-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy path05-modeling.Rmd
279 lines (211 loc) · 5.94 KB
/
05-modeling.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
Title: "Modeling"
output: html_notebook
---
## Class catchup
```{r}
library(tidyverse)
library(DBI)
library(dbplyr)
library(dbplot)
library(tidypredict)
con <- DBI::dbConnect(odbc::odbc(), "Postgres Dev")
airports <- tbl(con, in_schema("datawarehouse", "airport"))
table_flights <- tbl(con, in_schema("datawarehouse", "flight"))
carriers <- tbl(con, in_schema("datawarehouse", "carrier"))
set.seed(100)
```
## 5.1 - SQL Native sampling
*Use PostgreSQL TABLESAMPLE clause*
1. Find out the class of the object returned by `show_query()`. Test with *table_flights*.
```{r}
```
2. Find out the class of the object returned by `remote_query()`. Test with *table_flights*.
```{r}
```
3. Run `remote_query()` again *table_flights*
```{r}
```
4. Use `build_sql()` to paste together the results of the `remote_query()` operation and *" TABLESAMPLE SYSTEM (0.1)"*
```{r}
```
5. Use `build_sql()` and `remote_query()` to combine a the `dplyr` command with a custom SQL statement
```{r}
sql_sample <-
```
6. Preview the sample data
```{r}
sql_sample
```
6. Test the efficacy of the sampling using `dbplot_histogram()` and comparing to the histogram produced in the Visualization chapter.
```{r}
dbplot_histogram(sql_sample, distance)
```
## 5.2 - Sample with ID
*Use a record's unique ID to produce a sample*
1. Summarize with `max()` and `min()` to get the upper and lower bound of *flightid*
```{r}
limit <-
```
2. Use `sample()` to get 0.1% of IDs
```{r}
sampling <-
```
3. Use `%in%` to match the sample IDs in *table_flights* table
```{r}
id_sample <-
```
4. Test the efficacy of the sampling using `dbplot_histogram()` and comparing to the histogram produced in the Visualization chapter.
```{r}
```
## 5.3 - Sample manually
*Use `row_number()`, `sample()` and `map_df()` to create a sample data set*
1. Create a filtered data set with January's data
```{r}
db_month <-
```
2. Get the row count, collect and save the results to a variable
```{r}
rows <-
```
3. Use `row_number()` to create a new column to number each row
```{r}
db_month <-
```
4. Create a random set of 600 numbers, limited by the number of rows
```{r}
sampling <-
```
5. Use `%in%` to filter the matched sample row IDs with the random set
```{r}
db_month <-
```
6. Verify number of rows
```{r}
tally(db_month)
```
7. Create a function with the previous steps, but replacing the month number with an argument. Collect the data at the end
```{r}
sample_segment <- function(x, size = 600) {
}
```
8. Test the function
```{r}
head(sample_segment(3), 100)
```
9. Use `map_df()` to run the function for each month
```{r}
strat_sample <-
```
10. Verify sample with a `dbplot_histogram()`
```{r}
```
## 5.4 - Create a model & test
1. Prepare a model data set. Using `case_when()` create a field called *season* and assign based
```{r}
model_data <- strat_sample %>%
mutate(
season = case_when(
month >= 3 & month <= 5 ~ "Spring",
month >= 6 & month <= 8 ~ "Summmer",
month >= 9 & month <= 11 ~ "Fall",
month == 12 | month <= 2 ~ "Winter"
)
) %>%
select(arrdelay, season, depdelay)
```
2. Create a simple `lm()` model against *arrdelay*
```{r}
```
3. Create a test data set by combining the sampling and model data set routines
```{r}
test_sample <-
```
4. Run a simple routine to check accuracy
```{r}
test_sample %>%
mutate(p = predict(model_lm, test_sample),
over = abs(p - arrdelay) < 10) %>%
group_by(over) %>%
tally() %>%
mutate(percent = round(n / sum(n), 2))
```
## 5.5 - Score inside database
*Learn about tidypredict to run predictions inside the database*
1. Load the library, and see the results of passing the model as an argument to `tidypredict_fit()`
```{r}
library(tidypredict)
tidypredict_fit(model_lm)
```
2. Use `tidypredict_sql()` to see the resulting SQL statement
```{r}
```
3. Run the prediction inside `dplyr` by piping the same transformations into `tidypredict_to_column()`, but starting with *table_flights*
```{r}
```
4. View the SQL behind the `dplyr` command with `remote_query()`
```{r}
```
5. Compare predictions to ensure results are within range using `tidypredict_test()`
```{r}
test <-
```
6. View the records that exceeded the threshold
```{r}
test$raw_results %>%
filter(fit_threshold)
```
## 5.6 - Parsed model
*Quick review of the model parser*
1. Use the `parse_model()` function to see how `tidypredict` interprets the model
```{r}
pm <-
```
2. With `tidypredict_fit()`, verify that the resulting table can be used to get the fit formula
```{r}
```
3. Save the parsed model for later use using the `yaml` package
```{r}
library(yaml)
```
4. Reload model from the YAML file
```{r}
my_pm <-
```
5. Use the reloaded model to build the fit formula
```{r}
tidypredict_fit(my_pm)
```
## 5.7 - Model inside the database
*Brief intro to modeldb*
1. Load `modeldb`
```{r}
library(modeldb)
```
2. Use the `sampling` variable to create a filtered table of `table_flights`
```{r}
sample <- table_flights %>%
filter(flightid %in% sampling)
```
3. Select *deptime*, *distance* and *arrdelay* from `sample` and pipe into `linear_regression_db()`, pass *arrdelay* as the only argument.
```{r}
```
4. Using the coefficients from the results, create a new column that multiplies each field against the corresponding coefficient, and adds them all together along with the intercept
```{r}
table_flights %>%
head(1000) %>%
mutate(pred = --0.6262197 + (deptime * 0.01050023 ) + (distance * -0.003834017 )) %>%
select(arrdelay, pred)
```
5. Add *dayofweek* to the variable selection. Add `add_dummy_variables()` in between the selection and the linear regression function. Pass *dayofweek* and `c(1:7)` to represent the 7 days
```{r}
```
6. Replace *arrdelay* with *uniquecarrier*. Group by *uniquecarrier* and remove the `add_dummy_variable()`.
```{r}
```
7. Pipe the code into `ggplot2`. Use the intercept for the plot's `x` and *uniquecarrier* for `y`. Use `geom_point()`
```{r}
```
```{r, include = FALSE}
dbDisconnect(con)
```