_sub [[w∪{w}]] d [[¬d=∅]].
assert [[ZF;;d=w∪{w}|--¬d=∅]]by Tauto. clear H3 H5 H.
pose proof is_mult_inversion.
universal instantiation H x d c.
existential instantiation H4 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\d=v∪{v}/\in_rel3 w u c e]]. clear H2 H4.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e;;x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 x z b f/\in_rel3 x d c f;;u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w};;h∈N/\p∈N/\q∈N/\in_rel3 h p q f/\x=h/\y∪{y}=p∪{p}/\in_rel3 q h a e|--in_rel3 a b c e]]by Tauto. clear H6 H3 H5.
universal instantiation H x [[y∪{y}]] a. clear H.
existential instantiation H2 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u a e]]. clear H2.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e;;x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 x y ∪ {y} a f/\in_rel3 x z b f/\in_rel3 x d c f;;u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w}|--in_rel3 a b c e]]by Tauto. clear H3 H.
pose proof is_plus_inversion.
universal instantiation H [[y∪{y}]] z d. clear H.
existential instantiation H2 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w}]]. clear H2.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e;;x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 x d c f|--in_rel3 a b c e]]by Tauto. clear H1 H3 H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e;;y∈N|--x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]]by Tauto.
universal generalization H x z a b c d. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)->y∪{y}∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]]by Tauto.
universal generalization H y.
The conclusion is already proved.
Qed.
Lemma mult_dist:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,∀b,∀c,∀d,x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)|--∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof mult_dist_zero.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)|--∅∈X]] by Tauto. clear H1 H2.
pose proof mult_dist_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 y.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)|-- n∈N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H1 H5.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)|--∀n,n∈N->n∈X]]by Tauto.
universal instantiation H0 y. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)|--y∈N->(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]]by Tauto.
existential instantiation H0 [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]].
apply separation [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N->(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e)]]by Tauto.
universal generalization H7 y. clear H H3 H4 H1 H2 H0 H5 H6 H7.
universal instantiation H8 y.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;y∈N|--∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]]by Tauto.
universal instantiation H0 x z a b c d.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 x d c f->in_rel3 a b c e]]by Tauto.
universal generalization H2 y z a b c d.
universal generalization H3 x.
The conclusion is already proved.
Qed.
Lemma mult_dist_PtoM_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 ∅ z d e/\in_rel3 x ∅ a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]].
Proof.
pose proof plus_func_zero.
universal instantiation H z d. clear H.
pose proof mult_func_zero.
universal instantiation H x a. clear H.
apply PEq_sub a [[∅]] [[in_rel3 ∅ b c e]].
assert [[ZF;;is_natural_number N;;is_plus e N|--∀x,x∈N->in_rel3 ∅ x x e]] by Tauto.
universal instantiation H2 b. clear H2.
pose proof plus_func.
universal instantiation H2 [[∅]] b b c. clear H2.
apply PEq_sub z d [[in_rel3 x d b f]].
apply PEq_sub b c [[in_rel3 x d c f]].
assert [[ZF;;is_natural_number N;;is_plus e N|--b∈N/\c∈N/\in_rel3 ∅ b c e/\in_rel3 x d b f->in_rel3 x d c f]]by Tauto. clear H3 H4 H5.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 ∅ z d e/\in_rel3 x ∅ a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]]by Tauto.
universal generalization H3 x z a b c d.
The conclusion is already proved.
Qed.
Lemma mult_dist_PtoM_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀y,y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)->y∪{y}∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]].
Proof.
pose proof Sn_inversion.
universal instantiation H y u.
universal instantiation H y m. clear H.
pose proof equal_rev.
universal instantiation H y u.
universal instantiation H z v.
universal instantiation H x g.
universal instantiation H y m. clear H.
assert [[ZF|--y∪{y}=u∪{u}->u=y]]by Tauto.
assert [[ZF|--y∪{y}=m∪{m}->m=y]]by Tauto. clear H0 H1 H2 H5.
apply PEq_sub u y [[in_rel3 y v w e]].
apply PEq_sub v z [[in_rel3 y z w e]].
assert [[ZF|--y∪{y}=u∪{u}/\z=v/\in_rel3 u v w e->in_rel3 y z w e]]by Tauto. clear H3 H H0 H1.
apply PEq_sub g x [[in_rel3 x m n f]].
