Skip to content

Latest commit

 

History

History
68 lines (57 loc) · 1.75 KB

File metadata and controls

68 lines (57 loc) · 1.75 KB

Dataset prepareration

Create Optical Flow using RAFT dataset for BDD100k

${BDD100k-Path} is place of dataset which BDD100k is located when bdd100k dataset created.

requiment

  • Python 3.8.6
  • PyTorch == 1.8.2
  • Torchvision == 0.9.2
  • CUDA == 10.2
  • NCCL == 2.7.3
  • Open MPI == 4.0.4
  • Other dependencies are same as this repo dependencies

Assumed data structure

data structure before execution the below instructions

${BDD100k-Path}
 |-- bdd100k
 |   |-- videos # 1.5TB
 |   |   |-- train # 1.3TB
 |   |   |-- val # 184GB
 |   |-- images # 3.5TB
 |   |   |-- train # 3.1TB
 |   |   |-- val # 443GB

create dataset

  1. Clone repo for RAFT and download models for RAFT

    cd ~
    git clone https://github.com/rioyokotalab/RAFT.git
    cd RAFT
    pyenv local pixpro-wt-of-cu102-wandb # pyenv virtualenv for this repo
    bash scripts/download_models.sh
    mkdir ${BDD100k-Path}/pretrained_flow
    cp -ra models ${BDD100k-Path}/pretrained_flow
  2. Create optical flow dataset
    Ex. use 256 gpus using 64 machines which have 4 gpus

    mpirun -np 256 -npernode 4 python flow_save_scripts.py --path ${BDD100k-Path}/bdd100k/images/train --model models/raft-small.pth --small

    When this execution is complete, Optical Flow dataset is created in ${BDD100k-Path}/bdd100k/flow

Final data structure

data structure after completing the above instructions

${BDD100k-Path}
 |-- bdd100k
 |   |-- videos # 1.5TB
 |   |   |-- train # 1.3TB
 |   |   |-- val # 184GB
 |   |-- images # 3.5TB
 |   |   |-- train # 3.1TB
 |   |   |-- val # 443GB
 |   |-- flow # 5.8TB
 |   |   |-- pth
 |   |   |   |-- train
 |   |   |   |   |-- forward # 2.9TB
 |   |   |   |   |-- backward # 2.9TB