-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwordnet.py
1816 lines (1533 loc) · 66.6 KB
/
wordnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Module to access wordnet dictionary. Code extracted from python-nltk by
Ratnadeep Debnath (Freenode IRC Nick: rtnpro), Email:[email protected]
"""
import re
import os
import sys
import textwrap
from itertools import islice
ADJ, ADJ_SAT, ADV, NOUN, VERB = 'a', 's', 'r', 'n', 'v'
POS_LIST = [NOUN, VERB, ADJ, ADV]
VERB_FRAME_STRINGS = (
None,
"Something %s",
"Somebody %s",
"It is %sing",
"Something is %sing PP",
"Something %s something Adjective/Noun",
"Something %s Adjective/Noun",
"Somebody %s Adjective",
"Somebody %s something",
"Somebody %s somebody",
"Something %s somebody",
"Something %s something",
"Something %s to somebody",
"Somebody %s on something",
"Somebody %s somebody something",
"Somebody %s something to somebody",
"Somebody %s something from somebody",
"Somebody %s somebody with something",
"Somebody %s somebody of something",
"Somebody %s something on somebody",
"Somebody %s somebody PP",
"Somebody %s something PP",
"Somebody %s PP",
"Somebody's (body part) %s",
"Somebody %s somebody to INFINITIVE",
"Somebody %s somebody INFINITIVE",
"Somebody %s that CLAUSE",
"Somebody %s to somebody",
"Somebody %s to INFINITIVE",
"Somebody %s whether INFINITIVE",
"Somebody %s somebody into V-ing something",
"Somebody %s something with something",
"Somebody %s INFINITIVE",
"Somebody %s VERB-ing",
"It %s that CLAUSE",
"Something %s INFINITIVE")
path = []
"""A list of directories where the NLTK data package might reside.
These directories will be checked in order when looking for a
resource in the data package. Note that this allows users to
substitute in their own versions of resources, if they have them
(e.g., in their home directory under ~/nltk/data)."""
# User-specified locations:
path += [d for d in os.environ.get('NLTK_DATA', '').split(os.pathsep) if d]
if os.path.expanduser('~/') != '~/': path += [
os.path.expanduser('~/nltk_data')]
# Common locations on Windows:
if sys.platform.startswith('win'): path += [
r'C:\nltk_data', r'D:\nltk_data', r'E:\nltk_data',
os.path.join(sys.prefix, 'nltk_data'),
os.path.join(sys.prefix, 'lib', 'nltk_data'),
os.path.join(os.environ.get('APPDATA', 'C:\\'), 'nltk_data')]
# Common locations on UNIX & OS X:
else: path += [
'/usr/share/nltk_data',
'/usr/local/share/nltk_data',
'/usr/lib/nltk_data',
'/usr/local/lib/nltk_data',
'/usr/share']
try:
from collections import defaultdict
except ImportError:
class defaultdict(dict):
def __init__(self, default_factory=None, *a, **kw):
if (default_factory is not None and
not hasattr(default_factory, '__call__')):
raise TypeError('first argument must be callable')
dict.__init__(self, *a, **kw)
self.default_factory = default_factory
def __getitem__(self, key):
try:
return dict.__getitem__(self, key)
except KeyError:
return self.__missing__(key)
def __missing__(self, key):
if self.default_factory is None:
raise KeyError(key)
self[key] = value = self.default_factory()
return value
def __reduce__(self):
if self.default_factory is None:
args = tuple()
else:
args = self.default_factory,
return type(self), args, None, None, self.iteritems()
def copy(self):
return self.__copy__()
def __copy__(self):
return type(self)(self.default_factory, self)
def __deepcopy__(self, memo):
import copy
return type(self)(self.default_factory,
copy.deepcopy(self.items()))
def __repr__(self):
return 'defaultdict(%s, %s)' % (self.default_factory,
dict.__repr__(self))
# [XX] to make pickle happy in python 2.4:
import collections
collections.defaultdict = defaultdict
class PathPointer(object):
"""
An abstract base class for 'path pointers,' used by NLTK's data
package to identify specific paths. Two subclasses exist:
L{FileSystemPathPointer} identifies a file that can be accessed
directly via a given absolute path. L{ZipFilePathPointer}
identifies a file contained within a zipfile, that can be accessed
by reading that zipfile.
"""
def open(self, encoding=None):
"""
Return a seekable read-only stream that can be used to read
the contents of the file identified by this path pointer.
@raise IOError: If the path specified by this pointer does
not contain a readable file.
"""
raise NotImplementedError('abstract base class')
def file_size(self):
"""
Return the size of the file pointed to by this path pointer,
in bytes.
@raise IOError: If the path specified by this pointer does
not contain a readable file.
"""
raise NotImplementedError('abstract base class')
def join(self, fileid):
"""
Return a new path pointer formed by starting at the path
identified by this pointer, and then following the relative
path given by C{fileid}. The path components of C{fileid}
should be seperated by forward slashes (C{/}), regardless of
the underlying file system's path seperator character.
"""
raise NotImplementedError('abstract base class')
class FileSystemPathPointer(PathPointer, str):
"""
A path pointer that identifies a file which can be accessed
directly via a given absolute path. C{FileSystemPathPointer} is a
subclass of C{str} for backwards compatibility purposes --
this allows old code that expected C{nltk.data.find()} to expect a
string to usually work (assuming the resource is not found in a
zipfile). It also permits open() to work on a FileSystemPathPointer.
"""
def __init__(self, path):
"""
Create a new path pointer for the given absolute path.
@raise IOError: If the given path does not exist.
"""
path = os.path.abspath(path)
if not os.path.exists(path):
raise IOError('No such file or directory: %r' % path)
self._path = path
# There's no need to call str.__init__(), since it's a no-op;
# str does all of its setup work in __new__.
path = property(lambda self: self._path, doc="""
The absolute path identified by this path pointer.""")
def open(self, encoding=None):
stream = open(self._path, 'rb')
if encoding is not None:
stream = SeekableUnicodeStreamReader(stream, encoding)
return stream
def file_size(self):
return os.stat(self._path).st_size
def join(self, fileid):
path = os.path.join(self._path, *fileid.split('/'))
return FileSystemPathPointer(path)
def __repr__(self):
return 'FileSystemPathPointer(%r)' % self._path
def __str__(self):
return self._path
def find(resource_name):
"""
Find the given resource by searching through the directories and
zip files in L{nltk.data.path}, and return a corresponding path
name. If the given resource is not found, raise a C{LookupError},
whose message gives a pointer to the installation instructions for
the NLTK downloader.
Zip File Handling:
- If C{resource_name} contains a component with a C{.zip}
extension, then it is assumed to be a zipfile; and the
remaining path components are used to look inside the zipfile.
- If any element of C{nltk.data.path} has a C{.zip} extension,
then it is assumed to be a zipfile.
- If a given resource name that does not contain any zipfile
component is not found initially, then C{find()} will make a
second attempt to find that resource, by replacing each
component I{p} in the path with I{p.zip/p}. For example, this
allows C{find()} to map the resource name
C{corpora/chat80/cities.pl} to a zip file path pointer to
C{corpora/chat80.zip/chat80/cities.pl}.
- When using C{find()} to locate a directory contained in a
zipfile, the resource name I{must} end with the C{'/'}
character. Otherwise, C{find()} will not locate the
directory.
@type resource_name: C{str}
@param resource_name: The name of the resource to search for.
Resource names are posix-style relative path names, such as
C{'corpora/brown'}. In particular, directory names should
always be separated by the C{'/'} character, which will be
automatically converted to a platform-appropriate path
separator.
@rtype: C{str}
"""
# Check if the resource name includes a zipfile name
m = re.match('(.*\.zip)/?(.*)$|', resource_name)
zipfile, zipentry = m.groups()
# Check each item in our path
for path_item in path:
# Is the path item a zipfile?
if os.path.isfile(path_item) and path_item.endswith('.zip'):
try: return ZipFilePathPointer(path_item, resource_name)
except IOError: continue # resource not in zipfile
# Is the path item a directory?
elif os.path.isdir(path_item):
if zipfile is None:
p = os.path.join(path_item, *resource_name.split('/'))
if os.path.exists(p):
if p.endswith('.gz'):
return GzipFileSystemPathPointer(p)
else:
return FileSystemPathPointer(p)
else:
p = os.path.join(path_item, *zipfile.split('/'))
if os.path.exists(p):
try: return ZipFilePathPointer(p, zipentry)
except IOError: continue # resource not in zipfile
# Fallback: if the path doesn't include a zip file, then try
# again, assuming that one of the path components is inside a
# zipfile of the same name.
if zipfile is None:
pieces = resource_name.split('/')
for i in range(len(pieces)):
modified_name = '/'.join(pieces[:i]+[pieces[i]+'.zip']+pieces[i:])
try: return find(modified_name)
except LookupError: pass
# Display a friendly error message if the resource wasn't found:
msg = textwrap.fill(
'Resource %r not found. Please use the NLTK Downloader to '
'obtain the resource: >>> nltk.download().' %
(resource_name,), initial_indent=' ', subsequent_indent=' ',
width=66)
msg += '\n Searched in:' + ''.join('\n - %r' % d for d in path)
sep = '*'*70
resource_not_found = '\n%s\n%s\n%s' % (sep, msg, sep)
raise LookupError(resource_not_found)
class _WordNetObject(object):
"""A common base class for lemmas and synsets."""
def hypernyms(self):
return self._related('@')
def instance_hypernyms(self):
return self._related('@i')
def hyponyms(self):
return self._related('~')
def instance_hyponyms(self):
return self._related('~i')
def member_holonyms(self):
return self._related('#m')
def substance_holonyms(self):
return self._related('#s')
def part_holonyms(self):
return self._related('#p')
def member_meronyms(self):
return self._related('%m')
def substance_meronyms(self):
return self._related('%s')
def part_meronyms(self):
return self._related('%p')
def attributes(self):
return self._related('=')
def entailments(self):
return self._related('*')
def causes(self):
return self._related('>')
def also_sees(self):
return self._related('^')
def verb_groups(self):
return self._related('$')
def similar_tos(self):
return self._related('&')
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name
def __ne__(self, other):
return self.name != other.name
class Lemma(_WordNetObject):
"""
The lexical entry for a single morphological form of a
sense-disambiguated word.
Create a Lemma from a "<word>.<pos>.<number>.<lemma>" string where:
<word> is the morphological stem identifying the synset
<pos> is one of the module attributes ADJ, ADJ_SAT, ADV, NOUN or VERB
<number> is the sense number, counting from 0.
<lemma> is the morphological form of interest
Note that <word> and <lemma> can be different, e.g. the Synset
'salt.n.03' has the Lemmas 'salt.n.03.salt', 'salt.n.03.saltiness' and
'salt.n.03.salinity'.
Lemma attributes
----------------
name - The canonical name of this lemma.
synset - The synset that this lemma belongs to.
syntactic_marker - For adjectives, the WordNet string identifying the
syntactic position relative modified noun. See:
http://wordnet.princeton.edu/man/wninput.5WN.html#sect10
For all other parts of speech, this attribute is None.
Lemma methods
-------------
Lemmas have the following methods for retrieving related Lemmas. They
correspond to the names for the pointer symbols defined here:
http://wordnet.princeton.edu/man/wninput.5WN.html#sect3
These methods all return lists of Lemmas.
antonyms
hypernyms
instance_hypernyms
hyponyms
instance_hyponyms
member_holonyms
substance_holonyms
part_holonyms
member_meronyms
substance_meronyms
part_meronyms
attributes
derivationally_related_forms
entailments
causes
also_sees
verb_groups
similar_tos
pertainyms
"""
# formerly _from_synset_info
def __init__(self, wordnet_corpus_reader, synset, name,
lexname_index, lex_id, syntactic_marker):
self._wordnet_corpus_reader = wordnet_corpus_reader
self.name = name
self.syntactic_marker = syntactic_marker
self.synset = synset
self.frame_strings = []
self.frame_ids = []
self._lexname_index = lexname_index
self._lex_id = lex_id
self.key = None # gets set later.
def __repr__(self):
tup = type(self).__name__, self.synset.name, self.name
return "%s('%s.%s')" % tup
def _related(self, relation_symbol):
get_synset = self._wordnet_corpus_reader._synset_from_pos_and_offset
return [get_synset(pos, offset).lemmas[lemma_index]
for pos, offset, lemma_index
in self.synset._lemma_pointers[self.name, relation_symbol]]
def count(self):
"""Return the frequency count for this Lemma"""
return self._wordnet_corpus_reader.lemma_count(self)
def antonyms(self):
return self._related('!')
def derivationally_related_forms(self):
return self._related('+')
def pertainyms(self):
return self._related('\\')
class Synset(_WordNetObject):
"""Create a Synset from a "<lemma>.<pos>.<number>" string where:
<lemma> is the word's morphological stem
<pos> is one of the module attributes ADJ, ADJ_SAT, ADV, NOUN or VERB
<number> is the sense number, counting from 0.
Synset attributes
-----------------
name - The canonical name of this synset, formed using the first lemma
of this synset. Note that this may be different from the name
passed to the constructor if that string used a different lemma to
identify the synset.
pos - The synset's part of speech, matching one of the module level
attributes ADJ, ADJ_SAT, ADV, NOUN or VERB.
lemmas - A list of the Lemma objects for this synset.
definition - The definition for this synset.
examples - A list of example strings for this synset.
offset - The offset in the WordNet dict file of this synset.
#lexname - The name of the lexicographer file containing this synset.
Synset methods
--------------
Synsets have the following methods for retrieving related Synsets.
They correspond to the names for the pointer symbols defined here:
http://wordnet.princeton.edu/man/wninput.5WN.html#sect3
These methods all return lists of Synsets.
hypernyms
instance_hypernyms
hyponyms
instance_hyponyms
member_holonyms
substance_holonyms
part_holonyms
member_meronyms
substance_meronyms
part_meronyms
attributes
entailments
causes
also_sees
verb_groups
similar_tos
Additionally, Synsets support the following methods specific to the
hypernym relation:
root_hypernyms
common_hypernyms
lowest_common_hypernyms
Note that Synsets do not support the following relations because
these are defined by WordNet as lexical relations:
antonyms
derivationally_related_forms
pertainyms
"""
def __init__(self, wordnet_corpus_reader):
self._wordnet_corpus_reader = wordnet_corpus_reader
# All of these attributes get initialized by
# WordNetCorpusReader._synset_from_pos_and_line()
self.pos = None
self.offset = None
self.name = None
self.frame_ids = []
self.lemmas = []
self.lemma_names = []
self.lemma_infos = [] # never used?
self.definition = None
self.examples = []
self.lexname = None # lexicographer name
self._pointers = defaultdict(set)
self._lemma_pointers = defaultdict(set)
def root_hypernyms(self):
"""Get the topmost hypernyms of this synset in WordNet."""
result = []
seen = set()
todo = [self]
while todo:
next_synset = todo.pop()
if next_synset not in seen:
seen.add(next_synset)
next_hypernyms = next_synset.hypernyms() + \
next_synset.instance_hypernyms()
if not next_hypernyms:
result.append(next_synset)
else:
todo.extend(next_hypernyms)
return result
# Simpler implementation which makes incorrect assumption that
# hypernym hierarcy is acyclic:
#
# if not self.hypernyms():
# return [self]
# else:
# return list(set(root for h in self.hypernyms()
# for root in h.root_hypernyms()))
def max_depth(self):
"""
@return: The length of the longest hypernym path from this
synset to the root.
"""
if "_max_depth" not in self.__dict__:
hypernyms = self.hypernyms() + self.instance_hypernyms()
if not hypernyms:
self._max_depth = 0
else:
self._max_depth = 1 + max(h.max_depth() for h in hypernyms)
return self._max_depth
def min_depth(self):
"""
@return: The length of the shortest hypernym path from this
synset to the root.
"""
if "_min_depth" not in self.__dict__:
hypernyms = self.hypernyms() + self.instance_hypernyms()
if not hypernyms:
self._min_depth = 0
else:
self._min_depth = 1 + min(h.min_depth() for h in hypernyms)
return self._min_depth
def breadth_first(self, tree, children=iter, depth=-1, queue=None):
"""Traverse the nodes of a tree in breadth-first order.
(No need to check for cycles.)
The first argument should be the tree root;
children should be a function taking as argument a tree node
and returning an iterator of the node's children.
"""
if queue == None:
queue = []
queue.append(tree)
while queue:
node = queue.pop(0)
yield node
if depth != 0:
try:
queue += children(node)
depth -= 1
except:
pass
def closure(self, rel, depth=-1):
"""Return the transitive closure of source under the rel
relationship, breadth-first
>>> from nltk.corpus import wordnet as wn
>>> dog = wn.synset('dog.n.01')
>>> hyp = lambda s:s.hypernyms()
>>> list(dog.closure(hyp))
[Synset('domestic_animal.n.01'), Synset('canine.n.02'),
Synset('animal.n.01'), Synset('carnivore.n.01'),
Synset('organism.n.01'), Synset('placental.n.01'),
Synset('living_thing.n.01'), Synset('mammal.n.01'),
Synset('whole.n.02'), Synset('vertebrate.n.01'),
Synset('object.n.01'), Synset('chordate.n.01'),
Synset('physical_entity.n.01'), Synset('entity.n.01')]
"""
#from nltk.util import breadth_first
synset_offsets = []
#for synset in breadth_first(self, rel, depth):
for synset in breadth_first(self, rel, depth):
if synset.offset != self.offset:
if synset.offset not in synset_offsets:
synset_offsets.append(synset.offset)
yield synset
def hypernym_paths(self):
"""
Get the path(s) from this synset to the root, where each path is a
list of the synset nodes traversed on the way to the root.
@return: A list of lists, where each list gives the node sequence
connecting the initial L{Synset} node and a root node.
"""
paths = []
hypernyms = self.hypernyms()
if len(hypernyms) == 0:
paths = [[self]]
for hypernym in hypernyms:
for ancestor_list in hypernym.hypernym_paths():
ancestor_list.append(self)
paths.append(ancestor_list)
return paths
def common_hypernyms(self, other):
"""
Find all synsets that are hypernyms of this synset and the
other synset.
@type other: L{Synset}
@param other: other input synset.
@return: The synsets that are hypernyms of both synsets.
"""
self_synsets = set(self_synset
for self_synsets in self._iter_hypernym_lists()
for self_synset in self_synsets)
other_synsets = set(other_synset
for other_synsets in other._iter_hypernym_lists()
for other_synset in other_synsets)
return list(self_synsets.intersection(other_synsets))
def lowest_common_hypernyms(self, other):
"""Get the lowest synset that both synsets have as a hypernym."""
self_hypernyms = self._iter_hypernym_lists()
other_hypernyms = other._iter_hypernym_lists()
synsets = set(s for synsets in self_hypernyms for s in synsets)
others = set(s for synsets in other_hypernyms for s in synsets)
synsets.intersection_update(others)
try:
max_depth = max(s.min_depth() for s in synsets)
return [s for s in synsets if s.min_depth() == max_depth]
except ValueError:
return []
def hypernym_distances(self, distance=0):
"""
Get the path(s) from this synset to the root, counting the distance
of each node from the initial node on the way. A set of
(synset, distance) tuples is returned.
@type distance: C{int}
@param distance: the distance (number of edges) from this hypernym to
the original hypernym L{Synset} on which this method was called.
@return: A set of (L{Synset}, int) tuples where each L{Synset} is
a hypernym of the first L{Synset}.
"""
distances = set([(self, distance)])
for hypernym in self.hypernyms() + self.instance_hypernyms():
distances |= hypernym.hypernym_distances(distance+1)
return distances
def shortest_path_distance(self, other):
"""
Returns the distance of the shortest path linking the two synsets (if
one exists). For each synset, all the ancestor nodes and their
distances are recorded and compared. The ancestor node common to both
synsets that can be reached with the minimum number of traversals is
used. If no ancestor nodes are common, None is returned. If a node is
compared with itself 0 is returned.
@type other: L{Synset}
@param other: The Synset to which the shortest path will be found.
@return: The number of edges in the shortest path connecting the two
nodes, or None if no path exists.
"""
if self == other:
return 0
path_distance = None
dist_list1 = self.hypernym_distances()
dist_dict1 = {}
dist_list2 = other.hypernym_distances()
dist_dict2 = {}
# Transform each distance list into a dictionary. In cases where
# there are duplicate nodes in the list (due to there being multiple
# paths to the root) the duplicate with the shortest distance from
# the original node is entered.
for (l, d) in [(dist_list1, dist_dict1), (dist_list2, dist_dict2)]:
for (key, value) in l:
if key in d:
if value < d[key]:
d[key] = value
else:
d[key] = value
# For each ancestor synset common to both subject synsets, find the
# connecting path length. Return the shortest of these.
for synset1 in dist_dict1.keys():
for synset2 in dist_dict2.keys():
if synset1 == synset2:
new_distance = dist_dict1[synset1] + dist_dict2[synset2]
if path_distance < 0 or new_distance < path_distance:
path_distance = new_distance
return path_distance
def tree(self, rel, depth=-1, cut_mark=None):
"""
>>> from nltk.corpus import wordnet as wn
>>> dog = wn.synset('dog.n.01')
>>> hyp = lambda s:s.hypernyms()
>>> from pprint import pprint
>>> pprint(dog.tree(hyp))
[Synset('dog.n.01'),
[Synset('domestic_animal.n.01'),
[Synset('animal.n.01'),
[Synset('organism.n.01'),
[Synset('living_thing.n.01'),
[Synset('whole.n.02'),
[Synset('object.n.01'),
[Synset('physical_entity.n.01'), [Synset('entity.n.01')]]]]]]]],
[Synset('canine.n.02'),
[Synset('carnivore.n.01'),
[Synset('placental.n.01'),
[Synset('mammal.n.01'),
[Synset('vertebrate.n.01'),
[Synset('chordate.n.01'),
[Synset('animal.n.01'),
[Synset('organism.n.01'),
[Synset('living_thing.n.01'),
[Synset('whole.n.02'),
[Synset('object.n.01'),
[Synset('physical_entity.n.01'),
[Synset('entity.n.01')]]]]]]]]]]]]]]
"""
tree = [self]
if depth != 0:
tree += [x.tree(rel, depth-1, cut_mark) for x in rel(self)]
elif cut_mark:
tree += [cut_mark]
return tree
# interface to similarity methods
def path_similarity(self, other, verbose=False):
"""
Path Distance Similarity:
Return a score denoting how similar two word senses are, based on the
shortest path that connects the senses in the is-a (hypernym/hypnoym)
taxonomy. The score is in the range 0 to 1, except in those cases where
a path cannot be found (will only be true for verbs as there are many
distinct verb taxonomies), in which case None is returned. A score of
1 represents identity i.e. comparing a sense with itself will return 1.
@type other: L{Synset}
@param other: The L{Synset} that this L{Synset} is being compared to.
@return: A score denoting the similarity of the two L{Synset}s,
normally between 0 and 1. None is returned if no connecting path
could be found. 1 is returned if a L{Synset} is compared with
itself.
"""
distance = self.shortest_path_distance(other)
if distance >= 0:
return 1.0 / (distance + 1)
else:
return None
def lch_similarity(self, other, verbose=False):
"""
Leacock Chodorow Similarity:
Return a score denoting how similar two word senses are, based on the
shortest path that connects the senses (as above) and the maximum depth
of the taxonomy in which the senses occur. The relationship is given as
-log(p/2d) where p is the shortest path length and d is the taxonomy
depth.
@type other: L{Synset}
@param other: The L{Synset} that this L{Synset} is being compared to.
@return: A score denoting the similarity of the two L{Synset}s,
normally greater than 0. None is returned if no connecting path
could be found. If a L{Synset} is compared with itself, the
maximum score is returned, which varies depending on the taxonomy
depth.
"""
if self.pos != other.pos:
raise WordNetError('Computing the lch similarity requires ' + \
'%s and %s to have the same part of speech.' % \
(self, other))
if self.pos not in self._wordnet_corpus_reader._max_depth:
self._wordnet_corpus_reader._compute_max_depth(self.pos)
depth = self._wordnet_corpus_reader._max_depth[self.pos]
distance = self.shortest_path_distance(other)
if distance >= 0:
return -math.log((distance + 1) / (2.0 * depth))
else:
return None
def wup_similarity(self, other, verbose=False):
"""
Wu-Palmer Similarity:
Return a score denoting how similar two word senses are, based on the
depth of the two senses in the taxonomy and that of their Least Common
Subsumer (most specific ancestor node). Note that at this time the
scores given do _not_ always agree with those given by Pedersen's Perl
implementation of WordNet Similarity.
The LCS does not necessarily feature in the shortest path connecting
the two senses, as it is by definition the common ancestor deepest in
the taxonomy, not closest to the two senses. Typically, however, it
will so feature. Where multiple candidates for the LCS exist, that
whose shortest path to the root node is the longest will be selected.
Where the LCS has multiple paths to the root, the longer path is used
for the purposes of the calculation.
@type other: L{Synset}
@param other: The L{Synset} that this L{Synset} is being compared to.
