${BDD100k-Path}
is place of dataset which BDD100k is located when bdd100k dataset created.
- Python 3.8.6
- PyTorch == 1.8.2
- Torchvision == 0.9.2
- CUDA == 10.2
- NCCL == 2.7.3
- Open MPI == 4.0.4
- Other dependencies are same as this repo dependencies
data structure before execution the below instructions
${BDD100k-Path}
|-- bdd100k
| |-- videos # 1.5TB
| | |-- train # 1.3TB
| | |-- val # 184GB
| |-- images # 3.5TB
| | |-- train # 3.1TB
| | |-- val # 443GB
-
Clone repo for RAFT and download models for RAFT
cd ~ git clone https://github.com/rioyokotalab/RAFT.git cd RAFT pyenv local pixpro-wt-of-cu102-wandb # pyenv virtualenv for this repo bash scripts/download_models.sh mkdir ${BDD100k-Path}/pretrained_flow cp -ra models ${BDD100k-Path}/pretrained_flow
-
Create optical flow dataset
Ex. use 256 gpus using 64 machines which have 4 gpusmpirun -np 256 -npernode 4 python flow_save_scripts.py --path ${BDD100k-Path}/bdd100k/images/train --model models/raft-small.pth --small
When this execution is complete, Optical Flow dataset is created in
${BDD100k-Path}/bdd100k/flow
data structure after completing the above instructions
${BDD100k-Path}
|-- bdd100k
| |-- videos # 1.5TB
| | |-- train # 1.3TB
| | |-- val # 184GB
| |-- images # 3.5TB
| | |-- train # 3.1TB
| | |-- val # 443GB
| |-- flow # 5.8TB
| | |-- pth
| | | |-- train
| | | | |-- forward # 2.9TB
| | | | |-- backward # 2.9TB