-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmy_SEIQRDP.m
123 lines (110 loc) · 3.58 KB
/
my_SEIQRDP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
function [S,E,I,Q,R,D,P] = my_SEIQRDP(param, Npop, E0, I0, Q0, R0, D0, time_sim, dt)
% [S,E,I,Q,R,D,P] = SEIQRDP(param,Npop,E0,I0,R0,D0,t)
% simulate the time-histories of an epidemic outbreak using a generalized
% SEIR model.
% Based on E. Cheynet's work [1].
%
% see also fit_SEIQRDP.m
%
% References:
% [1] https://www.mathworks.com/matlabcentral/fileexchange/74545-generalized-seir-epidemic-model-fitting-and-computation
%
% Version: 001
% Date: 2020/04/02
% Author: Rodrigo Gonzalez <[email protected]>
% URL: https://github.com/rodralez/covid-19
%
% Input
%
% param.alpha: scalar [1x1]: fitted protection rate
% param.beta: scalar [1x1]: fitted infection rate
% param.gamma: scalar [1x1]: fitted Inverse of the average latent time
% param.delta: scalar [1x1]: fitted inverse of the average quarantine time
% param.lambda: scalar [1x1]: fitted cure rate
% param.kappa: scalar [1x1]: fitted mortality rate
% Npop: scalar: Total population of the sample
% E0: scalar [1x1]: Initial number of exposed cases
% I0: scalar [1x1]: Initial number of infectious cases
% Q0: scalar [1x1]: Initial number of quarantined cases
% R0: scalar [1x1]: Initial number of recovered cases
% D0: scalar [1x1]: Initial number of dead cases
% t: vector [1xN] of time (double; it cannot be a datetime)
%
% Output
% S: vector [1xN] of the target time-histories of the susceptible cases
% E: vector [1xN] of the target time-histories of the exposed cases
% I: vector [1xN] of the target time-histories of the infectious cases
% Q: vector [1xN] of the target time-histories of the quarantinedcases
% R: vector [1xN] of the target time-histories of the recovered cases
% D: vector [1xN] of the target time-histories of the dead cases
% P: vector [1xN] of the target time-histories of the insusceptible cases
%%
N = numel(time_sim);
t = (0:N-1).*dt;
alpha = param.alpha;
beta = param.beta;
gamma = param.gamma;
delta = param.delta;
lambda0 = param.lambda;
kappa0 = param.kappa;
%% Initial conditions
N = numel(t);
Y = zeros(7,N);
Y(1,1) = Npop-Q0-E0-R0-D0-I0;
Y(2,1) = E0;
Y(3,1) = I0;
Y(4,1) = Q0;
Y(5,1) = R0;
Y(6,1) = D0;
if round(sum(Y(:,1))-Npop)~=0
error('the sum must be zero because the total population (including the deads) is assumed constant');
end
%%
modelFun = @(Y,A,F) A*Y + F;
dt = median(diff(t));
% ODE resolution
% lambda = lambda0(1) ; % I use these functions for illustrative purpose only
lambda = lambda0(1) * (1-exp(-lambda0(2).*t)); % I use these functions for illustrative purpose only
kappa = kappa0(1) * exp(-kappa0(2).*t); % I use these functions for illustrative purpose only
for ii=1:N-1
A = getA(alpha,gamma,delta,lambda(ii),kappa(ii));
% A = getA(alpha,gamma,delta,lambda,kappa(ii));
SI = Y(1,ii)*Y(3,ii);
F = zeros(7,1);
F(1:2,1) = [-beta/Npop;beta/Npop].*SI;
Y(:,ii+1) = RK4(modelFun,Y(:,ii),A,F,dt);
end
S = Y(1,1:N);
E = Y(2,1:N);
I = Y(3,1:N);
Q = Y(4,1:N);
R = Y(5,1:N);
D = Y(6,1:N);
P = Y(7,1:N);
function [A] = getA(alpha,gamma,delta,lambda,kappa)
A = zeros(7);
% S
A(1,1) = -alpha;
% E
A(2,2) = -gamma;
% I
A(3,2:3) = [gamma,-delta];
% Q
A(4,3:4) = [delta,-kappa-lambda];
% R
A(5,4) = lambda;
% D
A(6,4) = kappa;
% P
A(7,1) = alpha;
end
function [Y] = RK4(Fun,Y,A,F,dt)
% Runge-Kutta of order 4
k_1 = Fun(Y,A,F);
k_2 = Fun(Y+0.5*dt*k_1,A,F);
k_3 = Fun(Y+0.5*dt*k_2,A,F);
k_4 = Fun(Y+k_3*dt,A,F);
% output
Y = Y + (1/6)*(k_1+2*k_2+2*k_3+k_4)*dt;
end
end