apply PEq_sub m y [[in_rel3 x y n f]].
assert [[ZF|--x=g/\y∪{y}=m∪{m}/\in_rel3 g m n f->in_rel3 x y n f]]by Tauto. clear H4 H6 H H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f|--∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]]by Tauto.
universal instantiation H x z n b h w. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀ x,∀ y,∀ z,∀ a,x ∈ N /\ y ∈ N /\ z ∈ N /\ a ∈ N ->in_rel3 x y z f -> in_rel3 z x a e -> in_rel3 x y ∪ {y} a f]]by Tauto.
universal instantiation H x w h p. clear H.
pose proof equal_rev.
universal instantiation H d [[w∪{w}]]. clear H.
apply PEq_sub [[w∪{w}]] d [[in_rel3 x d p f]].
assert [[ZF;;d=w∪{w};;in_rel3 x w∪{w} p f|--in_rel3 x d p f]]by Tauto. clear H4.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\w∈N/\h∈N/\p∈N/\in_rel3 x w h f/\in_rel3 h x p e;;d=w∪{w}|--in_rel3 x d p f]]by Tauto. clear H3 H H5.
pose proof plus_same.
universal instantiation H n b h x a p. clear H.
pose proof plus_func.
universal instantiation H a b p c. clear H.
apply PEq_sub p c [[in_rel3 x d c f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\a∈N/\b∈N/\c∈N;;w∈N/\d=w∪{w};;h∈N/\in_rel3 x w h f;;n∈N/\in_rel3 n b h e/\in_rel3 n x a e;;in_rel3 a b c e;;p∈N/\in_rel3 h x p e|--in_rel3 x d c f]]by Tauto. clear H4 H3 H5 H.
pose proof in_plus_exists.
universal instantiation H h x. clear H.
existential instantiation H6 [[∃z,z∈N/\in_rel3 h x z e]]. clear H6.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\a∈N/\b∈N/\c∈N;;w∈N/\d=w∪{w};;h∈N/\in_rel3 x w h f;;n∈N/\in_rel3 n b h e/\in_rel3 n x a e;;in_rel3 a b c e|--in_rel3 x d c f]]by Tauto. clear H3 H.
pose proof equal_rev.
universal instantiation H x g. clear H.
apply PEq_sub g x [[in_rel3 n x a e]].
assert [[ZF;;x=g;;in_rel3 n g a e|--in_rel3 n x a e]]by Tauto. clear H3 H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f;;x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 x z b f/\in_rel3 a b c e;;u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w};;g∈N/\m∈N/\n∈N/\in_rel3 g m n f/\x=g/\y∪{y}=m∪{m}/\in_rel3 n g a e;;h∈N/\in_rel3 n b h e|--in_rel3 x d c f]]by Tauto. clear H2 H1 H0 H4 H5.
existential instantiation H [[∃z,z∈N/\in_rel3 n b z e]]. clear H.
pose proof in_plus_exists.
universal instantiation H n b. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f;;x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 x z b f/\in_rel3 a b c e;;u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w};;g∈N/\m∈N/\n∈N/\in_rel3 g m n f/\x=g/\y∪{y}=m∪{m}/\in_rel3 n g a e|--in_rel3 x d c f]]by Tauto. clear H0 H1.
pose proof is_mult_inversion.
universal instantiation H0 x [[y∪{y}]] a. clear H0.
pose proof not_empty.
universal instantiation H0 y. clear H0.
existential instantiation H [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u a e]]. clear H.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H y. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f;;y∈N;;x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 a b c e;;u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w}|--in_rel3 x d c f]]by Tauto. clear H1 H0.
pose proof is_plus_inversion.
universal instantiation H0 [[y∪{y}]] z d. clear H0.
existential instantiation H [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w e/\y∪{y}=u∪{u}/\z=v/\d=w∪{w}]]. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f;;y∈N;;x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N;;in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 a b c e|--in_rel3 x d c f]]by Tauto. clear H2 H1 H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f;;y∈N|--x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]]by Tauto. clear H.
universal generalization H0 x z a b c d. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)->y∪{y}∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y∪{y} z d e/\in_rel3 x y∪{y} a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]]by Tauto.
universal generalization H0 y. clear H3 H H0.
The conclusion is already proved.
Qed.
