forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
611 lines (471 loc) · 23.5 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import argparse
import csv
import datetime
import os
import platform
import subprocess
import sys
from pathlib import Path
import threading
import uuid
from qrcodegen import *
from changeImage import duplicate_and_replace
from openpyxl import load_workbook
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle
import torch
from datetime import datetime
now = datetime.now()
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
LOGGER,
Profile,
check_file,
check_img_size,
check_imshow,
check_requirements,
colorstr,
cv2,
increment_path,
non_max_suppression,
print_args,
scale_boxes,
strip_optimizer,
xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode
from flask import Flask, request, jsonify
from flask import Flask, request
import sys
import pandas as pd
import cv2
from pyzbar.pyzbar import decode
from flask_cors import CORS
import os
import signal
import sys
app = Flask(__name__)
# Enable CORS
CORS(app, resources={r"/*": {"origins": "http://localhost:3000"}})
def shutdown_server():
print("Shutting down server gracefully...")
os.kill(os.getpid(), signal.SIGINT)
#invoice gen
def convert_excel_to_pdf(excel_file, pdf_file):
# Load Excel workbook
wb = load_workbook(excel_file)
sheet = wb.active
# Extract data from Excel sheet
data = []
for row in sheet.iter_rows(values_only=True):
data.append(row)
# Create PDF
doc = SimpleDocTemplate(pdf_file, pagesize=letter)
table = Table(data)
# Build PDF
doc.build([table])
@app.route("/opencam", methods=['POST'])
def opencam():
data = request.json
if not data:
return jsonify({'error': 'No data provided'}), 400
value = run(**data)
return value
@app.route("/detect", methods=['GET'])
def detect():
BarcodedItem = False
if(prev_detections == "barcodes"):
frames = cv2.imread("code.png")
cv2.imshow("frame", frames)
detectedBarcode = decode(frames)
# if no any barcode detected
if detectedBarcode:
for barcode in detectedBarcode:
# if barcode is not blank
if barcode.data != "":
# Search for the barcode in the Excel file
# price = search_excel_file(barcode.data.decode('utf-8'))
# get name and price from the excel file
name, price = search_excel_file(barcode.data.decode('utf-8'))
BarcodedItem = True
return jsonify({'detection': name, 'price': str(price), 'BarcodedItem': BarcodedItem}), 200
else:
def get_price_from_excel(file_path, name):
df = pd.read_excel(file_path)
price = df.loc[df['name'] == name, 'price'].values[0]
return price
price = get_price_from_excel("Book1.xlsx", prev_detections)
return jsonify({'detection': prev_detections, 'price': str(price), 'BarcodedItem': BarcodedItem}), 200
@app.route('/save', methods=['POST'])
def save():
data = request.json
if not data:
return jsonify({'error': 'No data provided'}), 400
print(data)
# {'items': [{'detection': 'some', 'price': 12, 'BarcodedItem': True, 'value': 12}], 'totalcartvalue': 144, 'BillNo': 1311738448283418400, 'date': '6/3/2024'}
# Append data to Excel sheet
BillNumber = data['BillNo']
Time = data['date']
items = data['items']
totalcartvalue = data['totalcartvalue']
# for item in items:
# item['BillNumber'] = BillNumber
# item['Time'] = now.strftime("%Y-%m-%d %H:%M:%S")
for item in items:
item['BillNumber'] = BillNumber
item['Time'] = Time
# # Append the data to the Excel file
append_to_excel('Book2.xlsx', items)
# convert_excel_to_pdf(f"Book2.xlsx", f"invoice_{BillNumber}.pdf")
return 'Data saved', 200
@app.route('/stop', methods=['POST'])
def stop():
IsRunning = False
duplicate_and_replace("original.jpg", "code.jpg")
shutdown_server()
return 'Server shutting down...', 200
@app.route('/QRgen', methods=['POST'])
def QRgen():
data = request.json
if not data:
return jsonify({'error': 'No data provided'}), 400
total_price = data['total_price']
def to_svg_str(qr: QrCode, border: int) -> str:
if border < 0:
raise ValueError("Border must be non-negative")
parts: List[str] = []
for y in range(qr.get_size()):
for x in range(qr.get_size()):
if qr.get_module(x, y):
parts.append(f"M{x+border},{y+border}h1v1h-1z")
svgStr = f"""
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" viewBox="0 0 {qr.get_size()+border*2} {qr.get_size()+border*2}" stroke="none">
<rect width="100%" height="100%" fill="#FFFFFF"/>
<path d="{" ".join(parts)}" fill="#000000"/>
</svg>
"""
return svgStr
# replace exampleuserid@oksbi with the actual UPI ID
qr0 = QrCode.encode_text(f"upi://pay?pa=exampleuserid@oksbi&pn=Kami_%20Ronwinner&am={total_price}&cu=INR&aid=uGICAgICDuvWfXw", QrCode.Ecc.MEDIUM)
svg = to_svg_str(qr0, 4) # See qrcodegen-demo
return svg
# Append data to Excel sheet (remove the existing data and append the new data)
# def append_to_excel(existing_file, new_data):
# try:
# # Create a DataFrame from the new data
# df_new = pd.DataFrame(new_data)
# # Calculate the total price by multiplying each price by its quantity
# total_price = (df_new['price'] * df_new['value']).sum()
# # Write the new DataFrame to the Excel file, overwriting any existing content
# with pd.ExcelWriter(existing_file, engine='openpyxl', mode='w') as writer:
# df_new.to_excel(writer, index=False, sheet_name='Sheet1')
# # Create a DataFrame for the total with a title and append it to the Excel file
# df_total = pd.DataFrame({'Description': ['Total Price'], 'Amount': [total_price]})
# df_total.to_excel(writer, startrow=df_new.shape[0]+3, index=False)
# # Add a line on top of the total
# worksheet = writer.sheets['Sheet1']
# worksheet['A'+str(df_new.shape[0]+2)] = '-----------------------------'
# print(f"Data written to '{existing_file}' successfully with total price.")
# except FileNotFoundError:
# print(f"Error: File '{existing_file}' not found.")
# except Exception as e:
# print(f"An error occurred: {e}")
def append_to_excel(existing_file, new_data):
try:
# Create a DataFrame from the new data
df_new = pd.DataFrame(new_data)
# Calculate the total price by multiplying each price by its quantity
total_price = (df_new['price'] * df_new['value']).sum()
# Read the existing data from the Excel file
try:
df_existing = pd.read_excel(existing_file, sheet_name='Sheet1')
except FileNotFoundError:
df_existing = pd.DataFrame()
# Append the new data to the existing data
df_combined = pd.concat([df_existing, df_new], ignore_index=True)
# Write the combined DataFrame to the Excel file
with pd.ExcelWriter(existing_file, engine='openpyxl', mode='w') as writer:
df_combined.to_excel(writer, index=False, sheet_name='Sheet1')
print(f"Data written to '{existing_file}' successfully with total price.")
except Exception as e:
print(f"An error occurred: {e}")
def search_excel_file(number):
excel_file = 'Book1.xlsx'
try:
# Read the Excel file into a DataFrame
df = pd.read_excel(excel_file)
# Search for the number in the 'id' column
result = df[df['id'] == int(number)]
# Check if any matching row is found
if not result.empty:
# Print the details for the found number
# return name and price
return result["name"].values[0], result["price"].values[0]
else:
print(f"No details found for ID: {number}")
#if barcode is not found in the excel file then append the barcode in the excel file
new_data = {
'id': [int(number)],
'name': "",
'price': ""
}
append_to_excel(excel_file, new_data)
except FileNotFoundError:
print(f"Error: File '{excel_file}' not found in serach .")
except Exception as e:
print(f"An error occurred in search: {e}")
# YoloV5 detection code
prev_detections = "no detection"
@smart_inference_mode()
def run(
weights=ROOT / "yolov5s.pt", # model path or triton URL
source=ROOT / "data/images", # file/dir/URL/glob/screen/0(webcam)
data=ROOT / "data/coco128.yaml", # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / "runs/detect", # save results to project/name
name="exp", # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
global prev_detections
source = str(source)
save_img = not nosave and not source.endswith(".txt") # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower().startswith("screen")
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
(barDetect_dir := save_dir / "barDetect").mkdir(parents=True, exist_ok=True)
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if model.xml and im.shape[0] > 1:
ims = torch.chunk(im, im.shape[0], 0)
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
if model.xml and im.shape[0] > 1:
pred = None
for image in ims:
if pred is None:
pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
else:
pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
pred = [pred, None]
else:
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Define the path for the CSV file
csv_path = save_dir / "predictions.csv"
# Create or append to the CSV file
def write_to_csv(image_name, prediction, confidence):
data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
with open(csv_path, mode="a", newline="") as f:
writer = csv.DictWriter(f, fieldnames=data.keys())
if not csv_path.is_file():
writer.writeheader()
writer.writerow(data)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f"{i}: "
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt
s += "%gx%g " % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
new_detections = set()
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = names[c] if hide_conf else f"{names[c]}"
confidence = float(conf)
confidence_str = f"{confidence:.2f}"
if save_csv:
write_to_csv(p.name, label, confidence_str)
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(f"{txt_path}.txt", "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
# Save the image frame if the detected object is labeled as "barcodes"
if names[int(cls)]:
# Save the new image
cv2.imwrite(str("code.jpg"), im0)
new_detections.add((tuple(xyxy), c))
# Check if new detections are different from previous ones
if new_detections != prev_detections:
# Stream results
im0 = annotator.result()
if view_img:
if platform.system() == "Linux" and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
# LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
# print object name
# if len(det):
# LOGGER.info(f"Object name: {names[int(det[0][5])]}")
# if(len(det)):
# if(prev_detections == {names[int(det[0][5])]}):
# continue
# else:
# LOGGER.info(f"{names[int(det[0][5])]}")
# prev_detections = {names[int(det[0][5])]}
# yield prev_detections
if(len(det)):
if(prev_detections == names[int(det[0][5])]):
continue
else:
# LOGGER.info(f"{names[int(det[0][5])]}")
# yield names[int(det[0][5])]
# print(prev_detections)
# yield prev_detections
prev_detections = names[int(det[0][5])]
# Print results
t = tuple(x.t / seen * 1e3 for x in dt) # speeds per image
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--visualize", action="store_true", help="visualize features")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
parser.add_argument("--name", default="exp", help="save results to project/name")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)