-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_telenet.py
235 lines (191 loc) · 7.56 KB
/
train_telenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import io
import zipfile
import os
import random
from telenet.config import get as tn_config
RND_SEED = tn_config('train.random_seed')
os.environ['PYTHONHASHSEED'] = str(RND_SEED)
random.seed(RND_SEED)
import numpy as np
import pandas as pd
np.random.seed(RND_SEED)
import tensorflow as tf
import tensorflow_addons as tfa
import tensorflow_docs as tfdocs
import tensorflow_docs.plots # Do not remove this import
#import tensorflow.keras.mixed_precision as mp
from tensorflow.python.training.tracking.data_structures import NoDependency
tf.random.set_seed(RND_SEED)
from matplotlib import pyplot as plt
import telenet.model as tn_model
import telenet.dataset_data as tn_data
from tqdm import tqdm
#mp.set_global_policy(mp.Policy('mixed_float16'))
DATASET_NAME = tn_config('train.dataset')
MODEL_VARIANT = tn_config('model.variant')
if 'teresa' in DATASET_NAME:
tn_data.load_names(f'teresa-names.json')
elif 'ai2thor' in DATASET_NAME:
tn_data.load_names(f'ai2thor-names.json')
else:
tn_data.load_names(f'{DATASET_NAME}-names.json')
TRAIN_DATA = tn_data.load_json_xz(f'{DATASET_NAME}-train-without-val')
VAL_DATA = tn_data.load_json_xz(f'{DATASET_NAME}-val')
for known_dataset in ['vrd', 'vg', DATASET_NAME]:
if DATASET_NAME.startswith(known_dataset):
SEM_VECTORS = tf.convert_to_tensor(np.load(tn_data.path(f'{known_dataset}-semvecs.npy')))
zf_pi = zipfile.ZipFile(tn_data.path(f'{known_dataset}-yolo-train.zip'), 'r')
zf_om = zipfile.ZipFile(tn_data.path(f'{known_dataset}-mask-train.zip'), 'r')
break
def get_priors(src,dst):
return np.zeros((tn_data.NUM_RELS,), np.float32)
def preprocess_gt_nongt(img):
img['gt'] = gt = {}
for rel in img['rels']:
src_id = rel['si']
dst_id = rel['di']
y_real = np.zeros((tn_data.NUM_RELS,), np.float32)
for i in rel['v']:
y_real[i] = 1.
gt[(src_id,dst_id)] = {
'sv': rel['sv'],
'dv': rel['dv'],
'a': SEM_VECTORS[rel['sv']],
'b': SEM_VECTORS[rel['dv']],
'p': get_priors(rel['sv'],rel['dv']),
'y': y_real
}
img['nongt'] = nongt = set()
for i in range(len(img['objs'])):
for j in range(len(img['objs'])):
if i != j and (i,j) not in gt:
nongt.add((i,j))
# Preprocess training/validation data
for img in TRAIN_DATA:
preprocess_gt_nongt(img)
for img in VAL_DATA:
preprocess_gt_nongt(img)
def stupid_adapter(f):
return io.BytesIO(f.read())
class TelenetTrainer(tn_model.CombinedRelationshipDetector):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.trn_batch_size = NoDependency(32)
self.trn_batch_gt_size = NoDependency(self.trn_batch_size - int(.5 + .5 * self.trn_batch_size))
self.trn_loss_tracker = NoDependency(tf.keras.metrics.Mean(name="loss"))
self.val_loss_tracker = NoDependency(tf.keras.metrics.Mean(name="loss"))
def prepare_minibatch(self, img):
img_name = img['id']
with stupid_adapter(zf_pi.open(f'{img_name}.npy','r')) as f:
img_features = tf.expand_dims(tf.convert_to_tensor(np.load(f), tf.float32), axis=0)
with stupid_adapter(zf_om.open(f'{img_name}.npy','r')) as f:
obj_masks = tf.convert_to_tensor(np.load(f)[0,:,:,:], tf.float32)
num_objs = len(img['objs'])
num_pairs = num_objs * (num_objs - 1)
if num_pairs == 0:
return (None, None, None)
ground_truth = img['gt']
non_ground_truth = img['nongt']
num_gt_pairs = len(ground_truth)
num_non_gt_pairs = len(non_ground_truth)
batch_mask = []
batch_srcsem = []
batch_dstsem = []
batch_priors = []
batch_y_real = []
def sample_gt_pair(pair, pairdata):
src_id,dst_id = pair
batch_mask.append(tf.stack([obj_masks[:,:,src_id], obj_masks[:,:,dst_id]], axis=-1))
batch_srcsem.append(pairdata['a'])
batch_dstsem.append(pairdata['b'])
batch_priors.append(pairdata['p'])
batch_y_real.append(pairdata['y'])