Lemma mult_dist_PtoM:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,∀b,∀c,∀d,x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)|--∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof mult_dist_PtoM_zero.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)|--∅∈X]] by Tauto. clear H1 H2.
pose proof mult_dist_PtoM_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 y.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)|-- n∈ N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H1 H5.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)|--∀n,n∈N->n∈X]]by Tauto.
universal instantiation H0 y. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)|--y∈N->(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]]by Tauto.
existential instantiation H0 [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]].
apply separation [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N->(∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f)]]by Tauto.
universal generalization H7 y. clear H H3 H4 H1 H2 H0 H5 H6 H7.
universal instantiation H8 y.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;y∈N|--∀x,∀z,∀a,∀b,∀c,∀d,x∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]]by Tauto.
universal instantiation H0 x z a b c d.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\d∈N/\in_rel3 y z d e/\in_rel3 x y a f/\in_rel3 x z b f/\in_rel3 a b c e->in_rel3 x d c f]]by Tauto.
universal generalization H2 y z a b c d.
universal generalization H3 x.
The conclusion is already proved.
Qed.
Lemma mult_assoc_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y ∅ b f/\in_rel3 a ∅ c f->in_rel3 x b c f]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀n,n∈N->in_rel3 n ∅ ∅ f]] by Tauto.
universal instantiation H x. clear H.
pose proof mult_func_zero.
universal instantiation H y b.
universal instantiation H a c. clear H.
pose proof equal_rev.
universal instantiation H b [[∅]].
universal instantiation H c [[∅]]. clear H.
apply PEq_sub [[∅]] b [[in_rel3 x b ∅ f]].
apply PEq_sub [[∅]] c [[in_rel3 x b c f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y ∅ b f/\in_rel3 a ∅ c f->in_rel3 x b c f]] by Tauto.
universal generalization H6 x y a b c.
The conclusion is already proved.
Qed.
Lemma mult_assoc_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀z,z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)->z∪{z}∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z∪{z} b f/\in_rel3 a z∪{z} c f->in_rel3 x b c f)]].
Proof.
pose proof equal_rev.
universal instantiation H y u.
universal instantiation H z v. clear H.
apply PEq_sub u y [[in_rel3 y v w f]].
apply PEq_sub v z [[in_rel3 y z w f]].
apply PEq_sub u y [[in_rel3 w y b e]].
assert [[ZF;;in_rel3 u v w f/\y=u/\z=v/\in_rel3 w u b e|--in_rel3 y z w f/\in_rel3 w y b e]]by Tauto. clear H0 H1 H H2 H3.
pose proof equal_rev.
universal instantiation H a g.
universal instantiation H z m. clear H.
apply PEq_sub g a [[in_rel3 a m n f]].
apply PEq_sub m z [[in_rel3 a z n f]].
apply PEq_sub g a [[in_rel3 n a c e]].
assert [[ZF;;in_rel3 g m n f/\a=g/\z=m/\in_rel3 n g c e|--in_rel3 a z n f/\in_rel3 n a c e]]by Tauto. clear H0 H1 H H2 H3.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|--∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f]]by Tauto.
universal instantiation H x y a w n. clear H.
pose proof mult_dist_PtoM.
universal instantiation H x w y n a c b. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f);;x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\y=u/\z=v/\in_rel3 w u b e;;g∈N/\m∈N/\n∈N/\in_rel3 g m n f/\a=g/\z=m/\in_rel3 n g c e|--in_rel3 x b c f]]by Tauto. clear H4 H5 H0 H1.
pose proof Sn_inversion.
universal instantiation H0 z v.
universal instantiation H0 z m. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f);;x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\y=u/\z∪{z}=v∪{v}/\in_rel3 w u b e;;g∈N/\m∈N/\n∈N/\in_rel3 g m n f/\a=g/\z∪{z}=m∪{m}/\in_rel3 n g c e|--in_rel3 x b c f]]by Tauto. clear H H1 H2.
existential instantiation H0 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\a=u/\z∪{z}=v∪{v}/\in_rel3 w u c e]]. clear H0.
pose proof is_mult_inversion.
universal instantiation H0 a [[z∪{z}]] c. clear H0.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H0 z. clear H0.
pose proof not_empty.
universal instantiation H0 z. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f);;x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 a z∪{z} c f;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\y=u/\z∪{z}=v∪{v}/\in_rel3 w u b e|--in_rel3 x b c f]]by Tauto. clear H H1.
existential instantiation H0 [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\y=u/\z∪{z}=v∪{v}/\in_rel3 w u b e]]. clear H0.
pose proof is_mult_inversion.
universal instantiation H0 y [[z∪{z}]] b. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|--x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z∪{z} b f/\in_rel3 a z∪{z} c f->in_rel3 x b c f]]by Tauto. clear H3 H H1.
universal generalization H0 x y a b c. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)->z∪{z}∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z∪{z} b f/\in_rel3 a z∪{z} c f->in_rel3 x b c f)]]by Tauto.
universal generalization H0 z. clear H0.
