diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000000..e69de29bb2d diff --git a/CNAME b/CNAME new file mode 100644 index 00000000000..f5515ee7595 --- /dev/null +++ b/CNAME @@ -0,0 +1 @@ +kframework.org diff --git a/assets/css/Firefly-Download-Icon-Inverted.32636383.png b/assets/css/Firefly-Download-Icon-Inverted.32636383.png new file mode 100644 index 00000000000..c87605a3d70 Binary files /dev/null and b/assets/css/Firefly-Download-Icon-Inverted.32636383.png differ diff --git a/assets/css/Firefly-Download-Icon.8094a4f0.png b/assets/css/Firefly-Download-Icon.8094a4f0.png new file mode 100644 index 00000000000..e0fdca7b4c4 Binary files /dev/null and b/assets/css/Firefly-Download-Icon.8094a4f0.png differ diff --git a/assets/css/fontawesome-webfont.0caf0c90.ttf b/assets/css/fontawesome-webfont.0caf0c90.ttf new file mode 100644 index 00000000000..35acda2fa11 Binary files /dev/null and b/assets/css/fontawesome-webfont.0caf0c90.ttf differ diff --git a/assets/css/fontawesome-webfont.3981e506.eot b/assets/css/fontawesome-webfont.3981e506.eot new file mode 100644 index 00000000000..e9f60ca953f Binary files /dev/null and b/assets/css/fontawesome-webfont.3981e506.eot differ diff --git a/assets/css/fontawesome-webfont.58488e7e.woff2 b/assets/css/fontawesome-webfont.58488e7e.woff2 new file mode 100644 index 00000000000..4d13fc60404 Binary files /dev/null and b/assets/css/fontawesome-webfont.58488e7e.woff2 differ diff --git a/assets/css/fontawesome-webfont.a9323ae9.svg b/assets/css/fontawesome-webfont.a9323ae9.svg new file mode 100644 index 00000000000..756bf0896c7 --- /dev/null +++ b/assets/css/fontawesome-webfont.a9323ae9.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/assets/css/fontawesome-webfont.ed962b83.woff b/assets/css/fontawesome-webfont.ed962b83.woff new file mode 100644 index 00000000000..400014a4b06 Binary files /dev/null and b/assets/css/fontawesome-webfont.ed962b83.woff differ diff --git a/assets/css/iconfont.960c72b2.eot b/assets/css/iconfont.960c72b2.eot new file mode 100644 index 00000000000..63c34745265 Binary files /dev/null and b/assets/css/iconfont.960c72b2.eot differ diff --git a/assets/css/iconfont.a07d77e0.woff2 b/assets/css/iconfont.a07d77e0.woff2 new file mode 100644 index 00000000000..02fbbae4194 Binary files /dev/null and b/assets/css/iconfont.a07d77e0.woff2 differ diff --git a/assets/css/iconfont.b2a06094.woff b/assets/css/iconfont.b2a06094.woff new file mode 100644 index 00000000000..5c0b2e3a596 Binary files /dev/null and b/assets/css/iconfont.b2a06094.woff differ diff --git a/assets/css/index.css b/assets/css/index.css new file mode 100644 index 00000000000..5fdaff40711 --- /dev/null +++ b/assets/css/index.css @@ -0,0 +1 @@ +:root{--blue:#007bff;--indigo:#6610f2;--purple:#6f42c1;--pink:#e83e8c;--red:#dc3545;--orange:#fd7e14;--yellow:#ffc107;--green:#28a745;--teal:#20c997;--cyan:#17a2b8;--white:#fff;--gray:#6c757d;--gray-dark:#343a40;--primary:#007bff;--secondary:#6c757d;--success:#28a745;--info:#17a2b8;--warning:#ffc107;--danger:#dc3545;--light:#f8f9fa;--dark:#343a40;--breakpoint-xs:0;--breakpoint-sm:576px;--breakpoint-md:768px;--breakpoint-lg:992px;--breakpoint-xl:1200px;--font-family-sans-serif:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans","Liberation Sans",sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol","Noto Color Emoji";--font-family-monospace:SFMono-Regular,Menlo,Monaco,Consolas,"Liberation Mono","Courier New",monospace}*,:after,:before{box-sizing:border-box}html{-webkit-text-size-adjust:100%;-webkit-tap-highlight-color:transparent;font-family:sans-serif;line-height:1.15}article,aside,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}body{color:#212529;text-align:left;background-color:#fff;margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,Liberation Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-size:1rem;font-weight:400;line-height:1.5}[tabindex="-1"]:focus:not(:focus-visible){outline:0!important}hr{box-sizing:content-box;height:0;overflow:visible}h1,h2,h3,h4,h5,h6{margin-top:0;margin-bottom:.5rem}p{margin-top:0;margin-bottom:1rem}abbr[data-original-title],abbr[title]{cursor:help;-webkit-text-decoration-skip-ink:none;text-decoration-skip-ink:none;text-decoration:underline;border-bottom:0;-webkit-text-decoration:underline dotted;text-decoration:underline dotted}address{font-style:normal;line-height:inherit;margin-bottom:1rem}dl,ol,ul{margin-top:0;margin-bottom:1rem}ol ol,ol ul,ul ol,ul ul{margin-bottom:0}dt{font-weight:700}dd{margin-bottom:.5rem;margin-left:0}blockquote{margin:0 0 1rem}b,strong{font-weight:bolder}small{font-size:80%}sub,sup{vertical-align:baseline;font-size:75%;line-height:0;position:relative}sub{bottom:-.25em}sup{top:-.5em}a{color:#007bff;background-color:#0000;text-decoration:none}a:hover{color:#0056b3;text-decoration:underline}a:not([href]):not([class]){color:inherit;text-decoration:none}a:not([href]):not([class]):hover{color:inherit;text-decoration:none}code,kbd,pre,samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace;font-size:1em}pre{-ms-overflow-style:scrollbar;margin-top:0;margin-bottom:1rem;overflow:auto}figure{margin:0 0 1rem}img{vertical-align:middle;border-style:none}svg{vertical-align:middle;overflow:hidden}table{border-collapse:collapse}caption{color:#6c757d;text-align:left;caption-side:bottom;padding-top:.75rem;padding-bottom:.75rem}th{text-align:inherit;text-align:-webkit-match-parent}label{margin-bottom:.5rem;display:inline-block}button{border-radius:0}button:focus:not(:focus-visible){outline:0}button,input,optgroup,select,textarea{font-family:inherit;font-size:inherit;line-height:inherit;margin:0}button,input{overflow:visible}button,select{text-transform:none}[role=button]{cursor:pointer}select{word-wrap:normal}[type=button],[type=reset],[type=submit],button{-webkit-appearance:button}[type=button]:not(:disabled),[type=reset]:not(:disabled),[type=submit]:not(:disabled),button:not(:disabled){cursor:pointer}[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner,button::-moz-focus-inner{border-style:none;padding:0}input[type=checkbox],input[type=radio]{box-sizing:border-box;padding:0}textarea{resize:vertical;overflow:auto}fieldset{min-width:0;border:0;margin:0;padding:0}legend{width:100%;max-width:100%;font-size:1.5rem;line-height:inherit;color:inherit;white-space:normal;margin-bottom:.5rem;padding:0;display:block}progress{vertical-align:baseline}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{outline-offset:-2px;-webkit-appearance:none}[type=search]::-webkit-search-decoration{-webkit-appearance:none}::-webkit-file-upload-button{font:inherit;-webkit-appearance:button}output{display:inline-block}summary{cursor:pointer;display:list-item}template{display:none}[hidden]{display:none!important}.h1,.h2,.h3,.h4,.h5,.h6,h1,h2,h3,h4,h5,h6{margin-bottom:.5rem;font-weight:500;line-height:1.2}.h1,h1{font-size:2.5rem}.h2,h2{font-size:2rem}.h3,h3{font-size:1.75rem}.h4,h4{font-size:1.5rem}.h5,h5{font-size:1.25rem}.h6,h6{font-size:1rem}.lead{font-size:1.25rem;font-weight:300}.display-1{font-size:6rem;font-weight:300;line-height:1.2}.display-2{font-size:5.5rem;font-weight:300;line-height:1.2}.display-3{font-size:4.5rem;font-weight:300;line-height:1.2}.display-4{font-size:3.5rem;font-weight:300;line-height:1.2}hr{border:0;border-top:1px solid #0000001a;margin-top:1rem;margin-bottom:1rem}.small,small{font-size:.875em;font-weight:400}.mark,mark{background-color:#fcf8e3;padding:.2em}.list-unstyled,.list-inline{padding-left:0;list-style:none}.list-inline-item{display:inline-block}.list-inline-item:not(:last-child){margin-right:.5rem}.initialism{text-transform:uppercase;font-size:90%}.blockquote{margin-bottom:1rem;font-size:1.25rem}.blockquote-footer{color:#6c757d;font-size:.875em;display:block}.blockquote-footer:before{content:"— "}.img-fluid{max-width:100%;height:auto}.img-thumbnail{max-width:100%;height:auto;background-color:#fff;border:1px solid #dee2e6;border-radius:.25rem;padding:.25rem}.figure{display:inline-block}.figure-img{margin-bottom:.5rem;line-height:1}.figure-caption{color:#6c757d;font-size:90%}code{color:#e83e8c;word-wrap:break-word;font-size:87.5%}a>code{color:inherit}kbd{color:#fff;background-color:#212529;border-radius:.2rem;padding:.2rem .4rem;font-size:87.5%}kbd kbd{padding:0;font-size:100%;font-weight:700}pre{color:#212529;font-size:87.5%;display:block}pre code{font-size:inherit;color:inherit;word-break:normal}.pre-scrollable{max-height:340px;overflow-y:scroll}.container,.container-fluid,.container-lg,.container-md,.container-sm,.container-xl{width:100%;margin-left:auto;margin-right:auto;padding-left:15px;padding-right:15px}@media (min-width:576px){.container,.container-sm{max-width:540px}}@media (min-width:768px){.container,.container-md,.container-sm{max-width:720px}}@media (min-width:992px){.container,.container-lg,.container-md,.container-sm{max-width:960px}}@media (min-width:1200px){.container,.container-lg,.container-md,.container-sm,.container-xl{max-width:1140px}}.row{-ms-flex-wrap:wrap;flex-wrap:wrap;margin-left:-15px;margin-right:-15px;display:-ms-flexbox;display:flex}.no-gutters{margin-left:0;margin-right:0}.no-gutters>.col,.no-gutters>[class*=col-]{padding-left:0;padding-right:0}.col,.col-1,.col-10,.col-11,.col-12,.col-2,.col-3,.col-4,.col-5,.col-6,.col-7,.col-8,.col-9,.col-auto,.col-lg,.col-lg-1,.col-lg-10,.col-lg-11,.col-lg-12,.col-lg-2,.col-lg-3,.col-lg-4,.col-lg-5,.col-lg-6,.col-lg-7,.col-lg-8,.col-lg-9,.col-lg-auto,.col-md,.col-md-1,.col-md-10,.col-md-11,.col-md-12,.col-md-2,.col-md-3,.col-md-4,.col-md-5,.col-md-6,.col-md-7,.col-md-8,.col-md-9,.col-md-auto,.col-sm,.col-sm-1,.col-sm-10,.col-sm-11,.col-sm-12,.col-sm-2,.col-sm-3,.col-sm-4,.col-sm-5,.col-sm-6,.col-sm-7,.col-sm-8,.col-sm-9,.col-sm-auto,.col-xl,.col-xl-1,.col-xl-10,.col-xl-11,.col-xl-12,.col-xl-2,.col-xl-3,.col-xl-4,.col-xl-5,.col-xl-6,.col-xl-7,.col-xl-8,.col-xl-9,.col-xl-auto{width:100%;padding-left:15px;padding-right:15px;position:relative}.col{max-width:100%;-ms-flex-positive:1;-ms-flex-preferred-size:0;flex-grow:1;flex-basis:0}.row-cols-1>*{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.row-cols-2>*{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.row-cols-3>*{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.row-cols-4>*{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.row-cols-5>*{max-width:20%;-ms-flex:0 0 20%;flex:0 0 20%}.row-cols-6>*{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-auto{width:auto;max-width:100%;-ms-flex:none;flex:none}.col-1{max-width:8.33333%;-ms-flex:0 0 8.33333%;flex:0 0 8.33333%}.col-2{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-3{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.col-4{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.col-5{max-width:41.6667%;-ms-flex:0 0 41.6667%;flex:0 0 41.6667%}.col-6{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.col-7{max-width:58.3333%;-ms-flex:0 0 58.3333%;flex:0 0 58.3333%}.col-8{max-width:66.6667%;-ms-flex:0 0 66.6667%;flex:0 0 66.6667%}.col-9{max-width:75%;-ms-flex:0 0 75%;flex:0 0 75%}.col-10{max-width:83.3333%;-ms-flex:0 0 83.3333%;flex:0 0 83.3333%}.col-11{max-width:91.6667%;-ms-flex:0 0 91.6667%;flex:0 0 91.6667%}.col-12{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.order-first{-ms-flex-order:-1;order:-1}.order-last{-ms-flex-order:13;order:13}.order-0{-ms-flex-order:0;order:0}.order-1{-ms-flex-order:1;order:1}.order-2{-ms-flex-order:2;order:2}.order-3{-ms-flex-order:3;order:3}.order-4{-ms-flex-order:4;order:4}.order-5{-ms-flex-order:5;order:5}.order-6{-ms-flex-order:6;order:6}.order-7{-ms-flex-order:7;order:7}.order-8{-ms-flex-order:8;order:8}.order-9{-ms-flex-order:9;order:9}.order-10{-ms-flex-order:10;order:10}.order-11{-ms-flex-order:11;order:11}.order-12{-ms-flex-order:12;order:12}.offset-1{margin-left:8.33333%}.offset-2{margin-left:16.6667%}.offset-3{margin-left:25%}.offset-4{margin-left:33.3333%}.offset-5{margin-left:41.6667%}.offset-6{margin-left:50%}.offset-7{margin-left:58.3333%}.offset-8{margin-left:66.6667%}.offset-9{margin-left:75%}.offset-10{margin-left:83.3333%}.offset-11{margin-left:91.6667%}@media (min-width:576px){.col-sm{max-width:100%;-ms-flex-positive:1;-ms-flex-preferred-size:0;flex-grow:1;flex-basis:0}.row-cols-sm-1>*{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.row-cols-sm-2>*{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.row-cols-sm-3>*{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.row-cols-sm-4>*{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.row-cols-sm-5>*{max-width:20%;-ms-flex:0 0 20%;flex:0 0 20%}.row-cols-sm-6>*{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-sm-auto{width:auto;max-width:100%;-ms-flex:none;flex:none}.col-sm-1{max-width:8.33333%;-ms-flex:0 0 8.33333%;flex:0 0 8.33333%}.col-sm-2{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-sm-3{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.col-sm-4{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.col-sm-5{max-width:41.6667%;-ms-flex:0 0 41.6667%;flex:0 0 41.6667%}.col-sm-6{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.col-sm-7{max-width:58.3333%;-ms-flex:0 0 58.3333%;flex:0 0 58.3333%}.col-sm-8{max-width:66.6667%;-ms-flex:0 0 66.6667%;flex:0 0 66.6667%}.col-sm-9{max-width:75%;-ms-flex:0 0 75%;flex:0 0 75%}.col-sm-10{max-width:83.3333%;-ms-flex:0 0 83.3333%;flex:0 0 83.3333%}.col-sm-11{max-width:91.6667%;-ms-flex:0 0 91.6667%;flex:0 0 91.6667%}.col-sm-12{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.order-sm-first{-ms-flex-order:-1;order:-1}.order-sm-last{-ms-flex-order:13;order:13}.order-sm-0{-ms-flex-order:0;order:0}.order-sm-1{-ms-flex-order:1;order:1}.order-sm-2{-ms-flex-order:2;order:2}.order-sm-3{-ms-flex-order:3;order:3}.order-sm-4{-ms-flex-order:4;order:4}.order-sm-5{-ms-flex-order:5;order:5}.order-sm-6{-ms-flex-order:6;order:6}.order-sm-7{-ms-flex-order:7;order:7}.order-sm-8{-ms-flex-order:8;order:8}.order-sm-9{-ms-flex-order:9;order:9}.order-sm-10{-ms-flex-order:10;order:10}.order-sm-11{-ms-flex-order:11;order:11}.order-sm-12{-ms-flex-order:12;order:12}.offset-sm-0{margin-left:0}.offset-sm-1{margin-left:8.33333%}.offset-sm-2{margin-left:16.6667%}.offset-sm-3{margin-left:25%}.offset-sm-4{margin-left:33.3333%}.offset-sm-5{margin-left:41.6667%}.offset-sm-6{margin-left:50%}.offset-sm-7{margin-left:58.3333%}.offset-sm-8{margin-left:66.6667%}.offset-sm-9{margin-left:75%}.offset-sm-10{margin-left:83.3333%}.offset-sm-11{margin-left:91.6667%}}@media (min-width:768px){.col-md{max-width:100%;-ms-flex-positive:1;-ms-flex-preferred-size:0;flex-grow:1;flex-basis:0}.row-cols-md-1>*{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.row-cols-md-2>*{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.row-cols-md-3>*{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.row-cols-md-4>*{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.row-cols-md-5>*{max-width:20%;-ms-flex:0 0 20%;flex:0 0 20%}.row-cols-md-6>*{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-md-auto{width:auto;max-width:100%;-ms-flex:none;flex:none}.col-md-1{max-width:8.33333%;-ms-flex:0 0 8.33333%;flex:0 0 8.33333%}.col-md-2{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-md-3{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.col-md-4{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.col-md-5{max-width:41.6667%;-ms-flex:0 0 41.6667%;flex:0 0 41.6667%}.col-md-6{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.col-md-7{max-width:58.3333%;-ms-flex:0 0 58.3333%;flex:0 0 58.3333%}.col-md-8{max-width:66.6667%;-ms-flex:0 0 66.6667%;flex:0 0 66.6667%}.col-md-9{max-width:75%;-ms-flex:0 0 75%;flex:0 0 75%}.col-md-10{max-width:83.3333%;-ms-flex:0 0 83.3333%;flex:0 0 83.3333%}.col-md-11{max-width:91.6667%;-ms-flex:0 0 91.6667%;flex:0 0 91.6667%}.col-md-12{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.order-md-first{-ms-flex-order:-1;order:-1}.order-md-last{-ms-flex-order:13;order:13}.order-md-0{-ms-flex-order:0;order:0}.order-md-1{-ms-flex-order:1;order:1}.order-md-2{-ms-flex-order:2;order:2}.order-md-3{-ms-flex-order:3;order:3}.order-md-4{-ms-flex-order:4;order:4}.order-md-5{-ms-flex-order:5;order:5}.order-md-6{-ms-flex-order:6;order:6}.order-md-7{-ms-flex-order:7;order:7}.order-md-8{-ms-flex-order:8;order:8}.order-md-9{-ms-flex-order:9;order:9}.order-md-10{-ms-flex-order:10;order:10}.order-md-11{-ms-flex-order:11;order:11}.order-md-12{-ms-flex-order:12;order:12}.offset-md-0{margin-left:0}.offset-md-1{margin-left:8.33333%}.offset-md-2{margin-left:16.6667%}.offset-md-3{margin-left:25%}.offset-md-4{margin-left:33.3333%}.offset-md-5{margin-left:41.6667%}.offset-md-6{margin-left:50%}.offset-md-7{margin-left:58.3333%}.offset-md-8{margin-left:66.6667%}.offset-md-9{margin-left:75%}.offset-md-10{margin-left:83.3333%}.offset-md-11{margin-left:91.6667%}}@media (min-width:992px){.col-lg{max-width:100%;-ms-flex-positive:1;-ms-flex-preferred-size:0;flex-grow:1;flex-basis:0}.row-cols-lg-1>*{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.row-cols-lg-2>*{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.row-cols-lg-3>*{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.row-cols-lg-4>*{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.row-cols-lg-5>*{max-width:20%;-ms-flex:0 0 20%;flex:0 0 20%}.row-cols-lg-6>*{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-lg-auto{width:auto;max-width:100%;-ms-flex:none;flex:none}.col-lg-1{max-width:8.33333%;-ms-flex:0 0 8.33333%;flex:0 0 8.33333%}.col-lg-2{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-lg-3{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.col-lg-4{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.col-lg-5{max-width:41.6667%;-ms-flex:0 0 41.6667%;flex:0 0 41.6667%}.col-lg-6{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.col-lg-7{max-width:58.3333%;-ms-flex:0 0 58.3333%;flex:0 0 58.3333%}.col-lg-8{max-width:66.6667%;-ms-flex:0 0 66.6667%;flex:0 0 66.6667%}.col-lg-9{max-width:75%;-ms-flex:0 0 75%;flex:0 0 75%}.col-lg-10{max-width:83.3333%;-ms-flex:0 0 83.3333%;flex:0 0 83.3333%}.col-lg-11{max-width:91.6667%;-ms-flex:0 0 91.6667%;flex:0 0 91.6667%}.col-lg-12{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.order-lg-first{-ms-flex-order:-1;order:-1}.order-lg-last{-ms-flex-order:13;order:13}.order-lg-0{-ms-flex-order:0;order:0}.order-lg-1{-ms-flex-order:1;order:1}.order-lg-2{-ms-flex-order:2;order:2}.order-lg-3{-ms-flex-order:3;order:3}.order-lg-4{-ms-flex-order:4;order:4}.order-lg-5{-ms-flex-order:5;order:5}.order-lg-6{-ms-flex-order:6;order:6}.order-lg-7{-ms-flex-order:7;order:7}.order-lg-8{-ms-flex-order:8;order:8}.order-lg-9{-ms-flex-order:9;order:9}.order-lg-10{-ms-flex-order:10;order:10}.order-lg-11{-ms-flex-order:11;order:11}.order-lg-12{-ms-flex-order:12;order:12}.offset-lg-0{margin-left:0}.offset-lg-1{margin-left:8.33333%}.offset-lg-2{margin-left:16.6667%}.offset-lg-3{margin-left:25%}.offset-lg-4{margin-left:33.3333%}.offset-lg-5{margin-left:41.6667%}.offset-lg-6{margin-left:50%}.offset-lg-7{margin-left:58.3333%}.offset-lg-8{margin-left:66.6667%}.offset-lg-9{margin-left:75%}.offset-lg-10{margin-left:83.3333%}.offset-lg-11{margin-left:91.6667%}}@media (min-width:1200px){.col-xl{max-width:100%;-ms-flex-positive:1;-ms-flex-preferred-size:0;flex-grow:1;flex-basis:0}.row-cols-xl-1>*{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.row-cols-xl-2>*{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.row-cols-xl-3>*{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.row-cols-xl-4>*{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.row-cols-xl-5>*{max-width:20%;-ms-flex:0 0 20%;flex:0 0 20%}.row-cols-xl-6>*{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-xl-auto{width:auto;max-width:100%;-ms-flex:none;flex:none}.col-xl-1{max-width:8.33333%;-ms-flex:0 0 8.33333%;flex:0 0 8.33333%}.col-xl-2{max-width:16.6667%;-ms-flex:0 0 16.6667%;flex:0 0 16.6667%}.col-xl-3{max-width:25%;-ms-flex:0 0 25%;flex:0 0 25%}.col-xl-4{max-width:33.3333%;-ms-flex:0 0 33.3333%;flex:0 0 33.3333%}.col-xl-5{max-width:41.6667%;-ms-flex:0 0 41.6667%;flex:0 0 41.6667%}.col-xl-6{max-width:50%;-ms-flex:0 0 50%;flex:0 0 50%}.col-xl-7{max-width:58.3333%;-ms-flex:0 0 58.3333%;flex:0 0 58.3333%}.col-xl-8{max-width:66.6667%;-ms-flex:0 0 66.6667%;flex:0 0 66.6667%}.col-xl-9{max-width:75%;-ms-flex:0 0 75%;flex:0 0 75%}.col-xl-10{max-width:83.3333%;-ms-flex:0 0 83.3333%;flex:0 0 83.3333%}.col-xl-11{max-width:91.6667%;-ms-flex:0 0 91.6667%;flex:0 0 91.6667%}.col-xl-12{max-width:100%;-ms-flex:0 0 100%;flex:0 0 100%}.order-xl-first{-ms-flex-order:-1;order:-1}.order-xl-last{-ms-flex-order:13;order:13}.order-xl-0{-ms-flex-order:0;order:0}.order-xl-1{-ms-flex-order:1;order:1}.order-xl-2{-ms-flex-order:2;order:2}.order-xl-3{-ms-flex-order:3;order:3}.order-xl-4{-ms-flex-order:4;order:4}.order-xl-5{-ms-flex-order:5;order:5}.order-xl-6{-ms-flex-order:6;order:6}.order-xl-7{-ms-flex-order:7;order:7}.order-xl-8{-ms-flex-order:8;order:8}.order-xl-9{-ms-flex-order:9;order:9}.order-xl-10{-ms-flex-order:10;order:10}.order-xl-11{-ms-flex-order:11;order:11}.order-xl-12{-ms-flex-order:12;order:12}.offset-xl-0{margin-left:0}.offset-xl-1{margin-left:8.33333%}.offset-xl-2{margin-left:16.6667%}.offset-xl-3{margin-left:25%}.offset-xl-4{margin-left:33.3333%}.offset-xl-5{margin-left:41.6667%}.offset-xl-6{margin-left:50%}.offset-xl-7{margin-left:58.3333%}.offset-xl-8{margin-left:66.6667%}.offset-xl-9{margin-left:75%}.offset-xl-10{margin-left:83.3333%}.offset-xl-11{margin-left:91.6667%}}.table{width:100%;color:#212529;margin-bottom:1rem}.table td,.table th{vertical-align:top;border-top:1px solid #dee2e6;padding:.75rem}.table thead th{vertical-align:bottom;border-bottom:2px solid #dee2e6}.table tbody+tbody{border-top:2px solid #dee2e6}.table-sm td,.table-sm th{padding:.3rem}.table-bordered,.table-bordered td,.table-bordered th{border:1px solid #dee2e6}.table-bordered thead td,.table-bordered thead th{border-bottom-width:2px}.table-borderless tbody+tbody,.table-borderless td,.table-borderless th,.table-borderless thead th{border:0}.table-striped tbody tr:nth-of-type(2n+1){background-color:#0000000d}.table-hover tbody tr:hover{color:#212529;background-color:#00000013}.table-primary,.table-primary>td,.table-primary>th{background-color:#b8daff}.table-primary tbody+tbody,.table-primary td,.table-primary th,.table-primary thead th{border-color:#7abaff}.table-hover .table-primary:hover{background-color:#9fcdff}.table-hover .table-primary:hover>td,.table-hover .table-primary:hover>th{background-color:#9fcdff}.table-secondary,.table-secondary>td,.table-secondary>th{background-color:#d6d8db}.table-secondary tbody+tbody,.table-secondary td,.table-secondary th,.table-secondary thead th{border-color:#b3b7bb}.table-hover .table-secondary:hover{background-color:#c8cbcf}.table-hover .table-secondary:hover>td,.table-hover .table-secondary:hover>th{background-color:#c8cbcf}.table-success,.table-success>td,.table-success>th{background-color:#c3e6cb}.table-success tbody+tbody,.table-success td,.table-success th,.table-success thead th{border-color:#8fd19e}.table-hover .table-success:hover{background-color:#b1dfbb}.table-hover .table-success:hover>td,.table-hover .table-success:hover>th{background-color:#b1dfbb}.table-info,.table-info>td,.table-info>th{background-color:#bee5eb}.table-info tbody+tbody,.table-info td,.table-info th,.table-info thead th{border-color:#86cfda}.table-hover .table-info:hover{background-color:#abdde5}.table-hover .table-info:hover>td,.table-hover .table-info:hover>th{background-color:#abdde5}.table-warning,.table-warning>td,.table-warning>th{background-color:#ffeeba}.table-warning tbody+tbody,.table-warning td,.table-warning th,.table-warning thead th{border-color:#ffdf7e}.table-hover .table-warning:hover{background-color:#ffe8a1}.table-hover .table-warning:hover>td,.table-hover .table-warning:hover>th{background-color:#ffe8a1}.table-danger,.table-danger>td,.table-danger>th{background-color:#f5c6cb}.table-danger tbody+tbody,.table-danger td,.table-danger th,.table-danger thead th{border-color:#ed969e}.table-hover .table-danger:hover{background-color:#f1b0b7}.table-hover .table-danger:hover>td,.table-hover .table-danger:hover>th{background-color:#f1b0b7}.table-light,.table-light>td,.table-light>th{background-color:#fdfdfe}.table-light tbody+tbody,.table-light td,.table-light th,.table-light thead th{border-color:#fbfcfc}.table-hover .table-light:hover{background-color:#ececf6}.table-hover .table-light:hover>td,.table-hover .table-light:hover>th{background-color:#ececf6}.table-dark,.table-dark>td,.table-dark>th{background-color:#c6c8ca}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#95999c}.table-hover .table-dark:hover{background-color:#b9bbbe}.table-hover .table-dark:hover>td,.table-hover .table-dark:hover>th{background-color:#b9bbbe}.table-active,.table-active>td,.table-active>th{background-color:#00000013}.table-hover .table-active:hover{background-color:#00000013}.table-hover .table-active:hover>td,.table-hover .table-active:hover>th{background-color:#00000013}.table .thead-dark th{color:#fff;background-color:#343a40;border-color:#454d55}.table .thead-light th{color:#495057;background-color:#e9ecef;border-color:#dee2e6}.table-dark{color:#fff;background-color:#343a40}.table-dark td,.table-dark th,.table-dark thead th{border-color:#454d55}.table-dark.table-bordered{border:0}.table-dark.table-striped tbody tr:nth-of-type(2n+1){background-color:#ffffff0d}.table-dark.table-hover tbody tr:hover{color:#fff;background-color:#ffffff13}@media (max-width:575.98px){.table-responsive-sm{width:100%;-webkit-overflow-scrolling:touch;display:block;overflow-x:auto}.table-responsive-sm>.table-bordered{border:0}}@media (max-width:767.98px){.table-responsive-md{width:100%;-webkit-overflow-scrolling:touch;display:block;overflow-x:auto}.table-responsive-md>.table-bordered{border:0}}@media (max-width:991.98px){.table-responsive-lg{width:100%;-webkit-overflow-scrolling:touch;display:block;overflow-x:auto}.table-responsive-lg>.table-bordered{border:0}}@media (max-width:1199.98px){.table-responsive-xl{width:100%;-webkit-overflow-scrolling:touch;display:block;overflow-x:auto}.table-responsive-xl>.table-bordered{border:0}}.table-responsive{width:100%;-webkit-overflow-scrolling:touch;display:block;overflow-x:auto}.table-responsive>.table-bordered{border:0}.form-control{width:100%;height:calc(1.5em + .75rem + 2px);color:#495057;background-color:#fff;background-clip:padding-box;border:1px solid #ced4da;border-radius:.25rem;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;transition:border-color .15s ease-in-out,box-shadow .15s ease-in-out;display:block}@media (prefers-reduced-motion:reduce){.form-control{transition:none}}.form-control::-ms-expand{background-color:#0000;border:0}.form-control:focus{color:#495057;background-color:#fff;border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem #007bff40}.form-control::-webkit-input-placeholder{color:#6c757d;opacity:1}.form-control::-moz-placeholder{color:#6c757d;opacity:1}.form-control:-ms-input-placeholder{color:#6c757d;opacity:1}.form-control::-moz-placeholder{color:#6c757d;opacity:1}.form-control::placeholder{color:#6c757d;opacity:1}.form-control:disabled,.form-control[readonly]{opacity:1;background-color:#e9ecef}input[type=date].form-control,input[type=datetime-local].form-control,input[type=month].form-control,input[type=time].form-control{-webkit-appearance:none;-moz-appearance:none;appearance:none}select.form-control:-moz-focusring{color:#0000;text-shadow:0 0 #495057}select.form-control:focus::-ms-value{color:#495057;background-color:#fff}.form-control-file,.form-control-range{width:100%;display:block}.col-form-label{font-size:inherit;margin-bottom:0;padding-top:calc(.375rem + 1px);padding-bottom:calc(.375rem + 1px);line-height:1.5}.col-form-label-lg{padding-top:calc(.5rem + 1px);padding-bottom:calc(.5rem + 1px);font-size:1.25rem;line-height:1.5}.col-form-label-sm{padding-top:calc(.25rem + 1px);padding-bottom:calc(.25rem + 1px);font-size:.875rem;line-height:1.5}.form-control-plaintext{width:100%;color:#212529;background-color:#0000;border:1px solid #0000;border-width:1px 0;margin-bottom:0;padding:.375rem 0;font-size:1rem;line-height:1.5;display:block}.form-control-plaintext.form-control-lg,.form-control-plaintext.form-control-sm{padding-left:0;padding-right:0}.form-control-sm{height:calc(1.5em + .5rem + 2px);border-radius:.2rem;padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.form-control-lg{height:calc(1.5em + 1rem + 2px);border-radius:.3rem;padding:.5rem 1rem;font-size:1.25rem;line-height:1.5}select.form-control[multiple],select.form-control[size]{height:auto}textarea.form-control{height:auto}.form-group{margin-bottom:1rem}.form-text{margin-top:.25rem;display:block}.form-row{-ms-flex-wrap:wrap;flex-wrap:wrap;margin-left:-5px;margin-right:-5px;display:-ms-flexbox;display:flex}.form-row>.col,.form-row>[class*=col-]{padding-left:5px;padding-right:5px}.form-check{padding-left:1.25rem;display:block;position:relative}.form-check-input{margin-top:.3rem;margin-left:-1.25rem;position:absolute}.form-check-input:disabled~.form-check-label,.form-check-input[disabled]~.form-check-label{color:#6c757d}.form-check-label{margin-bottom:0}.form-check-inline{align-items:center;margin-right:.75rem;padding-left:0;display:-ms-inline-flexbox;display:inline-flex}.form-check-inline .form-check-input{margin-top:0;margin-left:0;margin-right:.3125rem;position:static}.valid-feedback{width:100%;color:#28a745;margin-top:.25rem;font-size:.875em;display:none}.valid-tooltip{z-index:5;max-width:100%;color:#fff;background-color:#28a745e6;border-radius:.25rem;margin-top:.1rem;padding:.25rem .5rem;font-size:.875rem;line-height:1.5;display:none;position:absolute;top:100%;left:0}.form-row>.col>.valid-tooltip,.form-row>[class*=col-]>.valid-tooltip{left:5px}.is-valid~.valid-feedback,.is-valid~.valid-tooltip,.was-validated :valid~.valid-feedback,.was-validated :valid~.valid-tooltip{display:block}.form-control.is-valid,.was-validated .form-control:valid{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e");background-position:right calc(.375em + .1875rem) center;background-repeat:no-repeat;background-size:calc(.75em + .375rem) calc(.75em + .375rem);border-color:#28a745;padding-right:calc(1.5em + .75rem)!important}.form-control.is-valid:focus,.was-validated .form-control:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem #28a74540}.was-validated select.form-control:valid,select.form-control.is-valid{background-position:right 1.5rem center;padding-right:3rem!important}.was-validated textarea.form-control:valid,textarea.form-control.is-valid{background-position:right calc(.375em + .1875rem) top calc(.375em + .1875rem);padding-right:calc(1.5em + .75rem)}.custom-select.is-valid,.was-validated .custom-select:valid{background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e") right .75rem center/8px 10px no-repeat,#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%2328a745' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3e%3c/svg%3e") right 1.75rem center/calc(.75em + .375rem) calc(.75em + .375rem) no-repeat;border-color:#28a745;padding-right:calc(.75em + 2.3125rem)!important}.custom-select.is-valid:focus,.was-validated .custom-select:valid:focus{border-color:#28a745;box-shadow:0 0 0 .2rem #28a74540}.form-check-input.is-valid~.form-check-label,.was-validated .form-check-input:valid~.form-check-label{color:#28a745}.form-check-input.is-valid~.valid-feedback,.form-check-input.is-valid~.valid-tooltip,.was-validated .form-check-input:valid~.valid-feedback,.was-validated .form-check-input:valid~.valid-tooltip{display:block}.custom-control-input.is-valid~.custom-control-label,.was-validated .custom-control-input:valid~.custom-control-label{color:#28a745}.custom-control-input.is-valid~.custom-control-label:before,.was-validated .custom-control-input:valid~.custom-control-label:before{border-color:#28a745}.custom-control-input.is-valid:checked~.custom-control-label:before,.was-validated .custom-control-input:valid:checked~.custom-control-label:before{background-color:#34ce57;border-color:#34ce57}.custom-control-input.is-valid:focus~.custom-control-label:before,.was-validated .custom-control-input:valid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem #28a74540}.custom-control-input.is-valid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-control-input:valid:focus:not(:checked)~.custom-control-label:before{border-color:#28a745}.custom-file-input.is-valid~.custom-file-label,.was-validated .custom-file-input:valid~.custom-file-label{border-color:#28a745}.custom-file-input.is-valid:focus~.custom-file-label,.was-validated .custom-file-input:valid:focus~.custom-file-label{border-color:#28a745;box-shadow:0 0 0 .2rem #28a74540}.invalid-feedback{width:100%;color:#dc3545;margin-top:.25rem;font-size:.875em;display:none}.invalid-tooltip{z-index:5;max-width:100%;color:#fff;background-color:#dc3545e6;border-radius:.25rem;margin-top:.1rem;padding:.25rem .5rem;font-size:.875rem;line-height:1.5;display:none;position:absolute;top:100%;left:0}.form-row>.col>.invalid-tooltip,.form-row>[class*=col-]>.invalid-tooltip{left:5px}.is-invalid~.invalid-feedback,.is-invalid~.invalid-tooltip,.was-validated :invalid~.invalid-feedback,.was-validated :invalid~.invalid-tooltip{display:block}.form-control.is-invalid,.was-validated .form-control:invalid{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545' viewBox='0 0 12 12'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e");background-position:right calc(.375em + .1875rem) center;background-repeat:no-repeat;background-size:calc(.75em + .375rem) calc(.75em + .375rem);border-color:#dc3545;padding-right:calc(1.5em + .75rem)!important}.form-control.is-invalid:focus,.was-validated .form-control:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem #dc354540}.was-validated select.form-control:invalid,select.form-control.is-invalid{background-position:right 1.5rem center;padding-right:3rem!important}.was-validated textarea.form-control:invalid,textarea.form-control.is-invalid{background-position:right calc(.375em + .1875rem) top calc(.375em + .1875rem);padding-right:calc(1.5em + .75rem)}.custom-select.is-invalid,.was-validated .custom-select:invalid{background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e") right .75rem center/8px 10px no-repeat,#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' fill='none' stroke='%23dc3545' viewBox='0 0 12 12'%3e%3ccircle cx='6' cy='6' r='4.5'/%3e%3cpath stroke-linejoin='round' d='M5.8 3.6h.4L6 6.5z'/%3e%3ccircle cx='6' cy='8.2' r='.6' fill='%23dc3545' stroke='none'/%3e%3c/svg%3e") right 1.75rem center/calc(.75em + .375rem) calc(.75em + .375rem) no-repeat;border-color:#dc3545;padding-right:calc(.75em + 2.3125rem)!important}.custom-select.is-invalid:focus,.was-validated .custom-select:invalid:focus{border-color:#dc3545;box-shadow:0 0 0 .2rem #dc354540}.form-check-input.is-invalid~.form-check-label,.was-validated .form-check-input:invalid~.form-check-label{color:#dc3545}.form-check-input.is-invalid~.invalid-feedback,.form-check-input.is-invalid~.invalid-tooltip,.was-validated .form-check-input:invalid~.invalid-feedback,.was-validated .form-check-input:invalid~.invalid-tooltip{display:block}.custom-control-input.is-invalid~.custom-control-label,.was-validated .custom-control-input:invalid~.custom-control-label{color:#dc3545}.custom-control-input.is-invalid~.custom-control-label:before,.was-validated .custom-control-input:invalid~.custom-control-label:before{border-color:#dc3545}.custom-control-input.is-invalid:checked~.custom-control-label:before,.was-validated .custom-control-input:invalid:checked~.custom-control-label:before{background-color:#e4606d;border-color:#e4606d}.custom-control-input.is-invalid:focus~.custom-control-label:before,.was-validated .custom-control-input:invalid:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem #dc354540}.custom-control-input.is-invalid:focus:not(:checked)~.custom-control-label:before,.was-validated .custom-control-input:invalid:focus:not(:checked)~.custom-control-label:before{border-color:#dc3545}.custom-file-input.is-invalid~.custom-file-label,.was-validated .custom-file-input:invalid~.custom-file-label{border-color:#dc3545}.custom-file-input.is-invalid:focus~.custom-file-label,.was-validated .custom-file-input:invalid:focus~.custom-file-label{border-color:#dc3545;box-shadow:0 0 0 .2rem #dc354540}.form-inline{-ms-flex-flow:wrap;flex-flow:wrap;align-items:center;display:-ms-flexbox;display:flex}.form-inline .form-check{width:100%}@media (min-width:576px){.form-inline label{justify-content:center;align-items:center;margin-bottom:0;display:-ms-flexbox;display:flex}.form-inline .form-group{-ms-flex-flow:wrap;flex-flow:wrap;-ms-flex:none;flex:none;align-items:center;margin-bottom:0;display:-ms-flexbox;display:flex}.form-inline .form-control{width:auto;vertical-align:middle;display:inline-block}.form-inline .form-control-plaintext{display:inline-block}.form-inline .custom-select,.form-inline .input-group{width:auto}.form-inline .form-check{width:auto;justify-content:center;align-items:center;padding-left:0;display:-ms-flexbox;display:flex}.form-inline .form-check-input{-ms-flex-negative:0;flex-shrink:0;margin-top:0;margin-left:0;margin-right:.25rem;position:relative}.form-inline .custom-control{justify-content:center;align-items:center}.form-inline .custom-control-label{margin-bottom:0}}.btn{color:#212529;text-align:center;vertical-align:middle;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;background-color:#0000;border:1px solid #0000;border-radius:.25rem;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;display:inline-block}@media (prefers-reduced-motion:reduce){.btn{transition:none}}.btn:hover{color:#212529;text-decoration:none}.btn.focus,.btn:focus{outline:0;box-shadow:0 0 0 .2rem #007bff40}.btn.disabled,.btn:disabled{opacity:.65}.btn:not(:disabled):not(.disabled){cursor:pointer}a.btn.disabled,fieldset:disabled a.btn{pointer-events:none}.btn-primary{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:hover{color:#fff;background-color:#0069d9;border-color:#0062cc}.btn-primary.focus,.btn-primary:focus{color:#fff;background-color:#0069d9;border-color:#0062cc;box-shadow:0 0 0 .2rem #268fff80}.btn-primary.disabled,.btn-primary:disabled{color:#fff;background-color:#007bff;border-color:#007bff}.btn-primary:not(:disabled):not(.disabled).active,.btn-primary:not(:disabled):not(.disabled):active,.show>.btn-primary.dropdown-toggle{color:#fff;background-color:#0062cc;border-color:#005cbf}.btn-primary:not(:disabled):not(.disabled).active:focus,.btn-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #268fff80}.btn-secondary{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:hover{color:#fff;background-color:#5a6268;border-color:#545b62}.btn-secondary.focus,.btn-secondary:focus{color:#fff;background-color:#5a6268;border-color:#545b62;box-shadow:0 0 0 .2rem #828a9180}.btn-secondary.disabled,.btn-secondary:disabled{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-secondary:not(:disabled):not(.disabled).active,.btn-secondary:not(:disabled):not(.disabled):active,.show>.btn-secondary.dropdown-toggle{color:#fff;background-color:#545b62;border-color:#4e555b}.btn-secondary:not(:disabled):not(.disabled).active:focus,.btn-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #828a9180}.btn-success{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:hover{color:#fff;background-color:#218838;border-color:#1e7e34}.btn-success.focus,.btn-success:focus{color:#fff;background-color:#218838;border-color:#1e7e34;box-shadow:0 0 0 .2rem #48b46180}.btn-success.disabled,.btn-success:disabled{color:#fff;background-color:#28a745;border-color:#28a745}.btn-success:not(:disabled):not(.disabled).active,.btn-success:not(:disabled):not(.disabled):active,.show>.btn-success.dropdown-toggle{color:#fff;background-color:#1e7e34;border-color:#1c7430}.btn-success:not(:disabled):not(.disabled).active:focus,.btn-success:not(:disabled):not(.disabled):active:focus,.show>.btn-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #48b46180}.btn-info{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:hover{color:#fff;background-color:#138496;border-color:#117a8b}.btn-info.focus,.btn-info:focus{color:#fff;background-color:#138496;border-color:#117a8b;box-shadow:0 0 0 .2rem #3ab0c380}.btn-info.disabled,.btn-info:disabled{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-info:not(:disabled):not(.disabled).active,.btn-info:not(:disabled):not(.disabled):active,.show>.btn-info.dropdown-toggle{color:#fff;background-color:#117a8b;border-color:#10707f}.btn-info:not(:disabled):not(.disabled).active:focus,.btn-info:not(:disabled):not(.disabled):active:focus,.show>.btn-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #3ab0c380}.btn-warning{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:hover{color:#212529;background-color:#e0a800;border-color:#d39e00}.btn-warning.focus,.btn-warning:focus{color:#212529;background-color:#e0a800;border-color:#d39e00;box-shadow:0 0 0 .2rem #deaa0c80}.btn-warning.disabled,.btn-warning:disabled{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-warning:not(:disabled):not(.disabled).active,.btn-warning:not(:disabled):not(.disabled):active,.show>.btn-warning.dropdown-toggle{color:#212529;background-color:#d39e00;border-color:#c69500}.btn-warning:not(:disabled):not(.disabled).active:focus,.btn-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #deaa0c80}.btn-danger{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:hover{color:#fff;background-color:#c82333;border-color:#bd2130}.btn-danger.focus,.btn-danger:focus{color:#fff;background-color:#c82333;border-color:#bd2130;box-shadow:0 0 0 .2rem #e1536180}.btn-danger.disabled,.btn-danger:disabled{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-danger:not(:disabled):not(.disabled).active,.btn-danger:not(:disabled):not(.disabled):active,.show>.btn-danger.dropdown-toggle{color:#fff;background-color:#bd2130;border-color:#b21f2d}.btn-danger:not(:disabled):not(.disabled).active:focus,.btn-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #e1536180}.btn-light{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:hover{color:#212529;background-color:#e2e6ea;border-color:#dae0e5}.btn-light.focus,.btn-light:focus{color:#212529;background-color:#e2e6ea;border-color:#dae0e5;box-shadow:0 0 0 .2rem #d8d9db80}.btn-light.disabled,.btn-light:disabled{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-light:not(:disabled):not(.disabled).active,.btn-light:not(:disabled):not(.disabled):active,.show>.btn-light.dropdown-toggle{color:#212529;background-color:#dae0e5;border-color:#d3d9df}.btn-light:not(:disabled):not(.disabled).active:focus,.btn-light:not(:disabled):not(.disabled):active:focus,.show>.btn-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #d8d9db80}.btn-dark{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:hover{color:#fff;background-color:#23272b;border-color:#1d2124}.btn-dark.focus,.btn-dark:focus{color:#fff;background-color:#23272b;border-color:#1d2124;box-shadow:0 0 0 .2rem #52585d80}.btn-dark.disabled,.btn-dark:disabled{color:#fff;background-color:#343a40;border-color:#343a40}.btn-dark:not(:disabled):not(.disabled).active,.btn-dark:not(:disabled):not(.disabled):active,.show>.btn-dark.dropdown-toggle{color:#fff;background-color:#1d2124;border-color:#171a1d}.btn-dark:not(:disabled):not(.disabled).active:focus,.btn-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #52585d80}.btn-outline-primary{color:#007bff;border-color:#007bff}.btn-outline-primary:hover{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary.focus,.btn-outline-primary:focus{box-shadow:0 0 0 .2rem #007bff80}.btn-outline-primary.disabled,.btn-outline-primary:disabled{color:#007bff;background-color:#0000}.btn-outline-primary:not(:disabled):not(.disabled).active,.btn-outline-primary:not(:disabled):not(.disabled):active,.show>.btn-outline-primary.dropdown-toggle{color:#fff;background-color:#007bff;border-color:#007bff}.btn-outline-primary:not(:disabled):not(.disabled).active:focus,.btn-outline-primary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-primary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #007bff80}.btn-outline-secondary{color:#6c757d;border-color:#6c757d}.btn-outline-secondary:hover{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary.focus,.btn-outline-secondary:focus{box-shadow:0 0 0 .2rem #6c757d80}.btn-outline-secondary.disabled,.btn-outline-secondary:disabled{color:#6c757d;background-color:#0000}.btn-outline-secondary:not(:disabled):not(.disabled).active,.btn-outline-secondary:not(:disabled):not(.disabled):active,.show>.btn-outline-secondary.dropdown-toggle{color:#fff;background-color:#6c757d;border-color:#6c757d}.btn-outline-secondary:not(:disabled):not(.disabled).active:focus,.btn-outline-secondary:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-secondary.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #6c757d80}.btn-outline-success{color:#28a745;border-color:#28a745}.btn-outline-success:hover{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success.focus,.btn-outline-success:focus{box-shadow:0 0 0 .2rem #28a74580}.btn-outline-success.disabled,.btn-outline-success:disabled{color:#28a745;background-color:#0000}.btn-outline-success:not(:disabled):not(.disabled).active,.btn-outline-success:not(:disabled):not(.disabled):active,.show>.btn-outline-success.dropdown-toggle{color:#fff;background-color:#28a745;border-color:#28a745}.btn-outline-success:not(:disabled):not(.disabled).active:focus,.btn-outline-success:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-success.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #28a74580}.btn-outline-info{color:#17a2b8;border-color:#17a2b8}.btn-outline-info:hover{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info.focus,.btn-outline-info:focus{box-shadow:0 0 0 .2rem #17a2b880}.btn-outline-info.disabled,.btn-outline-info:disabled{color:#17a2b8;background-color:#0000}.btn-outline-info:not(:disabled):not(.disabled).active,.btn-outline-info:not(:disabled):not(.disabled):active,.show>.btn-outline-info.dropdown-toggle{color:#fff;background-color:#17a2b8;border-color:#17a2b8}.btn-outline-info:not(:disabled):not(.disabled).active:focus,.btn-outline-info:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-info.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #17a2b880}.btn-outline-warning{color:#ffc107;border-color:#ffc107}.btn-outline-warning:hover{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning.focus,.btn-outline-warning:focus{box-shadow:0 0 0 .2rem #ffc10780}.btn-outline-warning.disabled,.btn-outline-warning:disabled{color:#ffc107;background-color:#0000}.btn-outline-warning:not(:disabled):not(.disabled).active,.btn-outline-warning:not(:disabled):not(.disabled):active,.show>.btn-outline-warning.dropdown-toggle{color:#212529;background-color:#ffc107;border-color:#ffc107}.btn-outline-warning:not(:disabled):not(.disabled).active:focus,.btn-outline-warning:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-warning.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #ffc10780}.btn-outline-danger{color:#dc3545;border-color:#dc3545}.btn-outline-danger:hover{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger.focus,.btn-outline-danger:focus{box-shadow:0 0 0 .2rem #dc354580}.btn-outline-danger.disabled,.btn-outline-danger:disabled{color:#dc3545;background-color:#0000}.btn-outline-danger:not(:disabled):not(.disabled).active,.btn-outline-danger:not(:disabled):not(.disabled):active,.show>.btn-outline-danger.dropdown-toggle{color:#fff;background-color:#dc3545;border-color:#dc3545}.btn-outline-danger:not(:disabled):not(.disabled).active:focus,.btn-outline-danger:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-danger.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #dc354580}.btn-outline-light{color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:hover{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light.focus,.btn-outline-light:focus{box-shadow:0 0 0 .2rem #f8f9fa80}.btn-outline-light.disabled,.btn-outline-light:disabled{color:#f8f9fa;background-color:#0000}.btn-outline-light:not(:disabled):not(.disabled).active,.btn-outline-light:not(:disabled):not(.disabled):active,.show>.btn-outline-light.dropdown-toggle{color:#212529;background-color:#f8f9fa;border-color:#f8f9fa}.btn-outline-light:not(:disabled):not(.disabled).active:focus,.btn-outline-light:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-light.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #f8f9fa80}.btn-outline-dark{color:#343a40;border-color:#343a40}.btn-outline-dark:hover{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark.focus,.btn-outline-dark:focus{box-shadow:0 0 0 .2rem #343a4080}.btn-outline-dark.disabled,.btn-outline-dark:disabled{color:#343a40;background-color:#0000}.btn-outline-dark:not(:disabled):not(.disabled).active,.btn-outline-dark:not(:disabled):not(.disabled):active,.show>.btn-outline-dark.dropdown-toggle{color:#fff;background-color:#343a40;border-color:#343a40}.btn-outline-dark:not(:disabled):not(.disabled).active:focus,.btn-outline-dark:not(:disabled):not(.disabled):active:focus,.show>.btn-outline-dark.dropdown-toggle:focus{box-shadow:0 0 0 .2rem #343a4080}.btn-link{color:#007bff;font-weight:400;text-decoration:none}.btn-link:hover{color:#0056b3;text-decoration:underline}.btn-link.focus,.btn-link:focus{text-decoration:underline}.btn-link.disabled,.btn-link:disabled{color:#6c757d;pointer-events:none}.btn-group-lg>.btn,.btn-lg{border-radius:.3rem;padding:.5rem 1rem;font-size:1.25rem;line-height:1.5}.btn-group-sm>.btn,.btn-sm{border-radius:.2rem;padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.btn-block{width:100%;display:block}.btn-block+.btn-block{margin-top:.5rem}input[type=button].btn-block,input[type=reset].btn-block,input[type=submit].btn-block{width:100%}.fade{transition:opacity .15s linear}@media (prefers-reduced-motion:reduce){.fade{transition:none}}.fade:not(.show){opacity:0}.collapse:not(.show){display:none}.collapsing{height:0;transition:height .35s;position:relative;overflow:hidden}@media (prefers-reduced-motion:reduce){.collapsing{transition:none}}.collapsing.width{width:0;height:auto;transition:width .35s}@media (prefers-reduced-motion:reduce){.collapsing.width{transition:none}}.dropdown,.dropleft,.dropright,.dropup{position:relative}.dropdown-toggle{white-space:nowrap}.dropdown-toggle:after{vertical-align:.255em;content:"";border:.3em solid #0000;border-top-color:currentColor;border-bottom:0;margin-left:.255em;display:inline-block}.dropdown-toggle:empty:after{margin-left:0}.dropdown-menu{z-index:1000;float:left;min-width:10rem;color:#212529;text-align:left;background-color:#fff;background-clip:padding-box;border:1px solid #00000026;border-radius:.25rem;margin:.125rem 0 0;padding:.5rem 0;font-size:1rem;list-style:none;display:none;position:absolute;top:100%;left:0}.dropdown-menu-left{left:0;right:auto}.dropdown-menu-right{left:auto;right:0}@media (min-width:576px){.dropdown-menu-sm-left{left:0;right:auto}.dropdown-menu-sm-right{left:auto;right:0}}@media (min-width:768px){.dropdown-menu-md-left{left:0;right:auto}.dropdown-menu-md-right{left:auto;right:0}}@media (min-width:992px){.dropdown-menu-lg-left{left:0;right:auto}.dropdown-menu-lg-right{left:auto;right:0}}@media (min-width:1200px){.dropdown-menu-xl-left{left:0;right:auto}.dropdown-menu-xl-right{left:auto;right:0}}.dropup .dropdown-menu{margin-top:0;margin-bottom:.125rem;top:auto;bottom:100%}.dropup .dropdown-toggle:after{vertical-align:.255em;content:"";border:.3em solid #0000;border-top:0;border-bottom-color:currentColor;margin-left:.255em;display:inline-block}.dropup .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-menu{margin-top:0;margin-left:.125rem;top:0;left:100%;right:auto}.dropright .dropdown-toggle:after{vertical-align:.255em;content:"";border:.3em solid #0000;border-left-color:currentColor;border-right:0;margin-left:.255em;display:inline-block}.dropright .dropdown-toggle:empty:after{margin-left:0}.dropright .dropdown-toggle:after{vertical-align:0}.dropleft .dropdown-menu{margin-top:0;margin-right:.125rem;top:0;left:auto;right:100%}.dropleft .dropdown-toggle:after{vertical-align:.255em;content:"";margin-left:.255em;display:inline-block}.dropleft .dropdown-toggle:after{display:none}.dropleft .dropdown-toggle:before{vertical-align:.255em;content:"";border-top:.3em solid #0000;border-bottom:.3em solid #0000;border-right:.3em solid;margin-right:.255em;display:inline-block}.dropleft .dropdown-toggle:empty:after{margin-left:0}.dropleft .dropdown-toggle:before{vertical-align:0}.dropdown-menu[x-placement^=bottom],.dropdown-menu[x-placement^=left],.dropdown-menu[x-placement^=right],.dropdown-menu[x-placement^=top]{bottom:auto;right:auto}.dropdown-divider{height:0;border-top:1px solid #e9ecef;margin:.5rem 0;overflow:hidden}.dropdown-item{width:100%;clear:both;color:#212529;text-align:inherit;white-space:nowrap;background-color:#0000;border:0;padding:.25rem 1.5rem;font-weight:400;display:block}.dropdown-item:focus,.dropdown-item:hover{color:#16181b;background-color:#e9ecef;text-decoration:none}.dropdown-item.active,.dropdown-item:active{color:#fff;background-color:#007bff;text-decoration:none}.dropdown-item.disabled,.dropdown-item:disabled{color:#adb5bd;pointer-events:none;background-color:#0000}.dropdown-menu.show{display:block}.dropdown-header{color:#6c757d;white-space:nowrap;margin-bottom:0;padding:.5rem 1.5rem;font-size:.875rem;display:block}.dropdown-item-text{color:#212529;padding:.25rem 1.5rem;display:block}.btn-group,.btn-group-vertical{vertical-align:middle;display:-ms-inline-flexbox;display:inline-flex;position:relative}.btn-group-vertical>.btn,.btn-group>.btn{-ms-flex:auto;flex:auto;position:relative}.btn-group-vertical>.btn:hover,.btn-group>.btn:hover{z-index:1}.btn-group-vertical>.btn.active,.btn-group-vertical>.btn:active,.btn-group-vertical>.btn:focus,.btn-group>.btn.active,.btn-group>.btn:active,.btn-group>.btn:focus{z-index:1}.btn-toolbar{-ms-flex-wrap:wrap;flex-wrap:wrap;justify-content:flex-start;display:-ms-flexbox;display:flex}.btn-toolbar .input-group{width:auto}.btn-group>.btn-group:not(:first-child),.btn-group>.btn:not(:first-child){margin-left:-1px}.btn-group>.btn-group:not(:last-child)>.btn,.btn-group>.btn:not(:last-child):not(.dropdown-toggle){border-top-right-radius:0;border-bottom-right-radius:0}.btn-group>.btn-group:not(:first-child)>.btn,.btn-group>.btn:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.dropdown-toggle-split{padding-left:.5625rem;padding-right:.5625rem}.dropdown-toggle-split:after,.dropright .dropdown-toggle-split:after,.dropup .dropdown-toggle-split:after{margin-left:0}.dropleft .dropdown-toggle-split:before{margin-right:0}.btn-group-sm>.btn+.dropdown-toggle-split,.btn-sm+.dropdown-toggle-split{padding-left:.375rem;padding-right:.375rem}.btn-group-lg>.btn+.dropdown-toggle-split,.btn-lg+.dropdown-toggle-split{padding-left:.75rem;padding-right:.75rem}.btn-group-vertical{-ms-flex-direction:column;flex-direction:column;justify-content:center;align-items:flex-start}.btn-group-vertical>.btn,.btn-group-vertical>.btn-group{width:100%}.btn-group-vertical>.btn-group:not(:first-child),.btn-group-vertical>.btn:not(:first-child){margin-top:-1px}.btn-group-vertical>.btn-group:not(:last-child)>.btn,.btn-group-vertical>.btn:not(:last-child):not(.dropdown-toggle){border-bottom-left-radius:0;border-bottom-right-radius:0}.btn-group-vertical>.btn-group:not(:first-child)>.btn,.btn-group-vertical>.btn:not(:first-child){border-top-left-radius:0;border-top-right-radius:0}.btn-group-toggle>.btn,.btn-group-toggle>.btn-group>.btn{margin-bottom:0}.btn-group-toggle>.btn input[type=checkbox],.btn-group-toggle>.btn input[type=radio],.btn-group-toggle>.btn-group>.btn input[type=checkbox],.btn-group-toggle>.btn-group>.btn input[type=radio]{clip:rect(0,0,0,0);pointer-events:none;position:absolute}.input-group{width:100%;-ms-flex-wrap:wrap;flex-wrap:wrap;align-items:stretch;display:-ms-flexbox;display:flex;position:relative}.input-group>.custom-file,.input-group>.custom-select,.input-group>.form-control,.input-group>.form-control-plaintext{width:1%;min-width:0;-ms-flex:auto;flex:auto;margin-bottom:0;position:relative}.input-group>.custom-file+.custom-file,.input-group>.custom-file+.custom-select,.input-group>.custom-file+.form-control,.input-group>.custom-select+.custom-file,.input-group>.custom-select+.custom-select,.input-group>.custom-select+.form-control,.input-group>.form-control+.custom-file,.input-group>.form-control+.custom-select,.input-group>.form-control+.form-control,.input-group>.form-control-plaintext+.custom-file,.input-group>.form-control-plaintext+.custom-select,.input-group>.form-control-plaintext+.form-control{margin-left:-1px}.input-group>.custom-file .custom-file-input:focus~.custom-file-label,.input-group>.custom-select:focus,.input-group>.form-control:focus{z-index:3}.input-group>.custom-file .custom-file-input:focus{z-index:4}.input-group>.custom-select:not(:first-child),.input-group>.form-control:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.input-group>.custom-file{align-items:center;display:-ms-flexbox;display:flex}.input-group>.custom-file:not(:last-child) .custom-file-label,.input-group>.custom-file:not(:last-child) .custom-file-label:after{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.custom-file:not(:first-child) .custom-file-label{border-top-left-radius:0;border-bottom-left-radius:0}.input-group:not(.has-validation)>.custom-file:not(:last-child) .custom-file-label,.input-group:not(.has-validation)>.custom-file:not(:last-child) .custom-file-label:after,.input-group:not(.has-validation)>.custom-select:not(:last-child),.input-group:not(.has-validation)>.form-control:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.input-group.has-validation>.custom-file:nth-last-child(n+3) .custom-file-label,.input-group.has-validation>.custom-file:nth-last-child(n+3) .custom-file-label:after,.input-group.has-validation>.custom-select:nth-last-child(n+3),.input-group.has-validation>.form-control:nth-last-child(n+3){border-top-right-radius:0;border-bottom-right-radius:0}.input-group-append,.input-group-prepend{display:-ms-flexbox;display:flex}.input-group-append .btn,.input-group-prepend .btn{z-index:2;position:relative}.input-group-append .btn:focus,.input-group-prepend .btn:focus{z-index:3}.input-group-append .btn+.btn,.input-group-append .btn+.input-group-text,.input-group-append .input-group-text+.btn,.input-group-append .input-group-text+.input-group-text,.input-group-prepend .btn+.btn,.input-group-prepend .btn+.input-group-text,.input-group-prepend .input-group-text+.btn,.input-group-prepend .input-group-text+.input-group-text{margin-left:-1px}.input-group-prepend{margin-right:-1px}.input-group-append{margin-left:-1px}.input-group-text{color:#495057;text-align:center;white-space:nowrap;background-color:#e9ecef;border:1px solid #ced4da;border-radius:.25rem;align-items:center;margin-bottom:0;padding:.375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;display:-ms-flexbox;display:flex}.input-group-text input[type=checkbox],.input-group-text input[type=radio]{margin-top:0}.input-group-lg>.custom-select,.input-group-lg>.form-control:not(textarea){height:calc(1.5em + 1rem + 2px)}.input-group-lg>.custom-select,.input-group-lg>.form-control,.input-group-lg>.input-group-append>.btn,.input-group-lg>.input-group-append>.input-group-text,.input-group-lg>.input-group-prepend>.btn,.input-group-lg>.input-group-prepend>.input-group-text{border-radius:.3rem;padding:.5rem 1rem;font-size:1.25rem;line-height:1.5}.input-group-sm>.custom-select,.input-group-sm>.form-control:not(textarea){height:calc(1.5em + .5rem + 2px)}.input-group-sm>.custom-select,.input-group-sm>.form-control,.input-group-sm>.input-group-append>.btn,.input-group-sm>.input-group-append>.input-group-text,.input-group-sm>.input-group-prepend>.btn,.input-group-sm>.input-group-prepend>.input-group-text{border-radius:.2rem;padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.input-group-lg>.custom-select,.input-group-sm>.custom-select{padding-right:1.75rem}.input-group.has-validation>.input-group-append:nth-last-child(n+3)>.btn,.input-group.has-validation>.input-group-append:nth-last-child(n+3)>.input-group-text,.input-group:not(.has-validation)>.input-group-append:not(:last-child)>.btn,.input-group:not(.has-validation)>.input-group-append:not(:last-child)>.input-group-text,.input-group>.input-group-append:last-child>.btn:not(:last-child):not(.dropdown-toggle),.input-group>.input-group-append:last-child>.input-group-text:not(:last-child),.input-group>.input-group-prepend>.btn,.input-group>.input-group-prepend>.input-group-text{border-top-right-radius:0;border-bottom-right-radius:0}.input-group>.input-group-append>.btn,.input-group>.input-group-append>.input-group-text,.input-group>.input-group-prepend:first-child>.btn:not(:first-child),.input-group>.input-group-prepend:first-child>.input-group-text:not(:first-child),.input-group>.input-group-prepend:not(:first-child)>.btn,.input-group>.input-group-prepend:not(:first-child)>.input-group-text{border-top-left-radius:0;border-bottom-left-radius:0}.custom-control{z-index:1;min-height:1.5rem;-webkit-print-color-adjust:exact;color-adjust:exact;print-color-adjust:exact;padding-left:1.5rem;display:block;position:relative}.custom-control-inline{margin-right:1rem;display:-ms-inline-flexbox;display:inline-flex}.custom-control-input{z-index:-1;width:1rem;height:1.25rem;opacity:0;position:absolute;left:0}.custom-control-input:checked~.custom-control-label:before{color:#fff;background-color:#007bff;border-color:#007bff}.custom-control-input:focus~.custom-control-label:before{box-shadow:0 0 0 .2rem #007bff40}.custom-control-input:focus:not(:checked)~.custom-control-label:before{border-color:#80bdff}.custom-control-input:not(:disabled):active~.custom-control-label:before{color:#fff;background-color:#b3d7ff;border-color:#b3d7ff}.custom-control-input:disabled~.custom-control-label,.custom-control-input[disabled]~.custom-control-label{color:#6c757d}.custom-control-input:disabled~.custom-control-label:before,.custom-control-input[disabled]~.custom-control-label:before{background-color:#e9ecef}.custom-control-label{vertical-align:top;margin-bottom:0;position:relative}.custom-control-label:before{width:1rem;height:1rem;pointer-events:none;content:"";background-color:#fff;border:1px solid #adb5bd;display:block;position:absolute;top:.25rem;left:-1.5rem}.custom-control-label:after{width:1rem;height:1rem;content:"";background:50%/50% 50% no-repeat;display:block;position:absolute;top:.25rem;left:-1.5rem}.custom-checkbox .custom-control-label:before{border-radius:.25rem}.custom-checkbox .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath fill='%23fff' d='M6.564.75l-3.59 3.612-1.538-1.55L0 4.26l2.974 2.99L8 2.193z'/%3e%3c/svg%3e")}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:before{background-color:#007bff;border-color:#007bff}.custom-checkbox .custom-control-input:indeterminate~.custom-control-label:after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='4' viewBox='0 0 4 4'%3e%3cpath stroke='%23fff' d='M0 2h4'/%3e%3c/svg%3e")}.custom-checkbox .custom-control-input:disabled:checked~.custom-control-label:before{background-color:#007bff80}.custom-checkbox .custom-control-input:disabled:indeterminate~.custom-control-label:before{background-color:#007bff80}.custom-radio .custom-control-label:before{border-radius:50%}.custom-radio .custom-control-input:checked~.custom-control-label:after{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='12' height='12' viewBox='-4 -4 8 8'%3e%3ccircle r='3' fill='%23fff'/%3e%3c/svg%3e")}.custom-radio .custom-control-input:disabled:checked~.custom-control-label:before{background-color:#007bff80}.custom-switch{padding-left:2.25rem}.custom-switch .custom-control-label:before{width:1.75rem;pointer-events:all;border-radius:.5rem;left:-2.25rem}.custom-switch .custom-control-label:after{width:calc(1rem - 4px);height:calc(1rem - 4px);background-color:#adb5bd;border-radius:.5rem;transition:transform .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out,-webkit-transform .15s ease-in-out;top:calc(.25rem + 2px);left:calc(2px - 2.25rem)}@media (prefers-reduced-motion:reduce){.custom-switch .custom-control-label:after{transition:none}}.custom-switch .custom-control-input:checked~.custom-control-label:after{background-color:#fff;-webkit-transform:translate(.75rem);transform:translate(.75rem)}.custom-switch .custom-control-input:disabled:checked~.custom-control-label:before{background-color:#007bff80}.custom-select{width:100%;height:calc(1.5em + .75rem + 2px);color:#495057;vertical-align:middle;-webkit-appearance:none;-moz-appearance:none;appearance:none;background:#fff url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='4' height='5' viewBox='0 0 4 5'%3e%3cpath fill='%23343a40' d='M2 0L0 2h4zm0 5L0 3h4z'/%3e%3c/svg%3e") right .75rem center/8px 10px no-repeat;border:1px solid #ced4da;border-radius:.25rem;padding:.375rem 1.75rem .375rem .75rem;font-size:1rem;font-weight:400;line-height:1.5;display:inline-block}.custom-select:focus{border-color:#80bdff;outline:0;box-shadow:0 0 0 .2rem #007bff40}.custom-select:focus::-ms-value{color:#495057;background-color:#fff}.custom-select[multiple],.custom-select[size]:not([size="1"]){height:auto;background-image:none;padding-right:.75rem}.custom-select:disabled{color:#6c757d;background-color:#e9ecef}.custom-select::-ms-expand{display:none}.custom-select:-moz-focusring{color:#0000;text-shadow:0 0 #495057}.custom-select-sm{height:calc(1.5em + .5rem + 2px);padding-top:.25rem;padding-bottom:.25rem;padding-left:.5rem;font-size:.875rem}.custom-select-lg{height:calc(1.5em + 1rem + 2px);padding-top:.5rem;padding-bottom:.5rem;padding-left:1rem;font-size:1.25rem}.custom-file{width:100%;height:calc(1.5em + .75rem + 2px);margin-bottom:0;display:inline-block;position:relative}.custom-file-input{z-index:2;width:100%;height:calc(1.5em + .75rem + 2px);opacity:0;margin:0;position:relative;overflow:hidden}.custom-file-input:focus~.custom-file-label{border-color:#80bdff;box-shadow:0 0 0 .2rem #007bff40}.custom-file-input:disabled~.custom-file-label,.custom-file-input[disabled]~.custom-file-label{background-color:#e9ecef}.custom-file-input:lang(en)~.custom-file-label:after{content:"Browse"}.custom-file-input~.custom-file-label[data-browse]:after{content:attr(data-browse)}.custom-file-label{z-index:1;height:calc(1.5em + .75rem + 2px);color:#495057;background-color:#fff;border:1px solid #ced4da;border-radius:.25rem;padding:.375rem .75rem;font-weight:400;line-height:1.5;position:absolute;top:0;left:0;right:0;overflow:hidden}.custom-file-label:after{z-index:3;height:calc(1.5em + .75rem);color:#495057;content:"Browse";border-left:inherit;background-color:#e9ecef;border-radius:0 .25rem .25rem 0;padding:.375rem .75rem;line-height:1.5;display:block;position:absolute;top:0;bottom:0;right:0}.custom-range{width:100%;height:1.4rem;-webkit-appearance:none;-moz-appearance:none;appearance:none;background-color:#0000;padding:0}.custom-range:focus{outline:0}.custom-range:focus::-webkit-slider-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem #007bff40}.custom-range:focus::-moz-range-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem #007bff40}.custom-range:focus::-ms-thumb{box-shadow:0 0 0 1px #fff,0 0 0 .2rem #007bff40}.custom-range::-moz-focus-outer{border:0}.custom-range::-webkit-slider-thumb{width:1rem;height:1rem;-webkit-appearance:none;appearance:none;background-color:#007bff;border:0;border-radius:1rem;margin-top:-.25rem;-webkit-transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-range::-webkit-slider-thumb{-webkit-transition:none;transition:none}}.custom-range::-webkit-slider-thumb:active{background-color:#b3d7ff}.custom-range::-webkit-slider-runnable-track{width:100%;height:.5rem;color:#0000;cursor:pointer;background-color:#dee2e6;border-color:#0000;border-radius:1rem}.custom-range::-moz-range-thumb{width:1rem;height:1rem;-moz-appearance:none;appearance:none;background-color:#007bff;border:0;border-radius:1rem;-moz-transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-range::-moz-range-thumb{-moz-transition:none;transition:none}}.custom-range::-moz-range-thumb:active{background-color:#b3d7ff}.custom-range::-moz-range-track{width:100%;height:.5rem;color:#0000;cursor:pointer;background-color:#dee2e6;border-color:#0000;border-radius:1rem}.custom-range::-ms-thumb{width:1rem;height:1rem;appearance:none;background-color:#007bff;border:0;border-radius:1rem;margin-top:0;margin-left:.2rem;margin-right:.2rem;-ms-transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-range::-ms-thumb{-ms-transition:none;transition:none}}.custom-range::-ms-thumb:active{background-color:#b3d7ff}.custom-range::-ms-track{width:100%;height:.5rem;color:#0000;cursor:pointer;background-color:#0000;border-width:.5rem;border-color:#0000}.custom-range::-ms-fill-lower{background-color:#dee2e6;border-radius:1rem}.custom-range::-ms-fill-upper{background-color:#dee2e6;border-radius:1rem;margin-right:15px}.custom-range:disabled::-webkit-slider-thumb{background-color:#adb5bd}.custom-range:disabled::-webkit-slider-runnable-track{cursor:default}.custom-range:disabled::-moz-range-thumb{background-color:#adb5bd}.custom-range:disabled::-moz-range-track{cursor:default}.custom-range:disabled::-ms-thumb{background-color:#adb5bd}.custom-control-label:before,.custom-file-label,.custom-select{transition:background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out}@media (prefers-reduced-motion:reduce){.custom-control-label:before,.custom-file-label,.custom-select{transition:none}}.nav{-ms-flex-wrap:wrap;flex-wrap:wrap;margin-bottom:0;padding-left:0;list-style:none;display:-ms-flexbox;display:flex}.nav-link{padding:.5rem 1rem;display:block}.nav-link:focus,.nav-link:hover{text-decoration:none}.nav-link.disabled{color:#6c757d;pointer-events:none;cursor:default}.nav-tabs{border-bottom:1px solid #dee2e6}.nav-tabs .nav-link{background-color:#0000;border:1px solid #0000;border-top-left-radius:.25rem;border-top-right-radius:.25rem;margin-bottom:-1px}.nav-tabs .nav-link:focus,.nav-tabs .nav-link:hover{isolation:isolate;border-color:#e9ecef #e9ecef #dee2e6}.nav-tabs .nav-link.disabled{color:#6c757d;background-color:#0000;border-color:#0000}.nav-tabs .nav-item.show .nav-link,.nav-tabs .nav-link.active{color:#495057;background-color:#fff;border-color:#dee2e6 #dee2e6 #fff}.nav-tabs .dropdown-menu{border-top-left-radius:0;border-top-right-radius:0;margin-top:-1px}.nav-pills .nav-link{background:0 0;border:0;border-radius:.25rem}.nav-pills .nav-link.active,.nav-pills .show>.nav-link{color:#fff;background-color:#007bff}.nav-fill .nav-item,.nav-fill>.nav-link{text-align:center;-ms-flex:auto;flex:auto}.nav-justified .nav-item,.nav-justified>.nav-link{text-align:center;-ms-flex-positive:1;-ms-flex-preferred-size:0;flex-grow:1;flex-basis:0}.tab-content>.tab-pane{display:none}.tab-content>.active{display:block}.navbar{-ms-flex-wrap:wrap;flex-wrap:wrap;justify-content:space-between;align-items:center;padding:.5rem 1rem;display:-ms-flexbox;display:flex;position:relative}.navbar .container,.navbar .container-fluid,.navbar .container-lg,.navbar .container-md,.navbar .container-sm,.navbar .container-xl{-ms-flex-wrap:wrap;flex-wrap:wrap;justify-content:space-between;align-items:center;display:-ms-flexbox;display:flex}.navbar-brand{font-size:1.25rem;line-height:inherit;white-space:nowrap;margin-right:1rem;padding-top:.3125rem;padding-bottom:.3125rem;display:inline-block}.navbar-brand:focus,.navbar-brand:hover{text-decoration:none}.navbar-nav{-ms-flex-direction:column;flex-direction:column;margin-bottom:0;padding-left:0;list-style:none;display:-ms-flexbox;display:flex}.navbar-nav .nav-link{padding-left:0;padding-right:0}.navbar-nav .dropdown-menu{float:none;position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;display:inline-block}.navbar-collapse{-ms-flex-positive:1;-ms-flex-preferred-size:100%;flex-grow:1;flex-basis:100%;align-items:center}.navbar-toggler{background-color:#0000;border:1px solid #0000;border-radius:.25rem;padding:.25rem .75rem;font-size:1.25rem;line-height:1}.navbar-toggler:focus,.navbar-toggler:hover{text-decoration:none}.navbar-toggler-icon{width:1.5em;height:1.5em;vertical-align:middle;content:"";background:50%/100% 100% no-repeat;display:inline-block}.navbar-nav-scroll{max-height:75vh;overflow-y:auto}@media (max-width:575.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{padding-left:0;padding-right:0}}@media (min-width:576px){.navbar-expand-sm{-ms-flex-flow:row;flex-flow:row;justify-content:flex-start}.navbar-expand-sm .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid,.navbar-expand-sm>.container-lg,.navbar-expand-sm>.container-md,.navbar-expand-sm>.container-sm,.navbar-expand-sm>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-sm .navbar-nav-scroll{overflow:visible}.navbar-expand-sm .navbar-collapse{-ms-flex-preferred-size:auto;flex-basis:auto;display:-ms-flexbox!important;display:flex!important}.navbar-expand-sm .navbar-toggler{display:none}}@media (max-width:767.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{padding-left:0;padding-right:0}}@media (min-width:768px){.navbar-expand-md{-ms-flex-flow:row;flex-flow:row;justify-content:flex-start}.navbar-expand-md .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid,.navbar-expand-md>.container-lg,.navbar-expand-md>.container-md,.navbar-expand-md>.container-sm,.navbar-expand-md>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-md .navbar-nav-scroll{overflow:visible}.navbar-expand-md .navbar-collapse{-ms-flex-preferred-size:auto;flex-basis:auto;display:-ms-flexbox!important;display:flex!important}.navbar-expand-md .navbar-toggler{display:none}}@media (max-width:991.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{padding-left:0;padding-right:0}}@media (min-width:992px){.navbar-expand-lg{-ms-flex-flow:row;flex-flow:row;justify-content:flex-start}.navbar-expand-lg .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid,.navbar-expand-lg>.container-lg,.navbar-expand-lg>.container-md,.navbar-expand-lg>.container-sm,.navbar-expand-lg>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-lg .navbar-nav-scroll{overflow:visible}.navbar-expand-lg .navbar-collapse{-ms-flex-preferred-size:auto;flex-basis:auto;display:-ms-flexbox!important;display:flex!important}.navbar-expand-lg .navbar-toggler{display:none}}@media (max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{padding-left:0;padding-right:0}}@media (min-width:1200px){.navbar-expand-xl{-ms-flex-flow:row;flex-flow:row;justify-content:flex-start}.navbar-expand-xl .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid,.navbar-expand-xl>.container-lg,.navbar-expand-xl>.container-md,.navbar-expand-xl>.container-sm,.navbar-expand-xl>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand-xl .navbar-nav-scroll{overflow:visible}.navbar-expand-xl .navbar-collapse{-ms-flex-preferred-size:auto;flex-basis:auto;display:-ms-flexbox!important;display:flex!important}.navbar-expand-xl .navbar-toggler{display:none}}.navbar-expand{-ms-flex-flow:row;flex-flow:row;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{padding-left:0;padding-right:0}.navbar-expand .navbar-nav{-ms-flex-direction:row;flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid,.navbar-expand>.container-lg,.navbar-expand>.container-md,.navbar-expand>.container-sm,.navbar-expand>.container-xl{-ms-flex-wrap:nowrap;flex-wrap:nowrap}.navbar-expand .navbar-nav-scroll{overflow:visible}.navbar-expand .navbar-collapse{-ms-flex-preferred-size:auto;flex-basis:auto;display:-ms-flexbox!important;display:flex!important}.navbar-expand .navbar-toggler{display:none}.navbar-light .navbar-brand{color:#000000e6}.navbar-light .navbar-brand:focus,.navbar-light .navbar-brand:hover{color:#000000e6}.navbar-light .navbar-nav .nav-link{color:#00000080}.navbar-light .navbar-nav .nav-link:focus,.navbar-light .navbar-nav .nav-link:hover{color:#000000b3}.navbar-light .navbar-nav .nav-link.disabled{color:#0000004d}.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.active,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .show>.nav-link{color:#000000e6}.navbar-light .navbar-toggler{color:#00000080;border-color:#0000001a}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%280, 0, 0, 0.5%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-light .navbar-text{color:#00000080}.navbar-light .navbar-text a{color:#000000e6}.navbar-light .navbar-text a:focus,.navbar-light .navbar-text a:hover{color:#000000e6}.navbar-dark .navbar-brand{color:#fff}.navbar-dark .navbar-brand:focus,.navbar-dark .navbar-brand:hover{color:#fff}.navbar-dark .navbar-nav .nav-link{color:#ffffff80}.navbar-dark .navbar-nav .nav-link:focus,.navbar-dark .navbar-nav .nav-link:hover{color:#ffffffbf}.navbar-dark .navbar-nav .nav-link.disabled{color:#ffffff40}.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.active,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .show>.nav-link{color:#fff}.navbar-dark .navbar-toggler{color:#ffffff80;border-color:#ffffff1a}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='30' height='30' viewBox='0 0 30 30'%3e%3cpath stroke='rgba%28255, 255, 255, 0.5%29' stroke-linecap='round' stroke-miterlimit='10' stroke-width='2' d='M4 7h22M4 15h22M4 23h22'/%3e%3c/svg%3e")}.navbar-dark .navbar-text{color:#ffffff80}.navbar-dark .navbar-text a{color:#fff}.navbar-dark .navbar-text a:focus,.navbar-dark .navbar-text a:hover{color:#fff}.card{min-width:0;word-wrap:break-word;background-color:#fff;background-clip:border-box;border:1px solid #00000020;border-radius:.25rem;-ms-flex-direction:column;flex-direction:column;display:-ms-flexbox;display:flex;position:relative}.card>hr{margin-left:0;margin-right:0}.card>.list-group{border-top:inherit;border-bottom:inherit}.card>.list-group:first-child{border-top-width:0;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card>.list-group:last-child{border-bottom-width:0;border-bottom-left-radius:calc(.25rem - 1px);border-bottom-right-radius:calc(.25rem - 1px)}.card>.card-header+.list-group,.card>.list-group+.card-footer{border-top:0}.card-body{min-height:1px;-ms-flex:auto;flex:auto;padding:1.25rem}.card-title{margin-bottom:.75rem}.card-subtitle{margin-top:-.375rem;margin-bottom:0}.card-text:last-child{margin-bottom:0}.card-link:hover{text-decoration:none}.card-link+.card-link{margin-left:1.25rem}.card-header{background-color:#00000008;border-bottom:1px solid #00000020;margin-bottom:0;padding:.75rem 1.25rem}.card-header:first-child{border-radius:calc(.25rem - 1px) calc(.25rem - 1px) 0 0}.card-footer{background-color:#00000008;border-top:1px solid #00000020;padding:.75rem 1.25rem}.card-footer:last-child{border-radius:0 0 calc(.25rem - 1px) calc(.25rem - 1px)}.card-header-tabs{border-bottom:0;margin-bottom:-.75rem;margin-left:-.625rem;margin-right:-.625rem}.card-header-pills{margin-left:-.625rem;margin-right:-.625rem}.card-img-overlay{border-radius:calc(.25rem - 1px);padding:1.25rem;position:absolute;inset:0}.card-img,.card-img-bottom,.card-img-top{width:100%;-ms-flex-negative:0;flex-shrink:0}.card-img,.card-img-top{border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px)}.card-img,.card-img-bottom{border-bottom-left-radius:calc(.25rem - 1px);border-bottom-right-radius:calc(.25rem - 1px)}.card-deck .card{margin-bottom:15px}@media (min-width:576px){.card-deck{-ms-flex-flow:wrap;flex-flow:wrap;margin-left:-15px;margin-right:-15px;display:-ms-flexbox;display:flex}.card-deck .card{-ms-flex:1 0;flex:1 0;margin-bottom:0;margin-left:15px;margin-right:15px}}.card-group>.card{margin-bottom:15px}@media (min-width:576px){.card-group{-ms-flex-flow:wrap;flex-flow:wrap;display:-ms-flexbox;display:flex}.card-group>.card{-ms-flex:1 0;flex:1 0;margin-bottom:0}.card-group>.card+.card{border-left:0;margin-left:0}.card-group>.card:not(:last-child){border-top-right-radius:0;border-bottom-right-radius:0}.card-group>.card:not(:last-child) .card-header,.card-group>.card:not(:last-child) .card-img-top{border-top-right-radius:0}.card-group>.card:not(:last-child) .card-footer,.card-group>.card:not(:last-child) .card-img-bottom{border-bottom-right-radius:0}.card-group>.card:not(:first-child){border-top-left-radius:0;border-bottom-left-radius:0}.card-group>.card:not(:first-child) .card-header,.card-group>.card:not(:first-child) .card-img-top{border-top-left-radius:0}.card-group>.card:not(:first-child) .card-footer,.card-group>.card:not(:first-child) .card-img-bottom{border-bottom-left-radius:0}}.card-columns .card{margin-bottom:.75rem}@media (min-width:576px){.card-columns{-webkit-column-count:3;-moz-column-count:3;column-count:3;-webkit-column-gap:1.25rem;-moz-column-gap:1.25rem;orphans:1;widows:1;column-gap:1.25rem}.card-columns .card{width:100%;display:inline-block}}.accordion{overflow-anchor:none}.accordion>.card{overflow:hidden}.accordion>.card:not(:last-of-type){border-bottom:0;border-bottom-left-radius:0;border-bottom-right-radius:0}.accordion>.card:not(:first-of-type){border-top-left-radius:0;border-top-right-radius:0}.accordion>.card>.card-header{border-radius:0;margin-bottom:-1px}.breadcrumb{background-color:#e9ecef;border-radius:.25rem;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-bottom:1rem;padding:.75rem 1rem;list-style:none;display:-ms-flexbox;display:flex}.breadcrumb-item+.breadcrumb-item{padding-left:.5rem}.breadcrumb-item+.breadcrumb-item:before{float:left;color:#6c757d;content:"/";padding-right:.5rem}.breadcrumb-item+.breadcrumb-item:hover:before{text-decoration:underline}.breadcrumb-item+.breadcrumb-item:hover:before{text-decoration:none}.breadcrumb-item.active{color:#6c757d}.pagination{border-radius:.25rem;padding-left:0;list-style:none;display:-ms-flexbox;display:flex}.page-link{color:#007bff;background-color:#fff;border:1px solid #dee2e6;margin-left:-1px;padding:.5rem .75rem;line-height:1.25;display:block;position:relative}.page-link:hover{z-index:2;color:#0056b3;background-color:#e9ecef;border-color:#dee2e6;text-decoration:none}.page-link:focus{z-index:3;outline:0;box-shadow:0 0 0 .2rem #007bff40}.page-item:first-child .page-link{border-top-left-radius:.25rem;border-bottom-left-radius:.25rem;margin-left:0}.page-item:last-child .page-link{border-top-right-radius:.25rem;border-bottom-right-radius:.25rem}.page-item.active .page-link{z-index:3;color:#fff;background-color:#007bff;border-color:#007bff}.page-item.disabled .page-link{color:#6c757d;pointer-events:none;cursor:auto;background-color:#fff;border-color:#dee2e6}.pagination-lg .page-link{padding:.75rem 1.5rem;font-size:1.25rem;line-height:1.5}.pagination-lg .page-item:first-child .page-link{border-top-left-radius:.3rem;border-bottom-left-radius:.3rem}.pagination-lg .page-item:last-child .page-link{border-top-right-radius:.3rem;border-bottom-right-radius:.3rem}.pagination-sm .page-link{padding:.25rem .5rem;font-size:.875rem;line-height:1.5}.pagination-sm .page-item:first-child .page-link{border-top-left-radius:.2rem;border-bottom-left-radius:.2rem}.pagination-sm .page-item:last-child .page-link{border-top-right-radius:.2rem;border-bottom-right-radius:.2rem}.badge{text-align:center;white-space:nowrap;vertical-align:baseline;border-radius:.25rem;padding:.25em .4em;font-size:75%;font-weight:700;line-height:1;transition:color .15s ease-in-out,background-color .15s ease-in-out,border-color .15s ease-in-out,box-shadow .15s ease-in-out;display:inline-block}@media (prefers-reduced-motion:reduce){.badge{transition:none}}a.badge:focus,a.badge:hover{text-decoration:none}.badge:empty{display:none}.btn .badge{position:relative;top:-1px}.badge-pill{border-radius:10rem;padding-left:.6em;padding-right:.6em}.badge-primary{color:#fff;background-color:#007bff}a.badge-primary:focus,a.badge-primary:hover{color:#fff;background-color:#0062cc}a.badge-primary.focus,a.badge-primary:focus{outline:0;box-shadow:0 0 0 .2rem #007bff80}.badge-secondary{color:#fff;background-color:#6c757d}a.badge-secondary:focus,a.badge-secondary:hover{color:#fff;background-color:#545b62}a.badge-secondary.focus,a.badge-secondary:focus{outline:0;box-shadow:0 0 0 .2rem #6c757d80}.badge-success{color:#fff;background-color:#28a745}a.badge-success:focus,a.badge-success:hover{color:#fff;background-color:#1e7e34}a.badge-success.focus,a.badge-success:focus{outline:0;box-shadow:0 0 0 .2rem #28a74580}.badge-info{color:#fff;background-color:#17a2b8}a.badge-info:focus,a.badge-info:hover{color:#fff;background-color:#117a8b}a.badge-info.focus,a.badge-info:focus{outline:0;box-shadow:0 0 0 .2rem #17a2b880}.badge-warning{color:#212529;background-color:#ffc107}a.badge-warning:focus,a.badge-warning:hover{color:#212529;background-color:#d39e00}a.badge-warning.focus,a.badge-warning:focus{outline:0;box-shadow:0 0 0 .2rem #ffc10780}.badge-danger{color:#fff;background-color:#dc3545}a.badge-danger:focus,a.badge-danger:hover{color:#fff;background-color:#bd2130}a.badge-danger.focus,a.badge-danger:focus{outline:0;box-shadow:0 0 0 .2rem #dc354580}.badge-light{color:#212529;background-color:#f8f9fa}a.badge-light:focus,a.badge-light:hover{color:#212529;background-color:#dae0e5}a.badge-light.focus,a.badge-light:focus{outline:0;box-shadow:0 0 0 .2rem #f8f9fa80}.badge-dark{color:#fff;background-color:#343a40}a.badge-dark:focus,a.badge-dark:hover{color:#fff;background-color:#1d2124}a.badge-dark.focus,a.badge-dark:focus{outline:0;box-shadow:0 0 0 .2rem #343a4080}.jumbotron{background-color:#e9ecef;border-radius:.3rem;margin-bottom:2rem;padding:2rem 1rem}@media (min-width:576px){.jumbotron{padding:4rem 2rem}}.jumbotron-fluid{border-radius:0;padding-left:0;padding-right:0}.alert{border:1px solid #0000;border-radius:.25rem;margin-bottom:1rem;padding:.75rem 1.25rem;position:relative}.alert-heading{color:inherit}.alert-link{font-weight:700}.alert-dismissible{padding-right:4rem}.alert-dismissible .close{z-index:2;color:inherit;padding:.75rem 1.25rem;position:absolute;top:0;right:0}.alert-primary{color:#004085;background-color:#cce5ff;border-color:#b8daff}.alert-primary hr{border-top-color:#9fcdff}.alert-primary .alert-link{color:#002752}.alert-secondary{color:#383d41;background-color:#e2e3e5;border-color:#d6d8db}.alert-secondary hr{border-top-color:#c8cbcf}.alert-secondary .alert-link{color:#202326}.alert-success{color:#155724;background-color:#d4edda;border-color:#c3e6cb}.alert-success hr{border-top-color:#b1dfbb}.alert-success .alert-link{color:#0b2e13}.alert-info{color:#0c5460;background-color:#d1ecf1;border-color:#bee5eb}.alert-info hr{border-top-color:#abdde5}.alert-info .alert-link{color:#062c33}.alert-warning{color:#856404;background-color:#fff3cd;border-color:#ffeeba}.alert-warning hr{border-top-color:#ffe8a1}.alert-warning .alert-link{color:#533f03}.alert-danger{color:#721c24;background-color:#f8d7da;border-color:#f5c6cb}.alert-danger hr{border-top-color:#f1b0b7}.alert-danger .alert-link{color:#491217}.alert-light{color:#818182;background-color:#fefefe;border-color:#fdfdfe}.alert-light hr{border-top-color:#ececf6}.alert-light .alert-link{color:#686868}.alert-dark{color:#1b1e21;background-color:#d6d8d9;border-color:#c6c8ca}.alert-dark hr{border-top-color:#b9bbbe}.alert-dark .alert-link{color:#040505}@-webkit-keyframes progress-bar-stripes{0%{background-position:1rem 0}to{background-position:0 0}}@keyframes progress-bar-stripes{0%{background-position:1rem 0}to{background-position:0 0}}.progress{height:1rem;background-color:#e9ecef;border-radius:.25rem;font-size:.75rem;line-height:0;display:-ms-flexbox;display:flex;overflow:hidden}.progress-bar{color:#fff;text-align:center;white-space:nowrap;background-color:#007bff;-ms-flex-direction:column;flex-direction:column;justify-content:center;transition:width .6s;display:-ms-flexbox;display:flex;overflow:hidden}@media (prefers-reduced-motion:reduce){.progress-bar{transition:none}}.progress-bar-striped{background-image:linear-gradient(45deg,#ffffff26 25%,#0000 25% 50%,#ffffff26 50% 75%,#0000 75%,#0000);background-size:1rem 1rem}.progress-bar-animated{-webkit-animation:progress-bar-stripes 1s linear infinite;animation:progress-bar-stripes 1s linear infinite}@media (prefers-reduced-motion:reduce){.progress-bar-animated{-webkit-animation:none;animation:none}}.media{align-items:flex-start;display:-ms-flexbox;display:flex}.media-body{-ms-flex:1;flex:1}.list-group{border-radius:.25rem;-ms-flex-direction:column;flex-direction:column;margin-bottom:0;padding-left:0;display:-ms-flexbox;display:flex}.list-group-item-action{width:100%;color:#495057;text-align:inherit}.list-group-item-action:focus,.list-group-item-action:hover{z-index:1;color:#495057;background-color:#f8f9fa;text-decoration:none}.list-group-item-action:active{color:#212529;background-color:#e9ecef}.list-group-item{background-color:#fff;border:1px solid #00000020;padding:.75rem 1.25rem;display:block;position:relative}.list-group-item:first-child{border-top-left-radius:inherit;border-top-right-radius:inherit}.list-group-item:last-child{border-bottom-right-radius:inherit;border-bottom-left-radius:inherit}.list-group-item.disabled,.list-group-item:disabled{color:#6c757d;pointer-events:none;background-color:#fff}.list-group-item.active{z-index:2;color:#fff;background-color:#007bff;border-color:#007bff}.list-group-item+.list-group-item{border-top-width:0}.list-group-item+.list-group-item.active{border-top-width:1px;margin-top:-1px}.list-group-horizontal{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal>.list-group-item:first-child{border-top-right-radius:0;border-bottom-left-radius:.25rem}.list-group-horizontal>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal>.list-group-item.active{margin-top:0}.list-group-horizontal>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal>.list-group-item+.list-group-item.active{border-left-width:1px;margin-left:-1px}@media (min-width:576px){.list-group-horizontal-sm{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-sm>.list-group-item:first-child{border-top-right-radius:0;border-bottom-left-radius:.25rem}.list-group-horizontal-sm>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-sm>.list-group-item.active{margin-top:0}.list-group-horizontal-sm>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-sm>.list-group-item+.list-group-item.active{border-left-width:1px;margin-left:-1px}}@media (min-width:768px){.list-group-horizontal-md{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-md>.list-group-item:first-child{border-top-right-radius:0;border-bottom-left-radius:.25rem}.list-group-horizontal-md>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-md>.list-group-item.active{margin-top:0}.list-group-horizontal-md>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-md>.list-group-item+.list-group-item.active{border-left-width:1px;margin-left:-1px}}@media (min-width:992px){.list-group-horizontal-lg{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-lg>.list-group-item:first-child{border-top-right-radius:0;border-bottom-left-radius:.25rem}.list-group-horizontal-lg>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-lg>.list-group-item.active{margin-top:0}.list-group-horizontal-lg>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-lg>.list-group-item+.list-group-item.active{border-left-width:1px;margin-left:-1px}}@media (min-width:1200px){.list-group-horizontal-xl{-ms-flex-direction:row;flex-direction:row}.list-group-horizontal-xl>.list-group-item:first-child{border-top-right-radius:0;border-bottom-left-radius:.25rem}.list-group-horizontal-xl>.list-group-item:last-child{border-top-right-radius:.25rem;border-bottom-left-radius:0}.list-group-horizontal-xl>.list-group-item.active{margin-top:0}.list-group-horizontal-xl>.list-group-item+.list-group-item{border-top-width:1px;border-left-width:0}.list-group-horizontal-xl>.list-group-item+.list-group-item.active{border-left-width:1px;margin-left:-1px}}.list-group-flush{border-radius:0}.list-group-flush>.list-group-item{border-width:0 0 1px}.list-group-flush>.list-group-item:last-child{border-bottom-width:0}.list-group-item-primary{color:#004085;background-color:#b8daff}.list-group-item-primary.list-group-item-action:focus,.list-group-item-primary.list-group-item-action:hover{color:#004085;background-color:#9fcdff}.list-group-item-primary.list-group-item-action.active{color:#fff;background-color:#004085;border-color:#004085}.list-group-item-secondary{color:#383d41;background-color:#d6d8db}.list-group-item-secondary.list-group-item-action:focus,.list-group-item-secondary.list-group-item-action:hover{color:#383d41;background-color:#c8cbcf}.list-group-item-secondary.list-group-item-action.active{color:#fff;background-color:#383d41;border-color:#383d41}.list-group-item-success{color:#155724;background-color:#c3e6cb}.list-group-item-success.list-group-item-action:focus,.list-group-item-success.list-group-item-action:hover{color:#155724;background-color:#b1dfbb}.list-group-item-success.list-group-item-action.active{color:#fff;background-color:#155724;border-color:#155724}.list-group-item-info{color:#0c5460;background-color:#bee5eb}.list-group-item-info.list-group-item-action:focus,.list-group-item-info.list-group-item-action:hover{color:#0c5460;background-color:#abdde5}.list-group-item-info.list-group-item-action.active{color:#fff;background-color:#0c5460;border-color:#0c5460}.list-group-item-warning{color:#856404;background-color:#ffeeba}.list-group-item-warning.list-group-item-action:focus,.list-group-item-warning.list-group-item-action:hover{color:#856404;background-color:#ffe8a1}.list-group-item-warning.list-group-item-action.active{color:#fff;background-color:#856404;border-color:#856404}.list-group-item-danger{color:#721c24;background-color:#f5c6cb}.list-group-item-danger.list-group-item-action:focus,.list-group-item-danger.list-group-item-action:hover{color:#721c24;background-color:#f1b0b7}.list-group-item-danger.list-group-item-action.active{color:#fff;background-color:#721c24;border-color:#721c24}.list-group-item-light{color:#818182;background-color:#fdfdfe}.list-group-item-light.list-group-item-action:focus,.list-group-item-light.list-group-item-action:hover{color:#818182;background-color:#ececf6}.list-group-item-light.list-group-item-action.active{color:#fff;background-color:#818182;border-color:#818182}.list-group-item-dark{color:#1b1e21;background-color:#c6c8ca}.list-group-item-dark.list-group-item-action:focus,.list-group-item-dark.list-group-item-action:hover{color:#1b1e21;background-color:#b9bbbe}.list-group-item-dark.list-group-item-action.active{color:#fff;background-color:#1b1e21;border-color:#1b1e21}.close{float:right;color:#000;text-shadow:0 1px #fff;opacity:.5;font-size:1.5rem;font-weight:700;line-height:1}.close:hover{color:#000;text-decoration:none}.close:not(:disabled):not(.disabled):focus,.close:not(:disabled):not(.disabled):hover{opacity:.75}button.close{background-color:#0000;border:0;padding:0}a.close.disabled{pointer-events:none}.toast{max-width:350px;opacity:0;background-color:#ffffffd9;background-clip:padding-box;border:1px solid #0000001a;border-radius:.25rem;-ms-flex-preferred-size:350px;flex-basis:350px;font-size:.875rem;box-shadow:0 .25rem .75rem #0000001a}.toast:not(:last-child){margin-bottom:.75rem}.toast.showing{opacity:1}.toast.show{opacity:1;display:block}.toast.hide{display:none}.toast-header{color:#6c757d;background-color:#ffffffd9;background-clip:padding-box;border-bottom:1px solid #0000000d;border-top-left-radius:calc(.25rem - 1px);border-top-right-radius:calc(.25rem - 1px);align-items:center;padding:.25rem .75rem;display:-ms-flexbox;display:flex}.toast-body{padding:.75rem}.modal-open{overflow:hidden}.modal-open .modal{overflow:hidden auto}.modal{z-index:1050;width:100%;height:100%;outline:0;display:none;position:fixed;top:0;left:0;overflow:hidden}.modal-dialog{width:auto;pointer-events:none;margin:.5rem;position:relative}.modal.fade .modal-dialog{transition:transform .3s ease-out,-webkit-transform .3s ease-out;-webkit-transform:translateY(-50px);transform:translateY(-50px)}@media (prefers-reduced-motion:reduce){.modal.fade .modal-dialog{transition:none}}.modal.show .modal-dialog{-webkit-transform:none;transform:none}.modal.modal-static .modal-dialog{-webkit-transform:scale(1.02);transform:scale(1.02)}.modal-dialog-scrollable{max-height:calc(100% - 1rem);display:-ms-flexbox;display:flex}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 1rem);overflow:hidden}.modal-dialog-scrollable .modal-footer,.modal-dialog-scrollable .modal-header{-ms-flex-negative:0;flex-shrink:0}.modal-dialog-scrollable .modal-body{overflow-y:auto}.modal-dialog-centered{min-height:calc(100% - 1rem);align-items:center;display:-ms-flexbox;display:flex}.modal-dialog-centered:before{height:calc(100vh - 1rem);height:-webkit-min-content;height:-moz-min-content;height:min-content;content:"";display:block}.modal-dialog-centered.modal-dialog-scrollable{height:100%;-ms-flex-direction:column;flex-direction:column;justify-content:center}.modal-dialog-centered.modal-dialog-scrollable .modal-content{max-height:none}.modal-dialog-centered.modal-dialog-scrollable:before{content:none}.modal-content{width:100%;pointer-events:auto;background-color:#fff;background-clip:padding-box;border:1px solid #0003;border-radius:.3rem;outline:0;-ms-flex-direction:column;flex-direction:column;display:-ms-flexbox;display:flex;position:relative}.modal-backdrop{z-index:1040;width:100vw;height:100vh;background-color:#000;position:fixed;top:0;left:0}.modal-backdrop.fade{opacity:0}.modal-backdrop.show{opacity:.5}.modal-header{border-bottom:1px solid #dee2e6;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px);justify-content:space-between;align-items:flex-start;padding:1rem;display:-ms-flexbox;display:flex}.modal-header .close{margin:-1rem -1rem -1rem auto;padding:1rem}.modal-title{margin-bottom:0;line-height:1.5}.modal-body{-ms-flex:auto;flex:auto;padding:1rem;position:relative}.modal-footer{border-top:1px solid #dee2e6;border-bottom-left-radius:calc(.3rem - 1px);border-bottom-right-radius:calc(.3rem - 1px);-ms-flex-wrap:wrap;flex-wrap:wrap;justify-content:flex-end;align-items:center;padding:.75rem;display:-ms-flexbox;display:flex}.modal-footer>*{margin:.25rem}.modal-scrollbar-measure{width:50px;height:50px;position:absolute;top:-9999px;overflow:scroll}@media (min-width:576px){.modal-dialog{max-width:500px;margin:1.75rem auto}.modal-dialog-scrollable{max-height:calc(100% - 3.5rem)}.modal-dialog-scrollable .modal-content{max-height:calc(100vh - 3.5rem)}.modal-dialog-centered{min-height:calc(100% - 3.5rem)}.modal-dialog-centered:before{height:calc(100vh - 3.5rem);height:-webkit-min-content;height:-moz-min-content;height:min-content}.modal-sm{max-width:300px}}@media (min-width:992px){.modal-lg,.modal-xl{max-width:800px}}@media (min-width:1200px){.modal-xl{max-width:1140px}}.tooltip{z-index:1070;text-align:left;text-align:start;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;word-wrap:break-word;opacity:0;margin:0;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,Liberation Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-size:.875rem;font-style:normal;font-weight:400;line-height:1.5;text-decoration:none;display:block;position:absolute}.tooltip.show{opacity:.9}.tooltip .arrow{width:.8rem;height:.4rem;display:block;position:absolute}.tooltip .arrow:before{content:"";border-style:solid;border-color:#0000;position:absolute}.bs-tooltip-auto[x-placement^=top],.bs-tooltip-top{padding:.4rem 0}.bs-tooltip-auto[x-placement^=top] .arrow,.bs-tooltip-top .arrow{bottom:0}.bs-tooltip-auto[x-placement^=top] .arrow:before,.bs-tooltip-top .arrow:before{border-width:.4rem .4rem 0;border-top-color:#000;top:0}.bs-tooltip-auto[x-placement^=right],.bs-tooltip-right{padding:0 .4rem}.bs-tooltip-auto[x-placement^=right] .arrow,.bs-tooltip-right .arrow{width:.4rem;height:.8rem;left:0}.bs-tooltip-auto[x-placement^=right] .arrow:before,.bs-tooltip-right .arrow:before{border-width:.4rem .4rem .4rem 0;border-right-color:#000;right:0}.bs-tooltip-auto[x-placement^=bottom],.bs-tooltip-bottom{padding:.4rem 0}.bs-tooltip-auto[x-placement^=bottom] .arrow,.bs-tooltip-bottom .arrow{top:0}.bs-tooltip-auto[x-placement^=bottom] .arrow:before,.bs-tooltip-bottom .arrow:before{border-width:0 .4rem .4rem;border-bottom-color:#000;bottom:0}.bs-tooltip-auto[x-placement^=left],.bs-tooltip-left{padding:0 .4rem}.bs-tooltip-auto[x-placement^=left] .arrow,.bs-tooltip-left .arrow{width:.4rem;height:.8rem;right:0}.bs-tooltip-auto[x-placement^=left] .arrow:before,.bs-tooltip-left .arrow:before{border-width:.4rem 0 .4rem .4rem;border-left-color:#000;left:0}.tooltip-inner{max-width:200px;color:#fff;text-align:center;background-color:#000;border-radius:.25rem;padding:.25rem .5rem}.popover{z-index:1060;max-width:276px;text-align:left;text-align:start;text-shadow:none;text-transform:none;letter-spacing:normal;word-break:normal;white-space:normal;word-spacing:normal;line-break:auto;word-wrap:break-word;background-color:#fff;background-clip:padding-box;border:1px solid #0003;border-radius:.3rem;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,Liberation Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji;font-size:.875rem;font-style:normal;font-weight:400;line-height:1.5;text-decoration:none;display:block;position:absolute;top:0;left:0}.popover .arrow{width:1rem;height:.5rem;margin:0 .3rem;display:block;position:absolute}.popover .arrow:after,.popover .arrow:before{content:"";border-style:solid;border-color:#0000;display:block;position:absolute}.bs-popover-auto[x-placement^=top],.bs-popover-top{margin-bottom:.5rem}.bs-popover-auto[x-placement^=top]>.arrow,.bs-popover-top>.arrow{bottom:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=top]>.arrow:before,.bs-popover-top>.arrow:before{border-width:.5rem .5rem 0;border-top-color:#00000040;bottom:0}.bs-popover-auto[x-placement^=top]>.arrow:after,.bs-popover-top>.arrow:after{border-width:.5rem .5rem 0;border-top-color:#fff;bottom:1px}.bs-popover-auto[x-placement^=right],.bs-popover-right{margin-left:.5rem}.bs-popover-auto[x-placement^=right]>.arrow,.bs-popover-right>.arrow{width:.5rem;height:1rem;margin:.3rem 0;left:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=right]>.arrow:before,.bs-popover-right>.arrow:before{border-width:.5rem .5rem .5rem 0;border-right-color:#00000040;left:0}.bs-popover-auto[x-placement^=right]>.arrow:after,.bs-popover-right>.arrow:after{border-width:.5rem .5rem .5rem 0;border-right-color:#fff;left:1px}.bs-popover-auto[x-placement^=bottom],.bs-popover-bottom{margin-top:.5rem}.bs-popover-auto[x-placement^=bottom]>.arrow,.bs-popover-bottom>.arrow{top:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=bottom]>.arrow:before,.bs-popover-bottom>.arrow:before{border-width:0 .5rem .5rem;border-bottom-color:#00000040;top:0}.bs-popover-auto[x-placement^=bottom]>.arrow:after,.bs-popover-bottom>.arrow:after{border-width:0 .5rem .5rem;border-bottom-color:#fff;top:1px}.bs-popover-auto[x-placement^=bottom] .popover-header:before,.bs-popover-bottom .popover-header:before{width:1rem;content:"";border-bottom:1px solid #f7f7f7;margin-left:-.5rem;display:block;position:absolute;top:0;left:50%}.bs-popover-auto[x-placement^=left],.bs-popover-left{margin-right:.5rem}.bs-popover-auto[x-placement^=left]>.arrow,.bs-popover-left>.arrow{width:.5rem;height:1rem;margin:.3rem 0;right:calc(-.5rem - 1px)}.bs-popover-auto[x-placement^=left]>.arrow:before,.bs-popover-left>.arrow:before{border-width:.5rem 0 .5rem .5rem;border-left-color:#00000040;right:0}.bs-popover-auto[x-placement^=left]>.arrow:after,.bs-popover-left>.arrow:after{border-width:.5rem 0 .5rem .5rem;border-left-color:#fff;right:1px}.popover-header{background-color:#f7f7f7;border-bottom:1px solid #ebebeb;border-top-left-radius:calc(.3rem - 1px);border-top-right-radius:calc(.3rem - 1px);margin-bottom:0;padding:.5rem .75rem;font-size:1rem}.popover-header:empty{display:none}.popover-body{color:#212529;padding:.5rem .75rem}.carousel{position:relative}.carousel.pointer-event{-ms-touch-action:pan-y;touch-action:pan-y}.carousel-inner{width:100%;position:relative;overflow:hidden}.carousel-inner:after{clear:both;content:"";display:block}.carousel-item{float:left;width:100%;-webkit-backface-visibility:hidden;backface-visibility:hidden;margin-right:-100%;transition:transform .6s ease-in-out,-webkit-transform .6s ease-in-out;display:none;position:relative}@media (prefers-reduced-motion:reduce){.carousel-item{transition:none}}.carousel-item-next,.carousel-item-prev,.carousel-item.active{display:block}.active.carousel-item-right,.carousel-item-next:not(.carousel-item-left){-webkit-transform:translate(100%);transform:translate(100%)}.active.carousel-item-left,.carousel-item-prev:not(.carousel-item-right){-webkit-transform:translate(-100%);transform:translate(-100%)}.carousel-fade .carousel-item{opacity:0;transition-property:opacity;-webkit-transform:none;transform:none}.carousel-fade .carousel-item-next.carousel-item-left,.carousel-fade .carousel-item-prev.carousel-item-right,.carousel-fade .carousel-item.active{z-index:1;opacity:1}.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{z-index:0;opacity:0;transition:opacity 0s .6s}@media (prefers-reduced-motion:reduce){.carousel-fade .active.carousel-item-left,.carousel-fade .active.carousel-item-right{transition:none}}.carousel-control-next,.carousel-control-prev{z-index:1;width:15%;color:#fff;text-align:center;opacity:.5;background:0 0;border:0;justify-content:center;align-items:center;padding:0;transition:opacity .15s;display:-ms-flexbox;display:flex;position:absolute;top:0;bottom:0}@media (prefers-reduced-motion:reduce){.carousel-control-next,.carousel-control-prev{transition:none}}.carousel-control-next:focus,.carousel-control-next:hover,.carousel-control-prev:focus,.carousel-control-prev:hover{color:#fff;opacity:.9;outline:0;text-decoration:none}.carousel-control-prev{left:0}.carousel-control-next{right:0}.carousel-control-next-icon,.carousel-control-prev-icon{width:20px;height:20px;background:50%/100% 100% no-repeat;display:inline-block}.carousel-control-prev-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath d='M5.25 0l-4 4 4 4 1.5-1.5L4.25 4l2.5-2.5L5.25 0z'/%3e%3c/svg%3e")}.carousel-control-next-icon{background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='%23fff' width='8' height='8' viewBox='0 0 8 8'%3e%3cpath d='M2.75 0l-1.5 1.5L3.75 4l-2.5 2.5L2.75 8l4-4-4-4z'/%3e%3c/svg%3e")}.carousel-indicators{z-index:15;justify-content:center;margin-left:15%;margin-right:15%;padding-left:0;list-style:none;display:-ms-flexbox;display:flex;position:absolute;bottom:0;left:0;right:0}.carousel-indicators li{box-sizing:content-box;width:30px;height:3px;text-indent:-999px;cursor:pointer;opacity:.5;background-color:#fff;background-clip:padding-box;border-top:10px solid #0000;border-bottom:10px solid #0000;-ms-flex:0 auto;flex:0 auto;margin-left:3px;margin-right:3px;transition:opacity .6s}@media (prefers-reduced-motion:reduce){.carousel-indicators li{transition:none}}.carousel-indicators .active{opacity:1}.carousel-caption{z-index:10;color:#fff;text-align:center;padding-top:20px;padding-bottom:20px;position:absolute;bottom:20px;left:15%;right:15%}@-webkit-keyframes spinner-border{to{-webkit-transform:rotate(360deg);transform:rotate(360deg)}}@keyframes spinner-border{to{-webkit-transform:rotate(360deg);transform:rotate(360deg)}}.spinner-border{width:2rem;height:2rem;vertical-align:-.125em;border:.25em solid;border-right-color:#0000;border-radius:50%;-webkit-animation:spinner-border .75s linear infinite;animation:spinner-border .75s linear infinite;display:inline-block}.spinner-border-sm{width:1rem;height:1rem;border-width:.2em}@-webkit-keyframes spinner-grow{0%{-webkit-transform:scale(0);transform:scale(0)}50%{opacity:1;-webkit-transform:none;transform:none}}@keyframes spinner-grow{0%{-webkit-transform:scale(0);transform:scale(0)}50%{opacity:1;-webkit-transform:none;transform:none}}.spinner-grow{width:2rem;height:2rem;vertical-align:-.125em;opacity:0;background-color:currentColor;border-radius:50%;-webkit-animation:spinner-grow .75s linear infinite;animation:spinner-grow .75s linear infinite;display:inline-block}.spinner-grow-sm{width:1rem;height:1rem}@media (prefers-reduced-motion:reduce){.spinner-border,.spinner-grow{-webkit-animation-duration:1.5s;animation-duration:1.5s}}.align-baseline{vertical-align:baseline!important}.align-top{vertical-align:top!important}.align-middle{vertical-align:middle!important}.align-bottom{vertical-align:bottom!important}.align-text-bottom{vertical-align:text-bottom!important}.align-text-top{vertical-align:text-top!important}.bg-primary{background-color:#007bff!important}a.bg-primary:focus,a.bg-primary:hover,button.bg-primary:focus,button.bg-primary:hover{background-color:#0062cc!important}.bg-secondary{background-color:#6c757d!important}a.bg-secondary:focus,a.bg-secondary:hover,button.bg-secondary:focus,button.bg-secondary:hover{background-color:#545b62!important}.bg-success{background-color:#28a745!important}a.bg-success:focus,a.bg-success:hover,button.bg-success:focus,button.bg-success:hover{background-color:#1e7e34!important}.bg-info{background-color:#17a2b8!important}a.bg-info:focus,a.bg-info:hover,button.bg-info:focus,button.bg-info:hover{background-color:#117a8b!important}.bg-warning{background-color:#ffc107!important}a.bg-warning:focus,a.bg-warning:hover,button.bg-warning:focus,button.bg-warning:hover{background-color:#d39e00!important}.bg-danger{background-color:#dc3545!important}a.bg-danger:focus,a.bg-danger:hover,button.bg-danger:focus,button.bg-danger:hover{background-color:#bd2130!important}.bg-light{background-color:#f8f9fa!important}a.bg-light:focus,a.bg-light:hover,button.bg-light:focus,button.bg-light:hover{background-color:#dae0e5!important}.bg-dark{background-color:#343a40!important}a.bg-dark:focus,a.bg-dark:hover,button.bg-dark:focus,button.bg-dark:hover{background-color:#1d2124!important}.bg-white{background-color:#fff!important}.bg-transparent{background-color:#0000!important}.border{border:1px solid #dee2e6!important}.border-top{border-top:1px solid #dee2e6!important}.border-right{border-right:1px solid #dee2e6!important}.border-bottom{border-bottom:1px solid #dee2e6!important}.border-left{border-left:1px solid #dee2e6!important}.border-0{border:0!important}.border-top-0{border-top:0!important}.border-right-0{border-right:0!important}.border-bottom-0{border-bottom:0!important}.border-left-0{border-left:0!important}.border-primary{border-color:#007bff!important}.border-secondary{border-color:#6c757d!important}.border-success{border-color:#28a745!important}.border-info{border-color:#17a2b8!important}.border-warning{border-color:#ffc107!important}.border-danger{border-color:#dc3545!important}.border-light{border-color:#f8f9fa!important}.border-dark{border-color:#343a40!important}.border-white{border-color:#fff!important}.rounded-sm{border-radius:.2rem!important}.rounded{border-radius:.25rem!important}.rounded-top{border-top-left-radius:.25rem!important;border-top-right-radius:.25rem!important}.rounded-right{border-top-right-radius:.25rem!important;border-bottom-right-radius:.25rem!important}.rounded-bottom{border-bottom-left-radius:.25rem!important;border-bottom-right-radius:.25rem!important}.rounded-left{border-top-left-radius:.25rem!important;border-bottom-left-radius:.25rem!important}.rounded-lg{border-radius:.3rem!important}.rounded-circle{border-radius:50%!important}.rounded-pill{border-radius:50rem!important}.rounded-0{border-radius:0!important}.clearfix:after{clear:both;content:"";display:block}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:-ms-flexbox!important;display:flex!important}.d-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}@media (min-width:576px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:-ms-flexbox!important;display:flex!important}.d-sm-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media (min-width:768px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:-ms-flexbox!important;display:flex!important}.d-md-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media (min-width:992px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:-ms-flexbox!important;display:flex!important}.d-lg-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media (min-width:1200px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:-ms-flexbox!important;display:flex!important}.d-xl-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:-ms-flexbox!important;display:flex!important}.d-print-inline-flex{display:-ms-inline-flexbox!important;display:inline-flex!important}}.embed-responsive{width:100%;padding:0;display:block;position:relative;overflow:hidden}.embed-responsive:before{content:"";display:block}.embed-responsive .embed-responsive-item,.embed-responsive embed,.embed-responsive iframe,.embed-responsive object,.embed-responsive video{width:100%;height:100%;border:0;position:absolute;top:0;bottom:0;left:0}.embed-responsive-21by9:before{padding-top:42.8571%}.embed-responsive-16by9:before{padding-top:56.25%}.embed-responsive-4by3:before{padding-top:75%}.embed-responsive-1by1:before{padding-top:100%}.flex-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-fill{-ms-flex:auto!important;flex:auto!important}.flex-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-start{justify-content:flex-start!important}.justify-content-end{justify-content:flex-end!important}.justify-content-center{justify-content:center!important}.justify-content-between{justify-content:space-between!important}.justify-content-around{justify-content:space-around!important}.align-items-start{align-items:flex-start!important}.align-items-end{align-items:flex-end!important}.align-items-center{align-items:center!important}.align-items-baseline{align-items:baseline!important}.align-items-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-between{align-content:space-between!important}.align-content-around{align-content:space-around!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}@media (min-width:576px){.flex-sm-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-sm-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-sm-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-sm-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-sm-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-sm-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-sm-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-sm-fill{-ms-flex:auto!important;flex:auto!important}.flex-sm-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-sm-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-sm-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-sm-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-sm-start{justify-content:flex-start!important}.justify-content-sm-end{justify-content:flex-end!important}.justify-content-sm-center{justify-content:center!important}.justify-content-sm-between{justify-content:space-between!important}.justify-content-sm-around{justify-content:space-around!important}.align-items-sm-start{align-items:flex-start!important}.align-items-sm-end{align-items:flex-end!important}.align-items-sm-center{align-items:center!important}.align-items-sm-baseline{align-items:baseline!important}.align-items-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-between{align-content:space-between!important}.align-content-sm-around{align-content:space-around!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}}@media (min-width:768px){.flex-md-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-md-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-md-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-md-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-md-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-md-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-md-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-md-fill{-ms-flex:auto!important;flex:auto!important}.flex-md-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-md-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-md-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-md-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-md-start{justify-content:flex-start!important}.justify-content-md-end{justify-content:flex-end!important}.justify-content-md-center{justify-content:center!important}.justify-content-md-between{justify-content:space-between!important}.justify-content-md-around{justify-content:space-around!important}.align-items-md-start{align-items:flex-start!important}.align-items-md-end{align-items:flex-end!important}.align-items-md-center{align-items:center!important}.align-items-md-baseline{align-items:baseline!important}.align-items-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-between{align-content:space-between!important}.align-content-md-around{align-content:space-around!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}}@media (min-width:992px){.flex-lg-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-lg-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-lg-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-lg-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-lg-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-lg-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-lg-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-lg-fill{-ms-flex:auto!important;flex:auto!important}.flex-lg-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-lg-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-lg-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-lg-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-lg-start{justify-content:flex-start!important}.justify-content-lg-end{justify-content:flex-end!important}.justify-content-lg-center{justify-content:center!important}.justify-content-lg-between{justify-content:space-between!important}.justify-content-lg-around{justify-content:space-around!important}.align-items-lg-start{align-items:flex-start!important}.align-items-lg-end{align-items:flex-end!important}.align-items-lg-center{align-items:center!important}.align-items-lg-baseline{align-items:baseline!important}.align-items-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-between{align-content:space-between!important}.align-content-lg-around{align-content:space-around!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}}@media (min-width:1200px){.flex-xl-row{-ms-flex-direction:row!important;flex-direction:row!important}.flex-xl-column{-ms-flex-direction:column!important;flex-direction:column!important}.flex-xl-row-reverse{-ms-flex-direction:row-reverse!important;flex-direction:row-reverse!important}.flex-xl-column-reverse{-ms-flex-direction:column-reverse!important;flex-direction:column-reverse!important}.flex-xl-wrap{-ms-flex-wrap:wrap!important;flex-wrap:wrap!important}.flex-xl-nowrap{-ms-flex-wrap:nowrap!important;flex-wrap:nowrap!important}.flex-xl-wrap-reverse{-ms-flex-wrap:wrap-reverse!important;flex-wrap:wrap-reverse!important}.flex-xl-fill{-ms-flex:auto!important;flex:auto!important}.flex-xl-grow-0{-ms-flex-positive:0!important;flex-grow:0!important}.flex-xl-grow-1{-ms-flex-positive:1!important;flex-grow:1!important}.flex-xl-shrink-0{-ms-flex-negative:0!important;flex-shrink:0!important}.flex-xl-shrink-1{-ms-flex-negative:1!important;flex-shrink:1!important}.justify-content-xl-start{justify-content:flex-start!important}.justify-content-xl-end{justify-content:flex-end!important}.justify-content-xl-center{justify-content:center!important}.justify-content-xl-between{justify-content:space-between!important}.justify-content-xl-around{justify-content:space-around!important}.align-items-xl-start{align-items:flex-start!important}.align-items-xl-end{align-items:flex-end!important}.align-items-xl-center{align-items:center!important}.align-items-xl-baseline{align-items:baseline!important}.align-items-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-between{align-content:space-between!important}.align-content-xl-around{align-content:space-around!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}}.float-left{float:left!important}.float-right{float:right!important}.float-none{float:none!important}@media (min-width:576px){.float-sm-left{float:left!important}.float-sm-right{float:right!important}.float-sm-none{float:none!important}}@media (min-width:768px){.float-md-left{float:left!important}.float-md-right{float:right!important}.float-md-none{float:none!important}}@media (min-width:992px){.float-lg-left{float:left!important}.float-lg-right{float:right!important}.float-lg-none{float:none!important}}@media (min-width:1200px){.float-xl-left{float:left!important}.float-xl-right{float:right!important}.float-xl-none{float:none!important}}.user-select-all{-webkit-user-select:all!important;-moz-user-select:all!important;user-select:all!important}.user-select-auto{-webkit-user-select:auto!important;-moz-user-select:auto!important;-ms-user-select:auto!important;user-select:auto!important}.user-select-none{-webkit-user-select:none!important;-moz-user-select:none!important;-ms-user-select:none!important;user-select:none!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-absolute{position:absolute!important}.position-fixed{position:fixed!important}.position-sticky{position:-webkit-sticky!important;position:sticky!important}.fixed-top{z-index:1030;position:fixed;top:0;left:0;right:0}.fixed-bottom{z-index:1030;position:fixed;bottom:0;left:0;right:0}@supports ((position:-webkit-sticky) or (position:sticky)){.sticky-top{z-index:1020;position:-webkit-sticky;position:sticky;top:0}}.sr-only{width:1px;height:1px;clip:rect(0,0,0,0);white-space:nowrap;border:0;margin:-1px;padding:0;position:absolute;overflow:hidden}.sr-only-focusable:active,.sr-only-focusable:focus{width:auto;height:auto;clip:auto;white-space:normal;position:static;overflow:visible}.shadow-sm{box-shadow:0 .125rem .25rem #00000013!important}.shadow{box-shadow:0 .5rem 1rem #00000026!important}.shadow-lg{box-shadow:0 1rem 3rem #0000002d!important}.shadow-none{box-shadow:none!important}.w-25{width:25%!important}.w-50{width:50%!important}.w-75{width:75%!important}.w-100{width:100%!important}.w-auto{width:auto!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.h-auto{height:auto!important}.mw-100{max-width:100%!important}.mh-100{max-height:100%!important}.min-vw-100{min-width:100vw!important}.min-vh-100{min-height:100vh!important}.vw-100{width:100vw!important}.vh-100{height:100vh!important}.m-0{margin:0!important}.mt-0,.my-0{margin-top:0!important}.mr-0,.mx-0{margin-right:0!important}.mb-0,.my-0{margin-bottom:0!important}.ml-0,.mx-0{margin-left:0!important}.m-1{margin:.25rem!important}.mt-1,.my-1{margin-top:.25rem!important}.mr-1,.mx-1{margin-right:.25rem!important}.mb-1,.my-1{margin-bottom:.25rem!important}.ml-1,.mx-1{margin-left:.25rem!important}.m-2{margin:.5rem!important}.mt-2,.my-2{margin-top:.5rem!important}.mr-2,.mx-2{margin-right:.5rem!important}.mb-2,.my-2{margin-bottom:.5rem!important}.ml-2,.mx-2{margin-left:.5rem!important}.m-3{margin:1rem!important}.mt-3,.my-3{margin-top:1rem!important}.mr-3,.mx-3{margin-right:1rem!important}.mb-3,.my-3{margin-bottom:1rem!important}.ml-3,.mx-3{margin-left:1rem!important}.m-4{margin:1.5rem!important}.mt-4,.my-4{margin-top:1.5rem!important}.mr-4,.mx-4{margin-right:1.5rem!important}.mb-4,.my-4{margin-bottom:1.5rem!important}.ml-4,.mx-4{margin-left:1.5rem!important}.m-5{margin:3rem!important}.mt-5,.my-5{margin-top:3rem!important}.mr-5,.mx-5{margin-right:3rem!important}.mb-5,.my-5{margin-bottom:3rem!important}.ml-5,.mx-5{margin-left:3rem!important}.p-0{padding:0!important}.pt-0,.py-0{padding-top:0!important}.pr-0,.px-0{padding-right:0!important}.pb-0,.py-0{padding-bottom:0!important}.pl-0,.px-0{padding-left:0!important}.p-1{padding:.25rem!important}.pt-1,.py-1{padding-top:.25rem!important}.pr-1,.px-1{padding-right:.25rem!important}.pb-1,.py-1{padding-bottom:.25rem!important}.pl-1,.px-1{padding-left:.25rem!important}.p-2{padding:.5rem!important}.pt-2,.py-2{padding-top:.5rem!important}.pr-2,.px-2{padding-right:.5rem!important}.pb-2,.py-2{padding-bottom:.5rem!important}.pl-2,.px-2{padding-left:.5rem!important}.p-3{padding:1rem!important}.pt-3,.py-3{padding-top:1rem!important}.pr-3,.px-3{padding-right:1rem!important}.pb-3,.py-3{padding-bottom:1rem!important}.pl-3,.px-3{padding-left:1rem!important}.p-4{padding:1.5rem!important}.pt-4,.py-4{padding-top:1.5rem!important}.pr-4,.px-4{padding-right:1.5rem!important}.pb-4,.py-4{padding-bottom:1.5rem!important}.pl-4,.px-4{padding-left:1.5rem!important}.p-5{padding:3rem!important}.pt-5,.py-5{padding-top:3rem!important}.pr-5,.px-5{padding-right:3rem!important}.pb-5,.py-5{padding-bottom:3rem!important}.pl-5,.px-5{padding-left:3rem!important}.m-n1{margin:-.25rem!important}.mt-n1,.my-n1{margin-top:-.25rem!important}.mr-n1,.mx-n1{margin-right:-.25rem!important}.mb-n1,.my-n1{margin-bottom:-.25rem!important}.ml-n1,.mx-n1{margin-left:-.25rem!important}.m-n2{margin:-.5rem!important}.mt-n2,.my-n2{margin-top:-.5rem!important}.mr-n2,.mx-n2{margin-right:-.5rem!important}.mb-n2,.my-n2{margin-bottom:-.5rem!important}.ml-n2,.mx-n2{margin-left:-.5rem!important}.m-n3{margin:-1rem!important}.mt-n3,.my-n3{margin-top:-1rem!important}.mr-n3,.mx-n3{margin-right:-1rem!important}.mb-n3,.my-n3{margin-bottom:-1rem!important}.ml-n3,.mx-n3{margin-left:-1rem!important}.m-n4{margin:-1.5rem!important}.mt-n4,.my-n4{margin-top:-1.5rem!important}.mr-n4,.mx-n4{margin-right:-1.5rem!important}.mb-n4,.my-n4{margin-bottom:-1.5rem!important}.ml-n4,.mx-n4{margin-left:-1.5rem!important}.m-n5{margin:-3rem!important}.mt-n5,.my-n5{margin-top:-3rem!important}.mr-n5,.mx-n5{margin-right:-3rem!important}.mb-n5,.my-n5{margin-bottom:-3rem!important}.ml-n5,.mx-n5{margin-left:-3rem!important}.m-auto{margin:auto!important}.mt-auto,.my-auto{margin-top:auto!important}.mr-auto,.mx-auto{margin-right:auto!important}.mb-auto,.my-auto{margin-bottom:auto!important}.ml-auto,.mx-auto{margin-left:auto!important}@media (min-width:576px){.m-sm-0{margin:0!important}.mt-sm-0,.my-sm-0{margin-top:0!important}.mr-sm-0,.mx-sm-0{margin-right:0!important}.mb-sm-0,.my-sm-0{margin-bottom:0!important}.ml-sm-0,.mx-sm-0{margin-left:0!important}.m-sm-1{margin:.25rem!important}.mt-sm-1,.my-sm-1{margin-top:.25rem!important}.mr-sm-1,.mx-sm-1{margin-right:.25rem!important}.mb-sm-1,.my-sm-1{margin-bottom:.25rem!important}.ml-sm-1,.mx-sm-1{margin-left:.25rem!important}.m-sm-2{margin:.5rem!important}.mt-sm-2,.my-sm-2{margin-top:.5rem!important}.mr-sm-2,.mx-sm-2{margin-right:.5rem!important}.mb-sm-2,.my-sm-2{margin-bottom:.5rem!important}.ml-sm-2,.mx-sm-2{margin-left:.5rem!important}.m-sm-3{margin:1rem!important}.mt-sm-3,.my-sm-3{margin-top:1rem!important}.mr-sm-3,.mx-sm-3{margin-right:1rem!important}.mb-sm-3,.my-sm-3{margin-bottom:1rem!important}.ml-sm-3,.mx-sm-3{margin-left:1rem!important}.m-sm-4{margin:1.5rem!important}.mt-sm-4,.my-sm-4{margin-top:1.5rem!important}.mr-sm-4,.mx-sm-4{margin-right:1.5rem!important}.mb-sm-4,.my-sm-4{margin-bottom:1.5rem!important}.ml-sm-4,.mx-sm-4{margin-left:1.5rem!important}.m-sm-5{margin:3rem!important}.mt-sm-5,.my-sm-5{margin-top:3rem!important}.mr-sm-5,.mx-sm-5{margin-right:3rem!important}.mb-sm-5,.my-sm-5{margin-bottom:3rem!important}.ml-sm-5,.mx-sm-5{margin-left:3rem!important}.p-sm-0{padding:0!important}.pt-sm-0,.py-sm-0{padding-top:0!important}.pr-sm-0,.px-sm-0{padding-right:0!important}.pb-sm-0,.py-sm-0{padding-bottom:0!important}.pl-sm-0,.px-sm-0{padding-left:0!important}.p-sm-1{padding:.25rem!important}.pt-sm-1,.py-sm-1{padding-top:.25rem!important}.pr-sm-1,.px-sm-1{padding-right:.25rem!important}.pb-sm-1,.py-sm-1{padding-bottom:.25rem!important}.pl-sm-1,.px-sm-1{padding-left:.25rem!important}.p-sm-2{padding:.5rem!important}.pt-sm-2,.py-sm-2{padding-top:.5rem!important}.pr-sm-2,.px-sm-2{padding-right:.5rem!important}.pb-sm-2,.py-sm-2{padding-bottom:.5rem!important}.pl-sm-2,.px-sm-2{padding-left:.5rem!important}.p-sm-3{padding:1rem!important}.pt-sm-3,.py-sm-3{padding-top:1rem!important}.pr-sm-3,.px-sm-3{padding-right:1rem!important}.pb-sm-3,.py-sm-3{padding-bottom:1rem!important}.pl-sm-3,.px-sm-3{padding-left:1rem!important}.p-sm-4{padding:1.5rem!important}.pt-sm-4,.py-sm-4{padding-top:1.5rem!important}.pr-sm-4,.px-sm-4{padding-right:1.5rem!important}.pb-sm-4,.py-sm-4{padding-bottom:1.5rem!important}.pl-sm-4,.px-sm-4{padding-left:1.5rem!important}.p-sm-5{padding:3rem!important}.pt-sm-5,.py-sm-5{padding-top:3rem!important}.pr-sm-5,.px-sm-5{padding-right:3rem!important}.pb-sm-5,.py-sm-5{padding-bottom:3rem!important}.pl-sm-5,.px-sm-5{padding-left:3rem!important}.m-sm-n1{margin:-.25rem!important}.mt-sm-n1,.my-sm-n1{margin-top:-.25rem!important}.mr-sm-n1,.mx-sm-n1{margin-right:-.25rem!important}.mb-sm-n1,.my-sm-n1{margin-bottom:-.25rem!important}.ml-sm-n1,.mx-sm-n1{margin-left:-.25rem!important}.m-sm-n2{margin:-.5rem!important}.mt-sm-n2,.my-sm-n2{margin-top:-.5rem!important}.mr-sm-n2,.mx-sm-n2{margin-right:-.5rem!important}.mb-sm-n2,.my-sm-n2{margin-bottom:-.5rem!important}.ml-sm-n2,.mx-sm-n2{margin-left:-.5rem!important}.m-sm-n3{margin:-1rem!important}.mt-sm-n3,.my-sm-n3{margin-top:-1rem!important}.mr-sm-n3,.mx-sm-n3{margin-right:-1rem!important}.mb-sm-n3,.my-sm-n3{margin-bottom:-1rem!important}.ml-sm-n3,.mx-sm-n3{margin-left:-1rem!important}.m-sm-n4{margin:-1.5rem!important}.mt-sm-n4,.my-sm-n4{margin-top:-1.5rem!important}.mr-sm-n4,.mx-sm-n4{margin-right:-1.5rem!important}.mb-sm-n4,.my-sm-n4{margin-bottom:-1.5rem!important}.ml-sm-n4,.mx-sm-n4{margin-left:-1.5rem!important}.m-sm-n5{margin:-3rem!important}.mt-sm-n5,.my-sm-n5{margin-top:-3rem!important}.mr-sm-n5,.mx-sm-n5{margin-right:-3rem!important}.mb-sm-n5,.my-sm-n5{margin-bottom:-3rem!important}.ml-sm-n5,.mx-sm-n5{margin-left:-3rem!important}.m-sm-auto{margin:auto!important}.mt-sm-auto,.my-sm-auto{margin-top:auto!important}.mr-sm-auto,.mx-sm-auto{margin-right:auto!important}.mb-sm-auto,.my-sm-auto{margin-bottom:auto!important}.ml-sm-auto,.mx-sm-auto{margin-left:auto!important}}@media (min-width:768px){.m-md-0{margin:0!important}.mt-md-0,.my-md-0{margin-top:0!important}.mr-md-0,.mx-md-0{margin-right:0!important}.mb-md-0,.my-md-0{margin-bottom:0!important}.ml-md-0,.mx-md-0{margin-left:0!important}.m-md-1{margin:.25rem!important}.mt-md-1,.my-md-1{margin-top:.25rem!important}.mr-md-1,.mx-md-1{margin-right:.25rem!important}.mb-md-1,.my-md-1{margin-bottom:.25rem!important}.ml-md-1,.mx-md-1{margin-left:.25rem!important}.m-md-2{margin:.5rem!important}.mt-md-2,.my-md-2{margin-top:.5rem!important}.mr-md-2,.mx-md-2{margin-right:.5rem!important}.mb-md-2,.my-md-2{margin-bottom:.5rem!important}.ml-md-2,.mx-md-2{margin-left:.5rem!important}.m-md-3{margin:1rem!important}.mt-md-3,.my-md-3{margin-top:1rem!important}.mr-md-3,.mx-md-3{margin-right:1rem!important}.mb-md-3,.my-md-3{margin-bottom:1rem!important}.ml-md-3,.mx-md-3{margin-left:1rem!important}.m-md-4{margin:1.5rem!important}.mt-md-4,.my-md-4{margin-top:1.5rem!important}.mr-md-4,.mx-md-4{margin-right:1.5rem!important}.mb-md-4,.my-md-4{margin-bottom:1.5rem!important}.ml-md-4,.mx-md-4{margin-left:1.5rem!important}.m-md-5{margin:3rem!important}.mt-md-5,.my-md-5{margin-top:3rem!important}.mr-md-5,.mx-md-5{margin-right:3rem!important}.mb-md-5,.my-md-5{margin-bottom:3rem!important}.ml-md-5,.mx-md-5{margin-left:3rem!important}.p-md-0{padding:0!important}.pt-md-0,.py-md-0{padding-top:0!important}.pr-md-0,.px-md-0{padding-right:0!important}.pb-md-0,.py-md-0{padding-bottom:0!important}.pl-md-0,.px-md-0{padding-left:0!important}.p-md-1{padding:.25rem!important}.pt-md-1,.py-md-1{padding-top:.25rem!important}.pr-md-1,.px-md-1{padding-right:.25rem!important}.pb-md-1,.py-md-1{padding-bottom:.25rem!important}.pl-md-1,.px-md-1{padding-left:.25rem!important}.p-md-2{padding:.5rem!important}.pt-md-2,.py-md-2{padding-top:.5rem!important}.pr-md-2,.px-md-2{padding-right:.5rem!important}.pb-md-2,.py-md-2{padding-bottom:.5rem!important}.pl-md-2,.px-md-2{padding-left:.5rem!important}.p-md-3{padding:1rem!important}.pt-md-3,.py-md-3{padding-top:1rem!important}.pr-md-3,.px-md-3{padding-right:1rem!important}.pb-md-3,.py-md-3{padding-bottom:1rem!important}.pl-md-3,.px-md-3{padding-left:1rem!important}.p-md-4{padding:1.5rem!important}.pt-md-4,.py-md-4{padding-top:1.5rem!important}.pr-md-4,.px-md-4{padding-right:1.5rem!important}.pb-md-4,.py-md-4{padding-bottom:1.5rem!important}.pl-md-4,.px-md-4{padding-left:1.5rem!important}.p-md-5{padding:3rem!important}.pt-md-5,.py-md-5{padding-top:3rem!important}.pr-md-5,.px-md-5{padding-right:3rem!important}.pb-md-5,.py-md-5{padding-bottom:3rem!important}.pl-md-5,.px-md-5{padding-left:3rem!important}.m-md-n1{margin:-.25rem!important}.mt-md-n1,.my-md-n1{margin-top:-.25rem!important}.mr-md-n1,.mx-md-n1{margin-right:-.25rem!important}.mb-md-n1,.my-md-n1{margin-bottom:-.25rem!important}.ml-md-n1,.mx-md-n1{margin-left:-.25rem!important}.m-md-n2{margin:-.5rem!important}.mt-md-n2,.my-md-n2{margin-top:-.5rem!important}.mr-md-n2,.mx-md-n2{margin-right:-.5rem!important}.mb-md-n2,.my-md-n2{margin-bottom:-.5rem!important}.ml-md-n2,.mx-md-n2{margin-left:-.5rem!important}.m-md-n3{margin:-1rem!important}.mt-md-n3,.my-md-n3{margin-top:-1rem!important}.mr-md-n3,.mx-md-n3{margin-right:-1rem!important}.mb-md-n3,.my-md-n3{margin-bottom:-1rem!important}.ml-md-n3,.mx-md-n3{margin-left:-1rem!important}.m-md-n4{margin:-1.5rem!important}.mt-md-n4,.my-md-n4{margin-top:-1.5rem!important}.mr-md-n4,.mx-md-n4{margin-right:-1.5rem!important}.mb-md-n4,.my-md-n4{margin-bottom:-1.5rem!important}.ml-md-n4,.mx-md-n4{margin-left:-1.5rem!important}.m-md-n5{margin:-3rem!important}.mt-md-n5,.my-md-n5{margin-top:-3rem!important}.mr-md-n5,.mx-md-n5{margin-right:-3rem!important}.mb-md-n5,.my-md-n5{margin-bottom:-3rem!important}.ml-md-n5,.mx-md-n5{margin-left:-3rem!important}.m-md-auto{margin:auto!important}.mt-md-auto,.my-md-auto{margin-top:auto!important}.mr-md-auto,.mx-md-auto{margin-right:auto!important}.mb-md-auto,.my-md-auto{margin-bottom:auto!important}.ml-md-auto,.mx-md-auto{margin-left:auto!important}}@media (min-width:992px){.m-lg-0{margin:0!important}.mt-lg-0,.my-lg-0{margin-top:0!important}.mr-lg-0,.mx-lg-0{margin-right:0!important}.mb-lg-0,.my-lg-0{margin-bottom:0!important}.ml-lg-0,.mx-lg-0{margin-left:0!important}.m-lg-1{margin:.25rem!important}.mt-lg-1,.my-lg-1{margin-top:.25rem!important}.mr-lg-1,.mx-lg-1{margin-right:.25rem!important}.mb-lg-1,.my-lg-1{margin-bottom:.25rem!important}.ml-lg-1,.mx-lg-1{margin-left:.25rem!important}.m-lg-2{margin:.5rem!important}.mt-lg-2,.my-lg-2{margin-top:.5rem!important}.mr-lg-2,.mx-lg-2{margin-right:.5rem!important}.mb-lg-2,.my-lg-2{margin-bottom:.5rem!important}.ml-lg-2,.mx-lg-2{margin-left:.5rem!important}.m-lg-3{margin:1rem!important}.mt-lg-3,.my-lg-3{margin-top:1rem!important}.mr-lg-3,.mx-lg-3{margin-right:1rem!important}.mb-lg-3,.my-lg-3{margin-bottom:1rem!important}.ml-lg-3,.mx-lg-3{margin-left:1rem!important}.m-lg-4{margin:1.5rem!important}.mt-lg-4,.my-lg-4{margin-top:1.5rem!important}.mr-lg-4,.mx-lg-4{margin-right:1.5rem!important}.mb-lg-4,.my-lg-4{margin-bottom:1.5rem!important}.ml-lg-4,.mx-lg-4{margin-left:1.5rem!important}.m-lg-5{margin:3rem!important}.mt-lg-5,.my-lg-5{margin-top:3rem!important}.mr-lg-5,.mx-lg-5{margin-right:3rem!important}.mb-lg-5,.my-lg-5{margin-bottom:3rem!important}.ml-lg-5,.mx-lg-5{margin-left:3rem!important}.p-lg-0{padding:0!important}.pt-lg-0,.py-lg-0{padding-top:0!important}.pr-lg-0,.px-lg-0{padding-right:0!important}.pb-lg-0,.py-lg-0{padding-bottom:0!important}.pl-lg-0,.px-lg-0{padding-left:0!important}.p-lg-1{padding:.25rem!important}.pt-lg-1,.py-lg-1{padding-top:.25rem!important}.pr-lg-1,.px-lg-1{padding-right:.25rem!important}.pb-lg-1,.py-lg-1{padding-bottom:.25rem!important}.pl-lg-1,.px-lg-1{padding-left:.25rem!important}.p-lg-2{padding:.5rem!important}.pt-lg-2,.py-lg-2{padding-top:.5rem!important}.pr-lg-2,.px-lg-2{padding-right:.5rem!important}.pb-lg-2,.py-lg-2{padding-bottom:.5rem!important}.pl-lg-2,.px-lg-2{padding-left:.5rem!important}.p-lg-3{padding:1rem!important}.pt-lg-3,.py-lg-3{padding-top:1rem!important}.pr-lg-3,.px-lg-3{padding-right:1rem!important}.pb-lg-3,.py-lg-3{padding-bottom:1rem!important}.pl-lg-3,.px-lg-3{padding-left:1rem!important}.p-lg-4{padding:1.5rem!important}.pt-lg-4,.py-lg-4{padding-top:1.5rem!important}.pr-lg-4,.px-lg-4{padding-right:1.5rem!important}.pb-lg-4,.py-lg-4{padding-bottom:1.5rem!important}.pl-lg-4,.px-lg-4{padding-left:1.5rem!important}.p-lg-5{padding:3rem!important}.pt-lg-5,.py-lg-5{padding-top:3rem!important}.pr-lg-5,.px-lg-5{padding-right:3rem!important}.pb-lg-5,.py-lg-5{padding-bottom:3rem!important}.pl-lg-5,.px-lg-5{padding-left:3rem!important}.m-lg-n1{margin:-.25rem!important}.mt-lg-n1,.my-lg-n1{margin-top:-.25rem!important}.mr-lg-n1,.mx-lg-n1{margin-right:-.25rem!important}.mb-lg-n1,.my-lg-n1{margin-bottom:-.25rem!important}.ml-lg-n1,.mx-lg-n1{margin-left:-.25rem!important}.m-lg-n2{margin:-.5rem!important}.mt-lg-n2,.my-lg-n2{margin-top:-.5rem!important}.mr-lg-n2,.mx-lg-n2{margin-right:-.5rem!important}.mb-lg-n2,.my-lg-n2{margin-bottom:-.5rem!important}.ml-lg-n2,.mx-lg-n2{margin-left:-.5rem!important}.m-lg-n3{margin:-1rem!important}.mt-lg-n3,.my-lg-n3{margin-top:-1rem!important}.mr-lg-n3,.mx-lg-n3{margin-right:-1rem!important}.mb-lg-n3,.my-lg-n3{margin-bottom:-1rem!important}.ml-lg-n3,.mx-lg-n3{margin-left:-1rem!important}.m-lg-n4{margin:-1.5rem!important}.mt-lg-n4,.my-lg-n4{margin-top:-1.5rem!important}.mr-lg-n4,.mx-lg-n4{margin-right:-1.5rem!important}.mb-lg-n4,.my-lg-n4{margin-bottom:-1.5rem!important}.ml-lg-n4,.mx-lg-n4{margin-left:-1.5rem!important}.m-lg-n5{margin:-3rem!important}.mt-lg-n5,.my-lg-n5{margin-top:-3rem!important}.mr-lg-n5,.mx-lg-n5{margin-right:-3rem!important}.mb-lg-n5,.my-lg-n5{margin-bottom:-3rem!important}.ml-lg-n5,.mx-lg-n5{margin-left:-3rem!important}.m-lg-auto{margin:auto!important}.mt-lg-auto,.my-lg-auto{margin-top:auto!important}.mr-lg-auto,.mx-lg-auto{margin-right:auto!important}.mb-lg-auto,.my-lg-auto{margin-bottom:auto!important}.ml-lg-auto,.mx-lg-auto{margin-left:auto!important}}@media (min-width:1200px){.m-xl-0{margin:0!important}.mt-xl-0,.my-xl-0{margin-top:0!important}.mr-xl-0,.mx-xl-0{margin-right:0!important}.mb-xl-0,.my-xl-0{margin-bottom:0!important}.ml-xl-0,.mx-xl-0{margin-left:0!important}.m-xl-1{margin:.25rem!important}.mt-xl-1,.my-xl-1{margin-top:.25rem!important}.mr-xl-1,.mx-xl-1{margin-right:.25rem!important}.mb-xl-1,.my-xl-1{margin-bottom:.25rem!important}.ml-xl-1,.mx-xl-1{margin-left:.25rem!important}.m-xl-2{margin:.5rem!important}.mt-xl-2,.my-xl-2{margin-top:.5rem!important}.mr-xl-2,.mx-xl-2{margin-right:.5rem!important}.mb-xl-2,.my-xl-2{margin-bottom:.5rem!important}.ml-xl-2,.mx-xl-2{margin-left:.5rem!important}.m-xl-3{margin:1rem!important}.mt-xl-3,.my-xl-3{margin-top:1rem!important}.mr-xl-3,.mx-xl-3{margin-right:1rem!important}.mb-xl-3,.my-xl-3{margin-bottom:1rem!important}.ml-xl-3,.mx-xl-3{margin-left:1rem!important}.m-xl-4{margin:1.5rem!important}.mt-xl-4,.my-xl-4{margin-top:1.5rem!important}.mr-xl-4,.mx-xl-4{margin-right:1.5rem!important}.mb-xl-4,.my-xl-4{margin-bottom:1.5rem!important}.ml-xl-4,.mx-xl-4{margin-left:1.5rem!important}.m-xl-5{margin:3rem!important}.mt-xl-5,.my-xl-5{margin-top:3rem!important}.mr-xl-5,.mx-xl-5{margin-right:3rem!important}.mb-xl-5,.my-xl-5{margin-bottom:3rem!important}.ml-xl-5,.mx-xl-5{margin-left:3rem!important}.p-xl-0{padding:0!important}.pt-xl-0,.py-xl-0{padding-top:0!important}.pr-xl-0,.px-xl-0{padding-right:0!important}.pb-xl-0,.py-xl-0{padding-bottom:0!important}.pl-xl-0,.px-xl-0{padding-left:0!important}.p-xl-1{padding:.25rem!important}.pt-xl-1,.py-xl-1{padding-top:.25rem!important}.pr-xl-1,.px-xl-1{padding-right:.25rem!important}.pb-xl-1,.py-xl-1{padding-bottom:.25rem!important}.pl-xl-1,.px-xl-1{padding-left:.25rem!important}.p-xl-2{padding:.5rem!important}.pt-xl-2,.py-xl-2{padding-top:.5rem!important}.pr-xl-2,.px-xl-2{padding-right:.5rem!important}.pb-xl-2,.py-xl-2{padding-bottom:.5rem!important}.pl-xl-2,.px-xl-2{padding-left:.5rem!important}.p-xl-3{padding:1rem!important}.pt-xl-3,.py-xl-3{padding-top:1rem!important}.pr-xl-3,.px-xl-3{padding-right:1rem!important}.pb-xl-3,.py-xl-3{padding-bottom:1rem!important}.pl-xl-3,.px-xl-3{padding-left:1rem!important}.p-xl-4{padding:1.5rem!important}.pt-xl-4,.py-xl-4{padding-top:1.5rem!important}.pr-xl-4,.px-xl-4{padding-right:1.5rem!important}.pb-xl-4,.py-xl-4{padding-bottom:1.5rem!important}.pl-xl-4,.px-xl-4{padding-left:1.5rem!important}.p-xl-5{padding:3rem!important}.pt-xl-5,.py-xl-5{padding-top:3rem!important}.pr-xl-5,.px-xl-5{padding-right:3rem!important}.pb-xl-5,.py-xl-5{padding-bottom:3rem!important}.pl-xl-5,.px-xl-5{padding-left:3rem!important}.m-xl-n1{margin:-.25rem!important}.mt-xl-n1,.my-xl-n1{margin-top:-.25rem!important}.mr-xl-n1,.mx-xl-n1{margin-right:-.25rem!important}.mb-xl-n1,.my-xl-n1{margin-bottom:-.25rem!important}.ml-xl-n1,.mx-xl-n1{margin-left:-.25rem!important}.m-xl-n2{margin:-.5rem!important}.mt-xl-n2,.my-xl-n2{margin-top:-.5rem!important}.mr-xl-n2,.mx-xl-n2{margin-right:-.5rem!important}.mb-xl-n2,.my-xl-n2{margin-bottom:-.5rem!important}.ml-xl-n2,.mx-xl-n2{margin-left:-.5rem!important}.m-xl-n3{margin:-1rem!important}.mt-xl-n3,.my-xl-n3{margin-top:-1rem!important}.mr-xl-n3,.mx-xl-n3{margin-right:-1rem!important}.mb-xl-n3,.my-xl-n3{margin-bottom:-1rem!important}.ml-xl-n3,.mx-xl-n3{margin-left:-1rem!important}.m-xl-n4{margin:-1.5rem!important}.mt-xl-n4,.my-xl-n4{margin-top:-1.5rem!important}.mr-xl-n4,.mx-xl-n4{margin-right:-1.5rem!important}.mb-xl-n4,.my-xl-n4{margin-bottom:-1.5rem!important}.ml-xl-n4,.mx-xl-n4{margin-left:-1.5rem!important}.m-xl-n5{margin:-3rem!important}.mt-xl-n5,.my-xl-n5{margin-top:-3rem!important}.mr-xl-n5,.mx-xl-n5{margin-right:-3rem!important}.mb-xl-n5,.my-xl-n5{margin-bottom:-3rem!important}.ml-xl-n5,.mx-xl-n5{margin-left:-3rem!important}.m-xl-auto{margin:auto!important}.mt-xl-auto,.my-xl-auto{margin-top:auto!important}.mr-xl-auto,.mx-xl-auto{margin-right:auto!important}.mb-xl-auto,.my-xl-auto{margin-bottom:auto!important}.ml-xl-auto,.mx-xl-auto{margin-left:auto!important}}.stretched-link:after{z-index:1;pointer-events:auto;content:"";background-color:#0000;position:absolute;inset:0}.text-monospace{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace!important}.text-justify{text-align:justify!important}.text-wrap{white-space:normal!important}.text-nowrap{white-space:nowrap!important}.text-truncate{text-overflow:ellipsis;white-space:nowrap;overflow:hidden}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}@media (min-width:576px){.