You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "testSNF.py", line 27, in
fused_network = snf.snf(affinity_networks, K=20)
File "C:\Users\Miniconda3\lib\site-packages\snf\compute.py", line 392, in snf
aff = _check_SNF_inputs(aff)
File "C:\Users\Miniconda3\lib\site-packages\snf\compute.py", line 446, in _check_SNF_inputs
ac = check_array(a, force_all_finite=True, copy=True)
File "C:\Users\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 73, in inner_f
return f(**kwargs)
File "C:\Users\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 646, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "C:\Users\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 100, in _assert_all_finite
msg_dtype if msg_dtype is not None else X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
The text was updated successfully, but these errors were encountered:
The fault is in the dataset. One patient (ID=TCGA-12-0780-01A...) has only missing values for every modality. I dropped this patient from the dataframes and it runs just fine.
Dear developer,
I tried a real dataset GBM from original paper but got the following error. Could you please help? Thanks!
mirna = pd.read_csv('GLIO_Mirna_Expression.txt', index_col=0, sep='\t')
exp = pd.read_csv('GLIO_Gene_Expression.txt', index_col=0, sep='\t')
methy = pd.read_csv('GLIO_Methy_Expression.txt', index_col=0, sep='\t')
affinity_networks = snf.make_affinity([mirna.T, exp.T, methy.T], metric='euclidean', K=20, mu=0.5)
fused_network = snf.snf(affinity_networks, K=20)
Traceback (most recent call last):
File "testSNF.py", line 27, in
fused_network = snf.snf(affinity_networks, K=20)
File "C:\Users\Miniconda3\lib\site-packages\snf\compute.py", line 392, in snf
aff = _check_SNF_inputs(aff)
File "C:\Users\Miniconda3\lib\site-packages\snf\compute.py", line 446, in _check_SNF_inputs
ac = check_array(a, force_all_finite=True, copy=True)
File "C:\Users\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 73, in inner_f
return f(**kwargs)
File "C:\Users\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 646, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "C:\Users\Miniconda3\lib\site-packages\sklearn\utils\validation.py", line 100, in _assert_all_finite
msg_dtype if msg_dtype is not None else X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
The text was updated successfully, but these errors were encountered: