-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreshaper.py
462 lines (428 loc) · 19.1 KB
/
reshaper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
'''
Created on Dec 13, 2017
@author: ARL
'''
import os
os.environ['PYTHONPATH'] =r'C:\Users\utilisateur\Anaconda\envs\tensorflow'
os.environ['PATH']='C:\\Users\\utilisateur\\Anaconda\\envs\\tensorflow\\;C:\\Program Files (x86)\\Graphviz2.38\\bin\\'
import numpy as np
import mxnet as mx
import mxnet.ndarray as mnd
import cntk as C
import itertools
import varitest as VT
import cntk.ops as CO
import timeit
import tensorflow as tf
squa=VT.squa
sqrtt=VT.sqart
def indary(input):
ishp=input.shape
output=[]
for I in ishp:
pass
def get_conv_outsize(size, k, s, p, cover_all=False, d=1):
"kernel, step, stride,pad,cover, dilation"
dk = k + (k - 1) * (d - 1)
if cover_all:
return (size + p * 2 - dk + s - 1) // s + 1
else:
return (size + p * 2 - dk) // s + 1
def im2col_cpuV2(
img, kh, kw, sy, sx, ph, pw, pval=0, cover_all=False, dy=1, dx=1,
out_h=None, out_w=None,og=True,reshape=False,channel1=False):
#if not(og) and not(channel1):
# img=numpy.rollaxis(img, 1, len(img.shape))
n, c, h, w = img.shape
if out_h is None:
out_h = get_conv_outsize(h, kh, sy, ph, cover_all, dy)
assert out_h > 0, 'Height in the output should be positive.'
if out_w is None:
out_w = get_conv_outsize(w, kw, sx, pw, cover_all, dx)
assert out_w > 0, 'Width in the output should be positive.'
img = np.pad(img,
((0, 0), (0, 0), (ph, ph + sy - 1), (pw, pw + sx - 1)),
mode='constant', constant_values=(pval,))
col = np.ndarray((n, c, out_h, out_w, kh, kw), dtype=img.dtype)
for R in range(kh):
jdy = R * dy #window index * dilation
j_lim = jdy + sy * out_h
for H in range(kw):
idx = H * dx #window index * dilation
i_lim = idx + sx * out_w
col[:,:,:,:,R,H]=img[:, :, jdy:j_lim:sy, idx:i_lim:sx]#pour chaque point
if not(channel1):
col=np.rollaxis(col,1,-2)
print(col.shape)
return col
peakw=1
scale=1
shape=(3,8,8)
window=(3,3)
step=(1,1)
pad=(0,0)
outputs=4
bias_depth=2
numimg=1
print('peakw',peakw,'scale',scale,'shape',shape,'window',window,'stride',step,'pad',pad)
####tests
#vals=shape[0]*shape[1]*shape[2]
ival=shape[0]*shape[1]*shape[2]
vals=window[-2]*window[-1]
inputest=np.reshape(np.linspace(0, 255, num=ival, dtype=np.float32,endpoint=True),shape)
inputest=np.array([inputest for _ in range(numimg)])
outh=get_conv_outsize(shape[-2], window[-2], step[-2], pad[-2])
outw=get_conv_outsize(shape[-1], window[-1], step[-1], pad[-1])
baseline=im2col_cpuV2(inputest, window[0], window[1], step[0], step[1], pad[0], pad[1], cover_all=False, dy=1, dx=1,
out_h=outh, out_w=outw,og=0,channel1=0)
baseline=np.expand_dims(baseline,len(baseline.shape)//2)
#numpy https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
#broadcast, tile, split ??block?
#print(np.broadcast_to(inputest,baseline.shape))
print(np.split(inputest,3,1)[0].shape)
print(np.repeat(inputest, repeats=(0,3,3), axis=1).shape)#(1,2,3)))
MX=1
if MX:
#mxnet https://mxnet.incubator.apache.org/tutorials/basic/ndarray.html
mna=mnd.array(inputest, dtype=np.float32)
print(mna.shape)
#MXNET_ENGINGE_TYPE
__o=np.array([np.ones(window,dtype=np.float32)+i for i in [0,1,2]],dtype=np.float32)
_W=mnd.array(np.reshape(__o,(1,*__o.shape)))
#imag=mx.image.image.
def mxwindow(mna,window):
mnas=mna.shape
mnout=(*mnas[:-2],*window,((mnas[-2]-window[-2])+1),((mnas[-1]-window[-1])+1))
mne2=None
for R in range(window[0]):
j_lim = R + mnout[-2]
for H in range(window[1]):
tdata=mnd.slice(mna, begin=(None,None,R,H), end=(None,None,j_lim,(H + mnout[-1])), step=(None,None,1,1))
if mne2 is None:
mne2=tdata
else:
mne2=mnd.concat(mne2,tdata,dim=1)
return(mnd.expand_dims(mnd.transpose(mnd.reshape(mne2, shape=mnout),axes=(0,5,4,3,2,1)), 3))
#print(mne2.shape,mne2)
window=(3,3)
#mne2=mxwindow(mna,window)
def var(array,W=_W,B=None,square=0,sqrt=0,V=False,order='NCHW',sizz=0):
arrs=array.shape
ashp=W.shape
xi=(-2,-1)
x2=(-2,-1,-3)
sb=(ashp[1],1,1)
WV=ashp[-2:]
print(sb)
mnc=mnd.tile(mnd.reshape(mnd.array([WV[0]*WV[1]]), shape=(1,1,1)),ashp[1])
print(mnc)
if V:
print(W.eval())
print(arrs,ashp)
mul=(mnd.broadcast_mul(array,W))
if V:
print('Wsamp',W[-1,-1])
print('array*w',mul[0,-1])
size=mnd.sum(W,axis=xi,keepdims=True)#shape=(outputs, channel)
if V:
print("sizesamp",size.shape,size)
if B is None:
B=mnd.zeros(W.shape[0:2],dtype=np.float32)#channel
B=mnd.reshape(B,(*B.shape,*[1 for _ in range(len(ashp)-len(B.shape))]))
if sizz==1:
mean=mnd.sum(mul,axis=xi,keepdims=True)/size
else:
mean=mnd.sum(mul,axis=xi,keepdims=True)/mnc
if V:
print("meansamp",mean[0,-1])
if square:
i=mnd.square(mnd.broadcast_add(mnd.broadcast_minus(mul,mean),B))
else:
i=mnd.broadcast_add(mnd.broadcast_minus(mul,mean),B)
di=i/size
if V==2:
print("i",i,"i")
print("di",di,"di")
if V:
print('isamp',i.shape,i[-1,-1,])
out=mnd.sum(mnd.broadcast_add(i,B),axis=x2)
#out=np.rollaxis(np.sum(i+B,axis=x2),-1,1)
#print(out.shape)
if sqrt:
out=mnd.sqrt(out)
out=mnd.swapaxes(out, 3, 1)
#print(out.shape,(arrs[0],ashp[0],arrs[1],arrs[2]))
assert out.shape==(arrs[0],ashp[0],arrs[1],arrs[2])
return(out)
mnd22=mnd.array(baseline, dtype=np.float32)
print("MXNET",var(mxwindow(mna, window),square=squa,sqrt=sqrtt),"MXNET")
print("MXNET2",var(mxwindow(mna, window),square=squa,sqrt=sqrtt),"MXNET2")
'''
def t1():#46sec
mne2r=mnd.reshape(mne2, shape=(1,3,3,3,6,6))#mne.shape)#, reverse, target_shape, keep_highest, out, name)