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}}@media (min-width:768px){.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}}@media (min-width:992px){.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}}@media (min-width:1200px){.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.text-capitalize{text-transform:capitalize!important}.font-weight-light{font-weight:300!important}.font-weight-lighter{font-weight:lighter!important}.font-weight-normal{font-weight:400!important}.font-weight-bold{font-weight:700!important}.font-weight-bolder{font-weight:bolder!important}.font-italic{font-style:italic!important}.text-white{color:#fff!important}.text-primary{color:#007bff!important}a.text-primary:focus,a.text-primary:hover{color:#0056b3!important}.text-secondary{color:#6c757d!important}a.text-secondary:focus,a.text-secondary:hover{color:#494f54!important}.text-success{color:#28a745!important}a.text-success:focus,a.text-success:hover{color:#19692c!important}.text-info{color:#17a2b8!important}a.text-info:focus,a.text-info:hover{color:#0f6674!important}.text-warning{color:#ffc107!important}a.text-warning:focus,a.text-warning:hover{color:#ba8b00!important}.text-danger{color:#dc3545!important}a.text-danger:focus,a.text-danger:hover{color:#a71d2a!important}.text-light{color:#f8f9fa!important}a.text-light:focus,a.text-light:hover{color:#cbd3da!important}.text-dark{color:#343a40!important}a.text-dark:focus,a.text-dark:hover{color:#121416!important}.text-body{color:#212529!important}.text-muted{color:#6c757d!important}.text-black-50{color:#00000080!important}.text-white-50{color:#ffffff80!important}.text-hide{font:0/0 a;color:#0000;text-shadow:none;background-color:#0000;border:0}.text-decoration-none{text-decoration:none!important}.text-break{word-break:break-word!important;word-wrap:break-word!important}.text-reset{color:inherit!important}.visible{visibility:visible!important}.invisible{visibility:hidden!important}@media print{*,:after,:before{text-shadow:none!important;box-shadow:none!important}a:not(.btn){text-decoration:underline}abbr[title]:after{content:" (" attr(title)")"}pre{white-space:pre-wrap!important}blockquote,pre{page-break-inside:avoid;border:1px solid #adb5bd}img,tr{page-break-inside:avoid}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}@page{size:a3}body,.container{min-width:992px!important}.navbar{display:none}.badge{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #dee2e6!important}.table-dark{color:inherit}.table-dark tbody+tbody,.table-dark td,.table-dark th,.table-dark thead th{border-color:#dee2e6}.table .thead-dark th{color:inherit;border-color:#dee2e6}}@-webkit-keyframes bs-notify-fadeOut{0%{opacity:.9}to{opacity:0}}@-o-keyframes bs-notify-fadeOut{0%{opacity:.9}to{opacity:0}}@keyframes bs-notify-fadeOut{0%{opacity:.9}to{opacity:0}}.bootstrap-select>select.bs-select-hidden,select.bs-select-hidden,select.selectpicker{display:none!important}.bootstrap-select{width:220px�;vertical-align:middle}.bootstrap-select>.dropdown-toggle{width:100%;text-align:right;white-space:nowrap;justify-content:space-between;align-items:center;display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;position:relative}.bootstrap-select>.dropdown-toggle:after{margin-top:-1px}.bootstrap-select>.dropdown-toggle.bs-placeholder,.bootstrap-select>.dropdown-toggle.bs-placeholder:active,.bootstrap-select>.dropdown-toggle.bs-placeholder:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder:hover{color:#999}.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-danger,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-danger:active,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-danger:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-danger:hover,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-dark,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-dark:active,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-dark:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-dark:hover,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-info,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-info:active,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-info:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-info:hover,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-primary,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-primary:active,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-primary:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-primary:hover,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-secondary,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-secondary:active,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-secondary:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-secondary:hover,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-success,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-success:active,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-success:focus,.bootstrap-select>.dropdown-toggle.bs-placeholder.btn-success:hover{color:#ffffff80}.bootstrap-select>select{border:none;bottom:0;left:50%;width:.5px!important;height:100%!important;opacity:0!important;z-index:0!important;padding:0!important;display:block!important;position:absolute!important}.bootstrap-select>select.mobile-device{top:0;left:0;width:100%!important;z-index:2!important;display:block!important}.bootstrap-select.is-invalid .dropdown-toggle,.error .bootstrap-select .dropdown-toggle,.has-error .bootstrap-select .dropdown-toggle,.was-validated .bootstrap-select select:invalid+.dropdown-toggle{border-color:#b94a48}.bootstrap-select.is-valid .dropdown-toggle,.was-validated .bootstrap-select select:valid+.dropdown-toggle{border-color:#28a745}.bootstrap-select.fit-width{width:auto!important}.bootstrap-select:not([class*=col-]):not([class*=form-control]):not(.input-group-btn){width:220px}.bootstrap-select .dropdown-toggle:focus,.bootstrap-select>select.mobile-device:focus+.dropdown-toggle{outline-offset:-2px;outline:thin dotted #333!important;outline:5px auto -webkit-focus-ring-color!important}.bootstrap-select.form-control{height:auto;border:none;margin-bottom:0;padding:0}:not(.input-group)>.bootstrap-select.form-control:not([class*=col-]){width:100%}.bootstrap-select.form-control.input-group-btn{float:none;z-index:auto}.form-inline .bootstrap-select,.form-inline .bootstrap-select.form-control:not([class*=col-]){width:auto}.bootstrap-select:not(.input-group-btn),.bootstrap-select[class*=col-]{float:none;margin-left:0;display:inline-block}.bootstrap-select.dropdown-menu-right,.bootstrap-select[class*=col-].dropdown-menu-right,.row .bootstrap-select[class*=col-].dropdown-menu-right{float:right}.form-group .bootstrap-select,.form-horizontal .bootstrap-select,.form-inline .bootstrap-select{margin-bottom:0}.form-group-lg .bootstrap-select.form-control,.form-group-sm .bootstrap-select.form-control{padding:0}.form-group-lg .bootstrap-select.form-control .dropdown-toggle,.form-group-sm .bootstrap-select.form-control .dropdown-toggle{height:100%;font-size:inherit;line-height:inherit;border-radius:inherit}.bootstrap-select.form-control-lg .dropdown-toggle,.bootstrap-select.form-control-sm .dropdown-toggle{font-size:inherit;line-height:inherit;border-radius:inherit}.bootstrap-select.form-control-sm .dropdown-toggle{padding:.25rem .5rem}.bootstrap-select.form-control-lg .dropdown-toggle{padding:.5rem 1rem}.form-inline .bootstrap-select .form-control{width:100%}.bootstrap-select.disabled,.bootstrap-select>.disabled{cursor:not-allowed}.bootstrap-select.disabled:focus,.bootstrap-select>.disabled:focus{outline:0!important}.bootstrap-select.bs-container{position:absolute;top:0;left:0;height:0!important;padding:0!important}.bootstrap-select.bs-container .dropdown-menu{z-index:1060}.bootstrap-select .dropdown-toggle .filter-option{float:left;height:100%;width:100%;text-align:left;-webkit-box-flex:0;-webkit-flex:0 auto;-ms-flex:0 auto;flex:0 auto;position:static;top:0;left:0;overflow:hidden}.bs3.bootstrap-select .dropdown-toggle .filter-option{padding-right:inherit}.input-group .bs3-has-addon.bootstrap-select .dropdown-toggle .filter-option{padding-top:inherit;padding-bottom:inherit;padding-left:inherit;float:none;position:absolute}.input-group .bs3-has-addon.bootstrap-select .dropdown-toggle .filter-option .filter-option-inner{padding-right:inherit}.bootstrap-select .dropdown-toggle .filter-option-inner-inner{overflow:hidden}.bootstrap-select .dropdown-toggle .filter-expand{float:left;overflow:hidden;width:0!important;opacity:0!important}.bootstrap-select .dropdown-toggle .caret{vertical-align:middle;margin-top:-2px;position:absolute;top:50%;right:12px}.input-group .bootstrap-select.form-control .dropdown-toggle{border-radius:inherit}.bootstrap-select[class*=col-] .dropdown-toggle{width:100%}.bootstrap-select .dropdown-menu{min-width:100%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.bootstrap-select .dropdown-menu>.inner:focus{outline:0!important}.bootstrap-select .dropdown-menu.inner{float:none;-webkit-box-shadow:none;box-shadow:none;border:0;border-radius:0;margin:0;padding:0;position:static}.bootstrap-select .dropdown-menu li{position:relative}.bootstrap-select .dropdown-menu li.active small{color:#ffffff80!important}.bootstrap-select .dropdown-menu li.disabled a{cursor:not-allowed}.bootstrap-select .dropdown-menu li a{cursor:pointer;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.bootstrap-select .dropdown-menu li a.opt{padding-left:2.25em;position:relative}.bootstrap-select .dropdown-menu li a span.check-mark{display:none}.bootstrap-select .dropdown-menu li a span.text{display:inline-block}.bootstrap-select .dropdown-menu li small{padding-left:.5em}.bootstrap-select .dropdown-menu .notify{width:96%;min-height:26px;pointer-events:none;opacity:.9;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;background:#f5f5f5;border:1px solid #e3e3e3;margin:0 2%;padding:3px 5px;position:absolute;bottom:5px;-webkit-box-shadow:inset 0 1px 1px #0000000d;box-shadow:inset 0 1px 1px #0000000d}.bootstrap-select .dropdown-menu .notify.fadeOut{-webkit-animation:bs-notify-fadeOut .3s linear .75s forwards;-o-animation:bs-notify-fadeOut .3s linear .75s forwards;animation:bs-notify-fadeOut .3s linear .75s forwards}.bootstrap-select .no-results{white-space:nowrap;background:#f5f5f5;margin:0 5px;padding:3px}.bootstrap-select.fit-width .dropdown-toggle .filter-option{padding:0;display:inline;position:static}.bootstrap-select.fit-width .dropdown-toggle .filter-option-inner,.bootstrap-select.fit-width .dropdown-toggle .filter-option-inner-inner{display:inline}.bootstrap-select.fit-width .dropdown-toggle .bs-caret:before{content:" "}.bootstrap-select.fit-width .dropdown-toggle .caret{margin-top:-1px;position:static;top:auto}.bootstrap-select.show-tick .dropdown-menu .selected span.check-mark{display:inline-block;position:absolute;top:5px;right:15px}.bootstrap-select.show-tick .dropdown-menu li a span.text{margin-right:34px}.bootstrap-select .bs-ok-default:after{content:"";width:.5em;height:1em;-webkit-transform-style:preserve-3d;transform-style:preserve-3d;border-style:solid;border-width:0 .26em .26em 0;display:block;-webkit-transform:rotate(45deg);-ms-transform:rotate(45deg);-o-transform:rotate(45deg);transform:rotate(45deg)}.bootstrap-select.show-menu-arrow.open>.dropdown-toggle,.bootstrap-select.show-menu-arrow.show>.dropdown-toggle{z-index:1061}.bootstrap-select.show-menu-arrow .dropdown-toggle .filter-option:before{content:"";border-bottom:7px solid #ccc3;border-left:7px solid #0000;border-right:7px solid #0000;display:none;position:absolute;bottom:-4px;left:9px}.bootstrap-select.show-menu-arrow .dropdown-toggle .filter-option:after{content:"";border-bottom:6px solid #fff;border-left:6px solid #0000;border-right:6px solid #0000;display:none;position:absolute;bottom:-4px;left:10px}.bootstrap-select.show-menu-arrow.dropup .dropdown-toggle .filter-option:before{border-top:7px solid #ccc3;border-bottom:0;top:-4px;bottom:auto}.bootstrap-select.show-menu-arrow.dropup .dropdown-toggle .filter-option:after{border-top:6px solid #fff;border-bottom:0;top:-4px;bottom:auto}.bootstrap-select.show-menu-arrow.pull-right .dropdown-toggle .filter-option:before{left:auto;right:12px}.bootstrap-select.show-menu-arrow.pull-right .dropdown-toggle .filter-option:after{left:auto;right:13px}.bootstrap-select.show-menu-arrow.open>.dropdown-toggle .filter-option:after,.bootstrap-select.show-menu-arrow.open>.dropdown-toggle .filter-option:before,.bootstrap-select.show-menu-arrow.show>.dropdown-toggle .filter-option:after,.bootstrap-select.show-menu-arrow.show>.dropdown-toggle .filter-option:before{display:block}.bs-actionsbox,.bs-donebutton,.bs-searchbox{padding:4px 8px}.bs-actionsbox{width:100%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.bs-actionsbox .btn-group button{width:50%}.bs-donebutton{float:left;width:100%;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}.bs-donebutton .btn-group button{width:100%}.bs-searchbox+.bs-actionsbox{padding:0 8px 4px}.bs-searchbox .form-control{width:100%;float:none;margin-bottom:0}@font-face{font-family:FontAwesome;src:url(fontawesome-webfont.3981e506.eot);src:url(fontawesome-webfont.3981e506.eot#iefix&v=4.7.0)format("embedded-opentype"),url(fontawesome-webfont.58488e7e.woff2)format("woff2"),url(fontawesome-webfont.ed962b83.woff)format("woff"),url(fontawesome-webfont.0caf0c90.ttf)format("truetype"),url(fontawesome-webfont.a9323ae9.svg#fontawesomeregular)format("svg");font-weight:400;font-style:normal}.fa{font:14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;display:inline-block}.fa-lg{vertical-align:-15%;font-size:1.33333em;line-height:.75em}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{margin-left:2.14286em;padding-left:0;list-style-type:none}.fa-ul>li{position:relative}.fa-li{width:2.14286em;text-align:center;position:absolute;top:.142857em;left:-2.14286em}.fa-li.fa-lg{left:-1.85714em}.fa-border{border:.08em solid #eee;border-radius:.1em;padding:.2em .25em .15em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left{margin-right:.3em}.fa.fa-pull-right{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left{margin-right:.3em}.fa.pull-right{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8,end) infinite;animation:fa-spin 1s steps(8,end) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{width:2em;height:2em;vertical-align:middle;line-height:2em;display:inline-block;position:relative}.fa-stack-1x,.fa-stack-2x{width:100%;text-align:center;position:absolute;left:0}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-remove:before,.fa-close:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-gear:before,.fa-cog:before{content:""}.fa-trash-o:before{content:""}.fa-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-rotate-right:before,.fa-repeat:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before{content:""}.fa-check-circle:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-warning:before,.fa-exclamation-triangle:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-gears:before,.fa-cogs:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before{content:""}.fa-arrow-circle-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-save:before,.fa-floppy-o:before{content:""}.fa-square:before{content:""}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-unsorted:before,.fa-sort:before{content:""}.fa-sort-down:before,.fa-sort-desc:before{content:""}.fa-sort-up:before,.fa-sort-asc:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-legal:before,.fa-gavel:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-flash:before,.fa-bolt:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-paste:before,.fa-clipboard:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-unlink:before,.fa-chain-broken:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:""}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:""}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:""}.fa-euro:before,.fa-eur:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-rupee:before,.fa-inr:before{content:""}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:""}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:""}.fa-won:before,.fa-krw:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-turkish-lira:before,.fa-try:before{content:""}.fa-plus-square-o:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-institution:before,.fa-bank:before,.fa-university:before{content:""}.fa-mortar-board:before,.fa-graduation-cap:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:""}.fa-file-zip-o:before,.fa-file-archive-o:before{content:""}.fa-file-sound-o:before,.fa-file-audio-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:""}.fa-ge:before,.fa-empire:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-send:before,.fa-paper-plane:before{content:""}.fa-send-o:before,.fa-paper-plane-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-hotel:before,.fa-bed:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-yc:before,.fa-y-combinator:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-stop-o:before,.fa-hand-paper-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-tv:before,.fa-television:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:""}.fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-signing:before,.fa-sign-language:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-vcard:before,.fa-address-card:before{content:""}.fa-vcard-o:before,.fa-address-card-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{width:1px;height:1px;clip:rect(0,0,0,0);border:0;margin:-1px;padding:0;position:absolute;overflow:hidden}.sr-only-focusable:active,.sr-only-focusable:focus{width:auto;height:auto;clip:auto;margin:0;position:static;overflow:visible}.mfp-bg{width:100%;height:100%;z-index:1042;opacity:.8;background:#0b0b0b;position:fixed;top:0;left:0;overflow:hidden}.mfp-wrap{width:100%;height:100%;z-index:1043;-webkit-backface-visibility:hidden;position:fixed;top:0;left:0;outline:none!important}.mfp-container{text-align:center;width:100%;height:100%;box-sizing:border-box;padding:0 8px;position:absolute;top:0;left:0}.mfp-container:before{content:"";height:100%;vertical-align:middle;display:inline-block}.mfp-align-top .mfp-container:before{display:none}.mfp-content{vertical-align:middle;text-align:left;z-index:1045;margin:0 auto;display:inline-block;position:relative}.mfp-inline-holder .mfp-content,.mfp-ajax-holder .mfp-content{width:100%;cursor:auto}.mfp-ajax-cur{cursor:progress}.mfp-zoom-out-cur,.mfp-zoom-out-cur .mfp-image-holder .mfp-close{cursor:-moz-zoom-out;cursor:-webkit-zoom-out;cursor:zoom-out}.mfp-zoom{cursor:pointer;cursor:-webkit-zoom-in;cursor:-moz-zoom-in;cursor:zoom-in}.mfp-auto-cursor .mfp-content{cursor:auto}.mfp-close,.mfp-arrow,.mfp-preloader,.mfp-counter{-webkit-user-select:none;-moz-user-select:none;user-select:none}.mfp-loading.mfp-figure{display:none}.mfp-hide{display:none!important}.mfp-preloader{color:#ccc;width:auto;text-align:center;z-index:1044;margin-top:-.8em;position:absolute;top:50%;left:8px;right:8px}.mfp-preloader a{color:#ccc}.mfp-preloader a:hover{color:#fff}.mfp-s-ready .mfp-preloader,.mfp-s-error .mfp-content{display:none}button.mfp-close,button.mfp-arrow{cursor:pointer;-webkit-appearance:none;z-index:1046;box-shadow:none;touch-action:manipulation;background:0 0;border:0;outline:none;padding:0;display:block;overflow:visible}button::-moz-focus-inner{border:0;padding:0}.mfp-close{width:44px;height:44px;text-align:center;opacity:.65;color:#fff;padding:0 0 18px 10px;font-family:Arial,Baskerville,monospace;font-size:28px;font-style:normal;line-height:44px;text-decoration:none;position:absolute;top:0;right:0}.mfp-close:hover,.mfp-close:focus{opacity:1}.mfp-close:active{top:1px}.mfp-close-btn-in .mfp-close{color:#333}.mfp-image-holder .mfp-close,.mfp-iframe-holder .mfp-close{color:#fff;text-align:right;width:100%;padding-right:6px;right:-6px}.mfp-counter{color:#ccc;white-space:nowrap;font-size:12px;line-height:18px;position:absolute;top:0;right:0}.mfp-arrow{opacity:.65;width:90px;height:110px;-webkit-tap-highlight-color:transparent;margin:-55px 0 0;padding:0;position:absolute;top:50%}.mfp-arrow:active{margin-top:-54px}.mfp-arrow:hover,.mfp-arrow:focus{opacity:1}.mfp-arrow:before,.mfp-arrow:after{content:"";width:0;height:0;border:inset #0000;margin-top:35px;margin-left:35px;display:block;position:absolute;top:0;left:0}.mfp-arrow:after{border-top-width:13px;border-bottom-width:13px;top:8px}.mfp-arrow:before{opacity:.7;border-top-width:21px;border-bottom-width:21px}.mfp-arrow-left{left:0}.mfp-arrow-left:after{border-right:17px solid #fff;margin-left:31px}.mfp-arrow-left:before{border-right:27px solid #3f3f3f;margin-left:25px}.mfp-arrow-right{right:0}.mfp-arrow-right:after{border-left:17px solid #fff;margin-left:39px}.mfp-arrow-right:before{border-left:27px solid #3f3f3f}.mfp-iframe-holder{padding-top:40px;padding-bottom:40px}.mfp-iframe-holder .mfp-content{width:100%;max-width:900px;line-height:0}.mfp-iframe-holder .mfp-close{top:-40px}.mfp-iframe-scaler{width:100%;height:0;padding-top:56.25%;overflow:hidden}.mfp-iframe-scaler iframe{width:100%;height:100%;background:#000;display:block;position:absolute;top:0;left:0;box-shadow:0 0 8px #0009}img.mfp-img{width:auto;max-width:100%;height:auto;box-sizing:border-box;margin:0 auto;padding:40px 0;line-height:0;display:block}.mfp-figure{line-height:0}.mfp-figure:after{content:"";width:auto;height:auto;z-index:-1;background:#444;display:block;position:absolute;inset:40px 0;box-shadow:0 0 8px #0009}.mfp-figure small{color:#bdbdbd;font-size:12px;line-height:14px;display:block}.mfp-figure figure{margin:0}.mfp-bottom-bar{width:100%;cursor:auto;margin-top:-36px;position:absolute;top:100%;left:0}.mfp-title{text-align:left;color:#f3f3f3;word-wrap:break-word;padding-right:36px;line-height:18px}.mfp-image-holder .mfp-content{max-width:100%}.mfp-gallery .mfp-image-holder .mfp-figure{cursor:pointer}@media screen and (max-width:800px) and (orientation:landscape),screen and (max-height:300px){.mfp-img-mobile .mfp-image-holder{padding-left:0;padding-right:0}.mfp-img-mobile img.mfp-img{padding:0}.mfp-img-mobile .mfp-figure:after{top:0;bottom:0}.mfp-img-mobile .mfp-figure small{margin-left:5px;display:inline}.mfp-img-mobile .mfp-bottom-bar{box-sizing:border-box;background:#0009;margin:0;padding:3px 5px;position:fixed;top:auto;bottom:0}.mfp-img-mobile .mfp-bottom-bar:empty{padding:0}.mfp-img-mobile .mfp-counter{top:3px;right:5px}.mfp-img-mobile .mfp-close{width:35px;height:35px;text-align:center;background:#0009;padding:0;line-height:35px;position:fixed;top:0;right:0}}@media (max-width:900px){.mfp-arrow{-webkit-transform:scale(.75);transform:scale(.75)}.mfp-arrow-left{-webkit-transform-origin:0;transform-origin:0}.mfp-arrow-right{-webkit-transform-origin:100%;transform-origin:100%}.mfp-container{padding-left:6px;padding-right:6px}}.owl-carousel,.owl-carousel .owl-item{-webkit-tap-highlight-color:transparent;position:relative}.owl-carousel{width:100%;z-index:1;display:none}.owl-carousel .owl-stage{-ms-touch-action:pan-Y;touch-action:manipulation;-moz-backface-visibility:hidden;position:relative}.owl-carousel .owl-stage:after{content:".";clear:both;visibility:hidden;height:0;line-height:0;display:block}.owl-carousel .owl-stage-outer{position:relative;overflow:hidden;-webkit-transform:translate(0,0)}.owl-carousel .owl-item,.owl-carousel .owl-wrapper{-webkit-backface-visibility:hidden;-moz-backface-visibility:hidden;-ms-backface-visibility:hidden;-webkit-transform:translate(0,0);-moz-transform:translate(0,0);-ms-transform:translate(0,0)}.owl-carousel .owl-item{min-height:1px;float:left;-webkit-backface-visibility:hidden;-webkit-touch-callout:none}.owl-carousel .owl-item img{width:100%;display:block}.owl-carousel .owl-dots.disabled,.owl-carousel .owl-nav.disabled{display:none}.no-js .owl-carousel,.owl-carousel.owl-loaded{display:block}.owl-carousel .owl-dot,.owl-carousel .owl-nav .owl-next,.owl-carousel .owl-nav .owl-prev{cursor:pointer;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-khtml-user-select:none}.owl-carousel .owl-nav button.owl-next,.owl-carousel .owl-nav button.owl-prev,.owl-carousel button.owl-dot{color:inherit;font:inherit;background:0 0;border:none;padding:0!important}.owl-carousel.owl-loading{opacity:0;display:block}.owl-carousel.owl-hidden{opacity:0}.owl-carousel.owl-refresh .owl-item{visibility:hidden}.owl-carousel.owl-drag .owl-item{-ms-touch-action:pan-y;touch-action:pan-y;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.owl-carousel.owl-grab{cursor:move;cursor:grab}.owl-carousel.owl-rtl{direction:rtl}.owl-carousel.owl-rtl .owl-item{float:right}.owl-carousel .animated{animation-duration:1s;animation-fill-mode:both}.owl-carousel .owl-animated-in{z-index:0}.owl-carousel .owl-animated-out{z-index:1}.owl-carousel .fadeOut{animation-name:fadeOut}@keyframes fadeOut{0%{opacity:1}to{opacity:0}}.owl-height{transition:height .5s ease-in-out}.owl-carousel .owl-item .owl-lazy{opacity:0;transition:opacity .4s}.owl-carousel .owl-item .owl-lazy:not([src]),.owl-carousel .owl-item .owl-lazy[src^=""]{max-height:0}.owl-carousel .owl-item img.owl-lazy{transform-style:preserve-3d}.owl-carousel .owl-video-wrapper{height:100%;background:#000;position:relative}.owl-carousel .owl-video-play-icon{height:80px;width:80px;cursor:pointer;z-index:1;-webkit-backface-visibility:hidden;background:url(owl.video.play.e7a23fb2.png) no-repeat;margin-top:-40px;margin-left:-40px;transition:transform .1s;position:absolute;top:50%;left:50%}.owl-carousel .owl-video-play-icon:hover{-ms-transform:scale(1.3);transform:scale(1.3)}.owl-carousel .owl-video-playing .owl-video-play-icon,.owl-carousel .owl-video-playing .owl-video-tn{display:none}.owl-carousel .owl-video-tn{opacity:0;height:100%;background-position:50%;background-repeat:no-repeat;background-size:contain;transition:opacity .4s}.owl-carousel .owl-video-frame{z-index:1;height:100%;width:100%;position:relative}.owl-theme .owl-dots,.owl-theme .owl-nav{text-align:center;-webkit-tap-highlight-color:transparent}.owl-theme .owl-nav{margin-top:10px}.owl-theme .owl-nav [class*=owl-]{color:#fff;cursor:pointer;background:#d6d6d6;border-radius:3px;margin:5px;padding:4px 7px;font-size:14px;display:inline-block}.owl-theme .owl-nav [class*=owl-]:hover{color:#fff;background:#869791;text-decoration:none}.owl-theme .owl-nav .disabled{opacity:.5;cursor:default}.owl-theme .owl-nav.disabled+.owl-dots{margin-top:10px}.owl-theme .owl-dots .owl-dot{zoom:1;display:inline-block}.owl-theme .owl-dots .owl-dot span{width:10px;height:10px;-webkit-backface-visibility:visible;background:#d6d6d6;border-radius:30px;margin:5px 7px;transition:opacity .2s;display:block}.owl-theme .owl-dots .owl-dot.active span,.owl-theme .owl-dots .owl-dot:hover span{background:#869791}.toast-title{font-weight:700}.toast-message{-ms-word-wrap:break-word;word-wrap:break-word}.toast-message a,.toast-message label{color:#fff}.toast-message a:hover{color:#ccc;text-decoration:none}.toast-close-button{float:right;color:#fff;-webkit-text-shadow:0 1px 0 #fff;text-shadow:0 1px #fff;opacity:.8;-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=80);filter:alpha(opacity=80);font-size:20px;font-weight:700;line-height:1;position:relative;top:-.3em;right:-.3em}.toast-close-button:focus,.toast-close-button:hover{color:#000;cursor:pointer;opacity:.4;-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=40);filter:alpha(opacity=40);text-decoration:none}.rtl .toast-close-button{float:left;left:-.3em;right:.3em}button.toast-close-button{cursor:pointer;-webkit-appearance:none;background:0 0;border:0;padding:0}.toast-top-center{width:100%;top:0;right:0}.toast-bottom-center{width:100%;bottom:0;right:0}.toast-top-full-width{width:100%;top:0;right:0}.toast-bottom-full-width{width:100%;bottom:0;right:0}.toast-top-left{top:12px;left:12px}.toast-top-right{top:12px;right:12px}.toast-bottom-right{bottom:12px;right:12px}.toast-bottom-left{bottom:12px;left:12px}#toast-container{z-index:999999;pointer-events:none;position:fixed}#toast-container *{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}#toast-container>div{pointer-events:auto;width:300px;color:#fff;opacity:.8;-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=80);filter:alpha(opacity=80);background-position:15px;background-repeat:no-repeat;-webkit-border-radius:3px;-moz-border-radius:3px;border-radius:3px;margin:0 0 6px;padding:15px 15px 15px 50px;position:relative;overflow:hidden;-webkit-box-shadow:0 0 12px #999;-moz-box-shadow:0 0 12px #999;box-shadow:0 0 12px #999}#toast-container>div.rtl{direction:rtl;background-position:right 15px center;padding:15px 50px 15px 15px}#toast-container>div:hover{opacity:1;-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=100);filter:alpha(opacity=100);cursor:pointer;-webkit-box-shadow:0 0 12px #000;-moz-box-shadow:0 0 12px #000;box-shadow:0 0 12px #000}#toast-container>.toast-info{background-image:url()!important}#toast-container>.toast-error{background-image:url()!important}#toast-container>.toast-success{background-image:url()!important}#toast-container>.toast-warning{background-image:url()!important}#toast-container.toast-bottom-center>div,#toast-container.toast-top-center>div{width:300px;margin-left:auto;margin-right:auto}#toast-container.toast-bottom-full-width>div,#toast-container.toast-top-full-width>div{width:96%;margin-left:auto;margin-right:auto}.toast{background-color:#030303}.toast-success{background-color:#51a351}.toast-error{background-color:#bd362f}.toast-info{background-color:#2f96b4}.toast-warning{background-color:#f89406}.toast-progress{height:4px;opacity:.4;-ms-filter:progid:DXImageTransform.Microsoft.Alpha(Opacity=40);filter:alpha(opacity=40);background-color:#000;position:absolute;bottom:0;left:0}@media (max-width:240px){#toast-container>div{width:11em;padding:8px 8px 8px 50px}#toast-container>div.rtl{padding:8px 50px 8px 8px}#toast-container .toast-close-button{top:-.2em;right:-.2em}#toast-container .rtl .toast-close-button{left:-.2em;right:.2em}}@media (min-width:241px) and (max-width:480px){#toast-container>div{width:18em;padding:8px 8px 8px 50px}#toast-container>div.rtl{padding:8px 50px 8px 8px}#toast-container .toast-close-button{top:-.2em;right:-.2em}#toast-container .rtl .toast-close-button{left:-.2em;right:.2em}}@media (min-width:481px) and (max-width:768px){#toast-container>div{width:25em;padding:15px 15px 15px 50px}#toast-container>div.rtl{padding:15px 50px 15px 15px}}:root{--animate-duration:1s;--animate-delay:1s;--animate-repeat:1}.animate__animated{-webkit-animation-duration:1s;animation-duration:1s;-webkit-animation-duration:var(--animate-duration);animation-duration:var(--animate-duration);-webkit-animation-fill-mode:both;animation-fill-mode:both}.animate__animated.animate__infinite{-webkit-animation-iteration-count:infinite;animation-iteration-count:infinite}.animate__animated.animate__repeat-1{-webkit-animation-iteration-count:1;animation-iteration-count:1;-webkit-animation-iteration-count:var(--animate-repeat);animation-iteration-count:var(--animate-repeat)}.animate__animated.animate__repeat-2{-webkit-animation-iteration-count:2;animation-iteration-count:2;-webkit-animation-iteration-count:calc(var(--animate-repeat)*2);animation-iteration-count:calc(var(--animate-repeat)*2)}.animate__animated.animate__repeat-3{-webkit-animation-iteration-count:3;animation-iteration-count:3;-webkit-animation-iteration-count:calc(var(--animate-repeat)*3);animation-iteration-count:calc(var(--animate-repeat)*3)}.animate__animated.animate__delay-1s{-webkit-animation-delay:1s;animation-delay:1s;-webkit-animation-delay:var(--animate-delay);animation-delay:var(--animate-delay)}.animate__animated.animate__delay-2s{-webkit-animation-delay:2s;animation-delay:2s;-webkit-animation-delay:calc(var(--animate-delay)*2);animation-delay:calc(var(--animate-delay)*2)}.animate__animated.animate__delay-3s{-webkit-animation-delay:3s;animation-delay:3s;-webkit-animation-delay:calc(var(--animate-delay)*3);animation-delay:calc(var(--animate-delay)*3)}.animate__animated.animate__delay-4s{-webkit-animation-delay:4s;animation-delay:4s;-webkit-animation-delay:calc(var(--animate-delay)*4);animation-delay:calc(var(--animate-delay)*4)}.animate__animated.animate__delay-5s{-webkit-animation-delay:5s;animation-delay:5s;-webkit-animation-delay:calc(var(--animate-delay)*5);animation-delay:calc(var(--animate-delay)*5)}.animate__animated.animate__faster{-webkit-animation-duration:.5s;animation-duration:.5s;-webkit-animation-duration:calc(var(--animate-duration)/2);animation-duration:calc(var(--animate-duration)/2)}.animate__animated.animate__fast{-webkit-animation-duration:.8s;animation-duration:.8s;-webkit-animation-duration:calc(var(--animate-duration)*.8);animation-duration:calc(var(--animate-duration)*.8)}.animate__animated.animate__slow{-webkit-animation-duration:2s;animation-duration:2s;-webkit-animation-duration:calc(var(--animate-duration)*2);animation-duration:calc(var(--animate-duration)*2)}.animate__animated.animate__slower{-webkit-animation-duration:3s;animation-duration:3s;-webkit-animation-duration:calc(var(--animate-duration)*3);animation-duration:calc(var(--animate-duration)*3)}@media (prefers-reduced-motion:reduce),print{.animate__animated{-webkit-transition-duration:1ms!important;transition-duration:1ms!important;-webkit-animation-duration:1ms!important;animation-duration:1ms!important;-webkit-animation-iteration-count:1!important;animation-iteration-count:1!important}.animate__animated[class*=Out]{opacity:0}}@-webkit-keyframes bounce{0%,20%,53%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1);-webkit-transform:translateZ(0);transform:translateZ(0)}40%,43%{-webkit-animation-timing-function:cubic-bezier(.755,.05,.855,.06);animation-timing-function:cubic-bezier(.755,.05,.855,.06);-webkit-transform:matrix(1,0,0,1.1,0,-30);transform:matrix(1,0,0,1.1,0,-30)}70%{-webkit-animation-timing-function:cubic-bezier(.755,.05,.855,.06);animation-timing-function:cubic-bezier(.755,.05,.855,.06);-webkit-transform:matrix(1,0,0,1.05,0,-15);transform:matrix(1,0,0,1.05,0,-15)}80%{-webkit-transition-timing-function:cubic-bezier(.215,.61,.355,1);transition-timing-function:cubic-bezier(.215,.61,.355,1);-webkit-transform:scaleY(.95);transform:scaleY(.95)}90%{-webkit-transform:matrix(1,0,0,1.02,0,-4);transform:matrix(1,0,0,1.02,0,-4)}}@keyframes bounce{0%,20%,53%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1);-webkit-transform:translateZ(0);transform:translateZ(0)}40%,43%{-webkit-animation-timing-function:cubic-bezier(.755,.05,.855,.06);animation-timing-function:cubic-bezier(.755,.05,.855,.06);-webkit-transform:matrix(1,0,0,1.1,0,-30);transform:matrix(1,0,0,1.1,0,-30)}70%{-webkit-animation-timing-function:cubic-bezier(.755,.05,.855,.06);animation-timing-function:cubic-bezier(.755,.05,.855,.06);-webkit-transform:matrix(1,0,0,1.05,0,-15);transform:matrix(1,0,0,1.05,0,-15)}80%{-webkit-transition-timing-function:cubic-bezier(.215,.61,.355,1);transition-timing-function:cubic-bezier(.215,.61,.355,1);-webkit-transform:scaleY(.95);transform:scaleY(.95)}90%{-webkit-transform:matrix(1,0,0,1.02,0,-4);transform:matrix(1,0,0,1.02,0,-4)}}.animate__bounce{-webkit-transform-origin:bottom;transform-origin:bottom;-webkit-animation-name:bounce;animation-name:bounce}@-webkit-keyframes flash{0%,50%,to{opacity:1}25%,75%{opacity:0}}@keyframes flash{0%,50%,to{opacity:1}25%,75%{opacity:0}}.animate__flash{-webkit-animation-name:flash;animation-name:flash}@-webkit-keyframes pulse{0%{-webkit-transform:scaleX(1);transform:scaleX(1)}50%{-webkit-transform:scale3d(1.05,1.05,1.05);transform:scale3d(1.05,1.05,1.05)}to{-webkit-transform:scaleX(1);transform:scaleX(1)}}@keyframes pulse{0%{-webkit-transform:scaleX(1);transform:scaleX(1)}50%{-webkit-transform:scale3d(1.05,1.05,1.05);transform:scale3d(1.05,1.05,1.05)}to{-webkit-transform:scaleX(1);transform:scaleX(1)}}.animate__pulse{-webkit-animation-name:pulse;animation-name:pulse;-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out}@-webkit-keyframes rubberBand{0%{-webkit-transform:scaleX(1);transform:scaleX(1)}30%{-webkit-transform:scale(1.25,.75);transform:scale(1.25,.75)}40%{-webkit-transform:scale(.75,1.25);transform:scale(.75,1.25)}50%{-webkit-transform:scale(1.15,.85);transform:scale(1.15,.85)}65%{-webkit-transform:scale(.95,1.05);transform:scale(.95,1.05)}75%{-webkit-transform:scale(1.05,.95);transform:scale(1.05,.95)}to{-webkit-transform:scaleX(1);transform:scaleX(1)}}@keyframes rubberBand{0%{-webkit-transform:scaleX(1);transform:scaleX(1)}30%{-webkit-transform:scale(1.25,.75);transform:scale(1.25,.75)}40%{-webkit-transform:scale(.75,1.25);transform:scale(.75,1.25)}50%{-webkit-transform:scale(1.15,.85);transform:scale(1.15,.85)}65%{-webkit-transform:scale(.95,1.05);transform:scale(.95,1.05)}75%{-webkit-transform:scale(1.05,.95);transform:scale(1.05,.95)}to{-webkit-transform:scaleX(1);transform:scaleX(1)}}.animate__rubberBand{-webkit-animation-name:rubberBand;animation-name:rubberBand}@-webkit-keyframes shakeX{0%,to{-webkit-transform:translateZ(0);transform:translateZ(0)}10%,30%,50%,70%,90%{-webkit-transform:translate(-10px);transform:translate(-10px)}20%,40%,60%,80%{-webkit-transform:translate(10px);transform:translate(10px)}}@keyframes shakeX{0%,to{-webkit-transform:translateZ(0);transform:translateZ(0)}10%,30%,50%,70%,90%{-webkit-transform:translate(-10px);transform:translate(-10px)}20%,40%,60%,80%{-webkit-transform:translate(10px);transform:translate(10px)}}.animate__shakeX{-webkit-animation-name:shakeX;animation-name:shakeX}@-webkit-keyframes shakeY{0%,to{-webkit-transform:translateZ(0);transform:translateZ(0)}10%,30%,50%,70%,90%{-webkit-transform:translateY(-10px);transform:translateY(-10px)}20%,40%,60%,80%{-webkit-transform:translateY(10px);transform:translateY(10px)}}@keyframes shakeY{0%,to{-webkit-transform:translateZ(0);transform:translateZ(0)}10%,30%,50%,70%,90%{-webkit-transform:translateY(-10px);transform:translateY(-10px)}20%,40%,60%,80%{-webkit-transform:translateY(10px);transform:translateY(10px)}}.animate__shakeY{-webkit-animation-name:shakeY;animation-name:shakeY}@-webkit-keyframes headShake{0%{-webkit-transform:translate(0);transform:translate(0)}6.5%{-webkit-transform:translate(-6px)rotateY(-9deg);transform:translate(-6px)rotateY(-9deg)}18.5%{-webkit-transform:translate(5px)rotateY(7deg);transform:translate(5px)rotateY(7deg)}31.5%{-webkit-transform:translate(-3px)rotateY(-5deg);transform:translate(-3px)rotateY(-5deg)}43.5%{-webkit-transform:translate(2px)rotateY(3deg);transform:translate(2px)rotateY(3deg)}50%{-webkit-transform:translate(0);transform:translate(0)}}@keyframes headShake{0%{-webkit-transform:translate(0);transform:translate(0)}6.5%{-webkit-transform:translate(-6px)rotateY(-9deg);transform:translate(-6px)rotateY(-9deg)}18.5%{-webkit-transform:translate(5px)rotateY(7deg);transform:translate(5px)rotateY(7deg)}31.5%{-webkit-transform:translate(-3px)rotateY(-5deg);transform:translate(-3px)rotateY(-5deg)}43.5%{-webkit-transform:translate(2px)rotateY(3deg);transform:translate(2px)rotateY(3deg)}50%{-webkit-transform:translate(0);transform:translate(0)}}.animate__headShake{-webkit-animation-name:headShake;animation-name:headShake;-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out}@-webkit-keyframes swing{20%{-webkit-transform:rotate(15deg);transform:rotate(15deg)}40%{-webkit-transform:rotate(-10deg);transform:rotate(-10deg)}60%{-webkit-transform:rotate(5deg);transform:rotate(5deg)}80%{-webkit-transform:rotate(-5deg);transform:rotate(-5deg)}to{-webkit-transform:rotate(0deg);transform:rotate(0deg)}}@keyframes swing{20%{-webkit-transform:rotate(15deg);transform:rotate(15deg)}40%{-webkit-transform:rotate(-10deg);transform:rotate(-10deg)}60%{-webkit-transform:rotate(5deg);transform:rotate(5deg)}80%{-webkit-transform:rotate(-5deg);transform:rotate(-5deg)}to{-webkit-transform:rotate(0deg);transform:rotate(0deg)}}.animate__swing{-webkit-transform-origin:top;transform-origin:top;-webkit-animation-name:swing;animation-name:swing}@-webkit-keyframes tada{0%{-webkit-transform:scaleX(1);transform:scaleX(1)}10%,20%{-webkit-transform:scale3d(.9,.9,.9)rotate(-3deg);transform:scale3d(.9,.9,.9)rotate(-3deg)}30%,50%,70%,90%{-webkit-transform:scale3d(1.1,1.1,1.1)rotate(3deg);transform:scale3d(1.1,1.1,1.1)rotate(3deg)}40%,60%,80%{-webkit-transform:scale3d(1.1,1.1,1.1)rotate(-3deg);transform:scale3d(1.1,1.1,1.1)rotate(-3deg)}to{-webkit-transform:scaleX(1);transform:scaleX(1)}}@keyframes tada{0%{-webkit-transform:scaleX(1);transform:scaleX(1)}10%,20%{-webkit-transform:scale3d(.9,.9,.9)rotate(-3deg);transform:scale3d(.9,.9,.9)rotate(-3deg)}30%,50%,70%,90%{-webkit-transform:scale3d(1.1,1.1,1.1)rotate(3deg);transform:scale3d(1.1,1.1,1.1)rotate(3deg)}40%,60%,80%{-webkit-transform:scale3d(1.1,1.1,1.1)rotate(-3deg);transform:scale3d(1.1,1.1,1.1)rotate(-3deg)}to{-webkit-transform:scaleX(1);transform:scaleX(1)}}.animate__tada{-webkit-animation-name:tada;animation-name:tada}@-webkit-keyframes wobble{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}15%{-webkit-transform:translate(-25%)rotate(-5deg);transform:translate(-25%)rotate(-5deg)}30%{-webkit-transform:translate(20%)rotate(3deg);transform:translate(20%)rotate(3deg)}45%{-webkit-transform:translate(-15%)rotate(-3deg);transform:translate(-15%)rotate(-3deg)}60%{-webkit-transform:translate(10%)rotate(2deg);transform:translate(10%)rotate(2deg)}75%{-webkit-transform:translate(-5%)rotate(-1deg);transform:translate(-5%)rotate(-1deg)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes wobble{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}15%{-webkit-transform:translate(-25%)rotate(-5deg);transform:translate(-25%)rotate(-5deg)}30%{-webkit-transform:translate(20%)rotate(3deg);transform:translate(20%)rotate(3deg)}45%{-webkit-transform:translate(-15%)rotate(-3deg);transform:translate(-15%)rotate(-3deg)}60%{-webkit-transform:translate(10%)rotate(2deg);transform:translate(10%)rotate(2deg)}75%{-webkit-transform:translate(-5%)rotate(-1deg);transform:translate(-5%)rotate(-1deg)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__wobble{-webkit-animation-name:wobble;animation-name:wobble}@-webkit-keyframes jello{0%,11.1%,to{-webkit-transform:translateZ(0);transform:translateZ(0)}22.2%{-webkit-transform:skew(-12.5deg)skewY(-12.5deg);transform:skew(-12.5deg)skewY(-12.5deg)}33.3%{-webkit-transform:skew(6.25deg)skewY(6.25deg);transform:skew(6.25deg)skewY(6.25deg)}44.4%{-webkit-transform:skew(-3.125deg)skewY(-3.125deg);transform:skew(-3.125deg)skewY(-3.125deg)}55.5%{-webkit-transform:skew(1.5625deg)skewY(1.5625deg);transform:skew(1.5625deg)skewY(1.5625deg)}66.6%{-webkit-transform:skew(-.78125deg)skewY(-.78125deg);transform:skew(-.78125deg)skewY(-.78125deg)}77.7%{-webkit-transform:skew(.390625deg)skewY(.390625deg);transform:skew(.390625deg)skewY(.390625deg)}88.8%{-webkit-transform:skew(-.195313deg)skewY(-.195313deg);transform:skew(-.195313deg)skewY(-.195313deg)}}@keyframes jello{0%,11.1%,to{-webkit-transform:translateZ(0);transform:translateZ(0)}22.2%{-webkit-transform:skew(-12.5deg)skewY(-12.5deg);transform:skew(-12.5deg)skewY(-12.5deg)}33.3%{-webkit-transform:skew(6.25deg)skewY(6.25deg);transform:skew(6.25deg)skewY(6.25deg)}44.4%{-webkit-transform:skew(-3.125deg)skewY(-3.125deg);transform:skew(-3.125deg)skewY(-3.125deg)}55.5%{-webkit-transform:skew(1.5625deg)skewY(1.5625deg);transform:skew(1.5625deg)skewY(1.5625deg)}66.6%{-webkit-transform:skew(-.78125deg)skewY(-.78125deg);transform:skew(-.78125deg)skewY(-.78125deg)}77.7%{-webkit-transform:skew(.390625deg)skewY(.390625deg);transform:skew(.390625deg)skewY(.390625deg)}88.8%{-webkit-transform:skew(-.195313deg)skewY(-.195313deg);transform:skew(-.195313deg)skewY(-.195313deg)}}.animate__jello{-webkit-transform-origin:50%;transform-origin:50%;-webkit-animation-name:jello;animation-name:jello}@-webkit-keyframes heartBeat{0%{-webkit-transform:scale(1);transform:scale(1)}14%{-webkit-transform:scale(1.3);transform:scale(1.3)}28%{-webkit-transform:scale(1);transform:scale(1)}42%{-webkit-transform:scale(1.3);transform:scale(1.3)}70%{-webkit-transform:scale(1);transform:scale(1)}}@keyframes heartBeat{0%{-webkit-transform:scale(1);transform:scale(1)}14%{-webkit-transform:scale(1.3);transform:scale(1.3)}28%{-webkit-transform:scale(1);transform:scale(1)}42%{-webkit-transform:scale(1.3);transform:scale(1.3)}70%{-webkit-transform:scale(1);transform:scale(1)}}.animate__heartBeat{-webkit-animation-name:heartBeat;animation-name:heartBeat;-webkit-animation-duration:1.3s;animation-duration:1.3s;-webkit-animation-duration:calc(var(--animate-duration)*1.3);animation-duration:calc(var(--animate-duration)*1.3);-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out}@-webkit-keyframes backInDown{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,-1200);transform:matrix(.7,0,0,.7,0,-1200)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}@keyframes backInDown{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,-1200);transform:matrix(.7,0,0,.7,0,-1200)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}.animate__backInDown{-webkit-animation-name:backInDown;animation-name:backInDown}@-webkit-keyframes backInLeft{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,-2000,0);transform:matrix(.7,0,0,.7,-2000,0)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}@keyframes backInLeft{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,-2000,0);transform:matrix(.7,0,0,.7,-2000,0)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}.animate__backInLeft{-webkit-animation-name:backInLeft;animation-name:backInLeft}@-webkit-keyframes backInRight{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,2000,0);transform:matrix(.7,0,0,.7,2000,0)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}@keyframes backInRight{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,2000,0);transform:matrix(.7,0,0,.7,2000,0)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}.animate__backInRight{-webkit-animation-name:backInRight;animation-name:backInRight}@-webkit-keyframes backInUp{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,1200);transform:matrix(.7,0,0,.7,0,1200)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}@keyframes backInUp{0%{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,1200);transform:matrix(.7,0,0,.7,0,1200)}80%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}.animate__backInUp{-webkit-animation-name:backInUp;animation-name:backInUp}@-webkit-keyframes backOutDown{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,700);transform:matrix(.7,0,0,.7,0,700)}}@keyframes backOutDown{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,700);transform:matrix(.7,0,0,.7,0,700)}}.animate__backOutDown{-webkit-animation-name:backOutDown;animation-name:backOutDown}@-webkit-keyframes backOutLeft{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,-2000,0);transform:matrix(.7,0,0,.7,-2000,0)}}@keyframes backOutLeft{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,-2000,0);transform:matrix(.7,0,0,.7,-2000,0)}}.animate__backOutLeft{-webkit-animation-name:backOutLeft;animation-name:backOutLeft}@-webkit-keyframes backOutRight{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,2000,0);transform:matrix(.7,0,0,.7,2000,0)}}@keyframes backOutRight{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,2000,0);transform:matrix(.7,0,0,.7,2000,0)}}.animate__backOutRight{-webkit-animation-name:backOutRight;animation-name:backOutRight}@-webkit-keyframes backOutUp{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,-700);transform:matrix(.7,0,0,.7,0,-700)}}@keyframes backOutUp{0%{opacity:1;-webkit-transform:scale(1);transform:scale(1)}20%{opacity:.7;-webkit-transform:scale(.7);transform:scale(.7)}to{opacity:.7;-webkit-transform:matrix(.7,0,0,.7,0,-700);transform:matrix(.7,0,0,.7,0,-700)}}.animate__backOutUp{-webkit-animation-name:backOutUp;animation-name:backOutUp}@-webkit-keyframes bounceIn{0%,20%,40%,60%,80%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}20%{-webkit-transform:scale3d(1.1,1.1,1.1);transform:scale3d(1.1,1.1,1.1)}40%{-webkit-transform:scale3d(.9,.9,.9);transform:scale3d(.9,.9,.9)}60%{opacity:1;-webkit-transform:scale3d(1.03,1.03,1.03);transform:scale3d(1.03,1.03,1.03)}80%{-webkit-transform:scale3d(.97,.97,.97);transform:scale3d(.97,.97,.97)}to{opacity:1;-webkit-transform:scaleX(1);transform:scaleX(1)}}@keyframes bounceIn{0%,20%,40%,60%,80%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}20%{-webkit-transform:scale3d(1.1,1.1,1.1);transform:scale3d(1.1,1.1,1.1)}40%{-webkit-transform:scale3d(.9,.9,.9);transform:scale3d(.9,.9,.9)}60%{opacity:1;-webkit-transform:scale3d(1.03,1.03,1.03);transform:scale3d(1.03,1.03,1.03)}80%{-webkit-transform:scale3d(.97,.97,.97);transform:scale3d(.97,.97,.97)}to{opacity:1;-webkit-transform:scaleX(1);transform:scaleX(1)}}.animate__bounceIn{-webkit-animation-duration:.75s;animation-duration:.75s;-webkit-animation-duration:calc(var(--animate-duration)*.75);animation-duration:calc(var(--animate-duration)*.75);-webkit-animation-name:bounceIn;animation-name:bounceIn}@-webkit-keyframes bounceInDown{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(1,0,0,3,0,-3000);transform:matrix(1,0,0,3,0,-3000)}60%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,25);transform:matrix(1,0,0,.9,0,25)}75%{-webkit-transform:matrix(1,0,0,.95,0,-10);transform:matrix(1,0,0,.95,0,-10)}90%{-webkit-transform:matrix(1,0,0,.985,0,5);transform:matrix(1,0,0,.985,0,5)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes bounceInDown{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(1,0,0,3,0,-3000);transform:matrix(1,0,0,3,0,-3000)}60%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,25);transform:matrix(1,0,0,.9,0,25)}75%{-webkit-transform:matrix(1,0,0,.95,0,-10);transform:matrix(1,0,0,.95,0,-10)}90%{-webkit-transform:matrix(1,0,0,.985,0,5);transform:matrix(1,0,0,.985,0,5)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__bounceInDown{-webkit-animation-name:bounceInDown;animation-name:bounceInDown}@-webkit-keyframes bounceInLeft{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(3,0,0,1,-3000,0);transform:matrix(3,0,0,1,-3000,0)}60%{opacity:1;-webkit-transform:translate(25px);transform:translate(25px)}75%{-webkit-transform:matrix(.98,0,0,1,-10,0);transform:matrix(.98,0,0,1,-10,0)}90%{-webkit-transform:matrix(.995,0,0,1,5,0);transform:matrix(.995,0,0,1,5,0)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes bounceInLeft{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(3,0,0,1,-3000,0);transform:matrix(3,0,0,1,-3000,0)}60%{opacity:1;-webkit-transform:translate(25px);transform:translate(25px)}75%{-webkit-transform:matrix(.98,0,0,1,-10,0);transform:matrix(.98,0,0,1,-10,0)}90%{-webkit-transform:matrix(.995,0,0,1,5,0);transform:matrix(.995,0,0,1,5,0)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__bounceInLeft{-webkit-animation-name:bounceInLeft;animation-name:bounceInLeft}@-webkit-keyframes bounceInRight{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(3,0,0,1,3000,0);transform:matrix(3,0,0,1,3000,0)}60%{opacity:1;-webkit-transform:translate(-25px);transform:translate(-25px)}75%{-webkit-transform:matrix(.98,0,0,1,10,0);transform:matrix(.98,0,0,1,10,0)}90%{-webkit-transform:matrix(.995,0,0,1,-5,0);transform:matrix(.995,0,0,1,-5,0)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes bounceInRight{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(3,0,0,1,3000,0);transform:matrix(3,0,0,1,3000,0)}60%{opacity:1;-webkit-transform:translate(-25px);transform:translate(-25px)}75%{-webkit-transform:matrix(.98,0,0,1,10,0);transform:matrix(.98,0,0,1,10,0)}90%{-webkit-transform:matrix(.995,0,0,1,-5,0);transform:matrix(.995,0,0,1,-5,0)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__bounceInRight{-webkit-animation-name:bounceInRight;animation-name:bounceInRight}@-webkit-keyframes bounceInUp{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(1,0,0,5,0,3000);transform:matrix(1,0,0,5,0,3000)}60%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,-20);transform:matrix(1,0,0,.9,0,-20)}75%{-webkit-transform:matrix(1,0,0,.95,0,10);transform:matrix(1,0,0,.95,0,10)}90%{-webkit-transform:matrix(1,0,0,.985,0,-5);transform:matrix(1,0,0,.985,0,-5)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes bounceInUp{0%,60%,75%,90%,to{-webkit-animation-timing-function:cubic-bezier(.215,.61,.355,1);animation-timing-function:cubic-bezier(.215,.61,.355,1)}0%{opacity:0;-webkit-transform:matrix(1,0,0,5,0,3000);transform:matrix(1,0,0,5,0,3000)}60%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,-20);transform:matrix(1,0,0,.9,0,-20)}75%{-webkit-transform:matrix(1,0,0,.95,0,10);transform:matrix(1,0,0,.95,0,10)}90%{-webkit-transform:matrix(1,0,0,.985,0,-5);transform:matrix(1,0,0,.985,0,-5)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__bounceInUp{-webkit-animation-name:bounceInUp;animation-name:bounceInUp}@-webkit-keyframes bounceOut{20%{-webkit-transform:scale3d(.9,.9,.9);transform:scale3d(.9,.9,.9)}50%,55%{opacity:1;-webkit-transform:scale3d(1.1,1.1,1.1);transform:scale3d(1.1,1.1,1.1)}to{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}}@keyframes bounceOut{20%{-webkit-transform:scale3d(.9,.9,.9);transform:scale3d(.9,.9,.9)}50%,55%{opacity:1;-webkit-transform:scale3d(1.1,1.1,1.1);transform:scale3d(1.1,1.1,1.1)}to{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}}.animate__bounceOut{-webkit-animation-duration:.75s;animation-duration:.75s;-webkit-animation-duration:calc(var(--animate-duration)*.75);animation-duration:calc(var(--animate-duration)*.75);-webkit-animation-name:bounceOut;animation-name:bounceOut}@-webkit-keyframes bounceOutDown{20%{-webkit-transform:matrix(1,0,0,.985,0,10);transform:matrix(1,0,0,.985,0,10)}40%,45%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,-20);transform:matrix(1,0,0,.9,0,-20)}to{opacity:0;-webkit-transform:matrix(1,0,0,3,0,2000);transform:matrix(1,0,0,3,0,2000)}}@keyframes bounceOutDown{20%{-webkit-transform:matrix(1,0,0,.985,0,10);transform:matrix(1,0,0,.985,0,10)}40%,45%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,-20);transform:matrix(1,0,0,.9,0,-20)}to{opacity:0;-webkit-transform:matrix(1,0,0,3,0,2000);transform:matrix(1,0,0,3,0,2000)}}.animate__bounceOutDown{-webkit-animation-name:bounceOutDown;animation-name:bounceOutDown}@-webkit-keyframes bounceOutLeft{20%{opacity:1;-webkit-transform:matrix(.9,0,0,1,20,0);transform:matrix(.9,0,0,1,20,0)}to{opacity:0;-webkit-transform:matrix(2,0,0,1,-2000,0);transform:matrix(2,0,0,1,-2000,0)}}@keyframes bounceOutLeft{20%{opacity:1;-webkit-transform:matrix(.9,0,0,1,20,0);transform:matrix(.9,0,0,1,20,0)}to{opacity:0;-webkit-transform:matrix(2,0,0,1,-2000,0);transform:matrix(2,0,0,1,-2000,0)}}.animate__bounceOutLeft{-webkit-animation-name:bounceOutLeft;animation-name:bounceOutLeft}@-webkit-keyframes bounceOutRight{20%{opacity:1;-webkit-transform:matrix(.9,0,0,1,-20,0);transform:matrix(.9,0,0,1,-20,0)}to{opacity:0;-webkit-transform:matrix(2,0,0,1,2000,0);transform:matrix(2,0,0,1,2000,0)}}@keyframes bounceOutRight{20%{opacity:1;-webkit-transform:matrix(.9,0,0,1,-20,0);transform:matrix(.9,0,0,1,-20,0)}to{opacity:0;-webkit-transform:matrix(2,0,0,1,2000,0);transform:matrix(2,0,0,1,2000,0)}}.animate__bounceOutRight{-webkit-animation-name:bounceOutRight;animation-name:bounceOutRight}@-webkit-keyframes bounceOutUp{20%{-webkit-transform:matrix(1,0,0,.985,0,-10);transform:matrix(1,0,0,.985,0,-10)}40%,45%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,20);transform:matrix(1,0,0,.9,0,20)}to{opacity:0;-webkit-transform:matrix(1,0,0,3,0,-2000);transform:matrix(1,0,0,3,0,-2000)}}@keyframes bounceOutUp{20%{-webkit-transform:matrix(1,0,0,.985,0,-10);transform:matrix(1,0,0,.985,0,-10)}40%,45%{opacity:1;-webkit-transform:matrix(1,0,0,.9,0,20);transform:matrix(1,0,0,.9,0,20)}to{opacity:0;-webkit-transform:matrix(1,0,0,3,0,-2000);transform:matrix(1,0,0,3,0,-2000)}}.animate__bounceOutUp{-webkit-animation-name:bounceOutUp;animation-name:bounceOutUp}@-webkit-keyframes fadeIn{0%{opacity:0}to{opacity:1}}@keyframes fadeIn{0%{opacity:0}to{opacity:1}}.animate__fadeIn{-webkit-animation-name:fadeIn;animation-name:fadeIn}@-webkit-keyframes fadeInDown{0%{opacity:0;-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInDown{0%{opacity:0;-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInDown{-webkit-animation-name:fadeInDown;animation-name:fadeInDown}@-webkit-keyframes fadeInDownBig{0%{opacity:0;-webkit-transform:translateY(-2000px);transform:translateY(-2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInDownBig{0%{opacity:0;-webkit-transform:translateY(-2000px);transform:translateY(-2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInDownBig{-webkit-animation-name:fadeInDownBig;animation-name:fadeInDownBig}@-webkit-keyframes fadeInLeft{0%{opacity:0;-webkit-transform:translate(-100%);transform:translate(-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInLeft{0%{opacity:0;-webkit-transform:translate(-100%);transform:translate(-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInLeft{-webkit-animation-name:fadeInLeft;animation-name:fadeInLeft}@-webkit-keyframes fadeInLeftBig{0%{opacity:0;-webkit-transform:translate(-2000px);transform:translate(-2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInLeftBig{0%{opacity:0;-webkit-transform:translate(-2000px);transform:translate(-2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInLeftBig{-webkit-animation-name:fadeInLeftBig;animation-name:fadeInLeftBig}@-webkit-keyframes fadeInRight{0%{opacity:0;-webkit-transform:translate(100%);transform:translate(100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInRight{0%{opacity:0;-webkit-transform:translate(100%);transform:translate(100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInRight{-webkit-animation-name:fadeInRight;animation-name:fadeInRight}@-webkit-keyframes fadeInRightBig{0%{opacity:0;-webkit-transform:translate(2000px);transform:translate(2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInRightBig{0%{opacity:0;-webkit-transform:translate(2000px);transform:translate(2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInRightBig{-webkit-animation-name:fadeInRightBig;animation-name:fadeInRightBig}@-webkit-keyframes fadeInUp{0%{opacity:0;-webkit-transform:translateY(100%);transform:translateY(100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInUp{0%{opacity:0;-webkit-transform:translateY(100%);transform:translateY(100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInUp{-webkit-animation-name:fadeInUp;animation-name:fadeInUp}@-webkit-keyframes fadeInUpBig{0%{opacity:0;-webkit-transform:translateY(2000px);transform:translateY(2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInUpBig{0%{opacity:0;-webkit-transform:translateY(2000px);transform:translateY(2000px)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInUpBig{-webkit-animation-name:fadeInUpBig;animation-name:fadeInUpBig}@-webkit-keyframes fadeInTopLeft{0%{opacity:0;-webkit-transform:translate(-100%,-100%);transform:translate(-100%,-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInTopLeft{0%{opacity:0;-webkit-transform:translate(-100%,-100%);transform:translate(-100%,-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInTopLeft{-webkit-animation-name:fadeInTopLeft;animation-name:fadeInTopLeft}@-webkit-keyframes fadeInTopRight{0%{opacity:0;-webkit-transform:translate(100%,-100%);transform:translate(100%,-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInTopRight{0%{opacity:0;-webkit-transform:translate(100%,-100%);transform:translate(100%,-100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInTopRight{-webkit-animation-name:fadeInTopRight;animation-name:fadeInTopRight}@-webkit-keyframes fadeInBottomLeft{0%{opacity:0;-webkit-transform:translate(-100%,100%);transform:translate(-100%,100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInBottomLeft{0%{opacity:0;-webkit-transform:translate(-100%,100%);transform:translate(-100%,100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInBottomLeft{-webkit-animation-name:fadeInBottomLeft;animation-name:fadeInBottomLeft}@-webkit-keyframes fadeInBottomRight{0%{opacity:0;-webkit-transform:translate(100%,100%);transform:translate(100%,100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes fadeInBottomRight{0%{opacity:0;-webkit-transform:translate(100%,100%);transform:translate(100%,100%)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__fadeInBottomRight{-webkit-animation-name:fadeInBottomRight;animation-name:fadeInBottomRight}@-webkit-keyframes fadeOut{0%{opacity:1}to{opacity:0}}@keyframes fadeOut{0%{opacity:1}to{opacity:0}}.animate__fadeOut{-webkit-animation-name:fadeOut;animation-name:fadeOut}@-webkit-keyframes fadeOutDown{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(100%);transform:translateY(100%)}}@keyframes fadeOutDown{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(100%);transform:translateY(100%)}}.animate__fadeOutDown{-webkit-animation-name:fadeOutDown;animation-name:fadeOutDown}@-webkit-keyframes fadeOutDownBig{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(2000px);transform:translateY(2000px)}}@keyframes fadeOutDownBig{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(2000px);transform:translateY(2000px)}}.animate__fadeOutDownBig{-webkit-animation-name:fadeOutDownBig;animation-name:fadeOutDownBig}@-webkit-keyframes fadeOutLeft{0%{opacity:1}to{opacity:0;-webkit-transform:translate(-100%);transform:translate(-100%)}}@keyframes fadeOutLeft{0%{opacity:1}to{opacity:0;-webkit-transform:translate(-100%);transform:translate(-100%)}}.animate__fadeOutLeft{-webkit-animation-name:fadeOutLeft;animation-name:fadeOutLeft}@-webkit-keyframes fadeOutLeftBig{0%{opacity:1}to{opacity:0;-webkit-transform:translate(-2000px);transform:translate(-2000px)}}@keyframes fadeOutLeftBig{0%{opacity:1}to{opacity:0;-webkit-transform:translate(-2000px);transform:translate(-2000px)}}.animate__fadeOutLeftBig{-webkit-animation-name:fadeOutLeftBig;animation-name:fadeOutLeftBig}@-webkit-keyframes fadeOutRight{0%{opacity:1}to{opacity:0;-webkit-transform:translate(100%);transform:translate(100%)}}@keyframes fadeOutRight{0%{opacity:1}to{opacity:0;-webkit-transform:translate(100%);transform:translate(100%)}}.animate__fadeOutRight{-webkit-animation-name:fadeOutRight;animation-name:fadeOutRight}@-webkit-keyframes fadeOutRightBig{0%{opacity:1}to{opacity:0;-webkit-transform:translate(2000px);transform:translate(2000px)}}@keyframes fadeOutRightBig{0%{opacity:1}to{opacity:0;-webkit-transform:translate(2000px);transform:translate(2000px)}}.animate__fadeOutRightBig{-webkit-animation-name:fadeOutRightBig;animation-name:fadeOutRightBig}@-webkit-keyframes fadeOutUp{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(-100%);transform:translateY(-100%)}}@keyframes fadeOutUp{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(-100%);transform:translateY(-100%)}}.animate__fadeOutUp{-webkit-animation-name:fadeOutUp;animation-name:fadeOutUp}@-webkit-keyframes fadeOutUpBig{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(-2000px);transform:translateY(-2000px)}}@keyframes fadeOutUpBig{0%{opacity:1}to{opacity:0;-webkit-transform:translateY(-2000px);transform:translateY(-2000px)}}.animate__fadeOutUpBig{-webkit-animation-name:fadeOutUpBig;animation-name:fadeOutUpBig}@-webkit-keyframes fadeOutTopLeft{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(-100%,-100%);transform:translate(-100%,-100%)}}@keyframes fadeOutTopLeft{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(-100%,-100%);transform:translate(-100%,-100%)}}.animate__fadeOutTopLeft{-webkit-animation-name:fadeOutTopLeft;animation-name:fadeOutTopLeft}@-webkit-keyframes fadeOutTopRight{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(100%,-100%);transform:translate(100%,-100%)}}@keyframes fadeOutTopRight{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(100%,-100%);transform:translate(100%,-100%)}}.animate__fadeOutTopRight{-webkit-animation-name:fadeOutTopRight;animation-name:fadeOutTopRight}@-webkit-keyframes fadeOutBottomRight{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(100%,100%);transform:translate(100%,100%)}}@keyframes fadeOutBottomRight{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(100%,100%);transform:translate(100%,100%)}}.animate__fadeOutBottomRight{-webkit-animation-name:fadeOutBottomRight;animation-name:fadeOutBottomRight}@-webkit-keyframes fadeOutBottomLeft{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(-100%,100%);transform:translate(-100%,100%)}}@keyframes fadeOutBottomLeft{0%{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}to{opacity:0;-webkit-transform:translate(-100%,100%);transform:translate(-100%,100%)}}.animate__fadeOutBottomLeft{-webkit-animation-name:fadeOutBottomLeft;animation-name:fadeOutBottomLeft}@-webkit-keyframes flip{0%{-webkit-animation-timing-function:ease-out;animation-timing-function:ease-out;-webkit-transform:perspective(400px)scaleX(1)translateZ(0)rotateY(-1turn);transform:perspective(400px)scaleX(1)translateZ(0)rotateY(-1turn)}40%{-webkit-animation-timing-function:ease-out;animation-timing-function:ease-out;-webkit-transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-190deg);transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-190deg)}50%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-170deg);transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-170deg)}80%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:matrix3d(.95,0,0,0,0,.95,0,0,0,0,.95,-.002375,0,0,0,1);transform:matrix3d(.95,0,0,0,0,.95,0,0,0,0,.95,-.002375,0,0,0,1)}to{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:matrix3d(1,0,0,0,0,1,0,0,0,0,1,-.0025,0,0,0,1);transform:matrix3d(1,0,0,0,0,1,0,0,0,0,1,-.0025,0,0,0,1)}}@keyframes flip{0%{-webkit-animation-timing-function:ease-out;animation-timing-function:ease-out;-webkit-transform:perspective(400px)scaleX(1)translateZ(0)rotateY(-1turn);transform:perspective(400px)scaleX(1)translateZ(0)rotateY(-1turn)}40%{-webkit-animation-timing-function:ease-out;animation-timing-function:ease-out;-webkit-transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-190deg);transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-190deg)}50%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-170deg);transform:perspective(400px)scaleX(1)translateZ(150px)rotateY(-170deg)}80%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:matrix3d(.95,0,0,0,0,.95,0,0,0,0,.95,-.002375,0,0,0,1);transform:matrix3d(.95,0,0,0,0,.95,0,0,0,0,.95,-.002375,0,0,0,1)}to{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:matrix3d(1,0,0,0,0,1,0,0,0,0,1,-.0025,0,0,0,1);transform:matrix3d(1,0,0,0,0,1,0,0,0,0,1,-.0025,0,0,0,1)}}.animate__animated.animate__flip{-webkit-backface-visibility:visible;backface-visibility:visible;-webkit-animation-name:flip;animation-name:flip}@-webkit-keyframes flipInX{0%{opacity:0;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateX(90deg);transform:perspective(400px)rotateX(90deg)}40%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateX(-20deg);transform:perspective(400px)rotateX(-20deg)}60%{opacity:1;-webkit-transform:perspective(400px)rotateX(10deg);transform:perspective(400px)rotateX(10deg)}80%{-webkit-transform:perspective(400px)rotateX(-5deg);transform:perspective(400px)rotateX(-5deg)}to{-webkit-transform:perspective(400px);transform:perspective(400px)}}@keyframes flipInX{0%{opacity:0;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateX(90deg);transform:perspective(400px)rotateX(90deg)}40%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateX(-20deg);transform:perspective(400px)rotateX(-20deg)}60%{opacity:1;-webkit-transform:perspective(400px)rotateX(10deg);transform:perspective(400px)rotateX(10deg)}80%{-webkit-transform:perspective(400px)rotateX(-5deg);transform:perspective(400px)rotateX(-5deg)}to{-webkit-transform:perspective(400px);transform:perspective(400px)}}.animate__flipInX{-webkit-animation-name:flipInX;animation-name:flipInX;-webkit-backface-visibility:visible!important;backface-visibility:visible!important}@-webkit-keyframes flipInY{0%{opacity:0;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateY(90deg);transform:perspective(400px)rotateY(90deg)}40%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateY(-20deg);transform:perspective(400px)rotateY(-20deg)}60%{opacity:1;-webkit-transform:perspective(400px)rotateY(10deg);transform:perspective(400px)rotateY(10deg)}80%{-webkit-transform:perspective(400px)rotateY(-5deg);transform:perspective(400px)rotateY(-5deg)}to{-webkit-transform:perspective(400px);transform:perspective(400px)}}@keyframes flipInY{0%{opacity:0;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateY(90deg);transform:perspective(400px)rotateY(90deg)}40%{-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in;-webkit-transform:perspective(400px)rotateY(-20deg);transform:perspective(400px)rotateY(-20deg)}60%{opacity:1;-webkit-transform:perspective(400px)rotateY(10deg);transform:perspective(400px)rotateY(10deg)}80%{-webkit-transform:perspective(400px)rotateY(-5deg);transform:perspective(400px)rotateY(-5deg)}to{-webkit-transform:perspective(400px);transform:perspective(400px)}}.animate__flipInY{-webkit-animation-name:flipInY;animation-name:flipInY;-webkit-backface-visibility:visible!important;backface-visibility:visible!important}@-webkit-keyframes flipOutX{0%{-webkit-transform:perspective(400px);transform:perspective(400px)}30%{opacity:1;-webkit-transform:perspective(400px)rotateX(-20deg);transform:perspective(400px)rotateX(-20deg)}to{opacity:0;-webkit-transform:perspective(400px)rotateX(90deg);transform:perspective(400px)rotateX(90deg)}}@keyframes flipOutX{0%{-webkit-transform:perspective(400px);transform:perspective(400px)}30%{opacity:1;-webkit-transform:perspective(400px)rotateX(-20deg);transform:perspective(400px)rotateX(-20deg)}to{opacity:0;-webkit-transform:perspective(400px)rotateX(90deg);transform:perspective(400px)rotateX(90deg)}}.animate__flipOutX{-webkit-animation-duration:.75s;animation-duration:.75s;-webkit-animation-duration:calc(var(--animate-duration)*.75);animation-duration:calc(var(--animate-duration)*.75);-webkit-animation-name:flipOutX;animation-name:flipOutX;-webkit-backface-visibility:visible!important;backface-visibility:visible!important}@-webkit-keyframes flipOutY{0%{-webkit-transform:perspective(400px);transform:perspective(400px)}30%{opacity:1;-webkit-transform:perspective(400px)rotateY(-15deg);transform:perspective(400px)rotateY(-15deg)}to{opacity:0;-webkit-transform:perspective(400px)rotateY(90deg);transform:perspective(400px)rotateY(90deg)}}@keyframes flipOutY{0%{-webkit-transform:perspective(400px);transform:perspective(400px)}30%{opacity:1;-webkit-transform:perspective(400px)rotateY(-15deg);transform:perspective(400px)rotateY(-15deg)}to{opacity:0;-webkit-transform:perspective(400px)rotateY(90deg);transform:perspective(400px)rotateY(90deg)}}.animate__flipOutY{-webkit-animation-duration:.75s;animation-duration:.75s;-webkit-animation-duration:calc(var(--animate-duration)*.75);animation-duration:calc(var(--animate-duration)*.75);-webkit-animation-name:flipOutY;animation-name:flipOutY;-webkit-backface-visibility:visible!important;backface-visibility:visible!important}@-webkit-keyframes lightSpeedInRight{0%{opacity:0;-webkit-transform:translate(100%)skew(-30deg);transform:translate(100%)skew(-30deg)}60%{opacity:1;-webkit-transform:skew(20deg);transform:skew(20deg)}80%{-webkit-transform:skew(-5deg);transform:skew(-5deg)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes lightSpeedInRight{0%{opacity:0;-webkit-transform:translate(100%)skew(-30deg);transform:translate(100%)skew(-30deg)}60%{opacity:1;-webkit-transform:skew(20deg);transform:skew(20deg)}80%{-webkit-transform:skew(-5deg);transform:skew(-5deg)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__lightSpeedInRight{-webkit-animation-name:lightSpeedInRight;animation-name:lightSpeedInRight;-webkit-animation-timing-function:ease-out;animation-timing-function:ease-out}@-webkit-keyframes lightSpeedInLeft{0%{opacity:0;-webkit-transform:translate(-100%)skew(30deg);transform:translate(-100%)skew(30deg)}60%{opacity:1;-webkit-transform:skew(-20deg);transform:skew(-20deg)}80%{-webkit-transform:skew(5deg);transform:skew(5deg)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes lightSpeedInLeft{0%{opacity:0;-webkit-transform:translate(-100%)skew(30deg);transform:translate(-100%)skew(30deg)}60%{opacity:1;-webkit-transform:skew(-20deg);transform:skew(-20deg)}80%{-webkit-transform:skew(5deg);transform:skew(5deg)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__lightSpeedInLeft{-webkit-animation-name:lightSpeedInLeft;animation-name:lightSpeedInLeft;-webkit-animation-timing-function:ease-out;animation-timing-function:ease-out}@-webkit-keyframes lightSpeedOutRight{0%{opacity:1}to{opacity:0;-webkit-transform:translate(100%)skew(30deg);transform:translate(100%)skew(30deg)}}@keyframes lightSpeedOutRight{0%{opacity:1}to{opacity:0;-webkit-transform:translate(100%)skew(30deg);transform:translate(100%)skew(30deg)}}.animate__lightSpeedOutRight{-webkit-animation-name:lightSpeedOutRight;animation-name:lightSpeedOutRight;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in}@-webkit-keyframes lightSpeedOutLeft{0%{opacity:1}to{opacity:0;-webkit-transform:translate(-100%)skew(-30deg);transform:translate(-100%)skew(-30deg)}}@keyframes lightSpeedOutLeft{0%{opacity:1}to{opacity:0;-webkit-transform:translate(-100%)skew(-30deg);transform:translate(-100%)skew(-30deg)}}.animate__lightSpeedOutLeft{-webkit-animation-name:lightSpeedOutLeft;animation-name:lightSpeedOutLeft;-webkit-animation-timing-function:ease-in;animation-timing-function:ease-in}@-webkit-keyframes rotateIn{0%{opacity:0;-webkit-transform:rotate(-200deg);transform:rotate(-200deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes rotateIn{0%{opacity:0;-webkit-transform:rotate(-200deg);transform:rotate(-200deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__rotateIn{-webkit-transform-origin:50%;transform-origin:50%;-webkit-animation-name:rotateIn;animation-name:rotateIn}@-webkit-keyframes rotateInDownLeft{0%{opacity:0;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes rotateInDownLeft{0%{opacity:0;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__rotateInDownLeft{-webkit-transform-origin:0 100%;transform-origin:0 100%;-webkit-animation-name:rotateInDownLeft;animation-name:rotateInDownLeft}@-webkit-keyframes rotateInDownRight{0%{opacity:0;-webkit-transform:rotate(45deg);transform:rotate(45deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes rotateInDownRight{0%{opacity:0;-webkit-transform:rotate(45deg);transform:rotate(45deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__rotateInDownRight{-webkit-transform-origin:100% 100%;transform-origin:100% 100%;-webkit-animation-name:rotateInDownRight;animation-name:rotateInDownRight}@-webkit-keyframes rotateInUpLeft{0%{opacity:0;-webkit-transform:rotate(45deg);transform:rotate(45deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes rotateInUpLeft{0%{opacity:0;-webkit-transform:rotate(45deg);transform:rotate(45deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__rotateInUpLeft{-webkit-transform-origin:0 100%;transform-origin:0 100%;-webkit-animation-name:rotateInUpLeft;animation-name:rotateInUpLeft}@-webkit-keyframes rotateInUpRight{0%{opacity:0;-webkit-transform:rotate(-90deg);transform:rotate(-90deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes rotateInUpRight{0%{opacity:0;-webkit-transform:rotate(-90deg);transform:rotate(-90deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__rotateInUpRight{-webkit-transform-origin:100% 100%;transform-origin:100% 100%;-webkit-animation-name:rotateInUpRight;animation-name:rotateInUpRight}@-webkit-keyframes rotateOut{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(200deg);transform:rotate(200deg)}}@keyframes rotateOut{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(200deg);transform:rotate(200deg)}}.animate__rotateOut{-webkit-transform-origin:50%;transform-origin:50%;-webkit-animation-name:rotateOut;animation-name:rotateOut}@-webkit-keyframes rotateOutDownLeft{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(45deg);transform:rotate(45deg)}}@keyframes rotateOutDownLeft{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(45deg);transform:rotate(45deg)}}.animate__rotateOutDownLeft{-webkit-transform-origin:0 100%;transform-origin:0 100%;-webkit-animation-name:rotateOutDownLeft;animation-name:rotateOutDownLeft}@-webkit-keyframes rotateOutDownRight{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}}@keyframes rotateOutDownRight{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}}.animate__rotateOutDownRight{-webkit-transform-origin:100% 100%;transform-origin:100% 100%;-webkit-animation-name:rotateOutDownRight;animation-name:rotateOutDownRight}@-webkit-keyframes rotateOutUpLeft{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}}@keyframes rotateOutUpLeft{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}}.animate__rotateOutUpLeft{-webkit-transform-origin:0 100%;transform-origin:0 100%;-webkit-animation-name:rotateOutUpLeft;animation-name:rotateOutUpLeft}@-webkit-keyframes rotateOutUpRight{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(90deg);transform:rotate(90deg)}}@keyframes rotateOutUpRight{0%{opacity:1}to{opacity:0;-webkit-transform:rotate(90deg);transform:rotate(90deg)}}.animate__rotateOutUpRight{-webkit-transform-origin:100% 100%;transform-origin:100% 100%;-webkit-animation-name:rotateOutUpRight;animation-name:rotateOutUpRight}@-webkit-keyframes hinge{0%{-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out}20%,60%{-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out;-webkit-transform:rotate(80deg);transform:rotate(80deg)}40%,80%{opacity:1;-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out;-webkit-transform:rotate(60deg);transform:rotate(60deg)}to{opacity:0;-webkit-transform:translateY(700px);transform:translateY(700px)}}@keyframes hinge{0%{-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out}20%,60%{-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out;-webkit-transform:rotate(80deg);transform:rotate(80deg)}40%,80%{opacity:1;-webkit-animation-timing-function:ease-in-out;animation-timing-function:ease-in-out;-webkit-transform:rotate(60deg);transform:rotate(60deg)}to{opacity:0;-webkit-transform:translateY(700px);transform:translateY(700px)}}.animate__hinge{-webkit-animation-duration:2s;animation-duration:2s;-webkit-animation-duration:calc(var(--animate-duration)*2);animation-duration:calc(var(--animate-duration)*2);-webkit-transform-origin:0 0;transform-origin:0 0;-webkit-animation-name:hinge;animation-name:hinge}@-webkit-keyframes jackInTheBox{0%{opacity:0;-webkit-transform-origin:bottom;transform-origin:bottom;-webkit-transform:scale(.1)rotate(30deg);transform:scale(.1)rotate(30deg)}50%{-webkit-transform:rotate(-10deg);transform:rotate(-10deg)}70%{-webkit-transform:rotate(3deg);transform:rotate(3deg)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}@keyframes jackInTheBox{0%{opacity:0;-webkit-transform-origin:bottom;transform-origin:bottom;-webkit-transform:scale(.1)rotate(30deg);transform:scale(.1)rotate(30deg)}50%{-webkit-transform:rotate(-10deg);transform:rotate(-10deg)}70%{-webkit-transform:rotate(3deg);transform:rotate(3deg)}to{opacity:1;-webkit-transform:scale(1);transform:scale(1)}}.animate__jackInTheBox{-webkit-animation-name:jackInTheBox;animation-name:jackInTheBox}@-webkit-keyframes rollIn{0%{opacity:0;-webkit-transform:translate(-100%)rotate(-120deg);transform:translate(-100%)rotate(-120deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes rollIn{0%{opacity:0;-webkit-transform:translate(-100%)rotate(-120deg);transform:translate(-100%)rotate(-120deg)}to{opacity:1;-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__rollIn{-webkit-animation-name:rollIn;animation-name:rollIn}@-webkit-keyframes rollOut{0%{opacity:1}to{opacity:0;-webkit-transform:translate(100%)rotate(120deg);transform:translate(100%)rotate(120deg)}}@keyframes rollOut{0%{opacity:1}to{opacity:0;-webkit-transform:translate(100%)rotate(120deg);transform:translate(100%)rotate(120deg)}}.animate__rollOut{-webkit-animation-name:rollOut;animation-name:rollOut}@-webkit-keyframes zoomIn{0%{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}50%{opacity:1}}@keyframes zoomIn{0%{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}50%{opacity:1}}.animate__zoomIn{-webkit-animation-name:zoomIn;animation-name:zoomIn}@-webkit-keyframes zoomInDown{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translateY(-100px)scale3d(.1,.1,.1);transform:translateY(-100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translateY(60px);transform:scale3d(.475,.475,.475)translateY(60px)}}@keyframes zoomInDown{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translateY(-100px)scale3d(.1,.1,.1);transform:translateY(-100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translateY(60px);transform:scale3d(.475,.475,.475)translateY(60px)}}.animate__zoomInDown{-webkit-animation-name:zoomInDown;animation-name:zoomInDown}@-webkit-keyframes zoomInLeft{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translate(-100px)scale3d(.1,.1,.1);transform:translate(-100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translate(10px);transform:scale3d(.475,.475,.475)translate(10px)}}@keyframes zoomInLeft{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translate(-100px)scale3d(.1,.1,.1);transform:translate(-100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translate(10px);transform:scale3d(.475,.475,.475)translate(10px)}}.animate__zoomInLeft{-webkit-animation-name:zoomInLeft;animation-name:zoomInLeft}@-webkit-keyframes zoomInRight{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translate(100px)scale3d(.1,.1,.1);transform:translate(100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translate(-10px);transform:scale3d(.475,.475,.475)translate(-10px)}}@keyframes zoomInRight{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translate(100px)scale3d(.1,.1,.1);transform:translate(100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translate(-10px);transform:scale3d(.475,.475,.475)translate(-10px)}}.animate__zoomInRight{-webkit-animation-name:zoomInRight;animation-name:zoomInRight}@-webkit-keyframes zoomInUp{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translateY(100px)scale3d(.1,.1,.1);transform:translateY(100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translateY(-60px);transform:scale3d(.475,.475,.475)translateY(-60px)}}@keyframes zoomInUp{0%{opacity:0;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:translateY(100px)scale3d(.1,.1,.1);transform:translateY(100px)scale3d(.1,.1,.1)}60%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:scale3d(.475,.475,.475)translateY(-60px);transform:scale3d(.475,.475,.475)translateY(-60px)}}.animate__zoomInUp{-webkit-animation-name:zoomInUp;animation-name:zoomInUp}@-webkit-keyframes zoomOut{0%{opacity:1}50%{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}to{opacity:0}}@keyframes zoomOut{0%{opacity:1}50%{opacity:0;-webkit-transform:scale3d(.3,.3,.3);transform:scale3d(.3,.3,.3)}to{opacity:0}}.animate__zoomOut{-webkit-animation-name:zoomOut;animation-name:zoomOut}@-webkit-keyframes zoomOutDown{40%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:scale3d(.475,.475,.475)translateY(-60px);transform:scale3d(.475,.475,.475)translateY(-60px)}to{opacity:0;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:translateY(200px)scale3d(.1,.1,.1);transform:translateY(200px)scale3d(.1,.1,.1)}}@keyframes zoomOutDown{40%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:scale3d(.475,.475,.475)translateY(-60px);transform:scale3d(.475,.475,.475)translateY(-60px)}to{opacity:0;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:translateY(200px)scale3d(.1,.1,.1);transform:translateY(200px)scale3d(.1,.1,.1)}}.animate__zoomOutDown{-webkit-transform-origin:bottom;transform-origin:bottom;-webkit-animation-name:zoomOutDown;animation-name:zoomOutDown}@-webkit-keyframes zoomOutLeft{40%{opacity:1;-webkit-transform:scale3d(.475,.475,.475)translate(42px);transform:scale3d(.475,.475,.475)translate(42px)}to{opacity:0;-webkit-transform:matrix(.1,0,0,.1,-200,0);transform:matrix(.1,0,0,.1,-200,0)}}@keyframes zoomOutLeft{40%{opacity:1;-webkit-transform:scale3d(.475,.475,.475)translate(42px);transform:scale3d(.475,.475,.475)translate(42px)}to{opacity:0;-webkit-transform:matrix(.1,0,0,.1,-200,0);transform:matrix(.1,0,0,.1,-200,0)}}.animate__zoomOutLeft{-webkit-transform-origin:0;transform-origin:0;-webkit-animation-name:zoomOutLeft;animation-name:zoomOutLeft}@-webkit-keyframes zoomOutRight{40%{opacity:1;-webkit-transform:scale3d(.475,.475,.475)translate(-42px);transform:scale3d(.475,.475,.475)translate(-42px)}to{opacity:0;-webkit-transform:matrix(.1,0,0,.1,200,0);transform:matrix(.1,0,0,.1,200,0)}}@keyframes zoomOutRight{40%{opacity:1;-webkit-transform:scale3d(.475,.475,.475)translate(-42px);transform:scale3d(.475,.475,.475)translate(-42px)}to{opacity:0;-webkit-transform:matrix(.1,0,0,.1,200,0);transform:matrix(.1,0,0,.1,200,0)}}.animate__zoomOutRight{-webkit-transform-origin:100%;transform-origin:100%;-webkit-animation-name:zoomOutRight;animation-name:zoomOutRight}@-webkit-keyframes zoomOutUp{40%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:scale3d(.475,.475,.475)translateY(60px);transform:scale3d(.475,.475,.475)translateY(60px)}to{opacity:0;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:translateY(-200px)scale3d(.1,.1,.1);transform:translateY(-200px)scale3d(.1,.1,.1)}}@keyframes zoomOutUp{40%{opacity:1;-webkit-animation-timing-function:cubic-bezier(.55,.055,.675,.19);animation-timing-function:cubic-bezier(.55,.055,.675,.19);-webkit-transform:scale3d(.475,.475,.475)translateY(60px);transform:scale3d(.475,.475,.475)translateY(60px)}to{opacity:0;-webkit-animation-timing-function:cubic-bezier(.175,.885,.32,1);animation-timing-function:cubic-bezier(.175,.885,.32,1);-webkit-transform:translateY(-200px)scale3d(.1,.1,.1);transform:translateY(-200px)scale3d(.1,.1,.1)}}.animate__zoomOutUp{-webkit-transform-origin:bottom;transform-origin:bottom;-webkit-animation-name:zoomOutUp;animation-name:zoomOutUp}@-webkit-keyframes slideInDown{0%{visibility:visible;-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes slideInDown{0%{visibility:visible;-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__slideInDown{-webkit-animation-name:slideInDown;animation-name:slideInDown}@-webkit-keyframes slideInLeft{0%{visibility:visible;-webkit-transform:translate(-100%);transform:translate(-100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes slideInLeft{0%{visibility:visible;-webkit-transform:translate(-100%);transform:translate(-100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__slideInLeft{-webkit-animation-name:slideInLeft;animation-name:slideInLeft}@-webkit-keyframes slideInRight{0%{visibility:visible;-webkit-transform:translate(100%);transform:translate(100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes slideInRight{0%{visibility:visible;-webkit-transform:translate(100%);transform:translate(100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__slideInRight{-webkit-animation-name:slideInRight;animation-name:slideInRight}@-webkit-keyframes slideInUp{0%{visibility:visible;-webkit-transform:translateY(100%);transform:translateY(100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}@keyframes slideInUp{0%{visibility:visible;-webkit-transform:translateY(100%);transform:translateY(100%)}to{-webkit-transform:translateZ(0);transform:translateZ(0)}}.animate__slideInUp{-webkit-animation-name:slideInUp;animation-name:slideInUp}@-webkit-keyframes slideOutDown{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translateY(100%);transform:translateY(100%)}}@keyframes slideOutDown{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translateY(100%);transform:translateY(100%)}}.animate__slideOutDown{-webkit-animation-name:slideOutDown;animation-name:slideOutDown}@-webkit-keyframes slideOutLeft{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translate(-100%);transform:translate(-100%)}}@keyframes slideOutLeft{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translate(-100%);transform:translate(-100%)}}.animate__slideOutLeft{-webkit-animation-name:slideOutLeft;animation-name:slideOutLeft}@-webkit-keyframes slideOutRight{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translate(100%);transform:translate(100%)}}@keyframes slideOutRight{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translate(100%);transform:translate(100%)}}.animate__slideOutRight{-webkit-animation-name:slideOutRight;animation-name:slideOutRight}@-webkit-keyframes slideOutUp{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translateY(-100%);transform:translateY(-100%)}}@keyframes slideOutUp{0%{-webkit-transform:translateZ(0);transform:translateZ(0)}to{visibility:hidden;-webkit-transform:translateY(-100%);transform:translateY(-100%)}}.animate__slideOutUp{-webkit-animation-name:slideOutUp;animation-name:slideOutUp}code[class*=language-],pre[class*=language-]{color:#000;text-shadow:0 1px #fff;text-align:left;white-space:pre;word-spacing:normal;word-break:normal;word-wrap:normal;-moz-tab-size:4;-o-tab-size:4;tab-size:4;-webkit-hyphens:none;-moz-hyphens:none;-ms-hyphens:none;hyphens:none;background:0 0;font-family:Consolas,Monaco,Andale Mono,Ubuntu Mono,monospace;font-size:1em;line-height:1.5}pre[class*=language-]::-moz-selection,pre[class*=language-] ::-moz-selection,code[class*=language-]::-moz-selection,code[class*=language-] ::-moz-selection{text-shadow:none;background:#b3d4fc}pre[class*=language-]::selection,pre[class*=language-] ::selection,code[class*=language-]::selection,code[class*=language-] ::selection{text-shadow:none;background:#b3d4fc}@media print{code[class*=language-],pre[class*=language-]{text-shadow:none}}pre[class*=language-]{margin:.5em 0;padding:1em;overflow:auto}:not(pre)>code[class*=language-],pre[class*=language-]{background:#f5f2f0}:not(pre)>code[class*=language-]{white-space:normal;border-radius:.3em;padding:.1em}.token.comment,.token.prolog,.token.doctype,.token.cdata{color:#708090}.token.punctuation{color:#999}.token.namespace{opacity:.7}.token.property,.token.tag,.token.boolean,.token.number,.token.constant,.token.symbol,.token.deleted{color:#905}.token.selector,.token.attr-name,.token.string,.token.char,.token.builtin,.token.inserted{color:#690}.token.operator,.token.entity,.token.url,.language-css .token.string,.style .token.string{color:#9a6e3a;background:#ffffff80}.token.atrule,.token.attr-value,.token.keyword{color:#07a}.token.function,.token.class-name{color:#dd4a68}.token.regex,.token.important,.token.variable{color:#e90}.token.important,.token.bold{font-weight:700}.token.italic{font-style:italic}.token.entity{cursor:help}pre[class*=language-].line-numbers{counter-reset:linenumber;padding-left:3.8em;position:relative}pre[class*=language-].line-numbers>code{white-space:inherit;position:relative}.line-numbers .line-numbers-rows{pointer-events:none;width:3em;letter-spacing:-1px;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;border-right:1px solid #999;font-size:100%;position:absolute;top:0;left:-3.8em}.line-numbers-rows>span{counter-increment:linenumber;display:block}.line-numbers-rows>span:before{content:counter(linenumber);color:#999;text-align:right;padding-right:.8em;display:block}#vl-menu{z-index:1200;position:relative}.vlmenu,.vlmenu ul{margin:0;padding:0;list-style:none}.vlmenu>li{float:left;padding:0 20px}.vlmenu li li{position:relative}.vlmenu li>a{display:block}.vlmenu a i{padding-right:10px;font-size:10px}.vlmenu .search a i,.vlmenu a i.arrow{padding-right:0}.vlmenu>li>a>i.arrow{margin-top:3px;margin-left:10px}.vlmenu a{color:#222;text-decoration:none}.vlmenu>li>a{padding:20px 0}.vlmenu>li{padding:0 20px}.vlmenu>li>a:hover,.vlmenu>li.active>a{color:#000}.vlmenu ul{width:190px;z-index:1300;display:none;position:absolute}.vlmenu>li.menu-right>ul ul{left:-190px}.vlmenu ul a{color:#222;padding:10px 20px}.vlmenu li:hover>ul{display:block}.vlmenu ul ul{top:0;left:190px}.container-fluid .vlmenu>li.menu-right>ul,.container-fluid .vlmenu>li.menu-right>div{right:0}.vlmenu li a i.arrow{float:right;margin-top:5px}.vlmenu li.search a i.arrow{display:none}.vlmenu ul a:hover,.mega-menu ol li a:hover{background:#ffffff1a}.vlmenu li>div{padding:10px}.mega-menu ol{padding-left:0;list-style:none}.mega-menu ol li a{color:#222;padding:10px 20px}.mega-menu h1,.mega-menu h2,.mega-menu h3,.mega-menu h4,.mega-menu h5,.mega-menu h6,.mega-menu p{padding-left:20px;font-weight:400}.vlmenu .full-nav,.vlmenu .half-nav,.vlmenu .quarter-nav{z-index:1300;display:none;position:absolute}.vlmenu>li:hover>div{display:block}.vlmenu .full-nav{width:100%;left:0;right:0}.vlmenu .half-nav{width:50%;left:auto;right:auto}.vlmenu .quarter-nav{width:25%;left:auto;right:auto}.vlmenu li.menu-right .half-nav{width:50%;left:auto;right:0}.vlmenu li.menu-right .quarter-nav{width:25%;left:auto;right:0}.vlmenu li>div input{box-shadow:none;border:none;border-radius:0}.vlmenu.light-sub-menu input{border:1px solid #ddd}.vlmenu li>div input:focus,.vlmenu.light-sub-menu input:focus{box-shadow:none}.light-sub-menu .mega-menu li a span,.dark-sub-menu .mega-menu li a span{color:#bbb;display:block}.light-sub-menu .mega-menu li a:hover span,.dark-sub-menu .mega-menu li a:hover span{color:#fff}.light-sub-menu .mega-menu li a span,.light-sub-menu .mega-menu li a:hover span,.dark-sub-menu .mega-menu li a span{-webkit-transition:all .3s;-moz-transition:all .3s;transition:all .3s}.vlmenu .col1,.vlmenu .col2,.vlmenu .col3,.vlmenu .col4,.vlmenu .col5,.vlmenu .col6{float:left}.mega-menu .col1{width:100%}.mega-menu .col2{width:50%}.mega-menu .col3{width:33.33%}.mega-menu .col4{width:25%}.mega-menu .col5{width:20%}.mega-menu .col6{width:16.66%}.grid .col1,.grid .col2,.grid .col3,.grid .col4,.grid .col5,.grid .col6{margin-right:1%;padding:5px;display:inline-block}.grid.gray .col1,.grid.gray .col2,.grid.gray .col3,.grid.gray .col4,.grid.gray .col5,.grid.gray .col6{background:#ddd}.grid .mega-menu .col1{width:99%}.grid .mega-menu .col2{width:49%}.grid .mega-menu .col3{width:32.33%}.grid .mega-menu .col4{width:24%}.grid .mega-menu .col5{width:19%}.grid .mega-menu .col6{width:15.66%}.menu-row{width:100%;margin-bottom:10px;margin-left:.5%;display:inline-block}.menu-row:last-child{margin-bottom:0}.dark-sub-menu ul,.dark-sub-menu li>div{background:#222}.dark-sub-menu ul a,.dark-sub-menu li>div a,.dark-sub-menu li>div h1,.dark-sub-menu li>div h2,.dark-sub-menu li>div h3,.dark-sub-menu li>div h4,.dark-sub-menu li>div h5,.dark-sub-menu li>div h6,.dark-sub-menu li>div p{color:#fff}.light-sub-menu ul,.light-sub-menu li>div{background:#fff;box-shadow:0 0 1px #d1d1d1}.light-sub-menu ul a,.light-sub-menu li>div a,.light-sub-menu li>div h1,.light-sub-menu li>div h2,.light-sub-menu li>div h3,.light-sub-menu li>div h4,.light-sub-menu li>div h5,.light-sub-menu li>div h6,.light-sub-menu li>div p{color:#222}.light-sub-menu ul a:hover,.light-sub-menu ol li a:hover{color:#fff}.light-sub-menu ul a:hover,.light-sub-menu ol li a:hover{color:#fff;background:#222}.container header{width:100%;display:inline-block}.container header .vl-logo{margin-left:20px}.container header .nav-btn{margin-right:20px}.container header.float-menu{width:100%;margin-top:50px;display:inline-block}.container header.float-menu .vl-logo{margin-left:20px}.container header.float-menu .nav-btn{margin-right:20px}.center-menu{text-align:center}.center-menu .center-logo,.center-menu .vlmenu{display:inline-block}.center-menu .vlmenu ul,.center-menu .vlmenu li>div{text-align:left!important}.no-bg{background:0 0}.dark-menu{background:#000}.dark-menu a{color:#fff}.menu-bg{background-position:100% 100%!important;background-repeat:no-repeat!important;background-size:auto!important}.grid .mega-menu .col1 img,.grid .mega-menu .col2 img,.grid .mega-menu .col3 img,.grid .mega-menu .col4 img,.grid .mega-menu .col5 img,.grid .mega-menu .col6 img{width:100%;height:auto;margin-bottom:10px}.contact-form{padding:0 20px}.contact-form input,.contact-form textarea{width:100%;height:35px;color:#222;background:#fff;border:1px solid #ddd;margin-bottom:10px;padding-left:10px;padding-right:10px;display:inline-block}input[type=checkbox]{width:auto;height:auto;float:left;margin-right:10px}.contact-form input:focus,.contact-form textarea:focus{outline:0}.contact-form textarea{height:150px}.vl-btn{border:none;padding:10px 20px}@media (max-width:1480px){#blog-menu>ul{right:-100px}}@media (max-width:1024px){.menu,.menu ul,div.mega-menu{display:inline-block;background:#333!important}.mega-menu p{padding-left:40px!important}.vl-logo{margin-top:10px}.vlmenu,.vlmenu ul,div.mega-menu{display:inline-block;background:#333!important}.vlmenu a{color:#fff!important}.vlmenu li{z-index:1300;background:#333;position:relative}.vlmenu>li{width:100%;border-bottom:1px solid #ffffff0d;padding:0;display:block}.vlmenu>li>a,.vlmenu>li>a>i.arrow{line-height:50px}.vlmenu>li>a{padding:0 20px}.vlmenu>li a:hover{background:#111}.vlmenu>li>a>i.arrow{margin-right:0}.vlmenu ul{width:100%;border:none;display:none;position:relative;overflow:hidden}.hidden-sub{display:none!important}.visible-sub{visibility:visible;opacity:1;display:block!important}.vlmenu ul a,.vlmenu li>div,.mega-menu ol li a{padding:10px 20px}.mega-menu ol li a,.vlmenu ul a{border-top:1px solid #ffffff0d}.vlmenu li>div{padding:10px 0}.vlmenu ul ul,.vlmenu>li.menu-right>ul ul{left:0}.vlmenu li li a{padding-left:40px}.vlmenu li li li a{padding-left:60px}.vlmenu li li li li a{padding-left:80px}.vlmenu li li li li li a{padding-left:100px}.vlmenu li li li li li li a{padding-left:120px}.vlmenu .full-nav,.vlmenu .half-nav,.vlmenu .quarter-nav{display:block;position:relative}.vlmenu .col1,.vlmenu .col2,.vlmenu .col3,.vlmenu .col4,.vlmenu .col5,.vlmenu .col6,.mega-menu ol,.grid .col1,.grid .col2,.grid .col3,.grid .col4,.grid .col5,.grid .col6{width:100%!important}.grid .col1,.grid .col2,.grid .col3,.grid .col4,.grid .col5,.grid .col6{margin-bottom:10px;display:inline-block}.vlmenu li>div{border:none}.vlmenu h1,.vlmenu h2,.vlmenu h3,.vlmenu h4,.vlmenu h5,.vlmenu h6{color:#fff;margin:10px 20px}.vlmenu p{color:#fff;padding:10px 20px}.vlmenu ul a:hover,.mega-menu ol li a:hover{color:#fff;background:#111}.mega-menu ol li a{margin-bottom:0}.wrapper,.vlmenu .half-nav,.vlmenu .quarter-nav,.vlmenu li.menu-right .half-nav,.vlmenu li.menu-right .quarter-nav{width:100%}.vlmenu{width:100%;display:none}.light-sub-menu ul a,.light-sub-menu li>div a,.light-sub-menu li>div h1,.light-sub-menu li>div h2,.light-sub-menu li>div h3,.light-sub-menu li>div h4,.light-sub-menu li>div h5,.light-sub-menu li>div h6,.light-sub-menu li>div p,.light-sub-menu li>div span{color:#fff}.light-sub-menu ul,.light-sub-menu li>div{box-shadow:none}.vlmenu ul,.vlmenu li>div{top:auto}.vlmenu>li>a{height:53px;border-radius:0;border:none!important}.vlmenu>li,.menu-row{margin:0}.center-menu .vlmenu ul,.center-menu .vlmenu li>div{top:0}.center-menu{text-align:left}.center-menu .vlmenu{display:none}.nav-btn{float:right;cursor:pointer;margin-top:10px;margin-bottom:10px;margin-right:0;display:block}.nav-btn .bars{vertical-align:bottom;height:2px;width:30px;background-color:#333;display:inline-block;position:relative;top:-5px}.nav-btn .bars:before,.nav-btn .bars:after{content:"";width:30px;height:2px;background-color:#333;display:inline-block;position:absolute;top:-8px}.nav-btn .bars:after{top:8px}#blog-menu>ul{right:0}}.introjs-overlay{box-sizing:content-box;z-index:999999;opacity:0;background-color:#000;background:-moz-radial-gradient( center,ellipse farthest-corner,#0006 0,#000000e6 100% );background:-webkit-gradient( radial,center center,0px,center center,100%,color-stop(0%,#0006),color-stop(100%,#000000e6));background:-webkit-radial-gradient( center,ellipse farthest-corner,#0006 0,#000000e6 100% );background:-o-radial-gradient( center,ellipse farthest-corner,#0006 0,#000000e6 100% );background:-ms-radial-gradient( center,ellipse farthest-corner,#0006 0,#000000e6 100% );background:radial-gradient( center,ellipse farthest-corner,#0006 0,#000000e6 100% );filter:"progid:DXImageTransform.Microsoft.gradient(startColorstr='#66000000',endColorstr='#e6000000',GradientType=1)";-ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=50)";filter:alpha(opacity=50);-o-transition:all .3s ease-out;-webkit-transition:all .3s ease-out;-moz-transition:all .3s ease-out;-ms-transition:all .3s ease-out;transition:all .3s ease-out;position:absolute}.introjs-fixParent{z-index:auto!important;opacity:1!important;-webkit-transform:none!important;-moz-transform:none!important;-ms-transform:none!important;-o-transform:none!important;transform:none!important}.introjs-showElement,tr.introjs-showElement>td,tr.introjs-showElement>th{z-index:9999999!important}.introjs-disableInteraction{opacity:0;filter:alpha(opacity=0);background-color:#fff;position:absolute;z-index:99999999!important}.introjs-relativePosition,tr.introjs-showElement>td,tr.introjs-showElement>th{position:relative}.introjs-helperLayer{box-sizing:content-box;z-index:9999998;-o-transition:all .3s ease-out;background-color:#ffffffe6;border:1px solid #00000080;border-radius:4px;-webkit-transition:all .3s ease-out;-moz-transition:all .3s ease-out;-ms-transition:all .3s ease-out;transition:all .3s ease-out;position:absolute;box-shadow:0 2px 15px #0006}.introjs-tooltipReferenceLayer{box-sizing:content-box;visibility:hidden;z-index:100000000;-o-transition:all .3s ease-out;background-color:#0000;-webkit-transition:all .3s ease-out;-moz-transition:all .3s ease-out;-ms-transition:all .3s ease-out;transition:all .3s ease-out;position:absolute}.introjs-helperLayer *,.introjs-helperLayer :before,.introjs-helperLayer :after{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-ms-box-sizing:content-box;-o-box-sizing:content-box}.introjs-helperNumberLayer{box-sizing:content-box;visibility:visible;color:#fff;text-align:center;text-shadow:1px 1px 1px #0000004d;background:-moz-linear-gradient(#cf0404 0%,#ff3019 100%);background:-ms-linear-gradient(top,#ff3019 0%,#cf0404 100%);width:20px;height:20px;filter:"progid:DXImageTransform.Microsoft.gradient(startColorstr='#ff3019', endColorstr='#cf0404', GradientType=0)";filter:"progid:DXImageTransform.Microsoft.Shadow(direction=135, strength=2, color=ff0000)";background:-moz-linear-gradient(#cf0404 0%,#ff3019 100%);background:-webkit-linear-gradient(#cf0404 0%,#ff3019 100%);background:-webkit-gradient(linear,0 0,0 100%,from(#ff3019),to(#cf0404));background:-moz-linear-gradient(#cf0404 0%,#ff3019 100%);background:-o-linear-gradient(#cf0404 0%,#ff3019 100%);background:linear-gradient(#ff3019 0%,#cf0404 100%);border:3px solid #fff;border-radius:50%;padding:2px;font-family:Arial,verdana,tahoma;font-size:13px;font-weight:700;line-height:20px;position:absolute;top:-16px;left:-16px;box-shadow:0 2px 5px #0006;z-index:2147483647!important}.introjs-arrow{content:"";border:5px solid #0000;position:absolute}.introjs-arrow.top{border-bottom-color:#fff;top:-10px}.introjs-arrow.top-right{border-bottom-color:#fff;top:-10px;right:10px}.introjs-arrow.top-middle{border-bottom-color:#fff;margin-left:-5px;top:-10px;left:50%}.introjs-arrow.right{border-left-color:#fff;top:10px;right:-10px}.introjs-arrow.right-bottom{border-left-color:#fff;bottom:10px;right:-10px}.introjs-arrow.bottom{border-top-color:#fff;bottom:-10px}.introjs-arrow.bottom-right{border-top-color:#fff;bottom:-10px;right:10px}.introjs-arrow.bottom-middle{border-top-color:#fff;margin-left:-5px;bottom:-10px;left:50%}.introjs-arrow.left{border-right-color:#fff;top:10px;left:-10px}.introjs-arrow.left-bottom{border-right-color:#fff;bottom:10px;left:-10px}.introjs-tooltip{box-sizing:content-box;visibility:visible;min-width:200px;max-width:300px;-o-transition:opacity .1s ease-out;background-color:#fff;border-radius:3px;padding:10px;-webkit-transition:opacity .1s ease-out;-moz-transition:opacity .1s ease-out;-ms-transition:opacity .1s ease-out;transition:opacity .1s ease-out;position:absolute;box-shadow:0 1px 10px #0006}.introjs-tooltipbuttons{text-align:right;white-space:nowrap}.introjs-button{box-sizing:content-box;text-shadow:1px 1px #fff;color:#333;white-space:nowrap;cursor:pointer;background-color:#ececec;background-image:linear-gradient(#f4f4f4,#ececec);-webkit-background-clip:padding;-moz-background-clip:padding;-o-background-clip:padding-box;zoom:1;background-image:-webkit-gradient(linear,0 0,0 100%,from(#f4f4f4),to(#ececec));background-image:-moz-linear-gradient(#f4f4f4,#ececec);background-image:-o-linear-gradient(#f4f4f4,#ececec);border:1px solid #d4d4d4;-webkit-border-radius:.2em;-moz-border-radius:.2em;border-radius:.2em;outline:none;margin:10px 0 0;padding:.3em .8em;font:11px sans-serif;text-decoration:none;display:inline;position:relative;overflow:visible}.introjs-button:hover{border-color:#bcbcbc;text-decoration:none;box-shadow:0 1px 1px #e3e3e3}.introjs-button:focus,.introjs-button:active{background-image:-webkit-gradient(linear,0 0,0 100%,from(#ececec),to(#f4f4f4));background-image:-moz-linear-gradient(#ececec,#f4f4f4);background-image:-o-linear-gradient(#ececec,#f4f4f4);background-image:linear-gradient(#ececec,#f4f4f4)}.introjs-button::-moz-focus-inner{border:0;padding:0}.introjs-skipbutton{box-sizing:content-box;color:#7a7a7a;margin-right:5px}.introjs-prevbutton{border-right:none;-webkit-border-radius:.2em 0 0 .2em;-moz-border-radius:.2em 0 0 .2em;border-radius:.2em 0 0 .2em}.introjs-prevbutton.introjs-fullbutton{border:1px solid #d4d4d4;-webkit-border-radius:.2em;-moz-border-radius:.2em;border-radius:.2em}.introjs-nextbutton{-webkit-border-radius:0 .2em .2em 0;-moz-border-radius:0 .2em .2em 0;border-radius:0 .2em .2em 0}.introjs-nextbutton.introjs-fullbutton{-webkit-border-radius:.2em;-moz-border-radius:.2em;border-radius:.2em}.introjs-disabled,.introjs-disabled:hover,.introjs-disabled:focus{color:#9a9a9a;box-shadow:none;cursor:default;background-color:#f4f4f4;background-image:none;border-color:#d4d4d4;text-decoration:none}.introjs-hidden{display:none}.introjs-bullets{text-align:center}.introjs-bullets ul{box-sizing:content-box;clear:both;margin:15px auto 0;padding:0;display:inline-block}.introjs-bullets ul li{box-sizing:content-box;float:left;margin:0 2px;list-style:none}.introjs-bullets ul li a{box-sizing:content-box;width:6px;height:6px;cursor:pointer;background:#ccc;-webkit-border-radius:10px;-moz-border-radius:10px;border-radius:10px;text-decoration:none;display:block}.introjs-bullets ul li a:hover{background:#999}.introjs-bullets ul li a.active{background:#999}.introjs-progress{box-sizing:content-box;height:10px;background-color:#ecf0f1;border-radius:4px;margin:10px 0 5px;overflow:hidden}.introjs-progressbar{box-sizing:content-box;float:left;width:0%;height:100%;text-align:center;background-color:#08c;font-size:10px;line-height:10px}.introjsFloatingElement{height:0;width:0;position:absolute;top:50%;left:50%}.introjs-fixedTooltip{position:fixed}.introjs-hint{box-sizing:content-box;width:20px;height:15px;cursor:pointer;background:0 0;position:absolute}.introjs-hint:focus{border:0;outline:0}.introjs-hidehint{display:none}.introjs-fixedhint{position:fixed}.introjs-hint:hover>.introjs-hint-pulse{border:5px solid #3c3c3c91}.introjs-hint-pulse{box-sizing:content-box;width:10px;height:10px;z-index:10;-o-transition:all .2s ease-out;background-color:#8888883d;border:5px solid #3c3c3c45;-webkit-border-radius:30px;-moz-border-radius:30px;border-radius:30px;-webkit-transition:all .2s ease-out;-moz-transition:all .2s ease-out;-ms-transition:all .2s ease-out;transition:all .2s ease-out;position:absolute}.introjs-hint-no-anim .introjs-hint-dot{-webkit-animation:none;-moz-animation:none;animation:none}.introjs-hint-dot{box-sizing:content-box;height:50px;width:50px;z-index:1;opacity:0;background:0 0;border:10px solid #9292925c;-webkit-border-radius:60px;-moz-border-radius:60px;border-radius:60px;-webkit-animation:introjspulse 3s ease-out infinite;-moz-animation:introjspulse 3s ease-out infinite;animation:introjspulse 3s ease-out infinite;position:absolute;top:-25px;left:-25px}@-webkit-keyframes introjspulse{0%{opacity:0;-webkit-transform:scale(0)}25%{opacity:.1;-webkit-transform:scale(0)}50%{opacity:.3;-webkit-transform:scale(.1)}75%{opacity:.5;-webkit-transform:scale(.5)}to{opacity:0;-webkit-transform:scale(1)}}@-moz-keyframes introjspulse{0%{opacity:0;-moz-transform:scale(0)}25%{opacity:.1;-moz-transform:scale(0)}50%{opacity:.3;-moz-transform:scale(.1)}75%{opacity:.5;-moz-transform:scale(.5)}to{opacity:0;-moz-transform:scale(1)}}@keyframes introjspulse{0%{opacity:0;transform:scale(0)}25%{opacity:.1;transform:scale(0)}50%{opacity:.3;transform:scale(.1)}75%{opacity:.5;transform:scale(.5)}to{opacity:0;transform:scale(1)}}@font-face{font-family:iconfont;src:url(iconfont.960c72b2.eot#iefix)format("embedded-opentype"),url(iconfont.a07d77e0.woff2)format("woff2"),url(iconfont.b2a06094.woff)format("woff")}.icon{line-height:1}.icon:before{vertical-align:top;font-style:normal;font-family:iconfont!important;font-weight:400!important}.icon-close-fullscreen:before{content:""}.icon-open-fullscreen:before{content:""}.icon-output:before{content:""}.icon-coverage:before{content:""}.icon-more:before{content:""}.icon-copy:before{content:""}body{-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;-ms-text-size-adjust:100%;font-family:Nunito,sans-serif;font-size:16px;font-weight:400;line-height:1.6;overflow-x:hidden}html{scroll-behavior:smooth}a{color:#09c;word-break:break-word;text-decoration:none;transition:all .3s}a:hover{color:#069;text-decoration:none}button,a,.btn{outline:0;transition:all .3s}button:focus,a:focus,.btn:focus{outline:none;text-decoration:none;box-shadow:none!important}img{max-width:100%;height:auto}h1,.h1,h2,.h2,h3,.h3,h4,.h4,h5,.h5,h6,.h6{font-family:Nunito,sans-serif;font-weight:700;transition:all .3s}h1 a,.h1 a,h2 a,.h2 a,h3 a,.h3 a,h4 a,.h4 a,h5 a,.h5 a,h6 a,.h6 a{color:#242424}h1 a:hover,.h1 a:hover,h2 a:hover,.h2 a:hover,h3 a:hover,.h3 a:hover,h4 a:hover,.h4 a:hover,h5 a:hover,.h5 a:hover,h6 a:hover,.h6 a:hover{color:#09c;text-decoration:none}@media (min-width:576px){h1,.h1,h2,.h2,h3,.h3,h4,.h4,h5,.h5,h6,.h6{margin-top:-64px;padding-top:64px}}h1,.h1{font-size:32px}h2,.h2{font-size:28px}h3,.h3{font-size:24px}h4,.h4{font-size:20px}h5,.h5{font-size:18px}h6,.h6{font-size:16px}.section-gap{padding-top:3rem;padding-bottom:3rem;position:relative}@media (max-width:991px){h1,.h1{font-size:32px}h2,.h2{font-size:28px}h3,.h3{font-size:24px}h4,.h4{font-size:20px}h5,.h5{font-size:18px}h6,.h6{font-size:16px}.app-header+.section-gap{padding-top:5rem}}@media (max-width:767px){h1,.h1{font-size:28px}h2,.h2{font-size:26px}h3,.h3{font-size:24px}h4,.h4{font-size:20px}h5,.h5{font-size:18px}h6,.h6{font-size:16px}}@media (max-width:667px){h1,.h1{font-size:26px}h2,.h2{font-size:24px}h3,.h3{font-size:22px}h4,.h4{font-size:20px}h5,.h5{font-size:18px}h6,.h6{font-size:16px}}@media (min-width:769px){.section-gap{padding-top:7.5rem;padding-bottom:7.5rem}}.vlmenu>li>a:hover,.vlmenu>li.active>a{color:#09c}.hamburger{cursor:pointer;font:inherit;color:inherit;text-transform:none;background-color:#0000;border:0;margin:10px 0 0;padding:0;transition-property:opacity,filter;transition-duration:.15s;transition-timing-function:linear;display:inline-block;overflow:visible}.hamburger:hover{opacity:.7}.hamburger.is-active:hover{opacity:.7}.hamburger.is-active .hamburger-inner,.hamburger.is-active .hamburger-inner:before,.hamburger.is-active .hamburger-inner:after{background-color:#000}@media screen and (prefers-color-scheme:dark){.hamburger.is-active .hamburger-inner,.hamburger.is-active .hamburger-inner:before,.hamburger.is-active .hamburger-inner:after{background-color:#fff}}.hamburger-box{width:20px;height:17px;display:inline-block;position:relative}.hamburger-inner{margin-top:-2px;display:block;top:50%}.hamburger-inner,.hamburger-inner:before,.hamburger-inner:after{width:20px;height:2px;background-color:#000;border-radius:4px;transition-property:transform;transition-duration:.15s;transition-timing-function:ease;position:absolute}@media screen and (prefers-color-scheme:dark){.hamburger-inner,.hamburger-inner:before,.hamburger-inner:after{background-color:#fff}}.hamburger-inner:before,.hamburger-inner:after{content:"";display:block}.hamburger-inner:before{top:-10px}.hamburger-inner:after{bottom:-10px}.hamburger--slider .hamburger-inner{top:2px}.hamburger--slider .hamburger-inner:before{width:14px;transition-property:transform,opacity;transition-duration:.15s;transition-timing-function:ease;top:7px}.hamburger--slider .hamburger-inner:after{top:14px}.hamburger--slider.is-active .hamburger-inner{transform:translateY(7px)rotate(45deg)}.hamburger--slider.is-active .hamburger-inner:before{opacity:0;transform:rotate(-45deg)translate(-5.71429px,-6px)}.hamburger--slider.is-active .hamburger-inner:after{transform:translateY(-14px)rotate(-90deg)}.vl-accordion{font-family:Nunito,sans-serif!important}@media (max-width:1024px){.vlmenu{margin-top:10px}.app-header{width:100%;z-index:10;background:#fff;padding:.3em 0;position:absolute;top:auto}.app-header .logo-dark{height:50px;display:block}.app-header .logo-light{display:none}}@media screen and (max-width:1024px) and (prefers-color-scheme:dark){.app-header{background:#000}}@media (max-width:1024px){.app-header.transparent-header .logo-light{display:none}.header-links.navbar{position:absolute;right:15px}.vlmenu .vl-accordion .fa-angle-down{display:none}.vlmenu li li a{font-family:Nunito,sans-serif}.vlmenu>li>a{cursor:pointer}.mega-menu h3{font-size:14px;font-weight:700}.vlmenu .vl-accordion .fa-angle-down,.nav-extra-link{display:none}}@media (max-width:767px){.header-links.navbar{right:25px}}@media (min-width:1025px){.app-header{width:100%;z-index:10;background:#fff;transition:all .1s;position:absolute;top:auto}.app-header .navbar-brand{margin-top:0}.app-header .logo-light{display:none}.app-header.transparent-header .logo-light{display:block}.app-header.sticky-nav{z-index:1030;background:#fff;padding:0;animation:smoothScroll .3s forwards;position:fixed;top:0;bottom:auto;box-shadow:0 1px 10px #97a4af26}@keyframes smoothScroll{0%{transform:translateY(-100px)}to{transform:translateY(0)}}.transparent-header{background:0 0;padding-top:2rem;top:auto}.transparent-header .vlmenu>li>a{color:#fff}.transparent-header .vlmenu>li>a:hover{opacity:.7}.transparent-header .logo-dark{height:70px;display:none}.transparent-header.sticky-nav{background:#fff;top:0;box-shadow:0 1px 10px #97a4af26}.transparent-header.sticky-nav .vlmenu>li>a{color:#242424}.transparent-header.sticky-nav .vlmenu>li>a:hover{color:#09c}.transparent-header.sticky-nav .logo-light{display:none}.transparent-header.sticky-nav .logo-dark{height:50px;display:block}}@media screen and (min-width:1025px) and (prefers-color-scheme:dark){.transparent-header.sticky-nav{background:#000;box-shadow:0 2px 4px -1px #0003,0 4px 5px #00000024,0 1px 10px #0000001f}.transparent-header.sticky-nav .vlmenu>li>a{color:#fff}}@media (min-width:1025px){.transparent-header-dark-nav .vlmenu>li>a{color:#242424}.transparent-header-dark-nav .vlmenu>li>a:hover{color:#09c}}@media screen and (min-width:1025px) and (prefers-color-scheme:dark){.transparent-header-dark-nav .vlmenu>li>a{color:#fff}}@media (min-width:1025px){.transparent-header-dark-nav .logo-dark{display:block}.transparent-header-dark-nav .logo-light{display:none!important}.vlmenu>li>a>i.arrow{display:none;position:relative;top:2px}.light-sub-menu ul,.light-sub-menu li>div{box-shadow:0 1px 15px 1px #45414e1a}}@media screen and (min-width:1025px) and (prefers-color-scheme:dark){.light-sub-menu ul,.light-sub-menu li>div{color:#fff;background-color:#141414}}@media (min-width:1025px){.vlmenu ul{width:250px;padding-top:15px;padding-bottom:15px}.vlmenu ul a{padding:12px 30px;font-size:14px}.vlmenu ul ul{left:251px}.vlmenu li>div{padding:30px}.vlmenu li>div p{font-size:12px}.vlmenu>li.menu-right>ul ul{left:-251px}.vlmenu h3{margin-bottom:20px;font-size:14px;font-weight:700}.vlmenu .mega-menu ol li a{border-radius:6px;padding:12px 20px;font-size:14px}.vlmenu>li{padding:0 10px}}@media screen and (min-width:1025px) and (prefers-color-scheme:dark){.light-sub-menu ul a,.light-sub-menu ol li a{color:#fff}}@media (min-width:1025px){.light-sub-menu ul a:hover,.light-sub-menu ol li a:hover{color:#fff;background:#09c}}@media screen and (min-width:1025px) and (prefers-color-scheme:dark){.light-sub-menu ul a:hover,.light-sub-menu ol li a:hover{color:#fff}}@media (min-width:1025px){.vlmenu>li>a{cursor:pointer;padding:19.5px 0}.nav-btn{display:none}.vlmenu .half-nav,.vlmenu .full-nav,.vlmenu ul{border-radius:6px}.nav-extra-link .mt-3{margin-top:.85rem!important}}.overlay-nav{z-index:6;position:relative;top:1.7rem}.toggle-wrap{height:16px;width:20px;cursor:pointer;z-index:100;-webkit-transition:opacity .25s;transition:opacity .25s;position:absolute;top:3%;right:0}.toggle-wrap.active .top{background:#fff;-webkit-transform:translateY(7px)rotate(45deg);transform:translateY(7px)rotate(45deg)}.toggle-wrap.active .middle{opacity:0;background:#fff}.toggle-wrap.active .bottom{background:#fff;-webkit-transform:translateY(-7px)translate(0)rotate(-45deg);transform:translateY(-7px)translate(0)rotate(-45deg)}.toggle-wrap span{height:2px;width:100%;cursor:pointer;background:#242424;border:none;-webkit-transition:all .35s;transition:all .35s;position:absolute;top:0;left:0}.toggle-wrap span:nth-of-type(2){width:60%;top:7px}.toggle-wrap span:nth-of-type(3){top:14px}.overlay{width:100%;height:0;opacity:0;visibility:hidden;background:#242424;-webkit-transition:opacity .35s,visibility .35s,height .35s;transition:opacity .35s,visibility .35s,height .35s;position:fixed;top:0;left:0;overflow:hidden}.overlay.open{opacity:1;visibility:visible;height:100%}.overlay.open li{-webkit-animation:fadeInDown .5s .35s forwards;animation:fadeInDown .5s .35s forwards}.overlay.open li:nth-of-type(2){-webkit-animation-delay:.4s;animation-delay:.4s}.overlay.open li:nth-of-type(3){-webkit-animation-delay:.45s;animation-delay:.45s}.overlay.open li:nth-of-type(4){-webkit-animation-delay:.5s;animation-delay:.5s}.overlay.open li:nth-of-type(5){-webkit-animation-delay:.55s;animation-delay:.55s}.overlay.open li:nth-of-type(6){-webkit-animation-delay:.6s;animation-delay:.6s}.overlay.open li:nth-of-type(7){-webkit-animation-delay:.65s;animation-delay:.65s}.overlay.open li:nth-of-type(8){-webkit-animation-delay:.7s;animation-delay:.7s}.overlay nav{height:60%;text-align:center;font-size:1.5rem;position:relative;top:45%;-webkit-transform:translateY(-50%);transform:translateY(-50%)}.overlay ul{height:100%;margin:0 auto;padding:0;list-style:none;display:inline-block;position:relative}.overlay ul li{height:10%;min-height:50px;opacity:0;display:block;position:relative}.overlay ul li a{color:#fff;padding:0 0 10px;text-decoration:none;display:block;position:relative;overflow:hidden}.overlay ul li a:hover{color:#09c}.overlay ul li a:hover:after,.overlay ul li a:focus:after,.overlay ul li a:active:after{width:100%}.overlay ul li a:after{content:"";width:0%;height:1px;background:#09c;-webkit-transition:all .35s;transition:all .35s;position:absolute;bottom:5px;left:50%;-webkit-transform:translate(-50%);transform:translate(-50%)}.overlay-nav-social-link a{color:#8c8c8c;opacity:0;margin:0 .8rem;font-size:18px}.overlay-nav-social-link a:hover{color:#09c}.overlay-nav-social-link.open a{-webkit-animation:fadeInDown .6s .8s forwards;animation:fadeInDown .6s .8s forwards}@-webkit-keyframes fadeInDown{0%{opacity:0;-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{opacity:1;-webkit-transform:translate(0,0);transform:translate(0,0)}}@keyframes fadeInDown{0%{opacity:0;-webkit-transform:translateY(-100%);transform:translateY(-100%)}to{opacity:1;-webkit-transform:translate(0,0);transform:translate(0,0)}}.fadeInDown{-webkit-animation-name:fadeInDown;animation-name:fadeInDown}.app-footer{border-top:1px solid #e8e8e8;padding:3rem 0;font-family:Arial,Helvetica,sans-serif}.app-footer .footer-link{margin-bottom:.5rem;padding:0}.app-footer .footer-link li{margin-bottom:.5rem;margin-right:15px;display:inline-block}.app-footer .footer-link li a{text-transform:uppercase;color:#8c8c8c;font-size:12px}.app-footer .footer-link li a:hover{color:#242424;text-decoration:none}.app-footer .footer-link li:last-child{margin-right:0}.app-footer .social-links li a{font-size:16px}.app-footer .copyright{color:#8c8c8c;margin:0;font-size:14px}@media screen and (prefers-color-scheme:dark){.app-footer{border-color:#414141}}.app-footer.bg-dark{color:#fff;padding:4rem 0}.app-footer.bg-dark .border-right{border-right:1px solid #616161!important}.app-footer.bg-dark .border-left{border-left:1px solid #616161!important}.app-footer.bg-dark .border-top{border-top:1px solid #616161!important}.app-footer.bg-dark .border-bottom{border-bottom:1px solid #616161!important}.app-secondary-footer{background:#171717;padding:2rem 0}.two-col-link li{width:50%;float:left;box-sizing:border-box;margin-right:0!important}.instagram-feed a{width:75px;height:75px;margin:0 .3rem .2rem 0;display:inline-block;overflow:hidden}.instagram-feed a img{width:100%;height:100%}.social-media-list{padding:0;list-style:none}.social-media-list a{text-transform:capitalize;color:#242424;margin-bottom:.5rem;font-size:18px;font-weight:700;display:inline-block}.social-media-list a:hover{color:#09c}.go-up-link i{font-weight:700}.go-up-link:hover{text-decoration:none}@media (max-width:767px){.app-footer .border-right,.app-footer.bg-dark .border-right{border-right:none!important}.app-footer,.app-footer.bg-dark{padding:2rem 0}.social-media-list a{font-size:14px}.footer-logo{max-height:32px}}img.footer-icon{width:28px;height:28px;margin:0}@media screen and (prefers-color-scheme:dark){code[class*=language-],pre[class*=language-]{color:#c5c8c6;text-shadow:0 1px #0000004d;direction:ltr;text-align:left;white-space:pre;word-spacing:normal;word-break:normal;-moz-tab-size:4;-o-tab-size:4;tab-size:4;-webkit-hyphens:none;-moz-hyphens:none;-ms-hyphens:none;hyphens:none;font-family:Inconsolata,Monaco,Consolas,Courier New,Courier,monospace;line-height:1.5}pre[class*=language-]{border-radius:.3em;margin:.5em 0;padding:1em;overflow:auto}:not(pre)>code[class*=language-],pre[class*=language-]{background:#1d1f21}:not(pre)>code[class*=language-]{border-radius:.3em;padding:.1em}.token.comment,.token.prolog,.token.doctype,.token.cdata{color:#7c7c7c}.token.punctuation{color:#c5c8c6}.namespace{opacity:.7}.token.property,.token.keyword,.token.tag{color:#96cbfe}.token.class-name{color:#ffffb6;text-decoration:underline}.token.boolean,.token.constant{color:#9c9}.token.symbol,.token.deleted{color:#f92672}.token.number{color:#ff73fd}.token.selector,.token.attr-name,.token.string,.token.char,.token.builtin,.token.inserted{color:#a8ff60}.token.variable{color:#c6c5fe}.token.operator{color:#ededed;background-color:inherit}.token.entity{color:#ffffb6;cursor:help}.token.url{color:#96cbfe}.language-css .token.string,.style .token.string{color:#87c38a}.token.atrule,.token.attr-value{color:#f9ee98}.token.function{color:#dad085}.token.regex{color:#e9c062}.token.important{color:#fd971f}.token.important,.token.bold{font-weight:700}.token.italic{font-style:italic}}.hero-img{background-position:50%;background-repeat:no-repeat;background-size:cover}.hero-img,.bg-overlay,.bg-overlay:before,.bg-theme-overlay,.bg-theme-overlay:before,.bg-navy-overlay,.bg-navy-overlay:before,.bg-gradient-overlay,.bg-gradient-overlay:before{position:absolute;inset:0}.bg-overlay:before{content:"";background-color:#242424}.bg-theme-overlay:before{content:"";background:#09c}.bg-navy-overlay:before{content:"";background:#1d2b40}.bg-gradient-overlay:before{content:"";background-image:linear-gradient(90deg,#09c 0%,#7431ff 100%)}[data-overlay="0"]:before{opacity:0}[data-overlay="1"]:before{opacity:.1}[data-overlay="2"]:before{opacity:.2}[data-overlay="3"]:before{opacity:.3}[data-overlay="4"]:before{opacity:.4}[data-overlay="5"]:before{opacity:.5}[data-overlay="6"]:before{opacity:.6}[data-overlay="7"]:before{opacity:.7}[data-overlay="8"]:before{opacity:.8}[data-overlay="9"]:before{opacity:.9}@media (max-width:768px){.section-top{padding-top:5rem}.hero-avatar-bottom{position:relative;bottom:-3rem}.scroll-down{bottom:10px;left:0;right:0}.scroll-down span{color:#09c;display:block}.scroll-down-circle{display:none}}@media (min-width:769px){.section-full>.section-full-exception,.section-full>.container:not(#homepage-container)>.row{min-height:calc(100vh - 20.8125rem)}.section-full .container>.row:before{min-height:inherit;content:""}.section-top{padding-top:13.3125rem}.scroll-down{bottom:50px;left:0;right:0}.scroll-down span{color:#09c;display:block}.scroll-down-circle{width:80px;height:80px;background:#fff;border-radius:50%;line-height:80px;position:absolute;bottom:-100px;left:50%;transform:translate(-50%);box-shadow:0 .2rem .8rem #24242426}}.btn{text-transform:uppercase;white-space:nowrap;padding:.75rem 2rem;font-size:11px;font-weight:700}.btn.btn-sm{padding:.485rem 1.2rem;font-size:10px;font-weight:700;line-height:1.6}.btn.btn-lg{padding:.965rem 2rem}.btn-pill{border-radius:5rem}.btn-theme{background:#09c;border:2px solid #09c;color:#fff!important}.btn-theme:hover{color:#fff;background:#069;border:2px solid #069}.btn-rv-blue{background:#09c;border:2px solid #09c;color:#fff!important}.btn-rv-blue:hover{color:#fff;background:#069;border:2px solid #069}.btn-outline{cursor:pointer;color:#242424;background:#fff;border:2px solid #e8e8e8;margin-left:2em}.btn-outline:hover{background:#242424;border-color:#242424;color:#fff!important}@media screen and (prefers-color-scheme:dark){.btn-outline{color:#fff;background:#000;border-color:#e8e8e8}.btn-outline:hover{border-color:#777}}.btn-outline-dark{color:#242424;background:0 0;border:2px solid #242424}.btn-outline-dark:hover{color:#fff;background:#242424;border-color:#242424}.btn-outline-light{color:#fff;background:0 0;border:2px solid #fff}.btn-outline-light:hover{color:#242424;background:#fff;border-color:#fff}.btn-solid-light{color:#242424;background:#fff;border:2px solid #fff}.btn-solid-light:hover{color:#fff;background:#09c;border-color:#09c}.btn-solid-dark{color:#fff;background:#242424;border:2px solid #242424}.btn-solid-dark:hover{color:#fff;background:#09c;border-color:#09c}.video-btn .video-play-icon,.video-btn span{display:inline-block}.video-btn .video-play-icon{width:46px;height:46px;text-align:center;color:#242424;cursor:pointer;background:#fff;border-radius:50%;line-height:46px;box-shadow:0 3px 6px #0000000d}.video-btn .video-play-icon i{font-size:12px;position:relative;top:0;left:2px}.video-btn .video-play-icon:hover i{color:#09c}.video-btn span{text-transform:uppercase;font-size:11px;font-weight:700;position:relative;left:10px}.video-play-btn-align-center{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%)}.btn-read-more{display:inline-block;position:relative}.btn-read-more:hover{text-decoration:none}.btn-read-more:hover:after{right:-30px}@media (max-width:767px){.btn.btn-sm{padding:.4rem 1rem}.btn{padding:.5rem 1.3rem}.btn.btn-lg{padding:.7rem 1.4rem}}.accordion .card{border-color:#e8e8e8}.accordion .card p{color:#8c8c8c}.accordion .card-header{border-color:#e8e8e8;padding:0}.accordion .card-header h6{margin-bottom:0;font-size:16px;font-weight:400}.accordion .card-header a{cursor:pointer;color:#09c;background:#fff;border-radius:4px 4px 0 0;padding:1.2rem 1.5rem;display:block;position:relative}.accordion .card-header a:hover{color:#09c}.accordion .card-header .collapsed{color:#242424}.accordion .card-header .collapsed:after{content:""}.accordion .accordion-list{list-style:none}.accordion .accordion-list li{margin-bottom:.5rem}.accordion .accordion-list li a{color:#8c8c8c}.accordion .accordion-list li a i{font-size:14px}.accordion .accordion-list li a:hover{color:#09c;text-decoration:none}.accordion.accordion-style-1 .card-header a{color:#09c;background:#fff}.accordion.accordion-style-1 .card-header a:hover{color:#09c}.accordion.accordion-style-1 .card-header a:hover:after{color:#fff;background:#09c;border:1px solid #09c;transition:all .3s}.accordion.accordion-style-1 .card-header .collapsed{color:#242424}.accordion.accordion-style-1 .card-header .collapsed:after{content:"";color:#8c8c8c;background:#fff;border:1px solid #ccc}.accordion.accordion-style-2 .card{border-radius:4px;margin-bottom:10px}.accordion.accordion-style-2 .card .card-header{background:0 0;border:none;margin-bottom:0}.accordion.accordion-style-2 .card .card-header a:after{content:"";font-family:fontawesome;font-size:14px;position:absolute;top:35%;right:20px}.accordion.accordion-style-2 .card .card-header a.collapsed{border-radius:4px;position:relative}.accordion.accordion-style-2 .card .card-header a.collapsed:after{content:""}.accordion.accordion-style-2 .card:not(:first-of-type):not(:last-of-type){border-radius:4px}.accordion.accordion-style-2 .card:first-of-type,.accordion.accordion-style-2 .card:not(:first-of-type):not(:last-of-type){border-bottom:1px solid #e8e8e8}.accordion.accordion-style-3 .card,.accordion.accordion-style-3 .card-header,.accordion.accordion-style-3 .card-header a{background:0 0;border:none}.accordion.accordion-style-3 .card-header a{color:#09c;padding:1.2rem 0 1.2rem 4rem}.accordion.accordion-style-3 .card-header a:before{width:40px;height:40px;text-align:center;color:#fff;content:"";background:#09c;border-radius:50%;font-family:fontawesome;font-size:14px;line-height:40px;position:absolute;top:8px;left:5px}.accordion.accordion-style-3 .card-header a:after{content:""}.accordion.accordion-style-3 .card-header .collapsed{color:#242424}.accordion.accordion-style-3 .card-header .collapsed:before{content:"";width:40px;height:40px;text-align:center;color:#242424;background:#fff;border:1px solid #f5f5f5;border-radius:50%;line-height:38px;box-shadow:0 3px 6px #0000000d}.accordion.accordion-style-3 .card-body{padding:1.25rem 0 1.25rem 4rem}.accordion.accordion-style-4 .card{border-radius:4px;margin-bottom:10px}.accordion.accordion-style-4 .card .card-header{background:0 0;border:none;margin-bottom:0;position:relative}.accordion.accordion-style-4 .card .card-header a{color:#242424;padding:2.5rem 1.5rem;font-weight:700}.accordion.accordion-style-4 .card .card-header a.collapsed{border-radius:4px;position:relative}.accordion.accordion-style-4 .card .card-header a.collapsed:after{content:""}.accordion.accordion-style-4 .card .card-header i{color:#09c;position:absolute;top:28px}.accordion.accordion-style-4 .card .card-header span{padding-left:3rem}.accordion.accordion-style-4 .card:not(:first-of-type):not(:last-of-type){border-radius:4px}.accordion.accordion-style-4 .card:first-of-type,.accordion.accordion-style-4 .card:not(:first-of-type):not(:last-of-type){border-bottom:1px solid #e8e8e8}.blurb i{margin-bottom:2rem;font-size:3rem;display:inline-block}.blurb p{color:#8c8c8c;padding-right:2rem}.blurb.text-right p{padding-left:2rem;padding-right:0}.blurb-border{background:#fff;border:1px solid #e8e8e8;border-radius:6px;padding:1.8rem}.blurb-border p{margin-bottom:.5rem;padding:0}@media (max-width:767px){.blurb i{font-size:2.5rem}.blurb-border{margin-bottom:1.5rem}}.list-group-right-arrow a{position:relative}.list-group-right-arrow a:after{content:"";width:25px;height:25px;text-align:center;border:1px solid #e8e8e8;border-radius:50%;padding-left:2px;font-family:fontawesome;font-size:14px;line-height:23px;position:absolute;top:30%;right:20px}.list-group-right-arrow a:hover:after{color:#fff;background:#09c;border-color:#09c;transition:all .3s}.list-group-right-arrow .list-group-item.active{color:#09c;background:#fff;border-color:#e8e8e8}.list-group-right-arrow .list-group-item.active:after{color:#fff;background:#09c;border-color:#09c}.list-group-right-arrow-on-hover a:after{opacity:0;width:30px;height:30px;border:3px solid #fff;line-height:25px;top:33%;right:13px}.list-group-right-arrow-on-hover a:hover:after{opacity:1;width:30px;height:30px;border:3px solid #fff;line-height:25px;right:-13px}.list-group-right-arrow-on-hover .list-group-item.active:after{opacity:1;width:30px;height:30px;border:3px solid #fff;line-height:25px;right:-13px}.list-group .list-group-item h6{color:#242424}.list-group .list-group-item:hover h6{color:#09c}.list-group-gap .list-group-item{border-radius:6px;margin-bottom:10px;padding:1.8rem 1.25rem}@media (prefers-color-scheme:dark){.list-group-item{color:#fff;background-color:#1b1b1b;border-color:#414141}}.custom-list{padding:0;list-style:none}.custom-list li{padding:.8rem 0}.custom-list li a{color:#242424}.custom-list li a:hover{color:#09c;text-decoration:none}.custom-list-border li{border-bottom:1px solid #e8e8e8}.custom-list-border li:first-child{border-top:1px solid #e8e8e8}@media (prefers-color-scheme:dark){.list-group-item{color:#fff;background-color:#1b1b1b;border-color:#414141}}.clients-thumb{width:100%;max-width:10rem;height:auto;opacity:.5;margin-left:auto;margin-right:auto}.clients-thumb:hover{opacity:1}.dot-style-1.owl-theme .owl-dots .owl-dot span{width:6px;height:6px;background:#242424;transition:all .3s}.dot-style-1.owl-theme .owl-dots .owl-dot.active span{transform:scale(1.5)}.dot-style-2.owl-theme .owl-dots .owl-dot span{width:10px;height:10px;background:#ccc;transition:all .3s}.dot-style-2.owl-theme .owl-dots .owl-dot.active span{width:20px;height:10px;background:#09c;margin:5px 3px}.owl-carousel.text-center .owl-stage{display:inline-block}.carousel-highlighter.owl-carousel .owl-item{opacity:.2}.carousel-highlighter.owl-carousel .owl-item .card-img-overlay{opacity:0}.carousel-highlighter.owl-carousel .owl-item.center,.carousel-highlighter.owl-carousel .owl-item.center .card-img-overlay{opacity:1}.carousel-zoom-img .owl-stage-outer{overflow:visible}.carousel-zoom-img .owl-item .item h6{opacity:0}.carousel-zoom-img .owl-item.center .item{z-index:100;position:relative;transform:scale(1.2)}.carousel-zoom-img .owl-item.center .item h6{opacity:1}.carousel-zoom-img .owl-dots{margin-top:4rem}.owl-theme .owl-nav,.owl-theme .owl-nav.disabled+.owl-dots{margin-top:30px}.nav-circle.owl-theme .owl-nav [class*=owl-],.nav-circle-light.owl-theme .owl-nav [class*=owl-],.nav-circle-solid-light.owl-theme .owl-nav [class*=owl-]{width:50px;height:50px;text-align:center;color:#8c8c8c;border:1px solid #ccc;border-radius:50%;margin-bottom:2rem;font-size:12px;line-height:50px;position:relative}.nav-circle.owl-theme .owl-nav [class*=owl-]:hover,.nav-circle-light.owl-theme .owl-nav [class*=owl-]:hover,.nav-circle-solid-light.owl-theme .owl-nav [class*=owl-]:hover{color:#fff;background:#242424;border-color:#242424}.nav-circle-light.owl-theme .owl-nav [class*=owl-]:hover{color:#242424;background:#fff;border-color:#fff}.nav-circle-solid-light.owl-theme .owl-nav [class*=owl-]{color:#242424;background:#fff;border-color:#fff}.nav-circle-solid-light.owl-theme .owl-nav [class*=owl-]:hover{color:#fff;background:#09c;border-color:#09c}.nav-round.owl-theme .owl-nav [class*=owl-]{width:40px;height:90px;text-align:center;color:#fff;background:#0000004d;border-radius:6px;margin-bottom:2rem;font-size:12px;line-height:90px;position:relative}.nav-round.owl-theme .owl-nav [class*=owl-]:hover{background:#242424}.nav-round.owl-carousel .owl-nav .owl-prev,.nav-round.owl-carousel .owl-nav .owl-next{margin-top:-90px;position:absolute;top:50%}.nav-round.owl-carousel .owl-nav .owl-prev{border-radius:0 6px 6px 0;left:-5px}.nav-round.owl-carousel .owl-nav .owl-next{border-radius:6px 0 0 6px;right:-5px}.custom-testimonial.owl-theme .owl-nav{margin-top:0;bottom:2%}.custom-testimonial.owl-theme .owl-nav [class*=owl-]{width:35px;height:35px;text-align:center;color:#8c8c8c;border:1px solid #ccc;border-radius:50%;font-size:12px;line-height:35px;position:relative}.custom-testimonial.owl-theme .owl-nav [class*=owl-]:hover{color:#fff;background:#242424;border-color:#242424}.owl-carousel .owl-item img{width:auto}@media (min-width:1025px){.nav-circle.owl-carousel .owl-nav .owl-prev,.nav-circle.owl-carousel .owl-nav .owl-next,.nav-circle-light.owl-carousel .owl-nav .owl-prev,.nav-circle-light.owl-carousel .owl-nav .owl-next,.nav-circle-solid-light.owl-carousel .owl-nav .owl-prev,.nav-circle-solid-light.owl-carousel .owl-nav .owl-next,.nav-inside.owl-carousel .owl-nav .owl-prev,.nav-inside.owl-carousel .owl-nav .owl-next{margin-top:-50px;position:absolute;top:50%}.nav-circle.owl-carousel .owl-nav .owl-prev,.nav-circle-light.owl-carousel .owl-nav .owl-prev,.nav-circle-solid-light.owl-carousel .owl-nav .owl-prev{left:-8%}.nav-circle.owl-carousel .owl-nav .owl-next,.nav-circle-light.owl-carousel .owl-nav .owl-next,.nav-circle-solid-light.owl-carousel .owl-nav .owl-next{right:-8%}.nav-inside.owl-carousel .owl-nav .owl-prev,.nav-inside.owl-carousel .owl-nav .owl-prev{left:3%}.nav-inside.owl-carousel .owl-nav .owl-next,.nav-inside.owl-carousel .owl-nav .owl-next{right:3%}.custom-testimonial.owl-theme .owl-nav{z-index:100;margin-top:0;position:absolute;bottom:8%;right:11%}}.t-star-icon{font-size:8px;position:relative;bottom:2px}.justify-content-between .card-arrow-icon{width:25px;height:25px;text-align:center;border:1px solid #ddd;border-radius:50%;line-height:25px;transition:all .3s;position:relative}.justify-content-between .card-arrow-icon:after{content:"";font-family:fontawesome;font-size:14px;position:absolute;top:-1px;left:9px}.justify-content-between>a{text-decoration:none}.justify-content-between>a:hover+.card-arrow-icon{color:#fff;background:#09c;border-color:#09c}.card-img-overlay{top:auto;left:auto;right:auto}.box-hover,img.box-hover{transition:top .2s,box-shadow .2s;position:relative;top:0;box-shadow:0 0 #0000}.box-hover:hover,img.box-hover:hover{top:-.5rem;box-shadow:0 .2rem .8rem #24242426}@media (min-width:768px){.card.flex-md-row .card-img{object-fit:cover;border-radius:.375rem 0 0 .375rem}.card.flex-md-row .card-img-right{object-fit:cover;border-radius:0 .375rem .375rem 0}}@media (max-width:991.98px){.card.flex-column .card-img{border-radius:.375rem .375rem 0 0}.card.flex-md-row .card-img-right{border-radius:0 0 .375rem .375rem}}.form-control,.custom-select,.custom-file,.custom-file-input,.custom-file-label{height:calc(2.25rem + 12px);border:1px solid #e8e8e8}.form-control:focus,.custom-select:focus,.custom-file:focus,.custom-file-input:focus,.custom-file-label:focus{box-shadow:none}@media screen and (prefers-color-scheme:dark){.form-control,.form-control:focus{color:#fff;background-color:#1b1b1b;border-color:#414141}}.form-inline .form-control{height:calc(2.25rem + 8px)}.custom-file{border:none}.custom-file-label{padding:.65rem .75rem}.custom-file-label:after{height:2.85rem;padding:inherit;background:#fafafa;border-radius:0 .15rem .15rem 0}.icon-field,.icon-field-right{position:relative}.icon-field i,.icon-field-right i{user-select:none;cursor:default;color:#8c8c8c;position:absolute}.icon-field i{top:15px;left:15px}.icon-field input{padding-left:45px}.icon-field-right i{top:15px;right:15px}.icon-field-right input{padding-right:45px}.custom-control-label:before,.custom-control-label:after{width:1.3rem;height:1.3rem;top:.1rem;left:-1.5rem}.custom-control-label:before{border:1px solid #e8e8e8}.custom-control-label{padding-left:10px}.custom-switch .custom-control-label:before{width:40px;pointer-events:all;height:24px;background:#e8e8e8;border-radius:5rem;left:-2.25rem}.custom-switch .custom-control-label:after{width:calc(1.4rem - 2px);height:calc(1.4rem - 2px);background-color:#fff;border-radius:5rem;top:calc(.25rem - 1px);left:calc(3px - 2.25rem)}.custom-switch .custom-control-input:checked~.custom-control-label:after{transform:translate(.95rem)}.custom-switch .custom-control-label{padding-left:20px}.custom-file-input:focus~.custom-file-label,.custom-control-input:focus~.custom-control-label:before{box-shadow:none}.custom-control-input:checked~.custom-control-label:before,.custom-control-input:focus:not(:checked)~.custom-control-label:before{border:1px solid #e8e8e8}.custom-select{background:#fff url(select-arrow.b8e89c0c.svg) right .75rem center/8px 10px no-repeat}.login-content{color:#fff;text-align:center;width:100%;padding:2rem;position:absolute;top:50%;transform:translateY(-50%)}.login-circle-logo{width:80px;height:80px;background:#fff;border-radius:50%;line-height:80px;display:inline-block;box-shadow:0 .2rem .8rem #24242426}.c-form-content,.coming-soon-social{color:#fff;text-align:center;width:100%;padding:3rem;position:absolute;bottom:3%}.coming-soon-social{left:0}@media (max-width:991px){.coming-soon-social{margin-top:3rem;padding:0;position:relative}}@media (max-width:767px){.form-inline .form-control{height:2.25rem}}.steps-solid,.steps-dashed,.steps-dashed-light{width:150px;height:150px;text-align:center;background:#fff;border:2px solid #e8e8e8;border-radius:50%;line-height:150px;display:inline-block;position:relative}.steps-solid:after,.steps-dashed:after,.steps-dashed-light:after{content:"";width:100px;border-bottom:1px dashed #ccc;position:absolute;top:50%;right:-110%}.steps-solid i,.steps-dashed i,.steps-dashed-light i{line-height:150px}.steps-solid .step-number,.steps-dashed .step-number,.steps-dashed-light .step-number{color:#fff;background:#09c;border:3px solid #fff;border-radius:30px;padding:2px 10px;font-size:12px;font-weight:700;line-height:normal;position:absolute;top:10px;right:5px}.steps-solid.step-last:after,.steps-dashed.step-last:after,.steps-dashed-light.step-last:after{border-bottom:none}.steps-dashed{background:0 0;border:2px dashed #ccc}.steps-dashed-light{background:0 0;border:2px dashed #fff}.steps-dashed-light i{color:#fff}.steps-dashed-light:after{border-bottom:2px dashed #fff}.steps-dashed-light+.steps-info{color:#fff}.steps-info{padding:0 2rem}@media (max-width:1024px){.steps-solid:after,.steps-dashed:after,.steps-dashed-light:after{width:100%;top:50%;right:-110%}}@media (max-width:991px){.steps-solid:after,.steps-dashed:after,.steps-dashed-light:after{width:55%;right:-60%}}@media (max-width:767px){.steps-solid,.steps-dashed,.steps-dashed-light{width:100px;height:100px;line-height:100px}.steps-solid i,.steps-dashed i,.steps-dashed-light i{line-height:100px}.steps-solid:after,.steps-dashed:after,.steps-dashed-light:after{border-bottom:none}.steps-solid .step-number,.steps-dashed .step-number,.steps-dashed-light .step-number{right:-15px}.steps-info{margin-bottom:2rem}}.block-image{width:100%;height:100%;z-index:0;top:0;left:0}img.block-image{object-fit:cover}.block-image:not([class*=absolute]){position:absolute}.img-caption{width:70%;background:#ffffffe6;border-radius:0 .375rem .375rem 0;padding:1.5rem;position:absolute;bottom:10%;left:0}@media (min-width:1025px){.parallax-img{background-attachment:fixed}}@media (max-width:767px){.img-caption{padding:1rem}}.custom-progress{height:2px;box-shadow:none;background:#e8e8e8;border-radius:0;margin-top:4rem;position:relative}.custom-progress .progress-bar .skills-info{color:#242424;text-align:left;font-size:14px;position:relative;top:-20px}.custom-progress .progress-bar span{float:right;color:#242424;line-height:normal;position:relative;bottom:0}.custom-progress:first-child{margin-top:1.5rem}.custom-progress.progress{overflow:visible}.custom-progress.dark-progress .progress-bar,.custom-progress-inside.dark-progress .progress-bar{background:#242424}.progress-light-txt .progress-bar .skills-info,.progress-light-txt .progress-bar span{color:#fff}.custom-progress-inside{height:30px;background:#e8e8e8;margin-top:2rem}.custom-progress-inside .progress-bar .skills-info{color:#fff;text-align:left;padding:0 1rem;font-size:14px;position:relative;top:0}.custom-progress-inside .progress-bar span{float:right;color:#fff;line-height:normal;position:relative;bottom:0}.custom-progress-inside:first-child{margin-top:0}.nav.nav-group{display:inline-block}.nav.nav-group>li{text-align:center;float:left;margin:0 auto}.nav.nav-group>li .nav-link{color:#242424;padding:1rem 2rem;display:block}@media screen and (prefers-color-scheme:dark){.nav.nav-group>li .nav-link{color:#fff}}.nav.nav-group li a{background:#f9f9f9;border:1px solid #e8e8e8;margin-right:-1px}@media screen and (prefers-color-scheme:dark){.nav.nav-group li a{color:#fff;background-color:#000;border:1px solid #2f2f2f}}.nav.nav-group li a.active{color:#09c;background:#fff}@media screen and (prefers-color-scheme:dark){.nav.nav-group li a.active{background-color:#000}}.nav.nav-group li:first-child a{border-radius:30px 0 0 30px}.nav.nav-group li:last-child a{border-radius:0 30px 30px 0}.nav-line{border-bottom:1px solid #e8e8e8}.nav-line>li .nav-link{color:#242424;border-bottom:1px solid #0000;padding:1.5rem 3rem;display:block;position:relative;bottom:-1px}.nav-line>li a.active{color:#09c;border-bottom:1px solid #242424}.nav-vertical{border-right:1px solid #e8e8e8}.nav-vertical .nav-link{color:#242424;border-right:1px solid #0000;padding:1rem;display:block;position:relative;right:-1px}.nav-vertical i{position:relative;top:5px}.nav-vertical a.active{color:#09c;border-right:1px solid #242424}@media (max-width:1024px){.nav.nav-group>li .nav-link,.nav.nav-line>li .nav-link{padding:.6rem 1.5rem}}@media (max-width:767px){.nav-vertical{margin-bottom:2rem}}@media screen and (prefers-color-scheme:dark){.nav-tabs{border-color:#777}.nav-tabs .nav-link{color:#fff!important}.nav-tabs .nav-link.active{background-color:inherit;border-color:#777}}.vl-custom-table{border-spacing:0 1em;border-collapse:separate}.vl-custom-table h6{color:#616161;margin-top:0;padding-top:0;font-size:16px}.vl-custom-table thead th{vertical-align:middle;border-bottom:none;padding:.5rem 1.75rem}.vl-custom-table th,.vl-custom-table td{vertical-align:middle;border-top:none;font-family:Nunito,sans-serif}.vl-custom-table td:first-child{border-left:1px solid #e8e8e8;border-top-left-radius:10px;border-bottom-left-radius:10px}.vl-custom-table td:last-child{border-right:1px solid #e8e8e8;border-top-right-radius:10px;border-bottom-right-radius:10px}.vl-custom-table tbody td{background:#fff;border-top:1px solid #e8e8e8;border-bottom:1px solid #e8e8e8;padding:1.75rem}@media screen and (prefers-color-scheme:dark){.vl-custom-table h6{color:#777}.vl-custom-table td:first-child,.vl-custom-table td:last-child{border-color:#414141}.vl-custom-table tbody .report-row-header>td{background-color:#000;border-color:#414141}.vl-custom-table tbody .report-output-row>td{color:#fff;background-color:#000}.vl-custom-table tbody .report-output-row>td .report-view-box{color:#fff}.vl-custom-table tbody td{background-color:inherit}}.table-striped td,.table-striped th{vertical-align:middle}.table-striped tbody tr:nth-of-type(2n+1){background-color:#00000006}.table thead th{border-bottom-width:1px}.table .btn{white-space:nowrap}@media screen and (prefers-color-scheme:dark){.table thead,.table td{color:#fff}}.team-card{cursor:pointer;position:relative;overflow:hidden;box-shadow:0 8px 16px #0000001a}.team-card:hover{transition:all .3s;box-shadow:0 8px 16px #0003}@media screen and (prefers-color-scheme:dark){.team-card{color:#fff;background-color:#000}}.team-info .top-section{flex-direction:row;display:flex}.team-info .top-section .profile-img{width:200px;height:200px;background-color:#efefef;background-size:cover;margin-bottom:24px;margin-right:24px}.team-info .top-section .team-title p.team-position{margin-bottom:.5rem;font-size:14px}.team-info .top-section .team-social-links a{display:inline-block}@media (max-width:568px){.team-info .top-section{flex-direction:column;margin-bottom:16px}.team-info .top-section .profile-img{margin:0 auto 24px}}.team-info .modal-header{border-bottom:none;padding-bottom:0}@media screen and (prefers-color-scheme:dark){.team-info{color:#fff;background-color:#000}}.social-links a{color:#8c8c8c;margin-right:15px;display:inline-block}.social-links a:hover{color:#09c}@-webkit-keyframes blink{0%{opacity:1}50%{opacity:0}to{opacity:1}}@keyframes blink{0%{opacity:1}50%{opacity:0}to{opacity:1}}.typist-blink:after{height:26px;content:" ";border-right:2px solid;margin-left:3px;margin-right:7px;animation:blink 1s step-start infinite;display:inline-block;position:relative;top:3px}@media (max-width:667px){.typist-blink:after{height:22px;top:2px}}.typist-blink>.selectedText{display:none}.typist-mark>.selectedText{color:#fff;background-color:#242424;font-style:normal}@media screen and (max-width:1080px) and (min-width:768px){.firefly-typist-header{min-height:180px}}@media screen and (max-width:767px) and (min-width:668px){.firefly-typist-header{min-height:102px}}@media screen and (max-width:667px){.firefly-typist-header{min-height:124px}}.count-block{width:150px;height:150px;text-align:center;margin:0 20px;display:inline-block}.count-block h2{margin:2.5rem 0 0;font-weight:700}.count-block span{font-size:16px}.count-solid-light .count-block{background:#fff;border:1px solid #e8e8e8;margin-bottom:20px}.count-solid-dark .count-block{background:#242424;margin-bottom:20px}.count-solid-dark .count-block h2,.count-solid-dark .count-block span{color:#fff}.circle .count-block{border-radius:50%}.round .count-block{border-radius:6px}@media screen and (max-width:767px){.count-block{width:100px;height:100px}.count-block h2{margin:1.5rem 0 0}}.portfolio-filter{margin-bottom:50px;padding:0 1rem;list-style:none}.portfolio-filter li{margin:0 20px;font-family:Lora,serif;display:inline-block;position:relative}.portfolio-filter li a{color:#8c8c8c;text-transform:capitalize;font-size:16px;text-decoration:none}.portfolio-filter li a:hover{color:#242424}.portfolio-filter li:after{content:"/";color:#8c8c8c;position:absolute;top:0;right:-30px}.portfolio-filter li:last-child:after{content:" "}.portfolio-filter li.active a{color:#242424}.portfolio-grid .portfolio-item{float:left}.portfolio-grid .portfolio-item a{text-decoration:none}.portfolio-grid .portfolio-item a:focus{outline:none}.portfolio-grid .portfolio-item .portfolio-image{display:block;position:relative}.portfolio-grid .portfolio-item .portfolio-image img{width:100%;height:auto;display:block}.portfolio-grid .portfolio-item .portfolio-image .portfolio-hover-title{opacity:0;background-color:#242424e6;justify-content:center;align-items:center;margin:0;padding:30px;transition:all .3s;position:absolute;inset:0}.portfolio-grid .portfolio-item .portfolio-image .portfolio-hover-title .portfolio-content{width:100%;text-align:left;transition:all .3s;position:absolute;bottom:2rem;left:2rem}.portfolio-grid .portfolio-item .portfolio-image .portfolio-hover-title .portfolio-content h6{color:#fff;margin-bottom:.2rem;font-size:16px}.portfolio-grid .portfolio-item .portfolio-image .portfolio-hover-title .portfolio-content .portfolio-category span{color:#ccc;margin-right:5px;font-family:Lora,serif;font-size:14px}.portfolio-grid .portfolio-item:hover .portfolio-hover-title{opacity:1}.portfolio-grid .portfolio-title{margin:5% 0}.portfolio-grid .portfolio-title .portfolio-content h6{color:#242424;margin-bottom:.2rem}.portfolio-grid .portfolio-title .portfolio-content span{color:#8c8c8c;font-family:Lora,serif}.portfolio-grid.grid-2 .portfolio-item{width:50%}@media (max-width:768px){.portfolio-grid.grid-2 .portfolio-item{width:50%}}@media (max-width:568px){.portfolio-grid.grid-2 .portfolio-item{width:100%}}.portfolio-grid.grid-3 .portfolio-item{width:33.33%}@media (max-width:768px){.portfolio-grid.grid-3 .portfolio-item{width:50%}}@media (max-width:568px){.portfolio-grid.grid-3 .portfolio-item{width:100%}}.portfolio-grid.grid-4 .portfolio-item{width:25%}@media (max-width:768px){.portfolio-grid.grid-4 .portfolio-item{width:50%}}@media (max-width:568px){.portfolio-grid.grid-4 .portfolio-item{width:100%}}.portfolio-grid.grid-4 .portfolio-item .portfolio-content h6{font-size:16px}.portfolio-grid.grid-4 .portfolio-item .portfolio-content span{font-size:14px}.portfolio-grid.grid-5 .portfolio-item{width:20%}@media (max-width:768px){.portfolio-grid.grid-5 .portfolio-item{width:50%}}@media (max-width:568px){.portfolio-grid.grid-5 .portfolio-item{width:100%}}.portfolio-grid.grid-5 .portfolio-item .portfolio-content h6,.portfolio-grid.grid-5 .portfolio-item .portfolio-content span{font-size:14px}.portfolio-grid.grid-2.gutter{margin-right:-2%}.portfolio-grid.grid-2.gutter .portfolio-item{width:48%;margin-bottom:2%;margin-right:2%}@media (max-width:768px){.portfolio-grid.grid-2.gutter .portfolio-item{width:48%}}@media (max-width:568px){.portfolio-grid.grid-2.gutter .portfolio-item{width:98%}}.portfolio-grid.grid-3.gutter{margin-right:-2%}.portfolio-grid.grid-3.gutter .portfolio-item{width:31.33%;margin-bottom:2%;margin-right:2%}@media (max-width:768px){.portfolio-grid.grid-3.gutter .portfolio-item{width:48%}}@media (max-width:568px){.portfolio-grid.grid-3.gutter .portfolio-item{width:98%}}.portfolio-grid.grid-4.gutter{margin-right:-2%}.portfolio-grid.grid-4.gutter .portfolio-item{width:23%;margin-bottom:2%;margin-right:2%}@media (max-width:768px){.portfolio-grid.grid-4.gutter .portfolio-item{width:48%}}@media (max-width:568px){.portfolio-grid.grid-4.gutter .portfolio-item{width:98%}}.portfolio-grid.grid-5.gutter{margin-right:-2%}.portfolio-grid.grid-5.gutter .portfolio-item{width:18%;margin-bottom:2%;margin-right:2%}@media (max-width:768px){.portfolio-grid.grid-5.gutter .portfolio-item{width:48%}}@media (max-width:568px){.portfolio-grid.grid-5.gutter .portfolio-item{width:98%}}.portfolio-masonry .portfolio-title{padding-left:3%}.portfolio-masonry.gutter .portfolio-title{padding-left:0}.portfolio-grid.gutter .portfolio-item .portfolio-image .portfolio-hover-title,.portfolio-masonry.gutter .portfolio-item .portfolio-image .portfolio-hover-title,.portfolio-grid.gutter img,.portfolio-masonry.gutter img{border-radius:6px}.isotope-item{z-index:2}.isotope-hidden.isotope-item{pointer-events:none;z-index:1}.isotope,.isotope .isotope-item{transition-duration:.8s}.isotope{transition-property:height,width}.isotope .isotope-item{transition-property:transform,opacity}.isotope.no-transition,.isotope.no-transition .isotope-item,.isotope .isotope-item.no-transition{transition-duration:0s}.isotope.infinite-scrolling{transition:none}.twitter-feed-style{background:#fff;border:1px solid #e8e8e8;position:relative}.twitter-feed-style:after{content:"";color:#e8e8e8;font-family:FontAwesome;font-size:24px;position:absolute;top:1rem;right:1.5rem}.twitter-feed-style ul{margin-bottom:0;padding:0;list-style:none}.twitter-feed-style ul li{padding:2rem;position:relative;overflow:hidden}.twitter-feed-style .user{width:18%;float:left;margin-bottom:.928571em}.twitter-feed-style .user img{max-width:80%;height:auto;border-radius:50%}.twitter-feed-style .user [data-scribe=component\:author]{margin-left:1.3rem;position:absolute;top:10%;left:18%}.twitter-feed-style .user [data-scribe=component\:author] a{text-decoration:none}.twitter-feed-style .user [data-scribe=component\:author] span{display:block}.twitter-feed-style .user [data-scribe=component\:author] [data-scribe=element\:name]{color:#242424;font-weight:700}.twitter-feed-style .user [data-scribe=component\:author] [data-scribe=element\:screen_name]{color:#8c8c8c;font-size:14px}.twitter-feed-style .tweet{color:#8c8c8c;word-break:break-all;margin-top:4rem;margin-bottom:.464286em}.twitter-feed-style .tweet a{margin:0 3px}.twitter-feed-style .tweet,.twitter-feed-style .timePosted{width:82%;float:right}.twitter-feed-style .timePosted{margin-bottom:0;font-size:14px}.twitter-feed-style .timePosted a{color:#8c8c8c}.twitter-feed-style .interact{display:none}.twitter-feed-alt .user [data-scribe=component\:author]{display:none}.twitter-feed-alt .tweet{margin-top:0}.twitter-feed-alt:after{content:""}.floating-search-wrap{position:fixed;top:40%;left:3%}.floating-search-wrap a{color:#242424;margin-bottom:1.5rem;text-decoration:none;display:block}.floating-search-wrap a:hover{color:#09c}.floating-social-link{position:fixed;top:70%;right:0%;transform:translate(30%)rotate(-90deg)}.floating-social-link a{color:#242424;margin-left:.5rem;text-decoration:none}.floating-social-link a:hover{color:#09c}.floating-social-link span{color:#ccc}@media (max-width:1249px){.floating-search-wrap,.floating-social-link{display:none}}.blog-post{border-bottom:1px solid #ccc;margin-bottom:3.5rem;padding-bottom:3rem}.meta a,.meta.text-white a{color:#616161}.meta .meta-separator,.meta.text-white .meta-separator{width:30px;border-top:1px solid #616161;margin:0 15px;display:inline-block;position:relative;bottom:3px}.meta.text-white a{color:#fff}.meta.text-white .meta-separator{border-top:1px solid #fff}.blog-widget .instagram-feed a{width:95px;height:95px}.blog-single p{margin-bottom:3rem}.single-post .comments-area,.single-post .comments{margin-bottom:5rem;display:block}.single-post .comments-area .comments-title,.single-post .comments .comments-title{margin-bottom:5rem;font-size:28px}.single-post .comments-area ol,.single-post .comments-area ul,.single-post .comments ol,.single-post .comments ul,.single-post .comments-area ol ol,.single-post .comments-area ol ul,.single-post .comments-area ul ol,.single-post .comments-area ul ul,.single-post .comments ol ol,.single-post .comments ol ul,.single-post .comments ul ol,.single-post .comments ul ul{list-style:none}.single-post .comment-list,.single-post .comments>ul{margin:0;padding:0;list-style:none}.single-post .comment-list li,.single-post .comments>ul li{margin-bottom:1rem}.single-post .comment-list li .comment-body,.single-post .comments>ul li .comment-body{border-bottom:1px solid #e8e8e8;margin-bottom:3rem;padding-bottom:1.5rem;position:relative}.single-post .comment-list .comment-meta,.single-post .comments>ul .comment-meta{margin-bottom:1rem}.single-post .comment-list .comment-meta .comment-author img,.single-post .comments>ul .comment-meta .comment-author img{width:100px;height:100px;float:left;border-radius:6px;margin-right:2rem}.single-post .comment-list .comment-meta .comment-author a,.single-post .comments>ul .comment-meta .comment-author a{font-size:16px;font-weight:700}.single-post .comment-list .comment-meta .comment-author .says,.single-post .comments>ul .comment-meta .comment-author .says{display:none}.single-post .comment-list .comment-meta .comment-metadata a,.single-post .comments>ul .comment-meta .comment-metadata a{color:#8c8c8c;font-size:14px}.single-post .comment-list .comment-content,.single-post .comments>ul .comment-content{overflow:hidden}.single-post .comment-list .reply,.single-post .comments>ul .reply{position:absolute;top:0;right:0}.single-post .comment-list .reply a,.single-post .comments>ul .reply a{color:#09c}.single-post .comment-list .reply a:hover,.single-post .comments>ul .reply a:hover{color:#242424}@media (max-width:991px){.single-post .comments-area .comments-title,.comment-reply-title{font-size:1.5rem}.single-post .comments-area .comments-title{margin-bottom:3rem}}@media (max-width:767px){.single-post .comments-area .comments-title,.comment-reply-title{font-size:1.2rem}.single-post .comments-area .comment-list .comment-meta .comment-author img{width:50px;height:auto}.blog-post{margin-bottom:1.5rem;padding-bottom:1.5rem}}.form-qty{height:calc(2.25rem + 8px)}.bd-toc{order:2;padding-top:1.5rem;padding-bottom:1.5rem;font-size:.875rem}@supports (position: sticky){.bd-toc{height:calc(100vh - 4rem);position:sticky;top:4rem;overflow-y:auto}}.section-nav{border-left:1px solid #eee;padding-left:0}.section-nav ul{padding-left:1rem}.toc-entry{display:block}.toc-entry a{color:#77757a;padding:.125rem 1.5rem;display:block}.toc-entry a:hover{color:#007bff;text-decoration:none}.bd-sidebar{order:0}@media (min-width:768px){.bd-sidebar{border-right:1px solid #0000001a}@supports (position: sticky){.bd-sidebar{z-index:1000;height:calc(100vh - 4rem);position:sticky;top:4rem}}}@media (min-width:1200px){.bd-sidebar{flex:0 320px}}@media (prefers-color-scheme:dark){.bd-sidebar{border-right-color:#414141}}.bd-links{margin-left:-15px;margin-right:-15px;padding-top:1rem;padding-bottom:1rem}@media (min-width:768px){@supports (position: sticky){.bd-links{max-height:calc(100vh - 9rem);overflow-y:auto}}.bd-links{display:block!important}}.bd-search{border-bottom:1px solid #0000000d;margin-left:-15px;margin-right:-15px;padding:1rem 15px;position:relative}.bd-search .form-control:focus{border-color:#fc0;box-shadow:0 0 0 3px #ffcc0040}.bd-search-docs-toggle{color:#212529}@media screen and (prefers-color-scheme:dark){.bd-search-docs-toggle{color:#ccc}.bd-search-docs-toggle:hover{color:#e8e8e8}}.bd-sidenav{display:none}.bd-toc-link{color:#000000a6;padding:.25rem 1.5rem;font-weight:600;display:block}.bd-toc-link:hover{color:#000000d9;text-decoration:none}.bd-toc-link code{color:#e83e8c}.bd-toc-link.selected{color:#09c;font-weight:800}.bd-toc-link.selected:hover{color:#069}@media screen and (prefers-color-scheme:dark){.bd-toc-link{color:#fff}.bd-toc-link:hover{color:#ccc}}.bd-toc-item.active{margin-bottom:1rem}.bd-toc-item.active:not(:first-child){margin-top:1rem}.bd-toc-item.active>.bd-toc-link{color:#000000d9}.bd-toc-item.active>.bd-toc-link:hover{background-color:#0000}.bd-toc-item.active>.bd-sidenav{display:block}.bd-sidebar .nav>li>a{color:#000000a6;padding:.25rem 1.5rem;font-size:90%;display:block}.bd-sidebar .nav>li>a:hover{color:#000000d9;background-color:#0000;text-decoration:none}.bd-sidebar .nav>.active>a,.bd-sidebar .nav>.active:hover>a{color:#000000d9;background-color:#0000;font-weight:600}.navbar{flex-wrap:wrap;justify-content:space-between;align-items:center;padding:.5rem 1rem;display:flex;position:relative}.navbar>.container,.navbar>.container-fluid{flex-wrap:wrap;justify-content:space-between;align-items:center;display:flex}.navbar-brand{font-size:1.25rem;line-height:inherit;white-space:nowrap;margin-right:1rem;padding-top:.3125rem;padding-bottom:.3125rem;display:inline-block}.navbar-brand:hover,.navbar-brand:focus{text-decoration:none}.navbar-nav{flex-direction:column;margin-bottom:0;padding-left:0;list-style:none;display:flex}.navbar-nav .nav-link{padding-left:0;padding-right:0}.navbar-nav .dropdown-menu{float:none;position:static}.navbar-text{padding-top:.5rem;padding-bottom:.5rem;display:inline-block}.navbar-collapse{flex-grow:1;flex-basis:100%;align-items:center}.navbar-toggler{background-color:#0000;border:1px solid #0000;border-radius:.25rem;padding:.25rem .75rem;font-size:1.25rem;line-height:1}.navbar-toggler:hover,.navbar-toggler:focus{text-decoration:none}.navbar-toggler:not(:disabled):not(.disabled){cursor:pointer}.navbar-toggler-icon{width:1.5em;height:1.5em;vertical-align:middle;content:"";background:50%/100% 100% no-repeat;display:inline-block}@media (max-width:575.98px){.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid{padding-left:0;padding-right:0}}@media (min-width:576px){.navbar-expand-sm{flex-flow:row;justify-content:flex-start}.navbar-expand-sm .navbar-nav{flex-direction:row}.navbar-expand-sm .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-sm .navbar-nav .dropdown-menu-right{left:auto;right:0}.navbar-expand-sm .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-sm>.container,.navbar-expand-sm>.container-fluid{flex-wrap:nowrap}.navbar-expand-sm .navbar-collapse{flex-basis:auto;display:flex!important}.navbar-expand-sm .navbar-toggler{display:none}.navbar-expand-sm .dropup .dropdown-menu{top:auto;bottom:100%}}@media (max-width:767.98px){.navbar-expand-md>.container,.navbar-expand-md>.container-fluid{padding-left:0;padding-right:0}}@media (min-width:768px){.navbar-expand-md{flex-flow:row;justify-content:flex-start}.navbar-expand-md .navbar-nav{flex-direction:row}.navbar-expand-md .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-md .navbar-nav .dropdown-menu-right{left:auto;right:0}.navbar-expand-md .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-md>.container,.navbar-expand-md>.container-fluid{flex-wrap:nowrap}.navbar-expand-md .navbar-collapse{flex-basis:auto;display:flex!important}.navbar-expand-md .navbar-toggler{display:none}.navbar-expand-md .dropup .dropdown-menu{top:auto;bottom:100%}}@media (max-width:991.98px){.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid{padding-left:0;padding-right:0}}@media (min-width:992px){.navbar-expand-lg{flex-flow:row;justify-content:flex-start}.navbar-expand-lg .navbar-nav{flex-direction:row}.navbar-expand-lg .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-lg .navbar-nav .dropdown-menu-right{left:auto;right:0}.navbar-expand-lg .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-lg>.container,.navbar-expand-lg>.container-fluid{flex-wrap:nowrap}.navbar-expand-lg .navbar-collapse{flex-basis:auto;display:flex!important}.navbar-expand-lg .navbar-toggler{display:none}.navbar-expand-lg .dropup .dropdown-menu{top:auto;bottom:100%}}@media (max-width:1199.98px){.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid{padding-left:0;padding-right:0}}@media (min-width:1200px){.navbar-expand-xl{flex-flow:row;justify-content:flex-start}.navbar-expand-xl .navbar-nav{flex-direction:row}.navbar-expand-xl .navbar-nav .dropdown-menu{position:absolute}.navbar-expand-xl .navbar-nav .dropdown-menu-right{left:auto;right:0}.navbar-expand-xl .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand-xl>.container,.navbar-expand-xl>.container-fluid{flex-wrap:nowrap}.navbar-expand-xl .navbar-collapse{flex-basis:auto;display:flex!important}.navbar-expand-xl .navbar-toggler{display:none}.navbar-expand-xl .dropup .dropdown-menu{top:auto;bottom:100%}}.navbar-expand{flex-flow:row;justify-content:flex-start}.navbar-expand>.container,.navbar-expand>.container-fluid{padding-left:0;padding-right:0}.navbar-expand .navbar-nav{flex-direction:row}.navbar-expand .navbar-nav .dropdown-menu{position:absolute}.navbar-expand .navbar-nav .dropdown-menu-right{left:auto;right:0}.navbar-expand .navbar-nav .nav-link{padding-left:.5rem;padding-right:.5rem}.navbar-expand>.container,.navbar-expand>.container-fluid{flex-wrap:nowrap}.navbar-expand .navbar-collapse{flex-basis:auto;display:flex!important}.navbar-expand .navbar-toggler{display:none}.navbar-expand .dropup .dropdown-menu{top:auto;bottom:100%}.navbar-light .navbar-brand{color:#000000e6}.navbar-light .navbar-brand:hover,.navbar-light .navbar-brand:focus{color:#000000e6}.navbar-light .navbar-nav .nav-link{color:#00000080}.navbar-light .navbar-nav .nav-link:hover,.navbar-light .navbar-nav .nav-link:focus{color:#000000b3}.navbar-light .navbar-nav .nav-link.disabled{color:#0000004d}.navbar-light .navbar-nav .show>.nav-link,.navbar-light .navbar-nav .active>.nav-link,.navbar-light .navbar-nav .nav-link.show,.navbar-light .navbar-nav .nav-link.active{color:#000000e6}.navbar-light .navbar-toggler{color:#00000080;border-color:#0000001a}.navbar-light .navbar-toggler-icon{background-image:url("data:image/svg+xml,")}.navbar-light .navbar-text{color:#00000080}.navbar-light .navbar-text a{color:#000000e6}.navbar-light .navbar-text a:hover,.navbar-light .navbar-text a:focus{color:#000000e6}.navbar-dark .navbar-brand{color:#fff}.navbar-dark .navbar-brand:hover,.navbar-dark .navbar-brand:focus{color:#fff}.navbar-dark .navbar-nav .nav-link{color:#ffffff80}.navbar-dark .navbar-nav .nav-link:hover,.navbar-dark .navbar-nav .nav-link:focus{color:#ffffffbf}.navbar-dark .navbar-nav .nav-link.disabled{color:#ffffff40}.navbar-dark .navbar-nav .show>.nav-link,.navbar-dark .navbar-nav .active>.nav-link,.navbar-dark .navbar-nav .nav-link.show,.navbar-dark .navbar-nav .nav-link.active{color:#fff}.navbar-dark .navbar-toggler{color:#ffffff80;border-color:#ffffff1a}.navbar-dark .navbar-toggler-icon{background-image:url("data:image/svg+xml,")}.navbar-dark .navbar-text{color:#ffffff80}.navbar-dark .navbar-text a{color:#fff}.navbar-dark .navbar-text a:hover,.navbar-dark .navbar-text a:focus{color:#fff}.bd-navbar{min-height:4rem;background-color:#fff;box-shadow:0 .5rem 1rem #0000000d,inset 0 -1px #0000001a}@media (max-width:991.98px){.bd-navbar{padding-left:.5rem;padding-right:.5rem}.bd-navbar .navbar-nav-scroll{max-width:100%;height:2.5rem;margin-top:.25rem;font-size:.875rem;overflow:hidden}.bd-navbar .navbar-nav-scroll .navbar-nav{white-space:nowrap;-webkit-overflow-scrolling:touch;padding-bottom:2rem;overflow-x:auto}}@media (min-width:768px){@supports (position: sticky){.bd-navbar{z-index:1071;position:sticky;top:0}}}.bd-navbar .navbar-nav .nav-link{color:#09c;padding-left:.5rem;padding-right:.5rem}.bd-navbar .navbar-nav .nav-link.active,.bd-navbar .navbar-nav .nav-link:hover{color:#069;background-color:#0000}.bd-navbar .navbar-nav .nav-link.active{font-weight:500}.bd-navbar .navbar-nav-svg{width:1rem;height:1rem;vertical-align:text-top;display:inline-block}.bd-navbar .dropdown-menu{font-size:.875rem}.bd-navbar .dropdown-item.active{color:#212529;background-color:#0000;background-image:url("data:image/svg+xml;charset=utf8,%3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 8 8'%3E%3Cpath fill='%23292b2c' d='M2.3 6.73L.6 4.53c-.4-1.04.46-1.4 1.1-.8l1.1 1.4 3.4-3.8c.6-.63 1.6-.27 1.2.7l-4 4.6c-.43.5-.8.4-1.1.1z'/%3E%3C/svg%3E");background-position:.4rem .6rem;background-repeat:no-repeat;background-size:.75rem .75rem;font-weight:500}@media screen and (prefers-color-scheme:dark){.bd-navbar{color:#fff;background-color:#0f0f0f;box-shadow:0 2px 4px -1px #0003,0 4px 5px #00000024,0 1px 10px #0000001f}}.bg-primary{background:#09c}.bg-success{background:#96be5d}.bg-warning{background:#fab63f}.bg-info{background:#18b9d4}.bg-danger{background:#ef5a5a}.text-primary{color:#09c}.text-purple{color:#7431ff}.text-muted{color:#8c8c8c!important}.rounded{border-radius:6px!important}.card{border-color:#e8e8e8;border-radius:6px}.card-img-top{border-top-left-radius:6px;border-top-right-radius:6px}.card-footer{background:0 0;border-top:1px solid #0000000f;padding:1.1rem 1.25rem}.bg-dark .card-footer{border-top:1px solid #ffffff0f}.alert-secondary{color:#242424;background-color:#f4f5f7;border-color:#e8e8e8}.alert-warning{color:#fab63f;background-color:#fef8ec;border-color:#fab63f}.alert-success{color:#7dad14;background-color:#f3f8ed;border-color:#7dad14}.alert-danger{color:#ef5a5a;background-color:#fdeced;border-color:#ef5a5a}.alert-primary{color:#09c;background-color:#eaf4ff;border-color:#09c}.alert-solid-secondary{color:#242424;background-color:#e8e8e8;border-color:#e8e8e8}.alert-solid-warning{color:#fff;background-color:#fab63f;border-color:#fab63f}.alert-solid-success{color:#fff;background-color:#7dad14;border-color:#7dad14}.alert-solid-danger{color:#fff;background-color:#ef5a5a;border-color:#ef5a5a}.alert-solid-primary{color:#fff;background-color:#09c;border-color:#09c}.list-group-item{color:#8c8c8c;border-color:#e8e8e8;padding:1.3rem 1.25rem}.badge{position:relative;bottom:1px}.custom-modal .modal-body{padding:2.5rem}.custom-modal .modal-content{border:none}.custom-modal .modal-header{padding:1rem}.custom-modal .modal-header .close{padding:.5rem 1rem}.modal-body{padding:1.8rem}.modal-header,.modal-footer{padding:1rem 1.8rem}@media screen and (prefers-color-scheme:dark){.modal-header{border-bottom-color:#414141}.modal-footer{border-top-color:#414141}}.modal-image{border-top-left-radius:.25rem;border-top-right-radius:.25rem;position:relative}.modal-image .close{width:50px;height:50px;opacity:1;text-shadow:none;background:#fff;border-radius:50%;line-height:50px;position:absolute;top:1.875rem;right:1.875rem}.modal-image .close:hover{color:#fff;opacity:1;background:#09c}@media (min-width:576px){.modal-dialog{max-width:600px}}@media (min-width:992px){.modal-lg,.modal-xl{max-width:800px}}.ls-2{letter-spacing:1rem}.ls-3{letter-spacing:2rem}.lh-35{line-height:35px}.lh-45{line-height:45px}.h60{height:60%}.h70{height:70%}.curve-bottom-1,.curve-bottom-right{clip-path:polygon(0 0,100% 0,100% 85%,70% 100%,0 85%)}.curve-top-bottom{clip-path:polygon(100% 6%,100% 100%,68% 94%,0% 100%,0 10%,28% 0)}.curve-bottom-center{clip-path:polygon(0 0,100% 0,100% 70%,50% 100%,0 70%)}.font-lora{font-family:Lora,serif}.font-weight-300{font-weight:300}.font-weight-400{font-weight:400}.font-weight-600{font-weight:600}.font-weight-700{font-weight:700}.font-weight-800{font-weight:800}.font-size-12{font-size:12px}.font-size-14{font-size:14px}.font-size-16{font-size:16px}.font-size-20{font-size:20px!important}.font-size-60{font-size:60px}.font-size-72{font-size:72px}.i-size-60{font-size:60px}.section-gray,.bg-gray{background-color:#e8e8e8}@media screen and (prefers-color-scheme:dark){.section-gray,.bg-gray{background-color:#2f2f2f}.text-dark{color:#e8e8e8!important}}.bg-white{background:#fff}.bg-dark{background:#242424!important}.bg-dark hr{border-top:1px solid #ffffff80}@media screen and (prefers-color-scheme:dark){hr{border-top-color:#414141}}.bg-green-light{background:#d7f5e3}.bg-dark-alt{background:#303030}.bg-extra{background:#e5e8ec}.component-section{padding:4rem 0;position:relative;overflow:hidden}.show-markup-section{position:relative}.demo .btn{margin:0 .4rem 1rem}.title-separator{margin-bottom:4rem;position:relative}.title-separator:after{content:"";width:60px;height:2px;background:#fff;position:absolute;bottom:-2rem;left:0}.gradient-primary{background-image:linear-gradient(90deg,#09c 0%,#7431ff 100%)}.cta-img{background-position:50%;background-repeat:no-repeat;background-size:cover;position:relative;overflow:hidden}.border-light{border-color:#ffffff20!important}.custom-dropdown{border:none;box-shadow:0 1px 10px #97a4af26}.custom-dropdown .dropdown-item{font-size:12px}.custom-dropdown-sm{min-width:6rem}.opacity-30{opacity:.3}.opacity-40{opacity:.4}.opacity-50{opacity:.5}.opacity-60{opacity:.6}.opacity-70{opacity:.7}.opacity-80{opacity:.8}.opacity-90{opacity:.9}.opacity-100{opacity:1}.avatar-sm{width:35px;height:35px}.avatar,.avatar-md{width:70px;height:70px}.avatar-lg{width:140px;height:140px}.icon-sm{font-size:28px}.icon-md{font-size:42px}.icon-lg{font-size:56px}.ft-tag{color:#fff;background:#09c;border-radius:30px;padding:3px 12px;font-size:11px;font-weight:700}.ft-inside-tl{position:absolute;top:1rem;left:1rem}.ft-inside-tr{position:absolute;top:1rem;right:1rem}.ft-inside-bl{position:absolute;bottom:1rem;left:1rem}.ft-inside-br{position:absolute;bottom:1rem;right:1rem}.ft-overflow-bl{border:2px solid #fff;position:absolute;bottom:-.8rem;left:1rem}.ft-overflow-br{border:2px solid #fff;position:absolute;bottom:-.8rem;right:1rem}.ft-overflow-bc{border:2px solid #fff;position:absolute;bottom:-.8rem;left:50%;transform:translate(-50%)}.ft-overflow-tl{border:2px solid #fff;position:absolute;top:2rem;left:-2rem}.ft-overflow-tr{border:2px solid #fff;position:absolute;top:2rem;right:-2rem}.ft-overflow-tc{border:2px solid #fff;position:absolute;top:-1rem;left:50%;transform:translate(-50%)}@media (max-width:991px){.component-section{padding:3rem 0}}@media (max-width:767px){.i-size-60{font-size:3rem}.lh-35,.lh-45{line-height:normal}.ls-2{letter-spacing:.5rem}.font-size-60{font-size:28px}.font-size-72{font-size:32px}.icon-md{font-size:2rem}.icon-lg{font-size:2.5rem}.border-sm-right-0{border-right:none!important}.curve-top-bottom,.curve-bottom-1,.curve-bottom-right{clip-path:polygon(0 0,100% 0,100% 100%,0 100%)}.btn-sm-block{width:100%;padding:.75rem 2rem;display:block}}@media (min-width:991px){.neg-mt-100{margin-top:-100px}.neg-mt-300{margin-top:-300px}.clab-shape{padding-bottom:13.5rem;overflow:hidden}.clab-shape:after{content:"ă";color:#1420f11a;font-size:1200px;font-weight:800;position:absolute;top:-35%;left:50%;transform:translate(-50%)}.clab-shape .container{z-index:1;position:relative}}.markup-example{position:relative}.markup-example .btn{z-index:2;padding:.385rem 1rem;line-height:normal;position:absolute;top:.5rem;right:.5rem}.markup-example pre[class*=language-]{background:#e8e8e8;border-radius:6px;padding:3rem 1rem 1rem}.component-section>button,.show-markup-section>button{z-index:1000;opacity:0;transition:opacity .2s linear;position:absolute;top:50%;right:.75rem;transform:translateY(-50%)}.component-section:hover>button,.show-markup-section:hover>button{opacity:1}.clip-txt{text-align:center;color:#0000;background-position:50%;background-size:cover;background-clip:text;-webkit-background-clip:text;font-size:15rem;font-weight:700;line-height:normal}@media (max-width:565px){.clip-txt{font-size:6rem}}@media (min-width:769px){.clip-txt{font-size:25rem}}.landing-slider .owl-carousel .owl-item img{width:100%}@media screen and (max-width:991px){.wow{visibility:visible!important;animation-name:none!important}}.buy-link{color:#fff;z-index:1200;text-transform:uppercase;text-align:center;background:#82b440;border-radius:0 5px 5px 0;padding:.6rem;font-size:12px;font-weight:700;transition:all .3s;position:fixed;top:30%;left:-5px}.buy-link:hover{color:#fff;text-decoration:none;left:0}html body{background-color:#fff}@media screen and (prefers-color-scheme:dark){html body{color:#fff;background-color:#000}}body.modal-open{overflow:hidden}.report-view-box{height:80vh;white-space:pre-wrap;cursor:default;overflow:hidden}.report-view-box>div{height:100%;max-width:1035px;margin:auto;overflow:auto}.report-view-box .split-view-container{display:flex;overflow:hidden}.report-view-box .split-view-container .solidity-coverage-container{width:100%;min-width:0;flex-direction:column;flex-grow:0;display:flex}.report-view-box .split-view-container .solidity-coverage-container .solidity-coverage{height:100%;overflow:auto}.report-view-box .split-view-container .solidity-coverage-container .message-box{height:25%}@media screen and (prefers-color-scheme:dark){.report-view-box .split-view-container .solidity-coverage-container .message-box table.table-light{color:#fff;background-color:#000}}.report-view-box .split-view-container .bytecode-coverage{max-width:25%;overflow:auto}.report-view-box .split-view-container .contract-explorer{width:25%;background-color:#fcfcfc;padding:8px 0;font-size:.9rem;overflow:auto}.report-view-box .split-view-container .contract-explorer>ul>li{cursor:pointer;padding:4px 8px;transition:background .3s}.report-view-box .split-view-container .contract-explorer>ul>li:hover{background:#ddd}.report-view-box .split-view-container .contract-explorer>ul>li.active{background:#8ed3f1}.report-view-box .split-view-container .contract-explorer>ul>li:first-child{font-size:1rem}.report-view-box .split-view-container .contract-explorer>ul>li:not(:first-child){border-left:1px solid #ccc;margin-left:.75rem}@media screen and (prefers-color-scheme:dark){.report-view-box .split-view-container .contract-explorer{color:#fff;background-color:#000}.report-view-box .split-view-container .contract-explorer>ul>li.active{background:#09c}}.report-view-box .split-view-container tr{border-bottom:2px solid #0000}.report-view-box .split-view-container tr:hover{cursor:pointer}.report-view-box .split-view-container tr.covered:hover{border-bottom:2px solid #91daa6}.report-view-box .split-view-container tr.weak-covered:hover{border-bottom:2px solid #d2da91}.report-view-box .split-view-container tr.not-covered:hover{border-bottom:2px solid #da919a}.report-view-box .split-view-container tr.active{filter:brightness(85%)}.report-view-box .split-view-container tr.covered.active{border-bottom:2px solid #91daa6}.report-view-box .split-view-container tr.weak-covered.active{border-bottom:2px solid #d2da91}.report-view-box .split-view-container tr.not-covered.active{border-bottom:2px solid #da919a}.report-view-box .split-view-container .has-highlight tr.text-muted.not-covered,.report-view-box .split-view-container .has-highlight tr.text-muted.covered,.report-view-box .split-view-container .has-highlight tr.text-muted.weak-covered,.report-view-box .split-view-container .has-highlight tr.text-muted tr,.report-view-box .split-view-container .has-highlight tr.text-muted td{background-color:inherit!important}.report-view-box .split-view-container .has-highlight tr.message-muted{display:none}.benefits{padding-bottom:48px}.has-highlighted>table tr:not(.highlighted) *{color:#ccc!important;background-color:inherit!important}pre[class*=language-]{background-color:inherit;padding:0}.coverage{height:100%;font-size:14px;overflow:auto}.coverage:not(.solidity-coverage){font-size:13px}.coverage tr td,.coverage tr th{white-space:nowrap;border:0;padding:0 0 0 1em;border-radius:0!important}.coverage tr td pre,.coverage tr th pre{background:inherit;margin:0;padding:0}.coverage tr th{border-bottom:1px solid #dfdfdf;font-size:16px}.coverage tr td.index,.coverage tr th.index{text-align:right;width:3em;border-right:1px solid #ccc;padding-right:1ch}.coverage tr td.index{background-color:#fafbfc}.coverage tr td.opcode{font-weight:600}.coverage tr td.hit-count{text-align:center}.coverage tr.covered,.coverage tr.covered td{background-color:#e6ffed}.coverage tr.covered td.index{background-color:#dbffe3}.coverage tr.not-covered,.coverage tr.not-covered td{background-color:#ffe6e8}.coverage tr.not-covered td.index{background-color:#ffdbdf}.coverage tr.weak-covered,.coverage tr.weak-covered td{background-color:#fcffe6}.coverage tr.weak-covered td.index{background-color:#fbffdb}@media screen and (prefers-color-scheme:dark){.coverage{color:#ccc}.coverage th{color:#fff}.coverage tr.not-covered td.index,.coverage tr.covered td.index{color:#ccc}.coverage tr th.index{border-color:#414141}.coverage tr td.index{background-color:#000;border-color:#414141}.coverage tr td.opcode{color:#ccc}.coverage tr.covered,.coverage tr.covered td{background-color:#295234}.coverage tr.covered td.index{background-color:#214129}.coverage tr.not-covered,.coverage tr.not-covered td{background-color:#692217}.coverage tr.not-covered td.index{background-color:#541b12}.coverage tr.weak-covered,.coverage tr.weak-covered td{background-color:#68360b}.coverage tr.weak-covered td.index{background-color:#512a09}}.coverage table{width:100%}.mouse-pointer{cursor:pointer}.wizard-grid div{padding:10px}.wizard-grid .btn-outline,.wizard-box .btn-outline{margin-left:0}a.wizard-link:visited{color:purple}.code{background-color:#fafbfc;padding:10px}@media screen and (prefers-color-scheme:dark){.code{color:#fff;background-color:#2f2f2f}}.code-block-selectors{color:#000;width:fit-content;background-color:#e5e5e5;border-radius:4px;margin-bottom:8px;padding:2px 12px;position:absolute;top:0;left:0}@media screen and (prefers-color-scheme:dark){.code-block-selectors{color:#fff;background-color:#616161}}.nav-item{cursor:pointer}.ns-form{grid-column-gap:1rem;grid-template-columns:75% 25%;display:grid}.btn-disabled{background:#fff;border:2px solid #e8e8e8;margin-left:2em;color:gray!important}#firefly-reports,#firefly-report{margin-bottom:100px}#firefly-reports thead tr th,#firefly-report thead tr th{text-align:center;padding:.5rem .75rem}#firefly-reports tbody .report-row-header td,#firefly-report tbody .report-row-header td{text-align:center}#firefly-reports tbody .report-row-header td .report-id,#firefly-report tbody .report-row-header td .report-id{color:#09c;text-decoration:underline}#firefly-reports tbody .report-row-header td .report-id:hover,#firefly-report tbody .report-row-header td .report-id:hover{color:#007aa3}#firefly-reports .center-image,#firefly-report .center-image{padding-bottom:0;padding-left:21px;padding-right:21px}.report-buttons>ul{align-items:center;margin:0;display:flex}.report-buttons>ul>li p{margin:0}.report-buttons>ul>li:not(:last-child){margin-right:1.5rem}.report-buttons>ul .dropdown{display:inline-block}.report-buttons>ul .dropdown.show{outline:2px solid #09c}.report-buttons>ul .dropdown img{height:2rem}.report-buttons>ul .dropdown img:hover{outline:1px solid #09c}.report-buttons>ul .dropdown-toggle:after{content:none}@media screen and (prefers-color-scheme:dark){.report-buttons>ul{color:#fff}.report-buttons>ul .dropdown-menu,.report-buttons>ul .dropdown-item{color:#fff;background-color:#000}.report-buttons>ul .dropdown-item:hover{color:#c2c2c2}}@media (prefers-color-scheme:dark){.dropdown-menu,.dropdown-item{color:#fff;background-color:#1b1b1b}.dropdown-item:hover{color:#fff;background-color:#2f2f2f}}.report-coverage-row td{position:relative}.report-coverage-row .report-container .fullscreen-btn{cursor:pointer;color:#09c;font-size:2rem;position:absolute;top:.5rem;right:2rem}.report-coverage-row .report-container.fullscreen{width:100%;height:100%;z-index:10;background-color:#000000e6;padding:2rem;transition:all .15s linear;position:fixed;top:0;left:0}.report-coverage-row .report-container.fullscreen .report-wrapper{height:100%;background-color:#fff;border-radius:.3rem;padding:2rem;animation-name:zoom;animation-duration:.6s;position:relative;overflow:auto}.report-coverage-row .report-container.fullscreen .report-wrapper .fullscreen-btn{position:fixed;top:2rem;right:2.8rem}.report-coverage-row .report-container.fullscreen .report-wrapper .report-view-box{height:calc(100vh - 256px)}@media screen and (prefers-color-scheme:dark){.report-coverage-row .report-container.fullscreen .report-wrapper{background-color:#000}.report-coverage-row .report-container.fullscreen .report-wrapper th{color:#fff}}.report-coverage-row .report-container.fullscreen .coverage,.report-coverage-row .report-container.fullscreen .split-view-container{max-width:initial}.introjs-hint.introjs-fixedhint{z-index:11}i.fa{margin:0 1ch}.expandable-title{padding:.3rem 0;transition:all .3s}.expandable-title:hover{cursor:pointer;color:#09c}.expandable-title:not(.contract-title){font-weight:400}.contract-title .contract-coverage{float:right}.contract-hint-trigger{text-align:center;display:block}.contract-hint-trigger:hover{cursor:pointer;color:#fc0}.contract-hint-trigger .contract-hint-trigger-hidden{display:none}.source-name{border-bottom:1px solid #ccc;font-size:12px}@media screen and (prefers-color-scheme:dark){.source-name{color:#fff;border-color:#414141}}.indent-2{padding-left:2ch}.btn-download-report{background-image:url(Firefly-Download-Icon.8094a4f0.png)}.btn-download-report:hover{background-image:url(Firefly-Download-Icon-Inverted.32636383.png)}.btn-copy-report-id{cursor:pointer;background-size:cover;display:inline-block;font-size:1rem!important}@media (min-width:1025px){#firefly-header:not(.sticky-nav)>.container>.row>.col-12{min-height:150px}.vlmenu>li:not(:last-child){margin-right:20px}.vlmenu>li>a{padding-bottom:0}.vlmenu li:hover{border-bottom:2px solid #fc0}.vlmenu li.active{border-bottom:2px solid #fc0}.vlmenu li>ul{z-index:1}#dashboard-submenu{position:relative}#dashboard-submenu>ul{z-index:0;box-shadow:none;width:260px;justify-content:space-between;display:flex;position:absolute;top:50px;right:0}#dashboard-submenu>ul>li{display:inline-block}#dashboard-submenu>ul>li>a{padding:0;display:inline-block}#dashboard-submenu>ul>li>a:hover{color:#000;background:0 0}}@media screen and (min-width:1025px) and (prefers-color-scheme:dark){#dashboard-submenu>ul>li>a:hover{color:#fff}}.breadcrumb{background-color:inherit}.breadcrumb-item+.breadcrumb-item:before{content:">"!important}div.table-responsive{padding:0 8px}#youtube-video{height:303.75px;width:540px;max-width:100%;background-color:#d7d7d7;justify-content:center;align-items:center;display:flex}video{width:100%!important;height:auto!important}.gif:hover{opacity:.7}.custom-control-input:checked~.custom-control-label:before{background-color:#09c}.divider-bar-closed{color:#fff;background:#09c}.divider-bar-closed:hover{background:#008ab8}.divider-bar-opened{background:#fc0}.divider-bar-opened:hover{background:#e6b800}.divider-bar{cursor:pointer;flex-shrink:0;justify-content:center;align-items:center;transition:background .2s ease-in-out;display:flex}.divider-bar span{letter-spacing:1px}@media screen and (prefers-color-scheme:dark){.divider-bar{color:#fff;background:#343434}.divider-bar:hover{background-color:#393939}}.divider-bar-vertical{width:1.3rem;flex-direction:column}.divider-bar-vertical span{writing-mode:vertical-lr;text-orientation:sideways}.divider-bar-vertical i{margin:1ch 0}.divider-bar-horizontal{height:1.3rem;flex-direction:row}#contact-links li:hover{cursor:pointer;border:none!important}#contact-links img{height:1.5rem}#firefly-profile .btn{margin:4px auto;padding:4px 1rem}.icon{color:#09c;font-size:2rem;transition:color .2s}.icon:hover{color:#069}.icon.active{color:#fc0}.icon.active:hover{color:#ccb400}@media screen and (prefers-color-scheme:dark){.introjs-tooltip{background-color:#000}.introjs-helperLayer{background-color:#414141e6}}.modal{width:100%;height:100%;background-color:#000000e6;display:none;position:fixed;top:0;left:0;overflow:auto}#email-modal{z-index:2000}.modal-content{width:80%;max-width:1024px;margin:auto;display:block}@media screen and (prefers-color-scheme:dark){.modal-content{color:#fff;background-color:#141414}}video.modal-content{margin-top:100px}#modal-caption{width:80%;max-width:700px;text-align:center;color:#ccc;margin:auto;padding:10px 0;display:block}.modal-content,#modal-caption{animation-name:zoom;animation-duration:.6s}@keyframes zoom{0%{transform:scale(0)}to{transform:scale(1)}}.close{color:#09c;z-index:99;font-size:50px;font-weight:700;transition:all .3s;position:absolute;top:15px;right:35px}.close:hover,.close:focus{color:#fc0;cursor:pointer;text-decoration:none}@media only screen and (max-width:1024px){.modal-content{width:100%}}#firefly-feedback{z-index:999;position:fixed;bottom:30px;right:30px}#firefly-feedback>picture>img{width:100px}#firefly-feedback img{cursor:pointer;opacity:.7;transition:opacity .3s}#firefly-feedback img:hover{opacity:1}#firefly-feedback .feedback-form{background:#fff;border-radius:4px;flex-direction:column;justify-content:space-evenly;padding:24px;display:flex;box-shadow:1px 2px 10px #0003}#firefly-feedback .feedback-form .fa-times{cursor:pointer;opacity:.5;transition:opacity .3s;position:absolute;top:25px;right:25px}#firefly-feedback .feedback-form .fa-times:hover{opacity:1}#firefly-feedback .feedback-form .feedback-rating{justify-content:space-evenly;display:flex}#firefly-feedback .feedback-form .feedback-rating>picture>img{height:120px;margin:4px 18px}#firefly-feedback .feedback-form .feedback-message{float:left;width:100%;height:150px;margin-top:10px;margin-bottom:10px;overflow:scroll}@media only screen and (max-width:767px){#firefly-feedback .feedback-form{position:fixed;bottom:8px;left:8px;right:8px}#firefly-feedback .feedback-form .feedback-rating>picture>img{height:100px}}@media screen and (prefers-color-scheme:dark){#firefly-feedback .feedback-form{color:#fff;background-color:#000}}#contact-links img{margin-right:1rem}#bytecodes,#solidity-files,#contract-links{margin-bottom:24px}.drop-area{text-align:center;height:64px;cursor:pointer;background-color:#f7f8fa;border-style:dashed;border-color:#616161;margin-top:0;margin-bottom:0}.drop-area:hover{background-color:#edf1f4}.drop-area p{margin:0;position:relative;top:50%;transform:translateY(-50%)}.drop-area.uploader{margin-bottom:0}@media screen and (prefers-color-scheme:dark){.drop-area{color:#242424;border-color:#777}}.ratings,.ratings p{display:inline-block}.ratings #positive{text-align:left}.ratings #indifferent{text-align:center}.ratings #negative{text-align:right}.feedback-table{height:70%}.color-erc20-green{color:#007f3a!important}.background-color-erc20-green{background-color:#007f3a!important}#erc20-dashboard .bytecode-row-header h6 a,#erc20-bytecode .bytecode-row-header h6 a,#erc20-dev-dashboard .bytecode-row-header h6 a{color:#09c;text-decoration:underline}#erc20-dashboard .bytecode-row-header h6 a:hover,#erc20-bytecode .bytecode-row-header h6 a:hover,#erc20-dev-dashboard .bytecode-row-header h6 a:hover{color:#007aa3}#erc20-dashboard .markdown-preview,#erc20-bytecode .markdown-preview,#erc20-dev-dashboard .markdown-preview{border:1px solid #e8e8e8;border-radius:4px;margin-bottom:32px;padding:8px}#erc20-dashboard .markdown-preview pre[class*=language-],#erc20-bytecode .markdown-preview pre[class*=language-],#erc20-dev-dashboard .markdown-preview pre[class*=language-]{word-break:normal;white-space:pre-wrap;background-color:#f7f8fa;padding:16px;font-size:.85rem;overflow:auto}@media screen and (prefers-color-scheme:dark){#erc20-dashboard .markdown-preview,#erc20-bytecode .markdown-preview,#erc20-dev-dashboard .markdown-preview{color:#e8e8e8;border:1px solid #414141}#erc20-dashboard .markdown-preview pre[class*=language-],#erc20-bytecode .markdown-preview pre[class*=language-],#erc20-dev-dashboard .markdown-preview pre[class*=language-]{background-color:#1d1f21}#erc20-dashboard,#erc20-bytecode,#erc20-dev-dashboard,#erc20-dashboard .table,#erc20-bytecode .table,#erc20-dev-dashboard .table{color:#fff}}.logo-link{color:#242424}@media screen and (prefers-color-scheme:dark){.logo-link{color:#fff}}pre[class*=language-],pre{word-break:normal;white-space:pre-wrap;background-color:#f7f8fa;padding:16px;font-family:Inconsolata,Monaco,Consolas,Courier New,Courier,monospace;font-size:.85rem;overflow:auto}code[class*=language-]{font-family:Inconsolata,Monaco,Consolas,Courier New,Courier,monospace}pre[class*=language-]{border-radius:.3em;margin:.5em 0;padding:1em;overflow:auto}@media screen and (prefers-color-scheme:dark){pre[class*=language-],pre{color:#c5c8c6;background-color:#1d1f21}}.h1 a,.h2 a,.h3 a,.h4 a,.h5 a,.h6 a,h1 a,h2 a,h3 a,h4 a,h5 a,h6 a{color:#09c}.h1 a:hover,.h2 a:hover,.h3 a:hover,.h4 a:hover,.h5 a:hover,.h6 a:hover,h1 a:hover,h2 a:hover,h3 a:hover,h4 a:hover,h5 a:hover,h6 a:hover{color:#069}.rv-btn{color:#242424;background-color:#fff;border-color:#242424}.rv-btn:hover{background-color:#f2f2f2;border-color:#171717}@media screen and (prefers-color-scheme:dark){.rv-btn{color:#fff;background-color:#242424;border-color:#fff}.rv-btn:hover{color:#fff;background-color:#212121;border-color:#f2f2f2}}.rv-btn-yellow{color:#242424;background-color:#fc0;border-color:#fc0}.rv-btn-yellow:hover{background-color:#e6b800;border-color:#e6b800}@media screen and (prefers-color-scheme:dark){.rv-btn-yellow{background-color:#ccb400;border-color:#ccb400}.rv-btn-yellow:hover{background-color:#b39e00;border-color:#b39e00}}.rv-btn-blue{background-color:#09c;border-color:#09c;color:#fff!important}.rv-btn-blue:hover{background-color:#0086b3;border-color:#0086b3;color:#fff!important}@media screen and (prefers-color-scheme:dark){.rv-btn-blue{background-color:#069;border-color:#069}.rv-btn-blue:hover{background-color:#005580;border-color:#005580}}.rv-btn-red{background-color:#f04124;border-color:#f04124;color:#fff!important}.rv-btn-red:hover{background-color:#ea2f10;border-color:#ea2f10;color:#fff!important}@media screen and (prefers-color-scheme:dark){.rv-btn-red{background-color:#cf2a0e;border-color:#cf2a0e}.rv-btn-red:hover{background-color:#b7250c;border-color:#b7250c}}.rv-btn-green{background-color:#007f3a;border-color:#007f3a;color:#fff!important}.rv-btn-green:hover{background-color:#00662e;border-color:#00662e;color:#fff!important}@media screen and (prefers-color-scheme:dark){.rv-btn-green{background-color:#007f3a;border-color:#007f3a}.rv-btn-green:hover{background-color:#00662e;border-color:#00662e}}.card{position:relative;overflow:hidden;box-shadow:0 8px 16px #0000001a}.card:hover{transition:all .3s;box-shadow:0 8px 16px #0003}@media screen and (prefers-color-scheme:dark){.card{color:#fff;background-color:#141414;border-color:#414141}}blockquote{font-size:inherit;color:#5c5c5c;background-color:#f0f0f0;border-left:4px solid #d6d6d6;margin:16px 0;padding:0 15px}@media screen and (prefers-color-scheme:dark){blockquote{font-size:inherit;color:#fdfdfd;background-color:#323232;border-left:4px solid #474747;margin:16px 0;padding:0 15px}}.page-toc{background-color:#fff;border-left:1px solid #0000001a;border-right:none;overflow:auto}@media (max-width:767.98px){.page-toc{z-index:2000;height:100%;background-color:#fff;border:none;display:none;position:fixed;top:0;overflow:auto}}@media screen and (prefers-color-scheme:dark){.page-toc{background:#000;border-left-color:#414141}}.page-toc .bd-toc-link-wrapper .bd-toc-link{white-space:nowrap;padding:.25rem 0;display:inline}.page-toc .bd-toc-link-wrapper.highlighted .bd-toc-link{color:#09c;font-weight:800}.page-toc-toggle-btn{width:48px;height:48px;z-index:3000;border-radius:100%;padding:0;font-size:150%;display:none;position:fixed;bottom:12px;right:12px}@media (max-width:767.98px){.page-toc-toggle-btn{justify-content:center;align-items:center;display:flex}} \ No newline at end of file diff --git a/assets/css/owl.video.play.e7a23fb2.png b/assets/css/owl.video.play.e7a23fb2.png new file mode 100644 index 00000000000..aa387f962d1 Binary files /dev/null and b/assets/css/owl.video.play.e7a23fb2.png differ diff --git a/assets/css/select-arrow.b8e89c0c.svg b/assets/css/select-arrow.b8e89c0c.svg new file mode 100644 index 00000000000..4c24a2a3427 --- /dev/null +++ b/assets/css/select-arrow.b8e89c0c.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/assets/img/404.png b/assets/img/404.png new file mode 100644 index 00000000000..7e858c28a12 Binary files /dev/null and b/assets/img/404.png differ diff --git a/assets/img/500.png b/assets/img/500.png new file mode 100644 index 00000000000..953bc1b5b15 Binary files /dev/null and b/assets/img/500.png differ diff --git a/assets/img/android-chrome-192x192.png b/assets/img/android-chrome-192x192.png new file mode 100644 index 00000000000..358dc4b20ad Binary files /dev/null and b/assets/img/android-chrome-192x192.png differ diff --git a/assets/img/android-chrome-512x512.png b/assets/img/android-chrome-512x512.png new file mode 100644 index 00000000000..ff0646b0124 Binary files /dev/null and b/assets/img/android-chrome-512x512.png differ diff --git a/assets/img/apple-touch-icon.png b/assets/img/apple-touch-icon.png new file mode 100644 index 00000000000..5a7099aa748 Binary files /dev/null and b/assets/img/apple-touch-icon.png differ diff --git a/assets/img/favicon-16x16.png b/assets/img/favicon-16x16.png new file mode 100644 index 00000000000..732ccd78f8f Binary files /dev/null and b/assets/img/favicon-16x16.png differ diff --git a/assets/img/favicon-32x32.png b/assets/img/favicon-32x32.png new file mode 100644 index 00000000000..1b098ea27df Binary files /dev/null and b/assets/img/favicon-32x32.png differ diff --git a/assets/img/favicon.ico b/assets/img/favicon.ico new file mode 100644 index 00000000000..f4db8d1f94b Binary files /dev/null and b/assets/img/favicon.ico differ diff --git a/assets/img/hero/kerc20-hero-image.png b/assets/img/hero/kerc20-hero-image.png new file mode 100644 index 00000000000..0908db01fcb Binary files /dev/null and b/assets/img/hero/kerc20-hero-image.png differ diff --git a/assets/img/hero/test-coverage-hero-image.png b/assets/img/hero/test-coverage-hero-image.png new file mode 100644 index 00000000000..b8a7bfe6739 Binary files /dev/null and b/assets/img/hero/test-coverage-hero-image.png differ diff --git a/assets/img/hero/test-runner-hero-image.png b/assets/img/hero/test-runner-hero-image.png new file mode 100644 index 00000000000..0908db01fcb Binary files /dev/null and b/assets/img/hero/test-runner-hero-image.png differ diff --git a/assets/img/k-logo-dark.png b/assets/img/k-logo-dark.png new file mode 100644 index 00000000000..3982958bae0 Binary files /dev/null and b/assets/img/k-logo-dark.png differ diff --git a/assets/img/k-logo.png b/assets/img/k-logo.png new file mode 100644 index 00000000000..c23f9ca3527 Binary files /dev/null and b/assets/img/k-logo.png differ diff --git a/assets/img/lang.jpg b/assets/img/lang.jpg new file mode 100644 index 00000000000..cb5659ef1ae Binary files /dev/null and b/assets/img/lang.jpg differ diff --git a/assets/img/new.gif b/assets/img/new.gif new file mode 100644 index 00000000000..7945d05f44c Binary files /dev/null and b/assets/img/new.gif differ diff --git a/assets/img/rv-logo-dark.png b/assets/img/rv-logo-dark.png new file mode 100644 index 00000000000..50f488b7b3b Binary files /dev/null and b/assets/img/rv-logo-dark.png differ diff --git a/assets/img/rv-logo.png b/assets/img/rv-logo.png new file mode 100644 index 00000000000..33bdafe3927 Binary files /dev/null and b/assets/img/rv-logo.png differ diff --git a/assets/img/try-it-online.jpg b/assets/img/try-it-online.jpg new file mode 100644 index 00000000000..1a2ff260b17 Binary files /dev/null and b/assets/img/try-it-online.jpg differ diff --git a/assets/js/index.js b/assets/js/index.js new file mode 100644 index 00000000000..670ddccf7bb --- /dev/null +++ b/assets/js/index.js @@ -0,0 +1,212 @@ +var e="undefined"!=typeof globalThis?globalThis:"undefined"!=typeof self?self:"undefined"!=typeof window?window:"undefined"!=typeof global?global:{};var t={},n={},i=e.parcelRequire2b1d;null==i&&((i=function(e){if(e in t)return t[e].exports;if(e in n){var i=n[e];delete n[e];var o={id:e,exports:{}};return t[e]=o,i.call(o.exports,o,o.exports),o.exports}var s=new Error("Cannot find module '"+e+"'");throw s.code="MODULE_NOT_FOUND",s}).register=function(e,t){n[e]=t},e.parcelRequire2b1d=i),i.register("lJ4Q2",(function(e,t){ +/*! + * jQuery JavaScript Library v3.6.0 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright OpenJS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2021-03-02T17:08Z + */ +!function(t,n){"use strict";"object"==typeof e.exports?e.exports=t.document?n(t,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return n(e)}:n(t)}("undefined"!=typeof window?window:e.exports,(function(e,t){"use strict";var n=[],i=Object.getPrototypeOf,o=n.slice,s=n.flat?function(e){return n.flat.call(e)}:function(e){return n.concat.apply([],e)},r=n.push,a=n.indexOf,l={},c=l.toString,u=l.hasOwnProperty,d=u.toString,h=d.call(Object),f={},p=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},m=function(e){return null!=e&&e===e.window},g=e.document,v={type:!0,src:!0,nonce:!0,noModule:!0};function y(e,t,n){var i,o,s=(n=n||g).createElement("script");if(s.text=e,t)for(i in v)(o=t[i]||t.getAttribute&&t.getAttribute(i))&&s.setAttribute(i,o);n.head.appendChild(s).parentNode.removeChild(s)}function b(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?l[c.call(e)]||"object":typeof e}var _="3.6.0",w=function(e,t){return new w.fn.init(e,t)};function x(e){var t=!!e&&"length"in e&&e.length,n=b(e);return!p(e)&&!m(e)&&("array"===n||0===t||"number"==typeof t&&t>0&&t-1 in e)}w.fn=w.prototype={jquery:_,constructor:w,length:0,toArray:function(){return o.call(this)},get:function(e){return null==e?o.call(this):e<0?this[e+this.length]:this[e]},pushStack:function(e){var t=w.merge(this.constructor(),e);return t.prevObject=this,t},each:function(e){return w.each(this,e)},map:function(e){return this.pushStack(w.map(this,(function(t,n){return e.call(t,n,t)})))},slice:function(){return this.pushStack(o.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},even:function(){return this.pushStack(w.grep(this,(function(e,t){return(t+1)%2})))},odd:function(){return this.pushStack(w.grep(this,(function(e,t){return t%2})))},eq:function(e){var t=this.length,n=+e+(e<0?t:0);return this.pushStack(n>=0&&n+~]|[\\x20\\t\\r\\n\\f])[\\x20\\t\\r\\n\\f]*"),U=new RegExp(H+"|>"),V=new RegExp(R),Q=new RegExp("^"+j+"$"),G={ID:new RegExp("^#("+j+")"),CLASS:new RegExp("^\\.("+j+")"),TAG:new RegExp("^("+j+"|[*])"),ATTR:new RegExp("^"+M),PSEUDO:new RegExp("^"+R),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\([\\x20\\t\\r\\n\\f]*(even|odd|(([+-]|)(\\d*)n|)[\\x20\\t\\r\\n\\f]*(?:([+-]|)[\\x20\\t\\r\\n\\f]*(\\d+)|))[\\x20\\t\\r\\n\\f]*\\)|)","i"),bool:new RegExp("^(?:"+P+")$","i"),needsContext:new RegExp("^[\\x20\\t\\r\\n\\f]*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\([\\x20\\t\\r\\n\\f]*((?:-\\d)?\\d*)[\\x20\\t\\r\\n\\f]*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,X=/^(?:input|select|textarea|button)$/i,K=/^h\d$/i,Z=/^[^{]+\{\s*\[native \w/,J=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}[\\x20\\t\\r\\n\\f]?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},ie=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,oe=function(e,t){return t?"\0"===e?"�":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},se=function(){h()},re=_e((function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()}),{dir:"parentNode",next:"legend"});try{L.apply(O=$.call(w.childNodes),w.childNodes),O[w.childNodes.length].nodeType}catch(e){L={apply:O.length?function(e,t){N.apply(e,$.call(t))}:function(e,t){for(var n=e.length,i=0;e[n++]=t[i++];);e.length=n-1}}}function ae(e,t,i,o){var s,a,c,u,d,p,v,y=t&&t.ownerDocument,w=t?t.nodeType:9;if(i=i||[],"string"!=typeof e||!e||1!==w&&9!==w&&11!==w)return i;if(!o&&(h(t),t=t||f,m)){if(11!==w&&(d=J.exec(e)))if(s=d[1]){if(9===w){if(!(c=t.getElementById(s)))return i;if(c.id===s)return i.push(c),i}else if(y&&(c=y.getElementById(s))&&b(t,c)&&c.id===s)return i.push(c),i}else{if(d[2])return L.apply(i,t.getElementsByTagName(e)),i;if((s=d[3])&&n.getElementsByClassName&&t.getElementsByClassName)return L.apply(i,t.getElementsByClassName(s)),i}if(n.qsa&&!k[e+" "]&&(!g||!g.test(e))&&(1!==w||"object"!==t.nodeName.toLowerCase())){if(v=e,y=t,1===w&&(U.test(e)||q.test(e))){for((y=ee.test(e)&&ve(t.parentNode)||t)===t&&n.scope||((u=t.getAttribute("id"))?u=u.replace(ie,oe):t.setAttribute("id",u=_)),a=(p=r(e)).length;a--;)p[a]=(u?"#"+u:":scope")+" "+be(p[a]);v=p.join(",")}try{return L.apply(i,y.querySelectorAll(v)),i}catch(t){k(e,!0)}finally{u===_&&t.removeAttribute("id")}}}return l(e.replace(B,"$1"),t,i,o)}function le(){var e=[];return function t(n,o){return e.push(n+" ")>i.cacheLength&&delete t[e.shift()],t[n+" "]=o}}function ce(e){return e[_]=!0,e}function ue(e){var t=f.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function de(e,t){for(var n=e.split("|"),o=n.length;o--;)i.attrHandle[n[o]]=t}function he(e,t){var n=t&&e,i=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(i)return i;if(n)for(;n=n.nextSibling;)if(n===t)return-1;return e?1:-1}function fe(e){return function(t){return"input"===t.nodeName.toLowerCase()&&t.type===e}}function pe(e){return function(t){var n=t.nodeName.toLowerCase();return("input"===n||"button"===n)&&t.type===e}}function me(e){return function(t){return"form"in t?t.parentNode&&!1===t.disabled?"label"in t?"label"in t.parentNode?t.parentNode.disabled===e:t.disabled===e:t.isDisabled===e||t.isDisabled!==!e&&re(t)===e:t.disabled===e:"label"in t&&t.disabled===e}}function ge(e){return ce((function(t){return t=+t,ce((function(n,i){for(var o,s=e([],n.length,t),r=s.length;r--;)n[o=s[r]]&&(n[o]=!(i[o]=n[o]))}))}))}function ve(e){return e&&void 0!==e.getElementsByTagName&&e}for(t in n=ae.support={},s=ae.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},h=ae.setDocument=function(e){var t,o,r=e?e.ownerDocument||e:w;return r!=f&&9===r.nodeType&&r.documentElement?(p=(f=r).documentElement,m=!s(f),w!=f&&(o=f.defaultView)&&o.top!==o&&(o.addEventListener?o.addEventListener("unload",se,!1):o.attachEvent&&o.attachEvent("onunload",se)),n.scope=ue((function(e){return p.appendChild(e).appendChild(f.createElement("div")),void 0!==e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length})),n.attributes=ue((function(e){return e.className="i",!e.getAttribute("className")})),n.getElementsByTagName=ue((function(e){return e.appendChild(f.createComment("")),!e.getElementsByTagName("*").length})),n.getElementsByClassName=Z.test(f.getElementsByClassName),n.getById=ue((function(e){return p.appendChild(e).id=_,!f.getElementsByName||!f.getElementsByName(_).length})),n.getById?(i.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},i.find.ID=function(e,t){if(void 0!==t.getElementById&&m){var n=t.getElementById(e);return n?[n]:[]}}):(i.filter.ID=function(e){var t=e.replace(te,ne);return function(e){var n=void 0!==e.getAttributeNode&&e.getAttributeNode("id");return n&&n.value===t}},i.find.ID=function(e,t){if(void 0!==t.getElementById&&m){var n,i,o,s=t.getElementById(e);if(s){if((n=s.getAttributeNode("id"))&&n.value===e)return[s];for(o=t.getElementsByName(e),i=0;s=o[i++];)if((n=s.getAttributeNode("id"))&&n.value===e)return[s]}return[]}}),i.find.TAG=n.getElementsByTagName?function(e,t){return void 0!==t.getElementsByTagName?t.getElementsByTagName(e):n.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,i=[],o=0,s=t.getElementsByTagName(e);if("*"===e){for(;n=s[o++];)1===n.nodeType&&i.push(n);return i}return s},i.find.CLASS=n.getElementsByClassName&&function(e,t){if(void 0!==t.getElementsByClassName&&m)return t.getElementsByClassName(e)},v=[],g=[],(n.qsa=Z.test(f.querySelectorAll))&&(ue((function(e){var t;p.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&g.push("[*^$]=[\\x20\\t\\r\\n\\f]*(?:''|\"\")"),e.querySelectorAll("[selected]").length||g.push("\\[[\\x20\\t\\r\\n\\f]*(?:value|"+P+")"),e.querySelectorAll("[id~="+_+"-]").length||g.push("~="),(t=f.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||g.push("\\[[\\x20\\t\\r\\n\\f]*name[\\x20\\t\\r\\n\\f]*=[\\x20\\t\\r\\n\\f]*(?:''|\"\")"),e.querySelectorAll(":checked").length||g.push(":checked"),e.querySelectorAll("a#"+_+"+*").length||g.push(".#.+[+~]"),e.querySelectorAll("\\\f"),g.push("[\\r\\n\\f]")})),ue((function(e){e.innerHTML="";var t=f.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&g.push("name[\\x20\\t\\r\\n\\f]*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&g.push(":enabled",":disabled"),p.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&g.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),g.push(",.*:")}))),(n.matchesSelector=Z.test(y=p.matches||p.webkitMatchesSelector||p.mozMatchesSelector||p.oMatchesSelector||p.msMatchesSelector))&&ue((function(e){n.disconnectedMatch=y.call(e,"*"),y.call(e,"[s!='']:x"),v.push("!=",R)})),g=g.length&&new RegExp(g.join("|")),v=v.length&&new RegExp(v.join("|")),t=Z.test(p.compareDocumentPosition),b=t||Z.test(p.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,i=t&&t.parentNode;return e===i||!(!i||1!==i.nodeType||!(n.contains?n.contains(i):e.compareDocumentPosition&&16&e.compareDocumentPosition(i)))}:function(e,t){if(t)for(;t=t.parentNode;)if(t===e)return!0;return!1},I=t?function(e,t){if(e===t)return d=!0,0;var i=!e.compareDocumentPosition-!t.compareDocumentPosition;return i||(1&(i=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!n.sortDetached&&t.compareDocumentPosition(e)===i?e==f||e.ownerDocument==w&&b(w,e)?-1:t==f||t.ownerDocument==w&&b(w,t)?1:u?z(u,e)-z(u,t):0:4&i?-1:1)}:function(e,t){if(e===t)return d=!0,0;var n,i=0,o=e.parentNode,s=t.parentNode,r=[e],a=[t];if(!o||!s)return e==f?-1:t==f?1:o?-1:s?1:u?z(u,e)-z(u,t):0;if(o===s)return he(e,t);for(n=e;n=n.parentNode;)r.unshift(n);for(n=t;n=n.parentNode;)a.unshift(n);for(;r[i]===a[i];)i++;return i?he(r[i],a[i]):r[i]==w?-1:a[i]==w?1:0},f):f},ae.matches=function(e,t){return ae(e,null,null,t)},ae.matchesSelector=function(e,t){if(h(e),n.matchesSelector&&m&&!k[t+" "]&&(!v||!v.test(t))&&(!g||!g.test(t)))try{var i=y.call(e,t);if(i||n.disconnectedMatch||e.document&&11!==e.document.nodeType)return i}catch(e){k(t,!0)}return ae(t,f,null,[e]).length>0},ae.contains=function(e,t){return(e.ownerDocument||e)!=f&&h(e),b(e,t)},ae.attr=function(e,t){(e.ownerDocument||e)!=f&&h(e);var o=i.attrHandle[t.toLowerCase()],s=o&&A.call(i.attrHandle,t.toLowerCase())?o(e,t,!m):void 0;return void 0!==s?s:n.attributes||!m?e.getAttribute(t):(s=e.getAttributeNode(t))&&s.specified?s.value:null},ae.escape=function(e){return(e+"").replace(ie,oe)},ae.error=function(e){throw new Error("Syntax error, unrecognized expression: "+e)},ae.uniqueSort=function(e){var t,i=[],o=0,s=0;if(d=!n.detectDuplicates,u=!n.sortStable&&e.slice(0),e.sort(I),d){for(;t=e[s++];)t===e[s]&&(o=i.push(s));for(;o--;)e.splice(i[o],1)}return u=null,e},o=ae.getText=function(e){var t,n="",i=0,s=e.nodeType;if(s){if(1===s||9===s||11===s){if("string"==typeof e.textContent)return e.textContent;for(e=e.firstChild;e;e=e.nextSibling)n+=o(e)}else if(3===s||4===s)return e.nodeValue}else for(;t=e[i++];)n+=o(t);return n},i=ae.selectors={cacheLength:50,createPseudo:ce,match:G,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||ae.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&ae.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&V.test(n)&&(t=r(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=C[e+" "];return t||(t=new RegExp("(^|[\\x20\\t\\r\\n\\f])"+e+"("+H+"|$)"),C(e,(function(e){return t.test("string"==typeof e.className&&e.className||void 0!==e.getAttribute&&e.getAttribute("class")||"")})))},ATTR:function(e,t,n){return function(i){var o=ae.attr(i,e);return null==o?"!="===t:!t||(o+="","="===t?o===n:"!="===t?o!==n:"^="===t?n&&0===o.indexOf(n):"*="===t?n&&o.indexOf(n)>-1:"$="===t?n&&o.slice(-n.length)===n:"~="===t?(" "+o.replace(F," ")+" ").indexOf(n)>-1:"|="===t&&(o===n||o.slice(0,n.length+1)===n+"-"))}},CHILD:function(e,t,n,i,o){var s="nth"!==e.slice(0,3),r="last"!==e.slice(-4),a="of-type"===t;return 1===i&&0===o?function(e){return!!e.parentNode}:function(t,n,l){var c,u,d,h,f,p,m=s!==r?"nextSibling":"previousSibling",g=t.parentNode,v=a&&t.nodeName.toLowerCase(),y=!l&&!a,b=!1;if(g){if(s){for(;m;){for(h=t;h=h[m];)if(a?h.nodeName.toLowerCase()===v:1===h.nodeType)return!1;p=m="only"===e&&!p&&"nextSibling"}return!0}if(p=[r?g.firstChild:g.lastChild],r&&y){for(b=(f=(c=(u=(d=(h=g)[_]||(h[_]={}))[h.uniqueID]||(d[h.uniqueID]={}))[e]||[])[0]===x&&c[1])&&c[2],h=f&&g.childNodes[f];h=++f&&h&&h[m]||(b=f=0)||p.pop();)if(1===h.nodeType&&++b&&h===t){u[e]=[x,f,b];break}}else if(y&&(b=f=(c=(u=(d=(h=t)[_]||(h[_]={}))[h.uniqueID]||(d[h.uniqueID]={}))[e]||[])[0]===x&&c[1]),!1===b)for(;(h=++f&&h&&h[m]||(b=f=0)||p.pop())&&((a?h.nodeName.toLowerCase()!==v:1!==h.nodeType)||!++b||(y&&((u=(d=h[_]||(h[_]={}))[h.uniqueID]||(d[h.uniqueID]={}))[e]=[x,b]),h!==t)););return(b-=o)===i||b%i==0&&b/i>=0}}},PSEUDO:function(e,t){var n,o=i.pseudos[e]||i.setFilters[e.toLowerCase()]||ae.error("unsupported pseudo: "+e);return o[_]?o(t):o.length>1?(n=[e,e,"",t],i.setFilters.hasOwnProperty(e.toLowerCase())?ce((function(e,n){for(var i,s=o(e,t),r=s.length;r--;)e[i=z(e,s[r])]=!(n[i]=s[r])})):function(e){return o(e,0,n)}):o}},pseudos:{not:ce((function(e){var t=[],n=[],i=a(e.replace(B,"$1"));return i[_]?ce((function(e,t,n,o){for(var s,r=i(e,null,o,[]),a=e.length;a--;)(s=r[a])&&(e[a]=!(t[a]=s))})):function(e,o,s){return t[0]=e,i(t,null,s,n),t[0]=null,!n.pop()}})),has:ce((function(e){return function(t){return ae(e,t).length>0}})),contains:ce((function(e){return e=e.replace(te,ne),function(t){return(t.textContent||o(t)).indexOf(e)>-1}})),lang:ce((function(e){return Q.test(e||"")||ae.error("unsupported lang: "+e),e=e.replace(te,ne).toLowerCase(),function(t){var n;do{if(n=m?t.lang:t.getAttribute("xml:lang")||t.getAttribute("lang"))return(n=n.toLowerCase())===e||0===n.indexOf(e+"-")}while((t=t.parentNode)&&1===t.nodeType);return!1}})),target:function(t){var n=e.location&&e.location.hash;return n&&n.slice(1)===t.id},root:function(e){return e===p},focus:function(e){return e===f.activeElement&&(!f.hasFocus||f.hasFocus())&&!!(e.type||e.href||~e.tabIndex)},enabled:me(!1),disabled:me(!0),checked:function(e){var t=e.nodeName.toLowerCase();return"input"===t&&!!e.checked||"option"===t&&!!e.selected},selected:function(e){return e.parentNode&&e.parentNode.selectedIndex,!0===e.selected},empty:function(e){for(e=e.firstChild;e;e=e.nextSibling)if(e.nodeType<6)return!1;return!0},parent:function(e){return!i.pseudos.empty(e)},header:function(e){return K.test(e.nodeName)},input:function(e){return X.test(e.nodeName)},button:function(e){var t=e.nodeName.toLowerCase();return"input"===t&&"button"===e.type||"button"===t},text:function(e){var t;return"input"===e.nodeName.toLowerCase()&&"text"===e.type&&(null==(t=e.getAttribute("type"))||"text"===t.toLowerCase())},first:ge((function(){return[0]})),last:ge((function(e,t){return[t-1]})),eq:ge((function(e,t,n){return[n<0?n+t:n]})),even:ge((function(e,t){for(var n=0;nt?t:n;--i>=0;)e.push(i);return e})),gt:ge((function(e,t,n){for(var i=n<0?n+t:n;++i1?function(t,n,i){for(var o=e.length;o--;)if(!e[o](t,n,i))return!1;return!0}:e[0]}function xe(e,t,n,i,o){for(var s,r=[],a=0,l=e.length,c=null!=t;a-1&&(s[c]=!(r[c]=d))}}else v=xe(v===r?v.splice(p,v.length):v),o?o(null,r,v,l):L.apply(r,v)}))}function Ce(e){for(var t,n,o,s=e.length,r=i.relative[e[0].type],a=r||i.relative[" "],l=r?1:0,u=_e((function(e){return e===t}),a,!0),d=_e((function(e){return z(t,e)>-1}),a,!0),h=[function(e,n,i){var o=!r&&(i||n!==c)||((t=n).nodeType?u(e,n,i):d(e,n,i));return t=null,o}];l1&&we(h),l>1&&be(e.slice(0,l-1).concat({value:" "===e[l-2].type?"*":""})).replace(B,"$1"),n,l0,o=e.length>0,s=function(s,r,a,l,u){var d,p,g,v=0,y="0",b=s&&[],_=[],w=c,E=s||o&&i.find.TAG("*",u),C=x+=null==w?1:Math.random()||.1,S=E.length;for(u&&(c=r==f||r||u);y!==S&&null!=(d=E[y]);y++){if(o&&d){for(p=0,r||d.ownerDocument==f||(h(d),a=!m);g=e[p++];)if(g(d,r||f,a)){l.push(d);break}u&&(x=C)}n&&((d=!g&&d)&&v--,s&&b.push(d))}if(v+=y,n&&y!==v){for(p=0;g=t[p++];)g(b,_,r,a);if(s){if(v>0)for(;y--;)b[y]||_[y]||(_[y]=D.call(l));_=xe(_)}L.apply(l,_),u&&!s&&_.length>0&&v+t.length>1&&ae.uniqueSort(l)}return u&&(x=C,c=w),b};return n?ce(s):s}(s,o)),a.selector=e}return a},l=ae.select=function(e,t,n,o){var s,l,c,u,d,h="function"==typeof e&&e,f=!o&&r(e=h.selector||e);if(n=n||[],1===f.length){if((l=f[0]=f[0].slice(0)).length>2&&"ID"===(c=l[0]).type&&9===t.nodeType&&m&&i.relative[l[1].type]){if(!(t=(i.find.ID(c.matches[0].replace(te,ne),t)||[])[0]))return n;h&&(t=t.parentNode),e=e.slice(l.shift().value.length)}for(s=G.needsContext.test(e)?0:l.length;s--&&(c=l[s],!i.relative[u=c.type]);)if((d=i.find[u])&&(o=d(c.matches[0].replace(te,ne),ee.test(l[0].type)&&ve(t.parentNode)||t))){if(l.splice(s,1),!(e=o.length&&be(l)))return L.apply(n,o),n;break}}return(h||a(e,f))(o,t,!m,n,!t||ee.test(e)&&ve(t.parentNode)||t),n},n.sortStable=_.split("").sort(I).join("")===_,n.detectDuplicates=!!d,h(),n.sortDetached=ue((function(e){return 1&e.compareDocumentPosition(f.createElement("fieldset"))})),ue((function(e){return e.innerHTML="","#"===e.firstChild.getAttribute("href")}))||de("type|href|height|width",(function(e,t,n){if(!n)return e.getAttribute(t,"type"===t.toLowerCase()?1:2)})),n.attributes&&ue((function(e){return e.innerHTML="",e.firstChild.setAttribute("value",""),""===e.firstChild.getAttribute("value")}))||de("value",(function(e,t,n){if(!n&&"input"===e.nodeName.toLowerCase())return e.defaultValue})),ue((function(e){return null==e.getAttribute("disabled")}))||de(P,(function(e,t,n){var i;if(!n)return!0===e[t]?t.toLowerCase():(i=e.getAttributeNode(t))&&i.specified?i.value:null})),ae}(e);w.find=E,w.expr=E.selectors,w.expr[":"]=w.expr.pseudos,w.uniqueSort=w.unique=E.uniqueSort,w.text=E.getText,w.isXMLDoc=E.isXML,w.contains=E.contains,w.escapeSelector=E.escape;var C=function(e,t,n){for(var i=[],o=void 0!==n;(e=e[t])&&9!==e.nodeType;)if(1===e.nodeType){if(o&&w(e).is(n))break;i.push(e)}return i},S=function(e,t){for(var n=[];e;e=e.nextSibling)1===e.nodeType&&e!==t&&n.push(e);return n},T=w.expr.match.needsContext;function k(e,t){return e.nodeName&&e.nodeName.toLowerCase()===t.toLowerCase()}var I=/^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function A(e,t,n){return p(t)?w.grep(e,(function(e,i){return!!t.call(e,i,e)!==n})):t.nodeType?w.grep(e,(function(e){return e===t!==n})):"string"!=typeof t?w.grep(e,(function(e){return a.call(t,e)>-1!==n})):w.filter(t,e,n)}w.filter=function(e,t,n){var i=t[0];return n&&(e=":not("+e+")"),1===t.length&&1===i.nodeType?w.find.matchesSelector(i,e)?[i]:[]:w.find.matches(e,w.grep(t,(function(e){return 1===e.nodeType})))},w.fn.extend({find:function(e){var t,n,i=this.length,o=this;if("string"!=typeof e)return this.pushStack(w(e).filter((function(){for(t=0;t1?w.uniqueSort(n):n},filter:function(e){return this.pushStack(A(this,e||[],!1))},not:function(e){return this.pushStack(A(this,e||[],!0))},is:function(e){return!!A(this,"string"==typeof e&&T.test(e)?w(e):e||[],!1).length}});var O,D=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/;(w.fn.init=function(e,t,n){var i,o;if(!e)return this;if(n=n||O,"string"==typeof e){if(!(i="<"===e[0]&&">"===e[e.length-1]&&e.length>=3?[null,e,null]:D.exec(e))||!i[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(i[1]){if(t=t instanceof w?t[0]:t,w.merge(this,w.parseHTML(i[1],t&&t.nodeType?t.ownerDocument||t:g,!0)),I.test(i[1])&&w.isPlainObject(t))for(i in t)p(this[i])?this[i](t[i]):this.attr(i,t[i]);return this}return(o=g.getElementById(i[2]))&&(this[0]=o,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):p(e)?void 0!==n.ready?n.ready(e):e(w):w.makeArray(e,this)}).prototype=w.fn,O=w(g);var N=/^(?:parents|prev(?:Until|All))/,L={children:!0,contents:!0,next:!0,prev:!0};function $(e,t){for(;(e=e[t])&&1!==e.nodeType;);return e}w.fn.extend({has:function(e){var t=w(e,this),n=t.length;return this.filter((function(){for(var e=0;e-1:1===n.nodeType&&w.find.matchesSelector(n,e))){s.push(n);break}return this.pushStack(s.length>1?w.uniqueSort(s):s)},index:function(e){return e?"string"==typeof e?a.call(w(e),this[0]):a.call(this,e.jquery?e[0]:e):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(e,t){return this.pushStack(w.uniqueSort(w.merge(this.get(),w(e,t))))},addBack:function(e){return this.add(null==e?this.prevObject:this.prevObject.filter(e))}}),w.each({parent:function(e){var t=e.parentNode;return t&&11!==t.nodeType?t:null},parents:function(e){return C(e,"parentNode")},parentsUntil:function(e,t,n){return C(e,"parentNode",n)},next:function(e){return $(e,"nextSibling")},prev:function(e){return $(e,"previousSibling")},nextAll:function(e){return C(e,"nextSibling")},prevAll:function(e){return C(e,"previousSibling")},nextUntil:function(e,t,n){return C(e,"nextSibling",n)},prevUntil:function(e,t,n){return C(e,"previousSibling",n)},siblings:function(e){return S((e.parentNode||{}).firstChild,e)},children:function(e){return S(e.firstChild)},contents:function(e){return null!=e.contentDocument&&i(e.contentDocument)?e.contentDocument:(k(e,"template")&&(e=e.content||e),w.merge([],e.childNodes))}},(function(e,t){w.fn[e]=function(n,i){var o=w.map(this,t,n);return"Until"!==e.slice(-5)&&(i=n),i&&"string"==typeof i&&(o=w.filter(i,o)),this.length>1&&(L[e]||w.uniqueSort(o),N.test(e)&&o.reverse()),this.pushStack(o)}}));var z=/[^\x20\t\r\n\f]+/g;function P(e){return e}function H(e){throw e}function j(e,t,n,i){var o;try{e&&p(o=e.promise)?o.call(e).done(t).fail(n):e&&p(o=e.then)?o.call(e,t,n):t.apply(void 0,[e].slice(i))}catch(e){n.apply(void 0,[e])}}w.Callbacks=function(e){e="string"==typeof e?function(e){var t={};return w.each(e.match(z)||[],(function(e,n){t[n]=!0})),t}(e):w.extend({},e);var t,n,i,o,s=[],r=[],a=-1,l=function(){for(o=o||e.once,i=t=!0;r.length;a=-1)for(n=r.shift();++a-1;)s.splice(n,1),n<=a&&a--})),this},has:function(e){return e?w.inArray(e,s)>-1:s.length>0},empty:function(){return s&&(s=[]),this},disable:function(){return o=r=[],s=n="",this},disabled:function(){return!s},lock:function(){return o=r=[],n||t||(s=n=""),this},locked:function(){return!!o},fireWith:function(e,n){return o||(n=[e,(n=n||[]).slice?n.slice():n],r.push(n),t||l()),this},fire:function(){return c.fireWith(this,arguments),this},fired:function(){return!!i}};return c},w.extend({Deferred:function(t){var n=[["notify","progress",w.Callbacks("memory"),w.Callbacks("memory"),2],["resolve","done",w.Callbacks("once memory"),w.Callbacks("once memory"),0,"resolved"],["reject","fail",w.Callbacks("once memory"),w.Callbacks("once memory"),1,"rejected"]],i="pending",o={state:function(){return i},always:function(){return s.done(arguments).fail(arguments),this},catch:function(e){return o.then(null,e)},pipe:function(){var e=arguments;return w.Deferred((function(t){w.each(n,(function(n,i){var o=p(e[i[4]])&&e[i[4]];s[i[1]]((function(){var e=o&&o.apply(this,arguments);e&&p(e.promise)?e.promise().progress(t.notify).done(t.resolve).fail(t.reject):t[i[0]+"With"](this,o?[e]:arguments)}))})),e=null})).promise()},then:function(t,i,o){var s=0;function r(t,n,i,o){return function(){var a=this,l=arguments,c=function(){var e,c;if(!(t=s&&(i!==H&&(a=void 0,l=[e]),n.rejectWith(a,l))}};t?u():(w.Deferred.getStackHook&&(u.stackTrace=w.Deferred.getStackHook()),e.setTimeout(u))}}return w.Deferred((function(e){n[0][3].add(r(0,e,p(o)?o:P,e.notifyWith)),n[1][3].add(r(0,e,p(t)?t:P)),n[2][3].add(r(0,e,p(i)?i:H))})).promise()},promise:function(e){return null!=e?w.extend(e,o):o}},s={};return w.each(n,(function(e,t){var r=t[2],a=t[5];o[t[1]]=r.add,a&&r.add((function(){i=a}),n[3-e][2].disable,n[3-e][3].disable,n[0][2].lock,n[0][3].lock),r.add(t[3].fire),s[t[0]]=function(){return s[t[0]+"With"](this===s?void 0:this,arguments),this},s[t[0]+"With"]=r.fireWith})),o.promise(s),t&&t.call(s,s),s},when:function(e){var t=arguments.length,n=t,i=Array(n),s=o.call(arguments),r=w.Deferred(),a=function(e){return function(n){i[e]=this,s[e]=arguments.length>1?o.call(arguments):n,--t||r.resolveWith(i,s)}};if(t<=1&&(j(e,r.done(a(n)).resolve,r.reject,!t),"pending"===r.state()||p(s[n]&&s[n].then)))return r.then();for(;n--;)j(s[n],a(n),r.reject);return r.promise()}});var M=/^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/;w.Deferred.exceptionHook=function(t,n){e.console&&e.console.warn&&t&&M.test(t.name)&&e.console.warn("jQuery.Deferred exception: "+t.message,t.stack,n)},w.readyException=function(t){e.setTimeout((function(){throw t}))};var R=w.Deferred();function F(){g.removeEventListener("DOMContentLoaded",F),e.removeEventListener("load",F),w.ready()}w.fn.ready=function(e){return R.then(e).catch((function(e){w.readyException(e)})),this},w.extend({isReady:!1,readyWait:1,ready:function(e){(!0===e?--w.readyWait:w.isReady)||(w.isReady=!0,!0!==e&&--w.readyWait>0||R.resolveWith(g,[w]))}}),w.ready.then=R.then,"complete"===g.readyState||"loading"!==g.readyState&&!g.documentElement.doScroll?e.setTimeout(w.ready):(g.addEventListener("DOMContentLoaded",F),e.addEventListener("load",F));var B=function(e,t,n,i,o,s,r){var a=0,l=e.length,c=null==n;if("object"===b(n))for(a in o=!0,n)B(e,t,a,n[a],!0,s,r);else if(void 0!==i&&(o=!0,p(i)||(r=!0),c&&(r?(t.call(e,i),t=null):(c=t,t=function(e,t,n){return c.call(w(e),n)})),t))for(;a1,null,!0)},removeData:function(e){return this.each((function(){X.remove(this,e)}))}}),w.extend({queue:function(e,t,n){var i;if(e)return t=(t||"fx")+"queue",i=Y.get(e,t),n&&(!i||Array.isArray(n)?i=Y.access(e,t,w.makeArray(n)):i.push(n)),i||[]},dequeue:function(e,t){t=t||"fx";var n=w.queue(e,t),i=n.length,o=n.shift(),s=w._queueHooks(e,t);"inprogress"===o&&(o=n.shift(),i--),o&&("fx"===t&&n.unshift("inprogress"),delete s.stop,o.call(e,(function(){w.dequeue(e,t)}),s)),!i&&s&&s.empty.fire()},_queueHooks:function(e,t){var n=t+"queueHooks";return Y.get(e,n)||Y.access(e,n,{empty:w.Callbacks("once memory").add((function(){Y.remove(e,[t+"queue",n])}))})}}),w.fn.extend({queue:function(e,t){var n=2;return"string"!=typeof e&&(t=e,e="fx",n--),arguments.length\x20\t\r\n\f]*)/i,me=/^$|^module$|\/(?:java|ecma)script/i;de=g.createDocumentFragment().appendChild(g.createElement("div")),(he=g.createElement("input")).setAttribute("type","radio"),he.setAttribute("checked","checked"),he.setAttribute("name","t"),de.appendChild(he),f.checkClone=de.cloneNode(!0).cloneNode(!0).lastChild.checked,de.innerHTML="",f.noCloneChecked=!!de.cloneNode(!0).lastChild.defaultValue,de.innerHTML="",f.option=!!de.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n=void 0!==e.getElementsByTagName?e.getElementsByTagName(t||"*"):void 0!==e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&k(e,t)?w.merge([e],n):n}function ye(e,t){for(var n=0,i=e.length;n",""]);var be=/<|&#?\w+;/;function _e(e,t,n,i,o){for(var s,r,a,l,c,u,d=t.createDocumentFragment(),h=[],f=0,p=e.length;f-1)o&&o.push(s);else if(c=oe(s),r=ve(d.appendChild(s),"script"),c&&ye(r),n)for(u=0;s=r[u++];)me.test(s.type||"")&&n.push(s);return d}var we=/^([^.]*)(?:\.(.+)|)/;function xe(){return!0}function Ee(){return!1}function Ce(e,t){return e===function(){try{return g.activeElement}catch(e){}}()==("focus"===t)}function Se(e,t,n,i,o,s){var r,a;if("object"==typeof t){for(a in"string"!=typeof n&&(i=i||n,n=void 0),t)Se(e,a,n,i,t[a],s);return e}if(null==i&&null==o?(o=n,i=n=void 0):null==o&&("string"==typeof n?(o=i,i=void 0):(o=i,i=n,n=void 0)),!1===o)o=Ee;else if(!o)return e;return 1===s&&(r=o,o=function(e){return w().off(e),r.apply(this,arguments)},o.guid=r.guid||(r.guid=w.guid++)),e.each((function(){w.event.add(this,t,o,i,n)}))}function Te(e,t,n){n?(Y.set(e,t,!1),w.event.add(e,t,{namespace:!1,handler:function(e){var i,s,r=Y.get(this,t);if(1&e.isTrigger&&this[t]){if(r.length)(w.event.special[t]||{}).delegateType&&e.stopPropagation();else if(r=o.call(arguments),Y.set(this,t,r),i=n(this,t),this[t](),r!==(s=Y.get(this,t))||i?Y.set(this,t,!1):s={},r!==s)return e.stopImmediatePropagation(),e.preventDefault(),s&&s.value}else r.length&&(Y.set(this,t,{value:w.event.trigger(w.extend(r[0],w.Event.prototype),r.slice(1),this)}),e.stopImmediatePropagation())}})):void 0===Y.get(e,t)&&w.event.add(e,t,xe)}w.event={global:{},add:function(e,t,n,i,o){var s,r,a,l,c,u,d,h,f,p,m,g=Y.get(e);if(Q(e))for(n.handler&&(n=(s=n).handler,o=s.selector),o&&w.find.matchesSelector(ie,o),n.guid||(n.guid=w.guid++),(l=g.events)||(l=g.events=Object.create(null)),(r=g.handle)||(r=g.handle=function(t){return void 0!==w&&w.event.triggered!==t.type?w.event.dispatch.apply(e,arguments):void 0}),c=(t=(t||"").match(z)||[""]).length;c--;)f=m=(a=we.exec(t[c])||[])[1],p=(a[2]||"").split(".").sort(),f&&(d=w.event.special[f]||{},f=(o?d.delegateType:d.bindType)||f,d=w.event.special[f]||{},u=w.extend({type:f,origType:m,data:i,handler:n,guid:n.guid,selector:o,needsContext:o&&w.expr.match.needsContext.test(o),namespace:p.join(".")},s),(h=l[f])||((h=l[f]=[]).delegateCount=0,d.setup&&!1!==d.setup.call(e,i,p,r)||e.addEventListener&&e.addEventListener(f,r)),d.add&&(d.add.call(e,u),u.handler.guid||(u.handler.guid=n.guid)),o?h.splice(h.delegateCount++,0,u):h.push(u),w.event.global[f]=!0)},remove:function(e,t,n,i,o){var s,r,a,l,c,u,d,h,f,p,m,g=Y.hasData(e)&&Y.get(e);if(g&&(l=g.events)){for(c=(t=(t||"").match(z)||[""]).length;c--;)if(f=m=(a=we.exec(t[c])||[])[1],p=(a[2]||"").split(".").sort(),f){for(d=w.event.special[f]||{},h=l[f=(i?d.delegateType:d.bindType)||f]||[],a=a[2]&&new RegExp("(^|\\.)"+p.join("\\.(?:.*\\.|)")+"(\\.|$)"),r=s=h.length;s--;)u=h[s],!o&&m!==u.origType||n&&n.guid!==u.guid||a&&!a.test(u.namespace)||i&&i!==u.selector&&("**"!==i||!u.selector)||(h.splice(s,1),u.selector&&h.delegateCount--,d.remove&&d.remove.call(e,u));r&&!h.length&&(d.teardown&&!1!==d.teardown.call(e,p,g.handle)||w.removeEvent(e,f,g.handle),delete l[f])}else for(f in l)w.event.remove(e,f+t[c],n,i,!0);w.isEmptyObject(l)&&Y.remove(e,"handle events")}},dispatch:function(e){var t,n,i,o,s,r,a=new Array(arguments.length),l=w.event.fix(e),c=(Y.get(this,"events")||Object.create(null))[l.type]||[],u=w.event.special[l.type]||{};for(a[0]=l,t=1;t=1))for(;c!==this;c=c.parentNode||this)if(1===c.nodeType&&("click"!==e.type||!0!==c.disabled)){for(s=[],r={},n=0;n-1:w.find(o,this,null,[c]).length),r[o]&&s.push(i);s.length&&a.push({elem:c,handlers:s})}return c=this,l\s*$/g;function Oe(e,t){return k(e,"table")&&k(11!==t.nodeType?t:t.firstChild,"tr")&&w(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function Ne(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,i,o,s,r,a;if(1===t.nodeType){if(Y.hasData(e)&&(a=Y.get(e).events))for(o in Y.remove(t,"handle events"),a)for(n=0,i=a[o].length;n1&&"string"==typeof g&&!f.checkClone&&Ie.test(g))return e.each((function(o){var s=e.eq(o);v&&(t[0]=g.call(this,o,s.html())),ze(s,t,n,i)}));if(h&&(r=(o=_e(t,e[0].ownerDocument,!1,e,i)).firstChild,1===o.childNodes.length&&(o=r),r||i)){for(l=(a=w.map(ve(o,"script"),De)).length;d0&&ye(r,!l&&ve(e,"script")),a},cleanData:function(e){for(var t,n,i,o=w.event.special,s=0;void 0!==(n=e[s]);s++)if(Q(n)){if(t=n[Y.expando]){if(t.events)for(i in t.events)o[i]?w.event.remove(n,i):w.removeEvent(n,i,t.handle);n[Y.expando]=void 0}n[X.expando]&&(n[X.expando]=void 0)}}}),w.fn.extend({detach:function(e){return Pe(this,e,!0)},remove:function(e){return Pe(this,e)},text:function(e){return B(this,(function(e){return void 0===e?w.text(this):this.empty().each((function(){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||(this.textContent=e)}))}),null,e,arguments.length)},append:function(){return ze(this,arguments,(function(e){1!==this.nodeType&&11!==this.nodeType&&9!==this.nodeType||Oe(this,e).appendChild(e)}))},prepend:function(){return ze(this,arguments,(function(e){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var t=Oe(this,e);t.insertBefore(e,t.firstChild)}}))},before:function(){return ze(this,arguments,(function(e){this.parentNode&&this.parentNode.insertBefore(e,this)}))},after:function(){return ze(this,arguments,(function(e){this.parentNode&&this.parentNode.insertBefore(e,this.nextSibling)}))},empty:function(){for(var e,t=0;null!=(e=this[t]);t++)1===e.nodeType&&(w.cleanData(ve(e,!1)),e.textContent="");return this},clone:function(e,t){return e=null!=e&&e,t=null==t?e:t,this.map((function(){return w.clone(this,e,t)}))},html:function(e){return B(this,(function(e){var t=this[0]||{},n=0,i=this.length;if(void 0===e&&1===t.nodeType)return t.innerHTML;if("string"==typeof e&&!ke.test(e)&&!ge[(pe.exec(e)||["",""])[1].toLowerCase()]){e=w.htmlPrefilter(e);try{for(;n=0&&(l+=Math.max(0,Math.ceil(e["offset"+t[0].toUpperCase()+t.slice(1)]-s-l-a-.5))||0),l}function Je(e,t,n){var i=je(e),o=(!f.boxSizingReliable()||n)&&"border-box"===w.css(e,"boxSizing",!1,i),s=o,r=Fe(e,t,i),a="offset"+t[0].toUpperCase()+t.slice(1);if(He.test(r)){if(!n)return r;r="auto"}return(!f.boxSizingReliable()&&o||!f.reliableTrDimensions()&&k(e,"tr")||"auto"===r||!parseFloat(r)&&"inline"===w.css(e,"display",!1,i))&&e.getClientRects().length&&(o="border-box"===w.css(e,"boxSizing",!1,i),(s=a in e)&&(r=e[a])),(r=parseFloat(r)||0)+Ze(e,t,n||(o?"border":"content"),s,i,r)+"px"}function et(e,t,n,i,o){return new et.prototype.init(e,t,n,i,o)}w.extend({cssHooks:{opacity:{get:function(e,t){if(t){var n=Fe(e,"opacity");return""===n?"1":n}}}},cssNumber:{animationIterationCount:!0,columnCount:!0,fillOpacity:!0,flexGrow:!0,flexShrink:!0,fontWeight:!0,gridArea:!0,gridColumn:!0,gridColumnEnd:!0,gridColumnStart:!0,gridRow:!0,gridRowEnd:!0,gridRowStart:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{},style:function(e,t,n,i){if(e&&3!==e.nodeType&&8!==e.nodeType&&e.style){var o,s,r,a=V(t),l=Ge.test(t),c=e.style;if(l||(t=Ve(a)),r=w.cssHooks[t]||w.cssHooks[a],void 0===n)return r&&"get"in r&&void 0!==(o=r.get(e,!1,i))?o:c[t];"string"===(s=typeof n)&&(o=te.exec(n))&&o[1]&&(n=ae(e,t,o),s="number"),null!=n&&n==n&&("number"!==s||l||(n+=o&&o[3]||(w.cssNumber[a]?"":"px")),f.clearCloneStyle||""!==n||0!==t.indexOf("background")||(c[t]="inherit"),r&&"set"in r&&void 0===(n=r.set(e,n,i))||(l?c.setProperty(t,n):c[t]=n))}},css:function(e,t,n,i){var o,s,r,a=V(t);return Ge.test(t)||(t=Ve(a)),(r=w.cssHooks[t]||w.cssHooks[a])&&"get"in r&&(o=r.get(e,!0,n)),void 0===o&&(o=Fe(e,t,i)),"normal"===o&&t in Xe&&(o=Xe[t]),""===n||n?(s=parseFloat(o),!0===n||isFinite(s)?s||0:o):o}}),w.each(["height","width"],(function(e,t){w.cssHooks[t]={get:function(e,n,i){if(n)return!Qe.test(w.css(e,"display"))||e.getClientRects().length&&e.getBoundingClientRect().width?Je(e,t,i):Me(e,Ye,(function(){return Je(e,t,i)}))},set:function(e,n,i){var o,s=je(e),r=!f.scrollboxSize()&&"absolute"===s.position,a=(r||i)&&"border-box"===w.css(e,"boxSizing",!1,s),l=i?Ze(e,t,i,a,s):0;return a&&r&&(l-=Math.ceil(e["offset"+t[0].toUpperCase()+t.slice(1)]-parseFloat(s[t])-Ze(e,t,"border",!1,s)-.5)),l&&(o=te.exec(n))&&"px"!==(o[3]||"px")&&(e.style[t]=n,n=w.css(e,t)),Ke(0,n,l)}}})),w.cssHooks.marginLeft=Be(f.reliableMarginLeft,(function(e,t){if(t)return(parseFloat(Fe(e,"marginLeft"))||e.getBoundingClientRect().left-Me(e,{marginLeft:0},(function(){return e.getBoundingClientRect().left})))+"px"})),w.each({margin:"",padding:"",border:"Width"},(function(e,t){w.cssHooks[e+t]={expand:function(n){for(var i=0,o={},s="string"==typeof n?n.split(" "):[n];i<4;i++)o[e+ne[i]+t]=s[i]||s[i-2]||s[0];return o}},"margin"!==e&&(w.cssHooks[e+t].set=Ke)})),w.fn.extend({css:function(e,t){return B(this,(function(e,t,n){var i,o,s={},r=0;if(Array.isArray(t)){for(i=je(e),o=t.length;r1)}}),w.Tween=et,et.prototype={constructor:et,init:function(e,t,n,i,o,s){this.elem=e,this.prop=n,this.easing=o||w.easing._default,this.options=t,this.start=this.now=this.cur(),this.end=i,this.unit=s||(w.cssNumber[n]?"":"px")},cur:function(){var e=et.propHooks[this.prop];return e&&e.get?e.get(this):et.propHooks._default.get(this)},run:function(e){var t,n=et.propHooks[this.prop];return this.options.duration?this.pos=t=w.easing[this.easing](e,this.options.duration*e,0,1,this.options.duration):this.pos=t=e,this.now=(this.end-this.start)*t+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),n&&n.set?n.set(this):et.propHooks._default.set(this),this}},et.prototype.init.prototype=et.prototype,et.propHooks={_default:{get:function(e){var t;return 1!==e.elem.nodeType||null!=e.elem[e.prop]&&null==e.elem.style[e.prop]?e.elem[e.prop]:(t=w.css(e.elem,e.prop,""))&&"auto"!==t?t:0},set:function(e){w.fx.step[e.prop]?w.fx.step[e.prop](e):1!==e.elem.nodeType||!w.cssHooks[e.prop]&&null==e.elem.style[Ve(e.prop)]?e.elem[e.prop]=e.now:w.style(e.elem,e.prop,e.now+e.unit)}}},et.propHooks.scrollTop=et.propHooks.scrollLeft={set:function(e){e.elem.nodeType&&e.elem.parentNode&&(e.elem[e.prop]=e.now)}},w.easing={linear:function(e){return e},swing:function(e){return.5-Math.cos(e*Math.PI)/2},_default:"swing"},w.fx=et.prototype.init,w.fx.step={};var tt,nt,it=/^(?:toggle|show|hide)$/,ot=/queueHooks$/;function st(){nt&&(!1===g.hidden&&e.requestAnimationFrame?e.requestAnimationFrame(st):e.setTimeout(st,w.fx.interval),w.fx.tick())}function rt(){return e.setTimeout((function(){tt=void 0})),tt=Date.now()}function at(e,t){var n,i=0,o={height:e};for(t=t?1:0;i<4;i+=2-t)o["margin"+(n=ne[i])]=o["padding"+n]=e;return t&&(o.opacity=o.width=e),o}function lt(e,t,n){for(var i,o=(ct.tweeners[t]||[]).concat(ct.tweeners["*"]),s=0,r=o.length;s1)},removeAttr:function(e){return this.each((function(){w.removeAttr(this,e)}))}}),w.extend({attr:function(e,t,n){var i,o,s=e.nodeType;if(3!==s&&8!==s&&2!==s)return void 0===e.getAttribute?w.prop(e,t,n):(1===s&&w.isXMLDoc(e)||(o=w.attrHooks[t.toLowerCase()]||(w.expr.match.bool.test(t)?ut:void 0)),void 0!==n?null===n?void w.removeAttr(e,t):o&&"set"in o&&void 0!==(i=o.set(e,n,t))?i:(e.setAttribute(t,n+""),n):o&&"get"in o&&null!==(i=o.get(e,t))?i:null==(i=w.find.attr(e,t))?void 0:i)},attrHooks:{type:{set:function(e,t){if(!f.radioValue&&"radio"===t&&k(e,"input")){var n=e.value;return e.setAttribute("type",t),n&&(e.value=n),t}}}},removeAttr:function(e,t){var n,i=0,o=t&&t.match(z);if(o&&1===e.nodeType)for(;n=o[i++];)e.removeAttribute(n)}}),ut={set:function(e,t,n){return!1===t?w.removeAttr(e,n):e.setAttribute(n,n),n}},w.each(w.expr.match.bool.source.match(/\w+/g),(function(e,t){var n=dt[t]||w.find.attr;dt[t]=function(e,t,i){var o,s,r=t.toLowerCase();return i||(s=dt[r],dt[r]=o,o=null!=n(e,t,i)?r:null,dt[r]=s),o}}));var ht=/^(?:input|select|textarea|button)$/i,ft=/^(?:a|area)$/i;function pt(e){return(e.match(z)||[]).join(" ")}function mt(e){return e.getAttribute&&e.getAttribute("class")||""}function gt(e){return Array.isArray(e)?e:"string"==typeof e&&e.match(z)||[]}w.fn.extend({prop:function(e,t){return B(this,w.prop,e,t,arguments.length>1)},removeProp:function(e){return this.each((function(){delete this[w.propFix[e]||e]}))}}),w.extend({prop:function(e,t,n){var i,o,s=e.nodeType;if(3!==s&&8!==s&&2!==s)return 1===s&&w.isXMLDoc(e)||(t=w.propFix[t]||t,o=w.propHooks[t]),void 0!==n?o&&"set"in o&&void 0!==(i=o.set(e,n,t))?i:e[t]=n:o&&"get"in o&&null!==(i=o.get(e,t))?i:e[t]},propHooks:{tabIndex:{get:function(e){var t=w.find.attr(e,"tabindex");return t?parseInt(t,10):ht.test(e.nodeName)||ft.test(e.nodeName)&&e.href?0:-1}}},propFix:{for:"htmlFor",class:"className"}}),f.optSelected||(w.propHooks.selected={get:function(e){var t=e.parentNode;return t&&t.parentNode&&t.parentNode.selectedIndex,null},set:function(e){var t=e.parentNode;t&&(t.selectedIndex,t.parentNode&&t.parentNode.selectedIndex)}}),w.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],(function(){w.propFix[this.toLowerCase()]=this})),w.fn.extend({addClass:function(e){var t,n,i,o,s,r,a,l=0;if(p(e))return this.each((function(t){w(this).addClass(e.call(this,t,mt(this)))}));if((t=gt(e)).length)for(;n=this[l++];)if(o=mt(n),i=1===n.nodeType&&" "+pt(o)+" "){for(r=0;s=t[r++];)i.indexOf(" "+s+" ")<0&&(i+=s+" ");o!==(a=pt(i))&&n.setAttribute("class",a)}return this},removeClass:function(e){var t,n,i,o,s,r,a,l=0;if(p(e))return this.each((function(t){w(this).removeClass(e.call(this,t,mt(this)))}));if(!arguments.length)return this.attr("class","");if((t=gt(e)).length)for(;n=this[l++];)if(o=mt(n),i=1===n.nodeType&&" "+pt(o)+" "){for(r=0;s=t[r++];)for(;i.indexOf(" "+s+" ")>-1;)i=i.replace(" "+s+" "," ");o!==(a=pt(i))&&n.setAttribute("class",a)}return this},toggleClass:function(e,t){var n=typeof e,i="string"===n||Array.isArray(e);return"boolean"==typeof t&&i?t?this.addClass(e):this.removeClass(e):p(e)?this.each((function(n){w(this).toggleClass(e.call(this,n,mt(this),t),t)})):this.each((function(){var t,o,s,r;if(i)for(o=0,s=w(this),r=gt(e);t=r[o++];)s.hasClass(t)?s.removeClass(t):s.addClass(t);else void 0!==e&&"boolean"!==n||((t=mt(this))&&Y.set(this,"__className__",t),this.setAttribute&&this.setAttribute("class",t||!1===e?"":Y.get(this,"__className__")||""))}))},hasClass:function(e){var t,n,i=0;for(t=" "+e+" ";n=this[i++];)if(1===n.nodeType&&(" "+pt(mt(n))+" ").indexOf(t)>-1)return!0;return!1}});var vt=/\r/g;w.fn.extend({val:function(e){var t,n,i,o=this[0];return arguments.length?(i=p(e),this.each((function(n){var o;1===this.nodeType&&(null==(o=i?e.call(this,n,w(this).val()):e)?o="":"number"==typeof o?o+="":Array.isArray(o)&&(o=w.map(o,(function(e){return null==e?"":e+""}))),(t=w.valHooks[this.type]||w.valHooks[this.nodeName.toLowerCase()])&&"set"in t&&void 0!==t.set(this,o,"value")||(this.value=o))}))):o?(t=w.valHooks[o.type]||w.valHooks[o.nodeName.toLowerCase()])&&"get"in t&&void 0!==(n=t.get(o,"value"))?n:"string"==typeof(n=o.value)?n.replace(vt,""):null==n?"":n:void 0}}),w.extend({valHooks:{option:{get:function(e){var t=w.find.attr(e,"value");return null!=t?t:pt(w.text(e))}},select:{get:function(e){var t,n,i,o=e.options,s=e.selectedIndex,r="select-one"===e.type,a=r?null:[],l=r?s+1:o.length;for(i=s<0?l:r?s:0;i-1)&&(n=!0);return n||(e.selectedIndex=-1),s}}}}),w.each(["radio","checkbox"],(function(){w.valHooks[this]={set:function(e,t){if(Array.isArray(t))return e.checked=w.inArray(w(e).val(),t)>-1}},f.checkOn||(w.valHooks[this].get=function(e){return null===e.getAttribute("value")?"on":e.value})})),f.focusin="onfocusin"in e;var yt=/^(?:focusinfocus|focusoutblur)$/,bt=function(e){e.stopPropagation()};w.extend(w.event,{trigger:function(t,n,i,o){var s,r,a,l,c,d,h,f,v=[i||g],y=u.call(t,"type")?t.type:t,b=u.call(t,"namespace")?t.namespace.split("."):[];if(r=f=a=i=i||g,3!==i.nodeType&&8!==i.nodeType&&!yt.test(y+w.event.triggered)&&(y.indexOf(".")>-1&&(b=y.split("."),y=b.shift(),b.sort()),c=y.indexOf(":")<0&&"on"+y,(t=t[w.expando]?t:new w.Event(y,"object"==typeof t&&t)).isTrigger=o?2:3,t.namespace=b.join("."),t.rnamespace=t.namespace?new RegExp("(^|\\.)"+b.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,t.result=void 0,t.target||(t.target=i),n=null==n?[t]:w.makeArray(n,[t]),h=w.event.special[y]||{},o||!h.trigger||!1!==h.trigger.apply(i,n))){if(!o&&!h.noBubble&&!m(i)){for(l=h.delegateType||y,yt.test(l+y)||(r=r.parentNode);r;r=r.parentNode)v.push(r),a=r;a===(i.ownerDocument||g)&&v.push(a.defaultView||a.parentWindow||e)}for(s=0;(r=v[s++])&&!t.isPropagationStopped();)f=r,t.type=s>1?l:h.bindType||y,(d=(Y.get(r,"events")||Object.create(null))[t.type]&&Y.get(r,"handle"))&&d.apply(r,n),(d=c&&r[c])&&d.apply&&Q(r)&&(t.result=d.apply(r,n),!1===t.result&&t.preventDefault());return t.type=y,o||t.isDefaultPrevented()||h._default&&!1!==h._default.apply(v.pop(),n)||!Q(i)||c&&p(i[y])&&!m(i)&&((a=i[c])&&(i[c]=null),w.event.triggered=y,t.isPropagationStopped()&&f.addEventListener(y,bt),i[y](),t.isPropagationStopped()&&f.removeEventListener(y,bt),w.event.triggered=void 0,a&&(i[c]=a)),t.result}},simulate:function(e,t,n){var i=w.extend(new w.Event,n,{type:e,isSimulated:!0});w.event.trigger(i,null,t)}}),w.fn.extend({trigger:function(e,t){return this.each((function(){w.event.trigger(e,t,this)}))},triggerHandler:function(e,t){var n=this[0];if(n)return w.event.trigger(e,t,n,!0)}}),f.focusin||w.each({focus:"focusin",blur:"focusout"},(function(e,t){var n=function(e){w.event.simulate(t,e.target,w.event.fix(e))};w.event.special[t]={setup:function(){var i=this.ownerDocument||this.document||this,o=Y.access(i,t);o||i.addEventListener(e,n,!0),Y.access(i,t,(o||0)+1)},teardown:function(){var i=this.ownerDocument||this.document||this,o=Y.access(i,t)-1;o?Y.access(i,t,o):(i.removeEventListener(e,n,!0),Y.remove(i,t))}}}));var _t=e.location,wt={guid:Date.now()},xt=/\?/;w.parseXML=function(t){var n,i;if(!t||"string"!=typeof t)return null;try{n=(new e.DOMParser).parseFromString(t,"text/xml")}catch(e){}return i=n&&n.getElementsByTagName("parsererror")[0],n&&!i||w.error("Invalid XML: "+(i?w.map(i.childNodes,(function(e){return e.textContent})).join("\n"):t)),n};var Et=/\[\]$/,Ct=/\r?\n/g,St=/^(?:submit|button|image|reset|file)$/i,Tt=/^(?:input|select|textarea|keygen)/i;function kt(e,t,n,i){var o;if(Array.isArray(t))w.each(t,(function(t,o){n||Et.test(e)?i(e,o):kt(e+"["+("object"==typeof o&&null!=o?t:"")+"]",o,n,i)}));else if(n||"object"!==b(t))i(e,t);else for(o in t)kt(e+"["+o+"]",t[o],n,i)}w.param=function(e,t){var n,i=[],o=function(e,t){var n=p(t)?t():t;i[i.length]=encodeURIComponent(e)+"="+encodeURIComponent(null==n?"":n)};if(null==e)return"";if(Array.isArray(e)||e.jquery&&!w.isPlainObject(e))w.each(e,(function(){o(this.name,this.value)}));else for(n in e)kt(n,e[n],t,o);return i.join("&")},w.fn.extend({serialize:function(){return w.param(this.serializeArray())},serializeArray:function(){return this.map((function(){var e=w.prop(this,"elements");return e?w.makeArray(e):this})).filter((function(){var e=this.type;return this.name&&!w(this).is(":disabled")&&Tt.test(this.nodeName)&&!St.test(e)&&(this.checked||!fe.test(e))})).map((function(e,t){var n=w(this).val();return null==n?null:Array.isArray(n)?w.map(n,(function(e){return{name:t.name,value:e.replace(Ct,"\r\n")}})):{name:t.name,value:n.replace(Ct,"\r\n")}})).get()}});var It=/%20/g,At=/#.*$/,Ot=/([?&])_=[^&]*/,Dt=/^(.*?):[ \t]*([^\r\n]*)$/gm,Nt=/^(?:GET|HEAD)$/,Lt=/^\/\//,$t={},zt={},Pt="*/".concat("*"),Ht=g.createElement("a");function jt(e){return function(t,n){"string"!=typeof t&&(n=t,t="*");var i,o=0,s=t.toLowerCase().match(z)||[];if(p(n))for(;i=s[o++];)"+"===i[0]?(i=i.slice(1)||"*",(e[i]=e[i]||[]).unshift(n)):(e[i]=e[i]||[]).push(n)}}function Mt(e,t,n,i){var o={},s=e===zt;function r(a){var l;return o[a]=!0,w.each(e[a]||[],(function(e,a){var c=a(t,n,i);return"string"!=typeof c||s||o[c]?s?!(l=c):void 0:(t.dataTypes.unshift(c),r(c),!1)})),l}return r(t.dataTypes[0])||!o["*"]&&r("*")}function Rt(e,t){var n,i,o=w.ajaxSettings.flatOptions||{};for(n in t)void 0!==t[n]&&((o[n]?e:i||(i={}))[n]=t[n]);return i&&w.extend(!0,e,i),e}Ht.href=_t.href,w.extend({active:0,lastModified:{},etag:{},ajaxSettings:{url:_t.href,type:"GET",isLocal:/^(?:about|app|app-storage|.+-extension|file|res|widget):$/.test(_t.protocol),global:!0,processData:!0,async:!0,contentType:"application/x-www-form-urlencoded; charset=UTF-8",accepts:{"*":Pt,text:"text/plain",html:"text/html",xml:"application/xml, text/xml",json:"application/json, text/javascript"},contents:{xml:/\bxml\b/,html:/\bhtml/,json:/\bjson\b/},responseFields:{xml:"responseXML",text:"responseText",json:"responseJSON"},converters:{"* text":String,"text html":!0,"text json":JSON.parse,"text xml":w.parseXML},flatOptions:{url:!0,context:!0}},ajaxSetup:function(e,t){return t?Rt(Rt(e,w.ajaxSettings),t):Rt(w.ajaxSettings,e)},ajaxPrefilter:jt($t),ajaxTransport:jt(zt),ajax:function(t,n){"object"==typeof t&&(n=t,t=void 0),n=n||{};var i,o,s,r,a,l,c,u,d,h,f=w.ajaxSetup({},n),p=f.context||f,m=f.context&&(p.nodeType||p.jquery)?w(p):w.event,v=w.Deferred(),y=w.Callbacks("once memory"),b=f.statusCode||{},_={},x={},E="canceled",C={readyState:0,getResponseHeader:function(e){var t;if(c){if(!r)for(r={};t=Dt.exec(s);)r[t[1].toLowerCase()+" "]=(r[t[1].toLowerCase()+" "]||[]).concat(t[2]);t=r[e.toLowerCase()+" "]}return null==t?null:t.join(", ")},getAllResponseHeaders:function(){return c?s:null},setRequestHeader:function(e,t){return null==c&&(e=x[e.toLowerCase()]=x[e.toLowerCase()]||e,_[e]=t),this},overrideMimeType:function(e){return null==c&&(f.mimeType=e),this},statusCode:function(e){var t;if(e)if(c)C.always(e[C.status]);else for(t in e)b[t]=[b[t],e[t]];return this},abort:function(e){var t=e||E;return i&&i.abort(t),S(0,t),this}};if(v.promise(C),f.url=((t||f.url||_t.href)+"").replace(Lt,_t.protocol+"//"),f.type=n.method||n.type||f.method||f.type,f.dataTypes=(f.dataType||"*").toLowerCase().match(z)||[""],null==f.crossDomain){l=g.createElement("a");try{l.href=f.url,l.href=l.href,f.crossDomain=Ht.protocol+"//"+Ht.host!=l.protocol+"//"+l.host}catch(e){f.crossDomain=!0}}if(f.data&&f.processData&&"string"!=typeof f.data&&(f.data=w.param(f.data,f.traditional)),Mt($t,f,n,C),c)return C;for(d in(u=w.event&&f.global)&&0==w.active++&&w.event.trigger("ajaxStart"),f.type=f.type.toUpperCase(),f.hasContent=!Nt.test(f.type),o=f.url.replace(At,""),f.hasContent?f.data&&f.processData&&0===(f.contentType||"").indexOf("application/x-www-form-urlencoded")&&(f.data=f.data.replace(It,"+")):(h=f.url.slice(o.length),f.data&&(f.processData||"string"==typeof f.data)&&(o+=(xt.test(o)?"&":"?")+f.data,delete f.data),!1===f.cache&&(o=o.replace(Ot,"$1"),h=(xt.test(o)?"&":"?")+"_="+wt.guid+++h),f.url=o+h),f.ifModified&&(w.lastModified[o]&&C.setRequestHeader("If-Modified-Since",w.lastModified[o]),w.etag[o]&&C.setRequestHeader("If-None-Match",w.etag[o])),(f.data&&f.hasContent&&!1!==f.contentType||n.contentType)&&C.setRequestHeader("Content-Type",f.contentType),C.setRequestHeader("Accept",f.dataTypes[0]&&f.accepts[f.dataTypes[0]]?f.accepts[f.dataTypes[0]]+("*"!==f.dataTypes[0]?", "+Pt+"; q=0.01":""):f.accepts["*"]),f.headers)C.setRequestHeader(d,f.headers[d]);if(f.beforeSend&&(!1===f.beforeSend.call(p,C,f)||c))return C.abort();if(E="abort",y.add(f.complete),C.done(f.success),C.fail(f.error),i=Mt(zt,f,n,C)){if(C.readyState=1,u&&m.trigger("ajaxSend",[C,f]),c)return C;f.async&&f.timeout>0&&(a=e.setTimeout((function(){C.abort("timeout")}),f.timeout));try{c=!1,i.send(_,S)}catch(e){if(c)throw e;S(-1,e)}}else S(-1,"No Transport");function S(t,n,r,l){var d,h,g,_,x,E=n;c||(c=!0,a&&e.clearTimeout(a),i=void 0,s=l||"",C.readyState=t>0?4:0,d=t>=200&&t<300||304===t,r&&(_=function(e,t,n){for(var i,o,s,r,a=e.contents,l=e.dataTypes;"*"===l[0];)l.shift(),void 0===i&&(i=e.mimeType||t.getResponseHeader("Content-Type"));if(i)for(o in a)if(a[o]&&a[o].test(i)){l.unshift(o);break}if(l[0]in n)s=l[0];else{for(o in n){if(!l[0]||e.converters[o+" "+l[0]]){s=o;break}r||(r=o)}s=s||r}if(s)return s!==l[0]&&l.unshift(s),n[s]}(f,C,r)),!d&&w.inArray("script",f.dataTypes)>-1&&w.inArray("json",f.dataTypes)<0&&(f.converters["text script"]=function(){}),_=function(e,t,n,i){var o,s,r,a,l,c={},u=e.dataTypes.slice();if(u[1])for(r in e.converters)c[r.toLowerCase()]=e.converters[r];for(s=u.shift();s;)if(e.responseFields[s]&&(n[e.responseFields[s]]=t),!l&&i&&e.dataFilter&&(t=e.dataFilter(t,e.dataType)),l=s,s=u.shift())if("*"===s)s=l;else if("*"!==l&&l!==s){if(!(r=c[l+" "+s]||c["* "+s]))for(o in c)if((a=o.split(" "))[1]===s&&(r=c[l+" "+a[0]]||c["* "+a[0]])){!0===r?r=c[o]:!0!==c[o]&&(s=a[0],u.unshift(a[1]));break}if(!0!==r)if(r&&e.throws)t=r(t);else try{t=r(t)}catch(e){return{state:"parsererror",error:r?e:"No conversion from "+l+" to "+s}}}return{state:"success",data:t}}(f,_,C,d),d?(f.ifModified&&((x=C.getResponseHeader("Last-Modified"))&&(w.lastModified[o]=x),(x=C.getResponseHeader("etag"))&&(w.etag[o]=x)),204===t||"HEAD"===f.type?E="nocontent":304===t?E="notmodified":(E=_.state,h=_.data,d=!(g=_.error))):(g=E,!t&&E||(E="error",t<0&&(t=0))),C.status=t,C.statusText=(n||E)+"",d?v.resolveWith(p,[h,E,C]):v.rejectWith(p,[C,E,g]),C.statusCode(b),b=void 0,u&&m.trigger(d?"ajaxSuccess":"ajaxError",[C,f,d?h:g]),y.fireWith(p,[C,E]),u&&(m.trigger("ajaxComplete",[C,f]),--w.active||w.event.trigger("ajaxStop")))}return C},getJSON:function(e,t,n){return w.get(e,t,n,"json")},getScript:function(e,t){return w.get(e,void 0,t,"script")}}),w.each(["get","post"],(function(e,t){w[t]=function(e,n,i,o){return p(n)&&(o=o||i,i=n,n=void 0),w.ajax(w.extend({url:e,type:t,dataType:o,data:n,success:i},w.isPlainObject(e)&&e))}})),w.ajaxPrefilter((function(e){var t;for(t in e.headers)"content-type"===t.toLowerCase()&&(e.contentType=e.headers[t]||"")})),w._evalUrl=function(e,t,n){return w.ajax({url:e,type:"GET",dataType:"script",cache:!0,async:!1,global:!1,converters:{"text script":function(){}},dataFilter:function(e){w.globalEval(e,t,n)}})},w.fn.extend({wrapAll:function(e){var t;return this[0]&&(p(e)&&(e=e.call(this[0])),t=w(e,this[0].ownerDocument).eq(0).clone(!0),this[0].parentNode&&t.insertBefore(this[0]),t.map((function(){for(var e=this;e.firstElementChild;)e=e.firstElementChild;return e})).append(this)),this},wrapInner:function(e){return p(e)?this.each((function(t){w(this).wrapInner(e.call(this,t))})):this.each((function(){var t=w(this),n=t.contents();n.length?n.wrapAll(e):t.append(e)}))},wrap:function(e){var t=p(e);return this.each((function(n){w(this).wrapAll(t?e.call(this,n):e)}))},unwrap:function(e){return this.parent(e).not("body").each((function(){w(this).replaceWith(this.childNodes)})),this}}),w.expr.pseudos.hidden=function(e){return!w.expr.pseudos.visible(e)},w.expr.pseudos.visible=function(e){return!!(e.offsetWidth||e.offsetHeight||e.getClientRects().length)},w.ajaxSettings.xhr=function(){try{return new e.XMLHttpRequest}catch(e){}};var Ft={0:200,1223:204},Bt=w.ajaxSettings.xhr();f.cors=!!Bt&&"withCredentials"in Bt,f.ajax=Bt=!!Bt,w.ajaxTransport((function(t){var n,i;if(f.cors||Bt&&!t.crossDomain)return{send:function(o,s){var r,a=t.xhr();if(a.open(t.type,t.url,t.async,t.username,t.password),t.xhrFields)for(r in t.xhrFields)a[r]=t.xhrFields[r];for(r in t.mimeType&&a.overrideMimeType&&a.overrideMimeType(t.mimeType),t.crossDomain||o["X-Requested-With"]||(o["X-Requested-With"]="XMLHttpRequest"),o)a.setRequestHeader(r,o[r]);n=function(e){return function(){n&&(n=i=a.onload=a.onerror=a.onabort=a.ontimeout=a.onreadystatechange=null,"abort"===e?a.abort():"error"===e?"number"!=typeof a.status?s(0,"error"):s(a.status,a.statusText):s(Ft[a.status]||a.status,a.statusText,"text"!==(a.responseType||"text")||"string"!=typeof a.responseText?{binary:a.response}:{text:a.responseText},a.getAllResponseHeaders()))}},a.onload=n(),i=a.onerror=a.ontimeout=n("error"),void 0!==a.onabort?a.onabort=i:a.onreadystatechange=function(){4===a.readyState&&e.setTimeout((function(){n&&i()}))},n=n("abort");try{a.send(t.hasContent&&t.data||null)}catch(e){if(n)throw e}},abort:function(){n&&n()}}})),w.ajaxPrefilter((function(e){e.crossDomain&&(e.contents.script=!1)})),w.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/\b(?:java|ecma)script\b/},converters:{"text script":function(e){return w.globalEval(e),e}}}),w.ajaxPrefilter("script",(function(e){void 0===e.cache&&(e.cache=!1),e.crossDomain&&(e.type="GET")})),w.ajaxTransport("script",(function(e){var t,n;if(e.crossDomain||e.scriptAttrs)return{send:function(i,o){t=w(" + + + + + + + diff --git a/docs/ktools/index.html b/docs/ktools/index.html new file mode 100644 index 00000000000..a31371fb936 --- /dev/null +++ b/docs/ktools/index.html @@ -0,0 +1,727 @@ + + + + + + + + + + + + + + +K Tools | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Tools

