-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlooping_descriptive_model.py
184 lines (148 loc) · 7.39 KB
/
looping_descriptive_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Configuration to display only two decimals in floats
pd.set_option('display.float_format', '{:.2f}'.format)
# Parameters
initial_eth_amount = 1
max_ltv = 1.20
supply_apy_eth = 0.03
borrow_apy_usdc = 0.13
usdc_price = 1
liquidation_threshold = 0.8
times_liquidated = 0
max_loop = 5
# Dataframes
columns = ['Start Day', 'Loop', 'Day', 'eth_price', 'Total_token_supply', 'Total_token_supply_mktv', 'Total_token_borrow', 'LTV', 'Liquidated']
results_df = pd.DataFrame(columns=columns)
# Rates data
data_rates = pd.read_csv('./results/final_combined_dataset.csv')
filtered_data_rates = data_rates[['date_eth_volume', 'avg_supplyRate_eth_rates', 'avg_stableBorrowRate_usdc_rates', 'price_eth']]
filtered_data_rates['date_eth_volume'] = pd.to_datetime(filtered_data_rates['date_eth_volume'])
sorted_data_rates = filtered_data_rates.sort_values(by='date_eth_volume', ascending=True)
print(sorted_data_rates.head())
# Borrow rates
filtered_borrow_rates = sorted_data_rates[['date_eth_volume', 'avg_stableBorrowRate_usdc_rates']]
# filtered_borrow_rates = filtered_borrow_rates.head(7)
borrow_rate_list = filtered_borrow_rates['avg_stableBorrowRate_usdc_rates'].tolist()
# print(borrow_rate_list)
# Supply rates
filtered_supply_rates = sorted_data_rates[['date_eth_volume', 'avg_supplyRate_eth_rates']]
# filtered_supply_rates = filtered_supply_rates.head(7)
supply_rate_list = filtered_supply_rates['avg_supplyRate_eth_rates'].tolist()
# print(supply_rate_list)
# Prices Data
filtered_data_prices = sorted_data_rates[['date_eth_volume', 'price_eth']]
eth_price_changes = filtered_data_prices['price_eth'].tolist()
# eth_price_changes = [1598.16, 1350, 2000, 1700, 1630, 1200, 1400] # example
# print(eth_price_changes)
num_days = len(eth_price_changes)
# Process of each day taking a new position
for start_day in range(num_days):
liquidated_in_previous_loop = False
leverage_level = []
for loop in range(1, max_loop):
# Reset values at the start of each new position day
total_eth_supplied = initial_eth_amount
total_usdc_borrowed = 0
eth_price = eth_price_changes[start_day]
# Loan loop only on the first day of each new position
for _ in range(loop):
total_token_borrow_previous_loop = total_usdc_borrowed
total_token_supply_previous_loop = total_eth_supplied
usdc_borrowed = total_token_supply_previous_loop * eth_price * (1/max_ltv) - total_token_borrow_previous_loop
total_usdc_borrowed = total_token_borrow_previous_loop + usdc_borrowed
extra_eth_supplied = usdc_borrowed / eth_price
total_eth_supplied = total_token_supply_previous_loop + extra_eth_supplied
# Initial LTV
total_supply_mkt_value = total_eth_supplied * eth_price
ltv = total_usdc_borrowed / total_supply_mkt_value
leverage_level.append(total_eth_supplied / initial_eth_amount)
# Store the results of the first day of loans
new_row = pd.DataFrame({
'Start Day': [start_day],
'Loop': [loop],
'Day': [0], # The first day is always 0
'eth_price': [eth_price],
'Total_token_supply': [total_eth_supplied],
'Total_token_supply_mktv': [total_supply_mkt_value],
'Total_token_borrow': [total_usdc_borrowed],
'LTV': [ltv],
'Liquidated': [False]
})
results_df = pd.concat([results_df, new_row], ignore_index=True)
total_token_borrow = total_usdc_borrowed
total_token_supply = total_eth_supplied
# Simulation for the next 7 days
for day in range(1, min(7, num_days - start_day)):
day_index = start_day + day
eth_price = eth_price_changes[day_index]
total_token_borrow = total_token_borrow * (1 + borrow_apy_usdc/365)
total_token_supply = total_token_supply * (1 + supply_apy_eth/365)
total_market_value_borrow = total_token_borrow
total_market_value_supply = total_token_supply * eth_price
ltv = total_market_value_borrow/total_market_value_supply
if ltv > liquidation_threshold:
liquidated = True
times_liquidated += 1
liquidated_in_previous_loop = True
print(f"Liquidated position started on day {start_day}, on loop {loop}, on day {day}")
else:
liquidated = False
# Store daily results
new_row = pd.DataFrame({
'Start Day': [start_day],
'Loop': [loop],
'Day': [day], # Subsequent days
'eth_price': [eth_price],
'Total_token_supply': [total_token_supply],
'Total_token_supply_mktv': [total_market_value_supply],
'Total_token_borrow': [total_market_value_borrow],
'LTV': [ltv],
'Liquidated': [liquidated]
})
results_df = pd.concat([results_df, new_row], ignore_index=True)
if liquidated:
break
# Setting to show more rows and columns
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000) # Ajustar el ancho de la pantalla
# Print the dataFrame and settled Times
print(results_df)
print("Times liquidated:", times_liquidated)
# Save the dataframe in a csv
results_df.to_csv('./results/looping_descriptive_model_results.csv', index=False)
# Create summary DataFrame for settlements
summary_df = pd.DataFrame(0, index=[f'Loop {i}' for i in range(1, max_loop)], columns=[f'Start Day {i}' for i in range(num_days)])
# Fill the summary DataFrame with the settlement data
for loop in range(1, max_loop):
for start_day in range(num_days):
# Check if there was any settlement in the series of 7 days following start_day
liquidated = results_df[(results_df['Start Day'] == start_day) & (results_df['Loop'] == loop) & (results_df['Liquidated'])]['Liquidated'].any()
summary_df.at[f'Loop {loop}', f'Start Day {start_day}'] = 1 if liquidated else 0
# Print the Summary DataFrame
print(summary_df)
summary_df.to_csv('./results/dummy_matrix.csv', index=False)
frequencies = summary_df.apply(lambda row: row.sum() / len(row), axis=1)
frequencies_df = pd.DataFrame(frequencies, columns=['Frequency'])
frequencies_df.index = [index.replace('Loop ', '') for index in frequencies_df.index]
leverage_level = sorted(list(set(leverage_level)))
frequencies_df['Leverage_Level'] = leverage_level
print(frequencies_df)
frequencies_df.to_csv('./results/frequencies_by_loop.csv', index=True, index_label='Loop Number')
plt.figure(figsize=(10, 6))
ax = sns.barplot(x=frequencies_df.index, y='Frequency', data=frequencies_df, palette='coolwarm')
plt.title('Frequency of liquidation per Loop', fontsize=16, fontweight='bold')
plt.xlabel('Loop', fontsize=14, fontweight='bold')
plt.ylabel('Frequency', fontsize=14, fontweight='bold')
plt.xticks(rotation=0, fontsize=12)
plt.yticks(fontsize=12)
for p in ax.patches:
ax.annotate(format(p.get_height(), '.2f'),
(p.get_x() + p.get_width() / 2., p.get_height()),
ha = 'center', va = 'center',
xytext = (0, 9),
textcoords = 'offset points')
plt.savefig('./images/frequency_barplot.png')
plt.show()