@return: A float score denoting the similarity of the two L{Synset}s,
normally greater than zero. If no connecting path between the two
senses can be found, None is returned.
"""
subsumers = self.lowest_common_hypernyms(other)
# If no LCS was found return None
if len(subsumers) == 0:
return None
subsumer = subsumers[0]
# Get the longest path from the LCS to the root,
# including two corrections:
# - add one because the calculations include both the start and end
# nodes
# - add one to non-nouns since they have an imaginary root node
depth = subsumer.max_depth() + 1
if subsumer.pos != NOUN:
depth += 1
# Get the shortest path from the LCS to each of the synsets it is
# subsuming. Add this to the LCS path length to get the path
# length from each synset to the root.
len1 = self.shortest_path_distance(subsumer)
len2 = other.shortest_path_distance(subsumer)
if len1 is None or len2 is None:
return None
len1 += depth
len2 += depth
return (2.0 * depth) / (len1 + len2)
def res_similarity(self, other, ic, verbose=False):
"""
Resnik Similarity:
Return a score denoting how similar two word senses are, based on the
Information Content (IC) of the Least Common Subsumer (most specific
ancestor node).
@type other: L{Synset}
@param other: The L{Synset} that this L{Synset} is being compared to.
@type ic: C{dict}
@param ic: an information content object (as returned by L{load_ic()}).
@return: A float score denoting the similarity of the two L{Synset}s.
Synsets whose LCS is the root node of the taxonomy will have a
score of 0 (e.g. N['dog'][0] and N['table'][0]).
"""
ic1, ic2, lcs_ic = _lcs_ic(self, other, ic)
return lcs_ic
def jcn_similarity(self, other, ic, verbose=False):
"""
Jiang-Conrath Similarity:
Return a score denoting how similar two word senses are, based on the
Information Content (IC) of the Least Common Subsumer (most specific
ancestor node) and that of the two input Synsets. The relationship is
given by the equation 1 / (IC(s1) + IC(s2) - 2 * IC(lcs)).
@type other: L{Synset}
@param other: The L{Synset} that this L{Synset} is being compared to.
@type ic: C{dict}
@param ic: an information content object (as returned by L{load_ic()}).
@return: A float score denoting the similarity of the two L{Synset}s.
"""
if self == other:
return _INF
ic1, ic2, lcs_ic = _lcs_ic(self, other, ic)
# If either of the input synsets are the root synset, or have a
# frequency of 0 (sparse data problem), return 0.
if ic1 == 0 or ic2 == 0:
return 0
ic_difference = ic1 + ic2 - 2 * lcs_ic
if ic_difference == 0:
return _INF
return 1 / ic_difference
def lin_similarity(self, other, ic, verbose=False):
"""
Lin Similarity:
Return a score denoting how similar two word senses are, based on the
Information Content (IC) of the Least Common Subsumer (most specific
ancestor node) and that of the two input Synsets. The relationship is
given by the equation 2 * IC(lcs) / (IC(s1) + IC(s2)).
@type other: L{Synset}
@param other: The L{Synset} that this L{Synset} is being compared to.
@type ic: C{dict}
@param ic: an information content object (as returned by L{load_ic()}).
@return: A float score denoting the similarity of the two L{Synset}s,
in the range 0 to 1.
"""
ic1, ic2, lcs_ic = _lcs_ic(self, other, ic)
return (2.0 * lcs_ic) / (ic1 + ic2)
def _iter_hypernym_lists(self):
"""
@return: An iterator over L{Synset}s that are either proper
hypernyms or instance of hypernyms of the synset.
"""
todo = [self]
seen = set()
while todo:
for synset in todo:
seen.add(synset)
yield todo
todo = [hypernym
for synset in todo
for hypernym in (synset.hypernyms() + \
synset.instance_hypernyms())
if hypernym not in seen]
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.name)
def _related(self, relation_symbol):
get_synset = self._wordnet_corpus_reader._synset_from_pos_and_offset
pointer_tuples = self._pointers[relation_symbol]
return [get_synset(pos, offset) for pos, offset in pointer_tuples]
##########################################
######corpusreader from api.py############
class CorpusReader(object):
"""
A base class for X{corpus reader} classes, each of which can be
used to read a specific corpus format. Each individual corpus
reader instance is used to read a specific corpus, consisting of
one or more files under a common root directory. Each file is