The conclusion is already proved.
Qed.
Lemma mult_assoc_half:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,∀b,∀c,x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|--∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof mult_assoc_zero.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|--∅∈X]] by Tauto. clear H1 H2.
pose proof mult_assoc_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 z.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|-- n∈ N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H1 H5.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|--∀n,n∈N->n∈X]]by Tauto.
universal instantiation H0 z. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)|--z∈N->(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)]]by Tauto.
existential instantiation H0 [[∃X,∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)]].
apply separation [[∃X,∀z,z∈X<->z∈N/\(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--z∈N->(∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f)]]by Tauto.
universal generalization H7 z. clear H H3 H4 H1 H2 H0 H5 H6 H7.
universal instantiation H8 z.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;z∈N|--∀x,∀y,∀a,∀b,∀c,x∈N/\y∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f]]by Tauto.
universal instantiation H0 x y a b c.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f/\in_rel3 a z c f->in_rel3 x b c f]]by Tauto.
universal generalization H2 x y z a b c.
The conclusion is already proved.
Qed.
Lemma zero_mult_n_is_zero_base:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--in_rel3 ∅ ∅ ∅ f]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,x∈N->in_rel3 x ∅ ∅ f]]by Tauto.
universal instantiation H [[∅]].
The conclusion is already proved.
Qed.
Lemma zero_mult_n_is_zero_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀n,n∈N/\in_rel3 ∅ n ∅ f->n∪{n}∈N/\in_rel3 ∅ n∪{n} ∅ f]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,x∈N/\y∈N/\z∈N/\a∈N->in_rel3 x y z f->in_rel3 z x a e->in_rel3 x y∪{y} a f]]by Tauto.
universal instantiation H [[∅]] n [[∅]] [[∅]]. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N|--∀x,x∈N->in_rel3 ∅ x x e]]by Tauto.
universal instantiation H [[∅]]. clear H.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H [[∅]].
universal instantiation H n. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--n∈N/\in_rel3 ∅ n ∅ f->n∪{n}∈N/\in_rel3 ∅ n∪{n} ∅ f]]by Tauto.
universal generalization H n.
The conclusion is already proved.
Qed.
Lemma zero_mult_n_is_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀n,n∈N->in_rel3 ∅ n ∅ f]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f|--∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f]] by Tauto.
universal instantiation H0 [[∅]].
pose proof zero_mult_n_is_zero_base.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f|--∅∈X]] by Tauto. clear H1 H2.
pose proof zero_mult_n_is_zero_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f|-- n∈ N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H4.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f|--∀n,n∈N->n∈X]]by Tauto. clear H2.
universal instantiation H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f|--n∈N->in_rel3 ∅ n ∅ f]]by Tauto.
existential instantiation H0 [[∃X,∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f]].
apply separation [[∃X,∀n,n∈X<->n∈N/\in_rel3 ∅ n ∅ f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--n∈N->in_rel3 ∅ n ∅ f]]by Tauto.
universal generalization H6 n. clear H H3 H1 H2 H0 H4 H5 H6.
The conclusion is already proved.
Qed.
Lemma m_mult_n_plus_n_is_Sm_mult_n_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m ∅ x f/\in_rel3 x ∅ y e->in_rel3 m∪{m} ∅ y f]].
Proof.
pose proof mult_func_zero.
universal instantiation H m x. clear H.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H m. clear H.
pose proof plus_func_zero.
universal instantiation H [[∅]] y. clear H.
apply PEq_sub using condition x [[∅]] [[in_rel3 x ∅ y e]].
apply PEq_sub [[∅]] y [[in_rel3 m∪{m} ∅ y f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,x∈N->in_rel3 x ∅ ∅ f]]by Tauto.
universal instantiation H4 [[m∪{m}]]. clear H4.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--m∈N/\x∈N/\y∈N/\in_rel3 m ∅ x f/\in_rel3 x ∅ y e->in_rel3 m∪{m} ∅ y f]]by Tauto. clear H0 H1 H2 H H3 H5.
universal generalization H4 m x y.
