-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Bug]: Azure openai embedding #17582
Comments
I found some similar threads that might help you with the connection error you're experiencing:
These threads might provide some insights or solutions to your problem. To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu the above links are not solving my issue |
To resolve the
Here's a code snippet for initializing the from llama_index.embeddings.azure_openai.base import AzureOpenAIEmbedding
embedding = AzureOpenAIEmbedding(
azure_endpoint="https://YOUR_RESOURCE_NAME.openai.azure.com/",
api_version="YOUR_API_VERSION",
api_key="YOUR_API_KEY",
azure_deployment="YOUR_AZURE_DEPLOYMENT",
use_azure_ad=False, # Set to True if using Azure AD
# other parameters as needed
) Replace To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@dosu tried and checked same issue File "/app/app/apis/components/datastore/azure_datastore.py", line 65, in add_data_to_brain docai_celery_worker | index.insert_nodes(text_nodes) docai_celery_worker | │ │ └ [TextNode(id_='f9c76897-e1a6-4b68-83f7-439bc64a187f', embedding=None, metadata={'pdf_name': 'RSA_OnDemand_PIN_Reset.pdf', 'pa... docai_celery_worker | │ └ <function VectorStoreIndex.insert_nodes at 0x7f4d5cd509a0> docai_celery_worker | └ <llama_index.core.indices.vector_store.base.VectorStoreIndex object at 0x7f4d5d10bc90> docai_celery_worker | docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/indices/vector_store/base.py", line 333, in insert_nodes docai_celery_worker | self.insert(nodes, **insert_kwargs) docai_celery_worker | │ │ │ └ {} docai_celery_worker | │ │ └ [TextNode(id='f9c76897-e1a6-4b68-83f7-439bc64a187f', embedding=None, metadata={'pdf_name': 'RSA_OnDemand_PIN_Reset.pdf', 'pa... docai_celery_worker | │ └ <function VectorStoreIndex._insert at 0x7f4d5cd50900> docai_celery_worker | └ <llama_index.core.indices.vector_store.base.VectorStoreIndex object at 0x7f4d5d10bc90> docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/indices/vector_store/base.py", line 314, in _insert docai_celery_worker | self._add_nodes_to_index(self.index_struct, nodes, **insert_kwargs) docai_celery_worker | │ │ │ │ │ └ {} docai_celery_worker | │ │ │ │ └ [TextNode(id='f9c76897-e1a6-4b68-83f7-439bc64a187f', embedding=None, metadata={'pdf_name': 'RSA_OnDemand_PIN_Reset.pdf', 'pa... docai_celery_worker | │ │ │ └ IndexDict(index_id='3d056469-8ed4-4007-bb29-7ac254baefbc', summary=None, nodes_dict={}, doc_id_dict={}, embeddings_dict={}) docai_celery_worker | │ │ └ <llama_index.core.indices.vector_store.base.VectorStoreIndex object at 0x7f4d5d10bc90> docai_celery_worker | │ └ <function VectorStoreIndex._add_nodes_to_index at 0x7f4d5cd50720> docai_celery_worker | └ <llama_index.core.indices.vector_store.base.VectorStoreIndex object at 0x7f4d5d10bc90> docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/indices/vector_store/base.py", line 232, in _add_nodes_to_index docai_celery_worker | nodes_batch = self.get_node_with_embedding(nodes_batch, show_progress) docai_celery_worker | │ │ │ └ False docai_celery_worker | │ │ └ [TextNode(id='f9c76897-e1a6-4b68-83f7-439bc64a187f', embedding=None, metadata={'pdf_name': 'RSA_OnDemand_PIN_Reset.pdf', 'pa... docai_celery_worker | │ └ <function VectorStoreIndex._get_node_with_embedding at 0x7f4d5cd50540> docai_celery_worker | └ <llama_index.core.indices.vector_store.base.VectorStoreIndex object at 0x7f4d5d10bc90> docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/indices/vector_store/base.py", line 139, in _get_node_with_embedding docai_celery_worker | id_to_embed_map = embed_nodes( docai_celery_worker | └ <function embed_nodes at 0x7f4d5d0d63e0> docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/indices/utils.py", line 160, in embed_nodes docai_celery_worker | new_embeddings = embed_model.get_text_embedding_batch( docai_celery_worker | │ └ <FunctionWrapper at 0x7f4d5d806960 for function at 0x7f4d5d594f40> docai_celery_worker | └ OpenAIEmbedding(model_name='text-embedding-ada-002', embed_batch_size=100, callback_manager=<llama_index.core.callbacks.base.... docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/instrumentation/dispatcher.py", line 321, in wrapper docai_celery_worker | result = func(*args, **kwargs) docai_celery_worker | │ │ └ {'show_progress': False} docai_celery_worker | │ └ (['pdf_name: RSA_OnDemand_PIN_Reset.pdf\npage_no: 0\nimage_path: /app/Documents/d69f1745-7f43-45eb-8441-71e5c6ad5f59/images/R... docai_celery_worker | └ <bound method BaseEmbedding.get_text_embedding_batch of OpenAIEmbedding(model_name='text-embedding-ada-002', embed_batch_size... docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/core/base/embeddings/base.py", line 335, in get_text_embedding_batch docai_celery_worker | embeddings = self._get_text_embeddings(cur_batch) docai_celery_worker | │ │ └ ['pdf_name: RSA_OnDemand_PIN_Reset.pdf\npage_no: 0\nimage_path: /app/Documents/d69f1745-7f43-45eb-8441-71e5c6ad5f59/images/RS... docai_celery_worker | │ └ <function OpenAIEmbedding._get_text_embeddings at 0x7f4d5d7032e0> docai_celery_worker | └ OpenAIEmbedding(model_name='text-embedding-ada-002', embed_batch_size=100, callback_manager=<llama_index.core.callbacks.base.... docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/llama_index/embeddings/openai/base.py", line 465, in _get_text_embeddings docai_celery_worker | return _retryable_get_embeddings() docai_celery_worker | └ <function OpenAIEmbedding._get_text_embeddings.._retryable_get_embeddings at 0x7f4d869b9800> docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/tenacity/init.py", line 336, in wrapped_f docai_celery_worker | return copy(f, *args, **kw) docai_celery_worker | │ │ │ └ {} docai_celery_worker | │ │ └ () docai_celery_worker | │ └ <function OpenAIEmbedding._get_text_embeddings.._retryable_get_embeddings at 0x7f4d869b96c0> docai_celery_worker | └ <Retrying object at 0x7f4d86c23a90 (stop=<tenacity.stop.stop_any object at 0x7f4d86c20810>, wait=<tenacity.wait.wait_random_e... docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/tenacity/init.py", line 475, in call docai_celery_worker | do = self.iter(retry_state=retry_state) docai_celery_worker | │ │ └ <RetryCallState 139970950086608: attempt #2; slept for 1.0; last result: failed (APIConnectionError Connection error.)> docai_celery_worker | │ └ <function BaseRetrying.iter at 0x7f4d5c38b920> docai_celery_worker | └ <Retrying object at 0x7f4d86c23a90 (stop=<tenacity.stop.stop_any object at 0x7f4d86c20810>, wait=<tenacity.wait.wait_random_e... docai_celery_worker | File "/usr/local/lib/python3.11/site-packages/tenacity/init.py", line 376, in iter |
The
If these steps do not resolve the issue, consider testing the connection from a different network or environment to rule out local network issues. To continue talking to Dosu, mention @dosu. Help Dosu learn! Give it feedback: Great Response | Irrelevant Answer | Incorrect Sources | Too Verbose | Hallucination | Other |
@krupalsmart97 seems like either your azure setup is not correct, or you are not passing the correct embed model to your index. I see You can also test your embed model directly to ensure it works |
Bug Description
i am trying to index documents to azure ai search using llama index and using azure openai embedding model
self.openai_emb = AzureOpenAIEmbedding(
model="text-embedding-3-large",
deployment_name="text-embedding-3-large",
api_key=settings.openai_emb_api_key,
azure_endpoint=settings.openai_emb_base_url,
api_version=settings.openai_emb_api_version,
)
index = VectorStoreIndex(
nodes=text_nodes,
storage_context=storage_context,
embed_model=embed_model,
llm=llm,
show_progress=True,
)
but getting error
llama_index.embeddings.openai.base.OpenAIEmbedding._get_text_embeddings.._retryable_get_embeddings in 1.0 seconds as it raised APIConnectionError: Connection error..
Version
0.12.11
Steps to Reproduce
https://github.com/Azure/azure-search-vector-samples/blob/main/demo-python/code/e2e-demos/azure-ai-search-llamaindex-multimodal-rag-demo.ipynb
Relevant Logs/Tracbacks
The text was updated successfully, but these errors were encountered: