forked from facebookresearch/EGG
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
84 lines (69 loc) · 2.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import egg.core as core
from egg.zoo.simclr.data import get_dataloader
from egg.zoo.simclr.game_callbacks import (
BestStatsTracker,
DistributedSamplerEpochSetter,
VisionModelSaver,
)
from egg.zoo.simclr.games import build_game
from egg.zoo.simclr.LARC import LARC
from egg.zoo.simclr.utils import add_weight_decay, get_opts
def main(params):
opts = get_opts(params=params)
print(opts)
print(
f"Running a distruted training is set to: {opts.distributed_context.is_distributed}. "
f"World size is {opts.distributed_context.world_size}\n"
f"Using imagenet with image size: {opts.image_size}. "
f"Using batch of size {opts.batch_size} on {opts.distributed_context.world_size} device(s)"
)
if not opts.distributed_context.is_distributed and opts.pdb:
breakpoint()
train_loader = get_dataloader(
dataset_dir=opts.dataset_dir,
dataset_name=opts.dataset_name,
image_size=opts.image_size,
batch_size=opts.batch_size,
num_workers=opts.num_workers,
is_distributed=opts.distributed_context.is_distributed,
seed=opts.random_seed,
)
simclr_game = build_game(
batch_size=opts.batch_size,
loss_temperature=opts.ntxent_tau,
vision_encoder_name=opts.model_name,
output_size=opts.output_size,
is_distributed=opts.distributed_context.is_distributed,
)
model_parameters = add_weight_decay(simclr_game, opts.weight_decay, skip_name="bn")
optimizer_original = torch.optim.SGD(
model_parameters,
lr=opts.lr,
momentum=0.9,
)
optimizer = LARC(optimizer_original, trust_coefficient=0.001, clip=False, eps=1e-8)
optimizer_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer_original, T_max=opts.n_epochs
)
callbacks = [
core.ConsoleLogger(as_json=True, print_train_loss=True),
BestStatsTracker(),
VisionModelSaver(),
]
if opts.distributed_context.is_distributed:
callbacks.append(DistributedSamplerEpochSetter())
trainer = core.Trainer(
game=simclr_game,
optimizer=optimizer,
optimizer_scheduler=optimizer_scheduler,
train_data=train_loader,
callbacks=callbacks,
)
trainer.train(n_epochs=opts.n_epochs)
if __name__ == "__main__":
import sys
main(sys.argv[1:])