The conclusion is already proved.
Qed.
Lemma m_mult_n_plus_n_is_Sm_mult_n_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀n,n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)->n∪{n}∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n∪{n} x f/\in_rel3 x n∪{n} y e->in_rel3 m∪{m} n∪{n} y f)]].
Proof.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N|--∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f]]by Tauto.
universal instantiation H m w z. clear H.
pose proof plus_same.
universal instantiation H w n z m x g. clear H.
pose proof plus_comm.
universal instantiation H x n g. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N|--∀x,∀y,∀z,x∈N/\y∈N/\z∈N->in_rel3 x y z e->in_rel3 x∪{x} y z∪{z} e]]by Tauto.
universal instantiation H n x g. clear H.
pose proof plus_comm.
universal instantiation H [[n∪{n}]] x [[g∪{g}]]. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;w∈N/\n∈N/\n∪{n}∈N/\z∈N/\m∈N/\x∈N/\g∈N/\g∪{g}∈N/\in_rel3 w n z e/\in_rel3 w m x e/\in_rel3 z m g e|--in_rel3 x n∪{n} g∪{g} e]]by Tauto. clear H1 H2 H3 H4.
pose proof plus_func.
universal instantiation H1 x [[n∪{n}]] [[g∪{g}]] y. clear H1.
assert [[ZF;;is_natural_number N;;is_plus e N;;w∈N/\n∈N/\n∪{n}∈N/\z∈N/\m∈N/\x∈N/\y∈N/\g∈N/\g∪{g}∈N/\in_rel3 w n z e/\in_rel3 w m x e/\in_rel3 z m g e/\in_rel3 x n∪{n} y e|--g∪{g}=y]]by Tauto. clear H H2.
pose proof plus_comm.
universal instantiation H z m g. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N|--∀x,∀y,∀z,x∈N/\y∈N/\z∈N->in_rel3 x y z e->in_rel3 x∪{x} y z∪{z} e]]by Tauto.
universal instantiation H m z g. clear H.
pose proof plus_comm.
universal instantiation H [[m∪{m}]] z [[g∪{g}]]. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;z∈N/\m∈N/\m∪{m}∈N/\g∈N/\g∪{g}∈N/\in_rel3 z m g e|--in_rel3 z m∪{m} g∪{g} e]]by Tauto. clear H2 H3 H4.
apply PEq_sub [[g∪{g}]] y [[in_rel3 z m∪{m} y e]].
assert [[ZF;;is_natural_number N;;is_plus e N;;w∈N/\n∈N/\n∪{n}∈N/\m∈N/\m∪{m}∈N/\x∈N/\y∈N/\z∈N/\g∈N/\g∪{g}∈N/\in_rel3 w n z e/\in_rel3 w m x e/\in_rel3 z m g e/\in_rel3 x n∪{n} y e|--in_rel3 z m∪{m} y e]]by Tauto. clear H1 H H2.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,x∈N/\y∈N/\z∈N/\a∈N->in_rel3 x y z f->in_rel3 z x a e->in_rel3 x y∪{y} a f]]by Tauto.
universal instantiation H [[m∪{m}]] n z y. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N/\n∪{n}∈N/\m∈N/\m∪{m}∈N/\x∈N/\y∈N/\in_rel3 x n∪{n} y e;;w∈N/\in_rel3 m n w f/\in_rel3 w m x e;;z∈N/\in_rel3 w n z e;;g∈N/\g∪{g}∈N/\in_rel3 z m g e|--in_rel3 m∪{m} n∪{n} y f]]by Tauto. clear H0 H3 H1.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H0 g.
universal instantiation H0 m.
universal instantiation H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N/\m∈N/\x∈N/\y∈N/\in_rel3 x n∪{n} y e;;w∈N/\in_rel3 m n w f/\in_rel3 w m x e;;z∈N/\in_rel3 w n z e;;g∈N/\in_rel3 z m g e|--in_rel3 m∪{m} n∪{n} y f]]by Tauto. clear H H1.
existential instantiation H0 [[∃g,g∈N/\in_rel3 z m g e]]. clear H0.
pose proof in_plus_exists.
universal instantiation H0 z m. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N/\m∈N/\x∈N/\y∈N/\in_rel3 x n∪{n} y e;;w∈N/\in_rel3 m n w f/\in_rel3 w m x e;;z∈N/\in_rel3 w n z e|--in_rel3 m∪{m} n∪{n} y f]]by Tauto. clear H H1.
existential instantiation H0 [[∃z,z∈N/\in_rel3 w n z e]]. clear H0.
pose proof in_plus_exists.
universal instantiation H0 w n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N/\m∈N/\x∈N/\y∈N/\in_rel3 x n∪{n} y e;;w∈N/\in_rel3 m n w f/\in_rel3 w m x e|--in_rel3 m∪{m} n∪{n} y f]]by Tauto. clear H H1.
pose proof equal_rev.
universal instantiation H m u.
universal instantiation H n v. clear H.
pose proof Sn_inversion.
universal instantiation H n v. clear H.
apply PEq_sub u m [[in_rel3 m v w f]].
apply PEq_sub v n [[in_rel3 m n w f]].
apply PEq_sub u m [[in_rel3 w m x e]].
assert [[ZF;;in_rel3 u v w f/\m=u/\n∪{n}=v∪{v}/\in_rel3 w u x e|--in_rel3 m n w f/\in_rel3 w m x e]]by Tauto. clear H1 H4 H5 H H6 H7.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N/\m∈N/\x∈N/\y∈N/\in_rel3 x n∪{n} y e;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\m=u/\n∪{n}=v∪{v}/\in_rel3 w u x e|--in_rel3 m∪{m} n∪{n} y f]]by Tauto. clear H0 H8.
existential instantiation H [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\m=u/\n∪{n}=v∪{v}/\in_rel3 w u x e]]. clear H.
pose proof is_mult_inversion.
universal instantiation H m [[n∪{n}]] x. clear H.
pose proof not_empty.
universal instantiation H n. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f;;n∈N|--m∈N/\x∈N/\y∈N/\in_rel3 m n∪{n} x f/\in_rel3 x n∪{n} y e->in_rel3 m∪{m} n∪{n} y f]]by Tauto. clear H2 H0 H1 H4.
universal generalization H m x y. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)->n∪{n}∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n∪{n} x f/\in_rel3 x n∪{n} y e->in_rel3 m∪{m} n∪{n} y f)]]by Tauto.
universal generalization H n. clear H.
The conclusion is already proved.
Qed.
Lemma m_mult_n_plus_n_is_Sm_mult_n:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀m,∀n,∀x,∀y,m∈N/\n∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)|--∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof m_mult_n_plus_n_is_Sm_mult_n_zero.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)|--∅∈X]] by Tauto. clear H1 H2.
pose proof m_mult_n_plus_n_is_Sm_mult_n_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)|-- n∈ N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H4.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)|--∀n,n∈N->n∈X]]by Tauto. clear H2.
universal instantiation H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)|--n∈N->(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)]]by Tauto.
existential instantiation H0 [[∃X,∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)]].
apply separation [[∃X,∀n,n∈X<->n∈N/\(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--n∈N->(∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f)]]by Tauto.
universal generalization H6 n. clear H H3 H1 H2 H0 H4 H5 H6.
universal instantiation H7 n.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;n∈N|--∀m,∀x,∀y,m∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f]]by Tauto.
universal instantiation H0 m x y.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--m∈N/\n∈N/\x∈N/\y∈N/\in_rel3 m n x f/\in_rel3 x n y e->in_rel3 m∪{m} n y f]]by Tauto.
universal generalization H2 m n x y.
The conclusion is already proved.
Qed.
Lemma mult_comm_zero:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀z,x∈N/\z∈N/\in_rel3 x ∅ z f->in_rel3 ∅ x z f]].
Proof.
pose proof mult_func_zero.
universal instantiation H x z. clear H.
pose proof zero_mult_n_is_zero.
universal instantiation H x. clear H.
pose proof equal_rev.
universal instantiation H z [[∅]]. clear H.
apply PEq_sub [[∅]] z [[in_rel3 ∅ x z f]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\z∈N/\in_rel3 x ∅ z f->in_rel3 ∅ x z f]]by Tauto.
universal generalization H3 x z.
The conclusion is already proved.
Qed.
Lemma mult_comm_induction:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀y,y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)->y∪{y}∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y∪{y} z f->in_rel3 y∪{y} x z f)]].
Proof.
pose proof m_mult_n_plus_n_is_Sm_mult_n.
universal instantiation H y x w z. clear H.
pose proof equal_rev.
universal instantiation H x u.
universal instantiation H y v. clear H.
pose proof Sn_inversion.
universal instantiation H y v. clear H.
apply PEq_sub u x [[in_rel3 x v w f]].
apply PEq_sub v y [[in_rel3 x y w f]].
apply PEq_sub u x [[in_rel3 w x z e]].
assert [[ZF;;in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u z e|--in_rel3 x y w f/\in_rel3 w x z e]]by Tauto. clear H1 H2 H3 H H4 H5.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f|--∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f]]by Tauto.
universal instantiation H x w. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f;;y∈N;;x∈N/\z∈N;;u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u z e|--in_rel3 y∪{y} x z f]]by Tauto. clear H0 H6 H1.
existential instantiation H [[∃u,∃v,∃w,u∈N/\v∈N/\w∈N/\in_rel3 u v w f/\x=u/\y∪{y}=v∪{v}/\in_rel3 w u z e]]. clear H.
pose proof is_mult_inversion.
universal instantiation H x [[y∪{y}]] z. clear H.
pose proof not_empty.
universal instantiation H y. clear H.
assert [[ZF;;is_natural_number N|--∀x,x∈N->x∪{x}∈N]]by Tauto.
universal instantiation H y. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f;;y∈N|--x∈N/\z∈N/\in_rel3 x y∪{y} z f->in_rel3 y∪{y} x z f]]by Tauto. clear H0 H1 H2.
universal generalization H x z. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)->y∪{y}∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y∪{y} z f->in_rel3 y∪{y} x z f)]]by Tauto.
universal generalization H y.
The conclusion is already proved.
Qed.
Lemma mult_comm:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,x∈N/\y∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f]].
Proof.
pose proof mathematical_induction.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)|--∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)]] by Tauto.
universal instantiation H0 [[∅]].
pose proof mult_comm_zero.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)|--∅∈X]] by Tauto. clear H1 H2.
pose proof mult_comm_induction.
universal instantiation H1 n. clear H1.
universal instantiation H0 n.
universal instantiation H0 y.
universal instantiation H0 [[n∪{n}]]. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)|-- n∈ N -> n∈X->n∪{n}∈X]] by Tauto. clear H2 H1 H5.
universal generalization H0 n. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)|--∀n,n∈N->n∈X]]by Tauto.
universal instantiation H0 y. clear H0.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)|--y∈N->(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)]]by Tauto.
existential instantiation H0 [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)]].
apply separation [[∃X,∀y,y∈X<->y∈N/\(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)]].
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--y∈N->(∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f)]]by Tauto.
universal generalization H7 y. clear H H3 H4 H1 H2 H0 H5 H6 H7.
universal instantiation H8 y.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;y∈N|--∀x,∀z,x∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f]]by Tauto.
universal instantiation H0 x z.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\z∈N/\in_rel3 x y z f->in_rel3 y x z f]]by Tauto.
universal generalization H2 x y z.
The conclusion is already proved.
Qed.
Lemma mult_assoc:
[[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--∀x,∀y,∀z,∀a,∀b,∀c,x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f->(in_rel3 a z c f<->in_rel3 x b c f)]].
Proof.
pose proof mult_assoc_half.
universal instantiation H x y z a b c.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f|--in_rel3 a z c f -> in_rel3 x b c f]]by Tauto. clear H0.
pose proof mult_comm.
universal instantiation H0 x b c.
universal instantiation H0 y z b.
universal instantiation H0 x y a.
universal instantiation H0 z a c.
universal instantiation H z y x b a c. clear H.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N;;x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f|--in_rel3 x b c f -> in_rel3 a z c f]]by Tauto. clear H0 H2 H3 H4 H5 H6.
assert [[ZF;;is_natural_number N;;is_plus e N;;is_mult f e N|--x∈N/\y∈N/\z∈N/\a∈N/\b∈N/\c∈N/\in_rel3 x y a f/\in_rel3 y z b f->(in_rel3 a z c f<->in_rel3 x b c f)]]by Tauto.
universal generalization H0 x y z a b c.
The conclusion is already proved.
Qed.