+

Here we document how to use some of the most commonly used K tools.

+

Minimizing Output

+

When one is working with kore-repl or the prover in general and looking at +specific configurations using config, sometimes the configurations can be huge.

+

One tool to help print configuration compactly is the pyk print utility:

+
sh
pyk print +
+

We are going to use --minimize option (which is actually used automatically +when printing with pyk). This will filter out many uninteresting cells for the +current config and make the result more compact.

+

Then, when invoking the prover, you can minimize your output by piping it into +the pyk print ... facility with arguments for controlling the output:

+
sh
kprove --output json --definition DEFN ... \ + | jq .term \ + | pyk print DEFN /dev/stdin --omit-labels ... --keep-labels ... +
+

You can also use this in the kore-repl more easily, by making a help script. +In your current directory, save a new script pykprint.sh:

+
sh
#!/bin/bash + +kast --input kore --output json --definition $1 /dev/stdin \ + | jq .term \ + | pyk print $1 /dev/stdin --omit-labels $2 +
+

Now call config | bash pykprint.sh DEFN in Kore REPL to make the output +smaller.

+

The options you have to control the output are as follows:

+
    +
  • --no-minimize: do not remove uninteresting cells.
  • +
  • --omit-cells: remove the selected cells from the output.
  • +
  • --keep-cells: keep only the selected cells in the output.
  • +
+

Note: Make sure that there is no whitespace around , in the omit list, +otherwise you'll get an error (, is a list separator, so this +requirement is strict).

+

Debugging

+

The LLVM Backend has support for integration with GDB. You can run the debugger +on a particular program by passing the --debugger flag to krun, or by +invoking the llvm backend interpreter directly. Below we provide a simple +tutorial to explain some of the basic commands supported by the LLVM backend.

+

LLDB Support

+

GDB is not well-supported on macOS, particularly on newer OS versions and Apple +Silicon ARM hardware. Consequently, if the --debugger option is passed to krun +on macOS, LLDB[^1] is launched instead of GDB. However, the K-specific debugger +scripts that GDB uses have not been ported to LLDB yet, and so the instructions +in the rest of this section will not work.

+

The K Definition

+

Here is a sample K definition we will use to demonstrate debugging +capabilities:

+
k
module TEST + imports INT + + configuration <k> foo(5) </k> + rule [test]: I:Int => I +Int 1 requires I <Int 10 + + syntax Int ::= foo(Int) [function] + rule foo(I) => 0 -Int I + +endmodule +
+

You should compile this definition with --backend llvm --enable-llvm-debug to +use the debugger most effectively.

+

Stepping

+

Important: When you first run krun with option --debugger, GDB / LLDB +will instruct you on how to modify ~/.gdbinit or ~/.lldbinit to enable +printing abstract syntax of K terms in the debugger. If you do not perform this +step, you can still use all the other features, but K terms will be printed as +their raw address in memory.

+

GDB will need the kompiled interpreter in its safe path in order to access the +pretty printing python script within it. A good way to do this would be to pick +a minimum top-level path that covers all of your kompiled semantics (ie. set auto-load safe-path ~/k-semantics). LLDB has slightly different security +policies that do not require fully-arbitrary code execution.

+

This section uses GDB syntax to demonstrate the debugging features. Please +refer to the GDB to LLDB command map on +macOS.

+

You can break before every step of execution is taken by setting a breakpoint +on the k_step function.

+
(gdb) break definition.kore:k_step
+Breakpoint 1 at 0x25e340
+(gdb) run
+Breakpoint 1, 0x000000000025e340 in step (subject=`<generatedTop>{}`(`<k>{}`(`kseq{}`(`inj{Int{}, KItem{}}`(#token("0", "Int")),dotk{}(.KList))),`<generatedCounter>{}`(#token("0", "Int"))))
+(gdb) continue
+Continuing.
+
+Breakpoint 1, 0x000000000025e340 in step (subject=`<generatedTop>{}`(`<k>{}`(`kseq{}`(`inj{Int{}, KItem{}}`(#token("1", "Int")),dotk{}(.KList))),`<generatedCounter>{}`(#token("0", "Int"))))
+(gdb) continue 2
+Will ignore next crossing of breakpoint 1.  Continuing.
+
+Breakpoint 1, 0x000000000025e340 in step (subject=`<generatedTop>{}`(`<k>{}`(`kseq{}`(`inj{Int{}, KItem{}}`(#token("3", "Int")),dotk{}(.KList))),`<generatedCounter>{}`(#token("0", "Int"))))
+(gdb)
+
+

Breaking on a specific rule

+

You can break when a rule is applied by giving the rule a rule label. If the +module name is TEST and the rule label is test, you can break when the rule +applies by setting a breakpoint on the TEST.test.rhs function:

+
(gdb) break TEST.test.rhs
+Breakpoint 1 at 0x25e250: file /home/dwightguth/test/./test.k, line 4.
+(gdb) run
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+
+

Note that the substitution associated with that rule is visible in the +description of the frame.

+

You can also break when a side condition is applied using the TEST.test.sc +function:

+
(gdb) break TEST.test.sc
+Breakpoint 1 at 0x25e230: file /home/dwightguth/test/./test.k, line 4.
+(gdb) run
+Breakpoint 1, TEST.test.sc (VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+
+

Note that every variable used in the side condition can have its value +inspected when stopped at this breakpoint, but other variables are not visible.

+

You can also break on a rule by its location:

+
(gdb) break test.k:4
+Breakpoint 1 at 0x25e230: test.k:4. (2 locations)
+(gdb) run
+Breakpoint 1, TEST.test.sc (VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.sc (VarI=#token("1", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+
+

Note that this sets a breakpoint at two locations: one on the side condition +and one on the right hand side. If the rule had no side condition, the first +would not be set. You can also view the locations of the breakpoints and +disable them individually:

+
(gdb) info breakpoint
+Num     Type           Disp Enb Address            What
+1       breakpoint     keep y   <MULTIPLE>
+        breakpoint already hit 3 times
+1.1                         y     0x000000000025e230 in TEST.test.sc at /home/dwightguth/test/./test.k:4
+1.2                         y     0x000000000025e250 in TEST.test.rhs at /home/dwightguth/test/./test.k:4
+(gdb) disable 1.1
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("1", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("2", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+
+

Now only the breakpoint when the rule applies is enabled.

+

Breaking on a function

+

You can also break when a particular function in your semantics is invoked:

+
(gdb) info functions foo
+All functions matching regular expression "foo":
+
+File /home/dwightguth/test/./test.k:
+struct __mpz_struct *Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int(struct __mpz_struct *);
+(gdb) break Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int
+Breakpoint 1 at 0x25e640: file /home/dwightguth/test/./test.k, line 6.
+(gdb) run
+Breakpoint 1, Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int (_1=#token("1", "Int")) at /home/dwightguth/test/./test.k:6
+6         syntax Int ::= foo(Int) [function]
+(gdb)
+
+

In this case, the variables have numbers instead of names because the names of +arguments in functions in K come from rules, and we are stopped before any +specific rule has applied. For example, _1 is the first argument to the +function.

+

You can also set a breakpoint in this location by setting it on the line +associated with its production:

+
(gdb) break test.k:6
+Breakpoint 1 at 0x25e640: file /home/dwightguth/test/./test.k, line 6.
+(gdb) run
+Breakpoint 1, Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int (_1=#token("1", "Int")) at /home/dwightguth/test/./test.k:6
+6         syntax Int ::= foo(Int) [function]
+
+

These two syntaxes are equivalent; use whichever is easier for you.

+

You can also view the stack of function applications:

+
(gdb) bt
+#0  Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int (_1=#token("1", "Int")) at /home/dwightguth/test/./test.k:6
+#1  0x000000000025e5f8 in apply_rule_111 (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList)) at /home/dwightguth/test/./test.k:9
+#2  0x0000000000268a52 in take_steps ()
+#3  0x000000000026b7b4 in main ()
+(gdb)
+
+

Here we see that foo was invoked while applying the rule on line 9 of test.k, +and we also can see the substitution of that rule. If foo was evaluated while +evaluating another function, we would also be able to see the arguments of that +function as well, unless the function was tail recursive, in which case no +stack frame would exist once the tail call was performed.

+

Breaking on a set of rules or functions

+

Using rbreak <regex> you can set breakpoints on multiple functions.

+
    +
  • +

    rbreak Lbl - sets a breakpoint on all non hooked functions

    +
  • +
  • +

    rbreak Lbl.*TEST - sets a breakpoint on all functions from module TEST

    +
  • +
  • +

    rbreak hook_INT - sets a breakpoint on all hooks from module INT

    +
  • +
+

Other debugger issues

+
    +
  • <optimized out> try kompiling without -O1, -O2, or -O3.
  • +
  • (gdb) break definition.kore:break -> No source file named definition.kore. +send --enable-llvm-debug to kompile in order to generate debug info symbols.
  • +
+

Profiling your K semantics

+

The first thing to be aware of is in order to get meaningful data, +you need to build the semantics and all of its dependencies with +optimizations enabled but without the frame pointer elimination +optimization. For example, for EVM, this means rebuilding GMP, MPFR, +JEMalloc, Crypto++, SECP256K1, etc with the following exports.

+
sh
export CFLAGS="-DNDEBUG -O2 -fno-omit-frame-pointer" +export CXXFLAGS="-DNDEBUG -O2 -fno-omit-frame-pointer" +
+

You can skip this step, but if you do, any samples within these +libraries will not have correct stack trace information, which means +you will likely not get a meaningful set of data that will tell you +where the majority of time is really being spent. Don't worry about +rebuilding literally every single dependency though. Just focus on the +ones that you expect to take a non-negligible amount of runtime. You +will be able to tell if you haven't done enough later, and you can go +back and rebuild more. Once this is done, you then build K with +optimizations and debug info enabled, like so:

+
sh
mvn package -Dproject.build.type="FastBuild" +
+

Next, you build the semantics with optimizations and debug info +enabled (i.e., kompile -ccopt -O2 --iterated -ccopt -fno-omit-frame-pointer).

+

Once all this is done, you should be ready to profile your +application. Essentially, you should run whatever test suite you +usually run, but with perf record -g -- prefixed to the front. For +example, for KEVM it's the following command. (For best data, don't +run this step in parallel.)

+
sh
perf record -g -- make test-conformance +
+

Finally, you want to filter out just the samples that landed within +the llvm backend and view the report. For this, you need to know the +name of the binary that was generated by your build system. Normally +it is interpreter, but e.g. if you are building the web3 client for +kevm, it would be kevm-client. You will want to run the following +command.

+
sh
perf report -g -c $binary_name +
+

If all goes well, you should see a breakdown of where CPU time has +been spent executing the application. You will know that sufficient +time was spent rebuilding dependencies with the correct flags when the +total time reported by the main method is close to 100%. If it's not +close to 100%, this is probably because a decent amount of self time +was reported in stack traces that were not built with frame pointers +enabled, meaning that perf was unable to walk the stack. You will have +to go back, rebuild the appropriate libraries, and then record your +trace again.

+

Your ultimate goal is to identify the hotspots that take the most +time, and make them execute faster. Entries like step and +step_1234 like functions refer to the cost of matching. An entry +like side_condition_1234 is a side condition and apply_rule_1234 +is constructing the rhs of a rule. You can convert from this rule +ordinal to a location using the llvm-kompile-compute-loc script in +the bin folder of the llvm backend repo. For example,

+
sh
llvm-kompile-compute-loc 5868 evm-semantics/.build/defn/llvm/driver-kompiled +
+

spits out the following text.

+
Line: 18529
+/home/dwightguth/evm-semantics/./.build/defn/llvm/driver.k:493:10
+
+

This is the line of definition.kore that the axiom appears on as +well as the original location of the rule in the K semantics. You can +use this information to figure out which rules and functions are +causing the most time and optimize them to be more efficient.

+

Running tests - kserver

+

The kserver is a front-end tool based on Nailgun +which helps to reduce the startup time of the JVM. Calling kserver in a terminal +window will wait for all kompile/kprove calls and force them to run in the same process +and share the same threads. This also reduces the thread contention significantly. kompile +uses all the threads available to do rule parsing. Another benefit is that it saves caches, +and each time you call kprove/kast, you can access those directly w/o extra disk usage. +Running the regression-new integration tests on a powerful machine (32 threads) takes 8m, +with the kserver active it takes 2m. You can start the kserver in two ways.

+
    +
  • blocking: call kserver in the command line. Close it after you are done testing. Useful for quick testing.
  • +
  • non-blocking: call spawn-kserver <log.flie> and close it with stop-kserver - this is used for automation on CI
  • +
+

Because we reuse caches, you should stop and restart the server between runs. +The Nailgun implementation hasn't been updated in the last 3-5 years, and it's not compatible with Java 18 onwards.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + diff --git a/docs/user_manual/index.html b/docs/user_manual/index.html new file mode 100644 index 00000000000..ad9f9ead279 --- /dev/null +++ b/docs/user_manual/index.html @@ -0,0 +1,4076 @@ + + + + + + + + + + + + + + +K User Manual | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K User Manual

+

NOTE: The K User Manual is still under construction; some features of K +may have partial or missing documentation.

+

Introduction

+

Why K?

+

The K Framework is a programming language and system design toolkit made for +practioners and researchers alike.

+

K For Practioners: +K is a framework for deriving programming languages tools from their semantic +specifications.

+

Typically, programming language tool development follows a similar pattern. +After a new programming language is designed, separate teams will develop +separate language tools (e.g. a compiler, interpreter, parser, symbolic +execution engine, etc). Code reuse is uncommon. The end result is that for each +new language, the same basic tools and patterns are re-implemented again and +again.

+

K approaches the problem differently -- it generates each of these tools from a single language specification. +The work of programming language design and tool implementation are made separate concerns. +The end result is that the exercise of +designing new languages and their associated tooling is now reduced to +developing a single language specification from which we derive our tooling for +free.

+

K For Researchers: +K is a configuration- and rewrite-based executable semantic framework.

+

In more detail, K specifications are:

+
    +
  1. Executable: compile into runnable and testable programs;
  2. +
  3. Semantic: correspond to a logical theory with a sound and relatively +complete proof system;
  4. +
  5. Configuration-based: organize system states into compositional, +hierarchical, labelled units called cells;
  6. +
  7. Rewrite-based: define system transitions using rewrite rules.
  8. +
+

K specifications are compiled into particular matching logic theories, giving +them a simple and expressive semantics. K semantic rules are implicitly defined +over the entire configuration structure, but omit unused cells, enabling a +highly modular definitional style. Furthermore, K has been used to develop +programming languages, type systems, and formal analysis tools.

+

Manual Objectives

+

As mentioned in the Why K? section above, the K Framework is designed as a +collection of language-generic command-line interface (CLI) tools which revolve +around K specifications. These tools cover a broad range of uses, but they +typically fall into one of the following categories:

+
    +
  1. Transforming K Specs (e.g. compilation)
  2. +
  3. Running K Specs (e.g. concrete and symbolic execution)
  4. +
  5. Analyzing K Specs (e.g. theorem proving)
  6. +
+

The main user-facing K tools include:

+
    +
  • kompile - the K compiler driver
  • +
  • kparse - the stanadlone K parser and abstract syntax tree (AST) +transformation tool
  • +
  • krun - the K interpreter and symbolic execution engine driver
  • +
  • kprove - the K theorem prover
  • +
+

This user manual is designed to be a tool reference. +In particular, it is not desgined to be a tutorial on how to write K +specifications or to teach the logical foundations of K. New K users should +consult our dedicated +K tutorial, +or the more language-design oriented +PL tutorial. +Researchers seeking to learn more about the logic underlying K are encouraged +to peruse the +growing literature on K and matching logic. +We will consider the manual complete when it provides a complete description of +all user-facing K tools and features.

+

Introduction to K

+

Since K specifications are the primary input into the entire system, let us +take a moment to describe them. At the highest level, K specifications describe +a programming language or system using three different pieces:

+
    +
  1. the system primitives, the base datatypes used during system operation, +e.g., numbers, lists, maps, etc;
  2. +
  3. the system state, a tuple or record over system primitives which gives a +complete snapshot of the system at any given moment;
  4. +
  5. the system behavior, a set of rules which defines possible system +evolutions.
  6. +
+

K specifications are then defined by a collection of sentences which +correspond to the three concepts above:

+
    +
  1. syntax declarations encode the system primitives;
  2. +
  3. configuration declarations encode the system state;
  4. +
  5. context and rule declarations encode the system behavior.
  6. +
+

K sentences are then organized into one or modules which are stored in one or +more files. In this scheme, files may require other files and modules may +import other modules, giving rise to a hierarchy of files and modules. We +give an intuitive sketch of the two levels of grouping in the diagram below:

+
   example.k file
+  +=======================+
+  | requires ".." --------|--> File_1
+  | ...                   |
+  | requires ".." --------|--> File_N
+  |                       |
+  |  +-----------------+  |
+  |  | module ..       |  |
+  |  |   imports .. ---|--|--> Module_1
+  |  |   ...           |  |
+  |  |   imports .. ---|--|--> Module_M
+  |  |                 |  |
+  |  |   sentence_1    |  |
+  |  |   ...           |  |
+  |  |   sentence_K    |  |
+  |  | endmodule       |  |
+  |  +-----------------+  |
+  |                       |
+  +=======================+
+
+

where:

+
    +
  • files and modules are denoted by double-bordered and single-borded boxes +respectively;
  • +
  • file or module identifiers are denoted by double dots (..);
  • +
  • potential repititions are denoted by triple dots (...).
  • +
+

In the end, we require that the file and module hierarchies both form a +directed acyclic graph (DAG). This is, no file may recursively require itself, +and likewise, no module may recursively import itself.

+

We now zoom in further to discuss the various kinds of sentences contained in K +specifications:

+
    +
  1. +

    sentences that define our system's primitives, including:

    +
      +
    • sort declarations: define new categories of primitive datatypes
    • +
    • Backus-Naur Form (BNF) grammar declarations: define the +operators that inhabit our primitive datatypes
    • +
    • lexical syntax declarations: define lexemes/tokens for the +lexer/tokenizer
    • +
    • syntax associativity declarations: specify the +associativity/grouping of our declared operators
    • +
    • syntax priority declarations: specify the priority of +potential ambiguous operators
    • +
    +
  2. +
  3. +

    sentences that define our system's state, including:

    +
      +
    • configuration declarations: define labelled, hierarchical records +using an nested XML-like syntax
    • +
    +
  4. +
  5. +

    sentences that define our system's behavior, including:

    +
      +
    • context declarations: describe how primitives and configurations +can simplify
    • +
    • context alias declarations: define templates that can generate new +contexts
    • +
    • rule declarations: define how the system transitions from one state +to the next
    • +
    +
  6. +
+

K Process Overview

+

We now examine how the K tools are generally used. The main input to all of the +K tools is a K specification. For effieciency reasons, this specification is +first compiled into an intermediate representation called Kore. Once we have +obtained this intermediate representation, we can use it to do:

+
    +
  1. parsing/pretty-printing, i.e., converting a K term, whose syntax is defined +by a K specification, into a alternate representation
  2. +
  3. concrete and abstract execution of a K specification
  4. +
  5. theorem proving, i.e., verifying whether a set of claims about a K +specification hold
  6. +
+

We represent the overall process using the graphic below:

+
 K Compilation Process
++============================================================+
+|                     +---------+                            |
+|  K Specification ---| kompile |--> Kore Specification --+  |
+|                     +---------+                         |  |
++=========================================================|==+
+                                                          |
+ K Execution Process                                      |
++=========================================================|==+
+|                                                         |  |
+|             +-------------------------------------------+  |
+|             |                                              |
+|             |       +---------+                            |
+|  K Term ----+-------| kparse  |--> K Term                  |
+|             |       +---------+                            |
+|             |                                              |
+|             |       +---------+                            |
+|  K Term ----+-------|  krun   |--> K Term                  |
+|             |       +---------+                            |
+|             |                                              |
+|             |       +---------+                            |
+|  K Claims --+-------| kprove  |--> K Claims                |
+|                     +---------+                            |
+|                                                            |
++============================================================+
+
+

where:

+
    +
  • process outlines are denoted by boxes with double-lined borders
  • +
  • executables are denoted by boxes with single-lined borders
  • +
  • inputs and outputs are denoted by words attached to lines
  • +
  • K terms typically correspond to programs defined in a particular +language's syntax (which are either parsed using kparse or executed using +krun)
  • +
  • K claims are a notation for describing how certain K programs should +execute (which are checked by our theorem prover kprove)
  • +
+

K Compilation Process: +Let us start with a description of the compilation process. According to the +above diagram, the compiler driver is called kompile. For our purposes, it is +enough to view the K compilation process as a black box that transforms a K +specification into a lower-level Kore specification that encodes the same +information, but that is easier to work with programmatically.

+

K Execution Process: +We now turn our attention to the K execution process. Abstractly, we can divide +the K execution process into the following stages:

+
    +
  1. the kore specification is loaded (which defines a lexer, parser, and +unparser among other things)
  2. +
  3. the input string is lexed into a token stream
  4. +
  5. the token stream is parsed into K terms/claims
  6. +
  7. the K term/claims are transformed according the K tool being used (e.g. +kparse, krun, or kprove)
  8. +
  9. the K term/claims are unparsed into a string form and printed
  10. +
+

Note that all of the above steps performed in K execution process are fully +prescribed by the input K specification. Of course, there are entire languages +devoted to encoding these various stages proces individually, e.g., flex for +lexers, bison for parsers, etc. What K offers is a consistent language to +package the above concepts in a way that we believe is convenient and practical +for a wide range of uses.

+

Module Declaration

+

K modules are declared at the top level of a K file. They begin with the +module keyword and are followed by a module ID and an optional set of +attributes. They continue with zero or more imports and zero or more sentences +until the endmodule keyword is reached.

+

A module ID consists of an optional # at the beginning, followed by one or +more components separated by hyphens. Each component can contain letters, +numbers, or underscores.

+

After the module ID, attributes can be specified in square brackets. See below +for an (incomplete) list of allowed module attributes.

+

Following the attributes, a module can contain zero or more imports. An +import consists of the import or imports keywords followed by a module ID. +An import tells the compiler that this module should contain all the sentences +(recursively) contained by the module being imported.

+

Imports can be public or private. By default, they are public, which +means that all the imported syntax can be used by any module that imports the +module doing the import. However, you can explicitly override the visibility +of the import with the public or private keyword immediately prior to the +module name. A module imported privately does not export its syntax to modules +that import the module doing the import.

+

Following imports, a module can contain zero or more sentences. A sentence can +be a syntax declaration, a rule, a configuration declaration, a context, a +claim, or a context alias. Details on each of these can be found in subsequent +sections.

+

private attribute

+

If the module is given the private attribute, all of its imports and syntax +are private by default. Individual pieces of syntax can be made public with +the public attribute, and individual imports can be made public with the +public keyword. See relevant sections on syntax and modules for more details +on what it means for syntax and imports to be public or private.

+

symbolic and concrete attribute

+

These attributes may be placed on modules to indicate that they should only +be used by the Haskell and LLVM backends respectively. If the definition is +compiled on the opposite backend, they are implicitly removed from the +definition prior to parsing anywhere they are imported. This can be useful when +used in limited capacity in order to provide alternate semantics for certain +features on different backends. It should be used sparingly as it makes it more +difficult to trust the correctness of your semantics, even in the presence of +testing.

+

Syntax Declaration

+

Named Non-Terminals

+

We have added a syntax to Productions which allows non-terminals to be given a +name in productions. This significantly improves the ability to document K, by +providing a way to explicitly explain what a field in a production corresponds +to instead of having to infer it from a comment or from the rule body.

+

The syntax is:

+
k
name: Sort +
+

This syntax can be used anywhere in a K definition that expects a non-terminal.

+

symbol(_) attribute

+

By default, when compiling a definition, K generates a unique "mangled" label +identifier for each syntactic production. These identifiers can be used to +reference productions externally, for example when constructing terms by hand +or programmatically via Pyk.

+

The symbol(_) attribute can be applied to a production to control the precise +identifier for a production that appears in a compiled definition. For example:

+
k
module SYMBOLS + syntax Foo ::= foo() [symbol(foo)] + | bar() +endmodule +
+

Here, the compiled definition will contain the following symbol declarations:

+
  symbol Lblfoo{}() ...
+  symbol Lblbar'LParRParUnds'SYMBOLS'Unds'Foo{}() ...
+
+

The compiler enforces uniqueness[1] of symbol names specified in +this way; it would be an error to apply symbol(foo) to another production in +the module above. Additionally, symbol(_) with an argument may not co-occur +with the klabel(_) attribute (see below).

+

overload attribute

+

K supports subsort overloading[2] on symbols, whereby a +constructor can have a more specific sort for certain arguments. For example, +consider the following productions derived from a C-like language semantics:

+
k
syntax Exp ::= LVal + | Exp "." Id +syntax LVal ::= LVal "." Id +
+

Here, it is useful for the result of the dot operator to be an LVal if the +left-hand side is itself an LVal. However, there is an issue with the code +as written: if L() is a term of sort LVal, then the program L() . x has a +parsing ambiguity between the two productions for the dot operator. To resolve +this, we can mark the productions as overloads:

+
k
syntax Exp ::= LVal + | Exp "." Id [overload(_._)] +syntax LVal ::= LVal "." Id [overload(_._)] +
+

Now, the parser will select the most specific overloaded production when it +resolves ambiguities in L() . x (that is, L() . x parses to a term of sort +LVal.

+

Formally, the compiler organises productions into a partial order that defines +the overload relation as follows. We say that P is a more specific overload +of Q if:

+
    +
  • P and Q have the same overload(_) attribute. Note that the argument +supplied has no semantic meaning other than as a key grouping productions +together.
  • +
  • Let S_P be the sort of P, and S_p1 etc. be the sorts of its arguments +(c.f. for Q). The tuple (S_P, S_p1, ..., S_pN) must be elementwise +strictly less than (S_Q, S_q1, ..., S_qN) according to the definition's +subsorting relationship. That is, a term from production P is a restriction +of one from production Q; when its arguments are more precise, we can give +the result a more precise sort.
  • +
+

klabel(_) and symbol attributes

+

Note: the klabel(_), symbol approach described in this section is a legacy +feature that will be removed in the future. New code should use the symbol(_) +and overload(_) attributes to opt into explicit naming and overloading +respectively.

+

References here to "overloading" are explained in the section above; the use +of the klabel(_) attribute without symbol is equivalent to the new +overload(_) syntax.

+

By default K generates for each syntax definition a long and obfuscated klabel +string, which serves as a unique internal identifier and also is used in kast +format of that syntax. If we need to reference a certain syntax production +externally, we have to manually define the klabels using the klabel attribute. +One example of where you would want to do this is to be able to refer to a given +symbol via the syntax priority attribute, or to enable overloading of a +given symbol.

+

If you only provide the klabel attribute, you can use the provided klabel to +refer to that symbol anywhere in the frontend K code. However, the internal +identifier seen by the backend for that symbol will still be the long obfuscated +generated string. Sometimes you want control over the internal identifier used as +well, in which case you use the symbol attribute. This tells the frontend to +use whatever the declared klabel is directly as the internal identifier.

+

For example:

+
k
module MYMODULE + syntax FooBarBaz ::= #Foo( Int, Int ) [klabel(#Foo), symbol] // symbol1 + | #Bar( Int, Int ) [klabel(#Bar)] // symbol2 + | #Baz( Int, Int ) // symbol3 +endmodule +
+

Here, we have that:

+
    +
  • In frontend K, you can refer to "symbol1" as #Foo (from klabel(#Foo)), +and the backend will see 'Hash'Foo as the symbol name.
  • +
  • In frontend K, you can refer to "symbol2" as #Bar (from klabel(#Bar)), +and the backend will see +'Hash'Bar'LParUndsCommUndsRParUnds'MYMODULE'Unds'FooBarBaz'Unds'Int'Unds'Int +as the symbol name.
  • +
  • In frontend K, you can refer to "symbol3" as +#Baz(_,_)_MYMODULE_FooBarBaz_Int_Int (from auto-generated klabel), and +the backend will see +'Hash'Baz'LParUndsCommUndsRParUnds'MYMODULE'Unds'FooBarBaz'Unds'Int'Unds'Int +as the symbol name.
  • +
+

The symbol provided must be unique to this definition. This is enforced by +K. In general, it's recommended to use the symbol attribute whenever you use +klabel unless you explicitly have a reason not to (e.g. you want to overload +symbols, or you're using a deprecated backend). It can be very helpful use the +symbol attribute for debugging, as many debugging messages are printed in +Kast format which will be more readable with the symbol names you explicitly +declare. In addition, if you are programatically manipulating definitions via +the JSON Kast format, building terms using the user-provided pretty +symbol, klabel(...) is easier and less error-prone if the auto-generation +process for klabels changes.

+

Syntactic Lists

+

When using K's support for syntactic lists, a production like:

+
k
syntax Ints ::= List{Int, ","} [symbol(ints)] +
+

will desugar into two productions:

+
k
syntax Ints ::= Int "," Ints [symbol(ints)] +syntax Ints ::= ".Ints" [symbol(List{"ints"})] +
+

Note that the symbol for the terminator of the list has been generated +automatically from the label on the original production. It is possible to +control what the terminator's label is using the terminator-symbol(_) +attribute. For example:

+
k
syntax Ints ::= List{Int, ","} [symbol(ints), terminator-symbol(.ints)] +
+

will desugar into two productions:

+
k
syntax Ints ::= Int "," Ints [symbol(ints)] +syntax Ints ::= ".Ints" [symbol(.ints)] +
+

It is an error to apply terminator-symbol(_) to a non-production sentence, or +to a production that does not declare a syntactic list.

+

Parametric productions and bracket attributes

+

Some syntax productions, like the rewrite operator, the bracket operator, and +the #if #then #else #fi operator, cannot have their precise type system +expressed using only concrete sorts.

+

Prior versions of K solved this issue by using the K sort in this case, but +this introduces inexactness in which poorly typed terms can be created even +without having a cast operator present in the syntax, which is a design +consideration we would prefer to avoid.

+

It also introduces cases where terms cannot be placed in positions where they +ought to be well sorted unless their return sort is made to be KBott, which in +turn vastly complicates the grammar and makes parsing much slower.

+

In order to introduce this, we provide a new syntax for parametric productions +in K. This allows you to express syntax that has a sort signature based on +parametric polymorphism. We do this by means of an optional curly-brace- +enclosed list of parameters prior to the return sort of a production.

+

Some examples:

+
k
syntax {Sort} Sort ::= "(" Sort ")" [bracket] +syntax {Sort} KItem ::= Sort +syntax {Sort} Sort ::= KBott +syntax {Sort} Sort ::= Sort "=>" Sort +syntax {Sort} Sort ::= "#if" Bool "#then" Sort "#else" Sort "#fi" +syntax {Sort1, Sort2} Sort1 ::= "#fun" "(" Sort2 "=>" Sort1 ")" "(" Sort2 ")" +
+

Here we have:

+
    +
  1. Brackets, which can enclose any sort but should be of the same sort that was +enclosed.
  2. +
  3. Every sort is a KItem.
  4. +
  5. A KBott term can appear inside any sort.
  6. +
  7. Rewrites, which can rewrite a value of any sort to a value of the same sort. +Note that this allows the lhs or rhs to be a subsort of the other.
  8. +
  9. If then else, which can return any sort but which must contain that sort on +both the true and false branches.
  10. +
  11. lambda applications, in which the argument and parameter must be the same +sort, and the return value of the application must be the same sort as the +return value of the function.
  12. +
+

Note the last case, in which two different parameters are specified separated +by a comma. This indicates that we have multiple independent parameters which +must be the same each place they occur, but not the same as the other +parameters.

+

In practice, because every sort is a subsort of K, the Sort2 +parameter in #6 above does nothing during parsing. It cannot +actually reject any parse, because it can always infer that the sort of the +argument and parameter are K, and it has no effect on the resulting sort of +the term. However, it will nevertheless affect the kore generated from the term +by introducing an additional parameter to the symbol generated for the term.

+

function and total attributes

+

Many times it becomes easier to write a semantics if you have "helper" +functions written which can be used in the RHS of rules. The function +attribute tells K that a given symbol should be simplified immediately when it +appears anywhere in the configuration. Semantically, it means that evaluation +of that symbol will result in at most one return value (that is, the symbol is +a partial function).

+

The total attribute indicates that a symbol cannot be equal to matching logic +bottom; in other words, it has at least one value for every possible set of +arguments. It can be added to a production with the function attribute to +indicate to the symbolic reasoning engine that a given symbol is a +total function, that is it has exactly one return value for every possible +input. Other uses of the total attribute (i.e., on multi-valued symbols to +indicate they always have at least one value) are not yet implemented.

+

For example, here we define the _+Word_ total function and the _/Word_ +partial function, which can be used to do addition/division modulo +2 ^Int 256. These functions can be used anywhere in the semantics where +integers should not grow larger than 2 ^Int 256. Notice how _/Word_ is +not defined when the denominator is 0.

+
k
syntax Int ::= Int "+Word" Int [function, total] + | Int "/Word" Int [function] + +rule I1 +Word I2 => (I1 +Int I2) modInt (2 ^Int 256) +rule I1 /Word I2 => (I1 /Int I2) modInt (2 ^Int 256) requires I2 =/=Int 0 +
+

freshGenerator attribute

+

In K, you can access "fresh" values in a given domain using the syntax +!VARNAME:VarSort (with the !-prefixed variable name). This is supported for +builtin sorts Int and Id already. For example, you can generate fresh +memory locations for declared identifiers as such:

+
k
rule <k> new var x ; => . ... </k> + <env> ENV => ENV [ x <- !I:Int ] </env> + <mem> MEM => MEM [ !I <- 0 ] </mem> +
+

Each time a !-prefixed variable is encountered, a new integer will be used, +so each variable declared with new var _ ; will get a unique position in the +<mem>.

+

Sometimes you want to have generation of fresh constants in a user-defined +sort. For this, K will still generate a fresh Int, but can use a converter +function you supply to turn it into the correct sort. For example, here we can +generate fresh Foos using the freshFoo(_) function annotated with +freshGenerator.

+
k
syntax Foo ::= "a" | "b" | "c" | d ( Int ) + +syntax Foo ::= freshFoo ( Int ) [freshGenerator, function, total] + +rule freshFoo(0) => a +rule freshFoo(1) => b +rule freshFoo(2) => c +rule freshFoo(I) => d(I) [owise] + +rule <k> new var x ; => . ... </k> + <env> ENV => ENV [ x <- !I:Int ] </env> + <mem> MEM => MEM [ !I <- !F:Foo ] </mem> +
+

Now each newly allocated memory slot will have a fresh Foo placed in it.

+

token attribute

+

The token attribute signals to the Kore generator that the associated sort +will be inhabited by domain values. Sorts inhabited by domain values must not +have any constructors declared.

+
k
syntax Bytes [hook(BYTES.Bytes), token] +
+

Converting between [token] sorts

+

You can convert between tokens of one sort via Strings by defining functions +implemented by builtin hooks. +The hook STRING.token2string allows conversion of any token to a string:

+
k
syntax String ::= FooToString(Foo) [function, total, hook(STRING.token2string)] +
+

Similarly, the hook STRING.string2Token allows the inverse:

+
k
syntax Bar ::= StringToBar(String) [function, total, hook(STRING.string2token)] +
+

WARNING: This sort of conversion does NOT do any sort of parsing or validation. +Thus, we can create arbitary tokens of any sort:

+
StringToBar("The sun rises in the west.")
+
+

Composing these two functions lets us convert from Foo to Bar

+
k
syntax Bar ::= FooToBar(Foo) [function] +rule FooToBar(F) => StringToBar(FooToString(F)) +
+

Parsing comments, and the #Layout sort

+

Productions for the #Layout sort are used to describe tokens that are +considered "whitespace". The scanner removes tokens matching these productions +so they are not even seen by the parser. Below, we use it to define +lines begining with ; (semicolon) as comments.

+
k
syntax #Layout ::= r"(;[^\\n\\r]*)" // Semi-colon comments + | r"([\\ \\n\\r\\t])" // Whitespace +
+

prec attribute

+

Consider the following naive attempt at creating a language what syntax that +allows two types of variables: names that contain underbars, and names that +contain sharps/hashes/pound-signs:

+
k
syntax NameWithUnderbar ::= r"[a-zA-Z][A-Za-z0-9_]*" [token] +syntax NameWithSharp ::= r"[a-zA-Z][A-Za-z0-9_#]*" [token] +syntax Pgm ::= underbar(NameWithUnderbar) + | sharp(NameWithSharp) +
+

Although, it seems that K has enough information to parse the programs +underbar(foo) and sharp(foo) with, the lexer does not take into account +whether a token is being parsed for the sharp or for the underbar +production. It chooses an arbitary sort for the token foo (perhaps +NameWithUnderbar). Thus, during paring it is unable to construct a valid term +for one of those programs (sharp(foo)) and produces the error message: +Inner Parser: Parse error: unexpected token 'foo'.

+

Since calculating inclusions and intersections between regular expressions is +tricky, we must provide this information to K. We do this via the prec(N) +attribute. The lexer will always prefer longer tokens to shorter tokens. +However, when it has to choose between two different tokens of equal length, +token productions with higher precedence are tried first. Note that the default +precedence value is zero when the prec attribute is not specified.

+

For example, the BUILTIN-ID-TOKENS module defines #UpperId and #LowerId with +the prec(2) attribute.

+
k
syntax #LowerId ::= r"[a-z][a-zA-Z0-9]*" [prec(2), token] + syntax #UpperId ::= r"[A-Z][a-zA-Z0-9]*" [prec(2), token] +
+

Furthermore, we also need to make sorts with more specific tokens subsorts of ones with more +general tokens. We add the token attribute to this production so that all +tokens of a particular sort are marked with the sort they are parsed as and not a +subsort thereof. e.g. we get underbar(#token("foo", "NameWithUnderbar")) +instead of underbar(#token("foo", "#LowerId"))

+
k
imports BUILTIN-ID-TOKENS +syntax NameWithUnderbar ::= r"[a-zA-Z][A-Za-z0-9_]*" [prec(1), token] + | #UpperId [token] + | #LowerId [token] +syntax NameWithSharp ::= r"[a-zA-Z][A-Za-z0-9_#]*" [prec(1), token] + | #UpperId [token] + | #LowerId [token] +syntax Pgm ::= underbar(NameWithUnderbar) + | sharp(NameWithSharp) +
+

unused attribute

+

K will warn you if you declare a symbol that is not used in any of the rules of +your definition. Sometimes this is intentional, however; in this case, you can +suppress the warning by adding the unused attribute to the production or +cell.

+
k
syntax Foo ::= foo() [unused] + +configuration <foo unused=""> .K </foo> +
+

deprecated attribute

+

Symbols can be marked as deprecated by adding the deprecated attribute to +their declaration. If that symbol subsequently appears in the definition (in a +rule, context, context alias or configuration), the compiler will issue a +warning.

+
k
syntax Foo ::= foo() [deprecated] +rule foo() => . // warning on this line +
+

Symbol priority and associativity

+

Unlike most other parser generators, K combines the task of parsing with AST +generation. A production declared with the syntax keyword in K is both a +piece of syntax used when parsing, and a symbol that is used when rewriting. +As a result, it is generally convenient to describe expression grammars using +priority and associativity declarations rather than explicitly transforming +your grammar into a series of nonterminals, one for each level of operator +precedence. Thus, for example, a simple grammar for addition and multiplication +will look like this:

+
k
syntax Exp ::= Exp "*" Exp + | Exp "+" Exp +
+

However, this grammar is ambiguous. The term x+y*z might refer to x+(y*z) +or to (x+y)*z. In order to differentiate this, we introduce a partial +ordering between productions known as priority. A symbol "has tighter priority" +than another symbol if the first symbol can appear under the second, but the +second cannot appear under the first without a bracket. For example, in +traditional arithmetic, multiplication has tighter priority than addition, +which means that x+y*z cannot parse as (x+y)*z because the addition +operator would appear directly beneath the multiplication, which is forbidden +by the priority filter.

+

Priority is applied individually to each possible ambiguous parse of a term. It +then either accepts or rejects that parse. If there is only a single remaining +parse (after all the other disambiguation steps have happened), this is the +parse that is chosen. If all the parses were rejected, it is a parse error. If +multiple parses remain, they might be resolved by further disambiguation such +as via the prefer and avoid attributes, but if multiple parses remain after +disambiguation finishes, this is an ambiguous parse error, indicating there is +not a unique parse for that term. In the vast majority of cases, this is +an error and indicates that you ought to either change your grammar or add +brackets to the term in question.

+

Priority is specified in K grammars by means of one of two different +mechanisms. The first, and simplest, simply replaces the | operator in a +sequence of K productions with the > operator. This operator indicates that +everything prior to the > operator (including transitively) binds tighter +than what comes after. For example, a more complete grammar for simple +arithmetic might be:

+
k
syntax Exp ::= Exp "*" Exp + | Exp "/" Exp + > Exp "+" Exp + | Exp "-" Exp +
+

This indicates that multiplication and division bind tigher than addition +and subtraction, but that there is no relationship in priority between +multiplication and division.

+

As you may have noticed, this grammar is also ambiguous. x*y/z might refer to +x*(y/z) or to (x*y)/z. Indeed, if we removed division and subtraction +entirely, the grammar would still be ambiguous: x*y*z might parse as +x*(y*z), or as (x*y)*z. To resolve this, we introduce another feature: +associativity. Roughly, asssociativity tells us how symbols are allowed to nest +within other symbols with the same priority. If a set of symbols is left +associative, then symbols in that set cannot appear as the rightmost child +of other symbols in that set. If a set of symbols is right associative, then +symbols in that set cannot appear as the leftmost child of other symbols in +that set. Finally, if a set of symbols is non-associative, then symbols +in that set cannot appear as the rightmost or leftmost child of other symbols +in that set. For example, in the above example, if addition and subtraction +are left associative, then x+y+z will parse as (x+y)+z and x+y-z will +parse as (x+y)-z (because the other parse will have been rejected).

+

You might notice that this seems to apply only to binary infix operators. In +fact, the real behavior is slightly more complicated. Priority and +associativity (for technical reasons that go beyond the scope of this document) +really only apply when the rightmost or leftmost item in a production is a +nonterminal. If the rightmost nonterminal is followed by a terminal (or +respectively the leftmost preceded), priority and associativity do not apply. +Thus we can generalize these concepts to arbitrary context-free grammars.

+

Note that in some cases, this is not the behavior you want. You may actually +want to reject parses even though the leftmost and rightmost item in a +production are terminals. You can accomplish this by means of the +applyPriority attribute. When placed on a production, it tells the parser +which nonterminals of a production the priority filter ought to reject children +under, overriding the default behavior. For example, I might have a production +like syntax Exp ::= foo(Exp, Exp) [applyPriority(1)]. This tells the parser +to reject terms with looser priority binding under the first Exp, but not +the second. By default, with this production, neither position would apply +to the priority filter, because the first and last items of the production +are both terminals.

+

Associativity is specified in K grammars by means of one of two different +mechanisms. The first, and simplest, adds the associativity of a priority block +of symbols prior to that block. For example, we can remove the remaining +ambiguities in the above grammar like so:

+
k
syntax Exp ::= left: + Exp "*" Exp + | Exp "/" Exp + > right: + Exp "+" Exp + | Exp "-" Exp +
+

This indicates that multiplication and division are left-associative, ie, after +symbols with higher priority are parsed as innermost, symbols are nested with +the rightmost on top. Addition and subtraction are right associative, which +is the opposite and indicates that symbols are nested with the leftmost on top. +Note that this is similar but different from evaluation order, which also +concerns itself with the ordering of symbols, which is described in the next +section.

+

You may note we have not yet introduced the second syntax for priority +and associativity. In some cases, syntax for a grammar might be spread across +multiple modules, sometimes for very good reasons with respect to code +modularity. As a result, it becomes infeasible to declare priority and +associativity inline within a set of productions, because the productions +are not contiguous within a single file.

+

For this purpose, we introduce the equivalent syntax priority, +syntax left, syntax right, and syntax non-assoc declarations. For +example, the above grammar can be written equivalently as:

+
k
syntax Exp ::= Exp "*" Exp [group(mult)] + | Exp "/" Exp [group(div)] + | Exp "+" Exp [group(add)] + | Exp "-" Exp [group(sub)] + +syntax priority mult div > add sub +syntax left mult div +syntax right add sub +
+

Here, the group(_) attribute is used to create user-defined groups of +sentences. A particular group name collectively refers to the whole set of +sentences within that group. The sets are flattened together, so we could +equivalently have written:

+
k
syntax Exp ::= Exp "*" Exp [group(mult)] + | Exp "/" Exp [group(mult)] + | Exp "+" Exp [group(add)] + | Exp "-" Exp [group(add)] + +syntax priority mult > add +syntax left mult +syntax right add +
+

Note that syntax [left|right|non-assoc] should not be used to group together +productions with different priorities. For example, this code would be invalid:

+
k
syntax priority mult > add +syntax left mult add +
+

Note that there is one other way to describe associativity, but it is +prone to a very common mistake. You can apply the attribute left, right, +or non-assoc directly to a production to indicate that it is, by itself, +left-, right-, or non-associative.

+

However, this often does not mean what users think it means. In particular:

+
k
syntax Exp ::= Exp "+" Exp [left] + | Exp "-" Exp [left] +
+

is not equivalent to:

+
k
syntax Exp ::= left: + Exp "+" Exp + | Exp "-" Exp +
+

Under the first, each production is associative with itself, but not each +other. Thus, x+y+z will parse unambiguously as (x+y)+z, but x+y-z will +be ambiguous. However, in the second, x+y-z will parse unambiguously as +(x+y)-z.

+

Think carefully about how you want your grammar to parse. In general, if you're +not sure, it's probably best to group associativity together into the same +blocks you use for priority, rather than using left, right, or non-assoc +attributes on the productions.

+

Lexical identifiers

+

Sometimes it is convenient to be able to give a certain regular expression a +name and then refer to it in one or more regular expression terminals. This +can be done with a syntax lexical sentence in K:

+
k
syntax lexical Alphanum = r"[0-9a-zA-Z]" +
+

This defines a lexical identifier Alphanum which can be expanded in any +regular expression terminal to the above regular expression. For example, I +might choose to then implement the syntax of identifiers as follows:

+
k
syntax Id ::= r"[a-zA-Z]{Alphanum}*" [token] +
+

Here {Alphanum} expands to the above regular expression, making the sentence +equivalent to the following:

+
k
syntax Id ::= r"[a-zA-Z]([0-9a-zA-Z])*" [token] +
+

This feature can be used to more modularly construct the lexical syntax of your +language. Note that K does not currently check that lexical identifiers used +in regular expressions have been defined; this will generate an error when +creating the scanner, however, and the user ought to be able to debug what +happened.

+

assoc, comm, idem, and unit attributes

+

These attributes are used to indicate whether a collection or a production +is associative, commutative, idempotent, and/or has a unit. +In general, you should not need to apply these attributes to productions +yourself, however, they do have certain special meaning to K. K will generate +axioms related to each of these concepts into your definition for you +automatically. It will also automatically sort associative-commutative +collections, and flatten the indentation of associative collections, when +unparsing.

+

public and private attribute

+

K allows users to declare certain pieces of syntax as either public or private. +All syntax is public by default. Public syntax can be used from any module that +imports that piece of syntax. A piece of syntax can be declared private with +the private attribute. This means that that syntax can only be used in the +module in which it is declared; it is not visible from modules that import +that module.

+

You can also change the default visibility of a module with the private +attribute, when it is placed directly on a module. A module with the private +attribute has all syntax private by default; this can be overridden on +specific sentences with the public attribute.

+

Note that the private module attribute also changes the default visiblity +of imports; please refer to the appropriate section elsewhere in the manual +for more details.

+

Here is an example usage:

+
k
module WIDGET-SYNTAX + + syntax Widget ::= foo() + syntax WidgetHelper ::= bar() [private] // this production is not visible + // outside this module +endmodule + +module WIDGET [private] + imports WIDGET-SYNTAX + + syntax Widget ::= fooImpl() // this production is not visible outside this + // module + + // this production is visible outside this module + syntax KItem ::= adjustWidget(Widget) [function, public] +endmodule +
+

Configuration Declaration

+

exit attribute

+

A single configuration cell containing an integer may have the "exit" +attribute. This integer will then be used as the return value on the console +when executing the program.

+

For example:

+
k
configuration <k> $PGM:Pgm </k> + <status-code exit=""> 1 </status-code> +
+

declares that the cell status-code should be used as the exit-code for +invocations of krun. Additionally, we state that the default exit-code is 1 +(an error state). One use of this is for writing testing harnesses which assume +that the test fails until proven otherwise and only set the <status-code> cell +to 0 if the test succeeds.

+

Collection Cells: multiplicity and type attributes

+

Sometimes a semantics needs to allow multiple copies of the same cell, for +example if you are making a concurrent multi-threading programming language. +For this purpose, K supports the multiplicity and type attributes on cells +declared in the configuration.

+

multiplicity can take on values * and ?. Declaring multiplicity="*" +indicates that the cell may appear any number of times in a runtime +configuration. Setting multiplicity="?" indicates that the cell may only +appear exactly 0 or 1 times in a runtime configuration. If there are no +configuration variables present in the cell collection, the initial +configuration will start with exactly 0 instances of the cell collection. If +there are configuration variables present in the cell collection, the initial +configuration will start with exactly 1 instance of the cell collection.

+

type can take on values Set, List, and Map. For example, here we declare +several collecion cells:

+
k
configuration <k> $PGM:Pgm </k> + <sets> <set multiplicity="?" type="Set"> 0:Int </set> </sets> + <lists> <list multiplicity="*" type="List"> 0:Int </list> </lists> + <maps> + <map multiplicity="*" type="Map"> + <map-key> 0:Int </map-key> + <map-value-1> "":String </map-value-1> + <map-value-2> 0:Int </map-value-2> + </map> + </maps> +
+

Declaring type="Set" indicates that duplicate occurrences of the cell should +be de-duplicated, and accesses to instances of the cell will be nondeterministic +choices (constrained by any other parts of the match and side-conditions). +Similarly, declaring type="List" means that new instances of the cell can be +added at the front or back, and elements can be accessed from the front or back, +and the order of the cells will be maintained. The following are examples of +introduction and elimination rules for these collections:

+
k
rule <k> introduce-set(I:Int) => . ... </k> + <sets> .Bag => <set> I </set> </sets> + +rule <k> eliminate-set => I ... </k> + <sets> <set> I </set> => .Bag </sets> + +rule <k> introduce-list-start(I:Int) => . ... </k> + <lists> (.Bag => <list> I </list>) ... </lists> + +rule <k> introduce-list-end(I:Int) => . ... </k> + <lists> ... (.Bag => <list> I </list>) </lists> + +rule <k> eliminate-list-start => I ... </k> + <lists> (<list> I </list> => .Bag) ... </lists> + +rule <k> eliminate-list-end => I ... </k> + <lists> ... (<list> I </list> => .Bag) </lists> +
+

Notice that for multiplicity="?", we only admit a single <set> instance at +a time. For the type=List cell, we can add/eliminate cells from the from or +back of the <lists> cell. Also note that we use .Bag to indicate the empty +cell collection in all cases.

+

Declaring type="Map" indicates that the first sub-cell will be used as a +cell-key. This means that matching on those cells will be done as a map-lookup +operation if the cell-key is mentioned in the rule (for performance). If the +cell-key is not mentioned, it will fallback to normal nondeterministic +constrained by other parts of the match and any side-conditions. Note that there +is no special meaning to the name of the cells (in this case <map>, +<map-key>, <map-value-1>, and <map-value-2>). Additionally, any number of +sub-cells are allowed, and the entire instance of the cell collection is +considered part of the cell-value, including the cell-key (<map-key> in this +case) and the surrounding collection cell (<map> in this case).

+

For example, the following rules introduce, set, retrieve from, and eliminate +type="Map" cells:

+
k
rule <k> introduce-map(I:Int) => . ... </k> + <maps> ... (.Bag => <map> <map-key> I </map-key> ... </map>) ... </maps> + +rule <k> set-map-value-1(I:Int, S:String) => . ... </k> + <map> <map-key> I </map-key> <map-value-1> _ => S </map-value-1> ... </map> + +rule <k> set-map-value-2(I:Int, V:Int) => . ... </k> + <map> <map-key> I </map-key> <map-value-2> _ => V </map-value-2> ... </map> + +rule <k> retrieve-map-value-1(I:Int) => S ... </k> + <map> <map-key> I </map-key> <map-value-1> S </map-value-1> ... </map> + +rule <k> retrieve-map-value-2(I:Int) => V ... </k> + <map> <map-key> I </map-key> <map-value-2> V </map-value-2> ... </map> + +rule <k> eliminate-map(I:Int) => . ... </k> + <maps> ... (<map> <map-key> I </map-key> ... </map> => .Bag) ... </maps> +
+

Note how each rule makes sure that <map-key> cell is mentioned, and we +continue to use .Bag to indicate the empty collection. Also note that +when introducing new map elements, you may omit any of the sub-cells which are +not the cell-key. In case you do omit sub-cells, you must use structural +framing ... to indicate the missing cells, they will receive the default +value given in the configuration ... declaration.

+

Rule Declaration

+

Rule Structure

+

Each K rule follows the same basic structure (given as an example here):

+
k
rule LHS => RHS requires REQ ensures ENS [ATTRS] +
+

The portion between rule and requires is referred to as the rule body, +and may contain one or more rewrites (though not nested). Here, the rule body is +LHS => RHS, where LHS and RHS are used as placeholders for the pre- and +post- states. Note that we lose no generality referring to the LHS or the +RHS, even in the presence of multiple rewrites, as the rewrites are pulled to +the top-level anyway.

+

Next is the requires clause, represented here as REQ. The requires clause is +an additional predicate (function-like term of sort Bool), which is to be +evaluated before applying the rule. If the requires clause does not evaluate to +true, then the rule does not apply.

+

Finally is the ensures clause, represented here as ENS. The ensures clause +is to be interpreted as a post-condition, and will be automatically added to the +path condition if the rule applies. It may cause the entire term to become +undefined, but the backend will not stop itself from applying the rule in this +case. Note that concrete backends (eg. the LLVM backend) are free to ignore the +ensures clause.

+

Overall, the transition represented by such a rule is from a state +LHS #And REQ ending in a state RHS #And ENS. When backends apply this rule +as a transition/rewrite, they should:

+
    +
  • Check if pattern LHS matches (or unifies) with the current term, giving +substitution alpha.
  • +
  • Check if the instantiation alpha(REQ) is valid (or satisfiable).
  • +
  • Build the new term alpha(RHS #And ENS), and check if it's satisfiable.
  • +
+

Pattern Matching operator

+

Sometimes when you want to express a side condition, you want to say that a +rule matches if a particular term matches a particular pattern, or if it +instead does /not/ match a particular pattern.

+

The syntax in K for this is :=K and :/=K. It has similar meaning to ==K and +=/=K, except that where ==K and =/=K express equality, :=K and =/=K express +model membership. That is to say, whether or not the rhs is a member of the set +of terms expressed by the lhs pattern. Because the lhs of these operators is a +pattern, the user can use variables in the lhs of the operator. However, due to +current limitations, these variables are NOT bound in the rest of the term. +The user is thus encouraged to use anonymous variables only, although this is +not required.

+

This is compiled by the K frontend down to an efficient pattern matching on a +fresh function symbol.

+

Anonymous function applications

+

There are a number of cases in K where you would prefer to be able to take some +term on the RHS, bind it to a variable, and refer to it in multiple different +places in a rule.

+

You might also prefer to take a variable for which you know some of its +structure, and modify some of its internal structure without requiring you to +match on every single field contained inside that structure.

+

In order to do this, we introduce syntax to K that allows you to construct +anonymous functions in the RHS of a rule and apply them to a term.

+

The syntax for this is:

+
#fun(RuleBody)(Argument)
+
+

Note the limitations currently imposed by the implementation. These functions +are not first-order: you cannot bind them to a variable and inject them like +you can with a regular klabel for a function. You also cannot express multiple +rules or multiple parameters, or side conditions. All of these are extensions +we would like to support in the future, however.

+

In the following, we use three examples to illustrate the behavior of #fun. +We point out that the support for #fun is provided by the frontend, not the +backends.

+

The three examples are real examples borrowed or modified from existing language +semantics.

+

Example 1 (A Simple Self-Explained Example).

+
#fun(V:Val => isFoo(V) andBool isBar(V))(someFunctionReturningVal())
+
+

Example 2 (Nested #fun).

+
   #fun(C
+=> #fun(R
+=> #fun(E
+=> foo1(E, R, C)
+  )(foo2(C))
+  )(foo3(0))
+  )(foo4(1))
+
+

This example is from the beacon +semantics:https://github.com/runtimeverification/beacon-chain-spec/blob/master/b +eacon-chain.k at line 302, with some modification for simplicity. Note how +variables C, R, E are bound in the nested #fun.

+

Example 3 (Matching a structure).

+
rule foo(K, RECORD) =>
+  #fun(record(... field: _ => K))(RECORD)
+
+

Unlike previous examples, the LHS of #fun in this example is no longer a +variable, but a structure. It has the same spirit as the first two examples, +but we match the RECORD with a structure record( DotVar, field: X), instead +of a standalone variable. We also use K's local rewrite syntax (i.e., the +rewriting symbol => does not occur at the top-level) to prevent writing +duplicate expressions on the LHS and RHS of the rewriting.

+

Macros and Aliases

+

A production can be tagged with the macro, alias, macro-rec, or alias-rec +attributes. In all cases, what this signifies is that this is a macro production. +Macro rules are rules where the top symbol of the left-hand-side are macro +labels. Macro rules are applied statically during compilation on all terms that +they match, and statically before program execution on the initial configuration. +Currently, macro rules are required to not have side conditions, although they +can contain sort checks.

+

alias rules are also applied statically in reverse prior to unparsing on the +final configuration. Note that a macro rule can have unbound variables in the +right hand side. When such a macro exists, it should be used only on the left +hand side of rules, unless the user is performing symbolic execution and expects +to introduce symbolic terms into the subject being rewritten.

+

However, when used on the left hand side of a rule, it functions similarly to a +pattern alias, and allows the user to concisely express a reusable pattern that +they wish to match on in multiple places.

+

For example, consider the following semantics:

+
k
syntax KItem ::= "foo" [alias] | "foobar" +syntax KItem ::= bar(KItem) [macro] | baz(Int, KItem) +rule foo => foobar +rule bar(I) => baz(?_, I) +rule bar(I) => I +
+

This will rewrite baz(0, foo) to foo. First baz(0, foo) will be rewritten +statically to baz(0, foobar). Then the non-macro rule will apply (because +the rule will have been rewritten to rule baz(_, I) => I). Then foobar will +be rewritten statically after rewriting finishes to foo via the reverse form +of the alias.

+

Note that macros do not apply recursively within their own expansion. This is +done so as to ensure that macro expansion will always terminate. If the user +genuinely desires a recursive macro, the macro-rec and alias-rec attributes +can be used to provide this behavior.

+

For example, consider the following semantics:

+
k
syntax Exp ::= "int" Exp ";" | "int" Exps ";" [macro] | Exp Exp | Id +syntax Exps ::= List{Exp,","} + +rule int X:Id, X':Id, Xs:Exps ; => int X ; int X', Xs ; +
+

This will expand int x, y, z; to int x; int y, z; because the macro does +not apply the second time after applying the substitution of the first +application. However, if the macro attribute were changed to the macro-rec +attribute, it would instead expand (as the user likely intended) to +int x; int y; int z;.

+

The alias-rec attribute behaves with respect to the alias attribute the +same way the macro-rec attribute behaves with respect to macro.

+

anywhere rules

+

Some rules are not functional, but you want them to apply anywhere in the +configuration (similar to functional rules). You can use the anywhere +attribute on a rule to instruct the backends to make sure they apply anywhere +they match in the entire configuration.

+

For example, if you want to make sure that some associative operator is always +right-associated anywhere in the configuration, you can do:

+
k
syntax Stmt ::= Stmt ";" Stmt + +rule (S1 ; S2) ; S3 => S1 ; (S2 ; S3) [anywhere] +
+

Then after every step, all occurrences of _;_ will be re-associated. Note that +this allows the symbol _;_ to still be a constructor, even though it is +simplified similarly to a function.

+

trusted claims

+

You may add the trusted attribute to a given claim for the K prover to +automatically add it to the list of proven circularities, instead of trying to +discharge it separately.

+

Projection and Predicate functions

+

K automatically generates certain predicate and projection functions from the +syntax you declare. For example, if you write:

+
k
syntax Foo ::= foo(bar: Bar) +
+

It will automatically generate the following K code:

+
k
syntax Bool ::= isFoo(K) [function] +syntax Foo ::= "{" K "}" ":>Foo" [function] +syntax Bar ::= bar(Foo) [function] + +rule isFoo(F:Foo) => true +rule isFoo(_) => false [owise] + +rule { F:Foo }:>Foo => F +rule bar(foo(B:Bar)) => B +
+

The first two types of functions are generated automatically for every sort in +your K definition, and the third type of function is generated automatically +for each named nonterminal in your definition. Essentially, isFoo for some +sort Foo will tell you whether a particular term of sort K is a Foo, +{F}:>Foo will cast F to sort Foo if F is of sort Foo and will be +undefined (i.e., theoretically defined as #Bottom, the bottom symbol in +matching logic) otherwise. Finally, bar will project out the child of a foo +named bar in its production declaration.

+

Note that if another term of equal or smaller sort to Foo exists and has a +child named bar of equal or smaller sort to Bar, this will generate an +ambiguity during parsing, so care should be taken to ensure that named +nonterminals are sufficiently unique from one another to prevent such +ambiguities. Of course, the compiler will generate a warning in this case.

+

simplification attribute

+

The simplification attribute identifies rules outside the main semantics that +are used to simplify function patterns.

+

Conditions: A simplification rule is applied by matching the function +arguments, instead of unification as when applying function definition +rules. This allows function symbols to appear nested as arguments to other +functions on the left-hand side of a simplification rule, which is forbidden in +function definition rules. For example, this rule would not be accepted as a +function definition rule:

+
k
rule (X +Int Y) +Int Z => X +Int (Y +Int Z) [simplification] +
+

A simplification rule is only applied when the current side condition implies +the requires clause of the rule, like function definition rules.

+

Order: The simplification attribute accepts an optional integer argument +which is the rule's simplification priority; if the optional argument is not +specified, it is equivalent to a simplification priority of 50. Backends +should attempt simplification rules in order of their simplification +priority, but are not required to do so; in fact, the backend is free to apply +simplification rules at any time. Because of this, users must ensure that +simplification rules are sound regardless of their order of application. This +differs from the priority attribute in that rules with the priority +attribute must be applied in their priority order by the backend. It is an +error to have the priority attribute on a simplification rule.

+

For example, for the following definition:

+
k
syntax WordStack ::= Int ":" WordStack | ".WordStack" + syntax Int ::= sizeWordStack ( WordStack ) [function] + | sizeWordStackAux ( WordStack , Int ) [function] + // -------------------------------------------------------------- + rule sizeWordStack(WS) => sizeWordStackAux(WS, 0) + + rule sizeWordStackAux(.WordStack, N) => N + rule sizeWordStackAux(W : WS , N) => sizeWordStackAux(WS, N +Int 1) +
+

We might add the following simplification lemma:

+
k
rule sizeWordStackAux(WS, N) => N +Int sizeWordStackAux(WS, 0) + requires N =/=Int 0 + [simplification] +
+

Then this simplification rule will only apply if the Haskell backend can prove +that notBool N =/=Int 0 is unsatisfiable. This avoids an infinite cycle of +applying this simplification lemma.

+

NOTE: The frontend and Haskell backend do not check that supplied +simplification rules are sound, this is the developer's responsibility. In +particular, rules with the simplification attribute must preserve definedness; +that is, if the left-hand side refers to any partial function then:

+
    +
  • the right-hand side must be #Bottom when the left-hand side is #Bottom, or
  • +
  • the rule must have an ensures clause that is false when the left-hand +side is #Bottom, or
  • +
  • the rule must have a requires clause that is false when the left-hand +side is #Bottom.
  • +
+

These conditions are in order of decreasing preference: the best option is to +preserve #Bottom on the right-hand side, the next best option is to have an +ensures clause, and the least-preferred option is to have a requires clause. +The most preferred option is to write total functions and avoid the entire issue.

+

NOTE: The Haskell backend does not attempt to prove claims which right-hand +side is #Bottom. The reason for this is that the general case is undecidable, +and the backend might enter an infinite loop. Therefore, the backend emits a +warning if it encounters such a claim.

+

concrete and symbolic attributes (Haskell backend)

+

Users can control the application of simplification rules using the concrete +and the symbolic attributes by specifying the type of patterns the rule's +arguments are to match.

+

A concrete pattern is a pattern which does not contain variables or unevaluated +functions, otherwise the pattern is symbolic.

+

The semantics of the two attributes is defined as follows:

+
    +
  • If a simplification rule is marked concrete, then all arguments must be +concrete for the rule to match.
  • +
  • If a simplification rule is marked symbolic, then all arguments must be +symbolic for the rule to match.
  • +
  • The following syntax concrete(<variables>) (resp. symbolic(<variables>)), +where <variables> is a list of variable names separated by commas, can be used +to specify the exact arguments the user expects to match concrete (resp. symbolic) +patterns.
  • +
+

For example, the following will only match when all arguments +are concrete:

+
k
rule X +Int (Y +Int Z) => (X +Int Y) +Int Z [simplification, concrete] +
+

Conversely, the following will only match when all arguments +are symbolic:

+
k
rule X +Int (Y +Int Z) => (X +Int Y) +Int Z [simplification, symbolic] +
+

In practice, the following rules will re-associate and commute terms to combine +concrete arguments:

+
k
rule (A +Int Y) +Int Z => A +Int (Y +Int Z) + [concrete(Y, Z), symbolic(A), simplification] + +rule X +Int (B +Int Z) => B +Int (X +Int Z) + [concrete(X, Z), symbolic(B), simplification] +
+

The unboundVariables attribute

+

Normally, K rules are not allowed to contain regular (i.e., not fresh, not +existential) variables in the RHS / requires / ensures clauses which are not +bound in the LHS.

+

However, in certain cases this behavior might be desired, like, for example, +when specifying a macro rule which is to be used in the LHS of other rules. +To allow for such cases, but still be useful and perform the unboundness checks +in regular cases, the unboundVariables attributes allows the user to specify +a comma-separated list of names of variables which can be unbound in the rule.

+

For example, in the macro declaration

+
k
rule cppEnumType => bar(_, scopedEnum() #Or unscopedEnum() ) [unboundVariables(_)] +
+

the declaration unboundVariables(_) allows the rule to pass the unbound +variable checks, and this in turn allows for cppEnumType to be used in +the LHS of a rule to mean the pattern above:

+
k
rule inverseConvertType(cppEnumType, foo((cppEnumType #as T::CPPType => underlyingType(T)))) +
+

The memo attribute

+

The memo attribute is a hint from the user to the backend to memoize a +function. Not all backends support memoization, but when the attribute is used +and the definition is compiled for a memo-supporting backend, then calls to +the function may be cached. At the time of writing, only the Haskell +backend supports memoization.

+

Limitations of memoization with the Haskell backend

+

The Haskell backend will only cache a function call if all arguments are concrete.

+

It is recommended not to memoize recursive functions, as each recursive call +will be stored in the cache, but only the first iteration will be retrieved from +the cache; that is, the cache will be filled with many unreachable +entries. Instead, we recommend to perform a worker-wrapper transformation on +recursive functions, and apply the memo attribute to the wrapper.

+

Warning: A function declared with the memo attribute must not use +uninterpreted functions in the side-condition of any rule. Memoizing such an +impure function is unsound. To see why, consider the following rules:

+
k
syntax Bool ::= impure( Int ) [function] + +syntax Int ::= unsound( Int ) [function, memo] +rule unsound(X:Int) => X +Int 1 requires impure(X) +rule unsound(X:Int) => X requires notBool impure(X) +
+

Because the function impure is not given rules to cover all inputs, unsound +can be memoized incoherently. For example,

+
{unsound(0) #And {impure(0) #Equals true}} #Equals 1
+
+

but

+
{unsound(0) #And {impure(0) #Equals false}} #Equals 0
+
+

The memoized value of unsound(0) would be incoherently determined by which +pattern the backend encounters first.

+

Variable Sort Inference

+

In K, it is not required that users declare the sorts of variables in rules or +in the initial configuration. If the user does not explicitly declare the sort +of a variable somewhere via a cast (see below), the sort of the variable is +inferred from context based on the sort signature of every place the variable +appears in the rule.

+

As an example, consider the rule for addition in IMP:

+
k
syntax Exp ::= Exp "+" Exp | Int + + rule I1 + I2 => I1 +Int I2 +
+

Here +Int is defined in the INT module with the following signature:

+
k
syntax Int ::= Int "+Int" Int [function] +
+

In the rule above, the sort of both I1 and I2 is inferred as Int. This is because +a variable must have the same sort every place it appears within the same rule. +While a variable appearing only on the left-hand-side of the rule could have +sort Exp instead, the same variable appears as a child of +Int, which +constriants the sorts of I1 and I2 more tightly. Since the sort must be a +subsort of Int or equal to Int, and Int has no subsorts, we infer Int +as the sorts of I1 and I2. This means that the above rule will not match +until I1 and I2 become integers (i.e., have already been evaluated).

+

More complex examples are possible, however:

+
k
syntax Exp ::= Exp "+" Int | Int + rule _ + _ => 0 +
+

Here we have two anonymous variables. They do not refer to the same variable +as one another, so they can have different sorts. The right side is constrained +by + to be of sort Int, but the left side could be either Exp or Int. +When this occurs, we have multiple solutions to the sorts of the variables in +the rule. K will only choose solutions which are maximal, however. To be +precise, if two different solutions exist, but the sorts of one solution are +all greater than or equal to the sorts of the other solution, K will discard +the smaller solution. Thus, in the case above, the variable on the left side +of the + is inferred of sort Exp, because the solution (Exp, Int) is +strictly greater than the solution (Int, Int).

+

It is possible, however, for terms to have multiple maximal solutions:

+
k
syntax Exp ::= Exp "+" Int | Int "+" Exp | Int + rule I1 + I2 => 0 +
+

In this example, there is an ambiguous parse. This could parse as either +the first + or the second. In the first case, the maximal solution chosen is +(Exp, Int). In the second, it is (Int, Exp). Neither of these solutions is +greater than the other, so both are allowed by K. As a result, this program +will emit an error because the parse is ambiguous. To pick one solution over +the other, a cast or a prefer or avoid attribute can be used.

+

Casting

+

There are three main types of casts in K: the semantic cast, the strict cast, +and the projection cast.

+

Semantic casts

+

For every sort S declared in your grammar, K will define the following +production for you for use in rules:

+
k
syntax S ::= S ":S" +
+

The meaning of this cast is that the term inside the cast must be less than +or equal to Sort. This can be used to resolve ambiguities, but its principle +purpose is to guide execution by telling K what sort variables must match in +order for the rule to apply. When compiled, it will generate a pattern that +matches on an injection into Sort.

+

Strict casts

+

K also introduces the strict cast:

+
k
syntax S ::= S "::S" +
+

The meaning at runtime is exactly the same as the semantic cast; however, it +restricts the sort of the term inside the cast to exactly Sort. That is +to say, if you use it on something that is a strictly smaller sort, it will +generate a type error. This is useful in certain circumstances to help +disambiguate terms, when a semantic cast would not have resolved the ambiguity. +As such, it is primarily used to solve ambiguities rather than to guide +execution.

+

Projection casts

+

K also introduces the projection cast:

+
k
syntax {S2} S ::= "{" S2 "}" ":>S" +
+

The meaning of this cast at runtime is that if the term inside is of sort +Sort, it should have it injection stripped away and the value inside is +returned as a term of static sort Sort. However, if the term is of a +different sort, it is an error and execution will get stuck. Thus the primary +usefulness of this cast is to cast the return value of a function with a +greater sort down to a strictly smaller sort that you expect the return value +of the function to have. For example:

+
k
syntax Exp ::= foo(Exp) [function] | bar(Int) | Int + rule foo(I:Int) => I + rule bar(I) => bar({foo(I +Int 1)}:>Int) +
+

Here we know that foo(I +Int 1) will return an Int, but the return sort of +foo is Exp. So we project the result into the Int sort so that it can +be placed as the child of a bar.

+

owise and priority attributes.

+

Sometimes, it is simply not convenient to explicitly describe every +single negative case under which a rule should not apply. Instead, +we simply wish to say that a rule should only apply after some other set of +rules have been tried. K introduces two different attributes that can be +added to rules which will automatically generate the necessary matching +conditions in a manner which is performant for concrete execution (indeed, +it generally outperforms during concrete execution code where the conditions +are written explicitly).

+

The first is the owise attribute. Very roughly, rules without an attribute +indicating their priority apply first, followed by rules with the owise +attribute only if all the other rules have been tried and failed. For example, +consider the following function:

+
k
syntax Int ::= foo(Int) [function] +rule foo(0) => 0 +rule foo(_) => 1 [owise] +
+

Here foo(0) is defined explicitly as 0. Any other integer yields the +integer 1. In particular, the second rule above will only be tried after the +first rule has been shown not to apply.

+

This is because the first rule has a lower number assigned for its priority +than the second rule. In practice, each rule in your semantics is implicitly +or explicitly assigned a numerical priority. Rules are tried in increasing +order of priority, starting at zero and trying each increasing numerical value +successively.

+

You can specify the priority of a rule with the priority attribute. For +example, I could equivalently write the second rule above as:

+
k
rule foo(_) => 1 [priority(200)] +
+

The number 200 is not chosen at random. In fact, when you use the owise +attribute, what you are doing is implicitly setting the priority of the rule +to 200. This has a couple of implications:

+
    +
  1. Multiple rules with the owise attribute all have the same priority and thus +can apply in any order.
  2. +
  3. Rules with priority higher than 200 apply after all rules with the +owise attribute have been tried.
  4. +
+

There is one more rule by which priorities are assigned: a rule with no +attributes indicating its priority is assigned the priority 50. Thus, +with each priority explicitly declared, the above example looks like:

+
k
syntax Int ::= foo(Int) [function] +rule foo(0) => 0 [priority(50)] +rule foo(_) => 1 [owise] +
+

One final note: the llvm backend reserves priorities between 50 and 150 +inclusive for certain specific purposes. Because of this, explicit +priorities which are given within this region may not behave precisely as +described above. This is primarily in order that it be possible where necessary +to provide guidance to the pattern matching algorithm when it would otherwise +make bad choices about which rules to try first. You generally should not +give any rule a priority within this region unless you know exactly what the +implications are with respect to how the llvm backend orders matches.

+

Evaluation Strategy

+

strict and seqstrict attributes

+

The strictness attributes allow defining evaluation strategies without having +to explicitly make rules which implement them. This is done by injecting +heating and cooling rules for the subterms. For this to work, you need to +define what a result is for K, by extending the KResult sort.

+

For example:

+
k
syntax AExp ::= Int + | AExp "+" AExp [strict, klabel(addExp)] +
+

This generates two heating rules (where the hole syntaxes "[]" "+" AExp and +AExp "+" "[]" is automatically added to create an evaluation context):

+
k
rule [addExp1-heat]: <k> HOLE:AExp + AE2:AExp => HOLE ~> [] + AE2 ... </k> [heat] +rule [addExp2-heat]: <k> AE1:AExp + HOLE:AExp => HOLE ~> AE1 + [] ... </k> [heat] +
+

And two corresponding cooling rules:

+
k
rule [addExp1-cool]: <k> HOLE:AExp ~> [] + AE2 => HOLE + AE2 ... </k> [cool] +rule [addExp2-cool]: <k> HOLE:AExp ~> AE1 + [] => AE1 + HOLE ... </k> [cool] +
+

Note that the rules are given labels based on the klabel of the production, which +nonterminal is the hole, and whether it's the heating or the cooling rule.

+

You will note that these rules can apply one after another infinitely. In +practice, the KResult sort is used to break this cycle by ensuring that only +terms that are not part of the KResult sort will be heated. The heat and +cool attributes are used to tell the compiler that these are heating and +cooling rules and should be handled in the manner just described. Nothing stops +the user from writing such heating and cooling rules directly if they wish, +although we describe other more convenient syntax for most of the advanced +cases below.

+

One other thing to note is that in the above sentences, HOLE is just a +variable, but it has special meaning in the context of sentences with the +heat or cool attribute. In heating or cooling rules, the variable named +HOLE is considered to be the term being heated or cooled and the compiler +will generate isKResult(HOLE) and notBool isKResult(HOLE) side conditions +appropriately to ensure that the backend does not loop infinitely. The module +BOOL will also be automatically and privately included for semantic +purposes. The syntax for parsing programs will not be affected.

+

In order for this functionality to work, you need to define the KResult sort. +For instance, we tell K that a term is fully evaluated once it becomes an Int +here:

+
k
syntax KResult ::= Int +
+

Note that you can also say that a given expression is only strict only in +specific argument positions. Here we use this to define "short-circuiting" +boolean operators.

+
k
syntax KResult ::= Bool + +syntax BExp ::= Bool + | BExp "||" BExp [strict(1)] + | BExp "&&" BExp [strict(1)] + +rule <k> true || _ => true ... </k> +rule <k> false || REST => REST ... </k> + +rule <k> true && REST => REST ... </k> +rule <k> false && _ => false ... </k> +
+

If you want to force a specific evaluation order of the arguments, you can use +the variant seqstrict to do so. For example, this would make the boolean +operators short-circuit in their second argument first:

+
k
syntax KResult ::= Bool + +syntax BExp ::= Bool + | BExp "||" BExp [seqstrict(2,1)] + | BExp "&&" BExp [seqstrict(2,1)] + +rule <k> _ || true => true ... </k> +rule <k> REST || false => REST ... </k> + +rule <k> REST && true => REST ... </k> +rule <k> _ && false => false ... </k> +
+

This will generate rules like this in the case of _||_ (note that BE1 will +not be heated unless isKResult(BE2) is true, meaning that BE2 must be +evaluated first):

+
k
rule <k> BE1:BExp || HOLE:BExp => HOLE ~> BE1 || [] ... </k> [heat] +rule <k> HOLE:BExp || BE2:BExp => HOLE ~> [] || BE2 ... </k> requires isKResult(BE2) [heat] + +rule <k> HOLE:BExp ~> [] || BE2 => HOLE || BE2 ... </k> [cool] +rule <k> HOLE:BExp ~> BE1 || [] => BE1 || HOLE ... </k> [cool] +
+

Context Declaration

+

Sometimes more advanced evaluation strategies are needed. By default, the +strict and seqstrict attributes are limited in that they cannot describe +the context in which heating or cooling should occur. When this type of +control over the evaluation strategy is required, context sentences can be +used to simplify the process of declaring heating and cooling when it would be +unnecessarily verbose to write heating and cooling rules directly.

+

For example, if the user wants to heat a term if it exists under a foo +constructor if the term to be heated is of sort bar, one might write the +following context (with the optional label):

+
k
context [foo]: foo(HOLE:Bar) +
+

Once again, note that HOLE is just a variable, but one that has special +meaning to the compiler indicating the position in the context that should +be heated or cooled.

+

This will automatically generate the following sentences:

+
k
rule [foo-heat]: <k> foo(HOLE:Bar) => HOLE ~> foo([]) ... </k> [heat] +rule [foo-cool]: <k> HOLE:Bar ~> foo([]) => foo(HOLE) ... </k> [cool] +
+

The user may also write the K cell explicitly in the context declaration +if they want to match on another cell as well, for example:

+
k
context <k> foo(HOLE:Bar) ... </k> <state> .Map </state> +
+

This context will now only heat or cool if the state cell is empty.

+

Side conditions in context declarations

+

The user is allowed to write a side condition in a context declaration, like +so:

+
k
context foo(HOLE:Bar) requires baz(HOLE) +
+

This side condition will be appended verbatim to the heating rule that is +generated, however, it will not affect the cooling rule that is generated:

+
k
rule <k> foo(HOLE:Bar) => HOLE ~> foo([]) ... </k> requires baz(HOLE) [heat] +rule <k> HOLE:Bar ~> foo([]) => foo(HOLE) ... </k> [cool] +
+

Rewrites in context declarations

+

The user can also include exactly one rewrite operation in a context +declaration if that rule rewrites the variable HOLE on the left hand side +to a term containing HOLE on the right hand side. For exampl;e:

+
k
context foo(HOLE:Bar => bar(HOLE)) +
+

In this case, the code generated will be as follows:

+
k
rule <k> foo(HOLE:Bar) => bar(HOLE) ~> foo([]) ... </k> [heat] +rule <k> bar(HOLE:Bar) ~> foo([]) => foo(HOLE) ... </k> [cool] +
+

This can be useful if the user wishes to evaluate a term using a different +set of rules than normal.

+

result attribute

+

Sometimes it is necessary to be able to evaluate a term to a different sort +than KResult. This is done by means of adding the result attribute to +a strict production, a context, or an explicit heating or cooling rule:

+
k
syntax BExp ::= Bool + | BExp "||" BExp [seqstrict(2,1), result(Bool)] +
+

In this case, the sort check used by seqstrict and by the heat and cool +attributes will be isBool instead of isKResult. This particular example +does not really require use of the result attribute, but if the user wishes +to evaluate a term of sort KResult further, the result attribute would be +required.

