Skip to content

Latest commit

 

History

History
81 lines (69 loc) · 3.19 KB

File metadata and controls

81 lines (69 loc) · 3.19 KB

CalibAnything

This is a project for LiDAR to camera calibration using Segment Anything. It needs an image, a frame of point cloud and an initial value of the extrinsic. The related paper is Calib-Anything: Zero-training LiDAR-Camera Extrinsic Calibration Method Using Segment Anything. For more calibration codes, please refer to the link SensorsCalibration.

Environment

# pull docker image
docker pull xiaokyan/opencalib:v1

Compile

git clone https://github.com/OpenCalib/CalibAnything.git
cd CalibAnything
# mkdir build
mkdir -p build && cd build
# build
cmake .. && make

Test Example

We provide examples of two dataset:

./run_lidar2camera ./data/st/1
./run_lidar2camera ./data/kitti/1

We have given a reference value of the extrinsic. You can set an initial error to the reference extrinsic in file data/initial_error.txt and test the accuracy of the algorithm. The format is "roll pitch yaw(degree) x y z(m)"

Test your own data

./run_lidar2camera <data_folder>

The data folder should contain:

  • image file
  • lidar file: the reflectivity is needed
  • calib file: contains the camera intrinsic, distortion coefficient and a rough extrinsic. The format is:
K: 2152.8 0 971.3 0 2155.5 605.9 0 0 1
D: -0.1192 0.162 0.00073985 0.0014
T: 0.0188623 -0.999822 -9.36529e-05 -0.0323222 0.0288601 0.000638227 -0.999583 -0.396685 0.999405 0.0188516 0.028867 -0.0869361 
  • masks: masks generated by Segment Anything

If you don't want to add error to your initial extrinsic, change the inital error to all zeros in file data/initial_error.txt.

* Generate Masks

Follow the instructions in Segment Anything and generate masks of your image.

First download a model checkpoint. You can choose vit-l.

# environment: python>=3.8, pytorch>=1.7, torchvision>=0.8

# install
git clone [email protected]:facebookresearch/segment-anything.git
cd segment-anything; pip install -e .
pip install opencv-python pycocotools matplotlib onnxruntime onnx

# run
python scripts/amg.py --checkpoint <path/to/checkpoint> --model-type <model_type> --input <image_or_folder> --output <path/to/output>
## example(recommended parameter)
python scripts/amg.py --checkpoint sam_vit_l_0b3195.pth --model-type vit_l --input 1.png --output ./output/ --stability-score-thresh 0.9 --box-nms-thresh 0.4 --stability-score-offset 0.9

Output

  • initial projection: init_proj.png, init_proj_seg.png
  • projection after adding error: error_proj.png, error_proj_seg.png
  • refined projection: refined_proj.png, refined_proj_seg.png
  • refined extrinsic: extrinsic.txt

Citation

If you find this project useful in your research, please consider cite:

@misc{luo2023calibanything,
      title={Calib-Anything: Zero-training LiDAR-Camera Extrinsic Calibration Method Using Segment Anything}, 
      author={Zhaotong Luo and Guohang Yan and Yikang Li},
      year={2023},
      eprint={2306.02656},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}