-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataloader.py
47 lines (38 loc) · 1.83 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pickle
import numpy as np
class BPdatasetv1(Dataset):
def __init__(self, i, train = False, val = False):
if train == True:
dt = pickle.load(open(os.path.join('data','train4.p'),'rb'))
self.input = np.swapaxes(dt['X_train'],1,2).astype('float32')
self.output = np.swapaxes(dt['X_train'],1,2).astype('float32')
elif val == True:
dt = pickle.load(open(os.path.join('data','val4.p'),'rb'))
self.input = np.swapaxes(dt['X_val'],1,2).astype('float32')
self.output = np.swapaxes(dt['X_val'],1,2).astype('float32')
def __len__(self):
return len(self.input)
def __getitem__(self, idx):
inp = self.input[idx]
out = self.output[idx]
return inp, out
class BPdatasetv2(Dataset):
def __init__(self, i, train = False, val = False, test=False):
if train == True:
dt = pickle.load(open(os.path.join('data','train4.p'),'rb'))
self.input = np.swapaxes(dt['X_train'],1,2).astype('float32')
self.output = np.swapaxes(dt['Y_train'],1,2).astype('float32')
elif val == True:
dt = pickle.load(open(os.path.join('data','val4.p'),'rb'))
self.input = np.swapaxes(dt['X_val'],1,2).astype('float32')
self.output = np.swapaxes(dt['Y_val'],1,2).astype('float32')
elif test == True:
dt = pickle.load(open(os.path.join('data','test.p'),'rb'))
self.input = np.swapaxes(dt['X_test'],1,2).astype('float32')
self.output = np.swapaxes(dt['Y_test'],1,2).astype('float32')
def __len__(self):
return len(self.input)
def __getitem__(self, idx):
inp = self.input[idx]
out = self.output[idx]
return inp, out