-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfpa_demo.m
117 lines (97 loc) · 3.27 KB
/
fpa_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
function [best,fmin,N_iter]=fpa_demo(para)
% Default parameters
if nargin<1,
para=[20 0.8];
end
n=para(1); % Population size, typically 10 to 25
p=para(2); % probabibility switch
% Iteration parameters
N_iter=2000; % Total number of iterations
% Dimension of the search variables
d=3;
Lb=-2*ones(1,d);
Ub=2*ones(1,d);
% Initialize the population/solutions
for i=1:n,
Sol(i,:)=Lb+(Ub-Lb).*rand(1,d);
Fitness(i)=Fun(Sol(i,:));
end
% Find the current best
[fmin,I]=min(Fitness);
best=Sol(I,:);
S=Sol;
% Start the iterations -- Flower Algorithm
for t=1:N_iter,
% Loop over all bats/solutions
for i=1:n,
% Pollens are carried by insects and thus can move in
% large scale, large distance.
% This L should replace by Levy flights
% Formula: x_i^{t+1}=x_i^t+ L (x_i^t-gbest)
if rand>p,
%% L=rand;
L=Levy(d);
dS=L.*(Sol(i,:)-best);
S(i,:)=Sol(i,:)+dS;
% Check if the simple limits/bounds are OK
S(i,:)=simplebounds(S(i,:),Lb,Ub);
% If not, then local pollenation of neighbor flowers
else
epsilon=rand;
% Find random flowers in the neighbourhood
JK=randperm(n);
% As they are random, the first two entries also random
% If the flower are the same or similar species, then
% they can be pollenated, otherwise, no action.
% Formula: x_i^{t+1}+epsilon*(x_j^t-x_k^t)
S(i,:)=S(i,:)+epsilon*(Sol(JK(1),:)-Sol(JK(2),:));
% Check if the simple limits/bounds are OK
S(i,:)=simplebounds(S(i,:),Lb,Ub);
end
% Evaluate new solutions
Fnew=Fun(S(i,:));
% If fitness improves (better solutions found), update then
if (Fnew<=Fitness(i)),
Sol(i,:)=S(i,:);
Fitness(i)=Fnew;
end
% Update the current global best
if Fnew<=fmin,
best=S(i,:) ;
fmin=Fnew ;
end
end
% Display results every 100 iterations
if round(t/100)==t/100,
best
fmin
end
end
% Output/display
disp(['Total number of evaluations: ',num2str(N_iter*n)]);
disp(['Best solution=',num2str(best),' fmin=',num2str(fmin)]);
% Application of simple constraints
function s=simplebounds(s,Lb,Ub)
% Apply the lower bound
ns_tmp=s;
I=ns_tmp<Lb;
ns_tmp(I)=Lb(I);
% Apply the upper bounds
J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
% Update this new move
s=ns_tmp;
% Draw n Levy flight sample
function L=Levy(d)
% Levy exponent and coefficient
% For details, see Chapter 11 of the following book:
% Xin-She Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).
beta=3/2;
sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);
u=randn(1,d)*sigma;
v=randn(1,d);
step=u./abs(v).^(1/beta);
L=0.01*step;
% Objective function and here we used Rosenbrock's 3D function
function z=Fun(u)
z=(1-u(1))^2+100*(u(2)-u(1)^2)^2+100*(u(3)-u(2)^2)^2;