mne2rt=mnd.transpose(mne2r,axes=(0,5,4,3,2,1)) #HIT
mne2rt=mnd.expand_dims(mne2rt, (len(mne2r.shape)//2))
return(mne2rt)
def t2():#faster, 41sec,36
return(mnd.expand_dims(mnd.transpose(mnd.reshape(mne2, shape=(1,3,3,3,6,6)),axes=(0,5,4,3,2,1)), 3))'''
#print(mne2)
#print(mne2rt,mne2rt.shape)
#print(mnd.reshape(mne2rt,shape=(1,6,6,1,3,3,3)))
#print(timeit.timeit(stmt=t1, number=100000),timeit.timeit(stmt=t2, number=100000))
#print(mne,mne.shape)
#mng=mnd.gather_nd(mna,)
#mns=mnd.scatter_nd()
#mnb=mna.broadcast_to((numimg,outh,outw,1,shape[0],*window))
#mnd.take(mna)
#mnind=mna[:,:,0:6,0:6]
#print(mnind,mnind.shape)
#print(mnb.shape)
#print(mnb.asnumpy()==baseline)
#print(baseline[0,-1,-1])
cn=1
if cn:
#cntk https://www.cntk.ai/pythondocs/cntk.ops.sequence.html
#class cntktest(C.layers.layers):
# def __init__(self,cell,data,kern=(3,3),step=(1,1),pad=(0,0)):
# self.out=cell
# self.outh=get_conv_outsize(data[-2], kern[-2], step[-2], pad[-2])
# self.outw=get_conv_outsize(data[-1], kern[-1], step[-1], pad[-1])
#C.input_variable(shape, dtype, needs_gradient, is_sparse, dynamic_axes, name)
cna=CO.element_times(inputest, 1,)
cnts=C.sequence.input_variable(inputest.shape, dtype=np.float32)#,sequence_axis=1)
cnts2=C.sequence.input_variable(baseline.shape,dtype=np.float32)
print(cna.shape)
axs=1
def cnwindow(mna,window):
mnas=mna.shape
mnout=(*mnas[:-2],*window,((mnas[-2]-window[-2])+1),((mnas[-1]-window[-1])+1))
mne2=None
for R in range(window[0]):
j_lim = R + mnout[-2]
for H in range(window[1]):
tdata=C.slice(mna,[-2,-1], [R,H], [j_lim,(H + mnout[-1])])
if mne2 is None:
mne2=tdata
else:
mne2=C.splice(mne2,tdata,axis=1)
return(C.reshape(C.transpose(C.reshape(mne2, shape=mnout),(0,5,4,3,2,1)), (mnout[0],*mnout[5:3:-1],1,*mnout[3:0:-1])))
cnwt=cnwindow(cnts, (3,3))
_W=C.constant(1,(1,3,3,3),dtype=np.float32)
#print(cnwt.eval({cnts:inputest}))
#print(C.reduce_sum(_W,(-2,-1)))
def var(array,W=_W,B=None,square=0,sqrt=0,V=False,sizz=0):
#W=tf.transpose(W, [0,2,3,1])
arrs=array.shape
ashp=W.shape
sb=(W.shape[1],1,1)
WV=W.shape[-2:]
xi=(-2,-1)
x2=(-2,-1,-3)
if V:
print(W.eval())
print(arrs,ashp)
mul=(array*W)
if V:
print('Wsamp',W[-1,-1].eval())
print('array*w',(mul.eval())[0,-1])
size=C.reduce_sum(W,axis=xi)#shape=(outputs, channel)
if V:
print("sizesamp",size.shape,size.eval())
if B is None:
B=C.constant(0,shape=W.shape[0:2],dtype=np.float32)#channel
B=C.reshape(B,(*B.shape,*[1 for _ in range(len(ashp)-len(B.shape))]))
if sizz==1:
mean=C.reduce_sum(mul,axis=xi)/size
else:
mean=C.reduce_sum(mul,axis=xi)/C.constant(value=WV[0]*WV[1],shape=sb,dtype=np.float32)
if V:
print("meansamp",mean.eval()[0,-1])
if square:
i=(C.square(mul-mean)+B)
else:
i=(((mul)-mean)+B)
di=i/size
if V==2:
print("i",i.eval(),"i")
print("di",di.eval(),"di")
if V:
print('isamp',i.shape,i.eval()[-1,-1,])
out=C.reduce_sum(i+B,axis=x2)
#out=np.rollaxis(np.sum(i+B,axis=x2),-1,1)
print(out.shape)
if sqrt:
out=C.sqrt(out)
out=C.swapaxes(C.reshape(out,out.shape[:4]), 3, 1)
print(out.shape)
assert out.shape==(arrs[0],ashp[0],arrs[1],arrs[2])
return(out)
CWOne=C.constant(1,shape=(1,3,3,3),dtype=np.float32)
cnvart=var(cnwt,W=CWOne,square=squa,sqrt=sqrtt,sizz=1)
cnvart2=var(cnts2,W=CWOne,square=squa,sqrt=sqrtt,sizz=1)
print("CNTK",cnvart.eval({cnts:inputest}),"CNTK")
print("CNTK2",cnvart2.eval({cnts2:baseline}),"cntk2")
#crsh=C.reshape(cna, (*cna.shape,1,1))
#print(crsh.shape,crsh[0,2,2,2,0,0])
#cnts2=C.sequence.input_variable(crsh.shape, dtype=np.float32)
#cwd2=C.layers.layers._window(cnts2,axis=axs,begin=0,end=3,step=1,stride=1)
#cwd=C.layers.layers._window(cna,axis=3,begin=0,end=8,step=1,stride=1)
#axis=-filter_rank, begin=-lpad, end=-lpad+filter_shape[-filter_rank], step=1, stride=strides[-filter_rank], initial_state=None)
#cnb=CO.sequence.broadcast_as(operand, broadcast_as_operand, name)
#cnbs=CO.sequence.slice(seq, begin_index, end_index, name)
#cnbsc=CO.sequence.scatter(seq, condition, new_sequence_axis_typeinfo, name)
#print(cwd2.shape,cwd2)
#test=cwd2(crsh)
#print(test.shape)
#for I in range(test.shape[axs+1]):
# print(I)
# print(test[:,:,I])
#print(cwd.shape)
#print(cwd.as_numpy()==baseline)
# tf uses NHWC not NCHW
#tf https://www.tensorflow.org/api_guides/python/array_ops#Shapes_and_Shaping
#code https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/python/ops/array_ops.py
#https://www.tensorflow.org/api_docs/python/tf/while_loop
#tfb=tf.broadcast_static_shape(shape_x, shape_y)
#tfs=tf.split()
#tfss=tf.strided_slice(tfa,[0,0,0,0],[-1,-1,-1,-1],[1,1,1,1])#https://www.tensorflow.org/api_docs/python/tf/strided_slice
#tfe=tfb.as_numpy() == baseline
#trevs=tf.reverse_sequence(transf, seq_lengths, seq_axis, batch_axis, name, seq_dim, batch_dim)
TF=1
if TF:
#print('original input',inputest[-1,-1])
#inputest=np.reshape(inputest,(1,8,8,3))#np.rollaxis(inputest, 1, 4)
#print('inputest',inputest)
convbase=np.tensordot(baseline, np.ones((1,3,3,3), dtype=np.float32), axes=((-3,-2,-1),(-3,-2,-1)))
window=(3,3)
axes=[0,4]
sess=tf.Session()
with sess.as_default() as ff:
perm=0
BASETF=tf.convert_to_tensor(baseline,dtype=np.float32)
imgtf=tf.convert_to_tensor(inputest, dtype=np.float32, name='input')
imgtf2=tf.convert_to_tensor(np.rollaxis(inputest,1,4), dtype=np.float32, name='input')
