-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
177 lines (150 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
from utils import load_and_cache_examples, load_and_cache_unlabeled_examples, init_logger, load_tokenizer
from trainer import Trainer
import torch
import numpy as np
import random
import torch.nn as nn
from torch.utils.data import Subset
import json
import pickle
from transformers import AutoTokenizer
from eval import load_pred_data, save_data
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from collections import Counter
def set_seed(args):
random.seed(args.train_seed)
np.random.seed(args.train_seed)
torch.manual_seed(args.train_seed)
if args.n_gpu > 0 and torch.cuda.is_available():
# print('yes')
# assert 0
torch.cuda.manual_seed_all(args.train_seed)
torch.cuda.manual_seed(args.train_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main(args):
init_logger()
set_seed(args)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, use_fast=True)
# tokenizer = load_tokenizer(args)
train_dataset, num_labels, train_size = load_and_cache_examples(args, tokenizer, mode="train")
dev_dataset, num_labels, dev_size = load_and_cache_examples(args, tokenizer, mode="dev")
test_dataset, num_labels, test_size = load_and_cache_examples(args, tokenizer, mode="test")
unlabeled_dataset, unlabeled_size = load_and_cache_unlabeled_examples(args, tokenizer, mode = 'unlabeled', train_size = train_size)
contra_datasets = []
print('number of labels:', num_labels)
print('train_size:', train_size)
print('dev_size:', dev_size)
print('test_size:', test_size)
print('unlabel_size:', unlabeled_size)
trainer = Trainer(args, train_dataset=train_dataset, dev_dataset=dev_dataset,test_dataset=test_dataset, contra_datasets = contra_datasets, \
unlabeled = unlabeled_dataset, num_labels = num_labels, data_size = train_size
)
if args.load_prev == 1:
print(f"Load ckpt from {args.prev_ckpt}")
trainer.load_model(path= args.prev_ckpt)
trainer.init_model()
if args.semi_method == 'ft':
print("Begin Fine-Tuning!!")
trainer.train(n_sample = len(train_dataset))
train_pred, train_feat, train_label, unlabeled_pred, unlabeled_feat, unlabeled_label, unlabeled_pseudo = trainer.inference()
save_data(train_pred, train_feat, train_label, unlabeled_pred, unlabeled_feat, unlabeled_label, unlabeled_pseudo, mutual_info_bald = None, n_iter = args.round, dataset = args.task, ckpt = args.dr_model + f"_{args.dr_N}")
else:
print("Begin Self-Training!!")
trainer.load_model(path= args.prev_ckpt)
trainer.init_model()
try:
train_pred, train_feat, train_label, unlabeled_pred, unlabeled_feat, unlabeled_label, unlabeled_pseudo = load_pred_data(dataset = args.task, ckpt = args.dr_model, n_iter = args.round)
except:
train_pred, train_feat, train_label, unlabeled_pred, unlabeled_feat, unlabeled_label, unlabeled_pseudo = trainer.inference()
save_data(train_pred, train_feat, train_label, unlabeled_pred, unlabeled_feat, unlabeled_label, unlabeled_pseudo, mutual_info_bald = None, n_iter = args.round, dataset = args.task, ckpt = args.dr_model)
train_pred, train_feat, train_label, unlabeled_pred, unlabeled_feat, unlabeled_label, unlabeled_pseudo = load_pred_data(dataset = args.task, ckpt = args.dr_model, n_iter = args.round)
current_val = -np.max(unlabeled_pred, axis = -1)
idx = np.argsort(current_val)
cnt = Counter()
labeled_idx = []
for i in idx[:int(args.num_unlabeled)]:
labeled_idx.append(i)
cnt[np.argmax(unlabeled_pred[i])] += 1
trainer.unlabeled = Subset(trainer.unlabeled, idx[:int(args.num_unlabeled)])
trainer.selftrain()
exit()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--method", default='clean', type=str, help="which method to use")
parser.add_argument("--gpu", default='0,1,2,3', type=str, help="which gpu to use")
parser.add_argument("--n_gpu", default=1, type=int, help="which gpu to use")
parser.add_argument("--seed", default=0, type=int, help="which seed to use")
parser.add_argument("--train_seed", default=0, type=int, help="which seed to use")
parser.add_argument("--task", default="agnews", type=str, help="The name of the task to train")
parser.add_argument("--data_dir", default="../datasets", type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_dir", default="./model", type=str, help="Path to model")
parser.add_argument("--eval_dir", default="./eval", type=str, help="Evaluation script, result directory")
parser.add_argument("--train_file", default="train.tsv", type=str, help="Train file")
parser.add_argument("--dev_file", default="dev.tsv", type=str, help="dev file")
parser.add_argument("--test_file", default="test.tsv", type=str, help="Test file")
parser.add_argument("--unlabel_file", default="unlabeled.tsv", type=str, help="Test file")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.")
parser.add_argument("--extra_dataset", default="", type=str, help="Whether to run extra eval on the test set.")
parser.add_argument("--dev_labels", default=100, type=int, help="number of labels for dev set")
parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3",)
parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument('--logging_steps', type=int, default=20, help="Log every X updates steps.")
parser.add_argument('--self_train_logging_steps', type=int, default=20, help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=200, help="Save checkpoint every X updates steps.")
parser.add_argument("--model_type", default="bert-base-uncased", type=str)
parser.add_argument("--tokenizer", default="bert-base-uncased", type=str)
parser.add_argument("--auto_load", default=1, type=int, help="Auto loading the model or not")
parser.add_argument("--add_sep_token", action="store_true", help="Add [SEP] token at the end of the sentence")
parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=100, type=int, help="Training steps for initialization.")
parser.add_argument("--weight_decay", default=1e-4, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--dropout_rate", default=0.1, type=float, help="Dropout for fully-connected layers")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size for training and evaluation.")
parser.add_argument("--self_training_batch_size", default=32, type=int, help="Batch size for training and evaluation.")
parser.add_argument("--eval_batch_size", default=256, type=int, help="Batch size for training and evaluation.")
parser.add_argument("--learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--max_seq_len", default=128, type=int, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--max_seq_len_test", default=128, type=int, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--learning_rate_st", default=1e-5, type=float, help="The initial learning rate for self-training.")
parser.add_argument('--self_training_max_step', type = int, default = 10000)
parser.add_argument('--soft_label', type = int, default = 1)
parser.add_argument('--self_training_update_period', type = int, default = 100, help = 'update period')
parser.add_argument("--self_training_eps", default=0.6, type=float)
parser.add_argument("--self_training_power", default=2, type=float)
parser.add_argument("--self_training_weight", default=0.5, type=float)
parser.add_argument("--gce_loss_q", default=0.5, type=float)
parser.add_argument('--semi_method', type = str, default = 'ft')
parser.add_argument('--k_cal', type = int, default = 5)
parser.add_argument('--num_unlabeled', type = int, default = 100, help = 'number of unlabeled data.')
parser.add_argument('--dr_model', type = str, default = 'arxiv_ckpt', help = 'the name for DR model.')
parser.add_argument('--dr_N', type = int, default = 10, help = 'the number of retrieved documents.')
parser.add_argument('--filter', type = int, default = 0, help = 'Whether use filter.')
parser.add_argument('--template', type = int, default = 0, help = 'Prompt Template.')
parser.add_argument('--round', type = int, default = 0, help = 'Prompt Template.')
parser.add_argument('--load_prev', type = int, default = 0, help = 'whether load model from prev_round.')
parser.add_argument('--prev_ckpt', type = str, default = '', help = 'dir of prev ckpt.')
parser.add_argument('--train_full_labels', type = int, default = 0, help = 'whether train with full labels or not')
# semi_method
args = parser.parse_args()
if 'biobert' in args.model_type:
args.model_name_or_path = 'dmis-lab/biobert-v1.1'
elif 'scibert' in args.model_type:
args.model_name_or_path = 'allenai/scibert_scivocab_uncased'
args.tokenizer = 'allenai/scibert_scivocab_uncased'
else:
args.model_name_or_path = args.model_type
args.tokenizer=args.model_type
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
print(os.environ['CUDA_VISIBLE_DEVICES'])
main(args)