forked from HannesStark/EquiBind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
208 lines (168 loc) · 7.32 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import models.score_model as score_model
from commons.custom_data_loader import custom_loader, custom_collate_10, custom_collate_20, custom_collate_11, custom_collate_21
from torch.utils.data import DataLoader
from copy import deepcopy
import os
import yaml
import dgl
from dgl.nn import GraphConv
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
import pandas as pd
from dgl.data.utils import load_graphs
import argparse
# Parse arguments
def parse_arguments(arglist = None):
p = argparse.ArgumentParser()
p.add_argument('--config', type=argparse.FileType(mode='r'), default='configs/trainer.yml')
p.add_argument('--hidden_layers', type=str, default='hidden_layers', help='path to hidden binary layers')
p.add_argument('--type', type=str, default='both', help='ligand, receptor, or both')
p.add_argument('--batch_size', type=int, default=100, help='batch size for training')
p.add_argument('--model_output', type=str, default='runs/score/ligand_trained.pt', help='path to .pt file for saving model')
p.add_argument('--training_iteration', type=int, default=10, help='number iterations to train for')
cmdline_parser = deepcopy(p)
args = p.parse_args(arglist)
clear_defaults = {key: argparse.SUPPRESS for key in args.__dict__}
cmdline_parser.set_defaults(**clear_defaults)
cmdline_parser._defaults = {}
cmdline_args = cmdline_parser.parse_args(arglist)
return args, cmdline_args
args, cmdline_args = parse_arguments()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
if key in cmdline_args:
continue
arg_dict[key] = value
args.config = args.config.name
# model 1 - true, model 2 - false
if args.type == 'ligand' or args.type == 'receptor':
model1 = True
else:
model1 = False
# Set gpu or cpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the data
traindata = custom_loader(args.hidden_layers + '/train',args.type,'bindingdata.csv')
valdata = custom_loader(args.hidden_layers + '/val',args.type,'bindingdata.csv')
testdata = custom_loader(args.hidden_layers + '/test',args.type,'bindingdata.csv')
if model1:
trainloader = DataLoader(traindata,shuffle=True,batch_size=args.batch_size,collate_fn=custom_collate_11)
valloader = DataLoader(valdata,shuffle=False,batch_size=len(valdata),collate_fn=custom_collate_11)
testloader = DataLoader(testdata,shuffle=False,batch_size=len(testdata),collate_fn=custom_collate_11)
else:
trainloader = DataLoader(traindata,shuffle=True,batch_size=args.batch_size,collate_fn=custom_collate_21)
valloader = DataLoader(valdata,shuffle=False,batch_size=len(valdata),collate_fn=custom_collate_21)
testloader = DataLoader(testdata,shuffle=False,batch_size=len(testdata),collate_fn=custom_collate_21)
# Load the model
if model1:
model = score_model.GAT1()
else:
model = score_model.GAT2()
model.to(device)
# Define loss
loss = nn.MSELoss()
# For optimisation
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)
# Training params
num_epochs = args.training_iteration
# Info saving
csv = 'iteration, train, val\n'
csv2 = 'batch, train, val\n'
trainlen = len(trainloader)
for i in range(num_epochs):
if model1:
model.train()
trainerror = 0
for idx, (train_batched_graph, trainpK) in enumerate(trainloader):
# Training loop
pred = model(train_batched_graph)
optimizer.zero_grad()
target = loss(pred,trainpK)
target.backward()
optimizer.step()
print('Batch ' + str(idx+1)+ ' training loss: ' + str(float(target)))
trainerror += target
if i == 0:
# Validation
model.eval()
with torch.no_grad():
for val_batched_graph, valpK in valloader:
valpred = model(val_batched_graph)
valloss = loss(valpred,valpK)
print('\nBatch ' + str(idx+1)+ ' validation loss: ' + str(float(valloss)) +'\n')
csv2 += str(idx+1) + ', ' + str(float(target)) + ', ' + str(float(valloss)) + '\n'
model.train()
trainerror /= trainlen
# Validation
model.eval()
with torch.no_grad():
for val_batched_graph, valpK in valloader:
valpred = model(val_batched_graph)
valloss = loss(valpred,valpK)
print('\nIteration ' + str(i+1)+ ' validation loss: ' + str(float(valloss)) +'\n')
csv += str(i+1) + ', ' + str(float(trainerror)) + ', ' + str(float(valloss)) + '\n'
else:
model.train()
trainerror = 0
for idx, (lig_batched_graph, rec_batched_graph, trainpK) in enumerate(trainloader):
# Training loop
pred = model(lig_batched_graph, rec_batched_graph)
optimizer.zero_grad()
target = loss(pred,trainpK)
target.backward()
optimizer.step()
print('Batch ' + str(idx+1)+ ' training loss: ' + str(float(target)))
trainerror += target
if i == 0:
# Validation
model.eval()
with torch.no_grad():
for val_lig_batched_graph, val_rec_batched_graph, valpK in valloader:
valpred = model(val_lig_batched_graph, val_rec_batched_graph)
valloss = loss(valpred,valpK)
print('\nBatch ' + str(idx+1)+ ' validation loss: ' + str(float(valloss)) +'\n')
csv2 += str(idx+1) + ', ' + str(float(target)) + ', ' + str(float(valloss)) + '\n'
model.train()
trainerror /= trainlen
# Validation
model.eval()
with torch.no_grad():
for val_lig_batched_graph, val_rec_batched_graph, valpK in valloader:
valpred = model(val_lig_batched_graph, val_rec_batched_graph)
valloss = loss(valpred,valpK)
print('\nIteration ' + str(i+1)+ ' validation loss: ' + str(float(valloss)) +'\n')
csv += str(i+1) + ', ' + str(float(trainerror)) + ', ' + str(float(valloss)) + '\n'
print('Training finished, saving model')
torch.save(model.state_dict(), args.model_output)
if model1:
testmodel = score_model.GAT1
else:
testmodel = score_model.GAT2
model.load_state_dict(torch.load(args.model_output))
model.eval()
# Evaluation
with torch.no_grad():
if model1:
for test_batched_graph, testpK in testloader:
testpred = model(test_batched_graph)
testloss = loss(testpred,testpK)
else:
for test_lig_batched_graph, test_val_batched_graph, testpK in testloader:
testpred = model(test_lig_batched_graph, test_val_batched_graph)
testloss = loss(testpred,testpK)
print('\nTest loss: ' + str(testloss))
print('\nTest RMSE: ' + str(torch.sqrt(testloss)))
file = open('traininginfo/'+args.type + '_training_info.csv','w')
file.write(csv)
file.close()
file = open('traininginfo/'+args.type + '_batch_info.csv','w')
file.write(csv2)
file.close()