imgtf3=tf.convert_to_tensor(np.reshape(inputest,(1,8,8,3)), dtype=np.float32, name='input')
__o=np.array([np.ones(window,dtype=np.float32)+i for i in [0,1,2]],dtype=np.float32)
_W=tf.convert_to_tensor(np.reshape(__o,(1,*__o.shape)))
ones=tf.ones((1,3,3,3), dtype=tf.float32)
ones2=tf.ones((1,1,1,1), dtype=tf.float32)
tfar=tf.reshape(imgtf,(1,8,8,3))
tfa=tf.transpose(imgtf, [0,2,3,1])#NWHC hit
conv1=tf.layers.conv2d(tfa, 1, (3,3), kernel_initializer=tf.ones_initializer(tf.float32), bias_initializer=tf.zeros_initializer(tf.float32),trainable=False)#,data_format='channels_first')
#tfconvt=tf.layers.conv2d_transpose(tfa, 1, (3,3), kernel_initializer=tf.ones_initializer(tf.float32),bias_initializer=tf.zeros_initializer(tf.float32),trainable=False)
tf.initialize_all_variables().run()
tfimp=tf.extract_image_patches(tfa, ksizes=(1,*window,1), strides=(1,1,1,1),rates=(1,1,1,1),padding='VALID')
tfrs=tf.reshape(tfimp, (*tfimp.shape[:3],1,-1,*window))
tran=tf.transpose(tfrs, perm=[0,1,2,3,6,4,5])#[0,3,1,2,6,4,5]) NCWH hit
def var(array,W=_W,B=None,square=0,sqrt=0,V=False,order='NHWC',sizz=0):
#W=tf.transpose(W, [0,2,3,1])
arrs=array.shape
ashp=W.shape
if order=='NHWC':
W=tf.transpose(W, [0,2,3,1])
sb=(1,1,W.shape[-1])
WV=W.get_shape().as_list()[1:3]
xi=(-3,-2)
x2=(-1,-3,-2)
elif order=='NCHW':
sb=(W.shape[1],1,1)
WV=W.get_shape().as_list()[-2:]
xi=(-2,-1)
x2=(-2,-1,-3)
if V:
print(W.eval())
print(arrs,ashp)
mul=(array*W)
if V:
print('Wsamp',W[-1,-1].eval())
print('array*w',(mul.eval())[0,-1])
size=tf.reduce_sum(W,axis=xi,keep_dims=True)#shape=(outputs, channel)
if V:
print("sizesamp",size.shape,size.eval())
if B is None:
B=tf.zeros(W.shape[0:2],dtype=tf.float32)#channel
B=tf.reshape(B,(*B.shape,*[1 for _ in range(len(ashp)-len(B.shape))]))
if sizz==1:
mean=tf.reduce_sum(mul,axis=xi,keep_dims=True)/size
else:
mean=tf.reduce_sum(mul,axis=xi,keep_dims=True)/tf.constant(WV[0]*WV[1],shape=sb,dtype=tf.float32)
if V:
print("meansamp",mean.eval()[0,-1])
if square:
i=(tf.square(mul-mean)+B)
else:
i=(((mul)-mean)+B)
di=i/size
if V==2:
print("i",i.eval(),"i")
print("di",di.eval(),"di")
if V:
print('isamp',i.shape,i.eval()[-1,-1,])
out=tf.reduce_sum(i+B,axis=x2)
#out=np.rollaxis(np.sum(i+B,axis=x2),-1,1)
print(out.shape)
if sqrt:
out=tf.sqrt(out)
assert out.shape==(arrs[0],arrs[1],arrs[2],ashp[0])
return(out)
#print('modified iimage tnsor',tfa.eval(),'modified iimage tnsor')
def tfwindow(arr):
temp=tf.extract_image_patches(arr, ksizes=(1,*window,1), strides=(1,1,1,1),rates=(1,1,1,1),padding='VALID')
return(tf.reshape(temp,(*temp.shape[:3],1,-1,*window)))
#print('tfa',tfa.eval(),tfa.eval().shape,'TFA')
#print('TFRS',tfrs.eval()[-1,-1],'TFRS')
#print('tfimp',(tfimp.eval())[-1,-1,:],'tfimp')
""" if perm:
combos=list(itertools.permutations([1,2,3,4,5,6]))
for combo in combos:
cc=[0,].append(combo)
ttt=tf.transpose(tfrs, cc)
try:
if (ttt.eval()==baseline).all():
print(combo)
break
except:
if (ttt.eval()==baseline):
print(combo)
break"""
vari=var(tran)
cov1=conv1.eval()
#print((tran.eval()[0]-baseline[0]).mean((-3,-2,-1)))
#print('conv',cov1[-1],cov1.shape,'conv')
#print((tr3.eval()[0]-baseline[0]).mean((-3,-2,-1)))
#print(tfss.eval())
#print(convbase,convbase.shape)
#print('tran',tran.eval()[:,-1],'%%'*36,baseline[:,-1],'baseline')
#print('vari',vari.eval())
print("TRAN W"*12)
print('tran',var(tran,square=squa,V=0,sqrt=sqrtt,order='NCHW').eval()[-1,],'tran')#=imgtf2 HIT alg
print("NHWC IMAGE"*12)
#print('imgtf2',var(tfwindow(imgtf2),square=squa,sqrt=sqrtt,V=0,order='NCHW').eval()[-1,],'imgtf2')#=tfa
print('tfa',var(tfwindow(tfa),square=squa,V=0,sqrt=sqrtt,order='NHWC').eval()[-1,],'tfa')#=imgtf2 HIT alg
#print("TRANSPOSED IMAGE"*10)
#print('imgtf3',var(tfwindow(imgtf3),square=squa,V=0,sqrt=sqrtt,order='NCHW').eval()[-1,],'imgtf3')#=tfar
#print('tfar',var(tfwindow(tfar),square=squa,V=1,sqrt=sqrtt,order='NHWC').eval()[-1,],'tfar')#=imgtf3
print('TRAN 1'*12)
print('1tran',var(tran,W=ones,square=squa,V=0,sqrt=sqrtt,order='NCHW').eval()[-1,],'1tran')#=imgtf2 hit alg w11
print("NHWC IMAGE"*12)
#print('1imgtf2',var(tfwindow(imgtf2),W=ones,square=squa,V=0,sqrt=sqrtt,order='NCHW').eval()[-1,],'1imgtf2')#=tfa
print('1tfa',var(tfwindow(tfa),W=ones,square=squa,V=0,sqrt=sqrtt,order='NHWC').eval()[-1,],'1tfa')#=imgtf2 hit alg w11
#print("TRANSPOSED IMAGE"*10)
#print('1imgtf3',var(tfwindow(imgtf3),W=ones,square=squa,sqrt=sqrtt,V=0,order='NCHW').eval()[-1,],'1imgtf3')#=tfar
#print('1tfar',var(tfwindow(tfar),W=ones,square=squa,sqrt=sqrtt,V=2,order='NHWC').eval()[-1,],'1tfar')#=imgtf3
#print(var())
print("TFBtestNHWC",var(BASETF,W=ones,square=squa,V=0,sqrt=sqrtt,order='NHWC').eval()[-1,],"TFBtestNHWC")
print("TFBtestNCHW",var(BASETF,W=ones,square=squa,V=0,sqrt=sqrtt,order='NCHW').eval()[-1,],"TFBtestNCHW")
#t1=tfwindow(tfa).eval()
#t2=tfwindow(tfar).eval()
#print('tfa',t1[0,2],'tfa')
#print('tfar',t2[0,2],'tfar')
#for i in [(-2,-1),(-3,-2,-1)]:
# print(t1.min(i)-t1.max(i),'t1,min,max')
# print(t2.min(i)-t2.max(i),'t2 min max')
#print('tran',tran.eval()[:,-1,-1])
#print('target input',baseline[0,-1,-1],'target')
b0=b0=np.zeros((4,3),dtype=np.float32)
print("TARGET",VT.vecvari1(baseline, VT.w11[:1], B=b0[:1],square=squa,sqrt=sqrtt,verbose=0,sizz=1))
print("TARG2",VT.d2[-1,-1],"TARG2")
print("TArgetv3",VT.p2[-1,-1],"TArgetv3")