-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_filter_aug.py
137 lines (115 loc) · 3.71 KB
/
dataset_filter_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import zipfile
import io
import json
import lzma
import numpy as np
import owlready2 as owl
import telenet.dataset_data as tn_data
from telenet.config import get as tn_config
from tqdm import tqdm
from pathlib import Path
SRC_DATASET_NAME = tn_config('convert.source')
DST_DATASET_NAME = tn_config('convert.destination')
DO_AUGMENTATION = tn_config('convert.augmentation')
def reversemultimap(a):
for k,v in a.items():
for p in v: yield (p,k)
with open(tn_data.path(f'{SRC_DATASET_NAME}-names.json'), 'rt', encoding='utf-8') as f:
VG_REL_NAMES = json.load(f)['rels']
VG_REL_TO_ID = { k:i for i,k in enumerate(VG_REL_NAMES) }
tn_data.load_names(f'{DST_DATASET_NAME}-names.json')
DST_TO_SRC = tn_config(f'{DST_DATASET_NAME}.predicate_map')
SRC_TO_DST = { VG_REL_TO_ID[p]:tn_data.CLASS_REL_TO_ID[k] for p,k in reversemultimap(DST_TO_SRC) }
owl.JAVA_EXE = tn_config('paths.java')
onto = owl.get_ontology(Path(tn_data.path(f'{DST_DATASET_NAME}.owl')).as_uri()).load()
with onto: owl.sync_reasoner()
ONTO_RELS = [ onto.search_one(label=label) for label in tn_data.REL_NAMES ]
class GenericObject(owl.Thing):
namespace = onto
def sanitize(a):
if a is None:
return []
if type(a) is list:
return a
if type(a) is owl.IndividualValueList:
return list(a)
return [a]
def convert_split(split):
out_split = []
with_thing = 0; without_thing = 0
numrels_old = 0; numrels_new = 0
for img in tqdm(split):
relmap = {}
for rel in img['rels']:
srcdst = (rel['si'], rel['di'])
for v in rel['v']:
relid = SRC_TO_DST.get(v, -1)
if relid < 0: continue
pair = relmap.get(srcdst, None)
if not pair: pair = relmap[srcdst] = set()
pair.add(relid)
#print(relmap)
if len(relmap) != 0:
with_thing += 1
else:
without_thing += 1
continue
# Create (dummy) objects
img_objs = img['objs']
onto_objs = []
for i in range(len(img_objs)):
onto_objs.append(curobj := GenericObject())
curobj.label = i #curobj.name
# Insert relations
for (src,dst),relset in relmap.items():
for rel in relset:
with onto:
owl.default_world.sparql("INSERT { ??1 ??2 ??3 . } WHERE { }", params=(onto_objs[src],ONTO_RELS[rel],onto_objs[dst]))
# Invoke reasoner
#with onto: owl.sync_reasoner(debug=False)
# Retrieve new relations
onto_obj_to_id = { v:k for k,v in enumerate(onto_objs) }
newrelmap = {}
for srcid,src in enumerate(onto_objs):
for relid,rel in enumerate(ONTO_RELS):
r1 = sanitize(getattr(src, rel.name))
if DO_AUGMENTATION:
r2 = sanitize(getattr(src, 'INDIRECT_' + rel.name))
tgts = set(r1 + r2)
else:
tgts = set(r1)
if len(tgts) == 0: continue
#print(src,rel,tgts)
for tgt in tgts:
dstid = onto_obj_to_id[tgt]
#print(srcid,dstid,relid)
srcdst = (srcid,dstid)
pair = newrelmap.get(srcdst, None)
if not pair: pair = newrelmap[srcdst] = set()
pair.add(relid)
# Update counters
numrels_old += sum(len(v) for v in relmap.values())
numrels_new += sum(len(v) for v in newrelmap.values())
# Update relation map
newrellist = img['rels'] = []
for (src,dst),relset in newrelmap.items():
newrellist.append({
'si': src,
'sv': img_objs[src]['v'],
'di': dst,
'dv': img_objs[dst]['v'],
'v': list(relset)
})
# Update split
out_split.append(img)
# Cleanup
for a in onto_objs: owl.destroy_entity(a)
onto_objs = None
print('with', with_thing)
print('without', without_thing)
print('old numrels', numrels_old)
print('new numrels', numrels_new)
return out_split
train_split = convert_split(tn_data.load_json_xz(f'{SRC_DATASET_NAME}-train'))
with lzma.open(f'testdata/{SRC_DATASET_NAME}{DST_DATASET_NAME}{"" if DO_AUGMENTATION else "noaug"}-train.json.xz', 'wt', encoding='utf-8') as f:
json.dump(train_split, f)