def sample_non_gt_pair(pair):
src_id,dst_id = pair
src_objid = img['objs'][src_id]['v']
dst_objid = img['objs'][dst_id]['v']
batch_mask.append(tf.stack([obj_masks[:,:,src_id], obj_masks[:,:,dst_id]], axis=-1))
batch_srcsem.append(SEM_VECTORS[src_objid])
batch_dstsem.append(SEM_VECTORS[dst_objid])
batch_priors.append(get_priors(src_objid, dst_objid))
batch_y_real.append(np.zeros((tn_data.NUM_RELS,), np.float32))
num_sampled_gt_pairs = np.minimum(self.trn_batch_gt_size, num_gt_pairs)
num_sampled_non_gt_pairs = np.minimum(self.trn_batch_size - num_sampled_gt_pairs, num_non_gt_pairs)
num_dupes = self.trn_batch_size - num_sampled_gt_pairs - num_sampled_non_gt_pairs
for pair,pairdata in random.sample(list(ground_truth.items()), k=num_sampled_gt_pairs):
sample_gt_pair(pair, pairdata)
for pair in random.sample(list(non_ground_truth), k=num_sampled_non_gt_pairs):
sample_non_gt_pair(pair)
# Fill batch with dupes
if num_dupes > 0:
for i in random.choices(list(range(len(batch_mask))), k=num_dupes):
batch_mask.append(batch_mask[i])
batch_srcsem.append(batch_srcsem[i])
batch_dstsem.append(batch_dstsem[i])
batch_priors.append(batch_priors[i])
batch_y_real.append(batch_y_real[i])
batch_mask = tf.stack(batch_mask, axis=0)
batch_srcsem = tf.stack(batch_srcsem, axis=0)
batch_dstsem = tf.stack(batch_dstsem, axis=0)
batch_priors = tf.stack(batch_priors, axis=0)
batch_y_real = tf.stack(batch_y_real, axis=0)
batch_x = (img_features, batch_mask, batch_srcsem, batch_dstsem, batch_priors)
return (batch_x, batch_y_real)
@property
def metrics(self):
return [self.trn_loss_tracker, self.val_loss_tracker]
def ranking_loss(self, y_real, y_pred, margin=1.):
scores_0, scores_1 = tf.dynamic_partition(y_pred, tf.cast(y_real, tf.int32), 2)
scale = tf.size(y_real, out_type=tf.float32)
return tf.reduce_sum(tf.vectorized_map(lambda val: tf.reduce_sum(tf.nn.relu(margin - (scores_1 - val))), elems=scores_0)) / scale
@tf.function
def train_kernel(self, x, y_real):
with tf.GradientTape() as tape:
y_pred = self(x, training=True)
loss = self.ranking_loss(y_real, y_pred)
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
return loss
def train_step(self, data):
batch_x, batch_y_real = self.prepare_minibatch(TRAIN_DATA[int(data)])
if batch_x is not None:
loss = self.train_kernel(batch_x, batch_y_real)
self.trn_loss_tracker.update_state(loss)
return { 'loss': self.trn_loss_tracker.result() }
@tf.function
def test_kernel(self, x, y_real):
y_pred = self(x, training=False)
return self.ranking_loss(y_real, y_pred)
def test_step(self, data):
batch_x, batch_y_real = self.prepare_minibatch(VAL_DATA[int(data)])
if batch_x is not None:
loss = self.test_kernel(batch_x, batch_y_real)
self.val_loss_tracker.update_state(loss)
return { 'loss': self.val_loss_tracker.result() }
mdl = TelenetTrainer(N=tn_data.NUM_RELS)
mdl.compile(
optimizer=tfa.optimizers.AdamW(learning_rate=tn_config('train.lr'), weight_decay=tn_config('train.wd')),
run_eagerly=True
)
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=tn_config('train.early_stopping'),
mode='min',
restore_best_weights=True
)
tensorboard = tf.keras.callbacks.TensorBoard(
log_dir=f'tensorboard/{MODEL_VARIANT}',
histogram_freq=1
)
history = mdl.fit(
x = tf.data.Dataset.range(len(TRAIN_DATA)).shuffle(256, seed=RND_SEED, reshuffle_each_iteration=True),
validation_data = tf.data.Dataset.range(len(VAL_DATA)),
callbacks = [ early_stopping, tensorboard ],
epochs = tn_config('train.epochs')
)
mdl.save_weights(f'weights/telenet+{MODEL_VARIANT}')
plt.figure()
plotter = tfdocs.plots.HistoryPlotter(metric = 'loss')
plotter.plot({ 'Model': history })
plt.savefig(f"train-results/{MODEL_VARIANT}.png")
with open(f'train-results/{MODEL_VARIANT}.csv', mode='wt', encoding='utf-8') as f:
pd.DataFrame(history.history).to_csv(f)