+

hybrid attribute

+

In certain situations, it is desirable to treat a particular production which +has the strict attribute as a result if the term has had its arguments fully +evaluated. This can be accomplished by means of the hybrid attribute:

+
k
syntax KResult ::= Bool + +syntax BExp ::= Bool + | BExp "||" BExp [strict(1), hybrid] +
+

This attribute is equivalent in this case to the following additional axiom +being added to the definition of isKResult:

+
k
rule isKResult(BE1:BExp || BE2:BExp) => true requires isKResult(BE1) +
+

Sometimes you wish to declare a production hybrid with respect to a predicate +other than isKResult. You can do this by specifying a sort as the body of the +hybrid attribute, e.g.:

+
k
syntax BExp ::= BExp "||" BExp [strict(1), hybrid(Foo)] +
+

generates the rule:

+
k
rule isFoo(BE1:BExp || BE2:BExp) => true requires isFoo(BE1) +
+

Properly speaking, hybrid takes an optional comma-separated list of sort +names. If the list is empty, the attribute is equivalent to hybrid(KResult). +Otherwise, it generates hybrid predicates for exactly the sorts named.

+

Context aliases

+

Sometimes it is necessary to define a fairly complicated evaluation strategy +for a lot of different operators. In this case, the user could simply write +a number of complex context declarations, however, this quickly becomes +tedious. For this purpose, K has a concept called a context alias. A context +alias is a bit like a template for describing contexts. The template can then +be instantiated against particular productions using the strict and +seqstrict attributes.

+

Here is a (simplified) example taken from the K semantics of C++:

+
k
context alias [c]: <k> HERE:K ... </k> <evaluate> false </evaluate> +context alias [c]: <k> HERE:K ... </k> <evaluate> true </evaluate> [result(ExecResult)] + +syntax Expr ::= Expr "=" Init [strict(c; 1)] +
+

This defines the evaluation strategy during the translation phase of a C++ +program for the assignment operator. It is equivalent to writing the following +context declarations:

+
k
context <k> HOLE:Expr = I:Init ... </k> <evaluate> false </evaluate> +context <k> HOLE:Expr = I:Init ... </k> <evaluate> true </evaluate> [result(ExecResult)] +
+

What this is saying is, if the evaluate cell is false, evaluate the term +like normal to a KResult. But if the evaluate cell is true, instead +evaluate it to the ExecResult sort.

+

Essentially, we have given a name to this evaluation strategy in the form of +the rule label on the context alias sentences (in this case, c). We can +then say that we want to use this evaluation strategy to evaluate particular +arguments of particular productions by referring to it by name in a strict +attribute. For example, strict(c) will instantiate these contexts once for +each argument of the production, whereas strict(c; 1) will instantiate it +only for the first argument. The special variable HERE is used to tell the +compiler where you want to place the production that is to be heated or cooled.

+

You can also specify multiple context aliases for different parts of a production, +for example:

+
k
syntax Exp ::= foo(Exp, Exp) [strict(left; 1; right; 2)] +
+

This says that we can evaluate the left and right arguments in either order, but to evaluate +the left using the left context alias and the right using the right context alias.

+

We can also say seqstrict(left; 1; right; 2), in which case we additionally must evaluate +the left argument before the right argument. Note, all strict positions are considered collectively +when determining the evaluation order of seqstrict or the hybrid predicates.

+

A strict attribute with no rule label associated with it is equivalent to +a strict attribute given with the following context alias:

+
k
context alias [default]: <k> HERE:K ... </k> +
+

One syntactic convenience that is provided is that if you wish to declare the following context:

+
k
context foo(HOLE => bar(HOLE)) +
+

you can simply write the following:

+
k
syntax Foo ::= foo(Bar) [strict(alias)] + +context alias [alias]: HERE [context(bar)] +
+

Pattern Matching

+

As Patterns

+

New syntax has been added to K for matching a pattern and binding the resulting +match in its entirety to a variable.

+

The syntax is:

+
Pattern #as V::Var
+
+

In this case, Pattern, including any variables, is matched and the resulting +variables are added to the substitution if matching succeeds. Furthermore, the +term matched by Pattern is added to the substitution as V.

+

This code can also be used outside of any rewrite, in which case matching +occurs as if it appeared on the left hand side, and the right hand side becomes +a variable corresponding to the alias.

+

It is an error to use an as pattern on the right hand side of a rule.

+

Record-like KApply Patterns

+

We have added a syntax for matching on KApply terms which mimics the record +syntax in functional languages. This allows us to more easily express patterns +involving a KApply term in which we don't care about some or most of the +children, without introducing a dependency into the code on the number of +arguments which could be changed by a future refactoring.

+

The syntax is:

+
record(... field1: Pattern1, field2: Pattern2)
+
+

Note that this only applies to productions that are prefix productions. +A prefix production is considered by the implementation to be any production +whose production items match the following regular expression:

+
(Terminal(_)*) Terminal("(")
+(NonTerminal (Terminal(",") NonTerminal)* )?
+Terminal(")")
+
+

In other words, any sequence of terminals followed by an open parenthesis, an +optional comma separated list of non-terminals, and a close parenthesis.

+

If a prefix production has no named nonterminals, a record(...) syntax is +allowed, but in order to reference specific fields, it is necessary to give one +or more of the non-terminals in the production names.

+

Note: because the implementation currently creates one production per possible +set of fields to match on, and because all possible permutations of all +possible subsets of a list of n elements is a number that scales factorially +and reaches over 100 thousand productions at n=8, we currently do not allow +fields to be matched in any order like a true record, but only in the same +order as appears in the production itself.

+

Given that this only reduces the number of productions to the size of the power +set, this will still explode the parsing time if we create large productions of +10 or more fields that all have names. This is something that should probably +be improved, however, productions with that large of an arity are rare, and +thus it has not been viewed as a priority.

+

Or Patterns

+

Sometimes you wish to express that a rule should match if one out of multiple +patterns should match the same subterm. We can now express this in K by means +of using the #Or ML connective on the left hand side of a rule.

+

For example:

+
k
rule foo #Or bar #Or baz => qux +
+

Here any of foo, bar, or baz will match this rule. Note that the behavior is +ill-defined if it is not the case that all the clauses of the or have the same +bound variables.

+

Matching global context in function rules

+

On occasion it is highly desirable to be able to look up information from the +global configuration and match against it when evaluating a function. For this +purpose, we introduce a new syntax for function rules.

+

This syntax allows the user to match on function context from within a +function rule:

+
k
syntax Int ::= foo(Int) [function] + +rule [[ foo(0) => I ]] + <bar> I </bar> + +rule something => foo(0) +
+

This is completely desugared by the K frontend and does not require any special +support in the backend. It is an error to have a rewrite inside function +context, as we do not currently support propagating such changes back into the +global configuration. It is also an error if the context is not at the top +level of a rule body.

+

Desugared code:

+
k
syntax Int ::= foo(Int, GeneratedTopCell) [function] + +rule foo(0, <generatedTop> + <bar> I </bar> + ... + </generatedTop> #as Configuration) => I +rule <generatedTop> + <k> something ... </k> + ... + </generatedTop> #as Configuration + => <generatedTop> + <k> foo(0, Configuration> ... </k> + ... + </generatedTop> +
+

Collection patterns

+

It is allowed to write patterns on the left hand side of rules which refer to +complex terms of sort Map, List, and Set, despite these patterns ostensibly +breaking the rule that terms which are functions should not appear on the left +hand side of rules. Such terms are destructured into pattern matching +operations.

+

The following forms are allowed:

+
// 0 or more elements followed by 0 or 1 variables of sort List followed by
+// 0 or more elements
+ListItem(E1) ListItem(E2) L:List ListItem(E3) ListItem(E4)
+
+// the empty list
+.List
+
+// 0 or more elements in any order plus 0 or 1 variables of sort Set
+// in any order
+SetItem(K1) SetItem(K2) S::Set SetItem(K3) SetItem(K4)
+
+// the empty set
+.Set
+
+// 0 or more elements in any order plus by 0 or 1 variables of sort Map
+// in any order
+K1 |-> E1 K2 |-> E2 M::Map K3 |-> E3 K4 |-> E4
+
+// the empty map
+.Map
+
+

Here K1, K2, K3, K4 etc can be any pattern except a pattern containing both +function symbols and unbound variables. An unbound variable is a variable whose +binding cannot be determined by means of decomposing non-set-or-map patterns or +map elements whose keys contain no unbound variables.

+

This is determined recursively, ie, the term K1 |-> E2 E2 |-> E3 E3 |-> E4 is +considered to contain no unbound variables.

+

Note that in the pattern K1 |-> E2 K3 |-> E4 E4 |-> E5, K1 and K3 are +unbound, but E4 is bound because it is bound by deconstructing the key E3, even +though E3 is itself unbound.

+

In the above examples, E1, E2, E3, and E4 can be any pattern that is normally +allowed on the lhs of a rule.

+

When a map or set key contains function symbols, we know that the variables in +that key are bound (because of the above restriction), so it is possible to +evaluate the function to a concrete term prior to performing the lookup.

+

Indeed, this is the precise semantics which occurs; the function is evaluated +and the result is looked up in the collection.

+

For example:

+
k
syntax Int ::= f(Int) [function] +rule f(I:Int) => I +Int 1 +rule <k> I:Int => . ... </k> <state> ... SetItem(f(I)) ... </state> +
+

This will rewrite I to . if and only if the state cell contains +I +Int 1.

+

Note that in the case of Set and Map, one guarantee is that K1, K2, K3, and K4 +represent /distinct/ elements. Pattern matching fails if the correct number of +distinct elements cannot be found.

+

Matching on cell fragments

+

K allows matching fragments of the configuration and using them to construct +terms and use as function parameters.

+
k
configuration <t> + <k> #init ~> #collectOdd ~> $PGM </k> + <fs> + <f multiplicity="*" type="Set"> 1 </f> + </fs> + </t> +
+

The #collectOdd construct grabs the entire content of the <fs> cell. +We may also match on only a portion of its content. Note that the fragment +must be wrapped in a <f> cell at the call site.

+
k
syntax KItem ::= "#collectOdd" +rule <k> #collectOdd => collectOdd(<fs> Fs </fs>) ... </k> + <fs> Fs </fs> +
+

The collectOdd function collects the items it needs

+
k
syntax Set ::= collectOdd(FsCell) [function] +rule collectOdd(<fs> <f> I </f> REST </fs>) => SetItem(I) collectOdd(<fs> REST </fs>) requires I %Int 2 ==Int 1 +rule collectOdd(<fs> <f> I </f> REST </fs>) => collectOdd(<fs> REST </fs>) requires I %Int 2 ==Int 0 +rule collectOdd(<fs> .Bag </fs>) => .Set +
+

all-path and one-path attributes to distinguish reachability claims

+

As the Haskell backend can handle both one-path and all-path reachability +claims, but both these are encoded as rewrite rules in K, these attributes can +be used to clarify what kind of claim a rule is.

+

In addition of being able to annotate a rule with one of them +(if annotating with more at the same time, only one of them would be chosen), +one can also annotate whole modules, to give a default claim type for all rules +in that module.

+

Additionally, the Haskell backend introduces an extra command line option +for the K frontend, --default-claim-type, with possible values +all-path and one-path to allow choosing a default type for all +claims.

+

Set Variables

+

Motivation

+

Set variables were introduced as part of Matching Mu Logic, the mathematical +foundations for K. In Matching Mu Logic, terms evaluate to sets of values. +This is useful for both capturing partiality (as in 3/0) and capturing +non-determinism (as in 3 #Or 5). Consequently, symbol interpretation is +extended to have a collective interpretation over sets of input values.

+

Usually, K rules are given using regular variables, which expect that the term +they match is both defined and has a unique interpretation.

+

However, it is sometimes useful to have simplification rules which work over +any kind of pattern, be it undefined or non-deterministic. This behavior can be +achieved by using set variables to stand for any kind of pattern.

+

Syntax

+

Any variable prefixed by @ will be considered a set variable.

+

Example

+

Below is a simplification rule which motivated this extension:

+
  rule #Ceil(@I1:Int /Int @I2:Int) =>
+    {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2)
+    [anywhere]
+
+

This rule basically says that @I1:Int /Int @I2:Int is defined if @I1 and +@I2 are defined and @I2 is not 0. Using sets variables here is important as +it allows the simplification rule to apply any symbolic patterns, without +caring whether they are defined or not.

+

This allows simplifying the expression #Ceil((A:Int /Int B:Int) / C:Int) to:

+
{(C =/=Int 0) #Equals true} #And #Ceil(C) #And ({(B =/=Int 0) #Equals true}
+#And #Ceil(B) #And #Ceil(A)`
+
+

See kframework/kore#729 for +more details.

+

SMT Translation

+

K makes queries to an SMT solver (Z3) to discharge proof obligations when doing +symbolic execution. You can control how these queries are made using the +attributes smtlib, smt-hook, and smt-lemma on declared productions. +These attributes guide the prover when it tries to apply rules to discharge a +proof obligation.

+
    +
  • smt-hook(...) allows you to specify a term in SMTLIB2 format which should +be used to encode that production, and assumes that all symbols appearing in +the term are already declared by the SMT solver.
  • +
  • smtlib(...) allows you to declare a new SMT symbol to be used when that +production is sent to Z3, and gives it uninterpreted function semantics.
  • +
  • smt-lemma can be applied to a rule to encode it as a conditional equality +when sending queries to Z3. A rule rule LHS => RHS requires REQ will be +encoded as the conditional equality (=> REQ (= (LHS RHS)). Every symbol +present in the rule must have an smt-hook(...) or smtlib(...) attribute.
  • +
+
k
syntax Int ::= "~Int" Int [function, klabel(~Int_), symbol, + smtlib(notInt)] + | Int "^%Int" Int Int [function, klabel(_^%Int__), symbol, + smt-hook((mod (^ #1 #2) #3))] +
+

In the example above, we declare two productions ~Int_ and _^%Int__, and +tell the SMT solver to:

+
    +
  • use uninterpreted function semantics for ~Int_ via SMTLIB2 symbol +notInt, and
  • +
  • use the SMTLIB2 term (mod (^ #1 #2) #3) (where #N marks the Nth +production non-terminal argument positions) for _^%Int__, where mod and +^ already are declared by the SMT solver.
  • +
+

Caution

+

Set variables are currently only supported by the Haskell backend. +The use of rules with set variables should be sound for all other backends +which just execute by rewriting, however it might not be safe for backends +which want to guarantee coverage.

+

Variables occurring only in the RHS of a rule

+

This section presents possible scenarios requiring variables to only appear in +the RHS of a rule.

+

Summary

+

Except for ? variables and ! (fresh) variables, which are +required to only appear in the RHS of a rule, all other variables must +also appear in the LHS of a rule. This restriction also applies to anonymous +variables; in particular, for claims, ?_ (not _) should be used in the RHS +to indicate that something changes but we don't care to what value.

+

To support specifying random-like behavior, the above restriction can be relaxed +by annotating a rule with the unboundVariables attribute whenever the rule +intentionally contains regular variables only occurring in the RHS.

+

Introduction

+

K uses question mark variables of the form ?X to refer to +existential variables, and uses ensures to specify logical constraints on +those variables. +These variables are only allowed to appear in the RHS of a K rule.

+

If the rules represent rewrite (semantic) steps or verification claims, +then the ? variables are existentially quantified at the top of the RHS; +otherwise, if they represent equations, the ? variables are quantified at the +top of the entire rule.

+

Note that when both ?-variables and regular variables are present, +regular variables are (implicitly) universally quantified on top of the rule +(already containing the existential quantifications). +This essentially makes all ? variables depend on all regular variables.

+

All examples below are intended more for program verification / +symbolic execution, and thus concrete implementations might choose to ignore +them altogether or to provide ad-hoc implementations for them.

+

Example: Verification claims

+

Consider the following definition of a (transition) system:

+
k
module A + rule foo => true + rule bar => true + rule bar => false +endmodule +
+

Consider also, the following specification of claims about the definition above:

+
k
module A-SPEC + rule [s1]: foo => ?X:Bool + rule [s2]: foo => X:Bool [unboundVariables(X)] + rule [s3]: bar => ?X:Bool + rule [s4]: bar => X:Bool [unboundVariables(X)] +endmodule +
+
One-path interpretation
+
    +
  • (s1) says that there exists a path from foo to some boolean, which is +satisfied easily using the foo => true rule
  • +
  • (s3) says the same thing about bar and can be satisfied by either of +bar => true and bar => false rules
  • +
  • (s2) and (s4) can be better understood by replacing them with instances for +each element of type Bool, which can be interpreted that +both true and false are reachable from foo for (s2), or bar for (s4), +respectively. +
      +
    • (s2) cannot be verified as we cannot find a path from foo to false.
    • +
    • (s4) can be verified by using bar => true to show true is reachable and +bar => false to achieve the same thing for false
    • +
    +
  • +
+
All-path interpretation
+
    +
  • +

    (s1) says that all paths from foo will reach some boolean, which is +satisfied by the foo => true rule and the lack of other rules for foo

    +
  • +
  • +

    (s3) says the same thing about bar and can be satisfied by checking that +both bar => true and bar => false end in a boolean, and there are no +other rules for bar

    +
  • +
  • +

    (s2) and (s4) can be better understood by replacing them with instances for +each element of type Bool, which can be interpreted that +both true and false are reachable in all paths originating in +foo for (s2), or bar for (s4), respectively. +This is a very strong claim, requiring that all paths originating in +foo (bar) pass through both true and false, +so neither (s2) nor (s4) can be verified.

    +

    Interestingly enough, adding a rule like false => true would make both +(s2) and (s4) hold.

    +
  • +
+

Example: Random Number Construct rand()

+

The random number construct rand() is a language construct which could be +easily conceived to be part of the syntax of a programming language:

+
k
Exp ::= "rand" "(" ")" +
+

The intended semantics of rand() is that it can rewrite to any integer in +a single step. This could be expressed as the following following infinitely +many rules.

+
k
rule rand() => 0 +rule rand() => 1 +rule rand() => 2 + ... ... +rule rand() => (-1) +rule rand() => (-2) + ... ... +
+

Since we need an instance of the rule for every integer, one could summarize +the above infinitely many rules with the rule

+
rule rand() => I:Int [unboundVariables(I)]
+
+

Note that I occurs only in the RHS in the rule above, and thus the rule +needs the unboundVariables(I) attribute to signal that this is intentionally.

+

One can define variants of rand() by further constraining the output variable +as a precondition to the rule.

+
Rand-like examples
+
    +
  1. +

    randBounded(M,N) can rewrite to any integer between M and N

    +
    k
    syntax Exp ::= randBounded(Int, Int) +rule randBounded(M, N) => I + requires M <=Int I andBool I <=Int N + [unboundVariables(I)] +
    +
  2. +
  3. +

    randInList(Is) takes a list Is of items +and can rewrite in one step to any item in Is.

    +
    k
    syntax Exp ::= randInList (List) +rule randInList(Is) => I + requires I inList Is + [unboundVariables(I)] +
    +
  4. +
  5. +

    randNotInList(Is) takes a list Is of items +and can rewrite in one step to any item not in Is.

    +
    k
    syntax Exp ::= randNotInList (List) +rule randNotInList(Is) => I + requires notBool(I inList Is) + [unboundVariables(I)] +
    +
  6. +
  7. +

    randPrime(), can rewrite to any prime number.

    +
    k
    syntax Exp ::= randPrime () +rule randPrime() => X:Int + requires isPrime(X) + [unboundVariables(X)] +
    +

    where isPrime(_) is a predicate that can be defined in the usual way.

    +
  8. +
+

Note 1: all above are not function symbols, but language constructs.

+

Note 2: Currently the frontend does not allow rules with universally quantified +variables in the RHS which are not bound in the LHS.

+

Note 3. Allowing these rules in a concrete execution engine would require an +algorithm for generating concrete instances for such variables, satisfying the +given constraints; thus the unboundVariables attribute serves two purposes:

+
    +
  • to allow such rules to pass the variable checks, and
  • +
  • to signal (concrete execution) backends that specialized algorithm would be +needed to instantiate these variables.
  • +
+

Example: Fresh Integer Construct fresh(Is)

+

The fresh integer construct fresh(Is) is a language construct.

+
Exp ::= ... | "fresh" "(" List{Int} ")"
+
+

The intended semantics of fresh(Is) is that it can always rewrite to an +integer that in not in Is.

+

Note that fresh(Is) and randNotInList(Is) are different; the former +does not need to be able to rewrite to every integers not in Is, +while the latter requires so.

+

For example, it is correct to implement fresh(Is) so it always returns the +smallest positive integer that is not in Is, but same implementation for +randNotInList(Is) might be considered inadequate. +In other words, there exist multiple correct implementations of fresh(Is), +some of which may be deterministic, but there only exists a unique +implementation of randNotInList(Is). +Finally, note that randNotInList(Is) is a correct implementation +for fresh(Is); Hence, concrete execution engines can choose to handle +such rules accordingly.

+

We use the following K syntax to define fresh(Is)

+
k
syntax Exp ::= fresh (List{Int}) +rule fresh(Is:List{Int}) => ?I:Int + ensures notBool (?I inList{Int} Is) +
+

A variant of this would be a choiceInList(Is) language construct which would +choose some number from a list:

+
k
syntax Exp ::= choiceInList (List{Int}) +rule choiceInList(Is:List{Int}) => ?I:Int + ensures ?I inList{Int} Is +
+

Note: This definition is different from one using a ! variable to indicate +freshness because using ! is just syntactic sugar for generating globally +unique instances and relies on a special configuration cell, and cannot be +constrained, while the fresh described here is local and can be constrained. +While the first is more appropriate for concrete execution, this might be +better for symbolic execution / program verification.

+

Example: Arbitrary Number (Unspecific Function) arb()

+

The function arb() is not a PL construct, but a mathematical function. +Therefore, its definition should not be interpreted as an execution step, but +rather as an equality.

+

The intended semantics of arb() is that it is an unspecified nullary function. +The exact return value of arb() is unspecified in the semantics but up to the +implementations. +However, being a mathematical function, arb() must return the same value in +any one implementation.

+

We do not need special frontend syntax to define arb(). +We only need to define it in the usual way as a function +(instead of a language construct), and provide no axioms for it. +The total attribute ensures that the function is total, i.e., +that it evaluates to precisely one value for each input.

+
Variants
+

There are many variants of arb(). For example, arbInList(Is) is +an unspecified function whose return value must be an element from Is.

+

Note that arbInList(Is) is different from choiceInList(Is), because +choiceInList(Is) transitions to an integer in Is (could be a different one +each time it is used), while arbInList(Is) is equal to a (fixed) +integer not in Is.

+

W.r.t. the arb variants, we can use ? variables and the function +annotation to signal that we're defining a function and the value of the +function is fixed, but non-determinate.

+
k
syntax Int ::= arbInList(List{Int}) [function] +rule arbInList(Is:List{Int}) => ?I:Int + ensures ?I inList{Int} Is +
+

If elimination of existentials in equational rules is needed, one possible +approach would be through Skolemization, +i.e., replacing the ? variable with a new uninterpreted function depending +on the regular variables present in the function.

+

Example: Interval (Non-function Symbols) interval()

+

The symbol interval(M,N) is not a PL construct, nor a function in the +first-order sense, but a proper matching-logic symbol, whose interpretation is +in the powerset of its domain. +Its axioms will not use rewrites but equalities.

+

The intended semantics of interval(M,N) is that it equals the set of +integers that are larger than or equal to M and smaller than or equal to N.

+

Since expressing the axiom for interval requires an an existential +quantification on the right-hand-side, thus making it a non-total symbol +defined through an equation, using ? variables might be confusing since their +usage would be different from that presented in the previous sections.

+

Hence, the proposal to support this would be to write this as a proper ML rule. +A possible syntax for this purpose would be:

+
eq  interval(M,N)
+    ==
+    #Exists X:Int .
+        (X:Int #And { X >=Int M #Equals true } #And { X <=Int N #Equals true })
+
+

Additionally, the symbol declaration would require a special attribute to +signal the fact that it is not a constructor but a defined symbol.

+

Since this feature is not clearly needed by K users at the moment, it is only +presented here as an example; its implementation will be postponed for such time +when its usefulness becomes apparent.

+

Parser Generation

+

In addition to on-the-fly parser generation using kast, K is capable of +ahead-of-time parser generation of LR(1) or GLR parsers using Flex and Bison. +This can be done one of two different ways.

+
    +
  1. You can explicitly request for a particular parser to be generated by +invoking kast --gen-parser <outputFile> or +kast --gen-glr-parser <outputFile> respectively. kast will then create a +parser based on the same command line flags that govern on-the-fly parsing, +like -s to specify the starting sort, and -m to specify the module to +parse under. By default, this generates a parser for the sort of the $PGM +configuration variable in the main syntax module of the definition.
  2. +
  3. You can request that a specific set of parsers be generated for all the +configuration variables of your definition by passing the +--gen-bison-parser or --gen-glr-bison-parser flags to kompile. +kompile will decide the sorts to use as start symbols based on the sorts +in the configuration declaration for the configuration variables. The $PGM +configuration variable will be generated based on the main syntax module +of the definition. The user must explicitly annotate the configuration +declaration with the other modules to use to parse the other configuration +variables as attributes. For example, if I have the following cell in the +configuration declaration: <cell> foo($FOO:Foo, $BAR:Bar) </cell>, +One might annotate it with the attribute pair parser="FOO, TEST; BAR, TEST2" +to indicate that configuration variable $FOO should be parsed in the +TEST module, and configuration variable $BAR should be parsed in the +TEST2 module. If the user forgets to annotate the declaration with the +parser attribute, only the $PGM parser will be generated.
  4. +
+

Bison-generated parsers are extremely fast compared to kast, but they have +some important limitations:

+
    +
  • Bison parsers will always output Kore. You can then pass the resulting AST +directly to llvm-krun or kore-exec and bypass the krun frontend, making +them very fast, but lower-level.
  • +
  • Bison parsers do not yet support macros. This may change in a future release. +Note that you can use anywhere rules instead of macros in most cases to get +around this limitation, although they will not benefit from unparsing via the +alias attribute.
  • +
  • Obligation falls on the user to ensure that the grammar they write is LR(1) +if they choose to use LR(1) parsing. If this does not happen, the parser +generated will have shift/reduce or reduce/reduce conflicts and the parser +may behave differently than kast would (kast is a GLL parser, ie, it +is based on LL parsers and parses all unambiguous context-free grammars). +K provides an attribute, not-lr1, which can be applied to modules known to +not be LR(1), and will trigger a warning if the user attempts to generate an +LR(1) parser which recursively imports that module.
  • +
  • If you are using LR(1) based parsing, the prefer and avoid attributes are +ignored. It is only possible to implement these attributes by means of +generalized LL or LR parsing and a postprocessing on the AST to remove the +undesirable ambiguity.
  • +
  • Obligation falls on the user to ensure that the grammar they write has as +few conflicts as possible if they are using GLR parsing. Bison's GLR support +is quite primitive, and in the worst case it can use exponential space and +time to parse a program, which generally leads the generated parser to report +"memory exhausted", indicating that the parse could not be completed within +the stack space allocated by Bison. It's best to ensure that the grammar is +as close to LR(1) as possible and only utilizes conflicts where absolutely +necessary. One tool that can be used to facilitate this is to pass +--bison-lists to kompile. This will disable support for the List{Sort} +syntax production, and it will make NeList{Sort} left associative, but the +resulting productions generated for NeList{Sort} will be LR(1) and use bounded +stack space.
  • +
  • If the grammar you are parsing is context-sensitive (for example, because +it requires a symbol table to parse), one thing you can do to make this +language parse in K is to implement the language as an ambiguous grammar. +Bison's GLR parser will generate an amb production that is parametric in +the sort of the ambiguity. You can then import the K-AMBIGUITIES module +and use rewriting to resolve the ambiguities using whatever preprocessing +mechanisms you prefer.
  • +
+

Location Information

+

K is able to insert file, line, and column metadata into the parse tree on a +per-sort basis when parsing using a bison-generated parser. To enable this, +mark the sort with the locations attribute.

+
k
syntax Exp [locations] + syntax Exp ::= Exp "/" Exp | Int +
+

K implicitly wraps productions of these sorts in a #location term (see the +K-LOCATIONS module in kast.md). The metadata can thus be accessed with +ordinary rewrite rules:

+
k
rule #location(_ / 0, File, StartLine, _StartColumn, _EndLine, _EndColumn) => + "Error: Division by zero at " +String File +String ":" Int2String(StartLine) +
+

Sometimes it is desirable to allow code to be written in a file which +overwrites the current location information provided by the parser. This can be +done via a combination of the #LineMarker sort and the --bison-file flag to +the parser generator. If you declare a production of sort #LineMarker which +contains a regular expression terminal, this will be treated as a +line marker by the bison parser. The user will then be expected to provide +an implementation of the parser for the line marker in C. The function expected +by the parser has the signature void line_marker(char *, yyscan_t), where +yyscan_t is a +reentrant flex scanner. +The string value of the line marker token as specified by your regular +expression can be found in the first parameter of the function, and you can +set the line number used by the scanner using yyset_lineno(int, yyscan_t). If +you declare the variable extern char *filename, you can also set the current +file name by writing a malloc'd, zero-terminated string to that variable.

+

Unparsing

+

A number of factors go into how terms are unparsed in K. Here we describe some +of the features the user can use to control how unparsing happens.

+

Brackets

+

One of the phases that the unparser goes through is to insert productions +tagged with the bracket attribute where it believes this is necessary +in order to create a correct string that will be parsed back into the original +AST. The most common case of this is in expression grammars. For example, +consider the following grammar:

+
k
syntax Exp ::= Int + | Exp "*" Exp + > Exp "+" Exp +
+

Here we have declared that expressions can contain integer addition and +multiplication, and that multiplication binds tighter than addition. As a +result, when writing a program, if we want to write an expression that first +applies addition, then multiplication, we must use brackets: (1 + 2) * 3. +Similarly, if we have such an AST, we must insert brackets into the AST +in order to faithfully unparse the term in a manner that will be parsed back +into the same ast, because if we do not, we end up unparsing the term as +1 + 2 * 3, which will be parsed back as 1 + (2 * 3) because of the priority +declaration in the grammar.

+

You can control how the unparser will insert such brackets by adding a +production with the bracket attribute and the correct sort. For example, if, +instead of parentheses, you want to use curly braces, you could write:

+
k
syntax Exp ::= "{" Exp "}" [bracket] +
+

This would signal to the unparser how brackets should look for terms of sort +Exp, and it will use this syntax when unparsing terms of sort Exp.

+

Commutative collections

+

One thing that K will do (unless you pass the --no-sort-collections flag to +krun) is to sort associative, commutative collections (such as Set and Map) +alphanumerically. For example, if I have a collection whose keys are sort Id +and they have the values a, b, c, and d, then unparsing will always print +first the key a, then b, then c, then d, because this is the alphabetic order +of these keys when unparsed.

+

Furthermore, K will sort numeric keys numerically. For example, if I have a +collection whose keys are 1, 2, 5, 10, 30, it will first display 1, then 2, +then 5, then 10, then 30, because it will sort these keys numerically. Note +that this is different than an alphabetic sort, which would sort them as +1, 10, 2, 30, 5. We believe the former is more intuitive to users.

+

Substitution filtering

+

K will remove substitution terms corresponding to anonymous variables when +using the --pattern flag if those anonymous variables provide no information +about the named variables in your serach pattern. You can disable this behavior +by passing --no-substitution-filtering to krun. When this flag is not passed, +and you are using the Haskell backend, any equality in a substitution (ie, an +#Equals under an #And under an #Or), will be hidden from the user if the +left hand side is a variable that was anonymous in the --pattern passed by +the user, unless that variable appears elsewhere in the substitution. If you +want to see that variable in the substitution, you can either disable this +filtering, or give that variable a name in the original search pattern.

+

Variable alpha renaming

+

K will automatically rename variables that appear in the output configuration. +Similar to commutative collections, this is done to normalize the resulting +configuration so that equivalent configurations will be printed identically +regardless of how they happen to be reached. This pass can be disabled by +passing --no-alpha-renaming to krun.

+

Macro expansion

+

K will apply macros in reverse on the output configuration if the macro was +created with the alias or alias-rec attribute. See the section on macro +expansion for more details.

+

Formatting

+

format attribute

+

K allows you to control how terms are unparsed using the format attribute. +By default, a domain value is unparsed by printing its string value verbatim, +and an application pattern is unparsed by printing its terminals and children +in the sequence implied by its concrete syntax, separated by spaces. However, +K gives you complete control over how you want to unparse the symbol.

+

A format attribute is a string containing zero or more escape sequences that +tell K how to unparse the symbol. Escape sequences begin with a '%' and are +followed by either an integer, or a single non-digit character. Below is a +list of escape sequences recognized by the formatter:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Escape SequenceMeaning
nInsert '\n' followed by the current indentation level
iIncrease the current indentation level by 1
dDecrease the current indentation level by 1
cMove to the next color in the list of colors for this production
rReset color to the default foreground color for the terminal (See below for more information on how colors work)
an integerPrint a terminal or nonterminal from the production (See below for more information)
any other charPrint that character verbatim
+

Using the integer escape sequence

+

In the integer escape sequence %a, the integer a is treated as a 1-based +index into the terminals and nonterminals of the production.

+
    +
  • +

    If the offset refers to a terminal, move to the next color in the list of +colors for this production, print the value of that terminal, then reset the +color to the default foreground color for the terminal.

    +
  • +
  • +

    If the offset refers to a regular expression terminal, it is an error.

    +
  • +
  • +

    If the offset refers to a nonterminal, print the unparsed representation of +the corresponding child of the current term.

    +
  • +
+

color and colors attributes

+

K allows you to take advantage of ANSI terminal codes for foreground color +in order to colorize output pretty-printed by the unparser. This is controlled +via the color and colors attributes of productions. These attributes +combine with the format attribute to control how a term is colorized.

+

The first thing to understand about how colorization works is that the color +and colors attributes are used to construct a list of colors associated +with each production, and the format attribute then uses that list to choose +the color for each part of the production. For more information on how the +format attribute chooses a color from the list, see above, but essentially, +each terminal or %c in the format attribute advances the pointer in the list +by one element, and terminals and %r reset the current color to the default +foreground color of the terminal afterwards.

+

There are two ways you can construct a list of colors associated with a +production:

+
    +
  • +

    The color attribute creates the entire list all with the same color, as +specified by the value of the attribute. When combined with the default format +attribute, this will color all the terminals in that production that color, but +more advanced techniques can be used as well.

    +
  • +
  • +

    The colors attribute creates the list from a manual, comma-separated list +of colors. The attribute is invalid if the length of the list is not equal to +the number of terminals in the production plus the number of %c substrings in +the format attribute.

    +
  • +
+

Attributes Reference

+

Attribute Syntax Overview

+

In K, many different syntactic categories accept an optional trailing list of +keywords known as attributes. Attribute lists have two different syntaxes, +depending on where they occur. Each attribute also has a type which describes +where it may occur.

+

The first syntax is a square-bracketed ([]) list of words. This syntax is +available for following attribute types:

+
    +
  1. module attributes - may appear immediately after the module keyword
  2. +
  3. sort attributes - may appear immediately after a sort declaration
  4. +
  5. production attributes - may appear immediately after a BNF production +alternative
  6. +
  7. rule attributes - may appear immediately after a rule
  8. +
  9. context attributes - may appear immediately after a context or context +alias
  10. +
  11. context alias attributes - may appear immediately after a context alias
  12. +
  13. claim attributes - may appear immediately after a claim
  14. +
+

The second syntax is the XML attribute syntax, i.e., a space delemited list of +key-and-quoted-value pairs appearing inside the start tag of an XML element: +<element key1="value" key2="value2" ... > </element>. This syntax is +available for the following attribute types:

+
    +
  1. cell attributes - may appear inside of the cell start tag in +configuration declarations
  2. +
+

Unrecognized attributes are reported as an error. When we talk about +the type of an attribute, we mean a syntactic category to which an attribute +can be attached where the attribute has some semantic effect.

+

Attribute Index

+

We now provide an index of available attributes organized alphabetically with a +brief description of each. Note that the same attribute may appear in the index +multiple times to indicate its effect in different contexts or with/without +arguments. A legend describing how to interpret the index follows.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeBackendReference
alias-recprodallMacros and Aliases
aliasprodallMacros and Aliases
all-pathclaimhaskellall-path and one-path attributes to distinguish reachability claims
anywhereruleallanywhere rules
applyPriority(_)prodallSymbol priority and associativity
avoidprodallSymbol priority and associativity
binderprodallNo reference yet.
bracketprodallParametric productions and bracket attributes
color(_)prodallcolor and colors attributes
colors(_)prodallcolor and colors attributes
concretemodllvmsymbolic and concrete attribute
concrete(_)rulehaskellconcrete and symbolic attributes (Haskell backend)
concreterulehaskellconcrete and symbolic attributes (Haskell backend)
context(_)aliasallContext aliases
deprecatedprodalldeprecated attribute
exit = ""cellallexit attribute
formatprodallformat attribute
freshGeneratorprodallfreshGenerator attribute
functionprodallfunction and total attributes
group(_)allallSymbol priority and associativity
hook(_)prodallNo reference yet
hybrid(_)prodallhybrid attribute
hybridprodallhybrid attribute
klabel(_)prodallklabel(_) and symbol attributes
leftprodallSymbol priority and associativity
locationssortallLocation Information
macro-recprodallMacros and Aliases
macroprodallMacros and Aliases
memorulehaskellThe memo attribute
multiplicity = "_"cellallCollection Cells: multiplicity and type attributes
non-assocprodallSymbol priority and associativity
one-pathclaimhaskellall-path and one-path attributes to distinguish reachability claims
overload(_)prodalloverload(_) attribute
owiseruleallowise and priority attributes
prec(_)tokenallprec attribute
preferprodallSymbol priority and associativity
priority(_)ruleallowise and priority attributes
privatemodallprivate attribute
privateprodallpublic and private attribute
publicmodallNo reference yet.
publicprodallpublic and private attribute
result(_)ctxtallresult attribute
result(_)ruleallresult attribute
rightprodallSymbol priority and associativity
seqstrict(_)prodallstrict and seqstrict attributes
seqstrictprodallstrict and seqstrict attributes
simplificationrulehaskellsimplification attribute (Haskell backend)
simplification(_)rulehaskellsimplification attribute (Haskell backend)
smt-hook(_)prodhaskellSMT Translation
smtlib(_)prodhaskellSMT Translation
smt-lemmarulehaskellSMT Translation
strictprodallstrict and seqstrict attributes
strict(_)prodallstrict and seqstrict attributes
symbolicmodhaskellsymbolic and concrete attribute
symbolicrulehaskellconcrete and symbolic attributes (Haskell backend)
symbolic(_)rulehaskellconcrete and symbolic attributes (Haskell backend)
symbolprodallklabel(_) and symbol attributes
terminator-symbol(_)prodallklabel(_) and symbol attributes
tokenprodalltoken attribute
tokensortalltoken attribute
totalprodallfunction and total attributes
trustedclaimhaskelltrusted attribute
type = "_"cellallCollection Cells: multiplicity and type attributes
unboundVariables(_)ruleallThe unboundVariables attribute
unusedprodallunused attribute
concretemodallSpecify that this module should only be included in concrete backends (LLVM backend).
symbolicmodallSpecify that this module should only be included in symbolic backends (Haskell backend).
stream = "_"cellallSpecify that this cell should be hooked up to a stream, either stdin, stdout, or stderr.
+

Internal Attribute Index

+

Some attributes should not generally appear in user code, except in some +unusual or complex examples. Such attributes are typically generated by the +compiler and used internally. We list these attributes below as a reference for +interested readers:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeBackendReference
assocprodallassoc, comm, idem and unit attributes
commprodallassoc, comm, idem and unit attributes
digestmodallContains the hash of the textual contents of the module.
idemprodallassoc, comm, idem and unit attributes
unitprodallassoc, comm, idem and unit attributes
userListprodallIdentifies the desugared form of Lst ::= List{Elm,"delim"}
predicateprodallSpecifies the sort of a predicate label
elementprodallSpecifies the label of the elements in a list
bracketLabelprodallKeep track of the label of a bracket production since it can't have a klabel
injectiveprodallLabel a given production as injective (unique output for each input)
internalprodallProduction is reserved for internal use by the compiler
coolruleallstrict and seqstrict attributes
heatruleallstrict and seqstrict attributes
+

Index Legend

+
    +
  • +

    Name - the attribute's name (optionally followed by an underscore _ to indicate the attribute takes arguments)

    +
  • +
  • +

    Type - the syntactic categories where this attribute is not ignored; +the possible values are the types mentioned above or shorthands:

    +
      +
    1. all - short for any type except cell
    2. +
    3. mod - short for module
    4. +
    5. sort
    6. +
    7. prod - short for production
    8. +
    9. rule
    10. +
    11. ctxt - short for context or context alias
    12. +
    13. claim
    14. +
    15. cell
    16. +
    +
  • +
  • +

    Backend - the backends that do not ignore this attribute; possible values:

    +
      +
    1. all - all backends
    2. +
    3. llvm - the LLVM backend
    4. +
    5. haskell - the Haskell backend
    6. +
    +
  • +
  • +

    Effect - the attribute's effect (when it applies)

    +
  • +
+

Pending Documentation

+

Backend features not yet given documentation:

+
    +
  • Parser of KORE terms and definitions
  • +
  • Term representation of K terms
  • +
  • Hooked sorts and symbols
  • +
  • Substituting a substitution into the RHS of a rule +
      +
    • domain values
    • +
    • functions
    • +
    • variables
    • +
    • symbols
    • +
    • polymorphism
    • +
    • hooks
    • +
    • injection compaction
    • +
    • overload compaction
    • +
    +
  • +
  • Pattern Matching / Unification of subject and LHS of rule +
      +
    • domain values
    • +
    • symbols
    • +
    • side conditions
    • +
    • and/or patterns
    • +
    • list patterns
    • +
    • nonlinear variables
    • +
    • map/set patterns +
        +
      • deterministic
      • +
      • nondeterministic
      • +
      +
    • +
    • modulo injections
    • +
    • modulo overloads
    • +
    +
  • +
  • Stepping +
      +
    • initialization
    • +
    • termination
    • +
    +
  • +
  • Print kore terms
  • +
  • Equality/comparison of terms
  • +
  • Owise rules
  • +
  • Strategy #STUCK axiom
  • +
  • User substitution +
      +
    • binders
    • +
    • kvar
    • +
    +
  • +
+

To get a complete list of hooks supported by K, you can run:

+
grep -P -R "(?<=[^-])hook\([^)]*\)" k-distribution/include/kframework/builtin/ \
+     --include "*.k" -ho | \
+sed 's/hook(//' | sed 's/)//' | sort | uniq | grep -v org.kframework
+
+

All of these hooks will also eventually need documentation.

+
+
+
    +
  1. Except for in a very limited number of special cases from the +K standard library. ↩︎

    +
  2. +
  3. The Maude documentation +has an example in a context that's somewhat similar to K; discussion of +ad-hoc overloading is not relevant. ↩︎

    +
  4. +
+
+
+
+ + +
+ +
+
+ + K User Manual + +
+
+ + Introduction + + +
+
+ + Introduction to K + + +
+
+ + Module Declaration + + +
+
+ + Syntax Declaration + + +
+
+ + Configuration Declaration + + +
+
+ + Rule Declaration + + +
+
+ + Evaluation Strategy + + +
+
+ + Pattern Matching + +
+
+ + Set Variables + + +
+
+ + Variables occurring only in the RHS of a rule + + +
+ +
+
+
+ + Unparsing + + +
+
+ + Attributes Reference + + +
+ +
+
+ +
+ +
+
+ +
+
+ + + + + + + + + + + + diff --git a/editor_support/index.html b/editor_support/index.html new file mode 100644 index 00000000000..084586d1f72 --- /dev/null +++ b/editor_support/index.html @@ -0,0 +1,456 @@ + + + + + + + + + + + + + + +Editor Support | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Editor Support

+

This page lists (alphabetically) known Editor/IDE plugins for K.

+

Please feel free to contribute to any of the projects below (via pull requests) or to suggest new entries.

+

Atom

+

K/Maude syntax highlighter for Atom based on the BBEdit grammar described below

+
    +
  • Source: https://github.com/traiansf/language-k
  • +
+

BBEdit/TextWrangler

+

K/Maude syntax highlighter for TextWrangler/BBEdit

+
    +
  • Source: https://github.com/kframework/k-editor-support/tree/master/BBEdit
  • +
+

Emacs

+

Emacs mode for K

+
    +
  • Source: https://github.com/kframework/k-editor-support/tree/master/emacs
  • +
+

IntelliJ Idea

+
    +
  • Comprehensive plugin for IntelliJ Idea
  • +
  • Binary: https://github.com/kframework/k-editor-support/blob/master/k-idea-plugin.jar
  • +
  • Source: https://github.com/kframework/k-editor-support/tree/master/k-idea-plugin-src
  • +
+

Notepad++

+

K syntax highlighter for Notepad++

+
    +
  • Source: https://github.com/kframework/k-editor-support/tree/master/notepad%2B%2B
  • +
+

Pygments

+

Support for https://pygments.org/ Pygments

+
    +
  • Source: https://github.com/kframework/k-editor-support/tree/master/pygments
  • +
  • Note: the lexer is far from being complete.
  • +
+

Vim

+

K/Maude syntax highlighter for vim

+
    +
  • Source: https://github.com/kframework/k-editor-support/tree/master/vim
  • +
+

Visual Studio Code

+

K extension for Visual Studio Code

+
    +
  • Extension page on Visual Studio Marketplace: https://marketplace.visualstudio.com/items?itemName=clv.kframework
  • +
  • Source code: https://github.com/LucianCumpata/K-VSCode
  • +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + diff --git a/events/k-a-rewriting-based-language-definitional-framework/index.html b/events/k-a-rewriting-based-language-definitional-framework/index.html new file mode 100644 index 00000000000..72716fad309 --- /dev/null +++ b/events/k-a-rewriting-based-language-definitional-framework/index.html @@ -0,0 +1,402 @@ + + + + + + + + + + + + + + +K: A Rewriting-Based Language Definitional Framework | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K: A Rewriting-Based Language Definitional Framework

+

Tutorial at the 33rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI)

+
    +
  • June 16, 2012 – Beijing (China)
  • +
  • Presenter: Grigore Rosu (the main designer of K)
  • +
  • Duration: Half a day
  • +
  • Expected participants: ~20
  • +
+

Description

+

K is an executable semantic framework in which programming languages, calculi, as well as type systems or formal analysis tools can be defined. K is a suitable framework for defining truly concurrent languages or calculi, even in the presence of sharing. Since computations can be handled like any other terms in a rewriting environment, that is, they can be matched, moved from one place to another in the original term, modified, or even deleted, K is also suitable for defining control-intensive language features such as abrupt termination, exceptions, or call/cc. K has been used to define real world languages like C.

+

This tutorial will provide participants with a basic knowledge of the framework, as well as hands-on experience with using K to define a real programming language. Definitional techniques available in K, as well as comparisons of such techniques with other formalisms will be described. Time will be spent showing how one can automatically generate an interpreter, debugger, state space search, and a model checker from a single semantic definition. After attending the tutorial, participants will be able to use K to define their own languages or calculi and then derive similar tools from their semantics for free.

+ +
    +
  • http://k-framework.org: The main page for the K framework (see the Quick Overview section for a movie, demo and slides).
  • +
  • http://k-framework.googlecode.com: The Googlecode page for the K tool.
  • +
+

Tutorial format

+

Material and instructions will be provided to participants to load software and examples on their laptops. The presenter will give background material and an introduction to K, then the majority of the time will be spent working through examples in the K tool. The examples will be used to demonstrate both features of K, as well as design decisions that must take place when defining a language. Participants will be encouraged to examine and understand the example languages, then guided through making their own changes/improvements to those languages.

+

Expected audience

+

The audience should be interested in practical aspects of programming language semantics. This includes interest in semantics as objects to be created/studied, as well as interest in the using such semantics for different program analyses. They need no previous knowledge, although a basic understanding of other definitional styles (such as SOS or evaluation contexts) may be helpful.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + diff --git a/exports/K.epub b/exports/K.epub new file mode 100644 index 00000000000..c6d0ee318b5 Binary files /dev/null and b/exports/K.epub differ diff --git a/exports/K.html b/exports/K.html new file mode 100644 index 00000000000..f618587c90c --- /dev/null +++ b/exports/K.html @@ -0,0 +1,23703 @@ + + + + + K + + + + + + +
+

K

+ +

Table of Contents

+ + +
+

K is a rewrite-based
+executable semantic framework in which programming languages, type
+systems and formal analysis tools can be defined using configurations
+and rules. Configurations organize the state in units called cells,
+which are labeled and can be nested. K rewrite rules make it explicit
+which parts of the term are read-only, write-only, read-write, or
+unused. This makes K suitable for defining truly concurrent languages
+even in the presence of sharing. Computations are represented as
+syntactic extensions of the original language abstract syntax, using a
+nested list structure which sequentializes computational tasks, such
+as program fragments. Computations are like any other terms in a
+rewriting environment: they can be matched, moved from one place to
+another, modified, or deleted. This makes K suitable for defining
+control-intensive features such as abrupt termination, exceptions, or
+call/cc.

+

K Tool Download

+ +
    +
  • Install from the latest K GitHub Release.
  • +
  • Install pyk, K's scripting interface for Python. Check the API documentation for a complete reference of supported features.
  • +
  • Try our Editor Support page for links to K syntax highlighting definitions for various popular editors/IDEs. Please feel free to contribute.
  • +
  • Build or browse the code on GitHub, where you can also report bugs.
  • +
+

Learn K

+ + +

Support

+ + +

Resources

+ + +

K Tutorial

+ +

The purpose of this series of lessons is to teach developers how to program in
+K. While the primary use of K is in the specification of operational semantics
+of programming languages, this tutorial is agnostic on how the knowledge of K
+is used. For a more detailed tutorial explaining the basic principles of
+programming language design, refer to the
+K PL Tutorial. Note that that tutorial is somewhat
+out of date presently.

+

This K tutorial is a work in progress. Many lessons are currently simply
+placeholders for future content.

+

To start the K tutorial, begin with
+Section 1: Basic Programming in K.

+

Section 1: Basic K Concepts

+ +

The goal of this first section of the K tutorial is to teach the basic
+principles of K to someone with no prior experience with K as a programming
+language. However, this is not written with the intended audience of someone
+who is a complete beginner to programming. We are assuming that the reader
+has a firm grounding in computer science broadly, as well as that they have
+experience writing code in functional programming languages before.

+

By the end of this section, the reader ought to be able to write specifications
+of simple languages in K, use these specifications to generate a fast
+interpreter for their programming language, as well as write basic deductive
+program verification proofs over programs in their language. This should give
+them the theoretical grounding they need to begin expanding their knowledge
+of K in Section 2: Intermediate K Concepts.

+

To begin this section, refer to
+Lesson 1.1: Setting up a K Environment.

+

Lesson 1.1: Setting up a K Environment

+ +

The first step to learning K is to install K on your system, and configure your
+editor for K development.

+

Installing K

+ +

You have two options for how to install K, depending on how you intend to
+interact with the K codebase. If you are solely a user of K, and have no
+interest in developing or making changes to K, you most likely will want to
+install one of our binary releases of K. However, if you are going to be a K
+developer, or simply want to build K from source, you should follow the
+instructions for a source build of K.

+

Installing K from a binary release

+ +

K is developed as a rolling release, with each change to K that passes our
+CI infrastructure being deployed on GitHub for download. The latest release of
+K can be downloaded here.
+This page also contains information on how to install K. It is recommended
+that you fully uninstall the old version of K prior to installing the new one,
+as K does not maintain entries in package manager databases, with the exception
+of Homebrew on MacOS.

+

Installing K from source

+ +

You can clone K from GitHub with the following Git command:

+
git clone https://github.com/runtimeverification/k --recursive
+

Instructions on how to build K from source can be found
+here.

+

Configuring your editor

+ +

K maintains a set of scripts for a variety of text editors, including vim and
+emacs, in various states of maintenance. You can download these scripts with
+the following Git command:

+
git clone https://github.com/kframework/k-editor-support
+

Because K allows users to define their own grammars for parsing K itself,
+not all features of K can be effectively highlighted. However, at the cost of
+occasionally highlighting things incorrectly, you can get some pretty good
+results in many cases. With that being said, some of the editor scripts in the
+above repository are pretty out of date. If you manage to improve them, we
+welcome pull requests into the repository.

+

Troubleshooting

+ +

If you have problems installing K, we encourage you to reach out to us. If you
+follow the above install instructions and run into a problem, you can
+Create a bug report on GitHub

+

Next lesson

+ +

Once you have set up K on your system to your satisfaction, you can continue to
+Lesson 1.2: Basics of Functional K.

+

Lesson 1.2: Basics of Functional K

+ +

The purpose of this lesson is to explain the basics of productions and
+rules in K. These are two types of K sentences. A K file consists of
+one or more requires or modules in K. Each module consists of one or
+more imports or sentences. For more information on requires, modules, and
+sentences, refer to Lesson 1.5. However, for the time
+being, just think of a module as a container for sentences, and don't worry
+about requires or imports just yet.

+

Our first K program

+ +

To start with, input the following program into your editor as file
+lesson-02-a.k:

+
module LESSON-02-A
+
+  syntax Color ::= Yellow() | Blue()
+  syntax Fruit ::= Banana() | Blueberry()
+  syntax Color ::= colorOf(Fruit) [function]
+
+  rule colorOf(Banana()) => Yellow()
+  rule colorOf(Blueberry()) => Blue()
+
+endmodule
+

Save this file and then run:

+
kompile lesson-02-a.k
+

kompile is K's compiler. By default, it takes a program or specification
+written in K and compiles it into an interpreter for that input. Right now we
+are compiling a single file. A set of K files that are compiled together are
+called a K definition. We will cover multiple file K definitions later on.
+kompile will output a directory containing everything needed to execute
+programs and perform proofs using that definition. In this case, kompile will
+(by default) create the directory lesson-02-a-kompiled under the current
+directory.

+

Now, save the following input file in your editor as banana.color in the same
+directory as lesson-02-a.k:

+
colorOf(Banana())
+

We can now evaluate this K term by running (from the same directory):

+
krun banana.color
+

krun will use the interpreter generated by the first call to kompile to
+execute this program.

+

You will get the following output:

+
<k>
+  Yellow ( ) ~> .
+</k>
+

For now, don't worry about the <k>, </k>, or ~> . portions of this
+output file.

+

You can also execute small programs directly by specifying them on the command
+line instead of putting them in a file. For example, the same program above
+could also have been executed by running the following command:

+
krun -cPGM='colorOf(Banana())'
+

Now, let's look at what this definition and program did.

+

Productions, Constructors, and Functions

+ +

The first thing to realize is that this K definition contains 5 productions.
+Productions are introduced with the syntax keyword, followed by a sort,
+followed by the operator ::= followed by the definition of one or more
+productions themselves, separated by the | operator. There are different
+types of productions, but for now we only care about constructors and
+functions. Each declaration separated by the | operator is individually
+a single production, and the | symbol simply groups together productions that
+have the same sort. For example, we could equally have written an identical K
+definition lesson-02-b.k like so:

+
module LESSON-02-B
+
+  syntax Color ::= Yellow()
+  syntax Color ::= Blue()
+  syntax Fruit ::= Banana()
+  syntax Fruit ::= Blueberry()
+  syntax Color ::= colorOf(Fruit) [function]
+
+  rule colorOf(Banana()) => Yellow()
+  rule colorOf(Blueberry()) => Blue()
+
+endmodule
+

You can try compiling and running lesson-02-b.k to see that it produces the same output as lesson-02-a.k:

+
kompile lesson-02-b.k
+krun -cPGM='colorOf(Banana())' --definition 'lesson-02-b-kompiled'
+

where the --definition attribute points to the directory containing a compiled version of LESSON-02-B.
+Even the following definition is equivalent:

+
module LESSON-02-C
+
+  syntax Color ::= Yellow()
+                 | Blue()
+                 | colorOf(Fruit) [function]
+  syntax Fruit ::= Banana()
+                 | Blueberry()
+
+  rule colorOf(Banana()) => Yellow()
+  rule colorOf(Blueberry()) => Blue()
+
+endmodule
+

Each of these types of productions named above has the same underlying syntax,
+but context and attributes are used to distinguish between the different
+types. Tokens, brackets, lists, macros, aliases, and anywhere productions will
+be covered in a later lesson, but this lesson does introduce us to constructors
+and functions. Yellow(), Blue(), Banana(), and Blueberry() are
+constructors. You can think of a constructor like a constructor for an
+algebraic data type, if you're familiar with a functional language. The data
+type itself is the sort that appears on the left of the ::= operator. Sorts
+in K consist of uppercase identifiers.

+

Constructors can have arguments, but these ones do not. We will cover the
+syntax of productions in detail in the next lesson, but for now, you can write
+a production with no arguments as an uppercase or lowercase identifier followed
+by the () operator.

+

A function is distinguished from a constructor by the presence of the
+function attribute. Attributes appear in a comma separated list between
+square brackets after any sentence, including both productions and rules.
+Various attributes with built-in meanings exist in K and will be discussed
+throughout the tutorial.

+

Exercise

+ +

Use krun to compute the return value of the colorOf function on a
+Blueberry().

+

Rules, Matching, and Variables

+ +

Functions in K are given definitions using rules. A rule begins with the rule
+keyword and contains at least one rewrite operator. The rewrite operator
+is represented by the syntax =>. The rewrite operator is one of the built-in
+productions in K, and we will discuss in more detail how it can be used in
+future lessons, but for now, you can think of a rule as consisting of a
+left-hand side and a right-hand side, separated by the rewrite
+operator. On the left-hand side is the name of the function and zero or more
+patterns corresponding to the parameters of the function. On the right-hand
+side is another pattern. The meaning of the rule is relatively simple, having
+defined these components. If the function is called with arguments that
+match the patterns on the left-hand side, then the return value of the
+function is the pattern on the right-hand side.

+

For example, in the above example, if the argument of the colorOf function
+is Banana(), then the return value of the function is Yellow().

+

So far we have introduced that a constructor is a type of pattern in K. We
+will introduce more complex patterns in later lessons, but there is one other
+type of basic pattern: the variable. A variable, syntactically, consists
+of an uppercase identifier. However, unlike a constructor, a variable will
+match any pattern with one exception: Two variables with the same name
+must match the same pattern.

+

Here is a more complex example (lesson-02-d.k):

+
module LESSON-02-D
+
+  syntax Container ::= Jar(Fruit)
+  syntax Fruit ::= Apple() | Pear()
+
+  syntax Fruit ::= contentsOfJar(Container) [function]
+
+  rule contentsOfJar(Jar(F)) => F
+
+endmodule
+

Here we see that Jar is a constructor with a single argument. You can write a
+production with multiple arguments by putting the sorts of the arguments in a
+comma-separated list inside the parentheses.

+

In this example, F is a variable. It will match either Apple() or Pear().
+The return value of the function is created by substituting the matched
+values of all of the variables into the variables on the right-hand side of
+the rule.

+

To demonstrate, compile this definition and execute the following program with
+krun:

+
contentsOfJar(Jar(Apple()))
+

You will see when you run it that the program returns Apple(), because that
+is the pattern that was matched by F.

+

Exercises

+ +
    +
  1. Extend the definition in lesson-02-a.k with the addition of blackberries
    +and kiwis. For simplicity, blackberries are black and kiwis are green. Then
    +compile your definition and test that your additional fruits are correctly
    +handled by the colorOf function.
  2. +
  3. Create a new definition which defines an outfit as a multi-argument
    +constructor consisting of a hat, shirt, pants, and shoes. Define a new sort,
    +Boolean, with two constructors, true and false. Each of hat, shirt, pants,
    +and shoes will have a single argument (a color), either black or
    +white. Then define an outfitMatching function that will return true if all
    +the pieces of the outfit are the same color. You do not need to define the
    +case that returns false. Write some tests that your function behaves the way
    +you expect.
  4. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.3: BNF Syntax and Parser Generation.

+

Lesson 1.3: BNF Syntax and Parser Generation

+ +

The purpose of this lesson is to explain the full syntax and semantics of
+productions in K as well as how productions and other syntactic
+sentences can be used to define grammars for use parsing both rules as well
+as programs.

+

K's approach to parsing

+ +

K's grammar is divided into two components: the outer syntax of K and the
+inner syntax of K. Outer syntax refers to the parsing of requires,
+modules, imports, and sentences in a K definition. Inner syntax
+refers to the parsing of rules and programs. Unlike the outer syntax of
+K, which is predetermined, much of the inner syntax of K is defined by you, the
+developer. When rules or programs are parsed, they are parsed within the
+context of a module. Rules are parsed in the context of the module in which
+they exist, whereas programs are parsed in the context of the
+main syntax module of a K definition. The productions and other syntactic
+sentences in a module are used to construct the grammar of the module, which
+is then used to perform parsing.

+

Basic BNF productions

+ +

To illustrate how this works, we will consider a simple K definition which
+defines a relatively basic calculator capable of evaluating Boolean expressions
+containing and, or, not, and xor.

+

Input the following program into your editor as file lesson-03-a.k:

+
module LESSON-03-A
+
+  syntax Boolean ::= "true" | "false"
+                   | "!" Boolean [function]
+                   | Boolean "&&" Boolean [function]
+                   | Boolean "^" Boolean [function]
+                   | Boolean "||" Boolean [function]
+
+endmodule
+

You will notice that the productions in this file look a little different than
+the ones from the previous lesson. In point of fact, K has two different
+mechanisms for defining productions. We have previously been focused
+exclusively on the first mechanism, where the ::= symbol is followed by an
+alphanumeric identifier followed by a comma-separated list of sorts in
+parentheses. However, this is merely a special case of a more generic mechanism
+for defining the syntax of productions using a variant of
+BNF Form.

+

For example, in the previous lesson, we had the following set of productions:

+
module LESSON-03-B
+  syntax Color ::= Yellow() | Blue()
+  syntax Fruit ::= Banana() | Blueberry()
+  syntax Color ::= colorOf(Fruit) [function]
+endmodule
+

It turns out that this is equivalent to the following definition which defines
+the same grammar, but using BNF notation:

+
module LESSON-03-C
+  syntax Color ::= "Yellow" "(" ")" | "Blue" "(" ")"
+  syntax Fruit ::= "Banana" "(" ")" | "Blueberrry" "(" ")"
+  syntax Color ::= "colorOf" "(" Fruit ")" [function]
+endmodule
+

In this example, the sorts of the argument to the function are unchanged, but
+everything else has been wrapped in double quotation marks. This is because
+in BNF notation, we distinguish between two types of production items:
+terminals and non-terminals. A terminal represents simply a literal
+string of characters that is verbatim part of the syntax of that production.
+A non-terminal, conversely, represents a sort name, where the syntax of that
+production accepts any valid term of that sort at that position.

+

This is why, when we wrote the program colorOf(Banana()), krun was able to
+execute that program: because it represented a term of sort Color that was
+parsed and interpreted by K's interpreter. In other words, krun parses and
+interprets terms according to the grammar defined by the developer. It is
+automatically converted into an AST of that term, and then the colorOf
+function is evaluated using the function rules provided in the definition.

+

You can ask yourself: How does K match the strings between the double quotes?
+The answer is that K uses Flex to generate a scanner for the grammar. Flex looks
+for the longest possible match of a regular expression in the input. If there
+are ambiguities between 2 or more regular expressions, it will pick the one with
+the highest prec attribute. You can learn more about how Flex matching works
+here.

+

Bringing us back to the file lesson-03-a.k, we can see that this grammar
+has given a simple BNF grammar for expressions over Booleans. We have defined
+constructors corresponding to the Boolean values true and false, and functions
+corresponding to the Boolean operators for and, or, not, and xor. We have also
+given a syntax for each of these functions based on their syntax in the C
+programming language. As such, we can now write programs in the simple language
+we have defined.

+

Input the following program into your editor as and.bool in the same
+directory:

+
true && false
+

We cannot interpret this program yet, because we have not given rules defining
+the meaning of the && function yet, but we can parse it. To do this, you can
+run (from the same directory):

+
kast --output kore and.bool
+

kast is K's just-in-time parser. It will generate a grammar from your K
+definition on the fly and use it to parse the program passed on the command
+line. The --output flag controls how the resulting AST is represented; don't
+worry about the possible values yet, just use kore.

+

You ought to get the following AST printed on standard output, minus the
+formatting:

+
inj{SortBoolean{}, SortKItem{}}(
+  Lbl'UndsAnd-And-UndsUnds'LESSON-03-A'Unds'Boolean'Unds'Boolean'Unds'Boolean{}(
+    Lbltrue'Unds'LESSON-03-A'Unds'Boolean{}(),
+    Lblfalse'Unds'LESSON-03-A'Unds'Boolean{}()
+  )
+)
+

Don't worry about what exactly this means yet, just understand that it
+represents the AST of the program that you just parsed. You ought to be able
+to recognize the basic shape of it by seeing the words true, false, and
+And in there. This is Kore, the intermediate representation of K, and we
+will cover it in detail later.

+

Note that you can also tell kast to print the AST in other formats. For a
+more direct representation of the original K, while still maintaining the
+structure of an AST, you can say kast --output kast and.bool. This will
+yield the following output:

+
`_&&__LESSON-03-A_Boolean_Boolean_Boolean`(
+  `true_LESSON-03-A_Boolean`(.KList),
+  `false_LESSON-03-A_Boolean`(.KList)
+)
+

Note how the first output is largely a name-mangled version of the second
+output. The one difference is the presence of the inj symbol in the KORE
+output. We will talk more about this in later lessons.

+

Exercise

+ +

Parse the expression false || true with --output kast. See if you can
+predict approximately what the corresponding output would be with
+--output kore, then run the command yourself and compare it to your
+prediction.

+

Ambiguities

+ +

Now let's try a slightly more advanced example. Input the following program
+into your editor as and-or.bool:

+
true && false || false
+

When you try and parse this program, you ought to see the following error:

+
[Error] Inner Parser: Parsing ambiguity.
+1: syntax Boolean ::= Boolean "||" Boolean [function]
+
+`_||__LESSON-03-A_Boolean_Boolean_Boolean`(`_&&__LESSON-03-A_Boolean_Boolean_Boolean`(`true_LESSON-03-A_Boolean`(.KList),`false_LESSON-03-A_Boolean`(.KList)),`false_LESSON-03-A_Boolean`(.KList))
+2: syntax Boolean ::= Boolean "&&" Boolean [function]
+
+`_&&__LESSON-03-A_Boolean_Boolean_Boolean`(`true_LESSON-03-A_Boolean`(.KList),`_||__LESSON-03-A_Boolean_Boolean_Boolean`(`false_LESSON-03-A_Boolean`(.KList),`false_LESSON-03-A_Boolean`(.KList)))
+        Source(./and-or.bool)
+        Location(1,1,1,23)
+

This error is saying that kast was unable to parse this program because it is
+ambiguous. K's just-in-time parser is a GLL parser, which means it can handle
+the full generality of context-free grammars, including those grammars which
+are ambiguous. An ambiguous grammar is one where the same string can be parsed
+as multiple distinct ASTs. In this example, it can't decide whether it should
+be parsed as (true && false) || false or as true && (false || false). As a
+result, it reports the error to the user.

+

Brackets

+ +

Currently there is no way of resolving this ambiguity, making it impossible
+to write complex expressions in this language. This is obviously a problem.
+The standard solution in most programming languages to this problem is to
+use parentheses to indicate the appropriate grouping. K generalizes this notion
+into a type of production called a bracket. A bracket production in K
+is any production with the bracket attribute. It is required that such a
+production only have a single non-terminal, and the sort of the production
+must equal the sort of that non-terminal. However, K does not otherwise
+impose restrictions on the grammar the user provides for a bracket. With that
+being said, the most common type of bracket is one in which a non-terminal
+is surrounded by terminals representing some type of bracket such as
+(), [], {}, <>, etc. For example, we can define the most common
+type of bracket, the type used by the vast majority of programming languages,
+quite simply.

+

Consider the following modified definition, which we will save to
+lesson-03-d.k:

+
module LESSON-03-D
+
+  syntax Boolean ::= "true" | "false"
+                   | "(" Boolean ")" [bracket]
+                   | "!" Boolean [function]
+                   | Boolean "&&" Boolean [function]
+                   | Boolean "^" Boolean [function]
+                   | Boolean "||" Boolean [function]
+
+endmodule
+

In this definition, if the user does not explicitly define parentheses, the
+grammar remains ambiguous and K's just-in-time parser will report an error.
+However, you are now able to parse more complex programs by means of explicitly
+grouping subterms with the bracket we have just defined.

+

Consider and-or-left.bool:

+
(true && false) || false
+

Now consider and-or-right.bool:

+
true && (false || false)
+

If you parse these programs with kast, you will once again get a single
+unique AST with no error. If you look, you might notice that the bracket itself
+does not appear in the AST. In fact, this is a property unique to brackets:
+productions with the bracket attribute are not represented in the parsed AST
+of a term, and the child of the bracket is folded immediately into the parent
+term. This is the reason for the requirement that a bracket production have
+a single non-terminal of the same sort as the production itself.

+

Exercise

+ +

Write out what you expect the AST to be arising from parsing these two programs
+above with --output kast, then parse them yourself and compare them to the
+AST you expected. Confirm for yourself that the bracket production does not
+appear in the AST.

+

Tokens

+ +

So far we have seen how we can define the grammar of a language. However,
+the grammar is not the only relevant part of parsing a language. Also relevant
+is the lexical syntax of the language. Thus far, we have implicitly been using
+K's automatic lexer generation to generate a token in the scanner for each
+terminal in our grammar. However, sometimes we wish to define more complex
+lexical syntax. For example, consider the case of integers in C: an integer
+consists of a decimal, octal, or hexadecimal number followed by an optional
+suffix indicating the type of the literal.

+

In theory it would be possible to define this syntax via a grammar, but not
+only would it be cumbersome and tedious, you would also then have to deal with
+an AST generated for the literal which is not convenient to work with.

+

Instead of doing this, K allows you to define token productions, where
+a production consists of a regular expression followed by the token
+attribute, and the resulting AST consists of a typed string containing the
+value recognized by the regular expression.

+

For example, the builtin integers in K are defined using the following
+production:

+
syntax Int ::= r"[\\+\\-]?[0-9]+" [token]
+

Here we can see that we have defined that an integer is an optional sign
+followed by a nonzero sequence of digits. The r preceding the terminal
+indicates that what appears inside the double quotes is a regular expression,
+and the token attribute indicates that terms which parse as this production
+should be converted into a token by the parser.

+

It is also possible to define tokens that do not use regular expressions. This
+can be useful when you wish to declare particular identifiers for use in your
+semantics later. For example:

+
syntax Id ::= "main" [token]
+

Here, we declare that main is a token of sort Id. Instead of being parsed
+as a symbol, it gets parsed as a token, generating a typed string in the AST.
+This is useful in a semantics of C because the parser generally does not treat
+the main function in C specially; only the semantics treats it specially.

+

Of course, languages can have more complex lexical syntax. For example, if we
+wish to define the syntax of integers in C, we could use the following
+production:

+
syntax IntConstant ::= r"(([1-9][0-9]*)|(0[0-7]*)|(0[xX][0-9a-fA-F]+))(([uU][lL]?)|([uU]((ll)|(LL)))|([lL][uU]?)|(((ll)|(LL))[uU]?))?" [token]
+

As you may have noted above, long and complex regular expressions
+can be hard to read. They also suffer from the problem that unlike a grammar,
+they are not particularly modular.

+

We can get around this restriction by declaring explicit regular expressions,
+giving them a name, and then referring to them in productions.

+

Consider the following (equivalent) way to define the lexical syntax of
+integers in C:

+
syntax IntConstant ::= r"({DecConstant}|{OctConstant}|{HexConstant})({IntSuffix}?)" [token]
+syntax lexical DecConstant = r"{NonzeroDigit}({Digit}*)"
+syntax lexical OctConstant = r"0({OctDigit}*)"
+syntax lexical HexConstant = r"{HexPrefix}({HexDigit}+)"
+syntax lexical HexPrefix = r"0x|0X"
+syntax lexical NonzeroDigit = r"[1-9]"
+syntax lexical Digit = r"[0-9]"
+syntax lexical OctDigit = r"[0-7]"
+syntax lexical HexDigit = r"[0-9a-fA-F]"
+syntax lexical IntSuffix = r"{UnsignedSuffix}({LongSuffix}?)|{UnsignedSuffix}{LongLongSuffix}|{LongSuffix}({UnsignedSuffix}?)|{LongLongSuffix}({UnsignedSuffix}?)"
+syntax lexical UnsignedSuffix = r"[uU]"
+syntax lexical LongSuffix = r"[lL]"
+syntax lexical LongLongSuffix = r"ll|LL"
+

As you can see, this is rather more verbose, but it has the benefit of both
+being much easier to read and understand, and also increased modularity.
+Note that we refer to a named regular expression by putting the name in curly
+brackets. Note also that only the first sentence actually declares a new piece
+of syntax in the language. When the user writes syntax lexical, they are only
+declaring a regular expression. To declare an actual piece of syntax in the
+grammar, you still must actually declare an explicit token production.

+

One final note: K uses Flex to implement
+its lexical analysis. As a result, you can refer to the
+Flex Manual
+for a detailed description of the regular expression syntax supported. Note
+that for performance reasons, Flex's regular expressions are actually a regular
+language, and thus lack some of the syntactic convenience of modern
+"regular expression" libraries. If you need features that are not part of the
+syntax of Flex regular expressions, you are encouraged to express them via
+a grammar instead.

+

Ahead-of-time parser generation

+ +

So far we have been entirely focused on K's support for just-in-time parsing,
+where the parser is generated on the fly prior to being used. This benefits
+from being faster to generate the parser, but it suffers in performance if you
+have to repeatedly parse strings with the same parser. For this reason, it is
+generally encouraged that when parsing programs, you use K's ahead-of-time
+parser generation. K makes use of
+GNU Bison to generate parsers.

+

By default, you can enable ahead-of-time parsing via the --gen-bison-parser
+flag to kompile. This will make use of Bison's LR(1) parser generator. As
+such, if your grammar is not LR(1), it may not parse exactly the same as if
+you were to use the just-in-time parser, because Bison will automatically pick
+one of the possible branches whenever it encounters a shift-reduce or
+reduce-reduce conflict. In this case, you can either modify your grammar to be
+LR(1), or you can enable use of Bison's GLR support by instead passing
+--gen-glr-bison-parser to kompile. Note that if your grammar is ambiguous,
+the ahead-of-time parser will not provide you with particularly readable error
+messages at this time.

+

If you have a K definition named foo.k, and it generates a directory when
+you run kompile called foo-kompiled, you can invoke the ahead-of-time
+parser you generated by running foo-kompiled/parser_PGM <file> on a file.

+

Exercises

+ +
    +
  1. +

    Compile lesson-03-d.k with ahead-of-time parsing enabled. Then compare
    +how long it takes to run kast --output kore and-or-left.bool with how long it
    +takes to run lesson-03-d-kompiled/parser_PGM and-or-left.bool. Confirm for
    +yourself that both produce the same result, but that the latter is faster.

    +
  2. +
  3. +

    Define a simple grammar consisting of integers, brackets, addition,
    +subtraction, multiplication, division, and unary negation. Integers should be
    +in decimal form and lexically without a sign, whereas negative numbers can be
    +represented via unary negation. Ensure that you are able to parse some basic
    +arithmetic expressions using a generated ahead-of-time parser. Do not worry
    +about disambiguating the grammar or about writing rules to implement the
    +operations in this definition.

    +
  4. +
  5. +

    Write a program where the meaning of the arithmetic expression based on
    +the grammar you defined above is ambiguous, and then write programs that
    +express each individual intended meaning using brackets.

    +
  6. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.4: Disambiguating Parses.

+

Lesson 1.4: Disambiguating Parses

+ +

The purpose of this lesson is to teach how to use K's builtin features for
+disambiguation to transform an ambiguous grammar into an unambiguous one that
+expresses the intended ASTs.

+

Priority blocks

+ +

In practice, very few formal languages outside the domain of natural language
+processing are ambiguous. The main reason for this is that parsing unambiguous
+languages is asymptotically faster than parsing ambiguous languages.
+Programming language designers instead usually use the notions of operator
+precedence and associativity to make expression grammars unambiguous. These
+mechanisms work by instructing the parser to reject certain ASTs in favor of
+others in case of ambiguities; it is often possible to remove all ambiguities
+in a grammar with these techniques.

+

While it is sometimes possible to explicitly rewrite the grammar to remove
+these parses, because K's grammar specification and AST generation are
+inextricably linked, this is generally discouraged. Instead, we use the
+approach of explicitly expressing the relative precedence of different
+operators in different situations in order to resolve the ambiguity.

+

For example, in C, && binds tighter in precedence than ||, meaning that
+the expression true && false || false has only one valid AST:
+(true && false) || false.

+

Consider, then, the third iteration on the grammar of this definition
+(lesson-04-a.k):

+
module LESSON-04-A
+
+  syntax Boolean ::= "true" | "false"
+                   | "(" Boolean ")" [bracket]
+                   > "!" Boolean [function]
+                   > Boolean "&&" Boolean [function]
+                   > Boolean "^" Boolean [function]
+                   > Boolean "||" Boolean [function]
+
+endmodule
+

In this example, some of the | symbols separating productions in a single
+block have been replaced with >. This serves to describe the
+priority groups associated with this block of productions.
+The first priority group consists of the atoms of the
+language: true, false, and the bracket operator. In general, a priority
+group starts either at the ::= or > operator and extends until either the
+next > operator or the end of the production block. Thus, we can see that the
+second, third, fourth, and fifth priority groups in this grammar all consist
+of a single production.

+

The meaning of these priority groups becomes apparent when parsing programs:
+A symbol with a lesser priority, (i.e., one that binds looser), cannot
+appear as the direct child of a symbol with a greater priority (i.e.,
+one that binds tighter. In this case, the > operator can be seen as a
+greater-than operator describing a transitive partial ordering on the
+productions in the production block, expressing their relative priority.

+

To see this more concretely, let's look again at the program
+true && false || false. As noted before, previously this program was
+ambiguous because the parser could either choose that && was the child of ||
+or vice versa. However, because a symbol with lesser priority (i.e., ||)
+cannot appear as the direct child of a symbol with greater priority
+(i.e., &&), the parser will reject the parse where || is under the
+&& operator. As a result, we are left with the unambiguous parse
+(true && false) || false. Similarly, true || false && false parses
+unambiguously as true || (false && false). Conversely, if the user explicitly
+wants the other parse, they can express this using brackets by explicitly
+writing true && (false || false). This still parses successfully because the
+|| operator is no longer the direct child of the && operator, but is
+instead the direct child of the () operator, and the && operator is an
+indirect parent, which is not subject to the priority restriction.

+

Astute readers, however, will already have noticed what seems to be a
+contradiction: we have defined () as also having greater priority than ||.
+One would think that this should mean that || cannot appear as a direct
+child of (). This is a problem because priority groups are applied to every
+possible parse separately. That is to say, even if the term is unambiguous
+prior to this disambiguation rule, we still reject that parse if it violates
+the rule of priority.

+

In fact, however, we do not reject this program as a parse error. Why is that?
+Well, the rule for priority is slightly more complex than previously described.
+In actual fact, it applies only conditionally. Specifically, it applies in
+cases where the child is either the first or last production item in the
+parent's production. For example, in the production Bool "&&" Bool, the
+first Bool non-terminal is not preceded by any terminals, and the last Bool
+non-terminal is not followed by any terminals. As a result of this, we apply
+the priority rule to both children of &&. However, in the () operator,
+the sole non-terminal is both preceded by and followed by terminals. As a
+result, the priority rule is not applied when () is the parent. Because of
+this, the program we mentioned above successfully parses.

+

Exercise

+ +

Parse the program true && false || false using kast, and confirm that the AST
+places || as the top level symbol. Then modify the definition so that you
+will get the alternative parse.

+

Associativity

+ +

Even having broken the expression grammar into priority blocks, the resulting
+grammar is still ambiguous. We can see this if we try to parse the following
+program (assoc.bool):

+
true && false && false
+

Priority blocks will not help us here: the problem comes between two parses
+where both possible parses have a direct parent and child which is within a
+single priority block (in this case, && is in the same block as itself).

+

This is where the notion of associativity comes into play. Associativity
+applies the following additional rules to parses:

+
    +
  • a left-associative symbol cannot appear as a direct rightmost child of a
    +symbol with equal priority;
  • +
  • a right-associative symbol cannot appear as a direct leftmost child of a
    +symbol with equal priority; and
  • +
  • a non-associative symbol cannot appear as a direct leftmost or rightmost
    +child of a symbol with equal priority.
  • +
+

In C, binary operators are all left-associative, meaning that the expression
+true && false && false parses unambiguously as (true && false) && false,
+because && cannot appear as the rightmost child of itself.

+

Consider, then, the fourth iteration on the grammar of this definition
+(lesson-04-b.k):

+
module LESSON-04-B
+
+  syntax Boolean ::= "true" | "false"
+                   | "(" Boolean ")" [bracket]
+                   > "!" Boolean [function]
+                   > left: Boolean "&&" Boolean [function]
+                   > left: Boolean "^" Boolean [function]
+                   > left: Boolean "||" Boolean [function]
+
+endmodule
+

Here each priority group, immediately after the ::= or > operator, can
+be followed by a symbol representing the associativity of that priority group:
+either left: for left associativity, right: for right associativity, or
+non-assoc: for non-associativity. In this example, each priority group we
+apply associativity to has only a single production, but we could equally well
+write a priority block with multiple productions and an associativity.

+

For example, consider the following, different grammar (lesson-04-c.k):

+
module LESSON-04-C
+
+  syntax Boolean ::= "true" | "false"
+                   | "(" Boolean ")" [bracket]
+                   > "!" Boolean [function]
+                   > left:
+                     Boolean "&&" Boolean [function]
+                   | Boolean "^" Boolean [function]
+                   | Boolean "||" Boolean [function]
+
+endmodule
+

In this example, unlike the one above, &&, ^, and || have the same
+priority. However, viewed as a group, the entire group is left associative.
+This means that none of &&, ^, and || can appear as the right child of
+any of &&, ^, or ||. As a result of this, this grammar is also not
+ambiguous. However, it expresses a different grammar, and you are encouraged
+to think about what the differences are in practice.

+

Exercise

+ +

Parse the program true && false && false yourself, and confirm that the AST
+places the rightmost && at the top of the expression. Then modify the
+definition to generate the alternative parse.

+

Explicit priority and associativity declarations

+ +

Previously we have only considered the case where all of the productions
+which you wish to express a priority or associativity relation over are
+co-located in the same block of productions. However, in practice this is not
+always feasible or desirable, especially as a definition grows in size across
+multiple modules.

+

As a result of this, K provides a second way of declaring priority and
+associativity relations.

+

Consider the following grammar, which we will name lesson-04-d.k and which
+will express the exact same grammar as lesson-04-b.k

+
module LESSON-04-D
+
+  syntax Boolean ::= "true" [group(literal)] | "false" [group(literal)]
+                   | "(" Boolean ")" [group(atom), bracket]
+                   | "!" Boolean [group(not), function]
+                   | Boolean "&&" Boolean [group(and), function]
+                   | Boolean "^" Boolean [group(xor), function]
+                   | Boolean "||" Boolean [group(or), function]
+
+  syntax priority literal atom > not > and > xor > or
+  syntax left and
+  syntax left xor
+  syntax left or
+endmodule
+

This introduces a couple of new features of K. First, the group(_) attribute
+is used to conceptually group together sets of sentences under a common
+user-defined name. For example, literal in the syntax priority sentence is
+used to refer to all the productions marked with the group(literal) attribute,
+i.e., true and false. A production can belong to multiple groups using
+syntax such as group(myGrp1,myGrp2).

+

Once we understand this, it becomes relatively straightforward to understand
+the meaning of this grammar. Each syntax priority sentence defines a
+priority relation where > separates different priority groups. Each priority
+group is defined by a list of one or more group names, and consists of all
+productions which are members of at least one of those named groups.

+

In the same way, a syntax left, syntax right, or syntax non-assoc sentence
+defines an associativity relation among left-, right-, or non-associative
+groups. Specifically, this means that:

+
syntax left a b
+

is different to:

+
syntax left a
+syntax left b
+

As a consequence of this, syntax [left|right|non-assoc] should not be used to
+group together labels with different priority.

+

Prefer/avoid

+ +

Sometimes priority and associativity prove insufficient to disambiguate a
+grammar. In particular, sometimes it is desirable to be able to choose between
+two ambiguous parses directly while still not rejecting any parses if the term
+parsed is unambiguous. A good example of this is the famous "dangling else"
+problem in imperative C-like languages.

+

Consider the following definition (lesson-04-E.k):

+
module LESSON-04-E
+
+  syntax Exp ::= "true" | "false"
+  syntax Stmt ::= "if" "(" Exp ")" Stmt
+                | "if" "(" Exp ")" Stmt "else" Stmt
+                | "{" "}"
+endmodule
+

We can write the following program (dangling-else.if):

+
if (true) if (false) {} else {}
+

This is ambiguous because it is unclear whether the else clause is part of
+the outer if or the inner if. At first we might try to resolve this with
+priorities, saying that the if without an else cannot appear as a child of
+the if with an else. However, because the non-terminal in the parent symbol
+is both preceded and followed by a terminal, this will not work.

+

Instead, we can resolve the ambiguity directly by telling the parser to
+"prefer" or "avoid" certain productions when ambiguities arise. For example,
+when we parse this program, we see the following ambiguity as an error message:

+
[Error] Inner Parser: Parsing ambiguity.
+1: syntax Stmt ::= "if" "(" Exp ")" Stmt
+
+`if(_)__LESSON-04-E_Stmt_Exp_Stmt`(`true_LESSON-04-E_Exp`(.KList),`if(_)_else__LESSON-04-E_Stmt_Exp_Stmt_Stmt`(`false_LESSON-04-E_Exp`(.KList),`;_LESSON-04-E_Stmt`(.KList),`;_LESSON-04-E_Stmt`(.KList)))
+2: syntax Stmt ::= "if" "(" Exp ")" Stmt "else" Stmt
+
+`if(_)_else__LESSON-04-E_Stmt_Exp_Stmt_Stmt`(`true_LESSON-04-E_Exp`(.KList),`if(_)__LESSON-04-E_Stmt_Exp_Stmt`(`false_LESSON-04-E_Exp`(.KList),`;_LESSON-04-E_Stmt`(.KList)),`;_LESSON-04-E_Stmt`(.KList))
+        Source(./dangling-else.if)
+        Location(1,1,1,30)
+

Roughly, we see that the ambiguity is between an if with an else or an if
+without an else. Since we want to pick the first parse, we can tell K to
+"avoid" the second parse with the avoid attribute. Consider the following
+modified definition (lesson-04-f.k):

+
module LESSON-04-F
+
+  syntax Exp ::= "true" | "false"
+  syntax Stmt ::= "if" "(" Exp ")" Stmt
+                | "if" "(" Exp ")" Stmt "else" Stmt [avoid]
+                | "{" "}"
+endmodule
+

Here we have added the avoid attribute to the else production. As a result,
+when an ambiguity occurs and one or more of the possible parses has that symbol
+at the top of the ambiguous part of the parse, we remove those parses from
+consideration and consider only those remaining. The prefer attribute behaves
+similarly, but instead removes all parses which do not have that attribute.
+In both cases, no action is taken if the parse is not ambiguous.

+

Exercises

+ +
    +
  1. +

    Parse the program if (true) if (false) {} else {} using lesson-04-f.k
    +and confirm that else clause is part of the innermost if statement. Then
    +modify the definition so that you will get the alternative parse.

    +
  2. +
  3. +

    Modify your solution from Lesson 1.3, Exercise 2 so that unary negation should
    +bind tighter than multiplication and division, which should bind tighter than
    +addition and subtraction, and each binary operator should be left associative.
    +Write these priority and associativity declarations explicitly, and then
    +try to write them inline.

    +
  4. +
  5. +

    Write a simple grammar containing at least one ambiguity that cannot be
    +resolved via priority or associativity, and then use the prefer attribute to
    +resolve that ambiguity.

    +
  6. +
  7. +

    Explain why the following grammar is not labeled ambiguous by the K parser when parsing abb, then make the parser realize the ambiguity.

    +
  8. +
+
module EXERCISE4
+
+syntax Expr ::= "a" Expr "b"
+              | "abb"
+              | "b"
+
+endmodule
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.5: Modules, Imports, and Requires.

+

Lesson 1.5: Modules, Imports, and Requires

+ +

The purpose of this lesson is to explain how K definitions can be broken into
+separate modules and files and how these distinct components combine into a
+complete K definition.

+

K's outer syntax

+ +

Recall from Lesson 1.3 that K's grammar is broken
+into two components: the outer syntax of K and the inner syntax of K.
+Outer syntax, as previously mentioned, consists of requires, modules,
+imports, and sentences. A K semantics is expressed by the set of
+sentences contained in the definition. The scope of what is considered
+contained in that definition is determined both by the main semantics
+module
of a K definition, as well as the requires and imports present
+in the file that contains that module.

+

Basic module syntax

+ +

The basic unit of grouping sentences in K is the module. A module consists
+of a module name, an optional list of attributes, a list of
+imports, and a list of sentences.

+

A module name consists of one or more groups of letters, numbers, or
+underscores, separated by a hyphen. Here are some valid module names: FOO,
+FOO-BAR, foo0, foo0_bar-Baz9. Here are some invalid module names: -,
+-FOO, BAR-, FOO--BAR. Stylistically, modules names are usually all
+uppercase with hyphens separating words, but this is not strictly enforced.

+

Some example modules include an empty module:

+
module LESSON-05-A
+
+endmodule
+

A module with some attributes:

+
module LESSON-05-B [group(attr1,attr2), private]
+
+endmodule
+

A module with some sentences:

+
module LESSON-05-C
+  syntax Boolean ::= "true" | "false"
+  syntax Boolean ::= "not" Boolean [function]
+  rule not true => false
+  rule not false => true
+endmodule
+

Imports

+ +

Thus far we have only discussed definitions containing a single module.
+Definitions can also contain multiple modules, in which one module imports
+others.

+

An import in K appears at the top of a module, prior to any sentences. It can
+be specified with the imports keyword, followed by a module name.

+

For example, here is a simple definition with two modules (lesson-05-d.k):

+
module LESSON-05-D-1
+  syntax Boolean ::= "true" | "false"
+  syntax Boolean ::= "not" Boolean [function]
+endmodule
+
+module LESSON-05-D
+  imports LESSON-05-D-1
+
+  rule not true => false
+  rule not false => true
+endmodule
+

This K definition is equivalent to the definition expressed by the single module
+LESSON-05-C. Essentially, by importing a module, we include all of the
+sentences in the module being imported into the module that we import from.
+There are a few minor differences between importing a module and simply
+including its sentences in another module directly, but we will cover these
+differences later. Essentially, you can think of modules as a way of
+conceptually grouping sentences in a larger K definition.

+

Exercise

+ +

Modify lesson-05-d.k to include four modules: one containing the syntax, two
+with one rule each that imports the first module, and a final module
+LESSON-05-D containing no sentences that imports the second and third module.
+Check to make sure the definition still compiles and that you can still evaluate
+the not function.

+

Parsing in the presence of multiple modules

+ +

As you may have noticed, each module in a definition can express a distinct set
+of syntax. When parsing the sentences in a module, we use the syntax
+of that module, enriched with the basic syntax of K, in order to parse
+rules in that module. For example, the following definition is a parser error
+(lesson-05-e.k):

+
module LESSON-05-E-1
+  rule not true => false
+  rule not false => true
+endmodule
+
+module LESSON-05-E-2
+  syntax Boolean ::= "true" | "false"
+  syntax Boolean ::= "not" Boolean [function]
+endmodule
+

This is because the syntax referenced in module LESSON-05-E-1, namely, not,
+true, and false, is not imported by that module. You can solve this problem
+by simply importing the modules containing the syntax you want to use in your
+sentences.

+

Main syntax and semantics modules

+ +

When we are compiling a K definition, we need to know where to start. We
+designate two specific entry point modules: the main syntax module
+and the main semantics module. The main syntax module, as well as all the
+modules it imports recursively, are used to create the parser for programs that
+you use to parse programs that you execute with krun. The main semantics
+module, as well as all the modules it imports recursively, are used to
+determine the rules that can be applied at runtime in order to execute a
+program. For example, in the above example, if the main semantics module is
+module LESSON-05-D-1, then not is an uninterpreted function (i.e., has no
+rules associated with it), and the rules in module LESSON-05-D are not
+included.

+

While you can specify the entry point modules explicitly by passing the
+--main-module and --syntax-module flags to kompile, by default, if you
+type kompile foo.k, then the main semantics module will be FOO and the
+main syntax module will be FOO-SYNTAX.

+

Splitting a definition into multiple files

+ +

So far, while we have discussed ways to break definitions into separate
+conceptual components (modules), K also provides a mechanism for combining
+multiple files into a single K definition, namely, the requires directive.

+

In K, the requires keyword has two meanings. The first, the requires
+statement, appears at the top of a K file, prior to any module declarations. It
+consists of the keyword requires followed by a double-quoted string. The
+second meaning of the requires keyword will be covered in a later lesson,
+but it is distinguished because the second case occurs only inside modules.

+

The string passed to the requires statement contains a filename. When you run
+kompile on a file, it will look at all of the requires statements in that
+file, look up those files on disk, parse them, and then recursively process all
+the requires statements in those files. It then combines all the modules in all
+of those files together, and uses them collectively as the set of modules to
+which imports statements can refer.

+

Putting it all together

+ +

Putting it all together, here is one possible way in which we could break the
+definition lesson-02-c.k from Lesson 1.2 into
+multiple files and modules:

+

colors.k:

+
module COLORS
+  syntax Color ::= Yellow()
+                 | Blue()
+endmodule
+

fruits.k:

+
module FRUITS
+  syntax Fruit ::= Banana()
+                 | Blueberry()
+endmodule
+

colorOf.k:

+
requires "fruits.k"
+requires "colors.k"
+
+module COLOROF-SYNTAX
+  imports COLORS
+  imports FRUITS
+
+  syntax Color ::= colorOf(Fruit) [function]
+endmodule
+
+module COLOROF
+  imports COLOROF-SYNTAX
+
+  rule colorOf(Banana()) => Yellow()
+  rule colorOf(Blueberry()) => Blue()
+endmodule
+

You would then compile this definition with kompile colorOf.k and use it the
+same way as the original, single-module definition.

+

Exercise

+ +

Modify the name of the COLOROF module, and then recompile the definition.
+Try to understand why you now get a compiler error. Then, resolve this compiler
+error by passing the --main-module and --syntax-module flags to kompile.

+

Include path

+ +

One note can be made about how paths are resolved in requires statements.

+

By default, the path you specify is allowed to be an absolute or a relative
+path. If the path is absolute, that exact file is imported. If the path is
+relative, a matching file is looked for within all of the
+include directories specified to the compiler. By default, the include
+directories include the current working directory, followed by the
+include/kframework/builtin directory within your installation of K. You can
+also pass one or more directories to kompile via the -I command line flag,
+in which case these directories are prepended to the beginning of the list.

+

Exercises

+ +
    +
  1. +

    Take the solution to Lesson 1.4, Exercise 2 which included the explicit
    +priority and associativity declarations, and modify the definition so that
    +the syntax of integers and brackets is in one module, the syntax of addition,
    +subtraction, and unary negation is in another module, and the syntax of
    +multiplication and division is in a third module. Make sure you can still parse
    +the same set of expressions as before. Place priority declarations in the main
    +module.

    +
  2. +
  3. +

    Modify lesson-02-d.k from Lesson 1.2 so that the rules and syntax are in
    +separate modules in separate files.

    +
  4. +
  5. +

    Place the file containing the syntax from Exercise 2 in another directory,
    +then recompile the definition. Observe why a compilation error occurs. Then
    +fix the compiler error by passing -I to kompile.

    +
  6. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.6: Integers and Booleans.

+

Lesson 1.6: Integers and Booleans

+ +

The purpose of this lesson is to explain the two most basic types of builtin
+sorts in K, the Int sort and the Bool sort, representing
+arbitrary-precision integers and Boolean algebra.

+

Builtin sorts in K

+ +

K provides definitions of some useful sorts in
+domains.md, found in the
+include/kframework/builtin directory of the K installation. This file is
+defined via a
+Literate programming
+style that we will discuss in a future lesson. We will not cover all of the
+sorts found there immediately, however, this lesson discusses some of the
+details surrounding integers and Booleans, as well as providing information
+about how to look up more detailed knowledge about builtin functions in K's
+documentation.

+

Booleans in K

+ +

The most basic builtin sort K provides is the Bool sort, representing
+Boolean values (i.e., true and false). You have already seen how we were
+able to create this type ourselves using K's parsing and disambiguation
+features. However, in the vast majority of cases, we prefer instead to import
+the version of Boolean algebra defined by K itself. Most simply, you can do
+this by importing the module BOOL in your definition. For example
+(lesson-06-a.k):

+
module LESSON-06-A
+  imports BOOL
+
+  syntax Fruit ::= Blueberry() | Banana()
+  syntax Bool ::= isBlue(Fruit) [function]
+
+  rule isBlue(Blueberry()) => true
+  rule isBlue(Banana()) => false
+endmodule
+

Here we have defined a simple predicate, i.e., a function returning a
+Boolean value. We are now able to perform the usual Boolean operations of
+and, or, and not over these values. For example (lesson-06-b.k):"

+
module LESSON-06-B
+  imports BOOL
+
+  syntax Fruit ::= Blueberry() | Banana()
+  syntax Bool ::= isBlue(Fruit) [function]
+
+  rule isBlue(Blueberry()) => true
+  rule isBlue(Banana()) => false
+
+  syntax Bool ::= isYellow(Fruit) [function]
+                | isBlueOrYellow(Fruit) [function]
+
+  rule isYellow(Banana()) => true
+  rule isYellow(Blueberry()) => false
+
+  rule isBlueOrYellow(F) => isBlue(F) orBool isYellow(F)
+endmodule
+

In the above example, Boolean inclusive or is performed via the orBool
+function, which is defined in the BOOL module. As a matter of convention,
+many functions over builtin sorts in K are suffixed with the name of the
+primary sort over which those functions are defined. This happens so that the
+syntax of K does not (generally) conflict with the syntax of any other
+programming language, which would make it harder to define that programming
+language in K.

+

Exercise

+ +

Write a function isBlueAndNotYellow which computes the appropriate Boolean
+expression. If you are unsure what the appropriate syntax is to use, you
+can refer to the BOOL module in
+domains.md. Add a term of
+sort Fruit for which isBlue and isYellow both return true, and test that
+the isBlueAndNotYellow function behaves as expected on all three Fruits.

+

Syntax Modules

+ +

For most sorts in domains.md, K defines more than one module that can be
+imported by users. For example, for the Bool sort, K defines the BOOL
+module that has previously already been discussed, but also provides the
+BOOL-SYNTAX module. This module, unlike the BOOL module, only declares the
+values true and false, but not any of the functions that operate over the
+Bool sort. The rationale is that you may want to import this module into the
+main syntax module of your definition in some cases, whereas you generally do
+not want to do this with the version of the module that includes all the
+functions over the Bool sort. For example, if you were defining the semantics
+of C++, you might import BOOL-SYNTAX into the syntax module of your
+definition, because true and false are part of the grammar of C++, but
+you would only import the BOOL module into the main semantics module, because
+C++ defines its own syntax for and, or, and not that is different from the
+syntax defined in the BOOL module.

+

Here, for example, is how we might redefine our Boolean expression calculator
+to use the Bool sort while maintaining an idiomatic structure of modules
+and imports, for the first time including the rules to calculate the values of
+expressions themselves (lesson-06-c.k):

+
module LESSON-06-C-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Bool ::= "(" Bool ")" [bracket]
+                > "!" Bool [function]
+                > left:
+                  Bool "&&" Bool [function]
+                | Bool "^" Bool [function]
+                | Bool "||" Bool [function]
+endmodule
+
+module LESSON-06-C
+  imports LESSON-06-C-SYNTAX
+  imports BOOL
+
+  rule ! B => notBool B
+  rule A && B => A andBool B
+  rule A ^ B => A xorBool B
+  rule A || B => A orBool B
+endmodule
+

Note the encapsulation of syntax: the LESSON-06-C-SYNTAX module contains
+exactly the syntax of our Boolean expressions, and no more, whereas any other
+syntax needed to implement those functions is in the LESSON-06-C module
+instead.

+

Exercise

+ +

Add an "implies" function to the above Boolean expression calculator, using the
+-> symbol to represent implication. You can look up K's builtin "implies"
+function in the BOOL module in domains.md.

+

Integers in K

+ +

Unlike most programming languages, where the most basic integer type is a
+fixed-precision integer type, the most commonly used integer sort in K is
+the Int sort, which represents the mathematical integers, ie,
+arbitrary-precision integers.

+

K provides three main modules for import when using the Int sort. The first,
+containing all the syntax of integers as well as all of the functions over
+integers, is the INT module. The second, which provides just the syntax
+of integer literals themselves, is the INT-SYNTAX module. However, unlike
+most builtin sorts in K, K also provides a third module for the Int sort:
+the UNSIGNED-INT-SYNTAX module. This module provides only the syntax of
+non-negative integers, i.e., natural numbers. The reasons for this involve
+lexical ambiguity. Generally speaking, in most programming languages, -1 is
+not a literal, but instead a literal to which the unary negation operator is
+applied. K thus provides this module to ease in specifying the syntax of such
+languages.

+

For detailed information about the functions available over the Int sort,
+refer to domains.md. Note again how we append Int to the end of most of the
+integer operations to ensure they do not collide with the syntax of other
+programming languages.

+

Exercises

+ +
    +
  1. +

    Extend your solution from Lesson 1.4, Exercise 2 to implement the rules
    +that define the behavior of addition, subtraction, multiplication, and
    +division. Do not worry about the case when the user tries to divide by zero
    +at this time. Use /Int to implement division. Test your new calculator
    +implementation by executing the arithmetic expressions you wrote as part of
    +Lesson 1.3, Exercise 2. Check to make sure each computes the value you expected.

    +
  2. +
  3. +

    Combine the Boolean expression calculator from this lesson with your
    +solution to Exercise 1, and then extend the combined calculator with the <,
    +<=, >, >=, ==, and != expressions. Write some Boolean expressions
    +that combine integer and Boolean operations, and test to ensure that these
    +expressions return the expected truth value.

    +
  4. +
  5. +

    Compute the following expressions using your solution from Exercise 2:
    +7 / 3, 7 / -3, -7 / 3, -7 / -3. Then replace the /Int function in
    +your definition with divInt instead, and observe how the value of the above
    +expressions changes. Why does this occur?

    +
  6. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.7: Side Conditions and Rule Priority.

+

Lesson 1.7: Side Conditions and Rule Priority

+ +

The purpose of this lesson is to explain how to write conditional rules in K,
+and to explain how to control the order in which rules are tried.

+

Side Conditions

+ +

So far, all of the rules we have discussed have been unconditional rules.
+If the left-hand side of the rule matches the arguments to the function, the
+rule applies. However, there is another type of rule, a conditional rule.
+A conditional rule consists of a rule body containing the patterns to
+match, and a side condition representing a Boolean expression that must
+evaluate to true in order for the rule to apply.

+

Side conditions in K are introduced via the requires keyword immediately
+following the rule body. For example, here is a rule with a side condition
+(lesson-07-a.k):

+
module LESSON-07-A
+  imports BOOL
+  imports INT
+
+  syntax Grade ::= "letter-A"
+                 | "letter-B"
+                 | "letter-C"
+                 | "letter-D"
+                 | "letter-F"
+                 | gradeFromPercentile(Int) [function]
+
+  rule gradeFromPercentile(I) => letter-A requires I >=Int 90
+endmodule
+

In this case, the gradeFromPercentile function takes a single integer
+argument. The function evaluates to letter-A if the argument passed is
+greater than 90. Note that the side condition is allowed to refer to variables
+that appear on the left-hand side of the rule. In the same manner as variables
+appearing on the right-hand side, variables that appear in the side condition
+evaluate to the value that was matched on the left-hand side. Then the
+functions in the side condition are evaluated, which returns a term of sort
+Bool. If the term is equal to true, then the rule applies. Bear in mind
+that the side condition is only evaluated at all if the patterns on the
+left-hand side of the rule match the term being evaluated.

+

Exercise

+ +

Write a rule that evaluates gradeFromPercentile to letter-B if the argument
+to the function is in the range [80,90). Test that the function correctly
+evaluates various numbers between 80 and 100.

+

owise Rules

+ +

So far, all the rules we have introduced have had the same priority. What
+this means is that K does not necessarily enforce an order in which the rules
+are tried. We have only discussed functions so far in K, so it is not
+immediately clear why this choice was made, given that a function is not
+considered well-defined if multiple rules for evaluating it are capable of
+evaluating the same arguments to different results. However, in future lessons
+we will discuss other types of rules in K, some of which can be
+non-deterministic. What this means is that if more than one rule is capable
+of matching, then K will explore both possible rules in parallel, and consider
+each of their respective results when executing your program. Don't worry too
+much about this right now, but just understand that because of the potential
+later for nondeterminism, we don't enforce a total ordering on the order in
+which rules are attempted to be applied.

+

However, sometimes this is not practical; It can be very convenient to express
+that a particular rule applies if no other rules for that function are
+applicable. This can be expressed by adding the owise attribute to a rule.
+What this means, in practice, is that this rule has lower priority than other
+rules, and will only be tried to be applied after all the other,
+higher-priority rules have been tried and they have failed.

+

For example, in the above exercise, we had to add a side condition containing
+two Boolean comparisons to the rule we wrote to handle letter-B grades.
+However, in practice this meant that we compare the percentile to 90 twice. We
+can more efficiently and more idiomatically write the letter-B case for the
+gradeFromPercentile rule using the owise attribute (lesson-07-b.k):

+
module LESSON-07-B
+  imports BOOL
+  imports INT
+
+  syntax Grade ::= "letter-A"
+                 | "letter-B"
+                 | "letter-C"
+                 | "letter-D"
+                 | "letter-F"
+                 | gradeFromPercentile(Int) [function]
+
+  rule gradeFromPercentile(I) => letter-A requires I >=Int 90
+  rule gradeFromPercentile(I) => letter-B requires I >=Int 80 [owise]
+endmodule
+

This rule is saying, "if all the other rules do not apply, then the grade is a
+B if the percentile is greater than or equal to 80." Note here that we use both
+a side condition and an owise attribute on the same rule. This is not
+required (as we will see later), but it is allowed. What this means is that the
+side condition is only tried if the other rules did not apply and the
+left-hand side of the rule matched. You can even use more complex matching on
+the left-hand side than simply a variable. More generally, you can also have
+multiple higher-priority rules, or multiple owise rules. What this means in
+practice is that all of the non-owise rules are tried first, in any order,
+followed by all the owise rules, in any order.

+

Exercise

+ +

The grades D and F correspond to the percentile ranges [60, 70) and [0, 60)
+respectively. Write another implementation of gradeFromPercentile which
+handles only these cases, and uses the owise attribute to avoid redundant
+Boolean comparisons. Test that various percentiles in the range [0, 70) are
+evaluated correctly.

+

Rule Priority

+ +

As it happens, the owise attribute is a specific case of a more general
+concept we call rule priority. In essence, each rule is assigned an integer
+priority. Rules are tried in increasing order of priority, starting with a
+rule with priority zero, and trying each increasing numerical value
+successively.

+

By default, a rule is assigned a priority of 50. If the rule has the owise
+attribute, it is instead given the priority 200. You can see why this will
+cause owise rules to be tried after regular rules.

+

However, it is also possible to directly assign a numerical priority to a rule
+via the priority attribute. For example, here is an alternative way
+we could express the same two rules in the gradeFromPercentile function
+(lesson-07-c.k):

+
module LESSON-07-C
+  imports BOOL
+  imports INT
+
+  syntax Grade ::= "letter-A"
+                 | "letter-B"
+                 | "letter-C"
+                 | "letter-D"
+                 | "letter-F"
+                 | gradeFromPercentile(Int) [function]
+
+  rule gradeFromPercentile(I) => letter-A requires I >=Int 90 [priority(50)]
+  rule gradeFromPercentile(I) => letter-B requires I >=Int 80 [priority(200)]
+endmodule
+

We can, of course, assign a priority equal to any non-negative integer. For
+example, here is a more complex example that handles the remaining grades
+(lesson-07-d.k):

+
module LESSON-07-D
+  imports BOOL
+  imports INT
+
+  syntax Grade ::= "letter-A"
+                 | "letter-B"
+                 | "letter-C"
+                 | "letter-D"
+                 | "letter-F"
+                 | gradeFromPercentile(Int) [function]
+
+  rule gradeFromPercentile(I) => letter-A requires I >=Int 90 [priority(50)]
+  rule gradeFromPercentile(I) => letter-B requires I >=Int 80 [priority(51)]
+  rule gradeFromPercentile(I) => letter-C requires I >=Int 70 [priority(52)]
+  rule gradeFromPercentile(I) => letter-D requires I >=Int 60 [priority(53)]
+  rule gradeFromPercentile(_) => letter-F                     [priority(54)]
+endmodule
+

Note that we have introduced a new piece of syntax here: _. This is actually
+just a variable. However, as a special case, when a variable is named _, it
+does not bind a value that can be used on the right-hand side of the rule, or
+in a side condition. Effectively, _ is a placeholder variable that means "I
+don't care about this term."

+

In this example, we have explicitly expressed the order in which the rules of
+this function are tried. Since rules are tried in increasing numerical
+priority, we first try the rule with priority 50, then 51, then 52, 53, and
+finally 54.

+

As a final note, remember that if you assign a rule a priority higher than 200,
+it will be tried after a rule with the owise attribute, and if you assign
+a rule a priority less than 50, it will be tried before a rule with no
+explicit priority.

+

Exercises

+ +
    +
  1. +

    Write a function isEven that returns whether an integer is an even number.
    +Use two rules and one side condition. The right-hand side of the rules should
    +be Boolean literals. Refer back to
    +domains.md for the relevant
    +integer operations.

    +
  2. +
  3. +

    Modify the calculator application from Lesson 1.6, Exercise 2, so that division
    +by zero will no longer make krun crash with a "Divison by zero" exception.
    +Instead, the / function should not match any of its rules if the denominator
    +is zero.

    +
  4. +
  5. +

    Write your own implementation of ==, <, <=, >, >= for integers and modify your solution from Exercise 2 to use it.
    +You can use any arithmetic operations in the INT module, but do not use any built-in boolean functions for comparing integers.

    +

    Hint: Use pattern matching and recursive definitions with rule priorities.

    +
  6. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.8: Literate Programming with Markdown.

+

Lesson 1.8: Literate Programming with Markdown

+ +

The purpose of this lesson is to teach a paradigm for performing literate
+programming in K, and explain how this can be used to create K definitions
+that are also documentation.

+

Markdown and K

+ +

The K tutorial so far has been written in
+Markdown. Markdown,
+for those not already familiar, is a lightweight plain-text format for styling
+text. From this point onward, we assume you are familiar with Markdown and how
+to write Markdown code. You can refer to the above link for a tutorial if you
+are not already familiar.

+

What you may not necessarily realize, however, is that the K tutorial is also
+a sequence of K definitions written in the manner of
+Literate Programming.
+For detailed information about Literate Programming, you can read the linked
+Wikipedia article, but the short summary is that literate programming is a way
+of intertwining documentation and code together in a manner that allows
+executable code to also be, simultaneously, a documented description of that
+code.

+

K is provided with built-in support for literate programming using Markdown.
+By default, if you pass a file with the .md file extension to kompile, it
+will look for any code blocks containing k code in that file, extract out
+that K code into pure K, and then compile it as if it were a .k file.

+

A K code block begins with a line of text containing the keyword ```k,
+and ends when it encounters another ``` keyword.

+

For example, if you view the markdown source of this document, this is a K
+code block:

+
module LESSON-08
+  imports INT
+

Only the code inside K code blocks will actually be sent to the compiler. The
+rest, while it may appear in the document when rendered by a markdown viewer,
+is essentially a form of code comment.

+

When you have multiple K code blocks in a document, K will append each one
+together into a single file before passing it off to the outer parser.

+

For example, the following code block contains sentences that are part of the
+LESSON-08 module that we declared the beginning of above:

+
  syntax Int ::= Int "+" Int [function]
+  rule I1 + I2 => I1 +Int I2
+

Exercise

+ +

Compile this file with kompile README.md --main-module LESSON-08. Confirm
+that you can use the resulting compiled definition to evaluate the +
+function.

+

Markdown Selectors

+ +

On occasion, you may want to generate multiple K definitions from a single
+Markdown file. You may also wish to include a block of syntax-highlighted K
+code that nonetheless does not appear as part of your K definition. It is
+possible to accomplish this by means of the built-in support for syntax
+highlighting in Markdown. Markdown allows a code block that was begun with
+``` to be immediately followed by a string which is used to signify what
+programming language the following code is written in. However, this feature
+actually allows arbitrary text to appear describing that code block. Markdown
+parsers are able to parse this text and render the code block differently
+depending on what text appears after the backticks.

+

In K, you can use this functionality to specify one or more
+Markdown selectors which are used to describe the code block. A Markdown
+selector consists of a sequence of characters containing letters, numbers, and
+underscores. A code block can be designated with a single selector by appending
+the selector immediately following the backticks that open the code block.

+

For example, here is a code block with the foo selector:

+
foo bar
+

Note that this is not K code. By convention, K code should have the k
+selector on it. You can express multiple selectors on a code block by putting
+them between curly braces and prepending each with the . character. For
+example, here is a code block with the foo and k selectors:

+
  syntax Int ::= foo(Int) [function]
+  rule foo(0) => 0
+

Because this code block contains the k Markdown selector, by default it is
+included as part of the K definition being compiled.

+

Exercise

+ +

Confirm this fact by using krun to evaluate foo(0).

+

Markdown Selector Expressions

+ +

By default, as previously stated, K includes in the definition any code block
+with the k selector. However, this is merely a specific instance of a general
+principle, namely, that K allows you to control which selectors get included
+in your K definition. This is done by means of the --md-selector flag to
+kompile. This flag accepts a Markdown selector expression, which you
+can essentially think of as a kind of Boolean algebra over Markdown selectors.
+Each selector becomes an atom, and you can combine these atoms via the &,
+|, !, and () operators.

+

Here is a grammar, written in K, of the language of Markdown selector
+expressions:

+
  syntax Selector ::= r"[0-9a-zA-Z_]+" [token]
+  syntax SelectorExp ::= Selector
+                       | "(" SelectorExp ")" [bracket]
+                       > right:
+                         "!" SelectorExp
+                       > right:
+                         SelectorExp "&" SelectorExp
+                       > right:
+                         SelectorExp "|" SelectorExp
+

Here is a selector expression that selects all the K code blocks in this
+definition except the one immediately above:

+
k & (! selector)
+

Addendum

+ +

This code block exists in order to make the above lesson a syntactically valid
+K definition. Consider why it is necessary.

+
endmodule
+

Exercises

+ +
    +
  1. +

    Compile this lesson with the selector expression k & (! foo) and confirm
    +that you get a parser error if you try to evaluate the foo function with the
    +resulting definition.

    +
  2. +
  3. +

    Compile Lesson 1.3
    +as a K definition. Identify why it fails to compile. Then pass an appropriate
    +--md-selector to the compiler in order to make it compile.

    +
  4. +
  5. +

    Modify your calculator application from Lesson 1.7, Exercise 2, to be written
    +in a literate style. Consider what text might be appropriate to turn the
    +resulting markdown file into documentation for your calculator.

    +
  6. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.9: Unparsing and the format and color attributes.

+

Lesson 1.9: Unparsing and the format and color attributes

+ +

The purpose of this lesson is to teach the user about how terms are
+pretty-printed in K, and how the user can make adjustments to the default
+settings for how to print specific terms.

+

Parsing, Execution, and Unparsing

+ +

When you use krun to interpret a program, the tool passes through three major
+phases. In the first, parsing, the program itself is parsed using either kast
+or an ahead-of-time parser generated via Bison, and the resulting AST becomes
+the input to the interpreter. In the second phase, execution, K evaluates
+functions and (as we will discuss in depth later) performs rewrite steps to
+iteratively transform the program state. The third and final phase is called
+unparsing, because it consists of taking the final state of the application
+after the program has been interpreted, and converting it from an AST back into
+text that (in theory, anyway) could be parsed back into the same AST that was
+the output of the execution phase.

+

In practice, parsing is not always precisely reversible. It turns out
+(although we are not going to cover exactly why this is here), that
+constructing a sound algorithm that takes a grammar and an AST and emits text
+that could be parsed via that grammar to the original AST is an
+NP-hard problem. As a result, in the interests of avoiding exponential time
+algorithms when users rarely care about unparsing being completely sound, we
+take certain shortcuts that provide a linear-time algorithm that approximates
+a sound solution to the problem while sacrificing the notion that the result
+can be parsed into the exact original term in all cases.

+

This is a lot of theoretical explanation, but at root, the unparsing process
+is fairly simple: it takes a K term that is the output of execution and pretty
+prints it according to the syntax defined by the user in their K definition.
+This is useful because the original AST is not terribly user-readable, and it
+is difficult to visualize the entire term or decipher information about the
+final state of the program at a quick glance. Of course, in rare cases, the
+pretty-printed configuration loses information of relevance, which is why K
+allows you to obtain the original AST on request.

+

As an example of all of this, consider the following K definition
+(lesson-09-a.k):

+
module LESSON-09-A
+  imports BOOL
+
+  syntax Exp ::= "(" Exp ")" [bracket]
+               | Bool
+               > "!" Exp
+               > left:
+                 Exp "&&" Exp
+               | Exp "^" Exp
+               | Exp "||" Exp
+
+  syntax Exp ::= id(Exp) [function]
+  rule id(E) => E
+endmodule
+

This is similar to the grammar we defined in LESSON-06-C, with the difference
+that the Boolean expressions are now constructors of sort Exp and we define a
+trivial function over expressions that returns its argument unchanged.

+

We can now parse a simple program in this definition and use it to unparse some
+Boolean expressions. For example (exp.bool):

+
id(true&&false&&!true^(false||true))
+

Here is a program that is not particularly legible at first glance, because all
+extraneous whitespace has been removed. However, if we run krun exp.bool, we
+see that the result of the unparser will pretty-print this expression rather
+nicely:

+
<k>
+  true && false && ! true ^ ( false || true ) ~> .
+</k>
+

Notably, not only does K insert whitespace where appropriate, it is also smart
+enough to insert parentheses where necessary in order to ensure the correct
+parse. For example, without those parentheses, the expression above would parse
+equivalent to the following one:

+
(((true && false) && ! true) ^ false) || true
+

Indeed, you can confirm this by passing that exact expression to the id
+function and evaluating it, then looking at the result of the unparser:

+
<k>
+  true && false && ! true ^ false || true ~> .
+</k>
+

Here, because the meaning of the AST is the same both with and without
+parentheses, K does not insert any parentheses when unparsing.

+

Exercise

+ +

Modify the grammar of LESSON-09-A above so that the binary operators are
+right associative. Try unparsing exp.bool again, and note how the result is
+different. Explain the reason for the difference.

+

Custom unparsing of terms

+ +

You may have noticed that right now, the unparsing of terms is not terribly
+imaginative. All it is doing is taking each child of the term, inserting it
+into the non-terminal positions of the production, then printing the production
+with a space between each terminal or non-terminal. It is easy to see why this
+might not be desirable in some cases. Consider the following K definition
+(lesson-09-b.k):

+
module LESSON-09-B
+  imports BOOL
+
+  syntax Stmt ::= "{" Stmt "}" | "{" "}"
+                > right:
+                  Stmt Stmt
+                | "if" "(" Bool ")" Stmt
+                | "if" "(" Bool ")" Stmt "else" Stmt [avoid]
+endmodule
+

This is a statement grammar, simplified to the point of meaninglessness, but
+still useful as an object lesson in unparsing. Consider the following program
+in this grammar (if.stmt):

+
if (true) {
+  if (true) {}
+  if (false) {}
+  if (true) {
+    if (false) {} else {}
+  } else {
+    if (false) {}
+  }
+}
+

This is how that term would be unparsed if it appeared in the output of krun:

+
if ( true ) { if ( true ) { } if ( false ) { } if ( true ) { if ( false ) { } else { } } else { if ( false ) { } } }
+

This is clearly much less legible than we started with! What are we to do?
+Well, K provides an attribute, format, that can be applied to any production,
+which controls how that production gets unparsed. You've seen how it gets
+unparsed by default, but via this attribute, the developer has complete control
+over how the term is printed. Of course, the user can trivially create ways to
+print terms that would not parse back into the same term. Sometimes this is
+even desirable. But in most cases, what you are interested in is controlling
+the line breaking, indentation, and spacing of the production.

+

Here is an example of how you might choose to apply the format attribute
+to improve how the above term is unparsed (lesson-09-c.k):

+
module LESSON-09-C
+  imports BOOL
+
+  syntax Stmt ::= "{" Stmt "}" [format(%1%i%n%2%d%n%3)] | "{" "}" [format(%1%2)]
+                > right:
+                  Stmt Stmt [format(%1%n%2)]
+                | "if" "(" Bool ")" Stmt [format(%1 %2%3%4 %5)]
+                | "if" "(" Bool ")" Stmt "else" Stmt [avoid, format(%1 %2%3%4 %5 %6 %7)]
+endmodule
+

If we compile this new definition and unparse the same term, this is the
+result we get:

+
if (true) {
+  if (true) {}
+  if (false) {}
+  if (true) {
+    if (false) {} else {}
+  } else {
+    if (false) {}
+  }
+}
+

This is the exact same text we started with! By adding the format attributes,
+we were able to indent the body of code blocks, adjust the spacing of if
+statements, and put each statement on a new line.

+

How exactly was this achieved? Well, each time the unparser reaches a term,
+it looks at the format attribute of that term. That format attribute is a
+mix of characters and format codes. Format codes begin with the %
+character. Each character in the format attribute other than a format code is
+appended verbatim to the output, and each format code is handled according to
+its meaning, transformed (possibly recursively) into a string of text, and
+spliced into the output at the position the format code appears in the format
+string.

+

Provided for reference is a table with a complete list of all valid format
+codes, followed by their meaning:

+ + + + + + + + + +
Format Code Meaning
n Insert '\n' followed by the current indentation + level
i Increase the current indentation level by 1
d Decrease the current indentation level by 1
c Move to the next color in the list of colors for + this production (see next section)
r Reset color to the default foreground color for + the terminal (see next section)
an integer Print a terminal or non-terminal from the + production. The integer is treated as a 1-based + index into the terminals and non-terminals of + the production. +
+
If the offset refers to a terminal, move to the + next color in the list of colors for this + production, print the value of that terminal, + then reset the color to the default foreground + color for the terminal. +
+
If the offset refers to a regular expression + terminal, it is an error. +
+
If the offset refers to a non-terminal, unparse + the corresponding child of the current term + (starting with the current indentation level) + and print the resulting text, then set the + current color and indentation level to the color + and indentation level following unparsing that + term.
other char Print that character verbatim
+

Exercise

+ +

Change the format attributes for LESSON-09-C so that if.stmt will unparse
+as follows:

+
if (true)
+{
+  if (true)
+  {
+  }
+  if (false)
+  {
+  }
+  if (true)
+  {
+    if (false)
+    {
+    }
+    else
+    {
+    }
+  }
+  else
+  {
+    if (false)
+    {
+    }
+  }
+}
+

Output coloring

+ +

When the output of unparsing is displayed on a terminal supporting colors, K
+is capable of coloring the output, similar to what is possible with a syntax
+highlighter. This is achieved via the color and colors attributes.

+

Essentially, both the color and colors attributes are used to construct a
+list of colors associated with each production, and then the format attribute
+is used to control how those colors are used to unparse the term. At its most
+basic level, you can set the color attribute to color all the terminals in
+the production a certain color, or you can use the colors attribute to
+specify a comma-separated list of colors for each terminal in the production.
+At a more advanced level, the %c and %r format codes control how the
+formatter interacts with the list of colors specified by the colors
+attribute. You can essentially think of the color attribute as a way of
+specifying that you want all the colors in the list to be the same color.

+

Note that the %c and %r format codes are relatively primitive in nature.
+The color and colors attributes merely maintain a list of colors, whereas
+the %c and %r format codes merely control how to advance through that list
+and how individual text is colored.

+

It is an error if the colors attribute does not provide all the colors needed
+by the terminals and escape codes in the production. %r does not change the
+position in the list of colors at all, so the next %c will advance to the
+following color.

+

As a complete example, here is a variant of LESSON-09-A which colors the
+various boolean operators:

+
module LESSON-09-D
+  imports BOOL
+
+  syntax Exp ::= "(" Exp ")" [bracket]
+               | Bool
+               > "!" Exp [color(yellow)]
+               > left:
+                 Exp "&&" Exp [color(red)]
+               | Exp "^" Exp [color(blue)]
+               | Exp "||" Exp [color(green)]
+
+  syntax Exp ::= id(Exp) [function]
+  rule id(E) => E
+endmodule
+

For a complete list of allowed colors, see
+here.

+

Exercises

+ +
    +
  1. +

    Use the color attribute on LESSON-09-C to color the keywords true and
    +false one color, the keywords if and else another color, and the operators
    +(, ), {, and } a third color.

    +
  2. +
  3. +

    Use the format, color, and colors attributes to tell the unparser to
    +style the expression grammar from Lesson 1.8, Exercise 3 according to your own
    +personal preferences for syntax highlighting and code formatting. You can
    +view the result of the unparser on a function term without evaluating that
    +function by means of the command kparse <file> | kore-print -.

    +
  4. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.10: Strings.

+

Lesson 1.10: Strings

+ +

The purpose of this lesson is to explain how to use the String sort in K to
+represent sequences of characters, and explain where to find additional
+information about builtin functions over strings.

+

The String Sort

+ +

In addition to the Int and Bool sorts covered in
+Lesson 1.6, K provides, among others, the
+String sort to represent sequences of characters. You can import this
+functionality via the STRING-SYNTAX module, which contains the syntax of
+string literals in K, and the STRING module, which contains all the functions
+that operate over the String type.

+

Strings in K are double-quoted. The following list of escape sequences is
+supported:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Escape SequenceMeaning
\"The literal character "
\\The literal character \
\nThe newline character (ASCII code 0x0a)
\rThe carriage return character (ASCII code 0x0d)
\tThe tab character (ASCII code 0x09)
\fThe form feed character (ASCII code 0x0c)
\x00\x followed by 2 hexadecimal digits indicates a code point between 0x00 and 0xFF
\u0000\u followed by 4 hexadecimal digits indicates a code point between 0x0000 and 0xFFFF
\U00000000\U followed by 8 hexadecimal digits indicates a code point between 0x000000 and 0x10FFFF
+

Please note that as of the current moment, K's unicode support is not fully
+complete, so you may run into errors using code points greater than 0xff.

+

As an example, you can construct a string literal containing the following
+block of text:

+
This is an example block of text.
+Here is a quotation: "Hello world."
+	This line is indented.
+ÁÉÍÓÚ
+

Like so:

+
"This is an example block of text.\nHere is a quotation: \"Hello world.\"\n\tThis line is indented.\n\xc1\xc9\xcd\xd3\xda\n"
+

Basic String Functions

+ +

The full list of functions provided for the String sort can be found in
+domains.md, but here we
+describe a few of the more basic ones.

+

String concatenation

+ +

The concatenation operator for strings is +String. For example, consider
+the following K rule that constructs a string from component parts
+(lesson-10.k):

+
module LESSON-10
+  imports STRING
+
+  syntax String ::= msg(String) [function]
+  rule msg(S) => "The string you provided: " +String S +String "\nHave a nice day!"
+endmodule
+

Note that this operator is O(N), so repeated concatenations are inefficient.
+For information about efficient string concatenation, refer to
+Lesson 2.14.

+

String length

+ +

The function to return the length of a string is lengthString. For example,
+lengthString("foo") will return 3, and lengthString("") will return 0.
+The return value is the length of the string in code points.

+

Substring computation

+ +

The function to compute the substring of a string is substrString. It
+takes two string indices, starting from 0, and returns the substring within the
+range [start..end). It is only defined if end >= start, start >= 0, and
+end <= length of string. Here, for example, we return the first 5 characters
+of a string:

+
substrString(S, 0, 5)
+

Here we return all but the first 3 characters:

+
substrString(S, 3, lengthString(S))
+

Exercises

+ +
    +
  1. Write a function that takes a paragraph of text (i.e., a sequence of
    +sentences, each ending in a period), and constructs a new (nonsense) sentence
    +composed of the first word of each sentence, followed by a period. Do not
    +worry about capitalization or periods within the sentence which do not end the
    +sentence (e.g. "Dr."). You can assume that all whitespace within the paragraph
    +are spaces. For more information about the functions over strings required to
    +implement such a function, refer to domains.md.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.11: Casting Terms.

+

Lesson 1.11: Casting Terms

+ +

The purpose of this lesson is to explain how to use cast expressions in
+order to disambiguate terms using sort information. We also explain how the
+variable sort inference algorithm works in K, and how to change the default
+behavior by casting variables to a particular sort.

+

Casting in K

+ +

Sometimes the grammar you write for your rules in K can be a little bit
+ambiguous on purpose. While grammars for programming languages may be
+unambiguous when considered in their entirety, K allows you to write rules
+involving arbitrary fragments of that grammar, and those fragments can
+sometimes be ambiguous by themselves, or similar enough to other fragments
+of the grammar to trigger ambiguity. As a result, in addition to the tools
+covered in Lesson 1.4, K provides one
+additional powerful tool for disambiguation: cast expressions.

+

K provides three main types of casts: the semantic cast, the strict cast, and
+the projection cast. We will cover each of them, and their similarities and
+differences, in turn.

+

Semantic casts

+ +

The most basic, and most common, type of cast in K is called the
+semantic cast. For every sort S declared in a module, K provides the
+following (implicit) production for use in sentences:

+
  syntax S ::= S ":S"
+

Note that S simply represents the name of the sort. For example, if we
+defined a sort Exp, the actual production for that sort would be:

+
  syntax Exp ::= Exp ":Exp"
+

At runtime, this expression will not actually exist; it is merely an annotation
+to the compiler describing the sort of the term inside the cast. It is telling
+the compiler that the term inside the cast must be of sort Exp. For example,
+if we had the following grammar:

+
module LESSON-11-A
+  imports INT
+
+  syntax Exp ::= Int | Exp "+" Exp
+  syntax Stmt ::= "if" "(" Exp ")" Stmt | "{" "}"
+endmodule
+

Then we would be able to write 1:Exp, or (1 + 2):Exp, but not {}:Exp.

+

You can also restrict the sort that a variable in a rule will match by casting
+it. For example, consider the following additional module:

+
module LESSON-11-B
+  imports LESSON-11-A
+  imports BOOL
+
+  syntax Term ::= Exp | Stmt
+  syntax Bool ::= isExpression(Term) [function]
+
+  rule isExpression(_E:Exp) => true
+  rule isExpression(_) => false [owise]
+endmodule
+

Here we have defined a very simple function that decides whether a term is
+an expression or a statement. It does this by casting the variable inside the
+isExpression rule to sort Exp. As a result, that variable will only match terms
+of sort Exp. Thus, isExpression(1) will return true, as will isExpression(1 + 2), but
+isExpression({}) will return false.

+

Exercise

+ +

Verify this fact for yourself by running isExpression on the above examples. Then
+write an isStatement function, and test that it works as expected.

+

Strict casts

+ +

On occasion, a semantic cast is not strict enough. It might be that you want
+to, for disambiguation purposes, say exactly what sort a term is. For
+example, consider the following definition:

+
module LESSON-11-C
+  imports INT
+
+  syntax Exp ::= Int
+               | "add[" Exp "," Exp "]"   [group(exp)]
+  syntax Exp2 ::= Exp
+               | "add[" Exp2 "," Exp2 "]" [group(exp2)]
+endmodule
+

This grammar is a little ambiguous and contrived, but it serves to demonstrate
+how a semantic cast might be insufficient to disambiguate a term. If we were
+to write the term add[ I1:Int , I2:Int ]:Exp2, the term would be ambiguous,
+because the cast is not sufficiently strict to determine whether you mean
+to derive the "add" production defined in group exp or the one in group exp2.

+

In this situation, there is a solution: the strict cast. For every sort
+S in your grammar, K also defines the following production:

+
  syntax S ::= S "::S"
+

This may at first glance seem the same as the previous cast. And indeed,
+from the perspective of the grammar and from the perspective of rewriting,
+they are in fact identical. However, the second variant has a unique meaning
+in the type system of K: namely, the term inside the cast cannot be a
+subsort, i.e., a term of another sort S2 such that the production
+syntax S ::= S2 exists.

+

As a result, if we were to write in the above grammar the term
+add[ I1:Int , I2:Int ]::Exp2, then we would know that the second derivation above
+should be chosen, whereas if we want the first derivation, we could write
+add[ I1:Int , I2:Int ]::Exp.

+

Care must be taken when using a strict cast with brackets. For example, consider a
+similar grammar but using an infix "+":

+
module LESSON-11-D
+  imports INT
+
+  syntax Exp ::= Int
+               | Exp "+" Exp   [group(exp)]
+  syntax Exp2 ::= Exp
+               | Exp2 "+" Exp2 [group(exp2)]
+               | "(" Exp2 ")"  [bracket]
+endmodule
+

The term I1:Int + I2:Int is ambiguous and could refer to either the production
+in group exp or the one in group exp2. To differentiate, you might try to write
+(I1:Int + I2:Int)::Exp2 similarly to the previous example.

+

Unfortunately though, this is still ambiguous. Here, the strict cast ::Exp2 applies
+directly to the brackets themselves rather than the underlying term within those brackets.
+As a result, it enforces that (I1:Int + I2:Int) cannot be a strict subsort of Exp2, but
+it has no effect on the sort of the subterm I1:Int + I2:Int.

+

For cases like this, K provides an alternative syntax for strict casts:

+
  syntax S ::= "{" S "}::S"
+

The ambiguity can then be resolved with {I1:Int + I2:Int}::Exp or {I1:Int + I2:Int}::Exp2.

+

Projection casts

+ +

Thus far we have focused entirely on casts which exist solely to inform the
+compiler about the sort of terms. However, sometimes when dealing with grammars
+containing subsorts, it can be desirable to reason with the subsort production
+itself, which injects one sort into another. Remember from above that such
+a production looks like syntax S ::= S2. This type of production, called a
+subsort production, can be thought of as a type of inheritance involving
+constructors. If we have the above production in our grammar, we say that S2
+is a subsort of S, or that any S2 is also an S. K implicitly maintains a
+symbol at runtime which keeps track of where such subsortings occur; this
+symbol is called an injection.

+

Sometimes, when one sort is a subsort of another, it can be the case that
+a function returns one sort, but you actually want to cast the result of
+calling that function to another sort which is a subsort of the first sort.
+This is similar to what happens with inheritance in an object-oriented
+language, where you might cast a superclass to a subclass if you know for
+sure the object at runtime is in fact an instance of that class.

+

K provides something similar for subsorts: the projection cast.

+

For each pair of sorts S and S2, K provides the following production:

+
  syntax S ::= "{" S2 "}" ":>S"
+

What this means is that you take any term of sort S2 and cast it to sort
+S. If the term of sort S2 consists of an injection containing a term of sort
+S, then this will return that term. Otherwise, an error occurs and rewriting
+fails, returning the projection function which failed to apply. The sort is
+not actually checked at compilation time; rather, it is a runtime check
+inserted into the code that runs when the rule applies.

+

For example, here is a module that makes use of projection casts:

+
module LESSON-11-E
+  imports INT
+  imports BOOL
+
+  syntax Exp ::= Int | Bool | Exp "+" Exp | Exp "&&" Exp
+
+  syntax Exp ::= eval(Exp) [function]
+  rule eval(I:Int) => I
+  rule eval(B:Bool) => B
+  rule eval(E1 + E2) => {eval(E1)}:>Int +Int {eval(E2)}:>Int
+  rule eval(E1 && E2) => {eval(E1)}:>Bool andBool {eval(E2)}:>Bool
+endmodule
+

Here we have defined constructors for a simple expression language over
+Booleans and integers, as well as a function eval that evaluates these
+expressions to a value. Because that value could be an integer or a Boolean,
+we need the casts in the last two rules in order to meet the type signature of
++Int and andBool. Of course, the user can write ill-formed expressions like
+1 && true or false + true, but these will cause errors at runtime, because
+the projection cast will fail.

+

Exercises

+ +
    +
  1. +

    Extend the eval function in LESSON-11-E to include Strings and add a .
    +operator which concatenates them.

    +
  2. +
  3. +

    Modify your solution from Lesson 1.9, Exercise 2 by using an Exp sort to
    +express the integer and Boolean expressions that it supports, in the same style
    +as LESSON-11-E. Then write an eval function that evaluates all terms of
    +sort Exp to either a Bool or an Int.

    +
  4. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.12: Syntactic Lists.

+

Lesson 1.12: Syntactic Lists

+ +

The purpose of this lesson is to explain how K provides support for syntactic
+repetition through the use of the List{} and NeList{} constructs,
+generally called syntactic lists.

+

The List{} construct

+ +

Sometimes, when defining a grammar in K, it is useful to define a syntactic
+construct consisting of an arbitrary-length sequence of items. For example,
+you might wish to define a function call construct, and need to express a way
+of passing arguments to the function. You can in theory simply define these
+productions using ordinary constructors, but it can be tricky to get the syntax
+exactly right in K without a lot of tedious glue code.

+

For this reason, K provides a way of specifying that a non-terminal represents
+a syntactic list (lesson-12-a.k):

+
module LESSON-12-A-SYNTAX
+  imports INT-SYNTAX
+
+  syntax Ints ::= List{Int,","}
+endmodule
+
+module LESSON-12-A
+  imports LESSON-12-A-SYNTAX
+endmodule
+

Note that instead of a sequence of terminals and non-terminals, the right hand
+side of the Ints production contains the symbol List followed by two items
+in curly braces. The first item is the non-terminal which is the element type
+of the list, and the second item is a terminal representing the separator of
+the list. As a special case, lists which are separated only by whitespace can
+be specified with a separator of "".

+

This List{} construct is roughly equivalent to the following definition
+(lesson-12-b.k):

+
module LESSON-12-B-SYNTAX
+  imports INT-SYNTAX
+
+  syntax Ints ::= Int "," Ints | ".Ints"
+endmodule
+
+module LESSON-12-B
+  imports LESSON-12-B-SYNTAX
+endmodule
+

As you can see, the List{} construct represents a cons-list with an element
+at the head and another list at the tail. The empty list is represented by
+a . followed by the sort of the list.

+

However, the List{} construct provides several key syntactic conveniences
+over the above definition. First of all, when writing a list in a rule,
+explicitly writing the terminator is not always required. For example, consider
+the following additional module (lesson-12-c.k):

+
module LESSON-12-C
+  imports LESSON-12-A
+  imports INT
+
+  syntax Int ::= sum(Ints) [function]
+  rule sum(I:Int) => I
+  rule sum(I1:Int, I2:Int, Is:Ints) => sum(I1 +Int I2, Is)
+endmodule
+

Here we see a function that sums together a non-empty list of integers. Note in
+particular the first rule. We do not explicitly mention .Ints, but in fact,
+the rule in question is equivalent to the following rule:

+
  rule sum(I:Int, .Ints) => I
+

The reason for this is that K will automatically insert a list terminator
+anywhere a syntactic list is expected, but an element of that list appears
+instead. This works even with lists of more than one element:

+
  rule sum(I1:Int, I2:Int) => I1 +Int I2
+

This rule is redundant, but here we explicitly match a list of exactly two
+elements, because the .Ints is implicitly added after I2.

+

Parsing Syntactic Lists in Programs

+ +

An additional syntactic convenience takes place when you want to express a
+syntactic list in the input to krun. In this case, K will automatically
+transform the grammar in LESSON-12-B-SYNTAX into the following
+(lesson-12-d.k):

+
module LESSON-12-D
+  imports INT-SYNTAX
+
+  syntax Ints ::= #NonEmptyInts | #IntsTerminator
+  syntax #NonEmptyInts ::= Int "," #NonEmptyInts
+                         | Int #IntsTerminator
+  syntax #IntsTerminator ::= ""
+endmodule
+

This allows you to express the usual comma-separated list of arguments where
+an empty list is represented by the empty string, and you don't have to
+explicitly terminate the list. Because of this, we can write the syntax
+of function calls in C very easily (lesson-12-e.k):

+
module LESSON-12-E
+  syntax Id ::= r"[a-zA-Z_][a-zA-Z0-9_]*" [token]
+  syntax Exp ::= Id | Exp "(" Exps ")"
+  syntax Exps ::= List{Exp,","}
+endmodule
+

Exercise

+ +

Write a function concat which takes a list of String and concatenates them
+all together. Do not worry if the function is O(n^2).
+Test your implementation using the syntactic sugar for lists added by the parser.

+

Then write some function call expressions using identifiers in C and verify with
+kast that the above grammar captures the intended syntax. Make sure to test
+with function calls with zero, one, and two or more arguments.

+

The NeList{} construct

+ +

One limitation of the List{} construct is that it is always possible to
+write a list of zero elements where a List{} is expected. While this is
+desirable in a number of cases, it is sometimes not what the grammar expects.

+

For example, in C, it is not allowable for an enum definition to have zero
+members. In other words, if we were to write the grammar for enumerations like
+so (lesson-12-f.k):

+
module LESSON-12-F
+  syntax Id ::= r"[a-zA-Z_][a-zA-Z0-9_]*" [token]
+  syntax Exp ::= Id
+
+  syntax EnumSpecifier ::= "enum" Id "{" Ids "}"
+  syntax Ids ::= List{Id,","}
+endmodule
+

Then we would be syntactically allowed to write enum X {}, which instead,
+ought to be a syntax error.

+

For this reason, we introduce the additional NeList{} construct. The syntax
+is identical to List{}, except with NeList instead of List before the
+curly braces. When parsing rules, it behaves identically to the List{}
+construct. However, when parsing inputs to krun, the above grammar, if we
+replaced syntax Ids ::= List{Id,","} with syntax Ids ::= NeList{Id,","},
+would become equivalent to the following (lesson-12-g.k):

+
module LESSON-12-G
+  syntax Id ::= r"[a-zA-Z_][a-zA-Z0-9_]*" [token]
+  syntax Exp ::= Id
+
+  syntax EnumSpecifier ::= "enum" Id "{" Ids "}"
+  syntax Ids ::= Id | Id "," Ids
+endmodule
+

In other words, only non-empty lists of Id would be allowed.

+

Exercises

+ +
    +
  1. +

    Modify the sum function in LESSON-12-C so that the Ints sort is an
    +NeList{}. Verify that calling sum() with no arguments is now a syntax
    +error.

    +
  2. +
  3. +

    Write a modified sum function with the List construct that can also sum
    +up an empty list of arguments. In such a case, the sum ought to be 0.

    +
  4. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.13: Basics of K Rewriting.

+

Lesson 1.13: Basics of K Rewriting

+ +

The purpose of this lesson is to explain how rewrite rules that are not the
+definition of a function behave, and how, using these rules, you can construct
+a semantics of programs in a programming language in K.

+

Recap: Function rules in K

+ +

Recall from Lesson 1.2 that we have, thus far,
+introduced two types of productions in K: constructors and functions.
+A function is identified by the function attribute placed on the
+production. As you may recall, when we write a rule with a function on the
+left-hand side of the => operator, we are defining the meaning of that
+function for inputs which match the patterns on the left-hand side of the rule.
+If the argument to the function match the patterns, then the function is
+evaluated to the value constructed by substituting the bindings for the
+variables into the right-hand side of the rule.

+

Top-level rules

+ +

However, function rules are not the only type of rule permissible in K, nor
+even the most frequently used. K also has a concept of a
+top-level rewrite rule. The simplest way to ensure that a rule is treated
+as a top-level rule is for the left-hand side of the rule to mention one or
+more cells. We will cover how cells work and are declared in more detail
+in a later lesson, but for now, what you should know is that when we ran krun
+in our very first example in Lesson 1.2 and got the following output:

+
<k>
+  Yellow ( ) ~> .
+</k>
+

<k> is a cell, known by convention as the K cell. This cell is available
+by default in any definition without needing to be explicitly declared.

+

The K cell contains a single term of sort K. K is a predefined sort in K
+with two constructors, that can be roughly represented by the following
+grammar:

+
  syntax K ::= KItem "~>" K
+             | "."
+

As a syntactic convenience, K allows you to treat ~> like it is an
+associative list (i.e., as if it were defined as syntax K ::= K "~>" K).
+When a definition is compiled, it will automatically transform the rules you
+write so that they treat the K sort as a cons-list. Another syntactic
+convenience is that, for disambiguation purposes, you can write .K anywhere
+you would otherwise write . and the meaning is identical.

+

Now, you may notice that the above grammar mentions the sort KItem. This is
+another built-in sort in K. For every sort S declared in a definition (with
+the exception of K and KItem), K will implicitly insert the following
+production:

+
  syntax KItem ::= S
+

In other words, every sort is a subsort of the sort KItem, and thus a term
+of any sort can be injected as an element of a term of sort K, also called
+a K sequence.

+

By default, when you krun a program, the AST of the program is inserted as
+the sole element of a K sequence into the <k> cell. This explains why we
+saw the output we did in Lesson 1.2.

+

With these preliminaries in mind, we can now explain how top-level rewrite
+rules work in K. Put simply, any rule where there is a cell (such as the K
+cell) at the top on the left-hand side will be a top-level rewrite rule. Once
+the initial program has been inserted into the K cell, the resulting term,
+called the configuration, will be matched against all the top-level
+rewrite rules in the definition. If only one rule matches, the substitution
+generated by the matching will be applied to the right-hand side of the rule
+and the resulting term is rewritten to be the new configuration. Rewriting
+proceeds by iteratively applying rules, also called taking steps, until
+no top-level rewrite rule can be applied. At this point the configuration
+becomes the final configuration and is output by krun.

+

If more than one top-level rule applies, by default, K will pick just one
+of those rules, apply it, and continue rewriting. However, it is
+non-deterministic which rule applies. In theory, it could be any of them.
+By passing the --search flag to krun, you are able to tell krun to
+explore all possible non-deterministic choices, and generate a complete list of
+all possible final configurations reachable by each nondeterminstic choice that
+can be made. Note that the --search flag to krun only works if you pass
+--enable-search to kompile first.

+

Unlike top-level rewrite rules, function rules are not associated with any
+particular set of cells in the configuration (although they can contain cells
+in their function arguments and return value). While top-level rewrite rules
+apply to the entire term being rewritten, function rules apply anywhere a
+function application for that function appears, and are immediately rewritten
+to their return value in that position.

+

Another key distinction between top-level rules and function rules is that
+function symbols, i.e., productions with the function attribute, are
+mathematical functions rather than constructors. While a constructor is
+logically distinct from any other constructor of the same sort, and can be
+matched against unconditionally, a function does not necessaraily have the
+same restriction unless it happens to be an injective function. Thus, two
+function symbols with different arguments may still ultimately produce the
+same value and thus compare equal to one another. Due to this, concrete
+execution (i.e., all K definitions introduced thus far; see Lesson 1.21)
+introduces the restriction that you cannot match on a function symbol on the
+left-hand side of a rule, except as the top symbol on the left-hand side of
+a function rule. This restriction will be later lifted when we introduce the
+Haskell Backend which performs symbolic execution.

+

Exercise

+ +

Pass a program containing no functions to krun. You can use a term of sort
+Exp from LESSON-11-E. Observe the output and try to understand why you get
+the output you do. Then write two rules that rewrite that program to another.
+Run krun --search on that program and observe both results. Then add a third
+rule that rewrites one of those results again. Test that that rule applies as
+well.

+

Using top-level rules to evaluate expressions

+ +

Thus far, we have focused primarily on defining functions over constructors
+in K. However, now that we have a basic understanding of top-level rules,
+it is possible to introduce a rewrite system to our definitions. A rewrite
+system is a collection of top-level rewrite rules which performs an organized
+transformation of a particular program into a result which expresses the
+meaning of that program. For example, we might rewrite an expression in a
+programming language into a value representing the result of evaluating that
+expression.

+

Recall in Lesson 1.11, we wrote a simple grammar of Boolean and integer
+expressions that looked roughly like this (lesson-13-a.k):

+
module LESSON-13-A
+  imports INT
+
+  syntax Exp ::= Int
+               | Bool
+               | Exp "+" Exp
+               | Exp "&&" Exp
+endmodule
+

In that lesson, we defined a function eval which evaluated such expressions
+to either an integer or Boolean.

+

However, it is more idiomatic to evaluate such expressions using top-level
+rewrite rules. Here is how one might do so in K (lesson-13-b.k):

+
module LESSON-13-B-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Val ::= Int | Bool
+  syntax Exp ::= Val
+               > left: Exp "+" Exp
+               > left: Exp "&&" Exp
+endmodule
+
+module LESSON-13-B
+  imports LESSON-13-B-SYNTAX
+  imports INT
+  imports BOOL
+
+  rule <k> I1:Int + I2:Int ~> K:K </k> => <k> I1 +Int I2 ~> K </k>
+  rule <k> B1:Bool && B2:Bool ~> K:K </k> => <k> B1 andBool B2 ~> K </k>
+
+  syntax KItem ::= freezer1(Val) | freezer2(Exp)
+                 | freezer3(Val) | freezer4(Exp)
+
+  rule <k> E1:Val + E2:Exp ~> K:K </k> => <k> E2 ~> freezer1(E1) ~> K </k> [priority(51)]
+  rule <k> E1:Exp + E2:Exp ~> K:K </k> => <k> E1 ~> freezer2(E2) ~> K </k> [priority(52)]
+  rule <k> E1:Val && E2:Exp ~> K:K </k> => <k> E2 ~> freezer3(E1) ~> K </k> [priority(51)]
+  rule <k> E1:Exp && E2:Exp ~> K:K </k> => <k> E1 ~> freezer4(E2) ~> K </k> [priority(52)]
+
+  rule <k> E2:Val ~> freezer1(E1) ~> K:K </k> => <k> E1 + E2 ~> K </k>
+  rule <k> E1:Val ~> freezer2(E2) ~> K:K </k> => <k> E1 + E2 ~> K </k>
+  rule <k> E2:Val ~> freezer3(E1) ~> K:K </k> => <k> E1 && E2 ~> K </k>
+  rule <k> E1:Val ~> freezer4(E2) ~> K:K </k> => <k> E1 && E2 ~> K </k>
+endmodule
+

This is of course rather cumbersome currently, but we will soon introduce
+syntactic convenience which makes writing definitions of this type considerably
+easier. For now, notice that there are roughly 3 types of rules here: the first
+matches a K cell in which the first element of the K sequence is an Exp whose
+arguments are values, and rewrites the first element of the sequence to the
+result of that expression. The second also matches a K cell with an Exp in
+the first element of its K sequence, but it matches when one or both arguments
+of the Exp are not values, and replaces the first element of the K sequence
+with two new elements: one being an argument to evaluate, and the other being
+a special constructor called a freezer. Finally, the third matches a K
+sequence where a Val is first, and a freezer is second, and replaces them
+with a partially evaluated expression.

+

This general pattern is what is known as heating an expression,
+evaluating its arguments, cooling the arguments into the expression
+again, and evaluating the expression itself. By repeatedly performing
+this sequence of actions, we can evaluate an entire AST containing a complex
+expression down into its resulting value.

+

Exercise

+ +

Write an addition expression with integers. Use krun --depth 1 to see the
+result of rewriting after applying a single top-level rule. Gradually increase
+the value of --depth to see successive states. Observe how this combination
+of rules is eventually able to evaluate the entire expression.

+

Simplifying the evaluator: Local rewrites and cell ellipses

+ +

As you saw above, the definition we wrote is rather cumbersome. Over the
+remainder of Lessons 1.13 and 1.14, we will greatly simplify it. The first step
+in doing so is to teach a bit more about the rewrite operator, =>. Thus far,
+all the rules we have written look like rule LHS => RHS. However, this is not
+the only way the rewrite operator can be used. It is actually possible to place
+a constructor or function at the very top of the rule, and place rewrite
+operators inside that term. While a rewrite operator cannot appear nested
+inside another rewrite operator, by doing this, we can express that some parts
+of what we are matching are not changed by the rewrite operator. For
+example, consider the following rule from above:

+
  rule <k> I1:Int + I2:Int ~> K:K </k> => <k> I1 +Int I2 ~> K </k>
+

We can equivalently write it like following:

+
  rule <k> (I1:Int + I2:Int => I1 +Int I2) ~> _:K </k>
+

When you put a rewrite inside a term like this, in essence, you are telling
+the rule to only rewrite part of the left-hand side to the right-hand side.
+In practice, this is implemented by lifting the rewrite operator to the top of
+the rule by means of duplicating the surrounding context.

+

There is a way that the above rule can be simplified further, however. K
+provides a special syntax for each cell containing a term of sort K, indicating
+that we want to match only on some prefix of the K sequence. For example, the
+above rule can be simplified further like so:

+
  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+

Here we have placed the symbol ... immediately prior to the </k> which ends
+the cell. What this tells the compiler is to take the contents of the cell,
+treat it as the prefix of a K sequence, and insert an anonymous variable of
+sort K at the end. Thus we can think of ... as a way of saying we
+don't care about the part of the K sequence after the beginning, leaving
+it unchanged.

+

Putting all this together, we can rewrite LESSON-13-B like so
+(lesson-13-c.k):

+
module LESSON-13-C-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Val ::= Int | Bool
+  syntax Exp ::= Val
+               > left: Exp "+" Exp
+               > left: Exp "&&" Exp
+endmodule
+
+module LESSON-13-C
+  imports LESSON-13-C-SYNTAX
+  imports INT
+  imports BOOL
+
+  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+  rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k>
+
+  syntax KItem ::= freezer1(Val) | freezer2(Exp)
+                 | freezer3(Val) | freezer4(Exp)
+
+  rule <k> E1:Val + E2:Exp => E2 ~> freezer1(E1) ...</k> [priority(51)]
+  rule <k> E1:Exp + E2:Exp => E1 ~> freezer2(E2) ...</k> [priority(52)]
+  rule <k> E1:Val && E2:Exp => E2 ~> freezer3(E1) ...</k> [priority(51)]
+  rule <k> E1:Exp && E2:Exp => E1 ~> freezer4(E2) ...</k> [priority(52)]
+
+  rule <k> E2:Val ~> freezer1(E1) => E1 + E2 ...</k>
+  rule <k> E1:Val ~> freezer2(E2) => E1 + E2 ...</k>
+  rule <k> E2:Val ~> freezer3(E1) => E1 && E2 ...</k>
+  rule <k> E1:Val ~> freezer4(E2) => E1 && E2 ...</k>
+endmodule
+

This is still rather cumbersome, but it is already greatly simplified. In the
+next lesson, we will see how additional features of K can be used to specify
+heating and cooling rules much more compactly.

+

Exercises

+ +
    +
  1. Modify LESSON-13-C to add rules to evaluate integer subtraction.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.14: Defining Evaluation Order.

+

Lesson 1.14: Defining Evaluation Order

+ +

The purpose of this lesson is to explain how to use the heat and cool
+attributes, context and context alias sentences, and the strict and
+seqstrict attributes to more compactly express heating and cooling in K,
+and to express more advanced evaluation strategies in K.

+

The heat and cool attributes

+ +

Thus far, we have been using rule priority and casts to express when to heat
+an expression and when to cool it. For example, the rules for heating have
+lower priority, so they do not apply if the term could be evaluated instead,
+and the rules for heating are expressly written only to apply if the argument
+of the expression is a value.

+

However, K has built-in support for deciding when to heat and when to cool.
+This support comes in the form of the rule attributes heat and cool as
+well as the specially named function isKResult.

+

Consider the following definition, which is equivalent to LESSON-13-C
+(lesson-14-a.k):

+
module LESSON-14-A-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Exp ::= Int
+               | Bool
+               > left: Exp "+" Exp
+               > left: Exp "&&" Exp
+endmodule
+
+module LESSON-14-A
+  imports LESSON-14-A-SYNTAX
+  imports INT
+  imports BOOL
+
+  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+  rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k>
+
+  syntax KItem ::= freezer1(Exp) | freezer2(Exp)
+                 | freezer3(Exp) | freezer4(Exp)
+
+  rule <k> E:Exp + HOLE:Exp => HOLE ~> freezer1(E) ...</k>
+    requires isKResult(E) [heat]
+  rule <k> HOLE:Exp + E:Exp => HOLE ~> freezer2(E) ...</k> [heat]
+  rule <k> E:Exp && HOLE:Exp => HOLE ~> freezer3(E) ...</k>
+    requires isKResult(E) [heat]
+  rule <k> HOLE:Exp && E:Exp => HOLE ~> freezer4(E) ...</k> [heat]
+
+  rule <k> HOLE:Exp ~> freezer1(E) => E + HOLE ...</k> [cool]
+  rule <k> HOLE:Exp ~> freezer2(E) => HOLE + E ...</k> [cool]
+  rule <k> HOLE:Exp ~> freezer3(E) => E && HOLE ...</k> [cool]
+  rule <k> HOLE:Exp ~> freezer4(E) => HOLE && E ...</k> [cool]
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_:Bool) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

We have introduced three major changes to this definition. First, we have
+removed the Val sort. We replace it instead with a function isKResult.
+The function in question must have the same signature and attributes as seen in
+this example. It ought to return true whenever a term should not be heated
+(because it is a value) and false when it should be heated (because it is not
+a value). We thus also insert isKResult calls in the side condition of two
+of the heating rules, where the Val sort was previously used.

+

Second, we have removed the rule priorities on the heating rules and the use of
+the Val sort on the cooling rules, and replaced them with the heat and
+cool attributes. These attributes instruct the compiler that these rules are
+heating and cooling rules, and thus should implicitly apply only when certain
+terms on the LHS either are or are not a KResult (i.e., isKResult returns
+true versus false).

+

Third, we have renamed some of the variables in the heating and cooling rules
+to the special variable HOLE. Syntactically, HOLE is just a special name
+for a variable, but it is treated specially by the compiler. By naming a
+variable HOLE, we have informed the compiler which term is being heated
+or cooled. The compiler will automatically insert the side condition
+requires isKResult(HOLE) to cooling rules and the side condition
+requires notBool isKResult(HOLE) to heating rules.

+

Exercise

+ +

Modify LESSON-14-A to add rules to evaluate integer subtraction.

+

Simplifying further with Contexts

+ +

The above example is still rather cumbersome to write. We must explicitly write
+both the heating and the cooling rule separately, even though they are
+essentially inverses of one another. It would be nice to instead simply
+indicate which terms should be heated and cooled, and what part of them to
+operate on.

+

To do this, K introduces a new type of sentence, the context. Contexts
+begin with the context keyword instead of the rule keyword, and usually
+do not contain a rewrite operator.

+

Consider the following definition which is equivalent to LESSON-14-A
+(lesson-14-b.k):

+
module LESSON-14-B-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Exp ::= Int
+               | Bool
+               > left: Exp "+" Exp
+               > left: Exp "&&" Exp
+endmodule
+
+module LESSON-14-B
+  imports LESSON-14-B-SYNTAX
+  imports INT
+  imports BOOL
+
+  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+  rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k>
+
+  context <k> E:Exp + HOLE:Exp ...</k>
+    requires isKResult(E)
+  context <k> HOLE:Exp + _:Exp ...</k>
+  context <k> E:Exp && HOLE:Exp ...</k>
+    requires isKResult(E)
+  context <k> HOLE:Exp && _:Exp ...</k>
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_:Bool) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

In this example, the heat and cool rules have been removed entirely, as
+have been the productions defining the freezers. Don't worry, they still exist
+under the hood; the compiler is just generating them automatically. For each
+context sentence like above, the compiler generates a #freezer production,
+a heat rule, and a cool rule. The generated form is equivalent to the
+rules we wrote manually in LESSON-14-A. However, we are now starting to
+considerably simplify the definition. Instead of 3 sentences, we just have one.

+

context alias sentences and the strict and seqstrict attributes

+ +

Notice that the contexts we included in LESSON-14-B still seem rather
+similar in form. For each expression we want to evaluate, we are declaring
+one context for each operand of that expression, and they are each rather
+similar to one another. We would like to be able to simplify further by
+simply annotating each expression production with information about how
+it is to be evaluated instead. We can do this with the seqstrict attribute.

+

Consider the following definition, once again equivalent to those above
+(lesson-14-c.k):

+
module LESSON-14-C-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Exp ::= Int
+               | Bool
+               > left: Exp "+" Exp [seqstrict(exp; 1, 2)]
+               > left: Exp "&&" Exp [seqstrict(exp; 1, 2)]
+endmodule
+
+module LESSON-14-C
+  imports LESSON-14-C-SYNTAX
+  imports INT
+  imports BOOL
+
+  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+  rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k>
+
+  context alias [exp]: <k> HERE ...</k>
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_:Bool) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

This definition has two important changes from the one above. The first is
+that the individual context sentences have been removed and have been
+replaced with a single context alias sentence. You may notice that this
+sentence begins with an identifier in square brackets followed by a colon. This
+syntax is a way of naming individual sentences in K for reference by the tool
+or by other sentences. The context alias sentence also has a special variable
+HERE.

+

The second is that the productions in LESSON-14-C-SYNTAX have been given a
+seqstrict attribute. The value of this attribute has two parts. The first
+is the name of a context alias sentence. The second is a comma-separated list
+of integers. Each integer represents an index of a non-terminal in the
+production, counting from 1. For each integer present, the compiler implicitly
+generates a new context sentence according to the following rules:

+
    +
  1. The compiler starts by looking for the context alias sentence named. If
    +there is more than one, then one context sentence is created per
    +context alias sentence with that name.
  2. +
  3. For each context created, the variable HERE in the context alias is
    +substituted with an instance of the production the seqstrict attribute is
    +attached to. Each child of that production is a variable. The non-terminal
    +indicated by the integer offset of the seqstrict attribute is given the name
    +HOLE.
  4. +
  5. For each integer offset prior in the list to the one currently being
    +processed, the predicate isKResult(E) is conjuncted together and included
    +as a side condition, where E is the child of the production term with that
    +offset, starting from 1. For example, if the attribute lists 1, 2, then
    +the rule generated for the 2 will include isKResult(E1) where E1 is the
    +first child of the production.
  6. +
+

As you can see if you work through the process, the above code will ultimately
+generate the same contexts present in LESSON-14-B.

+

Finally, note that there are a few minor syntactic conveniences provided by the
+seqstrict attribute. First, in the special case of the context alias sentence
+being <k> HERE ...</k>, you can omit both the context alias sentence
+and the name from the seqstrict attribute.

+

Second, if the numbered list of offsets contains every non-terminal in the
+production, it can be omitted from the attribute value.

+

Thus, we can finally produce the idiomatic K definition for this example
+(lesson-14-d.k):

+
module LESSON-14-D-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+
+  syntax Exp ::= Int
+               | Bool
+               > left: Exp "+" Exp [seqstrict]
+               > left: Exp "&&" Exp [seqstrict]
+endmodule
+
+module LESSON-14-D
+  imports LESSON-14-D-SYNTAX
+  imports INT
+  imports BOOL
+
+  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+  rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k>
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_:Bool) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

Exercise

+ +

Modify LESSON-14-D to add a production and rule to evaluate integer
+subtraction.

+

Nondeterministic evaluation order with the strict attribute

+ +

Thus far, we have focused entirely on deterministic evaluation order. However,
+not all languages are deterministic in the order they evaluate expressions.
+For example, in C, the expression a() + b() + c() is guaranteed to parse
+to (a() + b()) + c(), but it is not guaranteed that a will be called before
+b before c. In fact, this evaluation order is non-deterministic.

+

We can express non-deterministic evaluation orders with the strict attribute.
+Its behavior is identical to the seqstrict attribute, except that step 3 in
+the above list (with the side condition automatically added) does not take
+place. In other words, if we wrote syntax Exp ::= Exp "+" Exp [strict]
+instead of syntax Exp ::= Exp "+" Exp [seqstrict], it would generate the
+following two contexts instead of the ones found in LESSON-14-B:

+
  context <k> _:Exp + HOLE:Exp ...</k>
+  context <k> HOLE:Exp + _:Exp ...</k>
+

As you can see, these contexts will generate heating rules that can both
+apply to the same term. As a result, the choice of which heating rule
+applies first is non-deterministic, and as we saw in Lesson 1.13, we can
+get all possible behaviors by passing --search to krun.

+

Exercises

+ +
    +
  1. +

    Add integer division to LESSON-14-D. Make division and addition strict
    +instead of seqstrict, and write a rule evaluating integer division with a
    +side condition that the denominator is non-zero. Run krun --search on the
    +program 1 / 0 + 2 / 1 and observe all possible outputs of the program. How
    +many are there total, and why?

    +
  2. +
  3. +

    Rework your solution from Lesson 1.9, Exercise 2 to evaluate expressions from left to right using the seqstrict attribute.

    +
  4. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.15: Configuration Declarations and Cell Nesting.

+

Lesson 1.15: Configuration Declarations and Cell Nesting

+ +

The purpose of this lesson is to explain how to store additional information
+about the state of your interpreter by declaring cells using the
+configuration sentence, as well as how to add additional inputs to your
+definition.

+

Cells and Configuration Declarations

+ +

We have already covered the absolute basics of cells in K by looking at the
+<k> cell. As explained in Lesson 1.13, the
+<k> cell is available without being explicitly declared. It turns out this is
+because, if the user does not explicitly specify a configuration sentence
+anywhere in the main module of their definition, the configuration sentence
+from the DEFAULT-CONFIGURATION module of
+kast.md is imported
+automatically. Here is what that sentence looks like:

+
  configuration <k> $PGM:K </k>
+

This configuration declaration declares a single cell, the <k> cell. It also
+declares that at the start of rewriting, the contents of that cell should be
+initialized with the value of the $PGM configuration variable.
+Configuration variables function as inputs to krun. These terms are supplied
+to krun in the form of ASTs parsed using a particular module. By default, the
+$PGM configuration variable uses the main syntax module of the definition.

+

The cast on the configuration variable also specifies the sort that is used as
+the entry point to the parser, in this case the K sort. It is often
+useful to cast to other sorts there as well for better control over the accepted
+language. The sort used for the $PGM variable is referred to as the start
+symbol. During parsing, the default start symbol K subsumes all user-defined
+sorts except for syntactic lists. These are excluded because they will always
+produce an ambiguity error when parsing a single element.

+

Note that we did not explicitly specify the $PGM configuration variable when
+we invoked krun on a file. This is because krun handles the $PGM variable
+specially, and allows you to pass the term for that variable via a file passed
+as a positional argument to krun. We did, however, specify the PGM name
+explicitly when we called krun with the -cPGM command line argument in
+Lesson 1.2. This is the other, explicit, way of
+specifying an input to krun.

+

This explains the most basic use of configuration declarations in K. We can,
+however, declare multiple cells and multiple configuration variables. We can
+also specify the initial values of cells statically, rather than dynamically
+via krun.

+

For example, consider the following definition (lesson-15-a.k):

+
module LESSON-15-A-SYNTAX
+  imports INT-SYNTAX
+
+  syntax Ints ::= List{Int,","}
+endmodule
+
+module LESSON-15-A
+  imports LESSON-15-A-SYNTAX
+  imports INT
+
+  configuration <k> $PGM:Ints </k>
+                <sum> 0 </sum>
+
+  rule <k> I:Int, Is:Ints => Is ...</k>
+       <sum> SUM:Int => SUM +Int I </sum>
+endmodule
+

This simple definition takes a list of integers as input and sums them
+together. Here we have declared two cells: <k> and <sum>. Unlike <k>,
+<sum> does not get initialized via a configuration variable, but instead
+is initialized statically with the value 0.

+

Note the rule in the second module: we have explicitly specified multiple
+cells in a single rule. K will expect each of these cells to match in order for
+the rule to apply.

+

Here is a second example (lesson-15-b.k):

+
module LESSON-15-B-SYNTAX
+  imports INT-SYNTAX
+endmodule
+
+module LESSON-15-B
+  imports LESSON-15-B-SYNTAX
+  imports INT
+  imports BOOL
+
+  configuration <k> . </k>
+                <first> $FIRST:Int </first>
+                <second> $SECOND:Int </second>
+
+  rule <k> . => FIRST >Int SECOND </k>
+       <first> FIRST </first>
+       <second> SECOND </second>
+endmodule
+

This definition takes two integers as command-line arguments and populates the
+<k> cell with a Boolean indicating whether the first integer is greater than
+the second. Notice that we have specified no $PGM configuration variable
+here. As a result, we cannot invoke krun via the syntax krun $file.
+Instead, we must explicitly pass values for each configuration variable via the
+-cFIRST and -cSECOND command line flags. For example, if we invoke
+krun -cFIRST=0 -cSECOND=1, we will get the value false in the K cell.

+

You can also specify both a $PGM configuration variable and other
+configuration variables in a single configuration declaration, in which case
+you would be able to initialize $PGM with either a positional argument or the
+-cPGM command line flag, but the other configuration variables would need
+to be explicitly initialized with -c.

+

Exercise

+ +

Modify your solution to Lesson 1.14, Exercise 2 to add a new cell with a
+configuration variable of sort Bool. This variable should determine whether
+the / operator is evaluated using /Int or divInt. Test that by specifying
+different values for this variable, you can change the behavior of rounding on
+division of negative numbers.

+

Cell Nesting

+ +

It is possible to nest cells inside one another. A cell that contains other
+cells must contain only other cells, but in doing this, you are able to
+create a hierarchical structure to the configuration. Consider the following
+definition (lesson-15-c.k), which is equivalent to the one in LESSON-15-B:

+
module LESSON-15-C-SYNTAX
+  imports INT-SYNTAX
+endmodule
+
+module LESSON-15-C
+  imports LESSON-15-C-SYNTAX
+  imports INT
+  imports BOOL
+
+  configuration <T>
+                  <k> . </k>
+                  <state>
+                    <first> $FIRST:Int </first>
+                    <second> $SECOND:Int </second>
+                  </state>
+                </T>
+
+  rule <k> . => FIRST >Int SECOND </k>
+       <first> FIRST </first>
+       <second> SECOND </second>
+endmodule
+

Note that we have added some new cells to the configuration declaration:
+the <T> cell wraps the entire configuration, and the <state> cell is
+introduced around the <first> and <second> cells.

+

However, we have not changed the rule in this definition. This is because of
+a concept in K called configuration abstraction. K allows you to specify
+any number of cells in a rule (except zero) in any order you want, and K will
+compile the rules into a form that matches the structure of the configuration
+specified by the configuration declaration.

+

Here then, is how this rule would look after the configuration abstraction
+has been resolved:

+
  rule <T>
+         <k> . => FIRST >Int SECOND </k>
+         <state>
+           <first> FIRST </first>
+           <second> SECOND </second>
+         </state>
+       </T>
+

In other words, K will complete cells to the top of the configuration by
+inserting parent cells where appropriate based on the declared structure of
+the configuration. This is useful because as a definition evolves, the
+configuration may change, but you don't want to have to modify every single
+rule each time. Thus, K follows the principle that you should only mention the
+cells in a rule that are actually needed in order to accomplish its specific
+goal. By following this best practice, you can significantly increase the
+modularity of the definition and make it easier to maintain and modify.

+

Note that unlike top-level rewrite rules, cells that appear inside function
+rules are not necessarily completed to the top of the configuration. They still
+participate in cell ccompletion in the sense that you can mention cell
+structure loosely inside a function rule and it will be completed into the
+correct cell structure specified by the configuration declaration. However,
+they do not complete all the way to the top, instead completing only up to
+the top-most cell mentioned in the rule.

+

For example, if I write the following function rule in the above definition:

+
  rule doStuff(<first> FIRST </first>) => FIRST
+

The function will only match on the first cell, rather than the entire
+configuration. However, if we had mentioned a parent cell in the rule, it still
+would have completed the children of that parent cell as needed to ensure that
+the resulting term is well formed.

+

Exercise

+ +

Modify your definition from the previous exercise in this lesson to wrap the
+two cells you have declared in a top cell <T>. You should not have to change
+any other rules in the definition.

+

Cell Variables

+ +

Sometimes it is desirable to explicitly match a variable against certain
+fragments of the configuration. Because K's configuration is hierarchical,
+we can grab subsets of the configuration as if they were just another term.
+However, configuration abstraction applies here as well.
+In particular, for each cell you specify in a configuration declaration, a
+unique sort is assigned for that cell with a single constructor (the cell
+itself). The sort name is taken by removing all special characters,
+capitalizing the first letter and each letter after a hyphen, and adding the
+word Cell at the end. For example, in the above example, the cell sorts are
+TCell, KCell, StateCell, FirstCell, and SecondCell. If we had declared
+a cell as <first-number>, then the cell sort name would be FirstNumberCell.

+

You can explicitly reference a variable of one of these sorts anywhere you
+might instead write that cell. For example, consider the following rule:

+
  rule <k> true => S </k>
+       (S:StateCell => <state>... .Bag ...</state>)
+

Here we have introduced two new concepts. The first is the variable of sort
+StateCell, which matches the entire <state> part of the configuration. The
+second is that we have introduced the concept of ... once again. When a cell
+contains other cells, it is also possible to specify ... on either the left,
+right or both sides of the cell term. Each of these three syntaxes are
+equivalent in this case. When they appear on the left-hand side of a rule, they
+indicate that we don't care what value any cells not explicitly named might
+have. For example, we might write <state>... <first> 0 </first> ...</state> on
+the left-hand side of a rule in order to indicate that we want to match the
+rule when the <first> cell contains a zero, regardless of what the <second>
+cell contains. If we had not included this ellipsis, it would have been a
+syntax error, because K would have expected you to provide a value for each of
+the child cells.

+

However, if, as in the example above, the ... appeared on the right-hand side
+of a rule, this instead indicates that the cells not explicitly mentioned under
+the cell should be initialized with their default value from the configuration
+declaration. In other words, that rule will set the value of <first> and
+<second> to zero.

+

You may note the presence of the phrase .Bag here. You can think of this as
+the empty set of cells. It is used as the child of a cell when you want to
+indicate that no cells should be explicitly named. We will cover other uses
+of this term in later lessons.

+

Exercises

+ +
    +
  1. Modify the definition from the previous exercise in this lesson so that the
    +Boolean cell you created is initialized to false. Then add a production
    +syntax Stmt ::= Bool ";" Exp, and a rule that uses this Stmt to set the
    +value of the Boolean flag. Then add another production
    +syntax Stmt ::= "reset" ";" Exp which sets the value of the Boolean flag back
    +to its default value via a ... on the right-hand side. You will need to add
    +an additional cell around the Boolean cell to make this work.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.16: Maps, Semantic Lists, and Sets.

+

Lesson 1.16: Maps, Semantic Lists, and Sets

+ +

The purpose of this lesson is to explain how to use the data structure sorts
+provided by K: maps, lists, and sets.

+

Maps

+ +

The most frequently used type of data structure in K is the map. The sort
+provided by K for this purpose is the Map sort, and it is provided in
+domains.md in the MAP
+module. This type is not (currently) polymorphic. All Map terms are maps that
+map terms of sort KItem to other terms of sort KItem. A KItem can contain
+any sort except a K sequence. If you need to store such a term in a
+map, you can always use a wrapper such as syntax KItem ::= kseq(K).

+

A Map pattern consists of zero or more map elements (as represented by the
+symbol syntax Map ::= KItem "|->" KItem), mixed in any order, separated by
+whitespace, with zero or one variables of sort Map. The empty map is
+represented by .Map. If all of the bindings for the variables in the keys
+of the map can be deterministically chosen, these patterns can be matched in
+O(1) time. If they cannot, then each map element that cannot be
+deterministically constructed contributes a single dimension of polynomial
+time to the cost of the matching. In other words, a single such element is
+linear, two are quadratic, three are cubic, etc.

+

Patterns like the above are the only type of Map pattern that can appear
+on the left-hand-side of a rule. In other words, you are not allowed to write
+a Map pattern on the left-hand-side with more than one variable of sort Map
+in it. You are, however, allowed to write such patterns on the right-hand-side
+of a rule. You can also write a function pattern in the key of a map element
+so long as all the variables in the function pattern can be deterministically
+chosen.

+

Note the meaning of matching on a Map pattern: a map pattern with no
+variables of sort Map will match if the map being matched has exactly as
+many bindings as |-> symbols in the pattern. It will then match if each
+binding in the map pattern matches exactly one distinct binding in the map
+being matched. A map pattern with one Map variable will also match any map
+that contains such a map as a subset. The variable of sort Map will be bound
+to whatever bindings are left over (.Map if there are no bindings left over).

+

Here is an example of a simple definition that implements a very basic
+variable declaration semantics using a Map to store the value of variables
+(lesson-16-a.k):

+
module LESSON-16-A-SYNTAX
+  imports INT-SYNTAX
+  imports ID-SYNTAX
+
+  syntax Exp ::= Id | Int
+  syntax Decl ::= "int" Id "=" Exp ";" [strict(2)]
+  syntax Pgm ::= List{Decl,""}
+endmodule
+
+module LESSON-16-A
+  imports LESSON-16-A-SYNTAX
+  imports BOOL
+
+  configuration <T>
+                  <k> $PGM:Pgm </k>
+                  <state> .Map </state>
+                </T>
+
+  // declaration sequence
+  rule <k> D:Decl P:Pgm => D ~> P ...</k>
+  rule <k> .Pgm => . ...</k>
+
+  // variable declaration
+  rule <k> int X:Id = I:Int ; => . ...</k>
+       <state> STATE => STATE [ X <- I ] </state>
+
+  // variable lookup
+  rule <k> X:Id => I ...</k>
+       <state>... X |-> I ...</state>
+
+  syntax Bool ::= isKResult(K) [symbol, function]
+  rule isKResult(_:Int) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

There are several new features in this definition. First, note we import
+the module ID-SYNTAX. This module is defined in domains.md and provides a
+basic syntax for identifiers. We are using the Id sort provided by this
+module in this definition to implement the names of program variables. This
+syntax is only imported when parsing programs, not when parsing rules. Later in
+this lesson we will see how to reference specific concrete identifiers in a
+rule.

+

Second, we introduce a single new function over the Map sort. This function,
+which is represented by the symbol
+syntax Map ::= Map "[" KItem "<-" KItem "]", represents the map update
+operation. Other functions over the Map sort can be found in domains.md.

+

Finally, we have used the ... syntax on a cell containing a Map. In this
+case, the meaning of <state>... Pattern ...</state>,
+<state>... Pattern </state>, and <state> Pattern ...</state> are the same:
+it is equivalent to writing <state> (Pattern) _:Map </state>.

+

Consider the following program (a.decl):

+
int x = 0;
+int y = 1;
+int a = x;
+

If we run this program with krun, we will get the following result:

+
<T>
+  <k>
+    .
+  </k>
+  <state>
+    a |-> 0
+    x |-> 0
+    y |-> 1
+  </state>
+</T>
+

Note that krun has automatically sorted the collection for you. This doesn't
+happen at runtime, so you still get the performance of a hash map, but it will
+help make the output more readable.

+

Exercise

+ +

Create a sort Stmt that is a subsort of Decl. Create a production of sort
+Stmt for variable assignment in addition to the variable declaration
+production. Feel free to use the syntax syntax Stmt ::= Id "=" Exp ";". Write
+a rule that implements variable assignment using a map update function. Then
+write the same rule using a map pattern. Test your implementations with some
+programs to ensure they behave as expected.

+

Semantic Lists

+ +

In a previous lesson, we explained how to represent lists in the AST of a
+program. However, this is not the only context where lists can be used. We also
+frequently use lists in the configuration of an interpreter in order to
+represent certain types of program state. For this purpose, it is generally
+useful to have an associative-list sort, rather than the cons-list sorts
+provided in Lesson 1.12.

+

The type provided by K for this purpose is the List sort, and it is also
+provided in domains.md, in the LIST module. This type is also not
+(currently) polymorphic. Like Map, all List terms are lists of terms of the
+KItem sort.

+

A List pattern in K consists of zero or more list elements (as represented by
+the ListItem symbol), followed by zero or one variables of sort List,
+followed by zero or more list elements. An empty list is represented by
+.List. These patterns can be matched in O(log(N)) time. This is the only
+type of List pattern that can appear on the left-hand-side of a rule. In
+other words, you are not allowed to write a List pattern on the
+left-hand-side with more than one variable of sort List in it. You are,
+however, allowed to write such patterns on the right-hand-side of a rule.

+

Note the meaning of matching on a List pattern: a list pattern with no
+variables of sort List will match if the list being matched has exactly as
+many elements as ListItem symbols in the pattern. It will then match if each
+element in sequence matches the pattern contained in the ListItem symbol. A
+list pattern with one variable of sort List operates the same way, except
+that it can match any list with at least as many elements as ListItem
+symbols, so long as the prefix and suffix of the list match the patterns inside
+the ListItem symbols. The variable of sort List will be bound to whatever
+elements are left over (.List if there are no elements left over).

+

The ... syntax is allowed on cells containing lists as well. In this case,
+the meaning of <cell>... Pattern </cell> is the same as
+<cell> _:List (Pattern) </cell>, the meaning of <cell> Pattern ...</cell>
+is the same as <cell> (Pattern) _:List</cell>. Because list patterns with
+multiple variables of sort List are not allowed, it is an error to write
+<cell>... Pattern ...</cell>.

+

Here is an example of a simple definition that implements a very basic
+function-call semantics using a List as a function stack (lesson-16-b.k):

+
module LESSON-16-B-SYNTAX
+  imports INT-SYNTAX
+  imports ID-SYNTAX
+
+  syntax Exp ::= Id "(" ")" | Int
+  syntax Stmt ::= "return" Exp ";" [strict]
+  syntax Decl ::= "fun" Id "(" ")" "{" Stmt "}"
+  syntax Pgm ::= List{Decl,""}
+  syntax Id ::= "main" [token]
+endmodule
+
+module LESSON-16-B
+  imports LESSON-16-B-SYNTAX
+  imports BOOL
+  imports LIST
+
+  configuration <T>
+                  <k> $PGM:Pgm ~> main () </k>
+                  <functions> .Map </functions>
+                  <fstack> .List </fstack>
+                </T>
+
+  // declaration sequence
+  rule <k> D:Decl P:Pgm => D ~> P ...</k>
+  rule <k> .Pgm => . ...</k>
+
+  // function definitions
+  rule <k> fun X:Id () { S } => . ...</k>
+       <functions>... .Map => X |-> S ...</functions>
+
+  // function call
+  syntax KItem ::= stackFrame(K)
+  rule <k> X:Id () ~> K => S </k>
+       <functions>... X |-> S ...</functions>
+       <fstack> .List => ListItem(stackFrame(K)) ...</fstack>
+
+  // return statement
+  rule <k> return I:Int ; ~> _ => I ~> K </k>
+       <fstack> ListItem(stackFrame(K)) => .List ...</fstack>
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

Notice that we have declared the production syntax Id ::= "main" [token].
+Since we use the ID-SYNTAX module, this declaration is necessary in order to
+be able to refer to the main identifier directly in the configuration
+declaration. Our <k> cell now contains a K sequence initially: first we
+process all the declarations in the program, then we call the main function.

+

Consider the following program (foo.func):

+
fun foo() { return 5; }
+fun main() { return foo(); }
+

When we krun this program, we should get the following output:

+
<T>
+  <k>
+    5 ~> .
+  </k>
+  <functions>
+    foo |-> return 5 ;
+    main |-> return foo ( ) ;
+  </functions>
+  <fstack>
+    .List
+  </fstack>
+</T>
+

Note that we have successfully put on the <k> cell the value returned by the
+main function.

+

Exercise

+ +

Add a term of sort Id to the stackFrame operator to keep track of the
+name of the function in that stack frame. Then write a function
+syntax String ::= printStackTrace(List) that takes the contents of the
+<fstack> cell and pretty prints the current stack trace. You can concatenate
+strings with +String in the STRING module in domains.md, and you can
+convert an Id to a String with the Id2String function in the ID module.
+Test this function by creating a new expression that returns the current stack
+trace as a string. Make sure to update isKResult and the Exp sort as
+appropriate to allow strings as values.

+

Sets

+ +

The final primary data structure sort in K is a set, i.e., an idempotent
+unordered collection where elements are deduplicated. The sort provided by K
+for this purpose is the Set sort and it is provided in domains.md in the
+SET module. Like maps and lists, this type is not (currently) polymorphic.
+Like Map and List, all Set terms are sets of terms of the KItem sort.

+

A Set pattern has the exact same restrictions as a Map pattern, except that
+its elements are treated like keys, and there are no values. It has the same
+performance characteristics as well. However, syntactically it is more similar
+to the List sort: An empty Set is represented by .Set, but a set element
+is represented by the SetItem symbol.

+

Matching behaves similarly to the Map sort: a set pattern with no variables
+of sort Set will match if the set has exactly as many bindings as SetItem
+symbols, and if each element pattern matches one distinct element in the set.
+A set with a variable of sort Set also matches any superset of such a set.
+As with map, the elements left over will be bound to the Set variable (or
+.Set if no elements are left over).

+

Like Map, the ... syntax on a set is syntactic sugar for an anonymous
+variable of sort Set.

+

Here is an example of a simple modification to LESSON-16-A which uses a Set
+to ensure that variables are never declared more than once. In practice, you
+would likely just use the in_keys symbol over maps to test for this, but
+it's still useful as an example of sets in practice:

+
module LESSON-16-C-SYNTAX
+  imports LESSON-16-A-SYNTAX
+endmodule
+
+module LESSON-16-C
+  imports LESSON-16-C-SYNTAX
+  imports BOOL
+  imports SET
+
+  configuration <T>
+                  <k> $PGM:Pgm </k>
+                  <state> .Map </state>
+                  <declared> .Set </declared>
+                </T>
+
+  // declaration sequence
+  rule <k> D:Decl P:Pgm => D ~> P ...</k>
+  rule <k> .Pgm => . ...</k>
+
+  // variable declaration
+  rule <k> int X:Id = I:Int ; => . ...</k>
+       <state> STATE => STATE [ X <- I ] </state>
+       <declared> D => D SetItem(X) </declared>
+    requires notBool X in D
+
+  // variable lookup
+  rule <k> X:Id => I ...</k>
+       <state>... X |-> I ...</state>
+       <declared>... SetItem(X) ...</declared>
+
+  syntax Bool ::= isKResult(K) [symbol, function]
+  rule isKResult(_:Int) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

Now if we krun a program containing duplicate declarations, it will get
+stuck on the declaration.

+

Exercises

+ +
    +
  1. Modify your solution to Lesson 1.14, Exercise 2 and introduce the sorts
    +Decls, Decl, and Stmt which include variable and function declaration
    +(without function parameters), and return and assignment statements, as well
    +as call expressions. Use List and Map to implement these operators, making
    +sure to consider the interactions between components, such as saving and
    +restoring the environment of variables at each call site. Don't worry about
    +local function definitions or global variables for now. Make sure to test the
    +resulting interpreter.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.17: Cell Multiplicity and Cell Collections.

+

Lesson 1.17: Cell Multiplicity and Cell Collections

+ +

The purpose of this lesson is to explain how you can create optional cells
+and cells that repeat multiple times in a configuration using a feature called
+cell multiplicity.

+

Cell Multiplicity

+ +

K allows you to specify attributes for cell productions as part of the syntax
+of configuration declarations. Unlike regular productions, which use the []
+syntax for attributes, configuration cells use an XML-like attribute syntax:

+
configuration <k color="red"> $PGM:K </k>
+

This configuration declaration gives the <k> cell the color red during
+unparsing using the color attribute as discussed in
+Lesson 1.9.

+

However, in addition to the usual attributes for productions, there are some
+other attributes that can be applied to cells with special meaning. One such
+attribute is the multiplicity attribute. By default, each cell that is
+declared occurs exactly once in every configuration term. However, using the
+multiplicity attribute, this default behavior can be changed. There are two
+values that this attribute can have: ? and *.

+

Optional cells

+ +

The first cell multiplicity we will discuss is ?. Similar to a regular
+expression language, this attribute tells the compiler that this cell can
+appear 0 or 1 times in the configuration. In other words, it is an
+optional cell. By default, K does not create optional cells in the initial
+configuration, unless that optional cell has a configuration variable inside
+it. However, it is possible to override the default behavior and create that
+cell initially by adding the additional cell attribute initial="".

+

K uses the .Bag symbol to represent the absence of any cells in a particular
+rule. Consider the following module:

+
module LESSON-17-A
+  imports INT
+
+  configuration <k> $PGM:K </k>
+                <optional multiplicity="?"> 0 </optional>
+
+  syntax KItem ::= "init" | "destroy"
+
+  rule <k> init => . ...</k>
+       (.Bag => <optional> 0 </optional>)
+  rule <k> destroy => . ...</k>
+       (<optional> _ </optional> => .Bag)
+
+endmodule
+

In this definition, when the init symbol is executed, the <optional> cell
+is added to the configuration, and when the destroy symbol is executed, it
+is removed. Any rule that matches on that cell will only match if that cell is
+present in the configuration.

+

Exercise

+ +

Create a simple definition with a Stmts sort that is a List{Stmt,""} and
+a Stmt sort with the constructors
+syntax Stmt ::= "enable" | "increment" | "decrement" | "disable". The
+configuration should have an optional cell that contains an integer that
+is created with the enable command, destroyed with the disable command,
+and its value is incremented or decremented by the increment and decrement
+command.

+

Cell collections

+ +

The second type of cell multiplicity we will discuss is *. Simlar to a
+regular expression language, this attribute tells the compiler that this cell
+can appear 0 or more times in the configuration. In other words, it is a
+cell collection. Cells with multiplicity * must be the only child of
+their parent cell. As a convention, the inner cell is usually named with the
+singular form of what it contains, and the outer cell with the plural form, for
+example, "thread" and "threads".

+

All cell collections are required to have the type attribute set to either
+Set or Map. A Set cell collection is represented as a set and behaves
+internally the same as the Set sort, although it actually declares a new
+sort. A Map cell collection is represented as a Map in which the first
+subcell of the cell collection is the key and the remaining cells are the
+value.

+

For example, consider the following module:

+
module LESSON-17-B
+  imports INT
+  imports BOOL
+  imports ID-SYNTAX
+
+  syntax Stmt ::= Id "=" Exp ";" [strict(2)]
+                | "return" Exp ";" [strict]
+  syntax Stmts ::= List{Stmt,""}
+  syntax Exp ::= Id
+               | Int
+               | Exp "+" Exp [seqstrict]
+               | "spawn" "{" Stmts "}"
+               | "join" Exp ";" [strict]
+
+  configuration <threads>
+                  <thread multiplicity="*" type="Map">
+                    <id> 0 </id>
+                    <k> $PGM:K </k>
+                  </thread>
+                </threads>
+                <state> .Map </state>
+                <next-id> 1 </next-id>
+
+  rule <k> X:Id => I:Int ...</k>
+       <state>... X |-> I ...</state>
+  rule <k> X:Id = I:Int ; => . ...</k>
+       <state> STATE => STATE [ X <- I ] </state>
+  rule <k> S:Stmt Ss:Stmts => S ~> Ss ...</k>
+  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+
+  rule <thread>...
+         <k> spawn { Ss } => NEXTID ...</k>
+       ...</thread>
+       <next-id> NEXTID => NEXTID +Int 1 </next-id>
+       (.Bag =>
+       <thread>
+         <id> NEXTID </id>
+         <k> Ss </k>
+       </thread>)
+
+  rule <thread>...
+         <k> join ID:Int ; => I ...</k>
+       ...</thread>
+       (<thread>
+         <id> ID </id>
+         <k> return I:Int ; ...</k>
+       </thread> => .Bag)
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_) => false [owise]
+endmodule
+

This module implements a very basic fork/join semantics. The spawn expression
+spawns a new thread to execute a sequence of statements and returns a thread
+id, and the join statement waits until a thread executes return and then
+returns the return value of the thread.

+

Note something quite novel here: the <k> cell is inside a cell of
+multiplicity *. Since the <k> cell is just a regular cell (mostly), this
+is perfectly allowable. Rules that don't mention a specific thread are
+automatically completed to match any thread.

+

When you execute programs in this language, the cells in the cell collection
+get sorted and printed like any other collection, but they still display like
+cells. Rules in this language also benefit from all the structural power of
+cells, allowing you to omit cells you don't care about or complete the
+configuration automatically. This allows you to have the power of cells while
+still being a collection under the hood.

+

Exercises

+ +
    +
  1. Modify the solution from Lesson 1.16, Exercise 1 so that the cell you use to
    +keep track of functions in a Map is now a cell collection. Run some programs
    +and compare how they get unparsed before and after this change.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.18: Term Equality and the Ternary Operator.

+

Lesson 1.18: Term Equality and the Ternary Operator

+ +

The purpose of this lesson is to introduce how to compare equality of terms in
+K, and how to put conditional expressions directly into the right-hand side of
+rules.

+

Term Equality

+ +

One major way you can compare whether two terms are equal in K is to simply
+match both terms with a variable with the same name. This will only succeed
+in matching if the two terms are equal structurally. However, sometimes this
+is impractical, and it is useful to have access to a way to actually compare
+whether two terms in K are equal. The operator for this is found in
+domains.md in the K-EQUAL
+module. The operator is ==K and takes two terms of sort K and returns a
+Bool. It returns true if they are equal. This includes equality over builtin
+types such as Map and Set where equality is not purely structural in
+nature. However, it does not include any notion of semantic equality over
+user-defined syntax. The inverse symbol for inequality is =/=K.

+

Ternary Operator

+ +

One way to introduce conditional logic in K is to have two separate rules,
+each with a side condition (or one rule with a side condition and another with
+the owise attribute). However, sometimes it is useful to explicitly write
+a conditional expression directly in the right-hand side of a rule. For this
+purpose, K defines one more operator in the K-EQUAL module, which corresponds
+to the usual ternary operator found in many languages. Here is an example of its
+usage (lesson-18.k):

+
module LESSON-18
+  imports INT
+  imports BOOL
+  imports K-EQUAL
+
+  syntax Exp ::= Int | Bool | "if" "(" Exp ")" Exp "else" Exp [strict(1)]
+
+  syntax Bool ::= isKResult(K) [function, symbol]
+  rule isKResult(_:Int) => true
+  rule isKResult(_:Bool) => true
+
+  rule if (B:Bool) E1:Exp else E2:Exp => #if B #then E1 #else E2 #fi
+endmodule
+

Note the symbol on the right-hand side of the final rule. This symbol is
+polymorphic: B must be of sort Bool, but E1 and E2 could have been
+any sort so long as both were of the same sort, and the sort of the entire
+expression becomes equal to that sort. K supports polymorphic built-in
+operators, but does not yet allow users to write their own polymorphic
+productions.

+

The behavior of this function is to evaluate the Boolean expression to a
+Boolean, then pick one of the two children and return it based on whether the
+Boolean is true or false. Please note that it is not a good idea to use this
+symbol in cases where one or both of the children is potentially undefined
+(for example, an integer expression that divides by zero). While the default
+implementation is smart enough to only evaluate the branch that happens to be
+picked, this will not be true when we begin to do program verification. If
+you need short circuiting behavior, it is better to use a side condition.

+

Exercises

+ +
    +
  1. +

    Write a function in K that takes two terms of sort K and returns an
    +Int: the Int should be 0 if the terms are equal and 1 if the terms are
    +unequal.

    +
  2. +
  3. +

    Modify your solution to Lesson 1.16, Exercise 1 and introduce an if
    +Stmt to the syntax of the language, then implement it using the #if symbol.
    +Make sure to write tests for the resulting interpreter.

    +
  4. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.19: Debugging with GDB.

+

Lesson 1.19: Debugging with GDB or LLDB

+ +

The purpose of this lesson is to teach how to debug your K interpreter using
+the K-language support provided in GDB or
+LLDB.

+

Caveats

+ +

This lesson has been written with GDB support on Linux in mind. Unfortunately,
+on macOS, GDB has limited support. To address this, we have introduced early
+experimental support for debugging with LLDB on macOS. In some cases, the
+features supported by LLDB are slightly different to those supported by GDB; the
+tutorial text will make this clear where necessary. If you use a macOS with an
+LLVM version older than 15, you may need to upgrade it to use the LLDB
+correctly. If you encounter an issue on either operating system, please open an
+issue against the K repository.

+

Getting started

+ +

On Linux, you will need GDB in order to complete this lesson. If you do not
+already have GDB installed, then do so. Steps to install GDB are outlined in
+this GDB Tutorial.

+

On macOS, LLDB should already have been installed with K's build dependencies
+(whether you have built K from source, or installed it using kup or Homebrew).

+

The first thing neccessary in order to debug a K interpreter is to build the
+interpreter with full debugging support enabled. This can be done relatively
+simply. First, run kompile with the command line flag --enable-llvm-debug.
+The resulting compiled K definition will be ready to support debugging.

+

Once you have a compiled K definition and a program you wish to debug, you can
+start the debugger by passing the --debugger flag to krun. This will
+automatically load the program you are executing into GDB and drop you into a
+GDB shell ready to start executing the program.

+

As an example, consider the following K definition (lesson-19-a.k):

+
module LESSON-19-A
+  imports INT
+
+  rule I => I +Int 1
+    requires I <Int 100
+endmodule
+

If we compile this definition with kompile lesson-19-a.k --enable-llvm-debug,
+and run the program 0 in the debugger with krun -cPGM=0 --debugger, we will
+see the following output (roughly, and depending on which platform you are
+using):

+

GDB / Linux

+ +
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
+Copyright (C) 2020 Free Software Foundation, Inc.
+License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
+This is free software: you are free to change and redistribute it.
+There is NO WARRANTY, to the extent permitted by law.
+Type "show copying" and "show warranty" for details.
+This GDB was configured as "x86_64-linux-gnu".
+Type "show configuration" for configuration details.
+For bug reporting instructions, please see:
+<http://www.gnu.org/software/gdb/bugs/>.
+Find the GDB manual and other documentation resources online at:
+    <http://www.gnu.org/software/gdb/documentation/>.
+
+For help, type "help".
+Type "apropos word" to search for commands related to "word"...
+Reading symbols from ./lesson-19-a-kompiled/interpreter...
+warning: File "/home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-a-kompiled/interpreter" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load".
+To enable execution of this file add
+        add-auto-load-safe-path /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-a-kompiled/interpreter
+line to your configuration file "/home/dwightguth/.gdbinit".
+To completely disable this security protection add
+        set auto-load safe-path /
+line to your configuration file "/home/dwightguth/.gdbinit".
+For more information about this security protection see the
+"Auto-loading safe path" section in the GDB manual.  E.g., run from the shell:
+        info "(gdb)Auto-loading safe path"
+(gdb)
+

To make full advantage of the GDB features of K, you should follow the first
+command listed in this output message and add the corresponding
+add-auto-load-safe-path command to your ~/.gdbinit file as prompted.
+Please note that the path will be different on your machine than the one
+listed above. Adding directories to the "load safe path" effectively tells GDB
+to trust those directories. All content under a given directory will be recursively
+trusted, so if you want to avoid having to add paths to the "load safe path" every
+time you kompile a different K definition, then you can just trust a minimal
+directory containing all your kompiled files; however, do not choose a top-level directory containing arbitrary files as this amounts to trusting arbitrary files and is a security risk. More info on the load safe path
+can be found here.

+

LLDB / macOS

+ +
(lldb) target create "./lesson-19-a-kompiled/interpreter"
+warning: 'interpreter' contains a debug script. To run this script in this debug session:
+
+    command script import "/Users/brucecollie/code/scratch/lesson-19-a-kompiled/interpreter.dSYM/Contents/Resources/Python/interpreter.py"
+
+To run all discovered debug scripts in this session:
+
+    settings set target.load-script-from-symbol-file true
+
+Current executable set to '/Users/brucecollie/code/scratch/lesson-19-a-kompiled/interpreter' (x86_64).
+(lldb) settings set -- target.run-args  ".krun-2023-03-20-11-22-46-TcYt9ffhb2/tmp.in.RupiLwHNfn" "-1" ".krun-2023-03-20-11-22-46-TcYt9ffhb2/result.kore"
+(lldb) 
+

LLDB applies slightly different security policies to GDB. To load K's debugging
+scripts for this session only, you can run the command script import line at
+the LLDB prompt. The loaded scripts will not persist across debugging sessions
+if you do this. It is also possible to configure LLDB to automatically load the
+K scripts when an interpreter is started in LLDB; doing so requires a slightly
+less broad permission than GDB.

+

On macOS, the .dSYM directory that contains debugging symbols for an
+executable can also contain Python scripts in Contents/Resources/Python. If
+there is a Python script with a name matching the name of the current executable
+(here, interpreter and interpreter.py), it will be automatically loaded if
+the target.load-script-from-symbol-file setting is set). You can therefore add
+the settings set command to your ~/.lldbinit without enabling full arbitrary
+code execution, but you should be aware of the paths from which code can be
+executed if you do so.

+

Basic commands

+ +
+

LLDB Note: the k start and k step commands are currently not
+implemented in the K LLDB scripts. To work around this limitation temporarily,
+you can run process launch --stop-at-entry instead of k start. To emulate
+k step, first run rbreak k_step once, then continue instead of each k step. We hope to address these limitations soon.

+
+

The most basic commands you can execute in the K GDB session are to run your
+program or to step through it. The first can be accomplished using GDB's
+built-in run command. This will automatically start the program and begin
+executing it. It will continue until the program aborts or finishes, or the
+debugger is interrupted with Ctrl-C.

+

Sometimes you want finer-grained control over how you proceed through the
+program you are debugging. To step through the rule applications in your
+program, you can use the k start and k step GDB commands.

+

k start is similar to the built-in start command in that it starts the
+program and then immediately breaks before doing any work. However, unlike
+the start command which will break immediately after the main method of
+a program is executed, the K start program will initialize the rewriter,
+evaluate the initial configuration, and break immediately prior to applying
+any rewrite steps.

+

In the example above, here is what we see when we run the k start command:

+
Temporary breakpoint 1 at 0x239210
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-a-kompiled/interpreter .krun-2021-08-13-14-10-50-sMwBkbRicw/tmp.in.01aQt85TaA -1 .krun-2021-08-13-14-10-50-sMwBkbRicw/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Temporary breakpoint 1, 0x0000000000239210 in main ()
+0x0000000000231890 in step (subject=<k>
+  0 ~> .
+</k>)
+(gdb)
+

As you can see, we are stopped at the step function in the interpreter.
+This function is responsible for taking top-level rewrite steps. The subject
+parameter to this function is the current K configuration.

+

We can step through K rewrite steps one at a time by running the k step
+command. By default, this takes a single rewrite step (including any function
+rule applications that are part of that step).

+

Here is what we see when we run that command:

+
Continuing.
+
+Temporary breakpoint -22, 0x0000000000231890 in step (subject=<k>
+  1 ~> .
+</k>)
+(gdb)
+

As we can see, we have taken a single rewrite step. We can also pass a number
+to the k step command which indicates the number of rewrite steps to take.

+

Here is what we see if we run k step 10:

+
Continuing.
+
+Temporary breakpoint -23, 0x0000000000231890 in step (subject=<k>
+  11 ~> .
+</k>)
+(gdb)
+

As we can see, ten rewrite steps were taken.

+

Breakpoints

+ +

The next important step in debugging an application in GDB is to be able to
+set breakpoints. Generally speaking, there are three types of breakpoints we
+are interested in a K semantics: Setting a breakpoint when a particular
+function is called, setting a breakpoint when a particular rule is applied,
+and setting a breakpoint when a side condition of a rule is evaluated.

+

The easiest way to do the first two things is to set a breakpoint on the
+line of code containing the function or rule.

+

For example, consider the following K definition (lesson-19-b.k):

+
module LESSON-19-B
+  imports BOOL
+
+  syntax Bool ::= isBlue(Fruit) [function]
+  syntax Fruit ::= Blueberry() | Banana()
+  rule isBlue(Blueberry()) => true
+  rule isBlue(Banana()) => false
+
+  rule F:Fruit => isBlue(F)
+endmodule
+

Once this program has been compiled for debugging, we can run the program
+Blueberry(). We can then set a breakpoint that stops when the isBlue
+function is called with the following command in GDB:

+
break lesson-19-b.k:4
+

Similarly, in LLDB, run:

+
breakpoint set --file lesson-19-b.k --line 4
+

Here is what we see if we set this breakpoint and then run the interpreter:

+
(gdb) break lesson-19-b.k:4
+Breakpoint 1 at 0x231040: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k, line 4.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b-kompiled/interpreter .krun-2021-08-13-14-20-27-vXOQmV6lwS/tmp.in.fga98yqXlc -1 .krun-2021-08-13-14-20-27-vXOQmV6lwS/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, LblisBlue'LParUndsRParUnds'LESSON-19-B'Unds'Bool'Unds'Fruit (_1=Blueberry ( )) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k:4
+4         syntax Bool ::= isBlue(Fruit) [function]
+(gdb)
+
(lldb) breakpoint set --file lesson-19-b.k --line 4
+Breakpoint 1: where = interpreter`LblisBlue'LParUndsRParUnds'LESSON-19-B'Unds'Bool'Unds'Fruit + 20 at lesson-19-b.k:4:19, address = 0x0000000100003ff4
+(lldb) run
+Process 50546 launched: '/Users/brucecollie/code/scratch/lesson-19-b-kompiled/interpreter' (x86_64)
+Process 50546 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x0000000100003ff4 interpreter`LblisBlue'LParUndsRParUnds'LESSON-19-B'Unds'Bool'Unds'Fruit(_1=Blueberry ( )) at lesson-19-b.k:4:19
+   1   	module LESSON-19-B
+   2   	  imports BOOL
+   3   	
+-> 4   	  syntax Bool ::= isBlue(Fruit) [function]
+   5   	  syntax Fruit ::= Blueberry() | Banana()
+   6   	  rule isBlue(Blueberry()) => true
+   7   	  rule isBlue(Banana()) => false
+(lldb)
+

As we can see, we have stopped at the point where we are evaluating that
+function. The value _1 that is a parameter to that function shows the
+value passed to the function by the caller.

+

We can also break when the isBlue(Blueberry()) => true rule applies by simply
+changing the line number to the line number of that rule:

+
(gdb) break lesson-19-b.k:6
+Breakpoint 1 at 0x2af710: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k, line 6.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b-kompiled/interpreter .krun-2021-08-13-14-32-36-7kD0ic7XwD/tmp.in.8JNH5Qtmow -1 .krun-2021-08-13-14-32-36-7kD0ic7XwD/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, apply_rule_138 () at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k:6
+6         rule isBlue(Blueberry()) => true
+(gdb)
+
(lldb) breakpoint set --file lesson-19-b.k --line 6
+Breakpoint 1: where = interpreter`apply_rule_140 at lesson-19-b.k:6:8, address = 0x0000000100004620
+(lldb) run
+Process 50681 launched: '/Users/brucecollie/code/scratch/lesson-19-b-kompiled/interpreter' (x86_64)
+Process 50681 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x0000000100004620 interpreter`apply_rule_140 at lesson-19-b.k:6:8
+   3   	
+   4   	  syntax Bool ::= isBlue(Fruit) [function]
+   5   	  syntax Fruit ::= Blueberry() | Banana()
+-> 6   	  rule isBlue(Blueberry()) => true
+   7   	  rule isBlue(Banana()) => false
+   8   	
+   9   	  rule F:Fruit => isBlue(F)
+(lldb) 
+

We can also do the same with a top-level rule:

+
(gdb) break lesson-19-b.k:9
+Breakpoint 1 at 0x2aefa0: lesson-19-b.k:9. (2 locations)
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b-kompiled/interpreter .krun-2021-08-13-14-33-13-9fC8Sz4aO3/tmp.in.jih1vtxSiQ -1 .krun-2021-08-13-14-33-13-9fC8Sz4aO3/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, apply_rule_107 (Var'Unds'DotVar0=<generatedCounter>
+  0
+</generatedCounter>, Var'Unds'DotVar1=., VarF=Blueberry ( )) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k:9
+9         rule F:Fruit => isBlue(F)
+(gdb)
+
(lldb) breakpoint set --file lesson-19-b.k --line 9
+Breakpoint 1: 2 locations.
+(lldb) run
+Process 50798 launched: '/Users/brucecollie/code/scratch/lesson-19-b-kompiled/interpreter' (x86_64)
+Process 50798 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x0000000100003f2e interpreter`apply_rule_109(Var'Unds'DotVar0=<generatedCounter>
+  0
+</generatedCounter>, Var'Unds'DotVar1=., VarF=Blueberry ( )) at lesson-19-b.k:9:8
+   6   	  rule isBlue(Blueberry()) => true
+   7   	  rule isBlue(Banana()) => false
+   8   	
+-> 9   	  rule F:Fruit => isBlue(F)
+   10  	endmodule
+(lldb)  
+

Unlike the function rule above, we see several parameters to this function.
+These are the substitution that was matched for the function. Variables only
+appear in this substitution if they are actually used on the right-hand side
+of the rule.

+

Advanced breakpoints

+ +

Sometimes it is inconvenient to set the breakpoint based on a line number.

+

It is also possible to set a breakpoint based on the rule label of a particular
+rule. Consider the following definition (lesson-19-c.k):

+
module LESSON-19-C
+  imports INT
+  imports BOOL
+
+  syntax Bool ::= isEven(Int) [function]
+  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+
+endmodule
+

We will run the program isEven(4). We can set a breakpoint for when a rule
+applies by means of the MODULE-NAME.label.rhs syntax:

+
(gdb) break LESSON-19-C.isEven.rhs
+Breakpoint 1 at 0x2afda0: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k, line 6.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c-kompiled/interpreter .krun-2021-08-13-14-40-29-LNNT8YEZ61/tmp.in.ZG93vWCGGC -1 .krun-2021-08-13-14-40-29-LNNT8YEZ61/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, LESSON-19-C.isEven.rhs () at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:6
+6         rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+(gdb)
+
(lldb) breakpoint set --name LESSON-19-C.isEven.rhs
+Breakpoint 1: where = interpreter`LESSON-19-C.isEven.rhs at lesson-19-c.k:6:18, address = 0x00000001000038e0
+(lldb) run
+Process 51205 launched: '/Users/brucecollie/code/scratch/lesson-19-c-kompiled/interpreter' (x86_64)
+Process 51205 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x00000001000038e0 interpreter`LESSON-19-C.isEven.rhs at lesson-19-c.k:6:18
+   3   	  imports BOOL
+   4   	
+   5   	  syntax Bool ::= isEven(Int) [function]
+-> 6   	  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+   7   	  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+   8   	
+   9   	endmodule
+(lldb) 
+

We can also set a breakpoint for when a rule's side condition is evaluated
+by means of the MODULE-NAME.label.sc syntax:

+
(gdb) break LESSON-19-C.isEven.sc
+Breakpoint 1 at 0x2afd70: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k, line 6.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c-kompiled/interpreter .krun-2021-08-13-14-41-48-1BoGfJRbYc/tmp.in.kg4F8cwfCe -1 .krun-2021-08-13-14-41-48-1BoGfJRbYc/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, LESSON-19-C.isEven.sc (VarI=4) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:6
+6         rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+(gdb) finish
+Run till exit from #0  LESSON-19-C.isEven.sc (VarI=4) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:6
+0x00000000002b2662 in LblisEven'LParUndsRParUnds'LESSON-19-C'Unds'Bool'Unds'Int (_1=4) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:5
+5         syntax Bool ::= isEven(Int) [function]
+Value returned is $1 = true
+(gdb)
+
(lldb) breakpoint set --name LESSON-19-C.isEven.sc
+Breakpoint 1: where = interpreter`LESSON-19-C.isEven.sc + 1 at lesson-19-c.k:6:18, address = 0x00000001000038c1
+(lldb) run
+Process 52530 launched: '/Users/brucecollie/code/scratch/lesson-19-c-kompiled/interpreter' (x86_64)
+Process 52530 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x00000001000038c1 interpreter`LESSON-19-C.isEven.sc(VarI=0x0000000101800088) at lesson-19-c.k:6:18
+   3   	  imports BOOL
+   4   	
+   5   	  syntax Bool ::= isEven(Int) [function]
+-> 6   	  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+   7   	  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+   8   	
+   9   	endmodule
+(lldb) finish
+Process 52649 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = step out
+Return value: (bool) $0 = true
+
+    frame #0: 0x00000001000069e5 interpreter`LblisEven'LParUndsRParUnds'LESSON-19-C'Unds'Bool'Unds'Int(_1=0x0000000101800088) at lesson-19-c.k:5:19
+   2   	  imports INT
+   3   	  imports BOOL
+   4   	
+-> 5   	  syntax Bool ::= isEven(Int) [function]
+   6   	  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+   7   	  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+   8
+(lldb)
+

Here we have used the built-in command finish to tell us whether the side
+condition returned true or not. Note that once again, we see the substitution
+that was matched from the left-hand side. Like before, a variable will only
+appear here if it is used in the side condition.

+

Debugging rule matching

+ +

Sometimes it is useful to try to determine why a particular rule did or did
+not apply. K provides some basic debugging commands which make it easier
+to determine this.

+

Consider the following K definition (lesson-19-d.k):

+
module LESSON-19-D
+
+  syntax Foo ::= foo(Bar)
+  syntax Bar ::= bar(Baz) | bar2(Baz)
+  syntax Baz ::= baz() | baz2()
+
+  rule [baz]: foo(bar(baz())) => .K
+
+endmodule
+

Suppose we try to run the program foo(bar(baz2())). It is obvious from this
+example why the rule in this definition will not apply. However, in practice,
+such cases are not always obvious. You might look at a rule and not immediately
+spot why it didn't apply on a particular term. For this reason, it can be
+useful to get the debugger to provide a log about how it tried to match that
+term. You can do this with the k match command. If you are stopped after
+having run k start or k step, you can obtain this log for any rule after
+any step by running the command k match MODULE.label subject for a particular
+top-level rule label.

+

For example, with the baz rule above, we get the following output:

+
(gdb) k match LESSON-19-D.baz subject
+Subject:
+baz2 ( )
+does not match pattern:
+baz ( )
+
(lldb) k match LESSON-19-D.baz subject
+Subject:
+baz2 ( )
+does not match pattern:
+baz ( )
+

As we can see, it provided the exact subterm which did not match against the
+rule, as well as the particular subpattern it ought to have matched against.

+

This command does not actually take any rewrite steps. In the event that
+matching actually succeeds, you will still need to run the k step command
+to advance to the next step.

+

Final notes

+ +

In addition to the functionality provided above, you have the full power of
+GDB or LLDB at your disposal when debugging. Some features are not particularly
+well-adapted to K code and may require more advanced knowledge of the
+term representation or implementation to use effectively, but anything that
+can be done in GDB or LLDB can in theory be done using this debugging functionality.
+We suggest you refer to the
+GDB Documentation or
+LLDB Tutorial if you
+want to try to do something and are unsure as to how.

+

Exercises

+ +
    +
  1. Compile your solution to Lesson 1.18, Exercise 2 with debugging support
    +enabled and step through several programs you have previously used to test.
    +Then set a breakpoint on the isKResult function and observe the state of the
    +interpreter when stopped at that breakpoint. Set a breakpoint on the rule for
    +addition and run a program that causes it to be stopped at that breakpoint.
    +Finally, step through the program until the addition symbol is at the top
    +of the K cell, and then use the k match command to report the reason why
    +the subtraction rule does not apply. You may need to modify the definition
    +to insert some rule labels.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.20: K Backends and the Haskell Backend.

+

Lesson 1.20: K Backends and the Haskell Backend

+ +

The purpose of this lesson is to teach about the multiple backends of K,
+in particular the Haskell Backend which is the complement of the backend we
+have been using so far.

+

K Backends

+ +

Thus far, we have not discussed the distinction between the K frontend and
+the K backends at all. We have simply assumed that if you run kompile on a
+K definition, there will be a compiler backend that will allow you to execute
+the K definition you have compiled.

+

K actually has multiple different backends. The one we have been using so far
+implicitly, the default backend, is called the LLVM Backend. It is
+designed to support efficient, optimized concrete execution and search. It
+does this by compiling your K definition to LLVM bitcode and then using LLVM
+to generate machine code for it that is compiled and linked and executed.
+However, K is a formal methods toolkit at the end of the day, and the primary
+goal many people have when defining a programming language in K is to
+ultimately be able to perform more advanced verification on programs in their
+programming language.

+

It is for this purpose that K also provides the Haskell Backend, so called
+because it is implemented in Haskell. While we will cover the features of the
+Haskell Backend in more detail in the next two lessons, the important thing to
+understand is that it is a separate backend which is optimized for more formal
+reasoning about programming languages. While it is capable of performing
+concrete execution, it does not do so as efficiently as the LLVM Backend.
+In exchange, it provides more advanced features.

+

Choosing a backend

+ +

You can choose which backend to use to compile a K definition by means of the
+--backend flag to kompile. By default, if you do not specify this flag, it
+is equivalent to if you had specified --backend llvm. However, to use the
+Haskell Backend instead, you can simply say kompile --backend haskell on a
+particular K definition.

+

As an example, here is a simple K definition that we have seen before in the
+previous lesson (lesson-20.k):

+
module LESSON-20
+  imports INT
+
+  rule I => I +Int 1
+    requires I <Int 100
+endmodule
+

Previously we compiled this definition using the LLVM Backend, but if we
+instead execute the command kompile lesson-20.k --backend haskell, we
+will get an interpreter for this K definition that is implemented in Haskell
+instead. Unlike the default LLVM Backend, the Haskell Backend is not a
+compiler per se. It does not generate new Haskell code corresponding to your
+programming language and then compile and execute it. Instead, it is an
+interpreter which reads the generated IR from kompile and implements in
+Haskell an interpreter that is capable of interpreting any K definition.

+

Note that on arm64 macOS (Apple Silicon), there is a known issue with the Compact
+library that causes crashes in the Haskell backend. Pass the additional flag
+--no-haskell-binary to kompile to resolve this.
+This flag is also needed when using krun.

+

Exercise

+ +

Try running the program 0 in this K definition on the Haskell Backend and
+compare the final configuration to what you would get compiling the same
+definition with the LLVM Backend.

+

Legacy backends

+ +

As a quick note, K does provide one other backend, which exists primarily as
+legacy code which should be considered deprecated. This is the
+Java Backend. The Java Backend is essentially a precursor to the Haskell
+Backend. We will not cover this backend in any detail since it is deprecated,
+but we still mention it here for the purposes of understanding.

+

Exercises

+ +
    +
  1. Compile your solution to Lesson 1.18, Exercise 2 with the Haskell Backend
    +and execute some programs. Compare the resulting configurations with the
    +output of the same program on the LLVM Backend. Note that if you are getting
    +different behaviors on the Haskell backend, you might have some luck debugging
    +by passing --search to krun when using the LLVM backend.
  2. +
+

Next lesson

+ +

Once you have completed the above exercises, you can continue to
+Lesson 1.21: Unification and Symbolic Execution.

+

Lesson 1.21: Unification and Symbolic Execution

+ +

The purpose of this lesson is to teach the basic concepts of symbolic execution
+in order to introduce the unique capabilities of the Haskell Backend at a
+conceptual level.

+

Symbolic Execution

+ +

Thus far, all of the programs we have run using K have been concrete
+configurations. What this means is that the configuration we use to initialize
+the K rewrite engine is concrete; in other words, contains no logical
+variables. The LLVM Backend is a concrete execution engine, meaning that
+it is only capable of rewriting concrete configurations.

+

By contrast, the Haskell Backend performs symbolic execution, which is
+capable of rewriting any configuration, including those where parts of the
+configuration are symbolic, ie, contain variables or uninterpreted
+functions.

+

Unification

+ +

Previously, we have introduced the concept that K rewrite rules operate by
+means of pattern matching: the current configuration being rewritten is pattern
+matched against the left-hand side of the rewrite rule, and the substitution
+is used in order to construct a new term from the right-hand side. In symbolic
+execution, we use
+unification
+instead of pattern matching. To summarize, unification behaves akin to a
+two-way pattern matching where both the configuration and the left-hand side
+of the rule can contain variables, and the algorithm generates a
+most general unifier containing substitutions for the variables in both
+which will make both terms equal.

+

Feasibility

+ +

Unification by itself cannot completely solve the problem of symbolic
+execution. One task symbolic execution must perform is to identify whether
+a particular symbolic term is feasible, that is to say, that there actually
+exists a concrete instantiation of that term such that all the logical
+constraints on that term can actually be satisfied. The Haskell Backend
+delegates this task to Z3, an
+SMT solver.
+This solver is used to periodically trim configurations that are determined
+to be mathematically infeasible.

+

Symbolic terms

+ +

The final component of symbolic execution consists of the task of introducing
+symbolic terms into the configuration. This can be done one of two different
+ways. First, the term being passed to krun can actually be symbolic. This
+is less frequently used because it requires the user to construct an AST
+that contains variables, something which our current parsing capabilities are
+not well-equipped to do. The second, more common, way of introducing symbolic
+terms into a configuration consists of writing rules where there exists an
+existentially qualified variable on the right-hand side of the rule that does
+not exist on the left-hand side of the rule.

+

In order to prevent users from writing such rules by accident, K requires
+that such variables begin with the ? prefix. For example, here is a rule
+that rewrites a constructor foo to a symbolic integer:

+
rule <k> foo => ?X:Int ...</k>
+

When this rule applies, a fresh variable is introduced to the configuration, which
+then is unified against the rules that might apply in order to symbolically
+execute that configuration.

+

ensures clauses

+ +

We also introduce here a new feature of K rules that applies when a rule
+has this type of variable on the right-hand side: the ensures clause.
+An ensures clause is similar to a requires clause and can appear after
+a rule body, or after a requires clause. The ensures clause is used to
+introduce constraints that might apply to the variable that was introduced by
+that rule. For example, we could write the rule above with the additional
+constraint that the symbolic integer that was introduced must be less than
+five, by means of the following rule:

+
rule <k> foo => ?X:Int ...</k> ensures ?X <Int 5
+

Putting it all together

+ +

Putting all these pieces together, it is possible to use the Haskell Backend
+to perform symbolic reasoning about a particular K module, determining all the
+possible states that can be reached by a symbolic configuration.

+

For example, consider the following K definition (lesson-21.k):

+
module LESSON-21
+    imports INT
+
+    rule <k> 0 => ?X:Int ... </k> ensures ?X =/=Int 0
+    rule <k> X:Int => 5  ... </k> requires X >=Int 10
+endmodule
+

When we symbolically execute the program 0, we get the following output
+from the Haskell Backend:

+
    <k>
+      5 ~> .
+    </k>
+  #And
+    {
+      true
+    #Equals
+      ?X:Int >=Int 10
+    }
+  #And
+    #Not ( {
+      ?X:Int
+    #Equals
+      0
+    } )
+#Or
+    <k>
+      ?X:Int ~> .
+    </k>
+  #And
+    #Not ( {
+      true
+    #Equals
+      ?X:Int >=Int 10
+    } )
+  #And
+    #Not ( {
+      ?X:Int
+    #Equals
+      0
+    } )
+

Note some new symbols introduced by this configuration: #And, #Or, and
+#Equals. While andBool, orBool, and ==K represent functions of sort
+Bool, #And, #Or, and #Equals are matching logic connectives. We
+will discuss matching logic in more detail later in the tutorial, but the basic
+idea is that these symbols represent Boolean operators over the domain of
+configurations and constraints, as opposed to over the Bool sort.

+

Notice that the configuration listed above is a disjunction of conjunctions.
+This is the most common form of output that can be produced by the Haskell
+Backend. In this case, each conjunction consists of a configuration and a set
+of constraints. What this conjunction describes, essentially, is a
+configuration and a set of information that was derived to be true while
+rewriting that configuration.

+

Similar to how we saw --search in a previous lesson, the reason we have
+multiple disjuncts is because there are multiple possible output states
+for this program, depending on whether or not the second rule applied. In the
+first case, we see that ?X is greater than or equal to 10, so the second rule
+applied, rewriting the symbolic integer to the concrete integer 5. In the
+second case, we see that the second rule did not apply because ?X is less
+than 10. Moreover, because of the ensures clause on the first rule, we know
+that ?X is not zero, therefore the first rule will not apply a second time.
+If we had omitted this constraint, we would have ended up infinitely applying
+the first rule, leading to krun not terminating.

+

In the next lesson, we will cover how symbolic execution forms the backbone
+of deductive program verification in K and how we can use K to prove programs
+correct against a specification.

+

Exercises

+ +
    +
  1. Create another rule in LESSON-21 that rewrites odd integers greater than
    +ten to a symbolic even integer less than 10 and greater than 0. This rule will
    +now apply nondeterministically along with the existing rules. Predict what the
    +resulting output configuration will be from rewriting 0 after adding this
    +rule. Then run the program and see whether your prediction is correct.
  2. +
+

Once you have completed the above exercises, you can continue to
+Lesson 1.22: Basics of Deductive Program Verification using K.

+

Lesson 1.22: Basics of Deductive Program Verification using K

+ +

In this lesson, you will familiarize yourself with the basics of using K for
+deductive program verification.

+

1. Setup: Simple Programming Language with Function Calls

+ +

We base this lesson on a simple programming language with functions,
+assignment, if conditionals, and while loops. Take your time to study its
+formalization below (lesson-22.k):

+
module LESSON-22-SYNTAX
+    imports INT-SYNTAX
+    imports BOOL-SYNTAX
+    imports ID-SYNTAX
+
+    syntax Exp ::= IExp | BExp
+
+    syntax IExp ::= Id | Int
+
+    syntax KResult ::= Int | Bool | Ints
+
+    // Take this sort structure:
+    //
+    //     IExp
+    //    /    \
+    // Int      Id
+    //
+    // Through the List{_, ","} functor.
+    // Must add a `Bot`, for a common subsort for the empty list.
+
+    syntax Bot
+    syntax Bots ::= List{Bot, ","} [klabel(exps)]
+    syntax Ints ::= List{Int, ","} [klabel(exps)]
+                  | Bots
+    syntax Ids  ::= List{Id, ","}  [klabel(exps)]
+                  | Bots
+    syntax Exps ::= List{Exp, ","} [klabel(exps), seqstrict]
+                  | Ids | Ints
+
+    syntax IExp ::= "(" IExp ")" [bracket]
+                  | IExp "+" IExp [seqstrict]
+                  | IExp "-" IExp [seqstrict]
+                  > IExp "*" IExp [seqstrict]
+                  | IExp "/" IExp [seqstrict]
+                  > IExp "^" IExp [seqstrict]
+                  | Id "(" Exps ")" [strict(2)]
+
+    syntax BExp ::= Bool
+
+    syntax BExp ::= "(" BExp ")" [bracket]
+                  | IExp "<=" IExp [seqstrict]
+                  | IExp "<"  IExp [seqstrict]
+                  | IExp ">=" IExp [seqstrict]
+                  | IExp ">"  IExp [seqstrict]
+                  | IExp "==" IExp [seqstrict]
+                  | IExp "!=" IExp [seqstrict]
+
+    syntax BExp ::= BExp "&&" BExp
+                  | BExp "||" BExp
+
+    syntax Stmt ::=
+         Id "=" IExp ";" [strict(2)]                        // Assignment
+       | Stmt Stmt [left]                                   // Sequence
+       | Block                                              // Block
+       | "if" "(" BExp ")" Block "else" Block [strict(1)]   // If conditional
+       | "while" "(" BExp ")" Block                         // While loop
+       | "return" IExp ";"                    [seqstrict]   // Return statement
+       | "def" Id "(" Ids ")" Block                         // Function definition
+
+    syntax Block ::=
+         "{" Stmt "}"    // Block with statement
+       | "{" "}"         // Empty block
+endmodule
+
+module LESSON-22
+    imports INT
+    imports BOOL
+    imports LIST
+    imports MAP
+    imports LESSON-22-SYNTAX
+
+    configuration
+      <k> $PGM:Stmt </k>
+      <store> .Map </store>
+      <funcs> .Map </funcs>
+      <stack> .List </stack>
+
+ // -----------------------------------------------
+    rule <k> I1 + I2 => I1 +Int I2 ... </k>
+    rule <k> I1 - I2 => I1 -Int I2 ... </k>
+    rule <k> I1 * I2 => I1 *Int I2 ... </k>
+    rule <k> I1 / I2 => I1 /Int I2 ... </k>
+    rule <k> I1 ^ I2 => I1 ^Int I2 ... </k>
+
+    rule <k> I:Id => STORE[I] ... </k>
+         <store> STORE </store>
+
+ // ------------------------------------------------
+    rule <k> I1 <= I2 => I1  <=Int I2 ... </k>
+    rule <k> I1  < I2 => I1   <Int I2 ... </k>
+    rule <k> I1 >= I2 => I1  >=Int I2 ... </k>
+    rule <k> I1  > I2 => I1   >Int I2 ... </k>
+    rule <k> I1 == I2 => I1  ==Int I2 ... </k>
+    rule <k> I1 != I2 => I1 =/=Int I2 ... </k>
+
+    rule <k> B1 && B2 => B1 andBool B2 ... </k>
+    rule <k> B1 || B2 => B1  orBool B2 ... </k>
+
+    rule <k> S1:Stmt S2:Stmt => S1 ~> S2 ... </k>
+
+    rule <k> ID = I:Int ; => . ... </k>
+         <store> STORE => STORE [ ID <- I ] </store>
+
+    rule <k> { S } => S ... </k>
+    rule <k> {   } => . ... </k>
+
+    rule <k> if (true)   THEN else _ELSE => THEN ... </k>
+    rule <k> if (false) _THEN else  ELSE => ELSE ... </k>
+
+    rule <k> while ( BE ) BODY => if ( BE ) { BODY while ( BE ) BODY } else { } ... </k>
+
+    rule <k> def FNAME ( ARGS ) BODY => . ... </k>
+         <funcs> FS => FS [ FNAME <- def FNAME ( ARGS ) BODY ] </funcs>
+
+    rule <k> FNAME ( IS:Ints ) ~> CONT => #makeBindings(ARGS, IS) ~> BODY </k>
+         <funcs> ... FNAME |-> def FNAME ( ARGS ) BODY ... </funcs>
+         <store> STORE => .Map </store>
+         <stack> .List => ListItem(state(CONT, STORE)) ... </stack>
+
+    rule <k> return I:Int ; ~> _ => I ~> CONT </k>
+         <stack> ListItem(state(CONT, STORE)) => .List ... </stack>
+         <store> _ => STORE </store>
+
+    rule <k> return I:Int ; ~> . => I </k>
+         <stack> .List </stack>
+
+    syntax KItem ::= #makeBindings(Ids, Ints)
+                   | state(continuation: K, store: Map)
+ // ----------------------------------------------------
+    rule <k> #makeBindings(.Ids, .Ints) => . ... </k>
+    rule <k> #makeBindings((I:Id, IDS => IDS), (IN:Int, INTS => INTS)) ... </k>
+         <store> STORE => STORE [ I <- IN ] </store>
+endmodule
+

Next, compile this example using kompile lesson-22.k --backend haskell. If
+your processor is an Apple Silicon processor, add the --no-haskell-binary
+flag if the compilation fails.

+

2. Setup: Proof Environment

+ +

Next, take the following snippet of K code and save it in lesson-22-spec.k.
+This is a skeleton of the proof environment, and we will complete it as the
+lesson progresses.

+
requires "lesson-22.k"
+requires "domains.md"
+
+module LESSON-22-SPEC-SYNTAX
+    imports LESSON-22-SYNTAX
+
+endmodule
+
+module VERIFICATION
+    imports K-EQUAL
+    imports LESSON-22-SPEC-SYNTAX
+    imports LESSON-22
+    imports MAP-SYMBOLIC
+
+endmodule
+
+module LESSON-22-SPEC
+    imports VERIFICATION
+
+endmodule
+

3. Claims

+ +
    +
  1. The first claim we will ask K to prove is that 3 + 4, in fact, equals 7.
    +Claims are stated using the claim keyword, followed by the claim
    +statement:
  2. +
+
claim <k> 3 + 4 => 7 ... </k>
+

Add this claim to the LESSON-22-SPEC module and run the K prover using the
+command kprove lesson-22-spec.k. You should get back the output #Top,
+which denotes the Matching Logic equivalent of true and means, in this
+context, that all claims have been proven correctly.

+
    +
  1. The second claim reasons about the if statement that has a concrete condition:
  2. +
+
claim <k> if ( 3 + 4 == 7 ) {
+            $a = 1 ;
+            } else {
+            $a = 2 ;
+            }
+        => . ... </k>
+        <store> STORE => STORE [ $a <- 1 ] </store>
+

stating that the given program terminates (=> .), and when it does, the value
+of the variable $a is set to 1, meaning that the execution will have taken
+the then branch. Add this claim to the LESSON-22-SPEC module, but also add

+
syntax Id ::= "$a" [token]
+

to the LESSON-22-SPEC-SYNTAX module in order to declare $a as a token so
+that it can be used as a program variable. Re-run the K prover, which should
+again return #Top.

+
    +
  1. Our third claim demonstrates how to reason about both branches of an if
    +statement at the same time:
  2. +
+
claim <k> $a = A:Int ; $b = B:Int ;
+          if ($a < $b) {
+            $c = $b ;
+          } else {
+            $c = $a ;
+          }
+        => . ... </k>
+        <store> STORE => STORE [ $a <- A ] [ $b <- B ] [ $c <- ?C:Int ] </store>
+    ensures (?C ==Int A) orBool (?C ==Int B)
+

The program in question first assigns symbolic integers A and B to program
+variables $a and $b, respectively, and then executes the given if
+statement, which has a symbolic condition (A < B), updating the value of the
+program variable $c in both branches. The specification we give states that
+the if statement terminates, with $a and $b updated, respectively, to A
+and B, and $c updated to some symbolic integer value ?C. Via the
+ensures clause, which is used to specify additional constraints that hold
+after execution, we also state that this existentially quantified ?C equals
+either A or B.

+

Add the productions declaring $b and $c as tokens to the
+LESSON-22-SPEC-SYNTAX module, the claim to the LESSON-22-SPEC module, run
+the K prover again, and observe the output, which should not be #Top this
+time. This means that K was not able to prove the claim, and we now need to
+understand why. We do so by examining the output, which should look as follows:

+
    (InfoReachability) while checking the implication:
+    The configuration's term unifies with the destination's term,
+    but the implication check between the conditions has failed.
+
+  #Not (
+    #Exists ?C . {
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- ?C:Int ]
+      #Equals
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+    }
+  #And
+    {
+      true
+    #Equals
+      ?C ==Int A orBool ?C ==Int B
+    }
+  )
+#And
+  <generatedTop>
+    <k>
+      _DotVar1
+    </k>
+    <store>
+      STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+    </store>
+    <funcs>
+      _Gen3
+    </funcs>
+    <stack>
+      _Gen5
+    </stack>
+  </generatedTop>
+#And
+  {
+    true
+  #Equals
+    A <Int B
+  }
+

This output starts with a message telling us at which point the proof failed,
+followed by the final state, which consists of three parts: some negative
+Matching Logic (ML) constraints, the final configuration (<generatedTop> ... </generatedTop>), and some positive ML constraints. Generally speaking,
+these positive and the negative constraints could arise from various sources,
+such as (but not limited to) branches taken by the execution
+(e.g. { true #Equals A <Int B } or #Not ( { true #Equals A <Int B } )),
+or ensures constraints.

+

First, we examine the message:

+
(InfoReachability) while checking the implication:
+The configuration's term unifies with the destination's term,
+but the implication check between the conditions has failed.
+

which tells us that the structure of the final configuration is as expected,
+but that some of the associated constraints cannot be proven. We next look at
+the final configuration, in which the relevant item is the <store> ... </store> cell, because it is the only one that we are reasoning about. By
+inspecting its contents:

+
STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+

we see that we should be within the constraints of the ensures, since the
+value of $c in the store equals B in this branch. We next examine the
+negative and positive constraints of the output and, more often than not, the
+goal is to instruct K how to use the information from the final configuration
+and the positive constraints to falsify one of the negative constraints. This
+is done through simplifications.

+

So, the positive constraint that we have is

+
{ true #Equals A <Int B }
+

meaning that A <Int B holds. Given the analysed program, this tells us that
+we are in the then branch of the if. The negative constraint is

+
  #Not (
+    #Exists ?C . {
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- ?C:Int ]
+      #Equals
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+    }
+  #And
+    { true #Equals ?C ==Int A orBool ?C ==Int B }
+  )
+

and we observe, from the first equality, that the existential ?C should be
+instantiated with B. This would make both branches of the #And true,
+falsifying the outside #Not. We just need to show K how to conclude that
+?C ==Int B. We do so by introducing the following simplification into the
+VERIFICATION module:

+
rule { M:Map [ K <- V ] #Equals M [ K <- V' ] } => { V #Equals V' } [simplification]
+

which formalizes our internal understanding of ?C ==Int B. The rule states
+that when we update the same key in the same map with two values, and the
+resulting maps are equal, then the two values must be equal as well. The
+[simplification] attribute indicates to K to use this rule to simplify the
+state when trying to prove claims. Like function rules, simplification rules
+do not complete to the top of the configuration, but instead apply anywhere
+their left-hand-side matches. Re-run the K prover, which should now return
+#Top, indicating that K was able to use the simplification and prove the
+required claims.

+
    +
  1. Next, we show how to state and prove properties of while loops. In
    +particular, we consider the following loop
  2. +
+
claim
+    <k>
+        while ( 0 < $n ) {
+            $s = $s + $n;
+            $n = $n - 1;
+            } => . ...
+    </k>
+    <store>
+        $s |-> (S:Int => S +Int ((N +Int 1) *Int N /Int 2))
+        $n |-> (N:Int => 0)
+    </store>
+    requires N >=Int 0
+

which adds the sum of the first $n integers to $s, assuming the value of $n
+is non-negative to begin with. This is reflected in the store by stating that,
+after the execution of the loop, the original value of $s (which is set to
+equal some symbolic integer S) is incremented by ((N +Int 1) *Int N /Int 2), and the value of $n always equals 0. Add $n and $s as tokens in
+the LESSON-22-SPEC-SYNTAX module, the above claim to the LESSON-22-SPEC
+module, and run the K prover, which should return #Top.

+
    +
  1. Finally, our last claim is about a program that uses function calls:
  2. +
+
claim
+    <k>
+        def $sum($n, .Ids) {
+            $s = 0 ;
+            while (0 < $n) {
+                $s = $s + $n;
+                $n = $n - 1;
+            }
+            return $s;
+        }
+
+        $s = $sum(N:Int, .Ints);
+    => . ... </k>
+    <funcs> .Map => ?_ </funcs>
+    <store> $s |-> (_ => ((N +Int 1) *Int N /Int 2)) </store>
+    <stack> .List </stack>
+    requires N >=Int 0
+

Essentially, we have wrapped the while loop from claim 3.4 into a function
+$sum, and then called that function with a symbolic integer N, storing the
+return value in the variable $s. The specification states that this program
+ends up storing the sum of the first N integers in the variable $n. Add $sum
+to the LESSON-22-SPEC-SYNTAX module, the above claim to the
+LESSON-22-SPEC module, and run the K prover, which should again return
+#Top.

+

Exercises

+ +
    +
  1. +

    Change the condition of the if statement in part 3.2 to take the else
    +branch and adjust the claim so that the proof passes.

    +
  2. +
  3. +

    The post-condition of the specification in part 3.3 loses some information.
    +In particular, the value of ?C is in fact the maximum of A and B.
    +Prove the same claim as in 3.2, but with the post-condition ensures (?C ==Int maxInt(A, B)). For this, you will need to extend the VERIFICATION
    +module with two simplifications that capture the meaning of maxInt(A:Int, B:Int). Keep in mind that any rewriting rule can be used as a
    +simplification; in particular, that simplifications can have requires
    +clauses.

    +
  4. +
  5. +

    Following the pattern shown in part 3.4, assuming a non-negative initial
    +value of $b, specify and verify the following while loop:

    +
  6. +
+
while ( 0 < $b ) {
+    $a = $a + $c;
+    $b = $b - 1;
+    $c = $c - 1;
+}
+

Hint: You will not need additional simplifications---once you've got the
+specification right, the proof will go through.

+
    +
  1. Write an arbitrary yet not-too-complex function (or several functions
    +interacting with each other), and try to specify and verify it (them) in K.
  2. +
+

Section 2: Intermediate K Concepts

+ +

The goal of this second section is to supplement a beginning developer's
+knowledge of K after they have gained a basic understanding of K. Each lesson
+in this section can be completed independently in order to learn about a
+particular facet of the K language. The lessons are written to provide basic
+understanding of less commonly-used features of K to someone who is still
+learning K. For more complete references of these features, the reader ought to
+consult the User Manual.

+

The reader ought to be able to complete lessons in this section as needed in
+order to learn about specific features of interest, but if desired, can also
+complete the entire section in one go. Someone who has completed this entire
+section ought to be able to read and understand most K specifications, as well
+as write their own specifications of some complexity, and use them to perform
+most common K-related tasks. They can then read about specific lessons in
+Section 3: Advanced K Concepts if they want to
+learn more.

+

Table of Contents

+ +
    +
  1. Macros, Aliases, and Anywhere Rules
  2. +
  3. Fresh Constants
  4. +
  5. KLabels and Abstract Syntax
  6. +
  7. Overloaded Symbols
  8. +
  9. Matching Logic Connectives and #Or Patterns
  10. +
  11. Function Context
  12. +
  13. Record Productions and Named Nonterminals
  14. +
  15. #fun and #let
  16. +
  17. #as patterns
  18. +
  19. The Matching Operators, :=K and :/=K
  20. +
  21. Uncommon Evaluation Order Concepts
  22. +
  23. IEEE 754 Floating Point and Fixed Width Integers
  24. +
  25. Alpha-renaming-aware Substitution
  26. +
  27. File I/O
  28. +
  29. String Buffers and Byte Sequences
  30. +
  31. The Intermediate Language of K, KORE
  32. +
  33. Debugging Proofs using the Haskell Backend REPL
  34. +
+

Lesson 2.1: Macros, Aliases, and Anywhere Rules

+ +

The purpose of this lesson is to explain the behavior of the macro,
+macro-rec, alias, and alias-rec production attributes, as well as the
+anywhere rule attribute. These attributes control the meaning of how rules
+associated with them are applied.

+

Macros

+ +

Thus far in the K tutorial, we have described three different types of rules:

+
    +
  1. Top-level rewrite rules, which rewrite a configuration composed of cells to
    +another configuration;
  2. +
  3. Function rules, which define the behavior of a function written over
    +arbitrary input and output types; and
  4. +
  5. Simplification rules, which describe ways in which the symbolic execution
    +engine ought to simplify terms containing symbolic values.
  6. +
+

This lesson introduces three more types of rules, the first of which are
+macros. A production is a macro if it has the macro attribute, and all
+rules whose top symbol on the left hand side is a macro are macro rules
+which define the behavior of the macro. Like function rules and simplification
+rules, macro rules do not participate in cell completion. However, unlike
+function rules and simplification rules, macro rules are applied statically
+before rewriting begins, and the macro symbol is expected to no longer appear
+in the initial configuration for rewriting once all macros in that
+configuration are rewritten.

+

The rationale behind macros is they allow you to define one piece of syntax
+in terms of another piece of syntax without any runtime overhead associated
+with the cost of rewriting one to the other. This process is a common one in
+programming language design and specification and is referred to as
+desugaring; The syntax that is transformed is typically also referred to as
+syntactic sugar for another type of syntax. For example, in a language with
+if statements and curly braces, you could write the following fragment
+(lesson-01.k):

+
module LESSON-01
+  imports BOOL
+
+  syntax Stmt ::= "if" "(" Exp ")" Stmt             [macro]
+                | "if" "(" Exp ")" Stmt "else" Stmt
+                | "{" Stmts "}"
+  syntax Stmts ::= List{Stmt,""}
+  syntax Exp ::= Bool
+
+  rule if ( E ) S => if ( E ) S else { .Stmts }
+endmodule
+

In this example, we see that an if statement without an else clause is
+defined in terms of one with an else clause. As a result, we would only
+need to give a single rule for how to rewrite if statements, rather than
+two separate rules for two types of if statements. This is a common pattern
+for dealing with program syntax that contains an optional component to it.

+

It is worth noting that by default, macros are not applied recursively. To be
+more precise, by default a macro that arises as a result of the expansion of
+the same macro is not rewritten further. This is primarily to simplify the
+macro expansion process and reduce the risk that improperly defined macros will
+lead to non-terminating behavior.

+

It is possible, however, to tell K to expand a macro recursively. To do this,
+simply replace the macro attribute with the macro-rec attribute. Note that
+K does not do any kind of checking to ensure termination here, so it is
+important that rules be defined correctly to always terminate, otherwise the
+macro expansion phase will run forever. Fortunately, in practice it is very
+simple to ensure this property for most of the types of macros that are
+typically used in real-world semantics.

+

Exercise

+ +

Using a Nat sort containing the constructors 0 and S (i.e., a
+Peano-style axiomatization of the
+natural numbers where S(N) = N + 1, S(S(N)) = N + 2, etc), write a macro
+that will compute the sum of two numbers.

+

Aliases

+ +

NOTE: This lesson introduces the concept of "aliases", which are a variant
+of macros. While similar, this is different from the concept of "aliases" in
+matching logic, which is introduced in Lesson 2.16.

+

Macros can be very useful in helping you define a programming language.
+However, they can be disruptive while pretty printing a configuration. For
+example, you might write a set of macros that transforms the code the user
+wrote into equivalent code that is slightly harder to read. This can make it
+more difficult to understand the code when it is pretty printed as part of the
+output of rewriting.

+

K defines a relatively straightforward but novel solution to this problem,
+which is known as a K alias. An alias in K is very similar to a macro,
+with the exception that the rewrite rule will also be applied backwards
+during the pretty-printing process.

+

It is very simple to make a production be an alias instead of a macro: simply
+use the alias or alias-rec attributes instead of the macro or macro-rec
+attributes. For example, if the example involving if statements above was
+declared using an alias instead of a macro, the Stmt term if (E) {} else {}
+would be pretty-printed as if (E) {}. This is because during pretty-printing,
+the term participates in another macro-expansion pass. However, this macro
+expansion step will only apply rules with the alias or alias-rec attribute,
+and, critically, it will reverse the rule by treating the left-hand side as if
+it were the right-hand side, and vice versa.

+

This can be very useful to allow you to define one construct in terms of
+another while still being able to pretty-print the result as if it were
+the original term in question. This can be especially useful for applications
+of K where we are taking the output of rewriting and attempting to use it as
+a code fragment that we then execute, such as with test generation.

+

Exercise

+ +

Modify LESSON-01 above to use an alias instead of a macro and experiment
+with how various terms are pretty-printed by invoking krun on them.

+

anywhere rules

+ +

The last type of rule introduced in this lesson is the anywhere rule. An
+anywhere rule is specified by adding the anywhere attribute to a rule. Such a
+rule is similar to a function rule in that it does not participate in cell
+completion, and will apply anywhere that the left-hand-side matches in the
+configuration, but distinct in that the symbol in question can still be matched
+against in the left-hand side of other rules, even during concrete rewriting.
+The reasoning behind this is that instead of the symbol in question being a
+constructor, it is a constructor modulo the axioms defined with the
+anywhere attribute. Essentially, the rules with the anywhere attribute will
+apply as soon as they appear in the right-hand side of a rule being applied,
+but the symbol in question will still be treated as a symbol that can be
+matched on if it is not completely removed by those rules.

+

This can be useful in certain cases to allow you to define transformations over
+particular pieces of syntax while still generally giving those pieces of syntax
+another meaning when the anywhere rule does not apply. For example, the ISO C
+standard defines the semantics of *&x as exactly equal to x, with no
+reading or writing of memory taking place, and the K semantics of C implements
+this functionality using an anywhere rule that is applied at compilation time.

+

NOTE: the anywhere attribute is only implemented on the LLVM backend
+currently. Attempting to use it in a semantics that is compiled with the
+Haskell backend will result in an error being reported by the compiler. This
+should be remembered when using this attribute, as it may not be suitable for
+a segment of a semantics which is intended to be symbolically executed.

+

Exercises

+ +
    +
  1. Write a version of the calculator from Lesson 1.14 Exercise 1, which uses
    +the same syntax for evaluating expressions, but defines its arithmetic logic
    +using anywhere rules rather than top-level rewrite rules.
  2. +
+

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.2: Fresh Constants

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.3: KLabels and Abstract Syntax

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.4: Overloaded Symbols

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.5: Matching Logic Connectives and #Or Patterns

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.6: Function Context

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.7: Record Productions and Named Nonterminals

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.8: #fun and #let

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.9: #as Patterns

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.10: The Matching Operators, :=K and :/=K

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.11: Uncommon Evaluation Order Concepts

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.12: IEEE 754 Floating Point and Fixed Width Integers

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.13: Alpha-renaming-aware Substitution

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.14: File I/O

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.15: String Buffers and Byte Sequences

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.16: The Intermediate Language of K, KORE

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

Lesson 2.17: Debugging Proofs using the Haskell Backend REPL

+ +

Return to Top

+ +

Click here to return to the Table of Contents for Section 2.

+

K User Manual

+

NOTE: The K User Manual is still under construction; some features of K
+may have partial or missing documentation.

+

Introduction

+

Why K?

+ +

The K Framework is a programming language and system design toolkit made for
+practioners and researchers alike.

+

K For Practioners:
+K is a framework for deriving programming languages tools from their semantic
+specifications.

+

Typically, programming language tool development follows a similar pattern.
+After a new programming language is designed, separate teams will develop
+separate language tools (e.g. a compiler, interpreter, parser, symbolic
+execution engine, etc). Code reuse is uncommon. The end result is that for each
+new language, the same basic tools and patterns are re-implemented again and
+again.

+

K approaches the problem differently -- it generates each of these tools from a single language specification.
+The work of programming language design and tool implementation are made separate concerns.
+The end result is that the exercise of
+designing new languages and their associated tooling is now reduced to
+developing a single language specification from which we derive our tooling for
+free
.

+

K For Researchers:
+K is a configuration- and rewrite-based executable semantic framework.

+

In more detail, K specifications are:

+
    +
  1. Executable: compile into runnable and testable programs;
  2. +
  3. Semantic: correspond to a logical theory with a sound and relatively
    +complete proof system;
  4. +
  5. Configuration-based: organize system states into compositional,
    +hierarchical, labelled units called cells;
  6. +
  7. Rewrite-based: define system transitions using rewrite rules.
  8. +
+

K specifications are compiled into particular matching logic theories, giving
+them a simple and expressive semantics. K semantic rules are implicitly defined
+over the entire configuration structure, but omit unused cells, enabling a
+highly modular definitional style. Furthermore, K has been used to develop
+programming languages, type systems, and formal analysis tools.

+

Manual Objectives

+ +

As mentioned in the Why K? section above, the K Framework is designed as a
+collection of language-generic command-line interface (CLI) tools which revolve
+around K specifications. These tools cover a broad range of uses, but they
+typically fall into one of the following categories:

+
    +
  1. Transforming K Specs (e.g. compilation)
  2. +
  3. Running K Specs (e.g. concrete and symbolic execution)
  4. +
  5. Analyzing K Specs (e.g. theorem proving)
  6. +
+

The main user-facing K tools include:

+
    +
  • kompile - the K compiler driver
  • +
  • kparse - the stanadlone K parser and abstract syntax tree (AST)
    +transformation tool
  • +
  • krun - the K interpreter and symbolic execution engine driver
  • +
  • kprove - the K theorem prover
  • +
+

This user manual is designed to be a tool reference.
+In particular, it is not desgined to be a tutorial on how to write K
+specifications or to teach the logical foundations of K. New K users should
+consult our dedicated
+K tutorial,
+or the more language-design oriented
+PL tutorial.
+Researchers seeking to learn more about the logic underlying K are encouraged
+to peruse the
+growing literature on K and matching logic.
+We will consider the manual complete when it provides a complete description of
+all user-facing K tools and features.

+

Introduction to K

+

Since K specifications are the primary input into the entire system, let us
+take a moment to describe them. At the highest level, K specifications describe
+a programming language or system using three different pieces:

+
    +
  1. the system primitives, the base datatypes used during system operation,
    +e.g., numbers, lists, maps, etc;
  2. +
  3. the system state, a tuple or record over system primitives which gives a
    +complete snapshot of the system at any given moment;
  4. +
  5. the system behavior, a set of rules which defines possible system
    +evolutions.
  6. +
+

K specifications are then defined by a collection of sentences which
+correspond to the three concepts above:

+
    +
  1. syntax declarations encode the system primitives;
  2. +
  3. configuration declarations encode the system state;
  4. +
  5. context and rule declarations encode the system behavior.
  6. +
+

K sentences are then organized into one or modules which are stored in one or
+more files. In this scheme, files may require other files and modules may
+import other modules, giving rise to a hierarchy of files and modules. We
+give an intuitive sketch of the two levels of grouping in the diagram below:

+
   example.k file
+  +=======================+
+  | requires ".." --------|--> File_1
+  | ...                   |
+  | requires ".." --------|--> File_N
+  |                       |
+  |  +-----------------+  |
+  |  | module ..       |  |
+  |  |   imports .. ---|--|--> Module_1
+  |  |   ...           |  |
+  |  |   imports .. ---|--|--> Module_M
+  |  |                 |  |
+  |  |   sentence_1    |  |
+  |  |   ...           |  |
+  |  |   sentence_K    |  |
+  |  | endmodule       |  |
+  |  +-----------------+  |
+  |                       |
+  +=======================+
+

where:

+
    +
  • files and modules are denoted by double-bordered and single-borded boxes
    +respectively;
  • +
  • file or module identifiers are denoted by double dots (..);
  • +
  • potential repititions are denoted by triple dots (...).
  • +
+

In the end, we require that the file and module hierarchies both form a
+directed acyclic graph (DAG). This is, no file may recursively require itself,
+and likewise, no module may recursively import itself.

+

We now zoom in further to discuss the various kinds of sentences contained in K
+specifications:

+
    +
  1. +

    sentences that define our system's primitives, including:

    +
      +
    • sort declarations: define new categories of primitive datatypes
    • +
    • Backus-Naur Form (BNF) grammar declarations: define the
      +operators that inhabit our primitive datatypes
    • +
    • lexical syntax declarations: define lexemes/tokens for the
      +lexer/tokenizer
    • +
    • syntax associativity declarations: specify the
      +associativity/grouping of our declared operators
    • +
    • syntax priority declarations: specify the priority of
      +potential ambiguous operators
    • +
    +
  2. +
  3. +

    sentences that define our system's state, including:

    +
      +
    • configuration declarations: define labelled, hierarchical records
      +using an nested XML-like syntax
    • +
    +
  4. +
  5. +

    sentences that define our system's behavior, including:

    +
      +
    • context declarations: describe how primitives and configurations
      +can simplify
    • +
    • context alias declarations: define templates that can generate new
      +contexts
    • +
    • rule declarations: define how the system transitions from one state
      +to the next
    • +
    +
  6. +
+

K Process Overview

+ +

We now examine how the K tools are generally used. The main input to all of the
+K tools is a K specification. For effieciency reasons, this specification is
+first compiled into an intermediate representation called Kore. Once we have
+obtained this intermediate representation, we can use it to do:

+
    +
  1. parsing/pretty-printing, i.e., converting a K term, whose syntax is defined
    +by a K specification, into a alternate representation
  2. +
  3. concrete and abstract execution of a K specification
  4. +
  5. theorem proving, i.e., verifying whether a set of claims about a K
    +specification hold
  6. +
+

We represent the overall process using the graphic below:

+
 K Compilation Process
++============================================================+
+|                     +---------+                            |
+|  K Specification ---| kompile |--> Kore Specification --+  |
+|                     +---------+                         |  |
++=========================================================|==+
+                                                          |
+ K Execution Process                                      |
++=========================================================|==+
+|                                                         |  |
+|             +-------------------------------------------+  |
+|             |                                              |
+|             |       +---------+                            |
+|  K Term ----+-------| kparse  |--> K Term                  |
+|             |       +---------+                            |
+|             |                                              |
+|             |       +---------+                            |
+|  K Term ----+-------|  krun   |--> K Term                  |
+|             |       +---------+                            |
+|             |                                              |
+|             |       +---------+                            |
+|  K Claims --+-------| kprove  |--> K Claims                |
+|                     +---------+                            |
+|                                                            |
++============================================================+
+

where:

+
    +
  • process outlines are denoted by boxes with double-lined borders
  • +
  • executables are denoted by boxes with single-lined borders
  • +
  • inputs and outputs are denoted by words attached to lines
  • +
  • K terms typically correspond to programs defined in a particular
    +language's syntax (which are either parsed using kparse or executed using
    +krun)
  • +
  • K claims are a notation for describing how certain K programs should
    +execute (which are checked by our theorem prover kprove)
  • +
+

K Compilation Process:
+Let us start with a description of the compilation process. According to the
+above diagram, the compiler driver is called kompile. For our purposes, it is
+enough to view the K compilation process as a black box that transforms a K
+specification into a lower-level Kore specification that encodes the same
+information, but that is easier to work with programmatically.

+

K Execution Process:
+We now turn our attention to the K execution process. Abstractly, we can divide
+the K execution process into the following stages:

+
    +
  1. the kore specification is loaded (which defines a lexer, parser, and
    +unparser among other things)
  2. +
  3. the input string is lexed into a token stream
  4. +
  5. the token stream is parsed into K terms/claims
  6. +
  7. the K term/claims are transformed according the K tool being used (e.g.
    +kparse, krun, or kprove)
  8. +
  9. the K term/claims are unparsed into a string form and printed
  10. +
+

Note that all of the above steps performed in K execution process are fully
+prescribed by the input K specification. Of course, there are entire languages
+devoted to encoding these various stages proces individually, e.g., flex for
+lexers, bison for parsers, etc. What K offers is a consistent language to
+package the above concepts in a way that we believe is convenient and practical
+for a wide range of uses.

+

Module Declaration

+

K modules are declared at the top level of a K file. They begin with the
+module keyword and are followed by a module ID and an optional set of
+attributes. They continue with zero or more imports and zero or more sentences
+until the endmodule keyword is reached.

+

A module ID consists of an optional # at the beginning, followed by one or
+more components separated by hyphens. Each component can contain letters,
+numbers, or underscores.

+

After the module ID, attributes can be specified in square brackets. See below
+for an (incomplete) list of allowed module attributes.

+

Following the attributes, a module can contain zero or more imports. An
+import consists of the import or imports keywords followed by a module ID.
+An import tells the compiler that this module should contain all the sentences
+(recursively) contained by the module being imported.

+

Imports can be public or private. By default, they are public, which
+means that all the imported syntax can be used by any module that imports the
+module doing the import. However, you can explicitly override the visibility
+of the import with the public or private keyword immediately prior to the
+module name. A module imported privately does not export its syntax to modules
+that import the module doing the import.

+

Following imports, a module can contain zero or more sentences. A sentence can
+be a syntax declaration, a rule, a configuration declaration, a context, a
+claim, or a context alias. Details on each of these can be found in subsequent
+sections.

+

private attribute

+ +

If the module is given the private attribute, all of its imports and syntax
+are private by default. Individual pieces of syntax can be made public with
+the public attribute, and individual imports can be made public with the
+public keyword. See relevant sections on syntax and modules for more details
+on what it means for syntax and imports to be public or private.

+

symbolic and concrete attribute

+ +

These attributes may be placed on modules to indicate that they should only
+be used by the Haskell and LLVM backends respectively. If the definition is
+compiled on the opposite backend, they are implicitly removed from the
+definition prior to parsing anywhere they are imported. This can be useful when
+used in limited capacity in order to provide alternate semantics for certain
+features on different backends. It should be used sparingly as it makes it more
+difficult to trust the correctness of your semantics, even in the presence of
+testing.

+

Syntax Declaration

+

Named Non-Terminals

+ +

We have added a syntax to Productions which allows non-terminals to be given a
+name in productions. This significantly improves the ability to document K, by
+providing a way to explicitly explain what a field in a production corresponds
+to instead of having to infer it from a comment or from the rule body.

+

The syntax is:

+
name: Sort
+

This syntax can be used anywhere in a K definition that expects a non-terminal.

+

symbol(_) attribute

+ +

By default, when compiling a definition, K generates a unique "mangled" label
+identifier for each syntactic production. These identifiers can be used to
+reference productions externally, for example when constructing terms by hand
+or programmatically via Pyk.

+

The symbol(_) attribute can be applied to a production to control the precise
+identifier for a production that appears in a compiled definition. For example:

+
module SYMBOLS
+    syntax Foo ::= foo() [symbol(foo)]
+                 | bar()
+endmodule
+

Here, the compiled definition will contain the following symbol declarations:

+
  symbol Lblfoo{}() ...
+  symbol Lblbar'LParRParUnds'SYMBOLS'Unds'Foo{}() ...
+

The compiler enforces uniqueness[1] of symbol names specified in
+this way; it would be an error to apply symbol(foo) to another production in
+the module above. Additionally, symbol(_) with an argument may not co-occur
+with the klabel(_) attribute (see below).

+

overload attribute

+ +

K supports subsort overloading[2] on symbols, whereby a
+constructor can have a more specific sort for certain arguments. For example,
+consider the following productions derived from a C-like language semantics:

+
syntax Exp  ::= LVal
+              | Exp  "." Id
+syntax LVal ::= LVal "." Id
+

Here, it is useful for the result of the dot operator to be an LVal if the
+left-hand side is itself an LVal. However, there is an issue with the code
+as written: if L() is a term of sort LVal, then the program L() . x has a
+parsing ambiguity between the two productions for the dot operator. To resolve
+this, we can mark the productions as overloads:

+
syntax Exp  ::= LVal
+              | Exp  "." Id [overload(_._)]
+syntax LVal ::= LVal "." Id [overload(_._)]
+

Now, the parser will select the most specific overloaded production when it
+resolves ambiguities in L() . x (that is, L() . x parses to a term of sort
+LVal.

+

Formally, the compiler organises productions into a partial order that defines
+the overload relation as follows. We say that P is a more specific overload
+of Q if:

+
    +
  • P and Q have the same overload(_) attribute. Note that the argument
    +supplied has no semantic meaning other than as a key grouping productions
    +together.
  • +
  • Let S_P be the sort of P, and S_p1 etc. be the sorts of its arguments
    +(c.f. for Q). The tuple (S_P, S_p1, ..., S_pN) must be elementwise
    +strictly less than (S_Q, S_q1, ..., S_qN) according to the definition's
    +subsorting relationship. That is, a term from production P is a restriction
    +of one from production Q; when its arguments are more precise, we can give
    +the result a more precise sort.
  • +
+

klabel(_) and symbol attributes

+ +

Note: the klabel(_), symbol approach described in this section is a legacy
+feature that will be removed in the future. New code should use the symbol(_)
+and overload(_) attributes to opt into explicit naming and overloading
+respectively.

+

References here to "overloading" are explained in the section above; the use
+of the klabel(_) attribute without symbol is equivalent to the new
+overload(_) syntax.

+

By default K generates for each syntax definition a long and obfuscated klabel
+string, which serves as a unique internal identifier and also is used in kast
+format of that syntax. If we need to reference a certain syntax production
+externally, we have to manually define the klabels using the klabel attribute.
+One example of where you would want to do this is to be able to refer to a given
+symbol via the syntax priority attribute, or to enable overloading of a
+given symbol.

+

If you only provide the klabel attribute, you can use the provided klabel to
+refer to that symbol anywhere in the frontend K code. However, the internal
+identifier seen by the backend for that symbol will still be the long obfuscated
+generated string. Sometimes you want control over the internal identifier used as
+well, in which case you use the symbol attribute. This tells the frontend to
+use whatever the declared klabel is directly as the internal identifier.

+

For example:

+
module MYMODULE
+    syntax FooBarBaz ::= #Foo( Int, Int ) [klabel(#Foo), symbol] // symbol1
+                       | #Bar( Int, Int ) [klabel(#Bar)]         // symbol2
+                       | #Baz( Int, Int )                        // symbol3
+endmodule
+

Here, we have that:

+
    +
  • In frontend K, you can refer to "symbol1" as #Foo (from klabel(#Foo)),
    +and the backend will see 'Hash'Foo as the symbol name.
  • +
  • In frontend K, you can refer to "symbol2" as #Bar (from klabel(#Bar)),
    +and the backend will see
    +'Hash'Bar'LParUndsCommUndsRParUnds'MYMODULE'Unds'FooBarBaz'Unds'Int'Unds'Int
    +as the symbol name.
  • +
  • In frontend K, you can refer to "symbol3" as
    +#Baz(_,_)_MYMODULE_FooBarBaz_Int_Int (from auto-generated klabel), and
    +the backend will see
    +'Hash'Baz'LParUndsCommUndsRParUnds'MYMODULE'Unds'FooBarBaz'Unds'Int'Unds'Int
    +as the symbol name.
  • +
+

The symbol provided must be unique to this definition. This is enforced by
+K. In general, it's recommended to use the symbol attribute whenever you use
+klabel unless you explicitly have a reason not to (e.g. you want to overload
+symbols, or you're using a deprecated backend). It can be very helpful use the
+symbol attribute for debugging, as many debugging messages are printed in
+Kast format which will be more readable with the symbol names you explicitly
+declare. In addition, if you are programatically manipulating definitions via
+the JSON Kast format, building terms using the user-provided pretty
+symbol, klabel(...) is easier and less error-prone if the auto-generation
+process for klabels changes.

+

Syntactic Lists

+ +

When using K's support for syntactic lists, a production like:

+
syntax Ints ::= List{Int, ","} [symbol(ints)]
+

will desugar into two productions:

+
syntax Ints ::= Int "," Ints [symbol(ints)]
+syntax Ints ::= ".Ints"      [symbol(List{"ints"})]
+

Note that the symbol for the terminator of the list has been generated
+automatically from the label on the original production. It is possible to
+control what the terminator's label is using the terminator-symbol(_)
+attribute. For example:

+
syntax Ints ::= List{Int, ","} [symbol(ints), terminator-symbol(.ints)]
+

will desugar into two productions:

+
syntax Ints ::= Int "," Ints [symbol(ints)]
+syntax Ints ::= ".Ints"      [symbol(.ints)]
+

It is an error to apply terminator-symbol(_) to a non-production sentence, or
+to a production that does not declare a syntactic list.

+

Parametric productions and bracket attributes

+ +

Some syntax productions, like the rewrite operator, the bracket operator, and
+the #if #then #else #fi operator, cannot have their precise type system
+expressed using only concrete sorts.

+

Prior versions of K solved this issue by using the K sort in this case, but
+this introduces inexactness in which poorly typed terms can be created even
+without having a cast operator present in the syntax, which is a design
+consideration we would prefer to avoid.

+

It also introduces cases where terms cannot be placed in positions where they
+ought to be well sorted unless their return sort is made to be KBott, which in
+turn vastly complicates the grammar and makes parsing much slower.

+

In order to introduce this, we provide a new syntax for parametric productions
+in K. This allows you to express syntax that has a sort signature based on
+parametric polymorphism. We do this by means of an optional curly-brace-
+enclosed list of parameters prior to the return sort of a production.

+

Some examples:

+
syntax {Sort} Sort ::= "(" Sort ")" [bracket]
+syntax {Sort} KItem ::= Sort
+syntax {Sort} Sort ::= KBott
+syntax {Sort} Sort ::= Sort "=>" Sort
+syntax {Sort} Sort ::= "#if" Bool "#then" Sort "#else" Sort "#fi"
+syntax {Sort1, Sort2} Sort1 ::= "#fun" "(" Sort2 "=>" Sort1 ")" "(" Sort2 ")"
+

Here we have:

+
    +
  1. Brackets, which can enclose any sort but should be of the same sort that was
    +enclosed.
  2. +
  3. Every sort is a KItem.
  4. +
  5. A KBott term can appear inside any sort.
  6. +
  7. Rewrites, which can rewrite a value of any sort to a value of the same sort.
    +Note that this allows the lhs or rhs to be a subsort of the other.
  8. +
  9. If then else, which can return any sort but which must contain that sort on
    +both the true and false branches.
  10. +
  11. lambda applications, in which the argument and parameter must be the same
    +sort, and the return value of the application must be the same sort as the
    +return value of the function.
  12. +
+

Note the last case, in which two different parameters are specified separated
+by a comma. This indicates that we have multiple independent parameters which
+must be the same each place they occur, but not the same as the other
+parameters.

+

In practice, because every sort is a subsort of K, the Sort2
+parameter in #6 above does nothing during parsing. It cannot
+actually reject any parse, because it can always infer that the sort of the
+argument and parameter are K, and it has no effect on the resulting sort of
+the term. However, it will nevertheless affect the kore generated from the term
+by introducing an additional parameter to the symbol generated for the term.

+

function and total attributes

+ +

Many times it becomes easier to write a semantics if you have "helper"
+functions written which can be used in the RHS of rules. The function
+attribute tells K that a given symbol should be simplified immediately when it
+appears anywhere in the configuration. Semantically, it means that evaluation
+of that symbol will result in at most one return value (that is, the symbol is
+a partial function).

+

The total attribute indicates that a symbol cannot be equal to matching logic
+bottom; in other words, it has at least one value for every possible set of
+arguments. It can be added to a production with the function attribute to
+indicate to the symbolic reasoning engine that a given symbol is a
+total function, that is it has exactly one return value for every possible
+input. Other uses of the total attribute (i.e., on multi-valued symbols to
+indicate they always have at least one value) are not yet implemented.

+

For example, here we define the _+Word_ total function and the _/Word_
+partial function, which can be used to do addition/division modulo
+2 ^Int 256. These functions can be used anywhere in the semantics where
+integers should not grow larger than 2 ^Int 256. Notice how _/Word_ is
+not defined when the denominator is 0.

+
syntax Int ::= Int "+Word" Int [function, total]
+             | Int "/Word" Int [function]
+
+rule I1 +Word I2 => (I1 +Int I2) modInt (2 ^Int 256)
+rule I1 /Word I2 => (I1 /Int I2) modInt (2 ^Int 256) requires I2 =/=Int 0
+

freshGenerator attribute

+ +

In K, you can access "fresh" values in a given domain using the syntax
+!VARNAME:VarSort (with the !-prefixed variable name). This is supported for
+builtin sorts Int and Id already. For example, you can generate fresh
+memory locations for declared identifiers as such:

+
rule <k> new var x ; => . ... </k>
+     <env> ENV => ENV [ x <- !I:Int ] </env>
+     <mem> MEM => MEM [ !I <- 0     ] </mem>
+

Each time a !-prefixed variable is encountered, a new integer will be used,
+so each variable declared with new var _ ; will get a unique position in the
+<mem>.

+

Sometimes you want to have generation of fresh constants in a user-defined
+sort. For this, K will still generate a fresh Int, but can use a converter
+function you supply to turn it into the correct sort. For example, here we can
+generate fresh Foos using the freshFoo(_) function annotated with
+freshGenerator.

+
syntax Foo ::= "a" | "b" | "c" | d ( Int )
+
+syntax Foo ::= freshFoo ( Int ) [freshGenerator, function, total]
+
+rule freshFoo(0) => a
+rule freshFoo(1) => b
+rule freshFoo(2) => c
+rule freshFoo(I) => d(I) [owise]
+
+rule <k> new var x ; => . ... </k>
+     <env> ENV => ENV [ x <- !I:Int  ] </env>
+     <mem> MEM => MEM [ !I <- !F:Foo ] </mem>
+

Now each newly allocated memory slot will have a fresh Foo placed in it.

+

token attribute

+ +

The token attribute signals to the Kore generator that the associated sort
+will be inhabited by domain values. Sorts inhabited by domain values must not
+have any constructors declared.

+
syntax Bytes [hook(BYTES.Bytes), token]
+

Converting between [token] sorts

+ +

You can convert between tokens of one sort via Strings by defining functions
+implemented by builtin hooks.
+The hook STRING.token2string allows conversion of any token to a string:

+
syntax String ::= FooToString(Foo)  [function, total, hook(STRING.token2string)]
+

Similarly, the hook STRING.string2Token allows the inverse:

+
syntax Bar ::= StringToBar(String) [function, total, hook(STRING.string2token)]
+

WARNING: This sort of conversion does NOT do any sort of parsing or validation.
+Thus, we can create arbitary tokens of any sort:

+
StringToBar("The sun rises in the west.")
+

Composing these two functions lets us convert from Foo to Bar

+
syntax Bar ::= FooToBar(Foo) [function]
+rule FooToBar(F) => StringToBar(FooToString(F))
+

Parsing comments, and the #Layout sort

+ +

Productions for the #Layout sort are used to describe tokens that are
+considered "whitespace". The scanner removes tokens matching these productions
+so they are not even seen by the parser. Below, we use it to define
+lines begining with ; (semicolon) as comments.

+
syntax #Layout ::= r"(;[^\\n\\r]*)"    // Semi-colon comments
+                 | r"([\\ \\n\\r\\t])" // Whitespace
+

prec attribute

+ +

Consider the following naive attempt at creating a language what syntax that
+allows two types of variables: names that contain underbars, and names that
+contain sharps/hashes/pound-signs:

+
syntax NameWithUnderbar ::= r"[a-zA-Z][A-Za-z0-9_]*"  [token]
+syntax NameWithSharp    ::= r"[a-zA-Z][A-Za-z0-9_#]*" [token]
+syntax Pgm ::= underbar(NameWithUnderbar)
+             | sharp(NameWithSharp)
+

Although, it seems that K has enough information to parse the programs
+underbar(foo) and sharp(foo) with, the lexer does not take into account
+whether a token is being parsed for the sharp or for the underbar
+production. It chooses an arbitary sort for the token foo (perhaps
+NameWithUnderbar). Thus, during paring it is unable to construct a valid term
+for one of those programs (sharp(foo)) and produces the error message:
+Inner Parser: Parse error: unexpected token 'foo'.

+

Since calculating inclusions and intersections between regular expressions is
+tricky, we must provide this information to K. We do this via the prec(N)
+attribute. The lexer will always prefer longer tokens to shorter tokens.
+However, when it has to choose between two different tokens of equal length,
+token productions with higher precedence are tried first. Note that the default
+precedence value is zero when the prec attribute is not specified.

+

For example, the BUILTIN-ID-TOKENS module defines #UpperId and #LowerId with
+the prec(2) attribute.

+
  syntax #LowerId ::= r"[a-z][a-zA-Z0-9]*"                    [prec(2), token]
+  syntax #UpperId ::= r"[A-Z][a-zA-Z0-9]*"                    [prec(2), token]
+

Furthermore, we also need to make sorts with more specific tokens subsorts of ones with more
+general tokens. We add the token attribute to this production so that all
+tokens of a particular sort are marked with the sort they are parsed as and not a
+subsort thereof. e.g. we get underbar(#token("foo", "NameWithUnderbar"))
+instead of underbar(#token("foo", "#LowerId"))

+
imports BUILTIN-ID-TOKENS
+syntax NameWithUnderbar ::= r"[a-zA-Z][A-Za-z0-9_]*" [prec(1), token]
+                          | #UpperId                [token]
+                          | #LowerId                [token]
+syntax NameWithSharp ::= r"[a-zA-Z][A-Za-z0-9_#]*" [prec(1), token]
+                       | #UpperId                 [token]
+                       | #LowerId                 [token]
+syntax Pgm ::= underbar(NameWithUnderbar)
+             | sharp(NameWithSharp)
+

unused attribute

+ +

K will warn you if you declare a symbol that is not used in any of the rules of
+your definition. Sometimes this is intentional, however; in this case, you can
+suppress the warning by adding the unused attribute to the production or
+cell.

+
syntax Foo ::= foo() [unused]
+
+configuration <foo unused=""> .K </foo>
+

deprecated attribute

+ +

Symbols can be marked as deprecated by adding the deprecated attribute to
+their declaration. If that symbol subsequently appears in the definition (in a
+rule, context, context alias or configuration), the compiler will issue a
+warning.

+
syntax Foo ::= foo() [deprecated]
+rule foo() => . // warning on this line
+

Symbol priority and associativity

+ +

Unlike most other parser generators, K combines the task of parsing with AST
+generation. A production declared with the syntax keyword in K is both a
+piece of syntax used when parsing, and a symbol that is used when rewriting.
+As a result, it is generally convenient to describe expression grammars using
+priority and associativity declarations rather than explicitly transforming
+your grammar into a series of nonterminals, one for each level of operator
+precedence. Thus, for example, a simple grammar for addition and multiplication
+will look like this:

+
syntax Exp ::= Exp "*" Exp
+             | Exp "+" Exp
+

However, this grammar is ambiguous. The term x+y*z might refer to x+(y*z)
+or to (x+y)*z. In order to differentiate this, we introduce a partial
+ordering between productions known as priority. A symbol "has tighter priority"
+than another symbol if the first symbol can appear under the second, but the
+second cannot appear under the first without a bracket. For example, in
+traditional arithmetic, multiplication has tighter priority than addition,
+which means that x+y*z cannot parse as (x+y)*z because the addition
+operator would appear directly beneath the multiplication, which is forbidden
+by the priority filter.

+

Priority is applied individually to each possible ambiguous parse of a term. It
+then either accepts or rejects that parse. If there is only a single remaining
+parse (after all the other disambiguation steps have happened), this is the
+parse that is chosen. If all the parses were rejected, it is a parse error. If
+multiple parses remain, they might be resolved by further disambiguation such
+as via the prefer and avoid attributes, but if multiple parses remain after
+disambiguation finishes, this is an ambiguous parse error, indicating there is
+not a unique parse for that term. In the vast majority of cases, this is
+an error and indicates that you ought to either change your grammar or add
+brackets to the term in question.

+

Priority is specified in K grammars by means of one of two different
+mechanisms. The first, and simplest, simply replaces the | operator in a
+sequence of K productions with the > operator. This operator indicates that
+everything prior to the > operator (including transitively) binds tighter
+than what comes after. For example, a more complete grammar for simple
+arithmetic might be:

+
syntax Exp ::= Exp "*" Exp
+             | Exp "/" Exp
+             > Exp "+" Exp
+             | Exp "-" Exp
+

This indicates that multiplication and division bind tigher than addition
+and subtraction, but that there is no relationship in priority between
+multiplication and division.

+

As you may have noticed, this grammar is also ambiguous. x*y/z might refer to
+x*(y/z) or to (x*y)/z. Indeed, if we removed division and subtraction
+entirely, the grammar would still be ambiguous: x*y*z might parse as
+x*(y*z), or as (x*y)*z. To resolve this, we introduce another feature:
+associativity. Roughly, asssociativity tells us how symbols are allowed to nest
+within other symbols with the same priority. If a set of symbols is left
+associative, then symbols in that set cannot appear as the rightmost child
+of other symbols in that set. If a set of symbols is right associative, then
+symbols in that set cannot appear as the leftmost child of other symbols in
+that set. Finally, if a set of symbols is non-associative, then symbols
+in that set cannot appear as the rightmost or leftmost child of other symbols
+in that set. For example, in the above example, if addition and subtraction
+are left associative, then x+y+z will parse as (x+y)+z and x+y-z will
+parse as (x+y)-z (because the other parse will have been rejected).

+

You might notice that this seems to apply only to binary infix operators. In
+fact, the real behavior is slightly more complicated. Priority and
+associativity (for technical reasons that go beyond the scope of this document)
+really only apply when the rightmost or leftmost item in a production is a
+nonterminal. If the rightmost nonterminal is followed by a terminal (or
+respectively the leftmost preceded), priority and associativity do not apply.
+Thus we can generalize these concepts to arbitrary context-free grammars.

+

Note that in some cases, this is not the behavior you want. You may actually
+want to reject parses even though the leftmost and rightmost item in a
+production are terminals. You can accomplish this by means of the
+applyPriority attribute. When placed on a production, it tells the parser
+which nonterminals of a production the priority filter ought to reject children
+under, overriding the default behavior. For example, I might have a production
+like syntax Exp ::= foo(Exp, Exp) [applyPriority(1)]. This tells the parser
+to reject terms with looser priority binding under the first Exp, but not
+the second. By default, with this production, neither position would apply
+to the priority filter, because the first and last items of the production
+are both terminals.

+

Associativity is specified in K grammars by means of one of two different
+mechanisms. The first, and simplest, adds the associativity of a priority block
+of symbols prior to that block. For example, we can remove the remaining
+ambiguities in the above grammar like so:

+
syntax Exp ::= left:
+               Exp "*" Exp
+             | Exp "/" Exp
+             > right:
+               Exp "+" Exp
+             | Exp "-" Exp
+

This indicates that multiplication and division are left-associative, ie, after
+symbols with higher priority are parsed as innermost, symbols are nested with
+the rightmost on top. Addition and subtraction are right associative, which
+is the opposite and indicates that symbols are nested with the leftmost on top.
+Note that this is similar but different from evaluation order, which also
+concerns itself with the ordering of symbols, which is described in the next
+section.

+

You may note we have not yet introduced the second syntax for priority
+and associativity. In some cases, syntax for a grammar might be spread across
+multiple modules, sometimes for very good reasons with respect to code
+modularity. As a result, it becomes infeasible to declare priority and
+associativity inline within a set of productions, because the productions
+are not contiguous within a single file.

+

For this purpose, we introduce the equivalent syntax priority,
+syntax left, syntax right, and syntax non-assoc declarations. For
+example, the above grammar can be written equivalently as:

+
syntax Exp ::= Exp "*" Exp [group(mult)]
+             | Exp "/" Exp [group(div)]
+             | Exp "+" Exp [group(add)]
+             | Exp "-" Exp [group(sub)]
+
+syntax priority mult div > add sub
+syntax left mult div
+syntax right add sub
+

Here, the group(_) attribute is used to create user-defined groups of
+sentences. A particular group name collectively refers to the whole set of
+sentences within that group. The sets are flattened together, so we could
+equivalently have written:

+
syntax Exp ::= Exp "*" Exp [group(mult)]
+             | Exp "/" Exp [group(mult)]
+             | Exp "+" Exp [group(add)]
+             | Exp "-" Exp [group(add)]
+
+syntax priority mult > add
+syntax left mult
+syntax right add
+

Note that syntax [left|right|non-assoc] should not be used to group together
+productions with different priorities. For example, this code would be invalid:

+
syntax priority mult > add
+syntax left mult add
+

Note that there is one other way to describe associativity, but it is
+prone to a very common mistake. You can apply the attribute left, right,
+or non-assoc directly to a production to indicate that it is, by itself,
+left-, right-, or non-associative.

+

However, this often does not mean what users think it means. In particular:

+
syntax Exp ::= Exp "+" Exp [left]
+             | Exp "-" Exp [left]
+

is not equivalent to:

+
syntax Exp ::= left:
+               Exp "+" Exp
+             | Exp "-" Exp
+

Under the first, each production is associative with itself, but not each
+other. Thus, x+y+z will parse unambiguously as (x+y)+z, but x+y-z will
+be ambiguous. However, in the second, x+y-z will parse unambiguously as
+(x+y)-z.

+

Think carefully about how you want your grammar to parse. In general, if you're
+not sure, it's probably best to group associativity together into the same
+blocks you use for priority, rather than using left, right, or non-assoc
+attributes on the productions.

+

Lexical identifiers

+ +

Sometimes it is convenient to be able to give a certain regular expression a
+name and then refer to it in one or more regular expression terminals. This
+can be done with a syntax lexical sentence in K:

+
syntax lexical Alphanum = r"[0-9a-zA-Z]"
+

This defines a lexical identifier Alphanum which can be expanded in any
+regular expression terminal to the above regular expression. For example, I
+might choose to then implement the syntax of identifiers as follows:

+
syntax Id ::= r"[a-zA-Z]{Alphanum}*" [token]
+

Here {Alphanum} expands to the above regular expression, making the sentence
+equivalent to the following:

+
syntax Id ::= r"[a-zA-Z]([0-9a-zA-Z])*" [token]
+

This feature can be used to more modularly construct the lexical syntax of your
+language. Note that K does not currently check that lexical identifiers used
+in regular expressions have been defined; this will generate an error when
+creating the scanner, however, and the user ought to be able to debug what
+happened.

+

assoc, comm, idem, and unit attributes

+ +

These attributes are used to indicate whether a collection or a production
+is associative, commutative, idempotent, and/or has a unit.
+In general, you should not need to apply these attributes to productions
+yourself, however, they do have certain special meaning to K. K will generate
+axioms related to each of these concepts into your definition for you
+automatically. It will also automatically sort associative-commutative
+collections, and flatten the indentation of associative collections, when
+unparsing.

+

public and private attribute

+ +

K allows users to declare certain pieces of syntax as either public or private.
+All syntax is public by default. Public syntax can be used from any module that
+imports that piece of syntax. A piece of syntax can be declared private with
+the private attribute. This means that that syntax can only be used in the
+module in which it is declared; it is not visible from modules that import
+that module.

+

You can also change the default visibility of a module with the private
+attribute, when it is placed directly on a module. A module with the private
+attribute has all syntax private by default; this can be overridden on
+specific sentences with the public attribute.

+

Note that the private module attribute also changes the default visiblity
+of imports; please refer to the appropriate section elsewhere in the manual
+for more details.

+

Here is an example usage:

+
module WIDGET-SYNTAX
+
+  syntax Widget ::= foo()
+  syntax WidgetHelper ::= bar() [private] // this production is not visible
+                                          // outside this module
+endmodule
+
+module WIDGET [private]
+  imports WIDGET-SYNTAX
+
+  syntax Widget ::= fooImpl() // this production is not visible outside this
+                              // module
+
+  // this production is visible outside this module
+  syntax KItem ::= adjustWidget(Widget) [function, public]
+endmodule
+

Configuration Declaration

+

exit attribute

+ +

A single configuration cell containing an integer may have the "exit"
+attribute. This integer will then be used as the return value on the console
+when executing the program.

+

For example:

+
configuration <k> $PGM:Pgm </k>
+              <status-code exit=""> 1 </status-code>
+

declares that the cell status-code should be used as the exit-code for
+invocations of krun. Additionally, we state that the default exit-code is 1
+(an error state). One use of this is for writing testing harnesses which assume
+that the test fails until proven otherwise and only set the <status-code> cell
+to 0 if the test succeeds.

+

Collection Cells: multiplicity and type attributes

+ +

Sometimes a semantics needs to allow multiple copies of the same cell, for
+example if you are making a concurrent multi-threading programming language.
+For this purpose, K supports the multiplicity and type attributes on cells
+declared in the configuration.

+

multiplicity can take on values * and ?. Declaring multiplicity="*"
+indicates that the cell may appear any number of times in a runtime
+configuration. Setting multiplicity="?" indicates that the cell may only
+appear exactly 0 or 1 times in a runtime configuration. If there are no
+configuration variables present in the cell collection, the initial
+configuration will start with exactly 0 instances of the cell collection. If
+there are configuration variables present in the cell collection, the initial
+configuration will start with exactly 1 instance of the cell collection.

+

type can take on values Set, List, and Map. For example, here we declare
+several collecion cells:

+
configuration <k> $PGM:Pgm </k>
+              <sets>  <set  multiplicity="?" type="Set">  0:Int </set>  </sets>
+              <lists> <list multiplicity="*" type="List"> 0:Int </list> </lists>
+              <maps>
+                <map multiplicity="*" type="Map">
+                  <map-key> 0:Int </map-key>
+                  <map-value-1> "":String </map-value-1>
+                  <map-value-2> 0:Int     </map-value-2>
+                </map>
+              </maps>
+

Declaring type="Set" indicates that duplicate occurrences of the cell should
+be de-duplicated, and accesses to instances of the cell will be nondeterministic
+choices (constrained by any other parts of the match and side-conditions).
+Similarly, declaring type="List" means that new instances of the cell can be
+added at the front or back, and elements can be accessed from the front or back,
+and the order of the cells will be maintained. The following are examples of
+introduction and elimination rules for these collections:

+
rule <k> introduce-set(I:Int) => . ... </k>
+     <sets> .Bag => <set> I </set> </sets>
+
+rule <k> eliminate-set => I ... </k>
+     <sets> <set> I </set> => .Bag </sets>
+
+rule <k> introduce-list-start(I:Int) => . ... </k>
+     <lists> (.Bag => <list> I </list>) ... </lists>
+
+rule <k> introduce-list-end(I:Int) => . ... </k>
+     <lists> ... (.Bag => <list> I </list>) </lists>
+
+rule <k> eliminate-list-start => I ... </k>
+     <lists> (<list> I </list> => .Bag) ... </lists>
+
+rule <k> eliminate-list-end => I ... </k>
+     <lists> ... (<list> I </list> => .Bag) </lists>
+

Notice that for multiplicity="?", we only admit a single <set> instance at
+a time. For the type=List cell, we can add/eliminate cells from the from or
+back of the <lists> cell. Also note that we use .Bag to indicate the empty
+cell collection in all cases.

+

Declaring type="Map" indicates that the first sub-cell will be used as a
+cell-key. This means that matching on those cells will be done as a map-lookup
+operation if the cell-key is mentioned in the rule (for performance). If the
+cell-key is not mentioned, it will fallback to normal nondeterministic
+constrained by other parts of the match and any side-conditions. Note that there
+is no special meaning to the name of the cells (in this case <map>,
+<map-key>, <map-value-1>, and <map-value-2>). Additionally, any number of
+sub-cells are allowed, and the entire instance of the cell collection is
+considered part of the cell-value, including the cell-key (<map-key> in this
+case) and the surrounding collection cell (<map> in this case).

+

For example, the following rules introduce, set, retrieve from, and eliminate
+type="Map" cells:

+
rule <k> introduce-map(I:Int) => . ... </k>
+     <maps> ... (.Bag => <map> <map-key> I </map-key> ... </map>) ... </maps>
+
+rule <k> set-map-value-1(I:Int, S:String) => . ... </k>
+     <map> <map-key> I </map-key> <map-value-1> _ => S </map-value-1> ... </map>
+
+rule <k> set-map-value-2(I:Int, V:Int) => . ... </k>
+     <map> <map-key> I </map-key> <map-value-2> _ => V </map-value-2> ... </map>
+
+rule <k> retrieve-map-value-1(I:Int) => S ... </k>
+     <map> <map-key> I </map-key> <map-value-1> S </map-value-1> ... </map>
+
+rule <k> retrieve-map-value-2(I:Int) => V ... </k>
+     <map> <map-key> I </map-key> <map-value-2> V </map-value-2> ... </map>
+
+rule <k> eliminate-map(I:Int) => . ... </k>
+     <maps> ... (<map> <map-key> I </map-key> ... </map> => .Bag) ... </maps>
+

Note how each rule makes sure that <map-key> cell is mentioned, and we
+continue to use .Bag to indicate the empty collection. Also note that
+when introducing new map elements, you may omit any of the sub-cells which are
+not the cell-key. In case you do omit sub-cells, you must use structural
+framing ... to indicate the missing cells, they will receive the default
+value given in the configuration ... declaration.

+

Rule Declaration

+

Rule Structure

+ +

Each K rule follows the same basic structure (given as an example here):

+
rule LHS => RHS requires REQ ensures ENS [ATTRS]
+

The portion between rule and requires is referred to as the rule body,
+and may contain one or more rewrites (though not nested). Here, the rule body is
+LHS => RHS, where LHS and RHS are used as placeholders for the pre- and
+post- states. Note that we lose no generality referring to the LHS or the
+RHS, even in the presence of multiple rewrites, as the rewrites are pulled to
+the top-level anyway.

+

Next is the requires clause, represented here as REQ. The requires clause is
+an additional predicate (function-like term of sort Bool), which is to be
+evaluated before applying the rule. If the requires clause does not evaluate to
+true, then the rule does not apply.

+

Finally is the ensures clause, represented here as ENS. The ensures clause
+is to be interpreted as a post-condition, and will be automatically added to the
+path condition if the rule applies. It may cause the entire term to become
+undefined, but the backend will not stop itself from applying the rule in this
+case. Note that concrete backends (eg. the LLVM backend) are free to ignore the
+ensures clause.

+

Overall, the transition represented by such a rule is from a state
+LHS #And REQ ending in a state RHS #And ENS. When backends apply this rule
+as a transition/rewrite, they should:

+
    +
  • Check if pattern LHS matches (or unifies) with the current term, giving
    +substitution alpha.
  • +
  • Check if the instantiation alpha(REQ) is valid (or satisfiable).
  • +
  • Build the new term alpha(RHS #And ENS), and check if it's satisfiable.
  • +
+

Pattern Matching operator

+ +

Sometimes when you want to express a side condition, you want to say that a
+rule matches if a particular term matches a particular pattern, or if it
+instead does /not/ match a particular pattern.

+

The syntax in K for this is :=K and :/=K. It has similar meaning to ==K and
+=/=K, except that where ==K and =/=K express equality, :=K and =/=K express
+model membership. That is to say, whether or not the rhs is a member of the set
+of terms expressed by the lhs pattern. Because the lhs of these operators is a
+pattern, the user can use variables in the lhs of the operator. However, due to
+current limitations, these variables are NOT bound in the rest of the term.
+The user is thus encouraged to use anonymous variables only, although this is
+not required.

+

This is compiled by the K frontend down to an efficient pattern matching on a
+fresh function symbol.

+

Anonymous function applications

+ +

There are a number of cases in K where you would prefer to be able to take some
+term on the RHS, bind it to a variable, and refer to it in multiple different
+places in a rule.

+

You might also prefer to take a variable for which you know some of its
+structure, and modify some of its internal structure without requiring you to
+match on every single field contained inside that structure.

+

In order to do this, we introduce syntax to K that allows you to construct
+anonymous functions in the RHS of a rule and apply them to a term.

+

The syntax for this is:

+
#fun(RuleBody)(Argument)
+

Note the limitations currently imposed by the implementation. These functions
+are not first-order: you cannot bind them to a variable and inject them like
+you can with a regular klabel for a function. You also cannot express multiple
+rules or multiple parameters, or side conditions. All of these are extensions
+we would like to support in the future, however.

+

In the following, we use three examples to illustrate the behavior of #fun.
+We point out that the support for #fun is provided by the frontend, not the
+backends.

+

The three examples are real examples borrowed or modified from existing language
+semantics.

+

Example 1 (A Simple Self-Explained Example).

+
#fun(V:Val => isFoo(V) andBool isBar(V))(someFunctionReturningVal())
+

Example 2 (Nested #fun).

+
   #fun(C
+=> #fun(R
+=> #fun(E
+=> foo1(E, R, C)
+  )(foo2(C))
+  )(foo3(0))
+  )(foo4(1))
+

This example is from the beacon
+semantics:https://github.com/runtimeverification/beacon-chain-spec/blob/master/b
+eacon-chain.k at line 302, with some modification for simplicity. Note how
+variables C, R, E are bound in the nested #fun.

+

Example 3 (Matching a structure).

+
rule foo(K, RECORD) =>
+  #fun(record(... field: _ => K))(RECORD)
+

Unlike previous examples, the LHS of #fun in this example is no longer a
+variable, but a structure. It has the same spirit as the first two examples,
+but we match the RECORD with a structure record( DotVar, field: X), instead
+of a standalone variable. We also use K's local rewrite syntax (i.e., the
+rewriting symbol => does not occur at the top-level) to prevent writing
+duplicate expressions on the LHS and RHS of the rewriting.

+

Macros and Aliases

+ +

A production can be tagged with the macro, alias, macro-rec, or alias-rec
+attributes. In all cases, what this signifies is that this is a macro production.
+Macro rules are rules where the top symbol of the left-hand-side are macro
+labels. Macro rules are applied statically during compilation on all terms that
+they match, and statically before program execution on the initial configuration.
+Currently, macro rules are required to not have side conditions, although they
+can contain sort checks.

+

alias rules are also applied statically in reverse prior to unparsing on the
+final configuration. Note that a macro rule can have unbound variables in the
+right hand side. When such a macro exists, it should be used only on the left
+hand side of rules, unless the user is performing symbolic execution and expects
+to introduce symbolic terms into the subject being rewritten.

+

However, when used on the left hand side of a rule, it functions similarly to a
+pattern alias, and allows the user to concisely express a reusable pattern that
+they wish to match on in multiple places.

+

For example, consider the following semantics:

+
syntax KItem ::= "foo" [alias] | "foobar"
+syntax KItem ::= bar(KItem) [macro] | baz(Int, KItem)
+rule foo => foobar
+rule bar(I) => baz(?_, I)
+rule bar(I) => I
+

This will rewrite baz(0, foo) to foo. First baz(0, foo) will be rewritten
+statically to baz(0, foobar). Then the non-macro rule will apply (because
+the rule will have been rewritten to rule baz(_, I) => I). Then foobar will
+be rewritten statically after rewriting finishes to foo via the reverse form
+of the alias.

+

Note that macros do not apply recursively within their own expansion. This is
+done so as to ensure that macro expansion will always terminate. If the user
+genuinely desires a recursive macro, the macro-rec and alias-rec attributes
+can be used to provide this behavior.

+

For example, consider the following semantics:

+
syntax Exp ::= "int" Exp ";" | "int" Exps ";" [macro] | Exp Exp | Id
+syntax Exps ::= List{Exp,","}
+
+rule int X:Id, X':Id, Xs:Exps ; => int X ; int X', Xs ;
+

This will expand int x, y, z; to int x; int y, z; because the macro does
+not apply the second time after applying the substitution of the first
+application. However, if the macro attribute were changed to the macro-rec
+attribute, it would instead expand (as the user likely intended) to
+int x; int y; int z;.

+

The alias-rec attribute behaves with respect to the alias attribute the
+same way the macro-rec attribute behaves with respect to macro.

+

anywhere rules

+ +

Some rules are not functional, but you want them to apply anywhere in the
+configuration (similar to functional rules). You can use the anywhere
+attribute on a rule to instruct the backends to make sure they apply anywhere
+they match in the entire configuration.

+

For example, if you want to make sure that some associative operator is always
+right-associated anywhere in the configuration, you can do:

+
syntax Stmt ::= Stmt ";" Stmt
+
+rule (S1 ; S2) ; S3 => S1 ; (S2 ; S3) [anywhere]
+

Then after every step, all occurrences of _;_ will be re-associated. Note that
+this allows the symbol _;_ to still be a constructor, even though it is
+simplified similarly to a function.

+

trusted claims

+ +

You may add the trusted attribute to a given claim for the K prover to
+automatically add it to the list of proven circularities, instead of trying to
+discharge it separately.

+

Projection and Predicate functions

+ +

K automatically generates certain predicate and projection functions from the
+syntax you declare. For example, if you write:

+
syntax Foo ::= foo(bar: Bar)
+

It will automatically generate the following K code:

+
syntax Bool ::= isFoo(K) [function]
+syntax Foo ::= "{" K "}" ":>Foo" [function]
+syntax Bar ::= bar(Foo) [function]
+
+rule isFoo(F:Foo) => true
+rule isFoo(_) => false [owise]
+
+rule { F:Foo }:>Foo => F
+rule bar(foo(B:Bar)) => B
+

The first two types of functions are generated automatically for every sort in
+your K definition, and the third type of function is generated automatically
+for each named nonterminal in your definition. Essentially, isFoo for some
+sort Foo will tell you whether a particular term of sort K is a Foo,
+{F}:>Foo will cast F to sort Foo if F is of sort Foo and will be
+undefined (i.e., theoretically defined as #Bottom, the bottom symbol in
+matching logic) otherwise. Finally, bar will project out the child of a foo
+named bar in its production declaration.

+

Note that if another term of equal or smaller sort to Foo exists and has a
+child named bar of equal or smaller sort to Bar, this will generate an
+ambiguity during parsing, so care should be taken to ensure that named
+nonterminals are sufficiently unique from one another to prevent such
+ambiguities. Of course, the compiler will generate a warning in this case.

+

simplification attribute

+ +

The simplification attribute identifies rules outside the main semantics that
+are used to simplify function patterns.

+

Conditions: A simplification rule is applied by matching the function
+arguments, instead of unification as when applying function definition
+rules. This allows function symbols to appear nested as arguments to other
+functions on the left-hand side of a simplification rule, which is forbidden in
+function definition rules. For example, this rule would not be accepted as a
+function definition rule:

+
rule (X +Int Y) +Int Z => X +Int (Y +Int Z) [simplification]
+

A simplification rule is only applied when the current side condition implies
+the requires clause of the rule, like function definition rules.

+

Order: The simplification attribute accepts an optional integer argument
+which is the rule's simplification priority; if the optional argument is not
+specified, it is equivalent to a simplification priority of 50. Backends
+should attempt simplification rules in order of their simplification
+priority
, but are not required to do so; in fact, the backend is free to apply
+simplification rules at any time. Because of this, users must ensure that
+simplification rules are sound regardless of their order of application. This
+differs from the priority attribute in that rules with the priority
+attribute must be applied in their priority order by the backend. It is an
+error to have the priority attribute on a simplification rule.

+

For example, for the following definition:

+
    syntax WordStack ::= Int ":" WordStack | ".WordStack"
+    syntax Int ::= sizeWordStack    ( WordStack       ) [function]
+                 | sizeWordStackAux ( WordStack , Int ) [function]
+ // --------------------------------------------------------------
+    rule sizeWordStack(WS) => sizeWordStackAux(WS, 0)
+
+    rule sizeWordStackAux(.WordStack, N) => N
+    rule sizeWordStackAux(W : WS    , N) => sizeWordStackAux(WS, N +Int 1)
+

We might add the following simplification lemma:

+
    rule sizeWordStackAux(WS, N) => N +Int sizeWordStackAux(WS, 0)
+      requires N =/=Int 0
+      [simplification]
+

Then this simplification rule will only apply if the Haskell backend can prove
+that notBool N =/=Int 0 is unsatisfiable. This avoids an infinite cycle of
+applying this simplification lemma.

+

NOTE: The frontend and Haskell backend do not check that supplied
+simplification rules are sound, this is the developer's responsibility. In
+particular, rules with the simplification attribute must preserve definedness;
+that is, if the left-hand side refers to any partial function then:

+
    +
  • the right-hand side must be #Bottom when the left-hand side is #Bottom, or
  • +
  • the rule must have an ensures clause that is false when the left-hand
    +side is #Bottom, or
  • +
  • the rule must have a requires clause that is false when the left-hand
    +side is #Bottom.
  • +
+

These conditions are in order of decreasing preference: the best option is to
+preserve #Bottom on the right-hand side, the next best option is to have an
+ensures clause, and the least-preferred option is to have a requires clause.
+The most preferred option is to write total functions and avoid the entire issue.

+

NOTE: The Haskell backend does not attempt to prove claims which right-hand
+side is #Bottom. The reason for this is that the general case is undecidable,
+and the backend might enter an infinite loop. Therefore, the backend emits a
+warning if it encounters such a claim.

+

concrete and symbolic attributes (Haskell backend)

+ +

Users can control the application of simplification rules using the concrete
+and the symbolic attributes by specifying the type of patterns the rule's
+arguments are to match.

+

A concrete pattern is a pattern which does not contain variables or unevaluated
+functions, otherwise the pattern is symbolic.

+

The semantics of the two attributes is defined as follows:

+
    +
  • If a simplification rule is marked concrete, then all arguments must be
    +concrete for the rule to match.
  • +
  • If a simplification rule is marked symbolic, then all arguments must be
    +symbolic for the rule to match.
  • +
  • The following syntax concrete(<variables>) (resp. symbolic(<variables>)),
    +where <variables> is a list of variable names separated by commas, can be used
    +to specify the exact arguments the user expects to match concrete (resp. symbolic)
    +patterns.
  • +
+

For example, the following will only match when all arguments
+are concrete:

+
rule X +Int (Y +Int Z) => (X +Int Y) +Int Z [simplification, concrete]
+

Conversely, the following will only match when all arguments
+are symbolic:

+
rule X +Int (Y +Int Z) => (X +Int Y) +Int Z [simplification, symbolic]
+

In practice, the following rules will re-associate and commute terms to combine
+concrete arguments:

+
rule (A +Int Y) +Int Z => A +Int (Y +Int Z)
+  [concrete(Y, Z), symbolic(A), simplification]
+
+rule X +Int (B +Int Z) => B +Int (X +Int Z)
+  [concrete(X, Z), symbolic(B), simplification]
+

The unboundVariables attribute

+ +

Normally, K rules are not allowed to contain regular (i.e., not fresh, not
+existential) variables in the RHS / requires / ensures clauses which are not
+bound in the LHS.

+

However, in certain cases this behavior might be desired, like, for example,
+when specifying a macro rule which is to be used in the LHS of other rules.
+To allow for such cases, but still be useful and perform the unboundness checks
+in regular cases, the unboundVariables attributes allows the user to specify
+a comma-separated list of names of variables which can be unbound in the rule.

+

For example, in the macro declaration

+
  rule cppEnumType => bar(_, scopedEnum() #Or unscopedEnum() ) [unboundVariables(_)]
+

the declaration unboundVariables(_) allows the rule to pass the unbound
+variable checks, and this in turn allows for cppEnumType to be used in
+the LHS of a rule to mean the pattern above:

+
  rule inverseConvertType(cppEnumType, foo((cppEnumType #as T::CPPType => underlyingType(T))))
+

The memo attribute

+ +

The memo attribute is a hint from the user to the backend to memoize a
+function. Not all backends support memoization, but when the attribute is used
+and the definition is compiled for a memo-supporting backend, then calls to
+the function may be cached. At the time of writing, only the Haskell
+backend supports memoization.

+

Limitations of memoization with the Haskell backend

+ +

The Haskell backend will only cache a function call if all arguments are concrete.

+

It is recommended not to memoize recursive functions, as each recursive call
+will be stored in the cache, but only the first iteration will be retrieved from
+the cache; that is, the cache will be filled with many unreachable
+entries. Instead, we recommend to perform a worker-wrapper transformation on
+recursive functions, and apply the memo attribute to the wrapper.

+

Warning: A function declared with the memo attribute must not use
+uninterpreted functions in the side-condition of any rule. Memoizing such an
+impure function is unsound. To see why, consider the following rules:

+
syntax Bool ::= impure( Int ) [function]
+
+syntax Int ::= unsound( Int ) [function, memo]
+rule unsound(X:Int) => X +Int 1 requires impure(X)
+rule unsound(X:Int) => X        requires notBool impure(X)
+

Because the function impure is not given rules to cover all inputs, unsound
+can be memoized incoherently. For example,

+
{unsound(0) #And {impure(0) #Equals true}} #Equals 1
+

but

+
{unsound(0) #And {impure(0) #Equals false}} #Equals 0
+

The memoized value of unsound(0) would be incoherently determined by which
+pattern the backend encounters first.

+

Variable Sort Inference

+ +

In K, it is not required that users declare the sorts of variables in rules or
+in the initial configuration. If the user does not explicitly declare the sort
+of a variable somewhere via a cast (see below), the sort of the variable is
+inferred from context based on the sort signature of every place the variable
+appears in the rule.

+

As an example, consider the rule for addition in IMP:

+
    syntax Exp ::= Exp "+" Exp | Int
+
+    rule I1 + I2 => I1 +Int I2
+

Here +Int is defined in the INT module with the following signature:

+
    syntax Int ::= Int "+Int" Int [function]
+

In the rule above, the sort of both I1 and I2 is inferred as Int. This is because
+a variable must have the same sort every place it appears within the same rule.
+While a variable appearing only on the left-hand-side of the rule could have
+sort Exp instead, the same variable appears as a child of +Int, which
+constriants the sorts of I1 and I2 more tightly. Since the sort must be a
+subsort of Int or equal to Int, and Int has no subsorts, we infer Int
+as the sorts of I1 and I2. This means that the above rule will not match
+until I1 and I2 become integers (i.e., have already been evaluated).

+

More complex examples are possible, however:

+
    syntax Exp ::= Exp "+" Int | Int
+    rule _ + _ => 0
+

Here we have two anonymous variables. They do not refer to the same variable
+as one another, so they can have different sorts. The right side is constrained
+by + to be of sort Int, but the left side could be either Exp or Int.
+When this occurs, we have multiple solutions to the sorts of the variables in
+the rule. K will only choose solutions which are maximal, however. To be
+precise, if two different solutions exist, but the sorts of one solution are
+all greater than or equal to the sorts of the other solution, K will discard
+the smaller solution. Thus, in the case above, the variable on the left side
+of the + is inferred of sort Exp, because the solution (Exp, Int) is
+strictly greater than the solution (Int, Int).

+

It is possible, however, for terms to have multiple maximal solutions:

+
    syntax Exp ::= Exp "+" Int | Int "+" Exp | Int
+    rule I1 + I2 => 0
+

In this example, there is an ambiguous parse. This could parse as either
+the first + or the second. In the first case, the maximal solution chosen is
+(Exp, Int). In the second, it is (Int, Exp). Neither of these solutions is
+greater than the other, so both are allowed by K. As a result, this program
+will emit an error because the parse is ambiguous. To pick one solution over
+the other, a cast or a prefer or avoid attribute can be used.

+

Casting

+ +

There are three main types of casts in K: the semantic cast, the strict cast,
+and the projection cast.

+

Semantic casts

+ +

For every sort S declared in your grammar, K will define the following
+production for you for use in rules:

+
    syntax S ::= S ":S"
+

The meaning of this cast is that the term inside the cast must be less than
+or equal to Sort. This can be used to resolve ambiguities, but its principle
+purpose is to guide execution by telling K what sort variables must match in
+order for the rule to apply. When compiled, it will generate a pattern that
+matches on an injection into Sort.

+

Strict casts

+ +

K also introduces the strict cast:

+
    syntax S ::= S "::S"
+

The meaning at runtime is exactly the same as the semantic cast; however, it
+restricts the sort of the term inside the cast to exactly Sort. That is
+to say, if you use it on something that is a strictly smaller sort, it will
+generate a type error. This is useful in certain circumstances to help
+disambiguate terms, when a semantic cast would not have resolved the ambiguity.
+As such, it is primarily used to solve ambiguities rather than to guide
+execution.

+

Projection casts

+ +

K also introduces the projection cast:

+
    syntax {S2} S ::= "{" S2 "}" ":>S"
+

The meaning of this cast at runtime is that if the term inside is of sort
+Sort, it should have it injection stripped away and the value inside is
+returned as a term of static sort Sort. However, if the term is of a
+different sort, it is an error and execution will get stuck. Thus the primary
+usefulness of this cast is to cast the return value of a function with a
+greater sort down to a strictly smaller sort that you expect the return value
+of the function to have. For example:

+
    syntax Exp ::= foo(Exp) [function] | bar(Int) | Int
+    rule foo(I:Int) => I
+    rule bar(I) => bar({foo(I +Int 1)}:>Int)
+

Here we know that foo(I +Int 1) will return an Int, but the return sort of
+foo is Exp. So we project the result into the Int sort so that it can
+be placed as the child of a bar.

+

owise and priority attributes.

+ +

Sometimes, it is simply not convenient to explicitly describe every
+single negative case under which a rule should not apply. Instead,
+we simply wish to say that a rule should only apply after some other set of
+rules have been tried. K introduces two different attributes that can be
+added to rules which will automatically generate the necessary matching
+conditions in a manner which is performant for concrete execution (indeed,
+it generally outperforms during concrete execution code where the conditions
+are written explicitly).

+

The first is the owise attribute. Very roughly, rules without an attribute
+indicating their priority apply first, followed by rules with the owise
+attribute only if all the other rules have been tried and failed. For example,
+consider the following function:

+
syntax Int ::= foo(Int) [function]
+rule foo(0) => 0
+rule foo(_) => 1 [owise]
+

Here foo(0) is defined explicitly as 0. Any other integer yields the
+integer 1. In particular, the second rule above will only be tried after the
+first rule has been shown not to apply.

+

This is because the first rule has a lower number assigned for its priority
+than the second rule. In practice, each rule in your semantics is implicitly
+or explicitly assigned a numerical priority. Rules are tried in increasing
+order of priority, starting at zero and trying each increasing numerical value
+successively.

+

You can specify the priority of a rule with the priority attribute. For
+example, I could equivalently write the second rule above as:

+
rule foo(_) => 1 [priority(200)]
+

The number 200 is not chosen at random. In fact, when you use the owise
+attribute, what you are doing is implicitly setting the priority of the rule
+to 200. This has a couple of implications:

+
    +
  1. Multiple rules with the owise attribute all have the same priority and thus
    +can apply in any order.
  2. +
  3. Rules with priority higher than 200 apply after all rules with the
    +owise attribute have been tried.
  4. +
+

There is one more rule by which priorities are assigned: a rule with no
+attributes indicating its priority is assigned the priority 50. Thus,
+with each priority explicitly declared, the above example looks like:

+
syntax Int ::= foo(Int) [function]
+rule foo(0) => 0 [priority(50)]
+rule foo(_) => 1 [owise]
+

One final note: the llvm backend reserves priorities between 50 and 150
+inclusive for certain specific purposes. Because of this, explicit
+priorities which are given within this region may not behave precisely as
+described above. This is primarily in order that it be possible where necessary
+to provide guidance to the pattern matching algorithm when it would otherwise
+make bad choices about which rules to try first. You generally should not
+give any rule a priority within this region unless you know exactly what the
+implications are with respect to how the llvm backend orders matches.

+

Evaluation Strategy

+

strict and seqstrict attributes

+ +

The strictness attributes allow defining evaluation strategies without having
+to explicitly make rules which implement them. This is done by injecting
+heating and cooling rules for the subterms. For this to work, you need to
+define what a result is for K, by extending the KResult sort.

+

For example:

+
syntax AExp ::= Int
+              | AExp "+" AExp [strict, klabel(addExp)]
+

This generates two heating rules (where the hole syntaxes "[]" "+" AExp and
+AExp "+" "[]" is automatically added to create an evaluation context):

+
rule [addExp1-heat]: <k> HOLE:AExp +  AE2:AExp => HOLE ~>  [] + AE2 ... </k> [heat]
+rule [addExp2-heat]: <k>  AE1:AExp + HOLE:AExp => HOLE ~> AE1 +  [] ... </k> [heat]
+

And two corresponding cooling rules:

+
rule [addExp1-cool]: <k> HOLE:AExp ~>  [] + AE2 => HOLE +  AE2 ... </k> [cool]
+rule [addExp2-cool]: <k> HOLE:AExp ~> AE1 +  [] =>  AE1 + HOLE ... </k> [cool]
+

Note that the rules are given labels based on the klabel of the production, which
+nonterminal is the hole, and whether it's the heating or the cooling rule.

+

You will note that these rules can apply one after another infinitely. In
+practice, the KResult sort is used to break this cycle by ensuring that only
+terms that are not part of the KResult sort will be heated. The heat and
+cool attributes are used to tell the compiler that these are heating and
+cooling rules and should be handled in the manner just described. Nothing stops
+the user from writing such heating and cooling rules directly if they wish,
+although we describe other more convenient syntax for most of the advanced
+cases below.

+

One other thing to note is that in the above sentences, HOLE is just a
+variable, but it has special meaning in the context of sentences with the
+heat or cool attribute. In heating or cooling rules, the variable named
+HOLE is considered to be the term being heated or cooled and the compiler
+will generate isKResult(HOLE) and notBool isKResult(HOLE) side conditions
+appropriately to ensure that the backend does not loop infinitely. The module
+BOOL will also be automatically and privately included for semantic
+purposes. The syntax for parsing programs will not be affected.

+

In order for this functionality to work, you need to define the KResult sort.
+For instance, we tell K that a term is fully evaluated once it becomes an Int
+here:

+
syntax KResult ::= Int
+

Note that you can also say that a given expression is only strict only in
+specific argument positions. Here we use this to define "short-circuiting"
+boolean operators.

+
syntax KResult ::= Bool
+
+syntax BExp ::= Bool
+              | BExp "||" BExp [strict(1)]
+              | BExp "&&" BExp [strict(1)]
+
+rule <k> true  || _    => true ... </k>
+rule <k> false || REST => REST ... </k>
+
+rule <k> true  && REST => REST  ... </k>
+rule <k> false && _    => false ... </k>
+

If you want to force a specific evaluation order of the arguments, you can use
+the variant seqstrict to do so. For example, this would make the boolean
+operators short-circuit in their second argument first:

+
syntax KResult ::= Bool
+
+syntax BExp ::= Bool
+              | BExp "||" BExp [seqstrict(2,1)]
+              | BExp "&&" BExp [seqstrict(2,1)]
+
+rule <k> _    || true  => true ... </k>
+rule <k> REST || false => REST ... </k>
+
+rule <k> REST && true  => REST  ... </k>
+rule <k> _    && false => false ... </k>
+

This will generate rules like this in the case of _||_ (note that BE1 will
+not be heated unless isKResult(BE2) is true, meaning that BE2 must be
+evaluated first):

+
rule <k>  BE1:BExp || HOLE:BExp => HOLE ~> BE1 ||  [] ... </k> [heat]
+rule <k> HOLE:BExp ||  BE2:BExp => HOLE ~>  [] || BE2 ... </k> requires isKResult(BE2) [heat]
+
+rule <k> HOLE:BExp ~>  [] || BE2 => HOLE ||  BE2 ... </k> [cool]
+rule <k> HOLE:BExp ~> BE1 ||  [] =>  BE1 || HOLE ... </k> [cool]
+

Context Declaration

+ +

Sometimes more advanced evaluation strategies are needed. By default, the
+strict and seqstrict attributes are limited in that they cannot describe
+the context in which heating or cooling should occur. When this type of
+control over the evaluation strategy is required, context sentences can be
+used to simplify the process of declaring heating and cooling when it would be
+unnecessarily verbose to write heating and cooling rules directly.

+

For example, if the user wants to heat a term if it exists under a foo
+constructor if the term to be heated is of sort bar, one might write the
+following context (with the optional label):

+
context [foo]: foo(HOLE:Bar)
+

Once again, note that HOLE is just a variable, but one that has special
+meaning to the compiler indicating the position in the context that should
+be heated or cooled.

+

This will automatically generate the following sentences:

+
rule [foo-heat]: <k> foo(HOLE:Bar) => HOLE ~> foo([]) ... </k> [heat]
+rule [foo-cool]: <k> HOLE:Bar ~> foo([]) => foo(HOLE) ... </k> [cool]
+

The user may also write the K cell explicitly in the context declaration
+if they want to match on another cell as well, for example:

+
context <k> foo(HOLE:Bar) ... </k> <state> .Map </state>
+

This context will now only heat or cool if the state cell is empty.

+

Side conditions in context declarations

+ +

The user is allowed to write a side condition in a context declaration, like
+so:

+
context foo(HOLE:Bar) requires baz(HOLE)
+

This side condition will be appended verbatim to the heating rule that is
+generated, however, it will not affect the cooling rule that is generated:

+
rule <k> foo(HOLE:Bar) => HOLE ~> foo([]) ... </k> requires baz(HOLE) [heat]
+rule <k> HOLE:Bar ~> foo([]) => foo(HOLE) ... </k> [cool]
+

Rewrites in context declarations

+ +

The user can also include exactly one rewrite operation in a context
+declaration if that rule rewrites the variable HOLE on the left hand side
+to a term containing HOLE on the right hand side. For exampl;e:

+
context foo(HOLE:Bar => bar(HOLE))
+

In this case, the code generated will be as follows:

+
rule <k> foo(HOLE:Bar) => bar(HOLE) ~> foo([]) ... </k> [heat]
+rule <k> bar(HOLE:Bar) ~> foo([]) => foo(HOLE) ... </k> [cool]
+

This can be useful if the user wishes to evaluate a term using a different
+set of rules than normal.

+

result attribute

+ +

Sometimes it is necessary to be able to evaluate a term to a different sort
+than KResult. This is done by means of adding the result attribute to
+a strict production, a context, or an explicit heating or cooling rule:

+
syntax BExp ::= Bool
+              | BExp "||" BExp [seqstrict(2,1), result(Bool)]
+

In this case, the sort check used by seqstrict and by the heat and cool
+attributes will be isBool instead of isKResult. This particular example
+does not really require use of the result attribute, but if the user wishes
+to evaluate a term of sort KResult further, the result attribute would be
+required.

+

hybrid attribute

+ +

In certain situations, it is desirable to treat a particular production which
+has the strict attribute as a result if the term has had its arguments fully
+evaluated. This can be accomplished by means of the hybrid attribute:

+
syntax KResult ::= Bool
+
+syntax BExp ::= Bool
+              | BExp "||" BExp [strict(1), hybrid]
+

This attribute is equivalent in this case to the following additional axiom
+being added to the definition of isKResult:

+
rule isKResult(BE1:BExp || BE2:BExp) => true requires isKResult(BE1)
+

Sometimes you wish to declare a production hybrid with respect to a predicate
+other than isKResult. You can do this by specifying a sort as the body of the
+hybrid attribute, e.g.:

+
syntax BExp ::= BExp "||" BExp [strict(1), hybrid(Foo)]
+

generates the rule:

+
rule isFoo(BE1:BExp || BE2:BExp) => true requires isFoo(BE1)
+

Properly speaking, hybrid takes an optional comma-separated list of sort
+names. If the list is empty, the attribute is equivalent to hybrid(KResult).
+Otherwise, it generates hybrid predicates for exactly the sorts named.

+

Context aliases

+ +

Sometimes it is necessary to define a fairly complicated evaluation strategy
+for a lot of different operators. In this case, the user could simply write
+a number of complex context declarations, however, this quickly becomes
+tedious. For this purpose, K has a concept called a context alias. A context
+alias is a bit like a template for describing contexts. The template can then
+be instantiated against particular productions using the strict and
+seqstrict attributes.

+

Here is a (simplified) example taken from the K semantics of C++:

+
context alias [c]: <k> HERE:K ... </k> <evaluate> false </evaluate>
+context alias [c]: <k> HERE:K ... </k> <evaluate> true </evaluate> [result(ExecResult)]
+
+syntax Expr ::= Expr "=" Init [strict(c; 1)]
+

This defines the evaluation strategy during the translation phase of a C++
+program for the assignment operator. It is equivalent to writing the following
+context declarations:

+
context <k> HOLE:Expr = I:Init ... </k> <evaluate> false </evaluate>
+context <k> HOLE:Expr = I:Init ... </k> <evaluate> true </evaluate> [result(ExecResult)]
+

What this is saying is, if the evaluate cell is false, evaluate the term
+like normal to a KResult. But if the evaluate cell is true, instead
+evaluate it to the ExecResult sort.

+

Essentially, we have given a name to this evaluation strategy in the form of
+the rule label on the context alias sentences (in this case, c). We can
+then say that we want to use this evaluation strategy to evaluate particular
+arguments of particular productions by referring to it by name in a strict
+attribute. For example, strict(c) will instantiate these contexts once for
+each argument of the production, whereas strict(c; 1) will instantiate it
+only for the first argument. The special variable HERE is used to tell the
+compiler where you want to place the production that is to be heated or cooled.

+

You can also specify multiple context aliases for different parts of a production,
+for example:

+
syntax Exp ::= foo(Exp, Exp) [strict(left; 1; right; 2)]
+

This says that we can evaluate the left and right arguments in either order, but to evaluate
+the left using the left context alias and the right using the right context alias.

+

We can also say seqstrict(left; 1; right; 2), in which case we additionally must evaluate
+the left argument before the right argument. Note, all strict positions are considered collectively
+when determining the evaluation order of seqstrict or the hybrid predicates.

+

A strict attribute with no rule label associated with it is equivalent to
+a strict attribute given with the following context alias:

+
context alias [default]: <k> HERE:K ... </k>
+

One syntactic convenience that is provided is that if you wish to declare the following context:

+
context foo(HOLE => bar(HOLE))
+

you can simply write the following:

+
syntax Foo ::= foo(Bar) [strict(alias)]
+
+context alias [alias]: HERE [context(bar)]
+

Pattern Matching

+

As Patterns

+ +

New syntax has been added to K for matching a pattern and binding the resulting
+match in its entirety to a variable.

+

The syntax is:

+
Pattern #as V::Var
+

In this case, Pattern, including any variables, is matched and the resulting
+variables are added to the substitution if matching succeeds. Furthermore, the
+term matched by Pattern is added to the substitution as V.

+

This code can also be used outside of any rewrite, in which case matching
+occurs as if it appeared on the left hand side, and the right hand side becomes
+a variable corresponding to the alias.

+

It is an error to use an as pattern on the right hand side of a rule.

+

Record-like KApply Patterns

+ +

We have added a syntax for matching on KApply terms which mimics the record
+syntax in functional languages. This allows us to more easily express patterns
+involving a KApply term in which we don't care about some or most of the
+children, without introducing a dependency into the code on the number of
+arguments which could be changed by a future refactoring.

+

The syntax is:

+
record(... field1: Pattern1, field2: Pattern2)
+

Note that this only applies to productions that are prefix productions.
+A prefix production is considered by the implementation to be any production
+whose production items match the following regular expression:

+
(Terminal(_)*) Terminal("(")
+(NonTerminal (Terminal(",") NonTerminal)* )?
+Terminal(")")
+

In other words, any sequence of terminals followed by an open parenthesis, an
+optional comma separated list of non-terminals, and a close parenthesis.

+

If a prefix production has no named nonterminals, a record(...) syntax is
+allowed, but in order to reference specific fields, it is necessary to give one
+or more of the non-terminals in the production names.

+

Note: because the implementation currently creates one production per possible
+set of fields to match on, and because all possible permutations of all
+possible subsets of a list of n elements is a number that scales factorially
+and reaches over 100 thousand productions at n=8, we currently do not allow
+fields to be matched in any order like a true record, but only in the same
+order as appears in the production itself.

+

Given that this only reduces the number of productions to the size of the power
+set, this will still explode the parsing time if we create large productions of
+10 or more fields that all have names. This is something that should probably
+be improved, however, productions with that large of an arity are rare, and
+thus it has not been viewed as a priority.

+

Or Patterns

+ +

Sometimes you wish to express that a rule should match if one out of multiple
+patterns should match the same subterm. We can now express this in K by means
+of using the #Or ML connective on the left hand side of a rule.

+

For example:

+
rule foo #Or bar #Or baz => qux
+

Here any of foo, bar, or baz will match this rule. Note that the behavior is
+ill-defined if it is not the case that all the clauses of the or have the same
+bound variables.

+

Matching global context in function rules

+ +

On occasion it is highly desirable to be able to look up information from the
+global configuration and match against it when evaluating a function. For this
+purpose, we introduce a new syntax for function rules.

+

This syntax allows the user to match on function context from within a
+function rule:

+
syntax Int ::= foo(Int) [function]
+
+rule [[ foo(0) => I ]]
+     <bar> I </bar>
+
+rule something => foo(0)
+

This is completely desugared by the K frontend and does not require any special
+support in the backend. It is an error to have a rewrite inside function
+context, as we do not currently support propagating such changes back into the
+global configuration. It is also an error if the context is not at the top
+level of a rule body.

+

Desugared code:

+
syntax Int ::= foo(Int, GeneratedTopCell) [function]
+
+rule foo(0, <generatedTop>
+              <bar> I </bar>
+              ...
+            </generatedTop> #as Configuration) => I
+rule <generatedTop>
+       <k> something ... </k>
+       ...
+     </generatedTop> #as Configuration
+  => <generatedTop>
+       <k> foo(0, Configuration> ... </k>
+       ...
+     </generatedTop>
+

Collection patterns

+ +

It is allowed to write patterns on the left hand side of rules which refer to
+complex terms of sort Map, List, and Set, despite these patterns ostensibly
+breaking the rule that terms which are functions should not appear on the left
+hand side of rules. Such terms are destructured into pattern matching
+operations.

+

The following forms are allowed:

+
// 0 or more elements followed by 0 or 1 variables of sort List followed by
+// 0 or more elements
+ListItem(E1) ListItem(E2) L:List ListItem(E3) ListItem(E4)
+
+// the empty list
+.List
+
+// 0 or more elements in any order plus 0 or 1 variables of sort Set
+// in any order
+SetItem(K1) SetItem(K2) S::Set SetItem(K3) SetItem(K4)
+
+// the empty set
+.Set
+
+// 0 or more elements in any order plus by 0 or 1 variables of sort Map
+// in any order
+K1 |-> E1 K2 |-> E2 M::Map K3 |-> E3 K4 |-> E4
+
+// the empty map
+.Map
+

Here K1, K2, K3, K4 etc can be any pattern except a pattern containing both
+function symbols and unbound variables. An unbound variable is a variable whose
+binding cannot be determined by means of decomposing non-set-or-map patterns or
+map elements whose keys contain no unbound variables.

+

This is determined recursively, ie, the term K1 |-> E2 E2 |-> E3 E3 |-> E4 is
+considered to contain no unbound variables.

+

Note that in the pattern K1 |-> E2 K3 |-> E4 E4 |-> E5, K1 and K3 are
+unbound, but E4 is bound because it is bound by deconstructing the key E3, even
+though E3 is itself unbound.

+

In the above examples, E1, E2, E3, and E4 can be any pattern that is normally
+allowed on the lhs of a rule.

+

When a map or set key contains function symbols, we know that the variables in
+that key are bound (because of the above restriction), so it is possible to
+evaluate the function to a concrete term prior to performing the lookup.

+

Indeed, this is the precise semantics which occurs; the function is evaluated
+and the result is looked up in the collection.

+

For example:

+
syntax Int ::= f(Int) [function]
+rule f(I:Int) => I +Int 1
+rule <k> I:Int => . ... </k> <state> ... SetItem(f(I)) ... </state>
+

This will rewrite I to . if and only if the state cell contains
+I +Int 1.

+

Note that in the case of Set and Map, one guarantee is that K1, K2, K3, and K4
+represent /distinct/ elements. Pattern matching fails if the correct number of
+distinct elements cannot be found.

+

Matching on cell fragments

+ +

K allows matching fragments of the configuration and using them to construct
+terms and use as function parameters.

+
configuration <t>
+                <k> #init ~> #collectOdd ~> $PGM </k>
+                <fs>
+                  <f multiplicity="*" type="Set"> 1 </f>
+                </fs>
+              </t>
+

The #collectOdd construct grabs the entire content of the <fs> cell.
+We may also match on only a portion of its content. Note that the fragment
+must be wrapped in a <f> cell at the call site.

+
syntax KItem ::= "#collectOdd"
+rule <k> #collectOdd => collectOdd(<fs> Fs </fs>) ... </k>
+     <fs> Fs </fs>
+

The collectOdd function collects the items it needs

+
syntax Set ::= collectOdd(FsCell) [function]
+rule collectOdd(<fs> <f> I </f> REST </fs>) => SetItem(I) collectOdd(<fs> REST </fs>) requires I %Int 2 ==Int 1
+rule collectOdd(<fs> <f> I </f> REST </fs>) =>            collectOdd(<fs> REST </fs>) requires I %Int 2 ==Int 0
+rule collectOdd(<fs> .Bag </fs>) => .Set
+

all-path and one-path attributes to distinguish reachability claims

+ +

As the Haskell backend can handle both one-path and all-path reachability
+claims, but both these are encoded as rewrite rules in K, these attributes can
+be used to clarify what kind of claim a rule is.

+

In addition of being able to annotate a rule with one of them
+(if annotating with more at the same time, only one of them would be chosen),
+one can also annotate whole modules, to give a default claim type for all rules
+in that module.

+

Additionally, the Haskell backend introduces an extra command line option
+for the K frontend, --default-claim-type, with possible values
+all-path and one-path to allow choosing a default type for all
+claims.

+

Set Variables

+ +

Motivation

+ +

Set variables were introduced as part of Matching Mu Logic, the mathematical
+foundations for K. In Matching Mu Logic, terms evaluate to sets of values.
+This is useful for both capturing partiality (as in 3/0) and capturing
+non-determinism (as in 3 #Or 5). Consequently, symbol interpretation is
+extended to have a collective interpretation over sets of input values.

+

Usually, K rules are given using regular variables, which expect that the term
+they match is both defined and has a unique interpretation.

+

However, it is sometimes useful to have simplification rules which work over
+any kind of pattern, be it undefined or non-deterministic. This behavior can be
+achieved by using set variables to stand for any kind of pattern.

+

Syntax

+ +

Any variable prefixed by @ will be considered a set variable.

+

Example

+ +

Below is a simplification rule which motivated this extension:

+
  rule #Ceil(@I1:Int /Int @I2:Int) =>
+    {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2)
+    [anywhere]
+

This rule basically says that @I1:Int /Int @I2:Int is defined if @I1 and
+@I2 are defined and @I2 is not 0. Using sets variables here is important as
+it allows the simplification rule to apply any symbolic patterns, without
+caring whether they are defined or not.

+

This allows simplifying the expression #Ceil((A:Int /Int B:Int) / C:Int) to:

+
{(C =/=Int 0) #Equals true} #And #Ceil(C) #And ({(B =/=Int 0) #Equals true}
+#And #Ceil(B) #And #Ceil(A)`
+

See kframework/kore#729 for
+more details.

+

SMT Translation

+ +

K makes queries to an SMT solver (Z3) to discharge proof obligations when doing
+symbolic execution. You can control how these queries are made using the
+attributes smtlib, smt-hook, and smt-lemma on declared productions.
+These attributes guide the prover when it tries to apply rules to discharge a
+proof obligation.

+
    +
  • smt-hook(...) allows you to specify a term in SMTLIB2 format which should
    +be used to encode that production, and assumes that all symbols appearing in
    +the term are already declared by the SMT solver.
  • +
  • smtlib(...) allows you to declare a new SMT symbol to be used when that
    +production is sent to Z3, and gives it uninterpreted function semantics.
  • +
  • smt-lemma can be applied to a rule to encode it as a conditional equality
    +when sending queries to Z3. A rule rule LHS => RHS requires REQ will be
    +encoded as the conditional equality (=> REQ (= (LHS RHS)). Every symbol
    +present in the rule must have an smt-hook(...) or smtlib(...) attribute.
  • +
+
syntax Int ::= "~Int" Int          [function, klabel(~Int_), symbol,
+                                    smtlib(notInt)]
+             | Int "^%Int" Int Int [function, klabel(_^%Int__), symbol,
+                                    smt-hook((mod (^ #1 #2) #3))]
+

In the example above, we declare two productions ~Int_ and _^%Int__, and
+tell the SMT solver to:

+
    +
  • use uninterpreted function semantics for ~Int_ via SMTLIB2 symbol
    +notInt, and
  • +
  • use the SMTLIB2 term (mod (^ #1 #2) #3) (where #N marks the Nth
    +production non-terminal argument positions) for _^%Int__, where mod and
    +^ already are declared by the SMT solver.
  • +
+

Caution

+ +

Set variables are currently only supported by the Haskell backend.
+The use of rules with set variables should be sound for all other backends
+which just execute by rewriting, however it might not be safe for backends
+which want to guarantee coverage.

+

Variables occurring only in the RHS of a rule

+ +

This section presents possible scenarios requiring variables to only appear in
+the RHS of a rule.

+

Summary

+ +

Except for ? variables and ! (fresh) variables, which are
+required to only appear in the RHS of a rule, all other variables must
+also appear in the LHS of a rule. This restriction also applies to anonymous
+variables; in particular, for claims, ?_ (not _) should be used in the RHS
+to indicate that something changes but we don't care to what value.

+

To support specifying random-like behavior, the above restriction can be relaxed
+by annotating a rule with the unboundVariables attribute whenever the rule
+intentionally contains regular variables only occurring in the RHS.

+

Introduction

+ +

K uses question mark variables of the form ?X to refer to
+existential variables, and uses ensures to specify logical constraints on
+those variables.
+These variables are only allowed to appear in the RHS of a K rule.

+

If the rules represent rewrite (semantic) steps or verification claims,
+then the ? variables are existentially quantified at the top of the RHS;
+otherwise, if they represent equations, the ? variables are quantified at the
+top of the entire rule.

+

Note that when both ?-variables and regular variables are present,
+regular variables are (implicitly) universally quantified on top of the rule
+(already containing the existential quantifications).
+This essentially makes all ? variables depend on all regular variables.

+

All examples below are intended more for program verification /
+symbolic execution, and thus concrete implementations might choose to ignore
+them altogether or to provide ad-hoc implementations for them.

+

Example: Verification claims

+ +

Consider the following definition of a (transition) system:

+
module A
+  rule foo => true
+  rule bar => true
+  rule bar => false
+endmodule
+

Consider also, the following specification of claims about the definition above:

+
module A-SPEC
+  rule [s1]: foo => ?X:Bool
+  rule [s2]: foo =>  X:Bool  [unboundVariables(X)]
+  rule [s3]: bar => ?X:Bool
+  rule [s4]: bar =>  X:Bool  [unboundVariables(X)]
+endmodule
+
One-path interpretation
+ +
    +
  • (s1) says that there exists a path from foo to some boolean, which is
    +satisfied easily using the foo => true rule
  • +
  • (s3) says the same thing about bar and can be satisfied by either of
    +bar => true and bar => false rules
  • +
  • (s2) and (s4) can be better understood by replacing them with instances for
    +each element of type Bool, which can be interpreted that
    +both true and false are reachable from foo for (s2), or bar for (s4),
    +respectively. +
      +
    • (s2) cannot be verified as we cannot find a path from foo to false.
    • +
    • (s4) can be verified by using bar => true to show true is reachable and
      +bar => false to achieve the same thing for false
    • +
    +
  • +
+
All-path interpretation
+ +
    +
  • +

    (s1) says that all paths from foo will reach some boolean, which is
    +satisfied by the foo => true rule and the lack of other rules for foo

    +
  • +
  • +

    (s3) says the same thing about bar and can be satisfied by checking that
    +both bar => true and bar => false end in a boolean, and there are no
    +other rules for bar

    +
  • +
  • +

    (s2) and (s4) can be better understood by replacing them with instances for
    +each element of type Bool, which can be interpreted that
    +both true and false are reachable in all paths originating in
    +foo for (s2), or bar for (s4), respectively.
    +This is a very strong claim, requiring that all paths originating in
    +foo (bar) pass through both true and false,
    +so neither (s2) nor (s4) can be verified.

    +

    Interestingly enough, adding a rule like false => true would make both
    +(s2) and (s4) hold.

    +
  • +
+

Example: Random Number Construct rand()

+ +

The random number construct rand() is a language construct which could be
+easily conceived to be part of the syntax of a programming language:

+
Exp ::= "rand" "(" ")"
+

The intended semantics of rand() is that it can rewrite to any integer in
+a single step. This could be expressed as the following following infinitely
+many rules.

+
rule  rand() => 0
+rule  rand() => 1
+rule  rand() => 2
+  ...    ...
+rule rand() => (-1)
+rule rand() => (-2)
+  ...    ...
+

Since we need an instance of the rule for every integer, one could summarize
+the above infinitely many rules with the rule

+
rule rand() => I:Int [unboundVariables(I)]
+

Note that I occurs only in the RHS in the rule above, and thus the rule
+needs the unboundVariables(I) attribute to signal that this is intentionally.

+

One can define variants of rand() by further constraining the output variable
+as a precondition to the rule.

+
Rand-like examples
+ +
    +
  1. +

    randBounded(M,N) can rewrite to any integer between M and N

    +
    syntax Exp ::= randBounded(Int, Int)
    +rule randBounded(M, N) => I
    +  requires M <=Int I andBool I <=Int N
    +  [unboundVariables(I)]
    +
  2. +
  3. +

    randInList(Is) takes a list Is of items
    +and can rewrite in one step to any item in Is.

    +
    syntax Exp ::= randInList (List)
    +rule randInList(Is) => I
    +  requires I inList Is
    +  [unboundVariables(I)]
    +
  4. +
  5. +

    randNotInList(Is) takes a list Is of items
    +and can rewrite in one step to any item not in Is.

    +
    syntax Exp ::= randNotInList (List)
    +rule randNotInList(Is) => I
    +  requires notBool(I inList Is)
    +  [unboundVariables(I)]
    +
  6. +
  7. +

    randPrime(), can rewrite to any prime number.

    +
    syntax Exp ::= randPrime ()
    +rule randPrime() => X:Int
    +  requires isPrime(X)
    +  [unboundVariables(X)]
    +

    where isPrime(_) is a predicate that can be defined in the usual way.

    +
  8. +
+

Note 1: all above are not function symbols, but language constructs.

+

Note 2: Currently the frontend does not allow rules with universally quantified
+variables in the RHS which are not bound in the LHS.

+

Note 3. Allowing these rules in a concrete execution engine would require an
+algorithm for generating concrete instances for such variables, satisfying the
+given constraints; thus the unboundVariables attribute serves two purposes:

+
    +
  • to allow such rules to pass the variable checks, and
  • +
  • to signal (concrete execution) backends that specialized algorithm would be
    +needed to instantiate these variables.
  • +
+

Example: Fresh Integer Construct fresh(Is)

+ +

The fresh integer construct fresh(Is) is a language construct.

+
Exp ::= ... | "fresh" "(" List{Int} ")"
+

The intended semantics of fresh(Is) is that it can always rewrite to an
+integer that in not in Is.

+

Note that fresh(Is) and randNotInList(Is) are different; the former
+does not need to be able to rewrite to every integers not in Is,
+while the latter requires so.

+

For example, it is correct to implement fresh(Is) so it always returns the
+smallest positive integer that is not in Is, but same implementation for
+randNotInList(Is) might be considered inadequate.
+In other words, there exist multiple correct implementations of fresh(Is),
+some of which may be deterministic, but there only exists a unique
+implementation of randNotInList(Is).
+Finally, note that randNotInList(Is) is a correct implementation
+for fresh(Is); Hence, concrete execution engines can choose to handle
+such rules accordingly.

+

We use the following K syntax to define fresh(Is)

+
syntax Exp ::= fresh (List{Int})
+rule fresh(Is:List{Int}) => ?I:Int
+  ensures notBool (?I inList{Int} Is)
+

A variant of this would be a choiceInList(Is) language construct which would
+choose some number from a list:

+
syntax Exp ::= choiceInList (List{Int})
+rule choiceInList(Is:List{Int}) => ?I:Int
+  ensures ?I inList{Int} Is
+

Note: This definition is different from one using a ! variable to indicate
+freshness because using ! is just syntactic sugar for generating globally
+unique instances and relies on a special configuration cell, and cannot be
+constrained, while the fresh described here is local and can be constrained.
+While the first is more appropriate for concrete execution, this might be
+better for symbolic execution / program verification.

+

Example: Arbitrary Number (Unspecific Function) arb()

+ +

The function arb() is not a PL construct, but a mathematical function.
+Therefore, its definition should not be interpreted as an execution step, but
+rather as an equality.

+

The intended semantics of arb() is that it is an unspecified nullary function.
+The exact return value of arb() is unspecified in the semantics but up to the
+implementations.
+However, being a mathematical function, arb() must return the same value in
+any one implementation.

+

We do not need special frontend syntax to define arb().
+We only need to define it in the usual way as a function
+(instead of a language construct), and provide no axioms for it.
+The total attribute ensures that the function is total, i.e.,
+that it evaluates to precisely one value for each input.

+
Variants
+ +

There are many variants of arb(). For example, arbInList(Is) is
+an unspecified function whose return value must be an element from Is.

+

Note that arbInList(Is) is different from choiceInList(Is), because
+choiceInList(Is) transitions to an integer in Is (could be a different one
+each time it is used), while arbInList(Is) is equal to a (fixed)
+integer not in Is.

+

W.r.t. the arb variants, we can use ? variables and the function
+annotation to signal that we're defining a function and the value of the
+function is fixed, but non-determinate.

+
syntax Int ::= arbInList(List{Int}) [function]
+rule arbInList(Is:List{Int}) => ?I:Int
+  ensures ?I inList{Int} Is
+

If elimination of existentials in equational rules is needed, one possible
+approach would be through Skolemization,
+i.e., replacing the ? variable with a new uninterpreted function depending
+on the regular variables present in the function.

+

Example: Interval (Non-function Symbols) interval()

+ +

The symbol interval(M,N) is not a PL construct, nor a function in the
+first-order sense, but a proper matching-logic symbol, whose interpretation is
+in the powerset of its domain.
+Its axioms will not use rewrites but equalities.

+

The intended semantics of interval(M,N) is that it equals the set of
+integers that are larger than or equal to M and smaller than or equal to N.

+

Since expressing the axiom for interval requires an an existential
+quantification on the right-hand-side, thus making it a non-total symbol
+defined through an equation, using ? variables might be confusing since their
+usage would be different from that presented in the previous sections.

+

Hence, the proposal to support this would be to write this as a proper ML rule.
+A possible syntax for this purpose would be:

+
eq  interval(M,N)
+    ==
+    #Exists X:Int .
+        (X:Int #And { X >=Int M #Equals true } #And { X <=Int N #Equals true })
+

Additionally, the symbol declaration would require a special attribute to
+signal the fact that it is not a constructor but a defined symbol.

+

Since this feature is not clearly needed by K users at the moment, it is only
+presented here as an example; its implementation will be postponed for such time
+when its usefulness becomes apparent.

+

Parser Generation

+

In addition to on-the-fly parser generation using kast, K is capable of
+ahead-of-time parser generation of LR(1) or GLR parsers using Flex and Bison.
+This can be done one of two different ways.

+
    +
  1. You can explicitly request for a particular parser to be generated by
    +invoking kast --gen-parser <outputFile> or
    +kast --gen-glr-parser <outputFile> respectively. kast will then create a
    +parser based on the same command line flags that govern on-the-fly parsing,
    +like -s to specify the starting sort, and -m to specify the module to
    +parse under. By default, this generates a parser for the sort of the $PGM
    +configuration variable in the main syntax module of the definition.
  2. +
  3. You can request that a specific set of parsers be generated for all the
    +configuration variables of your definition by passing the
    +--gen-bison-parser or --gen-glr-bison-parser flags to kompile.
    +kompile will decide the sorts to use as start symbols based on the sorts
    +in the configuration declaration for the configuration variables. The $PGM
    +configuration variable will be generated based on the main syntax module
    +of the definition. The user must explicitly annotate the configuration
    +declaration with the other modules to use to parse the other configuration
    +variables as attributes. For example, if I have the following cell in the
    +configuration declaration: <cell> foo($FOO:Foo, $BAR:Bar) </cell>,
    +One might annotate it with the attribute pair parser="FOO, TEST; BAR, TEST2"
    +to indicate that configuration variable $FOO should be parsed in the
    +TEST module, and configuration variable $BAR should be parsed in the
    +TEST2 module. If the user forgets to annotate the declaration with the
    +parser attribute, only the $PGM parser will be generated.
  4. +
+

Bison-generated parsers are extremely fast compared to kast, but they have
+some important limitations:

+
    +
  • Bison parsers will always output Kore. You can then pass the resulting AST
    +directly to llvm-krun or kore-exec and bypass the krun frontend, making
    +them very fast, but lower-level.
  • +
  • Bison parsers do not yet support macros. This may change in a future release.
    +Note that you can use anywhere rules instead of macros in most cases to get
    +around this limitation, although they will not benefit from unparsing via the
    +alias attribute.
  • +
  • Obligation falls on the user to ensure that the grammar they write is LR(1)
    +if they choose to use LR(1) parsing. If this does not happen, the parser
    +generated will have shift/reduce or reduce/reduce conflicts and the parser
    +may behave differently than kast would (kast is a GLL parser, ie, it
    +is based on LL parsers and parses all unambiguous context-free grammars).
    +K provides an attribute, not-lr1, which can be applied to modules known to
    +not be LR(1), and will trigger a warning if the user attempts to generate an
    +LR(1) parser which recursively imports that module.
  • +
  • If you are using LR(1) based parsing, the prefer and avoid attributes are
    +ignored. It is only possible to implement these attributes by means of
    +generalized LL or LR parsing and a postprocessing on the AST to remove the
    +undesirable ambiguity.
  • +
  • Obligation falls on the user to ensure that the grammar they write has as
    +few conflicts as possible if they are using GLR parsing. Bison's GLR support
    +is quite primitive, and in the worst case it can use exponential space and
    +time to parse a program, which generally leads the generated parser to report
    +"memory exhausted", indicating that the parse could not be completed within
    +the stack space allocated by Bison. It's best to ensure that the grammar is
    +as close to LR(1) as possible and only utilizes conflicts where absolutely
    +necessary. One tool that can be used to facilitate this is to pass
    +--bison-lists to kompile. This will disable support for the List{Sort}
    +syntax production, and it will make NeList{Sort} left associative, but the
    +resulting productions generated for NeList{Sort} will be LR(1) and use bounded
    +stack space.
  • +
  • If the grammar you are parsing is context-sensitive (for example, because
    +it requires a symbol table to parse), one thing you can do to make this
    +language parse in K is to implement the language as an ambiguous grammar.
    +Bison's GLR parser will generate an amb production that is parametric in
    +the sort of the ambiguity. You can then import the K-AMBIGUITIES module
    +and use rewriting to resolve the ambiguities using whatever preprocessing
    +mechanisms you prefer.
  • +
+

Location Information

+

K is able to insert file, line, and column metadata into the parse tree on a
+per-sort basis when parsing using a bison-generated parser. To enable this,
+mark the sort with the locations attribute.

+
  syntax Exp [locations]
+  syntax Exp ::= Exp "/" Exp | Int
+

K implicitly wraps productions of these sorts in a #location term (see the
+K-LOCATIONS module in kast.md). The metadata can thus be accessed with
+ordinary rewrite rules:

+
  rule #location(_ / 0, File, StartLine, _StartColumn, _EndLine, _EndColumn) =>
+  "Error: Division by zero at " +String File +String ":" Int2String(StartLine)
+

Sometimes it is desirable to allow code to be written in a file which
+overwrites the current location information provided by the parser. This can be
+done via a combination of the #LineMarker sort and the --bison-file flag to
+the parser generator. If you declare a production of sort #LineMarker which
+contains a regular expression terminal, this will be treated as a
+line marker by the bison parser. The user will then be expected to provide
+an implementation of the parser for the line marker in C. The function expected
+by the parser has the signature void line_marker(char *, yyscan_t), where
+yyscan_t is a
+reentrant flex scanner.
+The string value of the line marker token as specified by your regular
+expression can be found in the first parameter of the function, and you can
+set the line number used by the scanner using yyset_lineno(int, yyscan_t). If
+you declare the variable extern char *filename, you can also set the current
+file name by writing a malloc'd, zero-terminated string to that variable.

+

Unparsing

+

A number of factors go into how terms are unparsed in K. Here we describe some
+of the features the user can use to control how unparsing happens.

+

Brackets

+ +

One of the phases that the unparser goes through is to insert productions
+tagged with the bracket attribute where it believes this is necessary
+in order to create a correct string that will be parsed back into the original
+AST. The most common case of this is in expression grammars. For example,
+consider the following grammar:

+
syntax Exp ::= Int
+             | Exp "*" Exp
+             > Exp "+" Exp
+

Here we have declared that expressions can contain integer addition and
+multiplication, and that multiplication binds tighter than addition. As a
+result, when writing a program, if we want to write an expression that first
+applies addition, then multiplication, we must use brackets: (1 + 2) * 3.
+Similarly, if we have such an AST, we must insert brackets into the AST
+in order to faithfully unparse the term in a manner that will be parsed back
+into the same ast, because if we do not, we end up unparsing the term as
+1 + 2 * 3, which will be parsed back as 1 + (2 * 3) because of the priority
+declaration in the grammar.

+

You can control how the unparser will insert such brackets by adding a
+production with the bracket attribute and the correct sort. For example, if,
+instead of parentheses, you want to use curly braces, you could write:

+
syntax Exp ::= "{" Exp "}" [bracket]
+

This would signal to the unparser how brackets should look for terms of sort
+Exp, and it will use this syntax when unparsing terms of sort Exp.

+

Commutative collections

+ +

One thing that K will do (unless you pass the --no-sort-collections flag to
+krun) is to sort associative, commutative collections (such as Set and Map)
+alphanumerically. For example, if I have a collection whose keys are sort Id
+and they have the values a, b, c, and d, then unparsing will always print
+first the key a, then b, then c, then d, because this is the alphabetic order
+of these keys when unparsed.

+

Furthermore, K will sort numeric keys numerically. For example, if I have a
+collection whose keys are 1, 2, 5, 10, 30, it will first display 1, then 2,
+then 5, then 10, then 30, because it will sort these keys numerically. Note
+that this is different than an alphabetic sort, which would sort them as
+1, 10, 2, 30, 5. We believe the former is more intuitive to users.

+

Substitution filtering

+ +

K will remove substitution terms corresponding to anonymous variables when
+using the --pattern flag if those anonymous variables provide no information
+about the named variables in your serach pattern. You can disable this behavior
+by passing --no-substitution-filtering to krun. When this flag is not passed,
+and you are using the Haskell backend, any equality in a substitution (ie, an
+#Equals under an #And under an #Or), will be hidden from the user if the
+left hand side is a variable that was anonymous in the --pattern passed by
+the user, unless that variable appears elsewhere in the substitution. If you
+want to see that variable in the substitution, you can either disable this
+filtering, or give that variable a name in the original search pattern.

+

Variable alpha renaming

+ +

K will automatically rename variables that appear in the output configuration.
+Similar to commutative collections, this is done to normalize the resulting
+configuration so that equivalent configurations will be printed identically
+regardless of how they happen to be reached. This pass can be disabled by
+passing --no-alpha-renaming to krun.

+

Macro expansion

+ +

K will apply macros in reverse on the output configuration if the macro was
+created with the alias or alias-rec attribute. See the section on macro
+expansion for more details.

+

Formatting

+ +

format attribute

+ +

K allows you to control how terms are unparsed using the format attribute.
+By default, a domain value is unparsed by printing its string value verbatim,
+and an application pattern is unparsed by printing its terminals and children
+in the sequence implied by its concrete syntax, separated by spaces. However,
+K gives you complete control over how you want to unparse the symbol.

+

A format attribute is a string containing zero or more escape sequences that
+tell K how to unparse the symbol. Escape sequences begin with a '%' and are
+followed by either an integer, or a single non-digit character. Below is a
+list of escape sequences recognized by the formatter:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Escape SequenceMeaning
nInsert '\n' followed by the current indentation level
iIncrease the current indentation level by 1
dDecrease the current indentation level by 1
cMove to the next color in the list of colors for this production
rReset color to the default foreground color for the terminal (See below for more information on how colors work)
an integerPrint a terminal or nonterminal from the production (See below for more information)
any other charPrint that character verbatim
+

Using the integer escape sequence

+ +

In the integer escape sequence %a, the integer a is treated as a 1-based
+index into the terminals and nonterminals of the production.

+
    +
  • +

    If the offset refers to a terminal, move to the next color in the list of
    +colors for this production, print the value of that terminal, then reset the
    +color to the default foreground color for the terminal.

    +
  • +
  • +

    If the offset refers to a regular expression terminal, it is an error.

    +
  • +
  • +

    If the offset refers to a nonterminal, print the unparsed representation of
    +the corresponding child of the current term.

    +
  • +
+

color and colors attributes

+ +

K allows you to take advantage of ANSI terminal codes for foreground color
+in order to colorize output pretty-printed by the unparser. This is controlled
+via the color and colors attributes of productions. These attributes
+combine with the format attribute to control how a term is colorized.

+

The first thing to understand about how colorization works is that the color
+and colors attributes are used to construct a list of colors associated
+with each production, and the format attribute then uses that list to choose
+the color for each part of the production. For more information on how the
+format attribute chooses a color from the list, see above, but essentially,
+each terminal or %c in the format attribute advances the pointer in the list
+by one element, and terminals and %r reset the current color to the default
+foreground color of the terminal afterwards.

+

There are two ways you can construct a list of colors associated with a
+production:

+
    +
  • +

    The color attribute creates the entire list all with the same color, as
    +specified by the value of the attribute. When combined with the default format
    +attribute, this will color all the terminals in that production that color, but
    +more advanced techniques can be used as well.

    +
  • +
  • +

    The colors attribute creates the list from a manual, comma-separated list
    +of colors. The attribute is invalid if the length of the list is not equal to
    +the number of terminals in the production plus the number of %c substrings in
    +the format attribute.

    +
  • +
+

Attributes Reference

+

Attribute Syntax Overview

+ +

In K, many different syntactic categories accept an optional trailing list of
+keywords known as attributes. Attribute lists have two different syntaxes,
+depending on where they occur. Each attribute also has a type which describes
+where it may occur.

+

The first syntax is a square-bracketed ([]) list of words. This syntax is
+available for following attribute types:

+
    +
  1. module attributes - may appear immediately after the module keyword
  2. +
  3. sort attributes - may appear immediately after a sort declaration
  4. +
  5. production attributes - may appear immediately after a BNF production
    +alternative
  6. +
  7. rule attributes - may appear immediately after a rule
  8. +
  9. context attributes - may appear immediately after a context or context
    +alias
  10. +
  11. context alias attributes - may appear immediately after a context alias
  12. +
  13. claim attributes - may appear immediately after a claim
  14. +
+

The second syntax is the XML attribute syntax, i.e., a space delemited list of
+key-and-quoted-value pairs appearing inside the start tag of an XML element:
+<element key1="value" key2="value2" ... > </element>. This syntax is
+available for the following attribute types:

+
    +
  1. cell attributes - may appear inside of the cell start tag in
    +configuration declarations
  2. +
+

Unrecognized attributes are reported as an error. When we talk about
+the type of an attribute, we mean a syntactic category to which an attribute
+can be attached where the attribute has some semantic effect.

+

Attribute Index

+ +

We now provide an index of available attributes organized alphabetically with a
+brief description of each. Note that the same attribute may appear in the index
+multiple times to indicate its effect in different contexts or with/without
+arguments. A legend describing how to interpret the index follows.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeBackendReference
alias-recprodallMacros and Aliases
aliasprodallMacros and Aliases
all-pathclaimhaskellall-path and one-path attributes to distinguish reachability claims
anywhereruleallanywhere rules
applyPriority(_)prodallSymbol priority and associativity
avoidprodallSymbol priority and associativity
binderprodallNo reference yet.
bracketprodallParametric productions and bracket attributes
color(_)prodallcolor and colors attributes
colors(_)prodallcolor and colors attributes
concretemodllvmsymbolic and concrete attribute
concrete(_)rulehaskellconcrete and symbolic attributes (Haskell backend)
concreterulehaskellconcrete and symbolic attributes (Haskell backend)
context(_)aliasallContext aliases
deprecatedprodalldeprecated attribute
exit = ""cellallexit attribute
formatprodallformat attribute
freshGeneratorprodallfreshGenerator attribute
functionprodallfunction and total attributes
group(_)allallSymbol priority and associativity
hook(_)prodallNo reference yet
hybrid(_)prodallhybrid attribute
hybridprodallhybrid attribute
klabel(_)prodallklabel(_) and symbol attributes
leftprodallSymbol priority and associativity
locationssortallLocation Information
macro-recprodallMacros and Aliases
macroprodallMacros and Aliases
memorulehaskellThe memo attribute
multiplicity = "_"cellallCollection Cells: multiplicity and type attributes
non-assocprodallSymbol priority and associativity
one-pathclaimhaskellall-path and one-path attributes to distinguish reachability claims
overload(_)prodalloverload(_) attribute
owiseruleallowise and priority attributes
prec(_)tokenallprec attribute
preferprodallSymbol priority and associativity
priority(_)ruleallowise and priority attributes
privatemodallprivate attribute
privateprodallpublic and private attribute
publicmodallNo reference yet.
publicprodallpublic and private attribute
result(_)ctxtallresult attribute
result(_)ruleallresult attribute
rightprodallSymbol priority and associativity
seqstrict(_)prodallstrict and seqstrict attributes
seqstrictprodallstrict and seqstrict attributes
simplificationrulehaskellsimplification attribute (Haskell backend)
simplification(_)rulehaskellsimplification attribute (Haskell backend)
smt-hook(_)prodhaskellSMT Translation
smtlib(_)prodhaskellSMT Translation
smt-lemmarulehaskellSMT Translation
strictprodallstrict and seqstrict attributes
strict(_)prodallstrict and seqstrict attributes
symbolicmodhaskellsymbolic and concrete attribute
symbolicrulehaskellconcrete and symbolic attributes (Haskell backend)
symbolic(_)rulehaskellconcrete and symbolic attributes (Haskell backend)
symbolprodallklabel(_) and symbol attributes
terminator-symbol(_)prodallklabel(_) and symbol attributes
tokenprodalltoken attribute
tokensortalltoken attribute
totalprodallfunction and total attributes
trustedclaimhaskelltrusted attribute
type = "_"cellallCollection Cells: multiplicity and type attributes
unboundVariables(_)ruleallThe unboundVariables attribute
unusedprodallunused attribute
concretemodallSpecify that this module should only be included in concrete backends (LLVM backend).
symbolicmodallSpecify that this module should only be included in symbolic backends (Haskell backend).
stream = "_"cellallSpecify that this cell should be hooked up to a stream, either stdin, stdout, or stderr.
+

Internal Attribute Index

+ +

Some attributes should not generally appear in user code, except in some
+unusual or complex examples. Such attributes are typically generated by the
+compiler and used internally. We list these attributes below as a reference for
+interested readers:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameTypeBackendReference
assocprodallassoc, comm, idem and unit attributes
commprodallassoc, comm, idem and unit attributes
digestmodallContains the hash of the textual contents of the module.
idemprodallassoc, comm, idem and unit attributes
unitprodallassoc, comm, idem and unit attributes
userListprodallIdentifies the desugared form of Lst ::= List{Elm,"delim"}
predicateprodallSpecifies the sort of a predicate label
elementprodallSpecifies the label of the elements in a list
bracketLabelprodallKeep track of the label of a bracket production since it can't have a klabel
injectiveprodallLabel a given production as injective (unique output for each input)
internalprodallProduction is reserved for internal use by the compiler
coolruleallstrict and seqstrict attributes
heatruleallstrict and seqstrict attributes
+

Index Legend

+ +
    +
  • +

    Name - the attribute's name (optionally followed by an underscore _ to indicate the attribute takes arguments)

    +
  • +
  • +

    Type - the syntactic categories where this attribute is not ignored;
    +the possible values are the types mentioned above or shorthands:

    +
      +
    1. all - short for any type except cell
    2. +
    3. mod - short for module
    4. +
    5. sort
    6. +
    7. prod - short for production
    8. +
    9. rule
    10. +
    11. ctxt - short for context or context alias
    12. +
    13. claim
    14. +
    15. cell
    16. +
    +
  • +
  • +

    Backend - the backends that do not ignore this attribute; possible values:

    +
      +
    1. all - all backends
    2. +
    3. llvm - the LLVM backend
    4. +
    5. haskell - the Haskell backend
    6. +
    +
  • +
  • +

    Effect - the attribute's effect (when it applies)

    +
  • +
+

Pending Documentation

+

Backend features not yet given documentation:

+
    +
  • Parser of KORE terms and definitions
  • +
  • Term representation of K terms
  • +
  • Hooked sorts and symbols
  • +
  • Substituting a substitution into the RHS of a rule +
      +
    • domain values
    • +
    • functions
    • +
    • variables
    • +
    • symbols
    • +
    • polymorphism
    • +
    • hooks
    • +
    • injection compaction
    • +
    • overload compaction
    • +
    +
  • +
  • Pattern Matching / Unification of subject and LHS of rule +
      +
    • domain values
    • +
    • symbols
    • +
    • side conditions
    • +
    • and/or patterns
    • +
    • list patterns
    • +
    • nonlinear variables
    • +
    • map/set patterns +
        +
      • deterministic
      • +
      • nondeterministic
      • +
      +
    • +
    • modulo injections
    • +
    • modulo overloads
    • +
    +
  • +
  • Stepping +
      +
    • initialization
    • +
    • termination
    • +
    +
  • +
  • Print kore terms
  • +
  • Equality/comparison of terms
  • +
  • Owise rules
  • +
  • Strategy #STUCK axiom
  • +
  • User substitution +
      +
    • binders
    • +
    • kvar
    • +
    +
  • +
+

To get a complete list of hooks supported by K, you can run:

+
grep -P -R "(?<=[^-])hook\([^)]*\)" k-distribution/include/kframework/builtin/ \
+     --include "*.k" -ho | \
+sed 's/hook(//' | sed 's/)//' | sort | uniq | grep -v org.kframework
+

All of these hooks will also eventually need documentation.

+
+
+
    +
  1. Except for in a very limited number of special cases from the
    +K standard library. ↩︎

    +
  2. +
  3. The Maude documentation
    +has an example in a context that's somewhat similar to K; discussion of
    +ad-hoc overloading is not relevant. ↩︎

    +
  4. +
+
+

K Cheat Sheet

+

This is a quick reference of the most commonly used K tools.

+
kompile (--gen-bison-parser)? {file}                : generate parser, optionally with ahead of time
+krun {file}                                         : interpret file
+krun -cPGM='{string}'                               : interpret string
+kast --output (kore | kast) (-e|{file})             : parse expression or file
+kompile (--enable-search --backend haskell)? {file} : generate parser, enabling non-deterministic run
+krun (--search-all)? {file}                         : interpret file, evaluating non-deterministic runs as well
+foo-kompiled/parser_PGM {file}                      : ahead of time parse
+kompile (--main-module)? (--syntax-module)? {file}  : generate parser for {file}.k {file}-syntax.k, explicitly state main modules
+kparse <file> | kore-print -                        : parse and unparse a file
+kompile {file} --enable-llvm-debug                  : generate debuggable output for {file}.k
+krun {file} --debugger                              : debug K code
+kprove {file}                                       : Verify specs in {file}
+

During GDB debugging session (see here for
+LLDB breakpoint syntax):

+
break {file}:{linenum}                              : add a breakpoint to {file}'s {linenum} numbered line
+k match {module}.{label} subject                    : investigate matching
+

K Tools

+

Here we document how to use some of the most commonly used K tools.

+

Minimizing Output

+

When one is working with kore-repl or the prover in general and looking at
+specific configurations using config, sometimes the configurations can be huge.

+

One tool to help print configuration compactly is the pyk print utility:

+
pyk print
+

We are going to use --minimize option (which is actually used automatically
+when printing with pyk). This will filter out many uninteresting cells for the
+current config and make the result more compact.

+

Then, when invoking the prover, you can minimize your output by piping it into
+the pyk print ... facility with arguments for controlling the output:

+
kprove --output json --definition DEFN ... \
+    | jq .term                             \
+    | pyk print DEFN /dev/stdin --omit-labels ... --keep-labels ...
+

You can also use this in the kore-repl more easily, by making a help script.
+In your current directory, save a new script pykprint.sh:

+
#!/bin/bash
+
+kast --input kore --output json --definition $1 /dev/stdin \
+    | jq .term                                             \
+    | pyk print $1 /dev/stdin --omit-labels $2
+

Now call config | bash pykprint.sh DEFN in Kore REPL to make the output
+smaller.

+

The options you have to control the output are as follows:

+
    +
  • --no-minimize: do not remove uninteresting cells.
  • +
  • --omit-cells: remove the selected cells from the output.
  • +
  • --keep-cells: keep only the selected cells in the output.
  • +
+

Note: Make sure that there is no whitespace around , in the omit list,
+otherwise you'll get an error (, is a list separator, so this
+requirement is strict).

+

Debugging

+

The LLVM Backend has support for integration with GDB. You can run the debugger
+on a particular program by passing the --debugger flag to krun, or by
+invoking the llvm backend interpreter directly. Below we provide a simple
+tutorial to explain some of the basic commands supported by the LLVM backend.

+

LLDB Support

+ +

GDB is not well-supported on macOS, particularly on newer OS versions and Apple
+Silicon ARM hardware. Consequently, if the --debugger option is passed to krun
+on macOS, LLDB[^1] is launched instead of GDB. However, the K-specific debugger
+scripts that GDB uses have not been ported to LLDB yet, and so the instructions
+in the rest of this section will not work.

+

The K Definition

+ +

Here is a sample K definition we will use to demonstrate debugging
+capabilities:

+
module TEST
+  imports INT
+
+  configuration <k> foo(5) </k>
+  rule [test]: I:Int => I +Int 1 requires I <Int 10
+
+  syntax Int ::= foo(Int) [function]
+  rule foo(I) => 0 -Int I
+
+endmodule
+

You should compile this definition with --backend llvm --enable-llvm-debug to
+use the debugger most effectively.

+

Stepping

+ +

Important: When you first run krun with option --debugger, GDB / LLDB
+will instruct you on how to modify ~/.gdbinit or ~/.lldbinit to enable
+printing abstract syntax of K terms in the debugger. If you do not perform this
+step, you can still use all the other features, but K terms will be printed as
+their raw address in memory.

+

GDB will need the kompiled interpreter in its safe path in order to access the
+pretty printing python script within it. A good way to do this would be to pick
+a minimum top-level path that covers all of your kompiled semantics (ie. set auto-load safe-path ~/k-semantics). LLDB has slightly different security
+policies that do not require fully-arbitrary code execution.

+

This section uses GDB syntax to demonstrate the debugging features. Please
+refer to the GDB to LLDB command map on
+macOS.

+

You can break before every step of execution is taken by setting a breakpoint
+on the k_step function.

+
(gdb) break definition.kore:k_step
+Breakpoint 1 at 0x25e340
+(gdb) run
+Breakpoint 1, 0x000000000025e340 in step (subject=`<generatedTop>{}`(`<k>{}`(`kseq{}`(`inj{Int{}, KItem{}}`(#token("0", "Int")),dotk{}(.KList))),`<generatedCounter>{}`(#token("0", "Int"))))
+(gdb) continue
+Continuing.
+
+Breakpoint 1, 0x000000000025e340 in step (subject=`<generatedTop>{}`(`<k>{}`(`kseq{}`(`inj{Int{}, KItem{}}`(#token("1", "Int")),dotk{}(.KList))),`<generatedCounter>{}`(#token("0", "Int"))))
+(gdb) continue 2
+Will ignore next crossing of breakpoint 1.  Continuing.
+
+Breakpoint 1, 0x000000000025e340 in step (subject=`<generatedTop>{}`(`<k>{}`(`kseq{}`(`inj{Int{}, KItem{}}`(#token("3", "Int")),dotk{}(.KList))),`<generatedCounter>{}`(#token("0", "Int"))))
+(gdb)
+

Breaking on a specific rule

+ +

You can break when a rule is applied by giving the rule a rule label. If the
+module name is TEST and the rule label is test, you can break when the rule
+applies by setting a breakpoint on the TEST.test.rhs function:

+
(gdb) break TEST.test.rhs
+Breakpoint 1 at 0x25e250: file /home/dwightguth/test/./test.k, line 4.
+(gdb) run
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+

Note that the substitution associated with that rule is visible in the
+description of the frame.

+

You can also break when a side condition is applied using the TEST.test.sc
+function:

+
(gdb) break TEST.test.sc
+Breakpoint 1 at 0x25e230: file /home/dwightguth/test/./test.k, line 4.
+(gdb) run
+Breakpoint 1, TEST.test.sc (VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+

Note that every variable used in the side condition can have its value
+inspected when stopped at this breakpoint, but other variables are not visible.

+

You can also break on a rule by its location:

+
(gdb) break test.k:4
+Breakpoint 1 at 0x25e230: test.k:4. (2 locations)
+(gdb) run
+Breakpoint 1, TEST.test.sc (VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("0", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.sc (VarI=#token("1", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+

Note that this sets a breakpoint at two locations: one on the side condition
+and one on the right hand side. If the rule had no side condition, the first
+would not be set. You can also view the locations of the breakpoints and
+disable them individually:

+
(gdb) info breakpoint
+Num     Type           Disp Enb Address            What
+1       breakpoint     keep y   <MULTIPLE>
+        breakpoint already hit 3 times
+1.1                         y     0x000000000025e230 in TEST.test.sc at /home/dwightguth/test/./test.k:4
+1.2                         y     0x000000000025e250 in TEST.test.rhs at /home/dwightguth/test/./test.k:4
+(gdb) disable 1.1
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("1", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb) continue
+Continuing.
+
+Breakpoint 1, TEST.test.rhs (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList), VarI=#token("2", "Int")) at /home/dwightguth/test/./test.k:4
+4         rule [test]: I:Int => I +Int 1 requires I <Int 10
+(gdb)
+

Now only the breakpoint when the rule applies is enabled.

+

Breaking on a function

+ +

You can also break when a particular function in your semantics is invoked:

+
(gdb) info functions foo
+All functions matching regular expression "foo":
+
+File /home/dwightguth/test/./test.k:
+struct __mpz_struct *Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int(struct __mpz_struct *);
+(gdb) break Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int
+Breakpoint 1 at 0x25e640: file /home/dwightguth/test/./test.k, line 6.
+(gdb) run
+Breakpoint 1, Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int (_1=#token("1", "Int")) at /home/dwightguth/test/./test.k:6
+6         syntax Int ::= foo(Int) [function]
+(gdb)
+

In this case, the variables have numbers instead of names because the names of
+arguments in functions in K come from rules, and we are stopped before any
+specific rule has applied. For example, _1 is the first argument to the
+function.

+

You can also set a breakpoint in this location by setting it on the line
+associated with its production:

+
(gdb) break test.k:6
+Breakpoint 1 at 0x25e640: file /home/dwightguth/test/./test.k, line 6.
+(gdb) run
+Breakpoint 1, Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int (_1=#token("1", "Int")) at /home/dwightguth/test/./test.k:6
+6         syntax Int ::= foo(Int) [function]
+

These two syntaxes are equivalent; use whichever is easier for you.

+

You can also view the stack of function applications:

+
(gdb) bt
+#0  Lblfoo'LParUndsRParUnds'TEST'UndsUnds'Int (_1=#token("1", "Int")) at /home/dwightguth/test/./test.k:6
+#1  0x000000000025e5f8 in apply_rule_111 (VarDotVar0=`<generatedCounter>{}`(#token("0", "Int")), VarDotVar1=dotk{}(.KList)) at /home/dwightguth/test/./test.k:9
+#2  0x0000000000268a52 in take_steps ()
+#3  0x000000000026b7b4 in main ()
+(gdb)
+

Here we see that foo was invoked while applying the rule on line 9 of test.k,
+and we also can see the substitution of that rule. If foo was evaluated while
+evaluating another function, we would also be able to see the arguments of that
+function as well, unless the function was tail recursive, in which case no
+stack frame would exist once the tail call was performed.

+

Breaking on a set of rules or functions

+ +

Using rbreak <regex> you can set breakpoints on multiple functions.

+
    +
  • +

    rbreak Lbl - sets a breakpoint on all non hooked functions

    +
  • +
  • +

    rbreak Lbl.*TEST - sets a breakpoint on all functions from module TEST

    +
  • +
  • +

    rbreak hook_INT - sets a breakpoint on all hooks from module INT

    +
  • +
+

Other debugger issues

+ +
    +
  • <optimized out> try kompiling without -O1, -O2, or -O3.
  • +
  • (gdb) break definition.kore:break -> No source file named definition.kore.
    +send --enable-llvm-debug to kompile in order to generate debug info symbols.
  • +
+

Profiling your K semantics

+

The first thing to be aware of is in order to get meaningful data,
+you need to build the semantics and all of its dependencies with
+optimizations enabled but without the frame pointer elimination
+optimization
. For example, for EVM, this means rebuilding GMP, MPFR,
+JEMalloc, Crypto++, SECP256K1, etc with the following exports.

+
export CFLAGS="-DNDEBUG -O2 -fno-omit-frame-pointer"
+export CXXFLAGS="-DNDEBUG -O2 -fno-omit-frame-pointer"
+

You can skip this step, but if you do, any samples within these
+libraries will not have correct stack trace information, which means
+you will likely not get a meaningful set of data that will tell you
+where the majority of time is really being spent. Don't worry about
+rebuilding literally every single dependency though. Just focus on the
+ones that you expect to take a non-negligible amount of runtime. You
+will be able to tell if you haven't done enough later, and you can go
+back and rebuild more. Once this is done, you then build K with
+optimizations and debug info enabled, like so:

+
mvn package -Dproject.build.type="FastBuild"
+

Next, you build the semantics with optimizations and debug info
+enabled (i.e., kompile -ccopt -O2 --iterated -ccopt -fno-omit-frame-pointer).

+

Once all this is done, you should be ready to profile your
+application. Essentially, you should run whatever test suite you
+usually run, but with perf record -g -- prefixed to the front. For
+example, for KEVM it's the following command. (For best data, don't
+run this step in parallel.)

+
perf record -g -- make test-conformance
+

Finally, you want to filter out just the samples that landed within
+the llvm backend and view the report. For this, you need to know the
+name of the binary that was generated by your build system. Normally
+it is interpreter, but e.g. if you are building the web3 client for
+kevm, it would be kevm-client. You will want to run the following
+command.

+
perf report -g -c $binary_name
+

If all goes well, you should see a breakdown of where CPU time has
+been spent executing the application. You will know that sufficient
+time was spent rebuilding dependencies with the correct flags when the
+total time reported by the main method is close to 100%. If it's not
+close to 100%, this is probably because a decent amount of self time
+was reported in stack traces that were not built with frame pointers
+enabled, meaning that perf was unable to walk the stack. You will have
+to go back, rebuild the appropriate libraries, and then record your
+trace again.

+

Your ultimate goal is to identify the hotspots that take the most
+time, and make them execute faster. Entries like step and
+step_1234 like functions refer to the cost of matching. An entry
+like side_condition_1234 is a side condition and apply_rule_1234
+is constructing the rhs of a rule. You can convert from this rule
+ordinal to a location using the llvm-kompile-compute-loc script in
+the bin folder of the llvm backend repo. For example,

+
llvm-kompile-compute-loc 5868 evm-semantics/.build/defn/llvm/driver-kompiled
+

spits out the following text.

+
Line: 18529
+/home/dwightguth/evm-semantics/./.build/defn/llvm/driver.k:493:10
+

This is the line of definition.kore that the axiom appears on as
+well as the original location of the rule in the K semantics. You can
+use this information to figure out which rules and functions are
+causing the most time and optimize them to be more efficient.

+

Running tests - kserver

+

The kserver is a front-end tool based on Nailgun
+which helps to reduce the startup time of the JVM. Calling kserver in a terminal
+window will wait for all kompile/kprove calls and force them to run in the same process
+and share the same threads. This also reduces the thread contention significantly. kompile
+uses all the threads available to do rule parsing. Another benefit is that it saves caches,
+and each time you call kprove/kast, you can access those directly w/o extra disk usage.
+Running the regression-new integration tests on a powerful machine (32 threads) takes 8m,
+with the kserver active it takes 2m. You can start the kserver in two ways.

+
    +
  • blocking: call kserver in the command line. Close it after you are done testing. Useful for quick testing.
  • +
  • non-blocking: call spawn-kserver <log.flie> and close it with stop-kserver - this is used for automation on CI
  • +
+

Because we reuse caches, you should stop and restart the server between runs.
+The Nailgun implementation hasn't been updated in the last 3-5 years, and it's not compatible with Java 18 onwards.

+

K Builtins

+

The K Builtins (also referred to as the K Prelude or the K Standard Library)
+consists of several files which contain definitions that make working with K
+simpler. These files can be found under include/kframework/builtin in your K
+installation directory, and can be imported with requires "FILENAME" (without
+the path prefix).

+
    +
  • domains: Basic datatypes which are universally useful.
  • +
  • kast: Representation of K internal data-structures (not to be
    +included in normal definitions).
  • +
  • prelude: Automatically included into every K definition.
  • +
  • ffi: FFI interface for calling out to native C code from K.
  • +
  • json: JSON datatype and parsers/unparsers for JSON strings.
  • +
  • rat: Rational number representation.
  • +
  • substitution: Hooked implementation of capture-aware
    +sustitution for K definitions.
  • +
  • unification: Hooked implementation of unification
    +exposed directly to K definitions.
  • +
+

Basic Builtin Types in K

+

A major piece of the K prelude consists of a series of modules that contain
+implementations of basic data types and language features in K. You do not need
+to require this file yourself; it is required automatically in every K
+definition unless --no-prelude is passed to kompile. K may not work correctly
+if some of these modules do not exist or do not declare certain functions.

+

Note that some functions in the K prelude functions are not total, that is,
+they are not defined on all possible input values. When you invoke such a
+function on an undefined input, the behavior is undefined. In particular, when
+this happens, interpreters generated by the K LLVM backend may crash.

+
requires "kast.md"
+

Default Modules

+

K declares certain modules that contain most of the builtins you usually want
+when defining a language in K. In particular, this includes integers, booleans,
+strings, identifiers, I/O, lists, maps, and sets. The DOMAINS-SYNTAX module
+is designed to be imported by the syntax module of the language and contains
+only the program-level syntax of identifiers, integers, booleans, and strings.
+The DOMAINS module contains the rest of the syntax, including builtin
+functions over those and the remaining types.

+

Note that not all modules are included in DOMAINS. A few less-common modules
+are not, including ARRAY, COLLECTIONS, FLOAT, STRING-BUFFER, BYTES,
+K-REFLECTION, MINT.

+
module DOMAINS-SYNTAX
+  imports SORT-K
+  imports ID-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  imports BOOL-SYNTAX
+  imports STRING-SYNTAX
+endmodule
+
+module DOMAINS
+  imports DOMAINS-SYNTAX
+  imports INT
+  imports BOOL
+  imports STRING
+  imports BASIC-K
+  imports LIST
+  imports K-IO
+  imports MAP
+  imports SET
+  imports ID
+  imports K-EQUAL
+endmodule
+

Arrays

+

Provided here is an implementation for fixed-sized, contiguous maps from Int
+to KItem. In some previous versions of K, the Array type was a builtin type
+backed by mutable arrays of objects. However, in modern K, the Array type is
+implemented by means of the List type; users should not access this interface
+directly and should instead make only of the functions listed below. Users of
+this module should import only the ARRAY module.

+
module ARRAY-SYNTAX
+  imports private LIST
+
+  syntax Array
+

Array lookup

+ +

You can look up an element in an Array by its index in O(log(N)) time. Note
+that the base of the logarithm is a relatively high number and thus the time is
+effectively constant.

+
  syntax KItem ::= Array "[" Int "]" [function]
+

Array update

+ +

You can create a new Array with a new value for a key in O(log(N)) time, or
+effectively constant.

+
  syntax Array ::= Array "[" key: Int "<-" value: KItem "]" [function, klabel(_[_<-_]), symbol]
+

Array reset

+ +

You can create a new Array where a particular key is reset to its default
+value in O(log(N)) time, or effectively constant.

+
  syntax Array ::= Array "[" Int "<-" "undef" "]" [function]
+

Multiple array update

+ +

You can create a new Array from a List L of size N where the N
+elements starting at index are replaced with the contents of L, in
+O(N*log(K)) time (where K is the size of the array), or effectively linear.
+Having index + N > K yields an exception.

+
  syntax Array ::= updateArray(Array, index: Int, List) [function]
+

Array fill

+ +

You can create a new Array where the length elements starting at index
+are replaced with value, in O(length*log(N)) time, or effectively linear.

+
  syntax Array ::= fillArray(Array, index: Int, length: Int, value: KItem) [function]
+

Array range check

+ +

You can test whether an integer is within the bounds of an array in O(1) time.

+
  syntax Bool ::= Int "in_keys" "(" Array ")" [function, total]
+
endmodule
+
+module ARRAY-IN-K [private]
+  imports public ARRAY-SYNTAX
+  imports private LIST
+  imports private K-EQUAL
+  imports private INT
+  imports private BOOL
+

Array creation

+ +

You can create an array with length elements where each element is
+initialized to value in O(1) time. Note that the array is stored in a manner
+where only the highest element that is actually modified is given a value
+in its internal representation, which means that subsequent array operations
+may incur a one-time O(N) resizing cost, possibly amortized across multiple
+operations.

+
  syntax Array ::= makeArray(length: Int, value: KItem) [function, public]
+

Implementation of Arrays

+ +

The remainder of this section consists of an implementation in K of the
+operations listed above. Users of the ARRAY module should not make use
+of any of the syntax defined in any of these modules.

+
  syntax Array ::= arr(List, Int, KItem)
+
+  rule makeArray(I::Int, D::KItem) => arr(.List, I, D)
+
+  rule arr(L::List, _, _       ) [ IDX::Int ] => L[IDX] requires 0 <=Int IDX andBool IDX  <Int size(L)
+  rule arr(_      , _, D::KItem) [ _        ] => D      [owise]
+
+  syntax List ::= ensureOffsetList(List, Int, KItem) [function]
+  rule ensureOffsetList(L::List, IDX::Int, D::KItem) => L makeList(IDX +Int 1 -Int size(L), D) requires         IDX >=Int size(L)
+  rule ensureOffsetList(L::List, IDX::Int, _::KItem) => L                                      requires notBool IDX >=Int size(L)
+
+  rule arr(L::List, I::Int, D::KItem) [ IDX::Int <- VAL::KItem ] => arr(ensureOffsetList(L, IDX, D) [ IDX <- VAL ], I, D)
+
+  rule arr(L::List, I::Int, D::KItem) [ IDX::Int <- undef ] => arr(L, I, D) [ IDX <- D ]
+
+  rule updateArray(arr(L::List, I::Int, D::KItem), IDX::Int, L2::List) => arr(updateList(ensureOffsetList(L, IDX +Int size(L2) -Int 1, D), IDX, L2), I, D)
+
+  rule fillArray(arr(L::List, I::Int, D::KItem), IDX::Int, LEN::Int, VAL::KItem) => arr(fillList(ensureOffsetList(L, IDX +Int LEN -Int 1, D), IDX, LEN, VAL), I, D)
+
+  rule IDX::Int in_keys(arr(_, I::Int, _)) => IDX >=Int 0 andBool IDX <Int I
+endmodule
+
+module ARRAY-SYMBOLIC [symbolic]
+  imports ARRAY-IN-K
+endmodule
+
+module ARRAY-KORE
+  imports ARRAY-IN-K
+endmodule
+
+module ARRAY
+  imports ARRAY-SYMBOLIC
+  imports ARRAY-KORE
+endmodule
+

Maps

+

Provided here is the syntax of an implementation of immutable, associative,
+commutative maps from KItem to KItem. This type is hooked to an
+implementation of maps provided by the backend. For more information on
+matching on maps and allowable patterns for doing so, refer to K's
+user documentation.

+
module MAP
+  imports private BOOL-SYNTAX
+  imports private INT-SYNTAX
+  imports private LIST
+  imports private SET
+
+  syntax Map [hook(MAP.Map)]
+

Map concatenation

+ +

The Map sort represents a generalized associative array. Each key can be
+paired with an arbitrary value, and can be used to reference its associated
+value. Multiple bindings for the same key are not allowed.

+

You can construct a new Map consisting of key/value pairs of two Maps. The
+result is #False if the maps have keys in common (in particular, this will
+yield an exception during concrete execution). This operation is O(Nlog(M))
+where N is the size of the smaller map, when it appears on the right hand side.
+When it appears on the left hand side and all variables are bound, it is
+O(N
log(M)) where M is the size of the map it is matching and N is the number
+of elements being matched. When it appears on the left hand side containing
+variables not bound elsewhere in the term, it is O(N^K) where N is the size of
+the map it is matching and K is the number of unbound keys being matched. In
+other words, one unbound variable is linear, two is quadratic, three is cubic,
+etc.

+
  syntax Map ::= Map Map                        [left, function, hook(MAP.concat), klabel(_Map_), symbol, assoc, comm, unit(.Map), element(_|->_), index(0), format(%1%n%2)]
+

Map unit

+ +

The map with zero elements is represented by .Map.

+
  syntax Map ::= ".Map"                         [function, total, hook(MAP.unit), klabel(.Map), symbol]
+

Map elements

+ +

An element of a Map is constructed via the |-> operator. The key is on the
+left and the value is on the right.

+
  syntax Map ::= KItem "|->" KItem                      [function, total, hook(MAP.element), klabel(_|->_), symbol, injective]
+
+  syntax priority _|->_ > _Map_ .Map
+  syntax non-assoc _|->_
+

Map lookup

+ +

You can look up the value associated with the key of a map in O(log(N)) time.
+Note that the base of the logarithm is a relatively high number and thus the
+time is effectively constant. The value is #False if the key is not in the
+map (in particular, this will yield an exception during concrete execution).

+
  syntax KItem ::= Map "[" KItem "]"                    [function, hook(MAP.lookup), klabel(Map:lookup), symbol]
+

Map lookup with default

+ +

You can also look up the value associated with the key of a map using a
+total function that assigns a specific default value if the key is not present
+in the map. This operation is also O(log(N)), or effectively constant.

+
  syntax KItem ::= Map "[" KItem "]" "orDefault" KItem      [function, total, hook(MAP.lookupOrDefault), klabel(Map:lookupOrDefault)]
+

Map update

+ +

You can insert a key/value pair into a map in O(log(N)) time, or effectively
+constant.

+
  syntax Map ::= Map "[" key: KItem "<-" value: KItem "]"           [function, total, klabel(Map:update), symbol, hook(MAP.update), prefer]
+

Map delete

+ +

You can remove a key/value pair from a map via its key in O(log(N)) time, or
+effectively constant.

+
  syntax Map ::= Map "[" KItem "<-" "undef" "]"     [function, total, hook(MAP.remove), klabel(_[_<-undef]), symbol]
+

Map difference

+ +

You can remove the key/value pairs in a map that are present in another map in
+O(N*log(M)) time (where M is the size of the first map and N is the size of the
+second), or effectively linear. Note that only keys whose value is the same
+in both maps are removed. To remove all the keys in one map from another map,
+you can say removeAll(M1, keys(M2)).

+
  syntax Map ::= Map "-Map" Map                 [function, total, hook(MAP.difference)]
+

Multiple map update

+ +

You can update a map by adding all the key/value pairs in the second map in
+O(N*log(M)) time (where M is the size of the first map and N is the size of the
+second map), or effectively linear. If any keys are present in both maps, the
+value from the second map overwrites the value in the first. This function is
+total, which is distinct from map concatenation, a partial function only
+defined on maps with disjoint keys.

+
  syntax Map ::= updateMap(Map, Map)            [function, total, hook(MAP.updateAll)]
+

Multiple map removal

+ +

You can remove a Set of keys from a map in O(N*log(M)) time (where M is the
+size of the Map and N is the size of the Set), or effectively linear.

+
  syntax Map ::= removeAll(Map, Set)            [function, total, hook(MAP.removeAll)]
+

Map keys (as Set)

+ +

You can get a Set of all the keys in a Map in O(N) time.

+
  syntax Set ::= keys(Map)                      [function, total, hook(MAP.keys)]
+

Map keys (as List)

+ +

You can get a List of all the keys in a Map in O(N) time.

+
  syntax List ::= "keys_list" "(" Map ")"       [function, hook(MAP.keys_list)]
+

Map key membership

+ +

You can check whether a key is present in a map in O(1) time.

+
  syntax Bool ::= KItem "in_keys" "(" Map ")"       [function, total, hook(MAP.in_keys)]
+

Map values (as List)

+ +

You can get a List of all the values in a map in O(N) time.

+
  syntax List ::= values(Map)                   [function, hook(MAP.values)]
+

Map size

+ +

You can get the number of key/value pairs in a map in O(1) time.

+
  syntax Int ::= size(Map)                      [function, total, hook(MAP.size), klabel(sizeMap)]
+

Map inclusion

+ +

You can determine whether a Map is a strict subset of another Map in O(N)
+time (where N is the size of the first map). Only keys that are bound to the
+same value are considered equal.

+
  syntax Bool ::= Map "<=Map" Map               [function, total, hook(MAP.inclusion)]
+

Map choice

+ +

You can get an arbitrarily chosen key of a Map in O(1) time. The same key
+will always be returned for the same map, but no guarantee is given that two
+different maps will return the same element, even if they are similar.

+
  syntax KItem ::= choice(Map)                      [function, hook(MAP.choice), klabel(Map:choice)]
+

Implementation of Maps

+ +

The remainder of this section contains lemmas used by the Java and Haskell
+backend to simplify expressions of sort Map. They do not affect the semantics
+of maps, merely describing additional rules that the backend can use to
+simplify terms.

+
endmodule
+
+module MAP-KORE-SYMBOLIC [symbolic,haskell]
+  imports MAP
+  imports private K-EQUAL
+  imports private BOOL
+
+  rule #Ceil(@M:Map [@K:KItem]) => {(@K in_keys(@M)) #Equals true} #And #Ceil(@M) #And #Ceil(@K) [simplification]
+
+  // Symbolic update
+
+  // Adding the definedness condition `notBool (K in_keys(M))` in the ensures clause of the following rule would be redundant
+  // because K also appears in the rhs, preserving the case when it's #Bottom.
+  rule (K |-> _ M:Map) [ K <- V ] => (K |-> V M) [simplification]
+  rule M:Map [ K <- V ] => (K |-> V M) requires notBool (K in_keys(M)) [simplification]
+  rule M:Map [ K <- _ ] [ K <- V ] => M [ K <- V ] [simplification]
+  // Adding the definedness condition `notBool (K1 in_keys(M))` in the ensures clause of the following rule would be redundant
+  // because K1 also appears in the rhs, preserving the case when it's #Bottom.
+  rule (K1 |-> V1 M:Map) [ K2 <- V2 ] => (K1 |-> V1 (M [ K2 <- V2 ])) requires K1 =/=K K2 [simplification]
+
+  // Symbolic remove
+  rule (K |-> _ M:Map) [ K <- undef ] => M ensures notBool (K in_keys(M)) [simplification]
+  rule M:Map [ K <- undef ] => M requires notBool (K in_keys(M)) [simplification]
+  // Adding the definedness condition `notBool (K1 in_keys(M))` in the ensures clause of the following rule would be redundant
+  // because K1 also appears in the rhs, preserving the case when it's #Bottom.
+  rule (K1 |-> V1 M:Map) [ K2 <- undef ] => (K1 |-> V1 (M [ K2 <- undef ])) requires K1 =/=K K2 [simplification]
+
+  // Symbolic lookup
+  rule (K  |->  V M:Map) [ K ]  => V ensures notBool (K in_keys(M)) [simplification]
+  rule (K1 |-> _V M:Map) [ K2 ] => M [K2] requires K1 =/=K K2 ensures notBool (K1 in_keys(M)) [simplification]
+  rule (_MAP:Map [ K  <-  V1 ]) [ K ]  => V1 [simplification]
+  rule ( MAP:Map [ K1 <- _V1 ]) [ K2 ] => MAP [ K2 ] requires K1 =/=K K2 [simplification]
+
+  rule (K  |->  V M:Map) [  K ] orDefault _ => V ensures notBool (K in_keys(M)) [simplification]
+  rule (K1 |-> _V M:Map) [ K2 ] orDefault D => M [K2] orDefault D requires K1 =/=K K2 ensures notBool (K1 in_keys(M)) [simplification]
+  rule (_MAP:Map [ K  <-  V1 ]) [ K ] orDefault _ => V1 [simplification]
+  rule ( MAP:Map [ K1 <- _V1 ]) [ K2 ] orDefault D => MAP [ K2 ] orDefault D requires K1 =/=K K2 [simplification]
+  rule .Map [ _ ] orDefault D => D [simplification]
+
+  // Symbolic in_keys
+  rule K in_keys(_M [ K <- undef ]) => false [simplification]
+  rule K in_keys(_M [ K <- _ ]) => true [simplification]
+  rule K1 in_keys(M [ K2 <- _ ]) => true requires K1 ==K K2 orBool K1 in_keys(M) [simplification]
+  rule K1 in_keys(M [ K2 <- _ ]) => K1 in_keys(M) requires K1 =/=K K2 [simplification]
+
+  rule {false #Equals @Key in_keys(.Map)} => #Ceil(@Key) [simplification]
+  rule {@Key in_keys(.Map) #Equals false} => #Ceil(@Key) [simplification]
+  rule {false #Equals @Key in_keys(Key' |-> Val @M)} => #Ceil(@Key) #And #Ceil(Key' |-> Val @M) #And #Not({@Key #Equals Key'}) #And {false #Equals @Key in_keys(@M)} [simplification]
+  rule {@Key in_keys(Key' |-> Val @M) #Equals false} => #Ceil(@Key) #And #Ceil(Key' |-> Val @M) #And #Not({@Key #Equals Key'}) #And {@Key in_keys(@M) #Equals false} [simplification]
+
+/*
+// The rule below is automatically generated by the frontend for every sort
+// hooked to MAP.Map. It is left here to serve as documentation.
+
+  rule #Ceil(@M:Map (@K:KItem |-> @V:KItem)) => {(@K in_keys(@M)) #Equals false} #And #Ceil(@M) #And #Ceil(@K) #And #Ceil(@V)
+    [simplification]
+*/
+endmodule
+
+module MAP-SYMBOLIC
+  imports MAP-KORE-SYMBOLIC
+endmodule
+

Range Maps

+

Provided here is the syntax of an implementation of immutable, associative,
+commutative range maps from Int to KItem. This type is hooked to an
+implementation of range maps provided by the LLVM backend.
+Currently, this type is not supported by other backends.
+Although the underlying range map data structure supports any key sort, the
+current implementation by the backend only supports Int keys due to
+limitations of the underlying ordering function.

+
module RANGEMAP
+  imports private BOOL-SYNTAX
+  imports private INT-SYNTAX
+  imports private LIST
+  imports private SET
+
+

Range, bounded inclusively below and exclusively above.

+ +
  syntax Range ::= "[" KItem "," KItem ")"    [klabel(Rangemap:Range), symbol]
+
+  syntax RangeMap [hook(RANGEMAP.RangeMap)]
+

Range map concatenation

+ +

The RangeMap sort represents a map whose keys are stored as ranges, bounded
+inclusively below and exclusively above. Contiguous or overlapping ranges that
+map to the same value are merged into a single range.

+

You can construct a new RangeMap consisting of range/value pairs of two
+RangeMaps. If the RangeMaps have overlapping ranges an exception will be
+thrown during concrete execution. This operation is O(N*log(M)) (where N is
+the size of the smaller map and M is the size of the larger map).

+
  syntax RangeMap ::= RangeMap RangeMap                        [left, function, hook(RANGEMAP.concat), klabel(_RangeMap_), symbol, assoc, comm, unit(.RangeMap), element(_r|->_), index(0), format(%1%n%2)]
+

Range map unit

+ +

The RangeMap with zero elements is represented by .RangeMap.

+
  syntax RangeMap ::= ".RangeMap"                         [function, total, hook(RANGEMAP.unit), klabel(.RangeMap), symbol]
+

Range map elements

+ +

An element of a RangeMap is constructed via the r|-> operator. The range
+of keys is on the left, and the value is on the right.

+
  syntax RangeMap ::= Range "r|->" KItem                      [function, hook(RANGEMAP.elementRng), klabel(_r|->_), symbol, injective]
+
+  syntax priority _r|->_ > _RangeMap_ .RangeMap
+  syntax non-assoc _r|->_
+

Range map lookup

+ +

You can look up the value associated with a key of a RangeMap in O(log(N))
+time (where N is the size of the RangeMap). This will yield an exception
+during concrete execution if the key is not in the range map.

+
  syntax KItem ::= RangeMap "[" KItem "]"                    [function, hook(RANGEMAP.lookup), klabel(RangeMap:lookup), symbol]
+

Range map lookup with default

+ +

You can also look up the value associated with a key of a RangeMap using a
+total function that assigns a specific default value if the key is not present
+in the RangeMap. This operation is also O(log(N)) (where N is the size of
+the range map).

+
  syntax KItem ::= RangeMap "[" KItem "]" "orDefault" KItem      [function, total, hook(RANGEMAP.lookupOrDefault), klabel(RangeMap:lookupOrDefault)]
+

Range map lookup for range of key

+ +

You can look up for the range that a key of a RangeMap is stored in in
+O(log(N)) time (where N is the size of the RangeMap). This will yield an
+exception during concrete execution if the key is not in the range map.

+
  syntax Range ::= "find_range" "(" RangeMap "," KItem ")"                    [function, hook(RANGEMAP.find_range), klabel(RangeMap:find_range)]
+

Range map update

+ +

You can insert a range/value pair into a RangeMap in O(log(N)) time (where N
+is the size of the RangeMap). Any ranges adjacent to or overlapping with the
+range to be inserted will be updated accordingly.

+
  syntax RangeMap ::= RangeMap "[" keyRange: Range "<-" value: KItem "]"           [function, klabel(RangeMap:update), symbol, hook(RANGEMAP.updateRng), prefer]
+

Range map delete

+ +

You can remove a range/value pair from a RangeMap in O(log(N)) time (where N
+is the size of the RangeMap). If all or any part of the range is present in
+the range map, it will be removed.

+
  syntax RangeMap ::= RangeMap "[" Range "<-" "undef" "]"     [function, hook(RANGEMAP.removeRng), klabel(_r[_<-undef]), symbol]
+

Range map difference

+ +

You can remove the range/value pairs in a RangeMap that are also present in
+another RangeMap in O(max{M,N}*log(M)) time (where M is the size of the
+first RangeMap and N is the size of the second RangeMap). Note that only
+the parts of overlapping ranges whose value is the same in both range maps
+will be removed.

+
  syntax RangeMap ::= RangeMap "-RangeMap" RangeMap                 [function, total, hook(RANGEMAP.difference)]
+

Multiple range map update

+ +

You can update a RangeMap by adding all the range/value pairs in the second
+RangeMap in O(N*log(M+N)) time (where M is the size of the first RangeMap
+and N is the size of the second RangeMap). If any ranges are overlapping,
+the value from the second range map overwrites the value in the first for the
+parts where ranges are overlapping. This function is total, which is distinct
+from range map concatenation, a partial function only defined on range maps
+with non overlapping ranges.

+
  syntax RangeMap ::= updateRangeMap(RangeMap, RangeMap)            [function, total, hook(RANGEMAP.updateAll)]
+

Multiple range map removal

+ +

You can remove a Set of ranges from a RangeMap in O(N*log(M)) time (where
+M is the size of the RangeMap and N is the size of the Set). For every
+range in the set, all or any part of it that is present in the range map will
+be removed.

+
  syntax RangeMap ::= removeAll(RangeMap, Set)            [function, hook(RANGEMAP.removeAll)]
+

Range map keys (as Set)

+ +

You can get a Set of all the ranges in a RangeMap in O(N) time (where N
+is the size of the RangeMap).

+
  syntax Set ::= keys(RangeMap)                      [function, total, hook(RANGEMAP.keys)]
+

Range map keys (as List)

+ +

You can get a List of all the ranges in a RangeMap in O(N) time (where N
+is the size of the RangeMap).

+
  syntax List ::= "keys_list" "(" RangeMap ")"       [function, hook(RANGEMAP.keys_list)]
+

Range map key membership

+ +

You can check whether a key is present in a RangeMap in O(log(N)) time (where
+N is the size of the RangeMap).

+
  syntax Bool ::= KItem "in_keys" "(" RangeMap ")"       [function, total, hook(RANGEMAP.in_keys)]
+

Range map values (as List)

+ +

You can get a List of all values in a RangeMap in O(N) time (where N is the
+size of the RangeMap).

+
  syntax List ::= values(RangeMap)                   [function, hook(RANGEMAP.values)]
+

Range map size

+ +

You can get the number of range/value pairs in a RangeMap in O(1) time.

+
  syntax Int ::= size(RangeMap)                      [function, total, hook(RANGEMAP.size), klabel(sizeRangeMap)]
+

Range map inclusion

+ +

You can determine whether a RangeMap is a strict subset of another RangeMap
+in O(M+N) time (where M is the size of the first RangeMap and N is the size
+of the second RangeMap). Only keys within equal or overlapping ranges that
+are bound to the same value are considered equal.

+
  syntax Bool ::= RangeMap "<=RangeMap" RangeMap               [function, total, hook(RANGEMAP.inclusion)]
+

Range map choice

+ +

You can get an arbitrarily chosen key of a RangeMap in O(1) time. The same
+key will always be returned for the same range map, but no guarantee is given
+that two different range maps will return the same element, even if they are
+similar.

+
  syntax KItem ::= choice(RangeMap)                      [function, hook(RANGEMAP.choice), klabel(RangeMap:choice)]
+endmodule
+

Sets

+

Provided here is the syntax of an implementation of immutable, associative,
+commutative sets of KItem. This type is hooked to an implementation of sets
+provided by the backend. For more information on matching on sets and allowable
+patterns for doing so, refer to K's
+user documentation.

+
module SET
+  imports private INT-SYNTAX
+  imports private BASIC-K
+
+  syntax Set [hook(SET.Set)]
+

Set concatenation

+ +

The Set sort represents a mathematical set (A collection of unique items).
+The sets are nilpotent, i.e., the concatenation of two sets containing elements
+in common is #False (note however, this may be silently allowed during
+concrete execution). If you intend to add an element to a set that might
+already be present in the set, use the |Set operator instead.

+

The concatenation operator is O(Nlog(M)) where N is the size of the smaller
+set, when it appears on the right hand side. When it appears on the left hand
+side and all variables are bound, it is O(N
log(M)) where M is the size of the
+set it is matching and N is the number of elements being matched. When it
+appears on the left hand side containing variables not bound elsewhere in the
+term, it is O(N^K) where N is the size of the set it is matching and K is the
+number of unbound keys being mached. In other words, one unbound variable is
+linear, two is quadratic, three is cubic, etc.

+
  syntax Set ::= Set Set                  [left, function, hook(SET.concat), klabel(_Set_), symbol, assoc, comm, unit(.Set), idem, element(SetItem), format(%1%n%2)]
+

Set unit

+ +

The set with zero elements is represented by .Set.

+
  syntax Set ::= ".Set"                   [function, total, hook(SET.unit), klabel(.Set), symbol]
+

Set elements

+ +

An element of a Set is constructed via the SetItem operator.

+
  syntax Set ::= SetItem(KItem)               [function, total, hook(SET.element), klabel(SetItem), symbol, injective]
+

Set union

+ +

You can compute the union of two sets in O(N*log(M)) time (Where N is the size
+of the smaller set). Note that the base of the logarithm is a relatively high
+number and thus the time is effectively linear. The union consists of all the
+elements present in either set.

+
  syntax Set ::= Set "|Set" Set              [left, function, total, hook(SET.union), comm]
+  rule S1:Set |Set S2:Set => S1 (S2 -Set S1) [concrete]
+

Set intersection

+ +

You can compute the intersection of two sets in O(N*log(M)) time (where N
+is the size of the smaller set), or effectively linear. The intersection
+consists of all the elements present in both sets.

+
  syntax Set ::= intersectSet(Set, Set)   [function, total, hook(SET.intersection), comm]
+

Set complement

+ +

You can compute the relative complement of two sets in O(N*log(M)) time (where
+N is the size of the second set), or effectively linear. This is the set of
+elements in the first set that are not present in the second set.

+
  syntax Set ::= Set "-Set" Set           [function, total, hook(SET.difference), klabel(Set:difference), symbol]
+

Set membership

+ +

You can compute whether an element is a member of a set in O(1) time.

+
  syntax Bool ::= KItem "in" Set              [function, total, hook(SET.in), klabel(Set:in), symbol]
+

Set inclusion

+ +

You can determine whether a Set is a strict subset of another Set in O(N)
+time (where N is the size of the first set).

+
  syntax Bool ::= Set "<=Set" Set         [function, total, hook(SET.inclusion)]
+

Set size

+ +

You can get the number of elements (the cardinality) of a set in O(1) time.

+
  syntax Int ::= size(Set)                [function, total, hook(SET.size)]
+

Set choice

+ +

You can get an arbitrarily chosen element of a Set in O(1) time. The same
+element will always be returned for the same set, but no guarantee is given
+that two different sets will return the same element, even if they are similar.

+
  syntax KItem ::= choice(Set)                [function, hook(SET.choice), klabel(Set:choice)]
+
endmodule
+

Implementation of Sets

+ +

The following lemmas are simplifications that the Haskell backend can
+apply to simplify expressions of sort Set.

+
module SET-KORE-SYMBOLIC [symbolic,haskell]
+  imports SET
+  imports private K-EQUAL
+  imports private BOOL
+
+  //Temporarly rule for #Ceil simplification, should be generated in front-end
+
+// Matching for this version not implemented.
+  // rule #Ceil(@S1:Set @S2:Set) =>
+  //        {intersectSet(@S1, @S2) #Equals .Set} #And #Ceil(@S1) #And #Ceil(@S2)
+  //   [simplification]
+
+//simpler version
+  rule #Ceil(@S:Set SetItem(@E:KItem)) =>
+         {(@E in @S) #Equals false} #And #Ceil(@S) #And #Ceil(@E)
+    [simplification]
+
+  // -Set simplifications
+  rule S              -Set .Set           => S          [simplification]
+  rule .Set           -Set  _             => .Set       [simplification]
+  rule SetItem(X)     -Set (S SetItem(X)) => .Set
+                               ensures notBool (X in S) [simplification]
+  rule S              -Set (S SetItem(X)) => .Set
+                               ensures notBool (X in S) [simplification]
+  rule (S SetItem(X)) -Set S              => SetItem(X)
+                               ensures notBool (X in S) [simplification]
+  rule (S SetItem(X)) -Set SetItem(X)     => S
+                               ensures notBool (X in S) [simplification]
+  // rule SetItem(X)     -Set S              => SetItem(X)
+  //                            requires notBool (X in S)  [simplification]
+  // rule (S1 SetItem(X)) -Set (S2 SetItem(X))  => S1 -Set S2
+  //                             ensures notBool (X in S1)
+  //                             andBool notBool (X in S2) [simplification]
+
+
+
+  // |Set simplifications
+  rule S    |Set .Set => S    [simplification, comm]
+  rule S    |Set S    => S    [simplification]
+
+  rule (S SetItem(X)) |Set SetItem(X) => S SetItem(X)
+                             ensures notBool (X in S) [simplification, comm]
+  // Currently disabled, see runtimeverification/haskell-backend#3301
+  // rule (S SetItem(X)) |Set S          => S SetItem(X)
+  //                            ensures notBool (X in S) [simplification, comm]
+
+  // intersectSet simplifications
+  rule intersectSet(.Set, _   ) => .Set    [simplification, comm]
+  rule intersectSet( S  , S   ) =>  S      [simplification]
+
+  rule intersectSet( S SetItem(X), SetItem(X))     => SetItem(X)
+                                                        ensures notBool (X in S)      [simplification, comm]
+  // Currently disabled, see runtimeverification/haskell-backend#3294
+  // rule intersectSet( S SetItem(X) , S)             => S ensures notBool (X in S)      [simplification, comm]
+  rule intersectSet( S1 SetItem(X), S2 SetItem(X)) => intersectSet(S1, S2) SetItem(X)
+                                                        ensures notBool (X in S1)
+                                                        andBool notBool (X in S2)     [simplification]
+
+  // membership simplifications
+  rule _E in .Set           => false   [simplification]
+  rule E  in (S SetItem(E)) => true
+              ensures notBool (E in S) [simplification]
+
+// These two rules would be sound but impose a giant overhead on `in` evaluation:
+  // rule E1 in (S SetItem(E2)) => true requires E1 in S
+  //                                 ensures notBool (E2 in S) [simplification]
+  // rule E1 in (S SetItem(E2)) => E1 in S requires E1 =/=K E2
+  //                                 ensures notBool (E2 in S) [simplification]
+
+  rule X in ((SetItem(X) S) |Set  _            ) => true
+                                    ensures notBool (X in S) [simplification]
+  rule X in ( _             |Set (SetItem(X) S)) => true
+                                    ensures notBool (X in S) [simplification]
+
+endmodule
+
+module SET-SYMBOLIC
+  imports SET-KORE-SYMBOLIC
+endmodule
+

Lists

+

Provided here is the syntax of an implementation of immutable, associative
+lists of KItem. This type is hooked to an implementation of lists provided
+by the backend. For more information on matching on lists and allowable
+patterns for doing so, refer to K's
+user documentation.

+
module LIST
+  imports private INT-SYNTAX
+  imports private BASIC-K
+
+  syntax List [hook(LIST.List)]
+

List concatenation

+ +

The List sort is an ordered collection that may contain duplicate elements.
+They are backed by relaxed radix balanced trees, which means that they support
+efficiently adding elements to both sides of the list, concatenating two lists,
+indexing, and updating elements.

+

The concatenation operator is O(log(N)) (where N is the size of the longer
+list) when it appears on the right hand side. When it appears on the left hand
+side, it is O(N), where N is the number of elements matched on the front and
+back of the list.

+
  syntax List ::= List List               [left, function, total, hook(LIST.concat), klabel(_List_), symbol, smtlib(smt_seq_concat), assoc, unit(.List), element(ListItem), format(%1%n%2)]
+

List unit

+ +

The list with zero elements is represented by .List.

+
  syntax List ::= ".List"                 [function, total, hook(LIST.unit), klabel(.List), symbol, smtlib(smt_seq_nil)]
+

List elements

+ +

An element of a List is constucted via the ListItem operator.

+
  syntax List ::= ListItem(KItem)             [function, total, hook(LIST.element), klabel(ListItem), symbol, smtlib(smt_seq_elem)]
+

List prepend

+ +

An element can be added to the front of a List using the pushList operator.

+
  syntax List ::= pushList(KItem, List)       [function, total, hook(LIST.push), klabel(pushList), symbol]
+  rule pushList(K::KItem, L1::List) => ListItem(K) L1
+

List indexing

+ +

You can get an element of a list by its integer offset in O(log(N)) time, or
+effectively constant. Positive indices are 0-indexed from the beginning of the
+list, and negative indices are -1-indexed from the end of the list. In other
+words, 0 is the first element and -1 is the last element.

+
  syntax KItem ::= List "[" Int "]"           [function, hook(LIST.get), klabel(List:get), symbol]
+

List update

+ +

You can create a new List with a new value at a particular index in
+O(log(N)) time, or effectively constant.

+
  syntax List ::= List "[" index: Int "<-" value: KItem "]" [function, hook(LIST.update), klabel(List:set)]
+

List of identical elements

+ +

You can create a list with length elements, each containing value, in O(N)
+time.

+
  syntax List ::= makeList(length: Int, value: KItem) [function, hook(LIST.make)]
+

Multiple list update

+ +

You can create a new List which is equal to dest except the N elements
+starting at index are replaced with the contents of src in O(N*log(K)) time
+(where K is the size of destand N is the size of src), or effectively linear. Having index + N > K yields an exception.

+
  syntax List ::= updateList(dest: List, index: Int, src: List) [function, hook(LIST.updateAll)]
+

List fill

+ +

You can create a new List where the length elements starting at index
+are replaced with value, in O(length*log(N)) time, or effectively linear.

+
  syntax List ::= fillList(List, index: Int, length: Int, value: KItem) [function, hook(LIST.fill)]
+

List slicing

+ +

You can compute a new List by removing fromFront elements from the front
+of the list and fromBack elements from the back of the list in
+O((fromFront+fromBack)*log(N)) time, or effectively linear.

+
  syntax List ::= range(List, fromFront: Int, fromBack: Int)   [function, hook(LIST.range), klabel(List:range), symbol]
+

List membership

+ +

You can compute whether an element is in a list in O(N) time. For repeated
+comparisons, it is much better to first convert to a set using List2Set.

+
  syntax Bool ::= KItem "in" List             [function, total, hook(LIST.in), klabel(_inList_)]
+

List size

+ +

You can get the number of elements of a list in O(1) time.

+
  syntax Int ::= size(List)               [function, total, hook(LIST.size), klabel (sizeList), smtlib(smt_seq_len)]
+
endmodule
+

Collection Conversions

+

It is possible to convert from a List to a Set or from a Set to a list.
+Converting from a List to a Set and back will not provide the same list;
+duplicates will have been removed and the list may be reordered. Converting
+from a Set to a List and back will generate the same set.

+

Note that because sets are unordered and lists are ordered, converting from a
+Set to a List will generate some arbitrary ordering of elements, which may
+be different from the natural ordering you might assume, or may not. Two
+equal sets are guaranteed to generate the same ordering, but no guarantee is
+otherwise provided about what the ordering will be. In particular, adding an
+element to a set may completely reorder the elements already in the set, when
+it is converted to a list.

+
module COLLECTIONS
+  imports LIST
+  imports SET
+  imports MAP
+
+  syntax List ::= Set2List(Set) [function, total, hook(SET.set2list)]
+  syntax Set ::= List2Set(List) [function, total, hook(SET.list2set)]
+
+endmodule
+

Booleans

+

Provided here is the syntax of an implementation of boolean algebra in K.
+This type is hooked to an implementation of booleans provided by the backend.
+Note that this algebra is different from the builtin truth in matching logic.
+You can, however, convert from the truth of the Bool sort to the truth in
+matching logic via the expression {B #Equals true}.

+

The boolean values are true and false.

+
module SORT-BOOL
+  syntax Bool [hook(BOOL.Bool)]
+endmodule
+
+module BOOL-SYNTAX
+  imports SORT-BOOL
+  syntax Bool ::= "true"  [token]
+  syntax Bool ::= "false" [token]
+endmodule
+
+module BOOL-COMMON
+  imports private BASIC-K
+  imports BOOL-SYNTAX
+

Basic boolean arithmetic

+ +

You can:

+
    +
  • Negate a boolean value.
  • +
  • AND two boolean values.
  • +
  • XOR two boolean values.
  • +
  • OR two boolean values.
  • +
  • IMPLIES two boolean values (i.e., P impliesBool Q is the same as
    +notBool P orBool Q)
  • +
  • Check equality of two boolean values.
  • +
  • Check inequality of two boolean values.
  • +
+

Note that only andThenBool and orElseBool are short-circuiting. andBool
+and orBool may be short-circuited in concrete backends, but in symbolic
+backends, both arguments will be evaluated.

+
  syntax Bool ::= "notBool" Bool          [function, total, klabel(notBool_), symbol, smt-hook(not), group(boolOperation), hook(BOOL.not)]
+                > Bool "andBool" Bool     [function, total, klabel(_andBool_), symbol, left, smt-hook(and), group(boolOperation), hook(BOOL.and)]
+                | Bool "andThenBool" Bool [function, total, klabel(_andThenBool_), symbol, left, smt-hook(and), group(boolOperation), hook(BOOL.andThen)]
+                | Bool "xorBool" Bool     [function, total, klabel(_xorBool_), symbol, left, smt-hook(xor), group(boolOperation), hook(BOOL.xor)]
+                | Bool "orBool" Bool      [function, total, klabel(_orBool_), symbol, left, smt-hook(or), group(boolOperation), hook(BOOL.or)]
+                | Bool "orElseBool" Bool  [function, total, klabel(_orElseBool_), symbol, left, smt-hook(or), group(boolOperation), hook(BOOL.orElse)]
+                | Bool "impliesBool" Bool [function, total, klabel(_impliesBool_), symbol, left, smt-hook(=>), group(boolOperation), hook(BOOL.implies)]
+                > left:
+                  Bool "==Bool" Bool      [function, total, klabel(_==Bool_), symbol, left, comm, smt-hook(=), hook(BOOL.eq)]
+                | Bool "=/=Bool" Bool     [function, total, klabel(_=/=Bool_), symbol, left, comm, smt-hook(distinct), hook(BOOL.ne)]
+

Implementation of Booleans

+ +

The remainder of this section consists of an implementation in K of the
+operations listed above.

+
  rule notBool true => false
+  rule notBool false => true
+
+  rule true andBool B:Bool => B:Bool
+  rule B:Bool andBool true => B:Bool [simplification]
+  rule false andBool _:Bool => false
+  rule _:Bool andBool false => false [simplification]
+
+  rule true andThenBool K::Bool => K
+  rule K::Bool andThenBool true => K [simplification]
+  rule false andThenBool _ => false
+  rule _ andThenBool false => false  [simplification]
+
+  rule false xorBool B:Bool => B:Bool
+  rule B:Bool xorBool false => B:Bool [simplification]
+  rule B:Bool xorBool B:Bool => false
+
+  rule true orBool _:Bool => true
+  rule _:Bool orBool true => true [simplification]
+  rule false orBool B:Bool => B
+  rule B:Bool orBool false => B   [simplification]
+
+  rule true orElseBool _ => true
+  rule _ orElseBool true => true     [simplification]
+  rule false orElseBool K::Bool => K
+  rule K::Bool orElseBool false => K [simplification]
+
+  rule true impliesBool B:Bool => B
+  rule false impliesBool _:Bool => true
+  rule _:Bool impliesBool true => true       [simplification]
+  rule B:Bool impliesBool false => notBool B [simplification]
+
+  rule B1:Bool =/=Bool B2:Bool => notBool (B1 ==Bool B2)
+endmodule
+
+module BOOL-KORE [symbolic]
+  imports BOOL-COMMON
+
+  rule {true #Equals notBool @B} => {false #Equals @B} [simplification]
+  rule {notBool @B #Equals true} => {@B #Equals false} [simplification]
+  rule {false #Equals notBool @B} => {true #Equals @B} [simplification]
+  rule {notBool @B #Equals false} => {@B #Equals true} [simplification]
+
+  rule {true #Equals @B1 andBool @B2} => {true #Equals @B1} #And {true #Equals @B2} [simplification]
+  rule {@B1 andBool @B2 #Equals true} => {@B1 #Equals true} #And {@B2 #Equals true} [simplification]
+  rule {false #Equals @B1 orBool @B2} => {false #Equals @B1} #And {false #Equals @B2} [simplification]
+  rule {@B1 orBool @B2 #Equals false} => {@B1 #Equals false} #And {@B2 #Equals false} [simplification]
+endmodule
+
+module BOOL
+  imports BOOL-COMMON
+  imports BOOL-KORE
+endmodule
+

Integers

+

Provided here is the syntax of an implementation of arbitrary-precision
+integer arithmetic in K. This type is hooked to an implementation of integers
+provided by the backend. For a fixed-width integer type, see the MINT module
+below.

+

The UNSIGNED-INT-SYNTAX module provides a syntax of whole numbers in K.
+This is useful because often programming languages implement the sign of an
+integer as a unary operator rather than part of the lexical syntax of integers.
+However, you can also directly reference integers with a sign using the
+INT-SYNTAX module.

+
module UNSIGNED-INT-SYNTAX
+  syntax Int [hook(INT.Int)]
+  syntax Int ::= r"[0-9]+" [prefer, token, prec(2)]
+endmodule
+
+module INT-SYNTAX
+  imports UNSIGNED-INT-SYNTAX
+  syntax Int ::= r"[\\+\\-]?[0-9]+" [prefer, token, prec(2)]
+endmodule
+
+module INT-COMMON
+  imports INT-SYNTAX
+  imports private BOOL
+

Integer arithmetic

+ +

You can:

+
    +
  • Compute the bitwise complement ~Int of an integer value in twos-complement.
  • +
  • Compute the exponentiation ^Int of two integers.
  • +
  • Compute the exponentiation of two integers modulo another integer (^%Int).
    +A ^%Int B C is equal in value to (A ^Int B) %Int C, but has a better
    +asymptotic complexity.
  • +
  • Compute the product *Int of two integers.
  • +
  • Compute the quotient /Int or modulus %Int of two integers using
    +t-division, which rounds towards zero. Division by zero is #False.
  • +
  • Compute the quotient divInt or modulus modInt of two integers using
    +Euclidean division, in which the remainder is always non-negative. Division
    +by zero is #False.
  • +
  • Compute the sum +Int or difference -Int of two integers.
  • +
  • Compute the arithmetic right shift >>Int of two integers. Shifting by a
    +negative quantity is #False.
  • +
  • Compute the left shift of two integers. Shifting by a negative quantity is
    +#False.
  • +
  • Compute the bitwise and of two integers in twos-complement.
  • +
  • Compute the bitwise xor of two integers in twos-complement.
  • +
  • Compute the bitwise inclusive-or of two integers in twos-complement.
  • +
+
  syntax Int ::= "~Int" Int                     [function, klabel(~Int_), symbol, total, hook(INT.not), smtlib(notInt)]
+               > left:
+                 Int "^Int" Int                 [function, klabel(_^Int_), symbol, left, smt-hook(^), hook(INT.pow)]
+               | Int "^%Int" Int Int            [function, klabel(_^%Int__), symbol, left, smt-hook((mod (^ #1 #2) #3)), hook(INT.powmod)]
+               > left:
+                 Int "*Int" Int                 [function, total, klabel(_*Int_), symbol, left, comm, smt-hook(*), hook(INT.mul)]
+               /* FIXME: translate /Int and %Int into smtlib */
+               /* /Int and %Int implement t-division, which rounds towards 0 */
+               | Int "/Int" Int                 [function, klabel(_/Int_), symbol, left, smt-hook(div), hook(INT.tdiv)]
+               | Int "%Int" Int                 [function, klabel(_%Int_), symbol, left, smt-hook(mod), hook(INT.tmod)]
+               /* divInt and modInt implement e-division according to the Euclidean division theorem, therefore the remainder is always positive */
+               | Int "divInt" Int               [function, klabel(_divInt_), symbol, left, smt-hook(div), hook(INT.ediv)]
+               | Int "modInt" Int               [function, klabel(_modInt_), symbol, left, smt-hook(mod), hook(INT.emod)]
+               > left:
+                 Int "+Int" Int                 [function, total, klabel(_+Int_), symbol, left, comm, smt-hook(+), hook(INT.add)]
+               | Int "-Int" Int                 [function, total, klabel(_-Int_), symbol, left, smt-hook(-), hook(INT.sub)]
+               > left:
+                 Int ">>Int" Int                [function, klabel(_>>Int_), symbol, left, hook(INT.shr), smtlib(shrInt)]
+               | Int "<<Int" Int                [function, klabel(_<<Int_), symbol, left, hook(INT.shl), smtlib(shlInt)]
+               > left:
+                 Int "&Int" Int                 [function, total, klabel(_&Int_), symbol, left, comm, hook(INT.and), smtlib(andInt)]
+               > left:
+                 Int "xorInt" Int               [function, total, klabel(_xorInt_), symbol, left, comm, hook(INT.xor), smtlib(xorInt)]
+               > left:
+                 Int "|Int" Int                 [function, total, klabel(_|Int_), symbol, left, comm, hook(INT.or), smtlib(orInt)]
+

Integer minimum and maximum

+ +

You can compute the minimum and maximum minInt and maxInt of two integers.

+
  syntax Int ::= "minInt" "(" Int "," Int ")"   [function, total, smt-hook((ite (< #1 #2) #1 #2)), hook(INT.min)]
+               | "maxInt" "(" Int "," Int ")"   [function, total, smt-hook((ite (< #1 #2) #2 #1)), hook(INT.max)]
+

Absolute value

+ +

You can compute the absolute value absInt of an integer.

+
  syntax Int ::= absInt ( Int )                 [function, total, smt-hook((ite (< #1 0) (- 0 #1) #1)), hook(INT.abs)]
+

Log base 2

+ +

You can compute the log base 2, rounded towards zero, of an integer. The log
+base 2 of an integer is equal to the index of the highest bit set in the
+representation of a positive integer. Log base 2 of zero or a negative number
+is #False.

+
  syntax Int ::= log2Int ( Int )                [function, hook(INT.log2)]
+

Bit slicing

+ +

You can compute the value of a range of bits in the twos-complement
+representation of an integer, as interpeted either unsigned or signed, of an
+integer. index is offset from 0 and length is the number of bits, starting
+with index, that should be read. The number is assumed to be represented
+in little endian notation with each byte going from least significant to
+most significant. In other words, 0 is the least-significant bit, and each
+successive bit is more significant than the last.

+
  syntax Int ::= bitRangeInt           ( Int, index: Int, length: Int ) [function, hook(INT.bitRange)]
+               | signExtendBitRangeInt ( Int, index: Int, length: Int ) [function, hook(INT.signExtendBitRange)]
+

Integer comparisons

+ +

You can compute whether two integers are less than or equal to, less than,
+greater than or equal to, greater than, equal, or unequal to another integer.

+
  syntax Bool ::= Int "<=Int" Int         [function, total, klabel(_<=Int_), symbol, smt-hook(<=), hook(INT.le)]
+                | Int "<Int" Int          [function, total, klabel(_<Int_), symbol, smt-hook(<), hook(INT.lt)]
+                | Int ">=Int" Int         [function, total, klabel(_>=Int_), symbol, smt-hook(>=), hook(INT.ge)]
+                | Int ">Int" Int          [function, total, klabel(_>Int_), symbol, smt-hook(>), hook(INT.gt)]
+                | Int "==Int" Int         [function, total, klabel(_==Int_), symbol, comm, smt-hook(=), hook(INT.eq)]
+                | Int "=/=Int" Int        [function, total, klabel(_=/=Int_), symbol, comm, smt-hook(distinct), hook(INT.ne)]
+

Divides

+ +

You can compute whether one integer evenly divides another. This is the
+case when the second integer modulo the first integer is equal to zero.

+
  syntax Bool ::= Int "dividesInt" Int    [function]
+

Random integers

+ +

You can, on concrete backends, compute a pseudorandom integer, or seed the
+pseudorandom number generator. These operations are represented as
+uninterpreted functions on symbolic backends.

+
  syntax Int ::= randInt(Int) [function, hook(INT.rand), impure]
+  syntax K ::= srandInt(Int) [function, hook(INT.srand), impure]
+

Implementation of Integers

+ +

The remainder of this section consists of an implementation in K of some
+of the operators above, as well as lemmas used by the Java and Haskell backend
+to simplify expressions of sort Int. They do not affect the semantics of
+integers, merely describing additional rules that the backend can use to
+simplify terms.

+
endmodule
+
+module INT-SYMBOLIC [symbolic]
+  imports INT-COMMON
+  imports INT-SYMBOLIC-KORE
+  imports private BOOL
+
+  // Arithmetic Normalization
+  rule I +Int 0 => I [simplification]
+  rule I -Int 0 => I [simplification]
+
+  rule X modInt N => X requires 0 <=Int X andBool X <Int N [simplification]
+  rule X   %Int N => X requires 0 <=Int X andBool X <Int N [simplification]
+
+  // Bit-shifts
+  rule X <<Int 0 => X [simplification]
+  rule 0 <<Int _ => 0 [simplification]
+  rule X >>Int 0 => X [simplification]
+  rule 0 >>Int _ => 0 [simplification]
+endmodule
+
+module INT-SYMBOLIC-KORE [symbolic, haskell]
+  imports INT-COMMON
+  imports ML-SYNTAX
+  imports private BOOL
+
+  // Definability Conditions
+  rule #Ceil(@I1:Int /Int   @I2:Int) => {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification]
+  rule #Ceil(@I1:Int %Int   @I2:Int) => {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification]
+  rule #Ceil(@I1:Int modInt @I2:Int) => {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification]
+  rule #Ceil(@I1:Int >>Int  @I2:Int) => {(@I2 >=Int 0)  #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification]
+  rule #Ceil(@I1:Int <<Int  @I2:Int) => {(@I2 >=Int 0)  #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification]
+endmodule
+
+module INT-KORE [symbolic]
+  imports private K-EQUAL
+  imports private BOOL
+  imports INT-COMMON
+
+  rule [eq-k-to-eq-int]     : I1:Int ==K I2:Int            => I1 ==Int I2           [simplification]
+  rule [eq-int-true-left]   : {K1 ==Int K2 #Equals true}   => {K1 #Equals K2}       [simplification]
+  rule [eq-int-true-rigth]  : {true #Equals K1 ==Int K2}   => {K1 #Equals K2}       [simplification]
+  rule [eq-int-false-left]  : {K1 ==Int K2 #Equals false}  => #Not({K1 #Equals K2}) [simplification]
+  rule [eq-int-false-rigth] : {false #Equals K1 ==Int K2}  => #Not({K1 #Equals K2}) [simplification]
+  rule [neq-int-true-left]  : {K1 =/=Int K2 #Equals true}  => #Not({K1 #Equals K2}) [simplification]
+  rule [neq-int-true-right] : {true #Equals K1 =/=Int K2}  => #Not({K1 #Equals K2}) [simplification]
+  rule [neq-int-false-left] : {K1 =/=Int K2 #Equals false} => {K1 #Equals K2}       [simplification]
+  rule [neq-int-false-right]: {false #Equals K1 =/=Int K2} => {K1 #Equals K2}       [simplification]
+
+  // Arithmetic Normalization
+  rule I +Int B => B +Int I          [concrete(I), symbolic(B), simplification(51)]
+  rule A -Int I => A +Int (0 -Int I) [concrete(I), symbolic(A), simplification(51)]
+
+  rule (A +Int I2) +Int I3 => A +Int (I2 +Int I3) [concrete(I2, I3), symbolic(A), simplification]
+  rule I1 +Int (B +Int I3) => B +Int (I1 +Int I3) [concrete(I1, I3), symbolic(B), simplification]
+  rule I1 -Int (B +Int I3) => (I1 -Int I3) -Int B [concrete(I1, I3), symbolic(B), simplification]
+  rule I1 +Int (I2 +Int C) => (I1 +Int I2) +Int C [concrete(I1, I2), symbolic(C), simplification]
+  rule I1 +Int (I2 -Int C) => (I1 +Int I2) -Int C [concrete(I1, I2), symbolic(C), simplification]
+  rule (I1 -Int B) +Int I3 => (I1 +Int I3) -Int B [concrete(I1, I3), symbolic(B), simplification]
+  rule I1 -Int (I2 +Int C) => (I1 -Int I2) -Int C [concrete(I1, I2), symbolic(C), simplification]
+  rule I1 -Int (I2 -Int C) => (I1 -Int I2) +Int C [concrete(I1, I2), symbolic(C), simplification]
+  rule (C -Int I2) -Int I3 => C -Int (I2 +Int I3) [concrete(I2, I3), symbolic(C), simplification]
+
+  rule I1 &Int (I2 &Int C) => (I1 &Int I2) &Int C [concrete(I1, I2), symbolic(C), simplification]
+endmodule
+
+module INT
+  imports INT-COMMON
+  imports INT-SYMBOLIC
+  imports INT-KORE
+  imports private K-EQUAL
+  imports private BOOL
+
+  rule bitRangeInt(I::Int, IDX::Int, LEN::Int) => (I >>Int IDX) modInt (1 <<Int LEN)
+
+  rule signExtendBitRangeInt(I::Int, IDX::Int, LEN::Int) => (bitRangeInt(I, IDX, LEN) +Int (1 <<Int (LEN -Int 1))) modInt (1 <<Int LEN) -Int (1 <<Int (LEN -Int 1))
+
+  rule I1:Int divInt I2:Int => (I1 -Int (I1 modInt I2)) /Int I2
+  requires I2 =/=Int 0
+  rule
+    I1:Int modInt I2:Int
+  =>
+    ((I1 %Int absInt(I2)) +Int absInt(I2)) %Int absInt(I2)
+  requires I2 =/=Int 0    [concrete, simplification]
+
+  rule minInt(I1:Int, I2:Int) => I1 requires I1 <=Int I2
+  rule minInt(I1:Int, I2:Int) => I2 requires I1 >=Int I2
+
+  rule I1:Int =/=Int I2:Int => notBool (I1 ==Int I2)
+  rule (I1:Int dividesInt I2:Int) => (I2 %Int I1) ==Int 0
+
+  syntax Int ::= freshInt(Int)    [freshGenerator, function, total, private]
+  rule freshInt(I:Int) => I
+endmodule
+

IEEE 754 Floating-point Numbers

+

Provided here is the syntax of an implementation of arbitrary-precision
+floating-point arithmetic in K based on a generalization of the IEEE 754
+standard. This type is hooked to an implementation of floats provided by the
+backend.

+

The syntax of ordinary floating-point values in K consists of an optional sign
+(+ or -) followed by an optional integer part, followed by a decimal point,
+followed by an optional fractional part. Either the integer part or the
+fractional part must be specified. The mantissa is followed by an optional
+exponent part, which consists of an e or E, an optional sign (+ or -),
+and an integer. The expoennt is followed by an optional suffix, which can be
+either f, F, d, D, or pNxM where N and M are positive integers.
+p and x can be either upper or lowercase.

+

The value of a floating-point literal is computed as follows: First the
+mantissa is read as a rational number. Then it is multiplied by 10 to the
+power of the exponent, which is interpreted as an integer, and defaults to
+zero if it is not present. Finally, it is rounded to the nearest possible
+value in a floating-point type represented like an IEEE754 floating-point type,
+with the number of bits of precision and exponent specified by the suffix.
+A suffix of f or f represents the IEEE binary32 format. A suffix of d
+or D, or no suffix, represents the IEEE binary64 format. A suffix of
+pNxM (either upper or lowercase) specifies exactly N bits of precision and
+M bits of exponent. The number of bits of precision is assumed to include
+any optional 1 that precedes the IEEE 754 mantissa. In other words, p24x8
+is equal to the IEEE binary32 format, and p53x11 is equal to the IEEE
+binary64 format.

+
module FLOAT-SYNTAX
+  syntax Float [hook(FLOAT.Float)]
+  syntax Float ::= r"([\\+\\-]?[0-9]+(\\.[0-9]*)?|\\.[0-9]+)([eE][\\+\\-]?[0-9]+)?([fFdD]|([pP][0-9]+[xX][0-9]+))?" [token, prec(1)]
+  syntax Float ::= r"[\\+\\-]?Infinity([fFdD]|([pP][0-9]+[xX][0-9]+))?" [token, prec(3)]
+  syntax Float ::= r"NaN([fFdD]|([pP][0-9]+[xX][0-9]+))?" [token, prec(3)]
+endmodule
+
+module FLOAT
+  imports FLOAT-SYNTAX
+  imports private BOOL
+  imports private INT-SYNTAX
+

Float precision

+ +

You can retrieve the number of bits of precision in a Float.

+
  syntax Int ::= precisionFloat(Float) [function, total, hook(FLOAT.precision)]
+

Float exponent bits

+ +

You can retrieve the number of bits of exponent range in a Float.

+
  syntax Int ::= exponentBitsFloat(Float) [function, total, hook(FLOAT.exponentBits)]
+

Float exponent

+ +

You can retrieve the value of the exponent bits of a Float as an integer.

+
  syntax Int ::= exponentFloat(Float) [function, total, hook(FLOAT.exponent)]
+

Float sign

+ +

You can retrieve the value of the sign bit of a Float as a boolean. True
+means the sign bit is set.

+
  syntax Bool ::= signFloat(Float)      [function, total, hook(FLOAT.sign)]
+

Float special values

+ +

You can check whether a Float value is infinite or Not-a-Number.

+
  syntax Bool ::= isNaN(Float)          [function, total, smt-hook(fp.isNaN), hook(FLOAT.isNaN)]
+                | isInfinite(Float)     [function, total]
+

Float arithmetic

+ +

You can:

+
    +
  • Compute the unary negation --Float of a float. --Float X is distinct
    +from 0.0 -Float X. For example, 0.0 -Float 0.0 is positive zero.
    +--Float 0.0 is negative zero.
  • +
  • Compute the exponentation ^Float of two floats.
  • +
  • Compute the product *Float, quotient /Float, or remainder %Float of two
    +floats. The remainder is computed based on rounding the quotient of the two
    +floats to the nearest integer.
  • +
  • Compute the sum +Float or difference -Float of two floats.
  • +
+
  syntax Float ::= "--Float" Float             [function, total, smt-hook(fp.neg), hook(FLOAT.neg)]
+                 > Float "^Float" Float        [function, left, hook(FLOAT.pow)]
+                 > left:
+                   Float "*Float" Float        [function, left, smt-hook((fp.mul roundNearestTiesToEven #1 #2)), hook(FLOAT.mul)]
+                 | Float "/Float" Float        [function, left, smt-hook((fp.div roundNearestTiesToEven #1 #2)), hook(FLOAT.div)]
+                 | Float "%Float" Float        [function, left, smt-hook((fp.rem roundNearestTiesToEven #1 #2)), hook(FLOAT.rem)]
+                 > left:
+                   Float "+Float" Float        [function, left, smt-hook((fp.add roundNearestTiesToEven #1 #2)), hook(FLOAT.add)]
+                 | Float "-Float" Float        [function, left, smt-hook((fp.sub roundNearestTiesToEven #1 #2)), hook(FLOAT.sub)]
+

Floating-point mathematics

+ +

You can:

+
    +
  • Compute the Nth integer root rootFloat of a float.
  • +
  • Compute the absolute value absFloat of a float.
  • +
  • Round a floating-point number to a specified precision and exponent
    +range (roundFloat). The resulting Float will yield the specified values
    +when calling precisionFloat and exponentBitsFloat and when performing
    +further computation.
  • +
  • Round a float to the next lowest floating-point value which is an integer
    +(floorFloat).
  • +
  • Round a float to the next highest floating-point value which is an integer
    +(ceilFloat).
  • +
  • Round a float to the next closest floating-point value which is an integer, in
    +the direction of zero (truncFloat).
  • +
  • Compute the natural exponential expFloat of a float (i.e. e^x).
  • +
  • Compute the natural logarithm logFloat of a float.
  • +
  • Compute the sine sinFloat of a float.
  • +
  • Compute the cosine cosFloat of a float.
  • +
  • Compute the tangent tanFlooat of a float.
  • +
  • Compute the arcsine asinFloat of a float.
  • +
  • Compute the arccosine acosFloat of a float.
  • +
  • Compute the arctangent atanFloat of a float.
  • +
  • Compute the arctangent atan2Float of two floats.
  • +
  • Compute the maximum maxFloat of two floats.
  • +
  • Compute the minimum minFloat of two floats.
  • +
  • Compute the square root sqrtFloat of a float.
  • +
  • Compute the largest finite value expressible in a specified precision and
    +exponent range (maxValueFloat).
  • +
  • Compute the smallest positive finite value expressible in a specified
    +precision and exponent range (minValueFloat).
  • +
+
  syntax Float ::= rootFloat(Float, Int)        [function, hook(FLOAT.root)]
+                 | absFloat(Float)              [function, total, smt-hook(fp.abs), hook(FLOAT.abs)]
+                 | roundFloat(Float, precision: Int, exponentBits: Int)  [function, hook(FLOAT.round)]
+                 | floorFloat(Float)            [function, total, hook(FLOAT.floor)]
+                 | ceilFloat(Float)             [function, total, hook(FLOAT.ceil)]
+                 | truncFloat(Float)            [function, total, hook(FLOAT.trunc)]
+                 | expFloat(Float)              [function, total, hook(FLOAT.exp)]
+                 | logFloat(Float)              [function, hook(FLOAT.log)]
+                 | sinFloat(Float)              [function, total, hook(FLOAT.sin)]
+                 | cosFloat(Float)              [function, total, hook(FLOAT.cos)]
+                 | tanFloat(Float)              [function, hook(FLOAT.tan)]
+                 | asinFloat(Float)             [function, hook(FLOAT.asin)]
+                 | acosFloat(Float)             [function, hook(FLOAT.acos)]
+                 | atanFloat(Float)             [function, total, hook(FLOAT.atan)]
+                 | atan2Float(Float, Float)     [function, hook(FLOAT.atan2)]
+                 | maxFloat(Float, Float)       [function, smt-hook(fp.max), hook(FLOAT.max)]
+                 | minFloat(Float, Float)       [function, smt-hook(fp.min), hook(FLOAT.min)]
+                 | sqrtFloat(Float)             [function]
+                 | maxValueFloat(precision: Int, exponentBits: Int)      [function, hook(FLOAT.maxValue)]
+                 | minValueFloat(precision: Int, exponentBits: Int)      [function, hook(FLOAT.minValue)]
+

Floating-point comparisons

+ +

Compute whether a float is less than or equasl to, less than, greater than or
+equal to, greater than, equal, or unequal to another float. Note that
+X ==Float Y and X ==K Y might yield different values. The latter should be
+used in cases where you want to compare whether two values of sort Float
+contain the same term. The former should be used when you want to implement
+the == operator of a programming language. In particular, NaN =/=Float NaN
+is true, because NaN compares unequal to all values, including itself, in
+IEEE 754 arithmetic. 0.0 ==Float -0.0 is also true.

+
  syntax Bool ::= Float "<=Float" Float       [function, smt-hook(fp.leq), hook(FLOAT.le)]
+                | Float "<Float" Float        [function, smt-hook(fp.lt), hook(FLOAT.lt)]
+                | Float ">=Float" Float       [function, smt-hook(fp.geq), hook(FLOAT.ge)]
+                | Float ">Float" Float        [function, smt-hook(fg.gt), hook(FLOAT.gt)]
+                | Float "==Float" Float       [function, comm, smt-hook(fp.eq), hook(FLOAT.eq), klabel(_==Float_)]
+                | Float "=/=Float" Float      [function, comm, smt-hook((not (fp.eq #1 #2)))]
+
+  rule F1:Float =/=Float F2:Float => notBool (F1 ==Float F2)
+

Conversion between integer and float

+ +

You can convert an integer to a floating-point number with the specified
+precision and exponent range. You can also convert a floating-point number
+to the nearest integer. This operation rounds to the nearest integer, but it
+also avoids the double-rounding that is present in ceilFloat and floorFloat
+if the nearest integer is not representable in the specified floating-point
+type.

+
  syntax Float ::= Int2Float(Int, precision: Int, exponentBits: Int)    [function, hook(FLOAT.int2float)]
+  syntax Int ::= Float2Int(Float)    [function, total, hook(FLOAT.float2int)]
+

Implementation of Floats

+ +

The remainder of this section consists of an implementation in K of some of the
+operators above.

+
  rule sqrtFloat(F:Float) => rootFloat(F, 2)
+
+  rule isInfinite(F:Float) => F >Float maxValueFloat(precisionFloat(F), exponentBitsFloat(F)) orBool F <Float --Float maxValueFloat(precisionFloat(F), exponentBitsFloat(F))
+
+endmodule
+

Strings

+

Provided here is the syntax of an implementation of Unicode strings in K. This
+type is hooked to an implementation of strings provided by the backend. The
+implementation is currently incomplete and does not fully support encodings
+and code points beyond the initial 256 code points of the Basic Latin and
+Latin-1 Supplement blocks. In the future, there may be breaking changes to
+the semantics of this module in order to support this functionality.

+

The syntax of strings in K is delineated by double quotes. Inside the double
+quotes, any character can appear verbatim except double quotes, backslash,
+newline, and carriage return. K also supports the following escape sequences:

+
    +
  • " - the " character
  • +
  • \ - the \ character
  • +
  • \n - newline character
  • +
  • \r - carriage return character
  • +
  • \t - tab character
  • +
  • \f - form feed character
  • +
  • \xFF - \x followed by two hexadecimal characters indicates a code point
    +between 0x00 and 0xff
  • +
  • \uFFFF - \u followed by four hexadecimal characters indicates a code point
    +between 0x0000 and 0xffff
  • +
  • \UFFFFFFFF - \U followed by eight hexadecimal characters indicates a code
    +point between 0x000000 and 0x10ffff
  • +
+
module STRING-SYNTAX
+  syntax String [hook(STRING.String)]
+  syntax String ::= r"[\\\"](([^\\\"\\n\\r\\\\])|([\\\\][nrtf\\\"\\\\])|([\\\\][x][0-9a-fA-F]{2})|([\\\\][u][0-9a-fA-F]{4})|([\\\\][U][0-9a-fA-F]{8}))*[\\\"]"      [token]
+endmodule
+
+module STRING-COMMON
+  imports STRING-SYNTAX
+  imports private INT
+  imports private FLOAT-SYNTAX
+  imports private K-EQUAL
+  imports private BOOL
+

String concatenation

+ +

You can concatenate two strings in O(N) time. For successive concatenation
+operations, it may be better to use the STRING-BUFFER module.

+
  syntax String ::= String "+String" String    [function, total, left, hook(STRING.concat)]
+

String length

+ +

You can get the length of a string in O(1) time.

+
  syntax Int ::= lengthString ( String ) [function, total, hook(STRING.length)]
+

Character and integer conversion

+ +

You can convert between a character (as represented by a string containing
+a single code point) and an integer in O(1) time.

+
  syntax String ::= chrChar ( Int )      [function, hook(STRING.chr)]
+  syntax Int ::= ordChar ( String )      [function, hook(STRING.ord)]
+

String substring

+ +

You can compute a substring of a string in O(N) time (where N is the
+length of the substring). There are two important facts to note:

+
    +
  1. the range generated includes the character at startIndex but excludes the
    +character at endIndex, i.e., the range is [startIndex..endIndex).
  2. +
  3. this function is only defined on valid indices (i.e., it is defined when
    +startIndex < endIndex and endIndex is less than or equal to the string
    +length).
  4. +
+
  syntax String ::= substrString ( String , startIndex: Int , endIndex: Int ) [function, total, hook(STRING.substr)]
+
+ +

You can find the first (respectively, last) occurrence of a substring, starting
+at a certain index, in another string in O(N*M) time.
+Returns -1 if the substring is not found.

+
  syntax Int ::= findString ( haystack: String , needle: String , index: Int )   [function, hook(STRING.find)]
+  syntax Int ::= rfindString ( haystack: String , needle: String , index: Int )  [function, hook(STRING.rfind)]
+
+ +

You can find the first (respectively, last) occurrence of one of the characters
+of the search string, starting at a certain index, in another string in
+O(N*M) time.

+
  syntax Int ::= findChar ( haystack: String , needles: String , index: Int )     [function, hook(STRING.findChar)]
+  syntax Int ::= rfindChar ( haystack: String , needles: String , index: Int )    [function, hook(STRING.rfindChar)]
+

String and Bool conversion

+ +
  syntax String ::= Bool2String(Bool) [function, total]
+  rule Bool2String(true)  => "true"
+  rule Bool2String(false) => "false"
+
  syntax Bool ::= String2Bool(String) [function]
+  rule String2Bool("true")  => true
+  rule String2Bool("false") => false
+

String and float conversion

+ +

You can convert between a String and a Float. The String will be
+represented in the syntax of the Float sort (see the section on the FLOAT
+module above for details of that syntax). Which particular string is returned
+by Float2String is determined by the backend, but the same Float is
+guaranteed to return the same String, and converting that String back to a
+Float is guaranteed to return the original Float.

+

You can also convert a Float to a string in a particular syntax using the
+variant of Float2String with a format. In this case, the resulting string
+is one which results directly from passing that format to mpfr_printf. This
+functionality may not be supported on backends that do not use Gnu MPFR to
+implement floating-point numbers.

+
  syntax String ::= Float2String ( Float )              [function, total, hook(STRING.float2string)]
+  syntax String ::= Float2String ( Float , format: String )     [function, klabel(FloatFormat), hook(STRING.floatFormat)]
+  syntax Float  ::= String2Float ( String )             [function, hook(STRING.string2float)]
+

String and integer conversions

+ +

You can convert between a String and an Int. The String will be represented
+in the syntax of the INT module (i.e., a nonempty sequence of digits
+optionally prefixed by a sign). When converting from an Int to a String,
+the sign will not be present unless the integer is negative.

+

You can also convert between a String and an Int in a particular radix.
+This radix can be anywhere between 2 and 36. For a radix 2 <= N <= 10, the
+digits 0 to N-1 will be used. For a radix 11 <= N <= 36, the digits 0 to 9
+and the first N-10 letters of the Latin alphabet will be used. Both uppercase
+and lowercase letters are supported by String2Base. Whether the letters
+returned by Base2String are upper or lowercase is determined by the backend,
+but the backend will consistently choose one or the other.

+
  syntax Int    ::= String2Int   ( String )             [function, hook(STRING.string2int)]
+  syntax String ::= Int2String   ( Int )                [function, total, hook(STRING.int2string)]
+  syntax String ::= Base2String  ( Int , base: Int )          [function, hook(STRING.base2string)]
+  syntax Int    ::= String2Base  ( String , base: Int )       [function, hook(STRING.string2base)]
+

String count and replace

+ +

You can replace one, some, or all occurrences of a string within another
+string in O(N*M) time. The replaceAll, replace, and replaceFirst methods
+are identical, except replaceFirst replaces exactly one ocurrence of the
+string, the first occurrence. replace replaces the first times occurrences.
+And replaceAll replaces every occurrence.

+

You can also count the number of times a string occurs within another string
+using countAllOccurrences.

+
  syntax String ::= "replaceAll" "(" haystack: String "," needle: String "," replacement: String ")"      [function, total, hook(STRING.replaceAll)]
+  syntax String ::= "replace" "(" haystack: String "," needle: String "," replacement: String "," times: Int ")" [function, hook(STRING.replace)]
+  syntax String ::= "replaceFirst" "(" haystack: String "," needle: String "," replacement: String ")"    [function, total, hook(STRING.replaceFirst)]
+  syntax Int ::= "countAllOccurrences" "(" haystack: String "," needle: String ")"            [function, total, hook(STRING.countAllOccurrences)]
+

String equality and lexicographic comparison

+ +

You can compare whether two strings are equal or unequal, or whether one string
+is less than, less than or equal to, greater than, or greater than or equal to
+another according to the natural lexicographic ordering of strings.

+
  syntax Bool ::= String "==String" String  [function, total, comm, hook(STRING.eq)]
+                | String "=/=String" String [function, total, comm, hook(STRING.ne)]
+  rule S1:String =/=String S2:String => notBool (S1 ==String S2)
+
+  syntax Bool ::= String  "<String" String [function, total, hook(STRING.lt)]
+                | String "<=String" String [function, total, hook(STRING.le)]
+                | String  ">String" String [function, total, hook(STRING.gt)]
+                | String ">=String" String [function, total, hook(STRING.ge)]
+

Implementation of Strings

+ +

What follows is a few String hooks which are deprecated and only are supported
+on certain outdated backends of K, as well as an implementation of several
+of the above operations in K.

+
  syntax String ::= categoryChar(String)       [function, hook(STRING.category)]
+                  | directionalityChar(String) [function, hook(STRING.directionality)]
+
+  syntax String ::= "newUUID" [function, hook(STRING.uuid), impure]
+
+  rule S1:String <=String S2:String => notBool (S2 <String S1)
+  rule S1:String >String S2:String => S2 <String S1
+  rule S1:String >=String S2:String => notBool (S1 <String S2)
+
+  rule findChar(S1:String, S2:String, I:Int) => #if findString(S1, substrString(S2, 0, 1), I) ==Int -1 #then findChar(S1, substrString(S2, 1, lengthString(S2)), I) #else #if findChar(S1, substrString(S2, 1, lengthString(S2)), I) ==Int -1 #then findString(S1, substrString(S2, 0, 1), I) #else minInt(findString(S1, substrString(S2, 0, 1), I), findChar(S1, substrString(S2, 1, lengthString(S2)), I)) #fi #fi requires S2 =/=String ""
+  rule findChar(_, "", _) => -1
+  rule rfindChar(S1:String, S2:String, I:Int) => maxInt(rfindString(S1, substrString(S2, 0, 1), I), rfindChar(S1, substrString(S2, 1, lengthString(S2)), I)) requires S2 =/=String ""
+  rule rfindChar(_, "", _) => -1
+
+  rule countAllOccurrences(Source:String, ToCount:String) => 0
+            requires findString(Source, ToCount, 0) <Int 0
+  rule countAllOccurrences(Source:String, ToCount:String) => 1 +Int countAllOccurrences(substrString(Source, findString(Source, ToCount, 0) +Int lengthString(ToCount), lengthString(Source)), ToCount)
+            requires findString(Source, ToCount, 0) >=Int 0
+
+  rule replaceFirst(Source:String, ToReplace:String, Replacement:String) => substrString(Source, 0, findString(Source, ToReplace, 0))
+                +String Replacement +String substrString(Source, findString(Source, ToReplace, 0) +Int lengthString(ToReplace), lengthString(Source))
+                requires findString(Source, ToReplace, 0) >=Int 0
+  rule replaceFirst(Source:String, ToReplace:String, _:String) => Source
+        requires findString(Source, ToReplace, 0) <Int 0
+
+
+  // Note that the replace function is undefined when Count < 0. This allows different backends to
+  // implement their own behavior without contradicting these semantics. For instance, a symbolic
+  // backend can return #Bottom for that case, while a concrete backend can throw an exception.
+  rule replace(Source:String, ToReplace:String, Replacement:String, Count:Int) =>
+       substrString(Source, 0, findString(Source, ToReplace, 0)) +String Replacement +String
+       replace(substrString(Source, findString(Source, ToReplace, 0) +Int lengthString(ToReplace), lengthString(Source)), ToReplace, Replacement, Count -Int 1)
+        requires Count >Int 0 andBool findString(Source, ToReplace, 0) >=Int 0
+  rule replace(Source:String, _, _, Count) => Source
+        requires Count >=Int 0 [owise]
+  rule replaceAll(Source:String, ToReplace:String, Replacement:String) => replace(Source, ToReplace, Replacement, countAllOccurrences(Source, ToReplace))
+
+endmodule
+
+module STRING-KORE [symbolic]
+  imports private K-EQUAL
+  imports STRING-COMMON
+
+  rule S1:String ==K S2:String => S1 ==String S2 [simplification]
+
+endmodule
+
+module STRING
+  imports STRING-COMMON
+  imports STRING-KORE
+endmodule
+

String Buffers

+

It is a well known fact that repeated string concatenations are quadratic
+in performance whereas use of an efficient mutable representation of arrays
+can yield linear performance. We thus provide such a sort, the StringBuffer
+sort. Axiomatically, it is implemented below on symbolic backends using the
+String module. However, on concrete backends it provides an efficient
+implementation of string concatenation. There are three operations:

+
    +
  • .StringBuffer creates a new StringBuffer with current content equal
    +to the empty string.
  • +
  • +String takes a StringBuffer and a String and appends the String to
    +the end of the StringBuffer
  • +
  • StringBuffer2String converts a StringBuffer to a String. This operation
    +copies the string so that subsequent modifications to the StringBuffer
    +will not change the value of the String returned by this function.
  • +
+
module STRING-BUFFER-IN-K [symbolic]
+  imports private BASIC-K
+  imports STRING
+
+  syntax StringBuffer ::= ".StringBuffer" [function, total]
+  syntax StringBuffer ::= StringBuffer "+String" String [function, total, avoid]
+  syntax StringBuffer ::= String
+  syntax String ::= StringBuffer2String ( StringBuffer ) [function, total]
+
+  rule {SB:String +String S:String}::StringBuffer => (SB +String S)::String
+  rule .StringBuffer => ""
+  rule StringBuffer2String(S:String) => S
+endmodule
+
+module STRING-BUFFER-HOOKED [concrete]
+  imports private BASIC-K
+  imports STRING
+
+  syntax StringBuffer [hook(BUFFER.StringBuffer)]
+  syntax StringBuffer ::= ".StringBuffer" [function, total, hook(BUFFER.empty), impure]
+  syntax StringBuffer ::= StringBuffer "+String" String [function, total, hook(BUFFER.concat), avoid]
+  syntax String ::= StringBuffer2String ( StringBuffer ) [function, total, hook(BUFFER.toString)]
+endmodule
+
+module STRING-BUFFER
+  imports STRING-BUFFER-HOOKED
+  imports STRING-BUFFER-IN-K
+endmodule
+

Byte Arrays

+

Provided here is the syntax of an implementation of fixed-width arrays of Bytes
+in K. This type is hooked to an implementation of bytes provided by the backend.
+On the LLVM backend, it is possible to opt in to a faster, mutable
+representation (using the --llvm-mutable-bytes flag to kompile) where
+multiple references can occur to the same Bytes object and when one is
+modified, the others are also modified. Care should be taken when using this
+feature, however, as it is possible to experience divergent behavior with
+symbolic backends unless the Bytes type is used in a manner that preserves
+consistency.

+
module BYTES-SYNTAX
+  imports private STRING-SYNTAX
+
+  syntax Bytes [hook(BYTES.Bytes)]
+  syntax Bytes ::= r"b[\\\"](([ !#-\\[\\]-~])|([\\\\][tnfr\\\"\\\\])|([\\\\][x][0-9a-fA-F]{2}))*[\\\"]"      [token]
+endmodule
+
module BYTES-STRING-ENCODE [symbolic]
+  imports BYTES-SYNTAX
+

Encoding/decoding between Bytes and String

+ +

You can encode/decode between Bytes and String using UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, and UTF-32BE

+
    syntax String ::= decodeBytes ( encoding: String , contents: Bytes ) [function, hook(BYTES.decodeBytes)]
+    syntax Bytes ::= encodeBytes ( encoding: String , contents: String ) [function, hook(BYTES.encodeBytes)]
+endmodule
+
module BYTES-HOOKED
+  imports STRING-SYNTAX
+  imports BYTES-SYNTAX
+  imports BYTES-STRING-ENCODE
+

Empty byte array

+ +

The byte array of length zero is represented by .Bytes.

+
  syntax Bytes ::= ".Bytes" [function, total, hook(BYTES.empty)]
+

Endianness

+ +

When converting to/from an integer, byte arrays can be treated as either little
+endian (ie, least significant byte first) or big endian (ie, most significant
+byte first).

+
  syntax Endianness ::= "LE" [klabel(littleEndianBytes), symbol]
+                      | "BE" [klabel(bigEndianBytes), symbol]
+

Signedness

+ +

When converting to/from an integer, byte arrays can be treated as either signed
+or unsigned.

+
  syntax Signedness ::= "Signed" [klabel(signedBytes), symbol]
+                      | "Unsigned" [klabel(unsignedBytes), symbol]
+

Integer and Bytes conversion

+ +

You can convert from a Bytes to an Int. In order to do this, the endianness
+and signedness of the Bytes must be provided. The resulting integer is
+created by means of interpreting the Bytes as either a twos-complement
+representation, or an unsigned representation, of an integer, in the specified
+byte order.

+

You can also convert from an Int to a Bytes. This comes in two variants.
+In the first, the length of the resulting Bytes in bytes is explicitly
+specified. If the length is greater than the highest set bit in the magnitude
+of the integer, the result is padded with 0 bits if the number is positive
+and 1 bits if the number is negative. If the length is less than the highest
+bit set in the magnitude of the integer, the most-significant bits of the
+integer will be truncated. The endianness of the resulting Bytes object
+is as specified.

+

In the second variant, both endianness and signedness are specified, and
+the resulting Bytes object will be the smallest number of bytes necessary
+for the resulting Bytes object to be convertible back to the original integer
+via Bytes2Int. In other words, if the highest bit set in the magnitude of the
+integer is N, then the byte array will be at least N+1 bits long, rounded up
+to the nearest byte.

+
  syntax Int ::= Bytes2Int(Bytes, Endianness, Signedness) [function, total, hook(BYTES.bytes2int)]
+  syntax Bytes ::= Int2Bytes(length: Int, Int, Endianness) [function, total, hook(BYTES.int2bytes)]
+                 | Int2Bytes(Int, Endianness, Signedness) [function, total, klabel(Int2BytesNoLen)]
+

String and Bytes conversion

+ +

You can convert between a Bytes and a String in O(N) time. The resulting
+value is a copy of the original and will not be affected by subsequent
+mutations of the input or output value.

+
  syntax String ::= Bytes2String(Bytes) [function, total, hook(BYTES.bytes2string)]
+  syntax Bytes ::= String2Bytes(String) [function, total, hook(BYTES.string2bytes)]
+

Bytes update

+ +

You can set the value of a particular byte in a Bytes object in O(1) time.
+The result is #False if value is not in the range [0..255] or if index
+is not a valid index (ie, less than zero or greater than or equal to the length
+of the Bytes term).

+
  syntax Bytes ::= Bytes "[" index: Int "<-" value: Int "]" [function, hook(BYTES.update)]
+

Bytes lookup

+ +

You can get the value of a particular byte in a Bytes object in O(1) time.
+The result is #False if index is not a valid index (see above).

+
  syntax Int ::= Bytes "[" Int "]" [function, hook(BYTES.get)]
+

Bytes substring

+ +

You can get a new Bytes object containing a range of bytes from the input
+Bytes in O(N) time (where N is the length of the substring). The range
+of bytes included is [startIndex..endIndex). The resulting Bytes is
+a copy and mutations to it do not affect mutations to the original Bytes.
+The result is #False if startIndex or endIndex are not valid.

+
  syntax Bytes ::= substrBytes(Bytes, startIndex: Int, endIndex: Int) [function, hook(BYTES.substr)]
+

Multiple bytes update

+ +

You can modify a Bytes to return a Bytes which is equal to dest except the
+N elements starting at index are replaced with the contents of src in O(N)
+time. If --llvm-mutable-bytes is active, this will not create a new Bytes
+object and will instead modify the original on concrete backends. The result is
+#False if index + N is not a valid index.

+
  syntax Bytes ::= replaceAtBytes(dest: Bytes, index: Int, src: Bytes) [function, hook(BYTES.replaceAt)]
+

Multiple bytes update

+ +

You can modify a Bytes to return a Bytes which is equal to dest except the
+count bytes starting at index are replaced with count bytes of value
+Int2Bytes(1, v, LE/BE) in O(count) time. This does not create a new Bytes
+object and will instead modify the original if --llvm-mutable-bytes is active.
+This will throw an exception if index + count is not a valid index. The
+acceptable range of values for v is -128 to 127. This will throw an exception
+if v is outside of this range. This is implemented only for the LLVM backend.

+
  syntax Bytes ::= memsetBytes(dest: Bytes, index: Int, count: Int, v: Int) [function, hook(BYTES.memset)]
+

Bytes padding

+ +

You can create a new Bytes object which is at least length bytes long by
+taking the input sequence and padding it on the right (respectively, on the
+left) with the specified value. If --llvm-mutable-bytes is active, this does
+not create a new Bytes object if the input is already at least length bytes
+long, and will instead return the input unchanged. The result is #False if
+value is not in the range [0..255], or if the length is negative.

+
  syntax Bytes ::= padRightBytes(Bytes, length: Int, value: Int) [function, hook(BYTES.padRight)]
+                 | padLeftBytes(Bytes, length: Int, value: Int) [function, hook(BYTES.padLeft)]
+

Bytes reverse

+ +

You can reverse a Bytes object in O(N) time. If --llvm-mutable-bytes is
+active, this will not create a new Bytes object and will instead modify the
+original.

+
  syntax Bytes ::= reverseBytes(Bytes) [function, total, hook(BYTES.reverse)]
+

Bytes length

+ +

You can get the length of a Bytes term in O(1) time.

+
  syntax Int ::= lengthBytes(Bytes) [function, total, hook(BYTES.length), smtlib(lengthBytes)]
+

Bytes concatenation

+ +

You can create a new Bytes object by concatenating two Bytes objects
+together in O(N) time.

+
  syntax Bytes ::= Bytes "+Bytes" Bytes [function, total, hook(BYTES.concat), right]
+
+endmodule
+

Implementation of Bytes

+ +

The remainder of this module consists of an implementation of some of the
+operators listed above in K.

+
module BYTES-CONCRETE [concrete]
+  imports BYTES-HOOKED
+endmodule
+
+module BYTES-KORE
+  imports BYTES-HOOKED
+  imports BYTES-SYMBOLIC-CEIL
+endmodule
+
+module BYTES-SYMBOLIC-CEIL [symbolic]
+  imports BYTES-HOOKED
+  imports private INT
+  imports private BOOL
+
+  rule #Ceil(padRightBytes(_, LEN, VAL)) => {(0 <=Int LEN andBool 0 <=Int VAL andBool VAL <Int 256) #Equals true} [simplification]
+  rule #Ceil(padLeftBytes(_, LEN, VAL))  => {(0 <=Int LEN andBool 0 <=Int VAL andBool VAL <Int 256) #Equals true} [simplification]
+endmodule
+
+module BYTES
+  imports BYTES-CONCRETE
+  imports BYTES-KORE
+  imports private INT
+
+  rule Int2Bytes(I::Int, E::Endianness, Unsigned) => Int2Bytes((log2Int(I) +Int 8) /Int 8, I, E)
+    requires I >Int 0
+  rule Int2Bytes(0, _::Endianness, _) => .Bytes
+  rule Int2Bytes(I::Int, E::Endianness, Signed) => Int2Bytes((log2Int(I) +Int 9) /Int 8, I, E)
+    requires I >Int 0
+  rule Int2Bytes(I::Int, E::Endianness, Signed) => Int2Bytes((log2Int(~Int I) +Int 9) /Int 8, I, E)
+    requires I <Int -1
+  rule Int2Bytes(-1, E::Endianness, Signed) => Int2Bytes(1, -1, E)
+endmodule
+

Program identifiers

+

Provided here is an implementation for program identifiers in K. Developers
+of semantics for a particular language may wish to use their own implementation
+instead of the one provided here if their syntax differs from the syntax
+defined below. However, this is provided for convenience for developers who
+do not care about the lexical syntax of identifiers.

+

Provided are the following pieces of functionality:

+
    +
  • Id2String - Convert an Id to a String containing its name
  • +
  • String2Id - Convert a String to an Id with the specified name
  • +
  • !X:Id - You can get a fresh identifier distinct from any previous identifier
    +generated by this syntax.
  • +
+
module ID-SYNTAX-PROGRAM-PARSING
+  imports BUILTIN-ID-TOKENS
+  syntax Id ::= r"[A-Za-z\\_][A-Za-z0-9\\_]*"     [prec(1), token]
+              | #LowerId                                             [token]
+              | #UpperId                                             [token]
+endmodule
+
+module ID-SYNTAX
+  syntax Id [token]
+endmodule
+
+module ID-COMMON
+  imports ID-SYNTAX
+  imports private STRING
+
+  syntax String ::= Id2String ( Id )    [function, total, hook(STRING.token2string)]
+  syntax Id ::= String2Id (String) [function, total, hook(STRING.string2token)]
+  syntax Id ::= freshId(Int)    [freshGenerator, function, total, private]
+
+  rule freshId(I:Int) => String2Id("_" +String Int2String(I))
+endmodule
+
+module ID
+  imports ID-COMMON
+endmodule
+

Equality and conditionals

+

Provided here are implementations of two important primitives in K:

+
    +
  • ==K - the equality between two terms. Returns true if they are equal
    +and false if they are not equal.
  • +
  • #if #then #else #fi - polymorphic conditional function. If the first
    +argument evaluates to true, the second argument is returned. Otherwise,
    +the third argument is returned. Note that this does not short-circuit on
    +symbolic backends.
  • +
+
module K-EQUAL-SYNTAX
+  imports private BOOL
+  imports private BASIC-K
+
+  syntax Bool ::= left:
+                  K "==K" K           [function, total, comm, smt-hook(=), hook(KEQUAL.eq), klabel(_==K_), symbol, group(equalEqualK)]
+                | K "=/=K" K          [function, total, comm, smt-hook(distinct), hook(KEQUAL.ne), klabel(_=/=K_), symbol, group(notEqualEqualK)]
+
+  syntax priority equalEqualK notEqualEqualK > boolOperation mlOp
+
+  syntax {Sort} Sort ::= "#if" Bool "#then" Sort "#else" Sort "#fi" [function, total, symbol(ite), smt-hook(ite), hook(KEQUAL.ite)]
+
+endmodule
+
+module K-EQUAL-KORE [symbolic]
+  imports private BOOL
+  imports K-EQUAL-SYNTAX
+
+  rule K1:Bool ==K K2:Bool => K1 ==Bool K2 [simplification]
+  rule {K1 ==K K2 #Equals true} => {K1 #Equals K2} [simplification]
+  rule {true #Equals K1 ==K K2} => {K1 #Equals K2} [simplification]
+  rule {K1 ==K K2 #Equals false} => #Not({K1 #Equals K2}) [simplification]
+  rule {false #Equals K1 ==K K2} => #Not({K1 #Equals K2}) [simplification]
+  rule {K1 =/=K K2 #Equals true} => #Not({K1 #Equals K2}) [simplification]
+  rule {true #Equals K1 =/=K K2} => #Not({K1 #Equals K2}) [simplification]
+  rule {K1 =/=K K2 #Equals false} => {K1 #Equals K2} [simplification]
+  rule {false #Equals K1 =/=K K2} => {K1 #Equals K2} [simplification]
+
+endmodule
+
+module K-EQUAL
+  imports private BOOL
+  imports K-EQUAL-SYNTAX
+  imports K-EQUAL-KORE
+
+  rule K1:K =/=K K2:K => notBool (K1 ==K K2)
+
+  rule #if C:Bool #then B1::K #else _ #fi => B1 requires C
+  rule #if C:Bool #then _ #else B2::K #fi => B2 requires notBool C
+
+endmodule
+

Meta operations

+

Provided below are a few miscellaneous, mostly deprecated functions in K.
+It is not recommended to use any of them directly as they are largely
+unsupported in modern K. There are a few exceptions:

+
    +
  • #getenv - Returns the value of an environment variable
  • +
  • #kompiledDirectory - Returns the path to the current compiled K definition
    +directory.
  • +
  • #unparseKORE - Takes a K term and converts it to a string.
  • +
+
module K-REFLECTION
+  imports BASIC-K
+  imports STRING
+
+  syntax K ::= "#configuration" [function, impure, hook(KREFLECTION.configuration)]
+  syntax String ::= #sort(K) [function, hook(KREFLECTION.sort)]
+  syntax KItem ::= #fresh(String)   [function, hook(KREFLECTION.fresh), impure]
+  syntax KItem ::= getKLabel(K)  [function, hook(KREFLECTION.getKLabel)]
+
+  syntax K ::= #getenv(String) [function, impure, hook(KREFLECTION.getenv)]
+
+  syntax String ::= #kompiledDirectory() [function, hook(KREFLECTION.kompiledDir)]
+
+  // meaningful only for the purposes of compilation to a binary, otherwise
+  // undefined
+  syntax List ::= #argv() [function, hook(KREFLECTION.argv)]
+
+  syntax {Sort} String ::= #unparseKORE(Sort) [function, hook(KREFLECTION.printKORE)]
+  syntax IOError ::= "#noParse" "(" String ")" [klabel(#noParse), symbol]
+
+endmodule
+

I/O in K

+

Concrete execution in K supports I/O operations. This functionality is not
+supported during symbolic execution, because symbolic execution must exist
+completely free of side-effects, and I/O is an irreducible type of side effect.
+However, it is useful in many cases when defining concrete execution to be able
+to make reference to I/O operations.

+

The design of these I/O operations is based on the POSIX standard, for the most
+part. For example, the #read K function maps to the read POSIX function. We
+do not at this time have a higher-level API for I/O, but this may be
+implemented at some point in the future.

+

I/O operations generally return either their result, or an IOError term
+corresponding to the errno returned by the underlying system call.

+
module K-IO
+  imports private LIST
+  imports private STRING
+  imports private INT
+

I/O errors

+ +

Aside from EOF, which is returned by #getc if the file is at end-of-file, all
+of the below I/O errors correspond to possible values for errno after calling
+a library function. If the errno returned is not one of the below errnos
+known to K, #unknownIOError is returned along with the integer errno value.

+
  syntax IOError ::= "#EOF" [klabel(#EOF), symbol] 
+                   | #unknownIOError(errno: Int) [klabel(#unknownIOError), symbol]
+                   | "#E2BIG" [klabel(#E2BIG), symbol]
+                   | "#EACCES" [klabel(#EACCES), symbol]
+                   | "#EAGAIN" [klabel(#EAGAIN), symbol]
+                   | "#EBADF" [klabel(#EBADF), symbol]
+                   | "#EBUSY" [klabel(#EBUSY), symbol]
+                   | "#ECHILD" [klabel(#ECHILD), symbol]
+                   | "#EDEADLK" [klabel(#EDEADLK), symbol]
+                   | "#EDOM" [klabel(#EDOM), symbol]
+                   | "#EEXIST" [klabel(#EEXIST), symbol]
+                   | "#EFAULT" [klabel(#EFAULT), symbol]
+                   | "#EFBIG" [klabel(#EFBIG), symbol]
+                   | "#EINTR" [klabel(#EINTR), symbol]
+                   | "#EINVAL" [klabel(#EINVAL), symbol]
+                   | "#EIO" [klabel(#EIO), symbol]
+                   | "#EISDIR" [klabel(#EISDIR), symbol]
+                   | "#EMFILE" [klabel(#EMFILE), symbol]
+                   | "#EMLINK" [klabel(#EMLINK), symbol]
+                   | "#ENAMETOOLONG" [klabel(#ENAMETOOLONG), symbol]
+                   | "#ENFILE" [klabel(#ENFILE), symbol]
+                   | "#ENODEV" [klabel(#ENODEV), symbol]
+                   | "#ENOENT" [klabel(#ENOENT), symbol]
+                   | "#ENOEXEC" [klabel(#ENOEXEC), symbol]
+                   | "#ENOLCK" [klabel(#ENOLCK), symbol]
+                   | "#ENOMEM" [klabel(#ENOMEM), symbol]
+                   | "#ENOSPC" [klabel(#ENOSPC), symbol]
+                   | "#ENOSYS" [klabel(#ENOSYS), symbol]
+                   | "#ENOTDIR" [klabel(#ENOTDIR), symbol]
+                   | "#ENOTEMPTY" [klabel(#ENOTEMPTY), symbol]
+                   | "#ENOTTY" [klabel(#ENOTTY), symbol]
+                   | "#ENXIO" [klabel(#ENXIO), symbol]
+                   | "#EPERM" [klabel(#EPERM), symbol]
+                   | "#EPIPE" [klabel(#EPIPE), symbol]
+                   | "#ERANGE" [klabel(#ERANGE), symbol]
+                   | "#EROFS" [klabel(#EROFS), symbol]
+                   | "#ESPIPE" [klabel(#ESPIPE), symbol]
+                   | "#ESRCH" [klabel(#ESRCH), symbol]
+                   | "#EXDEV" [klabel(#EXDEV), symbol]
+                   | "#EWOULDBLOCK" [klabel(#EWOULDBLOCK), symbol]
+                   | "#EINPROGRESS" [klabel(#EINPROGRESS), symbol]
+                   | "#EALREADY" [klabel(#EALREADY), symbol]
+                   | "#ENOTSOCK" [klabel(#ENOTSOCK), symbol]
+                   | "#EDESTADDRREQ" [klabel(#EDESTADDRREQ), symbol]
+                   | "#EMSGSIZE" [klabel(#EMSGSIZE), symbol]
+                   | "#EPROTOTYPE" [klabel(#EPROTOTYPE), symbol]
+                   | "#ENOPROTOOPT" [klabel(#ENOPROTOOPT), symbol]
+                   | "#EPROTONOSUPPORT" [klabel(#EPROTONOSUPPORT), symbol]
+                   | "#ESOCKTNOSUPPORT" [klabel(#ESOCKTNOSUPPORT), symbol]
+                   | "#EOPNOTSUPP" [klabel(#EOPNOTSUPP), symbol]
+                   | "#EPFNOSUPPORT" [klabel(#EPFNOSUPPORT), symbol]
+                   | "#EAFNOSUPPORT" [klabel(#EAFNOSUPPORT), symbol]
+                   | "#EADDRINUSE" [klabel(#EADDRINUSE), symbol]
+                   | "#EADDRNOTAVAIL" [klabel(#EADDRNOTAVAIL), symbol]
+                   | "#ENETDOWN" [klabel(#ENETDOWN), symbol]
+                   | "#ENETUNREACH" [klabel(#ENETUNREACH), symbol]
+                   | "#ENETRESET" [klabel(#ENETRESET), symbol]
+                   | "#ECONNABORTED" [klabel(#ECONNABORTED), symbol]
+                   | "#ECONNRESET" [klabel(#ECONNRESET), symbol]
+                   | "#ENOBUFS" [klabel(#ENOBUFS), symbol]
+                   | "#EISCONN" [klabel(#EISCONN), symbol]
+                   | "#ENOTCONN" [klabel(#ENOTCONN), symbol]
+                   | "#ESHUTDOWN" [klabel(#ESHUTDOWN), symbol]
+                   | "#ETOOMANYREFS" [klabel(#ETOOMANYREFS), symbol]
+                   | "#ETIMEDOUT" [klabel(#ETIMEDOUT), symbol]
+                   | "#ECONNREFUSED" [klabel(#ECONNREFUSED), symbol]
+                   | "#EHOSTDOWN" [klabel(#EHOSTDOWN), symbol]
+                   | "#EHOSTUNREACH" [klabel(#EHOSTUNREACH), symbol]
+                   | "#ELOOP" [klabel(#ELOOP), symbol]
+                   | "#EOVERFLOW" [klabel(#EOVERFLOW), symbol]
+

I/O result sorts

+ +

Here we see sorts defined to contain either an Int or an IOError, or
+either a String or an IOError. These sorts are used to implement the
+return sort of functions that may succeed, in which case they return a value,
+or may fail, in which case their return value indicates an error and the
+error indicated is returned via errno.

+
  syntax IOInt ::= Int | IOError
+  syntax IOString ::= String | IOError
+

Opening a file

+ +

You can open a file in K using #open. An optional mode indicates the file
+open mode, which can have any value allowed by the fopen function in C.
+The returned value is the file descriptor that was opened, or an error.

+
  syntax IOInt ::= "#open" "(" path: String ")" [function]
+               | "#open" "(" path: String "," mode: String ")" [function, hook(IO.open), impure]
+
+  rule #open(S:String) => #open(S:String, "r+")
+

Get/set position in file

+ +

You can get the current offset in a file using #tell. You can also seek
+to a particular offset using #seek or #seekEnd. #seek is implemented via
+a call to lseek with the SEEK_SET whence. #seekEnd is implemented via a
+call to lseek with the SEEK_END whence. You can emulate the SEEK_CUR
+whence by means of #seek(FD, #tell(FD) +Int Offset).

+
  syntax IOInt ::= "#tell" "(" fd: Int ")" [function, hook(IO.tell), impure]
+  syntax K ::= "#seek" "(" fd: Int "," index: Int ")" [function, hook(IO.seek), impure]
+             | "#seekEnd" "(" fd: Int "," fromEnd: Int ")" [function, hook(IO.seekEnd), impure]
+

Read from file

+ +

You can read a single character from a file using #getc. #EOF is returned
+if you are at end-of-fie.

+

You can also read up to length characters in a file using #read. The
+resulting read characters are returned, which may be fewer characters than
+requested. A string of zero length being returned indicates end-of-file.

+
  syntax IOInt ::= "#getc" "(" fd: Int ")"             [function, hook(IO.getc), impure]
+  syntax IOString ::= "#read" "(" fd: Int "," length: Int ")"    [function, hook(IO.read), impure]
+

Write to file

+ +

You can write a single character to a file using #putc. You can also write
+a string to a file using #write. The returned value on success is .K.

+
  syntax K ::= "#putc" "(" fd: Int "," value: Int ")"      [function, hook(IO.putc), impure]
+             | "#write" "(" fd: Int "," value: String ")" [function, hook(IO.write), impure]
+

Closing a file

+ +

You can close a file using #close. The returned value on success is .K.

+
  syntax K ::= "#close" "(" fd: Int ")" [function, hook(IO.close), impure]
+

Locking/unlocking a file

+ +

You can lock or unlock parts of a file using the #lock and #unlock
+functions. The lock starts at the beginning of the file and continues for
+endIndex bytes. Note that Unix systems do not actually prevent locked files
+from being read and modified; you will have to lock both sides of a concurrent
+access to guarantee exclusivity.

+
  syntax K ::= "#lock" "(" fd: Int "," endIndex: Int ")" [function, hook(IO.lock), impure]
+             | "#unlock" "(" fd: Int "," endIndex: Int ")" [function, hook(IO.unlock), impure]
+

Networking

+ +

You can accept a connection on a socket using #accept, or shut down the
+write end of a socket with #shutdownWrite. Note that facility is not provided
+for opening, binding, and listening on sockets. These functions are implemented
+in order to support creating stateful request/response servers where the
+request loop is implemented using rewriting in K, but the connection
+initialization is written in native code and linked into the LLVM backend.

+
  syntax IOInt ::= "#accept" "(" fd: Int ")" [function, hook(IO.accept), impure]
+  syntax K ::= "#shutdownWrite" "(" fd: Int ")" [function, hook(IO.shutdownWrite), impure]
+

Time

+ +

You can get the current time in seconds since midnight UTC on January 1, 1970
+using #time.

+
  syntax Int ::= "#time" "(" ")" [function, hook(IO.time), impure]
+

Builtin file descriptors

+ +

Provided here are functions that return the file descriptor for standard input,
+standard output, and standard error.

+
  syntax Int ::= "#stdin"   [function, total]
+                | "#stdout" [function, total]
+                | "#stderr" [function, total]
+
+  rule #stdin => 0
+  rule #stdout => 1
+  rule #stderr => 2
+

Shell access

+ +

You can execute a command using the shell using the #system operator. Care
+must be taken to sanitize inputs to this function or security issues may
+result. Note that K has no facility for reasoning about logic that happens
+outside its process, so any functionality that you wish to be able to formally
+reason about in K should not be implemented via the #system operator.

+
  syntax KItem ::= #system ( String ) [function, hook(IO.system), impure]
+                 | "#systemResult" "(" Int /* exit code */ "," String /* stdout */ "," String /* stderr */ ")" [klabel(#systemResult), symbol]
+

Temporary files

+ +

You can get a temporary file and open it atomically using the #mkstemp
+operator. The resulting file will be closed and deleted when K rewriting ends.
+For more info on the argument to #mkstemp, see man mkstemp.

+
  syntax IOFile ::= #mkstemp(template: String) [function, hook(IO.mkstemp), impure]
+  syntax IOFile ::= IOError
+                  | "#tempFile" "(" path: String "," fd: Int ")" [klabel(#tempFile), symbol]
+

Deleting a file

+ +

You can delete a file using its absolute or relative path using the #remove
+operator. It returns .K on success or an IOError on failure.

+
  syntax K ::= #remove(path: String) [function, total, hook(IO.remove), impure]
+

Logging

+ +

You can log information to disk using the #logToFile operator. Semantically,
+this operator returns .K. However, it has a side effect that is not reasoned
+about which is that value will be written to a uniquely-identified file
+containing name in its name. The file is only flushed to disk when rewriting
+finishes.

+
  syntax K ::= #logToFile(name: String, value: String) [function, total, hook(IO.log), impure, returnsUnit, klabel(#logToFile), symbol]
+

Strings can also be logged via the logging mechanisms available to the backend.
+On the LLVM backend, this just means logging the text to standard error. On the
+Haskell backend, a log message of type InfoUserLog is created with the
+specified text.

+
  syntax K ::= #log(value: String) [function, total, hook(IO.logString), impure, returnsUnit, klabel(#log), symbol]
+

Terms can also be logged to standard error in surface syntax, rather than as
+KORE using #trace. This operator has similar semantics to #logToFile (i.e.
+it returns .K, but prints as an impure side effect). Note that calling
+#trace is equivalent to invoking the kprint tool for the first term that is
+logged, which requires re-parsing the underlying K definition. Subsequent calls
+do not incur this overhead again; the definition is cached.

+
  syntax K ::= #trace(value: KItem) [function, total, hook(IO.traceTerm), impure, returnsUnit, klabel(#trace), symbol]
+             | #traceK(value: K)    [function, total, hook(IO.traceTerm), impure, returnsUnit, klabel(#traceK), symbol]
+

Implementation of high-level I/O streams in K

+ +

Below is an implementation of the stream="stdin" and stream="stdout"
+cell attributes in K. You should not refer to these symbols or modules directly
+in your definition. It is provided only so that the K compiler can make use of
+it. For more information on how to use this feature, refer to IMP++ in the K
+tutorial.

+
  syntax Stream ::= #buffer(K)
+                  | #istream(Int)
+                  | #parseInput(String, String)
+                  | #ostream(Int)
+
+endmodule
+
+// NOTE: DO NOT DIRECTLY IMPORT *-STREAM MODULES
+// These stream modules will be automatically instantiated and implicitly imported
+// into the main module when `stream` attributes appear in configuration cells.
+// Only `Stream` productions and `[stream]` rules will be imported.
+// The cell name will be replaced with the one of the main configuration.
+
+module STDIN-STREAM
+  imports K-IO
+  imports K-REFLECTION
+  imports LIST
+  imports INT
+  imports BOOL
+
+  configuration <stdin> ListItem(#buffer($STDIN:String)) ListItem($IO:String) ListItem(#istream(#stdin)) </stdin>
+
+  // read one character at a time until we read whitespace
+  rule [stdinGetc]:
+       <stdin>
+       ListItem(#parseInput(_:String, Delimiters:String))
+       ListItem(#buffer(S:String => S +String chrChar({#getc(N)}:>Int)))
+       ListItem("on")
+       ListItem(#istream(N:Int))
+       </stdin>
+    requires findChar(S, Delimiters, 0) ==Int -1 // [stdin]
+       [stream, priority(200)]
+
+  // when we reach whitespace, if it parses create a ListItem
+  rule [stdinParseString]:
+       <stdin>
+       (ListItem(#parseInput("String", Delimiters:String)) => ListItem(S))
+       ListItem(#buffer(S:String => ""))
+       _:List
+       </stdin>
+    requires findChar(S, Delimiters, 0) =/=Int -1 // [stdin]
+       [stream]
+
+  // a hack: handle the case when we read integers without the help of the IO server
+  rule [stdinParseInt]:
+       <stdin>
+       (ListItem(#parseInput("Int", Delimiters:String))
+       => ListItem(String2Int(substrString(S, 0, findChar(S, Delimiters, 0)))))
+       ListItem(#buffer(S:String => substrString(S,findChar(S, Delimiters, 0) +Int 1, lengthString(S))))
+       _:List
+       </stdin>
+    requires findChar(S, Delimiters, 0) =/=Int -1
+       andBool lengthString(S) >Int 1 // [stdin]
+       [stream]
+
+  rule [stdinTrim]:
+       <stdin>
+       ListItem(#parseInput(Sort:String, Delimiters:String))
+       ListItem(#buffer(S:String => substrString(S, 1, lengthString(S))))
+       _:List
+       </stdin>
+    requires findChar(S, Delimiters, 0) =/=Int -1
+       andBool Sort =/=String "String"
+       andBool lengthString(S) <=Int 1 // [stdin]
+       [stream]
+
+  // NOTE: This unblocking rule will be instantiated and inserted carefully
+  // when necessary according to user-defined rules, since otherwise it will
+  // lead to a diverging (i.e., non-terminating) transition system definition.
+  // Currently, it supports only a simple pattern matching on the top of the
+  // input stream cell, e.g.,
+  //   rule <k> read() => V ... </k> <in> ListItem(V:Int) => .List ...  </in>
+  // Non-supported rules that refer to the input stream cell in a sophisticated
+  // way will get stuck in concrete execution mode with real IO enabled (i.e.,
+  // under `--io on` option), while they will still work in symbolic execution
+  // mode or concrete execution mode with real IO disabled (i.e., under `--io
+  // off`, `--search`, or `--debug` options).
+  //
+  // TODO: More patterns need to be supported as well. In that case, we need to
+  // have a way to specify such patterns.
+  rule [stdinUnblock]:
+       <stdin>
+         (.List => ListItem(#parseInput(?Sort:String, ?Delimiters:String)))
+         ListItem(#buffer(_:String))
+         ...
+       </stdin>
+
+  /*
+  syntax Stream ::= "#noIO"
+
+  rule ListItem(#buffer(_))
+       (ListItem(#noIO) ListItem(#istream(_:Int)) => .List) [stdin]
+  */
+
+endmodule
+
+module STDOUT-STREAM
+  imports K-IO
+  imports LIST
+  imports STRING
+
+  configuration <stdout> ListItem(#ostream(#stdout)) ListItem($IO:String) ListItem(#buffer("")) </stdout>
+//configuration <stderr> ListItem(#ostream(#stderr)) ListItem($IO:String) ListItem(#buffer("")) </stderr>
+
+  rule [stdoutBufferFloat]:
+       <stdout>
+       ListItem(#ostream(_))
+       ListItem(_)
+       ListItem(#buffer(Buffer:String => Buffer +String Float2String(F)))
+       (ListItem(F:Float) => .List)
+       _:List
+       </stdout>
+       // [stdout, stderr]
+       [stream, priority(25)]
+  rule [stdoutBufferInt]:
+       <stdout>
+       ListItem(#ostream(_))
+       ListItem(_)
+       ListItem(#buffer(Buffer:String => Buffer +String Int2String(I)))
+       (ListItem(I:Int) => .List)
+       _:List
+       </stdout>
+       // [stdout, stderr]
+       [stream, priority(25)]
+  rule [stdoutBufferString]:
+       <stdout>
+       ListItem(#ostream(_))
+       ListItem(_)
+       ListItem(#buffer(Buffer:String => Buffer +String S))
+       (ListItem(S:String) => .List)
+       _:List
+       </stdout>
+       // [stdout, stderr]
+       [stream, priority(25)]
+
+  // Send first char from the buffer to the server
+  rule [stdoutWrite]:
+       <stdout>
+       ListItem(#ostream(N:Int => {#write(N, S) ~> N:Int}:>Int))
+       ListItem("on")
+       ListItem(#buffer(S:String => ""))
+       _:List
+       </stdout>
+    requires S =/=String "" // [stdout, stderr]
+       [stream, priority(30)]
+
+  /*
+  syntax Stream ::= "#noIO"
+
+  rule ListItem(#buffer(Buffer:String => Buffer +String Float2String(F)))
+       (ListItem(F:Float) => .List)
+       _:List [stdout, stderr]
+  rule ListItem(#buffer(Buffer:String => Buffer +String Int2String(I)))
+       (ListItem(I:Int) => .List)
+       _:List [stdout, stderr]
+  rule ListItem(#buffer(Buffer:String => Buffer +String S))
+       (ListItem(S:String) => .List)
+       _:List [stdout, stderr]
+
+  rule (ListItem(#ostream(_:Int)) ListItem(#noIO) => .List)
+       ListItem(#buffer(_))
+       _:List [stdout, stderr]
+  */
+
+endmodule
+

Machine Integers

+

Provided here is an implementation of arbitrarily large fixed-precision binary
+integers in K. This type is hooked to an implementation of integers provided
+by the backend, and in particular makes use of native machine integers for
+certain sizes of integer. For arbitrary-precision integers, see the INT
+module above.

+

The syntax of machine integers in K is the same as arbitrary-precision integers
+(i.e., an optional sign followed by a sequence of digits) except that machine
+integers always end in a suffix pN where N is an integer indicating the
+width in bits of the integer. The MInt sort is parametric, and this is
+reflected in the literals. For example, the sort of 0p8 is MInt{8}.

+
module MINT-SYNTAX
+  /*@\section{Description} The MInt implements machine integers of arbitrary
+   * bit width represented in 2's complement. */
+  syntax {Width} MInt{Width} [hook(MINT.MInt)]
+
+  /*@ Machine integer of bit width and value. */
+  syntax {Width} MInt{Width} ::= r"[\\+\\-]?[0-9]+[pP][0-9]+" [token, prec(2), hook(MINT.literal)]
+endmodule
+
+module MINT
+  imports MINT-SYNTAX
+  imports private INT
+  imports private BOOL
+

Bitwidth of MInt

+ +

You can get the number of bits of width in an MInt using bitwidthMInt.

+
  syntax {Width} Int ::= bitwidthMInt(MInt{Width})   [function, total, hook(MINT.bitwidth)]
+

Int and MInt conversions

+ +

You can convert from an MInt to an Int using the MInt2Signed and
+MInt2Unsigned functions. an MInt does not have a sign; its sign is instead
+reflected in how operators interpret its value either as a signed integer or as
+an unsigned integer. Thus, you can interpret a MInt as a signed integer witth
+MInt2Signed, or as an unsigned integer respectively using MInt2Unsigned.

+

You can also convert from an Int to an MInt using Int2MInt. Care must
+be given to ensure that the sort context where the Int2MInt operator appears
+has the correct bitwidth, as this will influence the width of the resulting
+MInt.

+
  syntax {Width} Int ::= MInt2Signed(MInt{Width})     [function, total, hook(MINT.svalue)]
+                       | MInt2Unsigned(MInt{Width})     [function, total, hook(MINT.uvalue), smt-hook(bv2int)]
+
+  syntax {Width} MInt{Width} ::= Int2MInt(Int) [function, total, hook(MINT.integer), smt-hook(int2bv)]
+

MInt min and max values

+ +

You can get the minimum and maximum values of a signed or unsigned MInt
+with az specified bit width using sminMInt, smaxMInt, uminMInt, and
+umaxMInt.

+
  syntax Int ::= sminMInt(Int)    [function]
+               | smaxMInt(Int)    [function]
+               | uminMInt(Int)    [function]
+               | umaxMInt(Int)    [function]
+  rule sminMInt(N:Int) => 0 -Int (1 <<Int (N -Int 1))
+  rule smaxMInt(N:Int) => (1 <<Int (N -Int 1)) -Int 1
+  rule uminMInt(_:Int) => 0
+  rule umaxMInt(N:Int) => (1 <<Int N) -Int 1
+

MInt bounds checking

+ +

You can check whether a specified Int will be represented in an MInt
+with a specified width without any loss of precision when interpreted as
+a signed or unsigned integer using soverflowMInt and uoverflowMInt.

+
  syntax Bool ::= soverflowMInt(width: Int, Int)   [function]
+                | uoverflowMInt(width: Int, Int)   [function]
+  rule
+    soverflowMInt(N:Int, I:Int)
+  =>
+    I <Int sminMInt(N) orBool I >Int smaxMInt(N)
+  rule
+    uoverflowMInt(N:Int, I:Int)
+  =>
+    I <Int uminMInt(N) orBool I >Int umaxMInt(N)
+

MInt arithmetic

+ +

You can:

+
    +
  • Compute the bitwise complement ~MInt of an MInt.
  • +
  • Compute the unary negation --MInt of an MInt.
  • +
  • Compute the product *MInt of two MInts.
  • +
  • Compute the quotient /sMInt of two MInts interpreted as signed integers.
  • +
  • Compute the modulus %sMInt of two MInts interpreted as signed integers.
  • +
  • Compute the quotient /uMInt of two MInts interpreted as unsigned
    +integers.
  • +
  • Compute the modulus %uMInt of two MInts interpreted as unsigned integers.
  • +
  • Compute the sum +MInt of two MInts.
  • +
  • Compute the difference -MInt of two MInts.
  • +
  • Compute the left shift <<MInt of two MInts. The second MInt is always
    +interpreted as positive.
  • +
  • Compute the arithmetic right shift >>aMInt of two MInts. The second
    +MInt is always interpreted as positve.
  • +
  • Compute the logical right shift >>lMInt of two MInts. The second MInt
    +is always interpreted as positive.
  • +
  • Compute the bitwise and &MInt of two MInts.
  • +
  • Compute the bitwise xor xorMInt of two MInts.
  • +
  • Compute the bitwise inclusive or |MInt of two MInts.
  • +
+
  syntax {Width} MInt{Width} ::= "~MInt" MInt{Width} [function, total, hook(MINT.not), smt-hook(bvnot)]
+                               | "--MInt" MInt{Width} [function, total, hook(MINT.neg), smt-hook(bvuminus)]
+                               > left:
+                                 MInt{Width} "*MInt" MInt{Width} [function, total, hook(MINT.mul), smt-hook(bvmul)]
+                               | MInt{Width} "/sMInt" MInt{Width} [function, hook(MINT.sdiv), smt-hook(bvsdiv)]
+                               | MInt{Width} "%sMInt" MInt{Width} [function, hook(MINT.srem), smt-hook(bvsrem)]
+                               | MInt{Width} "/uMInt" MInt{Width} [function, hook(MINT.udiv), smt-hook(bvudiv)]
+                               | MInt{Width} "%uMInt" MInt{Width} [function, hook(MINT.urem), smt-hook(bvurem)]
+                               > left:
+                                 MInt{Width} "+MInt" MInt{Width} [function, total, hook(MINT.add), smt-hook(bvadd)]
+                               | MInt{Width} "-MInt" MInt{Width} [function, total, hook(MINT.sub), smt-hook(bvsub)]
+                               > left:
+                                 MInt{Width} "<<MInt" MInt{Width} [function, hook(MINT.shl), smt-hook(bvshl)]
+                               | MInt{Width} ">>aMInt" MInt{Width} [function, hook(MINT.ashr), smt-hook(bvashr)]
+                               | MInt{Width} ">>lMInt" MInt{Width} [function, hook(MINT.lshr), smt-hook(bvlshr)]
+                               > left:
+                                 MInt{Width} "&MInt" MInt{Width} [function, total, hook(MINT.and), smt-hook(bvand)]
+                               > left:
+                                 MInt{Width} "xorMInt" MInt{Width} [function, total, hook(MINT.xor), smt-hook(bvxor)]
+                               > left:
+                                 MInt{Width} "|MInt" MInt{Width} [function, total, hook(MINT.or), smt-hook(bvor)]
+

MInt comparison

+ +

You can compute whether one MInt is less than, less than or equal to, greater
+than, or greater than or equal to another MInt when interpreted as signed
+or unsigned integers. You can also compute whether one MInt is equal to or
+unequal to another MInt.

+
  syntax {Width} Bool ::= MInt{Width} "<sMInt" MInt{Width} [function, total, hook(MINT.slt), smt-hook(bvslt)]
+                        | MInt{Width} "<uMInt" MInt{Width} [function, total, hook(MINT.ult), smt-hook(bvult)]
+                        | MInt{Width} "<=sMInt" MInt{Width} [function, total, hook(MINT.sle), smt-hook(bvsle)]
+                        | MInt{Width} "<=uMInt" MInt{Width} [function, total, hook(MINT.ule), smt-hook(bvule)]
+                        | MInt{Width} ">sMInt" MInt{Width} [function, total, hook(MINT.sgt), smt-hook(bvsgt)]
+                        | MInt{Width} ">uMInt" MInt{Width} [function, total, hook(MINT.ugt), smt-hook(bvugt)]
+                        | MInt{Width} ">=sMInt" MInt{Width} [function, total, hook(MINT.sge), smt-hook(bvsge)]
+                        | MInt{Width} ">=uMInt" MInt{Width} [function, total, hook(MINT.uge), smt-hook(bvuge)]
+                        | MInt{Width} "==MInt" MInt{Width} [function, total, hook(MINT.eq), smt-hook(=)]
+                        | MInt{Width} "=/=MInt" MInt{Width} [function, total, hook(MINT.ne), smt-hook(distinct)]
+

MInt min/max

+ +

You can compute the signed minimum sMinMInt, the signed maximum sMaxMInt,
+the unsigned minimum uMinMInt, and the unsigned maximum uMaxMInt of two
+MInts.

+
  syntax {Width} MInt{Width} ::= sMaxMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.smax), smt-hook((ite (bvslt #1 #2) #2 #1))]
+                               | sMinMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.smin), smt-hook((ite (bvslt #1 #2) #1 #2))]
+                               | uMaxMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.umax), smt-hook((ite (bvult #1 #2) #2 #1))]
+                               | uMinMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.umin), smt-hook((ite (bvult #1 #2) #1 #2))]
+

MInt to MInt conversion

+ +

You can convert an MInt of one width to another width with roundMInt.
+The resulting MInt will be truncated starting from the most significant bit
+if the resulting width is smaller than the input. The resulting MInt will be
+zero-extended with the same low-order bits if the resulting width is larger
+than the input.

+
  syntax {Width1, Width2} MInt{Width1} ::= roundMInt(MInt{Width2}) [function, total, hook(MINT.round)]
+
endmodule
+

K Language Features

+

Defined below is a series of modules used to parse inner syntax in K (ie, the
+contents of rules, configuration declarations, and contexts).

+

Much of this file exists in tight correspondence with the K implementation, and
+K will not work correctly if it is altered without corresponding changes to the
+source code of the K tools.

+

Users should only import a few modules from this file. In particular, this
+includes SORT-K, BASIC-K, ML-SYNTAX, DEFAULT-LAYOUT,
+DEFAULT-CONFIGURATION, and K-AMBIGUITIES. The remaining modules should not
+be imported by the user; they are used implicitly by the implementation of K.

+

Basic K Sorts

+

The SORT-K module declares the K sort, and nothing else.

+
module SORT-K
+  syntax K [hook(K.K)]
+endmodule
+

The BASIC-K module declares the K, KItem, and KConfigVar sorts, and
+imports the syntax of matching logic.

+
module BASIC-K
+  imports ML-SYNTAX
+  imports SORT-BOOL
+  syntax KItem [hook(K.KItem)]
+  syntax K     ::= KItem
+  syntax KConfigVar [token]
+  syntax KItem ::= KConfigVar
+endmodule
+

KAST Abstract Syntax

+

Below is defined the abstract syntax of concrete terms in K, the KAST syntax.
+Users should rarely if ever have to refer to this syntax; in general, it
+suffices to use concrete syntax in rules, configuration declarations, contexts,
+etc.

+

This syntax is used directly by the K implementation, and exists here as a
+reference for the syntax of KAST, but it should not be imported directly by
+the user.

+
module KSTRING
+  syntax KString ::= r"[\\\"](([^\\\"\\n\\r\\\\])|([\\\\][nrtf\\\"\\\\])|([\\\\][x][0-9a-fA-F]{2})|([\\\\][u][0-9a-fA-F]{4})|([\\\\][U][0-9a-fA-F]{8}))*[\\\"]"      [token]
+  // optionally qualified strings, like in Scala "abc", i"abc", r"a*bc", etc.
+endmodule
+
+module BUILTIN-ID-TOKENS
+  syntax #LowerId ::= r"[a-z][a-zA-Z0-9]*"                    [prec(2), token]
+  syntax #UpperId ::= r"[A-Z][a-zA-Z0-9]*"                    [prec(2), token]
+endmodule
+
+module SORT-KBOTT
+  imports SORT-K
+  syntax KBott
+endmodule
+
+module KAST
+  imports BASIC-K
+  imports SORT-KBOTT
+  imports KSTRING
+  imports BUILTIN-ID-TOKENS
+
+  syntax KBott ::= "#token" "(" KString "," KString ")"  [klabel(#KToken), symbol]
+                 | "#klabel" "(" KLabel ")"              [klabel(#WrappedKLabel), symbol]
+                 | KLabel "(" KList ")"                  [klabel(#KApply), symbol]
+  syntax KItem ::= KBott
+
+  syntax KLabel ::= r"`(\\\\`|\\\\\\\\|[^`\\\\\\n\\r])+`" [token]
+                  | #LowerId                                   [token]
+                  | r"[#a-z][a-zA-Z0-9]*"               [token, prec(1)]
+
+  syntax KList ::= K
+                 | ".KList"          [klabel(#EmptyKList), symbol]
+                 | KList "," KList   [klabel(#KList), left, assoc, unit(#EmptyKList), symbol, prefer]
+endmodule
+
+
+// To be used when parsing/pretty-printing ground configurations
+module KSEQ
+  imports KAST
+  imports K-TOP-SORT
+  syntax K ::= ".K"      [klabel(#EmptyK), symbol]
+             | "."       [klabel(#EmptyK), symbol, deprecated, unparseAvoid]
+  syntax K ::= K "~>" K  [klabel(#KSequence), left, assoc, unit(#EmptyK), symbol]
+  syntax left #KSequence
+  syntax {Sort} Sort     ::= "(" Sort ")"    [bracket, group(defaultBracket), applyPriority(1)]
+endmodule
+

Syntax of Matching Logic

+

K provides direct access to the symbols of Matching Logic, while giving them
+their own concrete syntax distinct from the syntax of the KORE intermediate
+representation. These symbols are primarily used during symbolic execution.
+The LLVM Backend has relatively little understanding of Matching Logic directly
+and use of these symbols directly in rules is likely to cause it to crash.
+However, these symbols are necessary when providing lemmas and other types of
+logical assistance to proofs and symbolic execution in the Haskell Backend.

+

The correspondance between K symbols and KORE symbols is as follows:

+
    +
  • #Top - \top
  • +
  • #Bottom - \bottom
  • +
  • #Not - \not
  • +
  • #Ceil - \ceil
  • +
  • #Floor - \floor
  • +
  • #Equals - \equals
  • +
  • #And - \and
  • +
  • #Or - \or
  • +
  • #Implies - \implies
  • +
  • #Exists - \exists
  • +
  • #Forall - \forall
  • +
  • #AG - allPathGlobally
  • +
  • #wEF - weakExistsFinally
  • +
  • #wAF - weakAlwaysFinally
  • +
+
module ML-SYNTAX [not-lr1]
+  imports SORT-K
+
+  syntax {Sort} Sort ::= "#Top" [klabel(#Top), symbol, group(mlUnary)]
+                       | "#Bottom" [klabel(#Bottom), symbol, group(mlUnary)]
+                       | "#Not" "(" Sort ")" [klabel(#Not), symbol, mlOp, group(mlUnary, mlOp)]
+
+  syntax {Sort1, Sort2} Sort2 ::= "#Ceil" "(" Sort1 ")" [klabel(#Ceil), symbol, mlOp, group(mlUnary, mlOp)]
+                                | "#Floor" "(" Sort1 ")" [klabel(#Floor), symbol, mlOp, group(mlUnary, mlOp)]
+                                | "{" Sort1 "#Equals" Sort1 "}" [klabel(#Equals), symbol, mlOp, group(mlEquals, mlOp), comm, format(%1%i%n%2%d%n%3%i%n%4%d%n%5)]
+
+  syntax priority mlUnary > mlEquals > mlAnd
+
+  syntax {Sort} Sort ::= Sort "#And" Sort [klabel(#And), symbol, assoc, left, comm, unit(#Top), mlOp, group(mlAnd, mlOp), format(%i%1%d%n%2%n%i%3%d)]
+                       > Sort "#Or" Sort [klabel(#Or), symbol, assoc, left, comm, unit(#Bottom), mlOp, group(mlOp), format(%i%1%d%n%2%n%i%3%d)]
+                       > Sort "#Implies" Sort [klabel(#Implies), symbol, mlOp, group(mlImplies, mlOp), format(%i%1%d%n%2%n%i%3%d)]
+
+  syntax priority mlImplies > mlQuantifier
+
+  syntax {Sort1, Sort2} Sort2 ::= "#Exists" Sort1 "." Sort2 [klabel(#Exists), symbol, mlOp, mlBinder, group(mlQuantifier, mlOp)]
+                                | "#Forall" Sort1 "." Sort2 [klabel(#Forall), symbol, mlOp, mlBinder, group(mlQuantifier, mlOp)]
+
+  syntax {Sort} Sort ::= "#AG" "(" Sort ")" [klabel(#AG), symbol, mlOp, group(mlOp)]
+                       | "#wEF" "(" Sort ")" [klabel(weakExistsFinally), symbol, mlOp, group(mlOp)]
+                       | "#wAF" "(" Sort ")" [klabel(weakAlwaysFinally), symbol, mlOp, group(mlOp)]
+endmodule
+

Variables in K

+

Provided below is the syntax of variables in K. There are four types of
+variables in K:

+
    +
  1. Regular variables. These are denoted by variables that begin with an
    +underscore or a capital letter. These variables match exactly one value
    +and can be used to refer to it on the right-hand-side.
  2. +
  3. Fresh constants. These are denoted by variables that begin with an !. This
    +is a convenience syntax which can be used on the right-hand-side only, and
    +refer to a unique value of the specified sort which is distinct from any
    +other value that has been generated or will be generated by the !X syntax.
    +Note that this may not be distinct from values produced via other means.
  4. +
  5. Existential variables. This refers to variables that are existentially
    +quantified and begin with a ?. They are not required to appear on the
    +left-hand-side prior to appearing on the right-hand-side, and generally
    +refer to symbolic quantities that are introduced during rewriting. Refer to
    +K's documentation for more details.
  6. +
  7. Set variables. These are denoted by variables that begin with a @.
    +These variables refer to a set of values and are generally used when writing
    +simplification rules in the Haskell Backend. For more information, refer to
    +K's documentation.
  8. +
+

There is also a fifth type of "variable", although it is not technically a
+variable. This refers to configuration variables, which are used to insert
+values into the initial configuration that come from outside the semantics.
+The most common of these is the $PGM variable, which conventionally contains
+the program being executed and is placed in the <k> cell in the configuration
+declaration. These "variables" begin with a $ and their values are populated
+by the frontend prior to symbolic or concrete execution of a program.

+
module KVARIABLE-SYNTAX
+  syntax #KVariable
+endmodule
+
+// To be used when parsing/pretty-printing symbolic configurations
+module KSEQ-SYMBOLIC
+  imports KSEQ
+  imports ML-SYNTAX
+  imports KVARIABLE-SYNTAX
+
+  syntax #KVariable ::= r"(\\!|\\?|@)?([A-Z][A-Za-z0-9'_]*|_|_[A-Z][A-Za-z0-9'_]*)"   [token, prec(1)]
+                      | #UpperId                                                          [token]
+  syntax KConfigVar ::= r"(\\$)([A-Z][A-Za-z0-9'_]*)"            [token]
+  syntax KBott      ::= #KVariable
+  syntax KBott      ::= KConfigVar
+endmodule
+

Syntax of Cells

+

While the backend treats cells as regular productions like any other, the
+frontend provides a significant amount of convenience notation for dealing with
+groups of cells, in order to make writing modular definitions easier. As a
+result, we need a syntax for groups of cells and for referring to cells within
+rules, configuration declarations, and functions.

+

For historical reasons, the Bag sort is used to refer to groups of cells.
+This may change in a future release. Users can combine cells in any order
+by concatenating them together, and can refer to the absence of any cells with
+the .Bag symbol. You can also refer to cells within a function by placing
+the cell context symbol, [[ K ]] at the top of a rule, placing a function
+symbol inside, and referring to cells afterwards. This implicitly inserts
+a reference to the configuration at the time prior to the currently-applied
+rule being applied which can be matched on within the function. Functions with
+such context cannot be referred to in the initial configuration, because the
+prior configuration does not yet exist.

+
module KCELLS
+  imports KAST
+
+  syntax Cell
+  syntax Bag ::= Bag Bag  [left, assoc, klabel(#cells), symbol, unit(#cells)]
+               | ".Bag"   [klabel(#cells), symbol]
+               | ".::Bag" [klabel(#cells), symbol]
+               | Cell
+  syntax Bag ::= "(" Bag ")" [bracket]
+  syntax KItem ::= Bag
+  syntax #RuleBody ::= "[" "[" K "]" "]" Bag    [klabel(#withConfig), symbol, avoid]
+  syntax non-assoc #withConfig
+  syntax Bag ::= KBott
+endmodule
+

Users can also refer to cells in rules. When doing so, an optional ... can
+be placed immediately after the start of the cell or immediately before the
+end. In a cell whose contents are commutative, these are equivalent to one
+another and are also equivalent to placing ... in both places. This means
+that what is placed in the cell will be combined with the cell contents'
+concatenation operator with an unnamed variable. In other words, you match on
+some number of elements in the collection and do not care about the rest of
+the collection.

+

In a cell whose contents are not commutative, the ... operators correspond
+to a variable on the respective side of the contents of the cell that the
+... appears. For example, <foo>... L </foo>, if L is a list, means
+some number of elements followed by L. Note that not all combinations are
+supported. Cells whose contents are sort K can only have ... appear at the
+tail of the cell, and cells whose contents are sort List can only have ...
+appear on at most one side in a single rule.

+
module RULE-CELLS
+  imports KCELLS
+  imports RULE-LISTS
+  // if this module is imported, the parser automatically
+  // generates, for all productions that have the attribute 'cell' or 'maincell',
+  // a production like below:
+  //syntax Cell ::= "<top>" #OptionalDots K #OptionalDots "</top>" [klabel(<top>)]
+
+  syntax #OptionalDots ::= "..." [klabel(#dots), symbol]
+                         | ""    [klabel(#noDots), symbol]
+
+  syntax Int
+  // this production will be added by the compiler to help handle bang variables,
+  // however, it is valuable to put it here because without this production, it
+  // will not exist at the point in time when rules and claims are parsed, and
+  // as a result it makes it very difficult to write proof claims over fragments
+  // of code that exercise rules containing bang variables. We put it here because
+  // this production will "vanish" after parsing finishes and not be picked up
+  // by the compiler, which is the behavior we want in this case since an actual
+  // production will be generated by the compiler later on.
+  syntax GeneratedCounterCell ::= "<generatedCounter>" Int "</generatedCounter>" [cell, klabel(<generatedCounter>), symbol, internal]
+endmodule
+

Users can also declare cells in a configuration declaration. This generates a
+specific set of productions that is used internally to implement the cell. The
+most important of these is the cell itself, and attributes on this production
+can be specified in an xml-attribute-like syntax.

+

You can also use an xml-short-tag-like syntax to compose configuration cells
+together which were defined in different modules. However, it is a requirement
+that any K definition have at most one fully-composed configuration; thus, all
+other configuration declarations must appear composed within another
+configuration declaration.

+
module CONFIG-CELLS
+  imports KCELLS
+  imports RULE-LISTS
+  syntax #CellName ::= r"[a-zA-Z][a-zA-Z0-9\\-]*"  [token, prec(1)]
+                     | #LowerId            [token]
+                     | #UpperId            [token]
+
+  syntax Cell ::= "<" #CellName #CellProperties ">" K "</" #CellName ">" [klabel(#configCell), symbol]
+  syntax Cell ::= "<" #CellName "/>" [klabel(#externalCell), symbol]
+
+  syntax #CellProperties ::= #CellProperty #CellProperties [klabel(#cellPropertyList), symbol]
+                           | ""                            [klabel(#cellPropertyListTerminator), symbol]
+  syntax #CellProperty ::= #CellName "=" KString           [klabel(#cellProperty), symbol]
+endmodule
+

Syntax of Rules

+

Rules can have an optional requires clause or an ensures clause. For backwards-
+compatibility, you can refer to the requires clause with both the requires
+and when keywords; The latter, however, is deprecated and may be removed in
+a future release.

+

The requires clause specifies the preconditions that must be true in order
+for the rule to apply. The ensures clause specifies the information which
+becomes true after the rule has applied. It is a requirement that information
+present in the ensures clause refer to existential variables only.

+

When doing concrete execution, you can think of the requires clause as a
+side-condition. In other words, even if the rule matches, it will not apply
+unless the requires clause, which must be of sort Bool, evaluates to
+true.

+
module REQUIRES-ENSURES
+  imports BASIC-K
+
+  syntax #RuleBody ::= K
+
+  syntax #RuleContent ::= #RuleBody                                 [klabel("#ruleNoConditions"), symbol]
+                        | #RuleBody "requires" Bool                 [klabel("#ruleRequires"), symbol]
+                        | #RuleBody "ensures"  Bool                 [klabel("#ruleEnsures"), symbol]
+                        | #RuleBody "requires" Bool "ensures" Bool  [klabel("#ruleRequiresEnsures"), symbol]
+endmodule
+

Miscellaneous modules

+

The below modules are used in various ways as indicators to the implementation
+that certain automatically generated syntax should be created by the parser.
+These modules should not be imported directly by the user.

+
module K-TOP-SORT
+  imports SORT-KBOTT
+  syntax KItem ::= KBott
+  syntax {Sort} KItem ::= Sort
+endmodule
+
+module K-BOTTOM-SORT
+  imports SORT-KBOTT
+  syntax KItem ::= KBott
+  syntax {Sort} Sort ::= KBott
+endmodule
+
+module K-SORT-LATTICE
+  imports K-TOP-SORT
+  imports K-BOTTOM-SORT
+endmodule
+
+module AUTO-CASTS
+  // if this module is imported, the parser automatically
+  // generates, for all sorts, productions of the form:
+  // Sort  ::= Sort ":Sort"  // semantic cast - force the inner term to be `Sort` or a subsort
+  // Sort  ::= Sort "::Sort" // strict cast - force the inner term to be exactly `Sort`. Useful for disambiguation
+  // Sort ::= "{" Sort "}" "::Sort" // synonym for strict cast
+  // Sort  ::= "{" K "}"    ":>Sort" // projection cast. Allows any term to be placed in a context that expects `Sort`
+  // this is part of the mechanism that allows concrete user syntax in K
+endmodule
+
+module AUTO-FOLLOW
+  // if this module is imported, the parser automatically
+  // generates a follow restriction for every terminal which is a prefix
+  // of another terminal. This is useful to prevent ambiguities such as:
+  // syntax K ::= "a"
+  // syntax K ::= "b"
+  // syntax K ::= "ab"
+  // syntax K ::= K K
+  // #parse("ab", "K")
+  // In the above example, the terminal "a" is not allowed to be followed by a "b"
+  // because it would turn the terminal into the terminal "ab".
+endmodule
+
+module PROGRAM-LISTS
+  imports SORT-K
+  // if this module is imported, the parser automatically
+  // replaces the default productions for lists:
+  // Es ::= E "," Es [userList("*"), klabel('_,_)]
+  //      | ".Es"    [userList("*"), klabel('.Es)]
+  // into a series of productions more suitable for programs:
+  // Es#Terminator ::= ""      [klabel('.Es)]
+  // Ne#Es ::= E "," Ne#Es     [klabel('_,_)]
+  //         | E Es#Terminator [klabel('_,_)]
+  // Es ::= Ne#Es
+  //      | Es#Terminator      // if the list is *
+endmodule
+
+module RULE-LISTS
+  // if this module is imported, the parser automatically
+  // adds the subsort production to the parsing module only:
+  // Es ::= E        [userList("*")]
+
+endmodule
+
+module RECORD-PRODUCTIONS
+  // if this module is imported, prefix productions of the form
+  // syntax Sort ::= name(Args)
+  // will be able to be parsed with don't-care variables according
+  // to their nonterminal's names
+endmodule
+
+module SORT-PREDICATES
+  // if this module is imported, the Bool sort will be annotated with
+  // syntax Bool ::= isSort(K) [function]
+  // and all sorts will be annotated with
+  // syntax Sort ::= project:Sort(K) [function]
+endmodule
+

Additional Syntax for K Terms in Rules

+

Certain additional features are available when parsing the contents of rules
+and contexts. For more information on each of these, refer to K's
+documentation.

+
module KREWRITE
+  syntax {Sort} Sort ::= Sort "=>" Sort [klabel(#KRewrite), symbol]
+  syntax non-assoc #KRewrite
+  syntax priority #KRewrite > #withConfig
+endmodule
+
+// To be used to parse semantic rules
+module K
+  imports KSEQ-SYMBOLIC
+  imports REQUIRES-ENSURES
+  imports RECORD-PRODUCTIONS
+  imports SORT-PREDICATES
+  imports K-SORT-LATTICE
+  imports AUTO-CASTS
+  imports AUTO-FOLLOW
+  imports KREWRITE
+
+  syntax {Sort} Sort ::= Sort "#as" Sort [klabel(#KAs), symbol]
+  // functions that preserve sorts and can therefore have inner rewrites
+  syntax {Sort} Sort ::= "#fun" "(" Sort ")" "(" Sort ")" [klabel(#fun2), symbol, prefer]
+  // functions that do not preserve sort and therefore cannot have inner rewrites
+  syntax {Sort1, Sort2} Sort1 ::= "#fun" "(" Sort2 "=>" Sort1 ")" "(" Sort2 ")" [klabel(#fun3), symbol]
+
+  syntax {Sort1, Sort2} Sort1 ::= "#let" Sort2 "=" Sort2 "#in" Sort1 [klabel(#let), symbol]
+
+  /*@ Set membership over terms. In addition to equality over
+      concrete patterns, K also supports computing equality
+      between a concrete pattern and a symbolic pattern.
+      This is compiled efficiently down to pattern matching,
+      and can be used by putting a term with unbound variables
+      in the left child of :=K or =/=K. Note that this does not
+      bind variables used on the lhs however (although this may
+      change in the future).*/
+
+  syntax Bool ::= left:
+                  K ":=K" K           [function, total, klabel(_:=K_), symbol, group(equalEqualK)]
+                | K ":/=K" K          [function, total, klabel(_:/=K_), symbol, group(notEqualEqualK)]
+endmodule
+
+// To be used to parse terms in full K
+module K-TERM
+  imports KSEQ-SYMBOLIC
+  imports RECORD-PRODUCTIONS
+  imports SORT-PREDICATES
+  imports K-SORT-LATTICE
+  imports AUTO-CASTS
+  imports AUTO-FOLLOW
+  imports KREWRITE
+endmodule
+

Layout Information

+

When constructing a scanner for use during parsing, often you wish to ignore
+certain types of text, such as whitespace and comments. However, the specific
+syntax which each language must ignore is a little different from language
+to language, and thus you wish to specify it manually. You can do this by
+defining productions of the #Layout sort. For more information, refer to
+K's documentation. However, this module will be implicitly imported if no
+productions are declared of sort #Layout. This module will also be used
+for the purposes of parsing K rules. If you wish to declare a language with
+no layout productions, simply create a sort declaration for the #Layout sort
+in your code (e.g. syntax #Layout).

+
module DEFAULT-LAYOUT
+    syntax #Layout ::= r"(\\/\\*([^\\*]|(\\*+([^\\*\\/])))*\\*+\\/)" // C-style multi-line comments
+                     | r"(\\/\\/[^\\n\\r]*)"                         // C-style single-line comments
+                     | r"([\\ \\n\\r\\t])"                           // Whitespace
+endmodule
+

Default Configuration

+

If the user has no configuration declaration in their seamantics, the below
+configuration declaration will be implicitly imported.

+
module DEFAULT-CONFIGURATION
+  imports BASIC-K
+
+  configuration <k> $PGM:K </k>
+endmodule
+

Parsing Ambiguous Languages

+

On occasion, it may be desirable to parse a language with an ambiguous grammar
+when parsing a program, and perform additional semantic analysis at a later
+time in order to resolve the ambiguities. A good example of this is as a
+substitute for the lexer hack in parsers of the C programming language.

+

The following module contains a declaration for ambiguities in K. Usually,
+an ambiguous parse is an error. However, when you use the --gen-glr-parser
+flag to kast, or the --gen-glr-bison-parser flag to kompile, ambiguities
+instead become instances of the below parametric production, which you can use
+regular K rules to disambiguate as necessary.

+
module K-AMBIGUITIES
+
+  syntax {Sort} Sort ::= amb(Sort, Sort) [klabel(amb), symbol]
+
+endmodule
+

Annotating Parses with Locations

+

Another feature of K's Bison parser is the ability to annotate terms parsed
+with location information about the file and line where they occurred. For
+more information about how to use this, refer to K's documentation. However,
+the below module exists to provide a user syntax for the annotations that
+are generated by the parser.

+
module K-LOCATIONS
+  imports STRING-SYNTAX
+  imports INT-SYNTAX
+
+  // filename, startLine, startCol, endLine, endCol
+  syntax {Sort} Sort ::= #location(Sort, String, Int, Int, Int, Int) [klabel(#location), symbol, format(%3)]
+
+endmodule
+

K Prelude

+

The following files, integral to defining semantics in K, are automatically
+required by every definition via this file. This behavior can be disabled
+via kompile --no-prelude, however, semantics will likely break unless
+they provide their own versions of these files, which are assumed to exist
+by the compiler. There are, however, circumstances where passing this flag is
+appropriate, such as if you are manually requiring these files in your
+definition, if your definition was automatically condensed into a single file
+with kompile -E, or if you wish to modify the inner syntax of K by providing
+your own version of these files with different syntax.

+
requires "kast.md"
+requires "domains.md"
+

K Foreign Function Interface

+

The K Foreign Function Interface (FFI) module provides a way to call native
+functions directly from a K semantics using the C ABI. It also provides
+utilities for allocating and deallocating byte buffers with static addresses
+that are suitable for being passed to native code.

+

It is built off of the underlying libffi library
+(https://sourceware.org/libffi/) and is subject to some of the same
+limitations as that library. Bear in mind, because this library exposes
+a number of unsafe C APIs directly, misuse of the library is likely to lead
+to memory corruption in your interpreter and can cause segmentation faults or
+corrupted term representations that lead to undefined behavior at runtime.

+
requires "domains.md"
+
+module FFI-SYNTAX
+  imports private LIST
+

The FFIType sort is used to declare the native C ABI types of operands passed
+to the #ffiCall function. These types roughly correspond to the types
+declared in ffi.h by libffi.

+
  syntax FFIType ::= "#void" [klabel(#ffi_void), symbol]
+                  | "#uint8" [klabel(#ffi_uint8), symbol]
+                  | "#sint8" [klabel(#ffi_sint8), symbol]
+                  | "#uint16" [klabel(#ffi_uint16), symbol]
+                  | "#sint16" [klabel(#ffi_sint16), symbol]
+                  | "#uint32" [klabel(#ffi_uint32), symbol]
+                  | "#sint32" [klabel(#ffi_sint32), symbol]
+                  | "#uint64" [klabel(#ffi_uint64), symbol]
+                  | "#sint64" [klabel(#ffi_sint64), symbol]
+                  | "#float" [klabel(#ffi_float), symbol]
+                  | "#double" [klabel(#ffi_double), symbol]
+                  | "#uchar" [klabel(#ffi_uchar), symbol]
+                  | "#schar" [klabel(#ffi_schar), symbol]
+                  | "#ushort" [klabel(#ffi_ushort), symbol]
+                  | "#sshort" [klabel(#ffi_sshort), symbol]
+                  | "#uint" [klabel(#ffi_uint), symbol]
+                  | "#sint" [klabel(#ffi_sint), symbol]
+                  | "#ulong" [klabel(#ffi_ulong), symbol]
+                  | "#slong" [klabel(#ffi_slong), symbol]
+                  | "#longdouble" [klabel(#ffi_longdouble), symbol]
+                  | "#pointer" [klabel(#ffi_pointer), symbol]
+                  | "#complexfloat" [klabel(#ffi_complexfloat), symbol]
+                  | "#complexdouble" [klabel(#ffi_complexdouble), symbol]
+                  | "#complexlongdouble" [klabel(#ffi_complexlongdouble), symbol]
+                  | "#struct" "(" List ")" [klabel(#ffi_struct), symbol]
+endmodule
+
+module FFI
+  imports FFI-SYNTAX
+  imports private BYTES
+  imports private STRING
+  imports private BOOL
+  imports private LIST
+  imports private INT
+
+

FFI Calls

+

The #ffiCall functions are designed to call a native C ABI function and
+return a native result. They come in three variants:

+

Non-variadic

+ +

In the first variant, #ffiCall(Address, Args, ArgTypes, ReturnType) takes
+an integer address of a function (which can be obtained from
+#functionAddress), a List of Bytes containing the arguments of the
+function, a List of FFITypes containing the types of the parameters of the
+function, and an FFIType containing the return type of the function, and
+returns the return value of the function as a Bytes.

+
  syntax Bytes ::= "#ffiCall" "(" Int "," List "," List "," FFIType ")" [function, hook(FFI.call)]
+

Variadic

+ +

In the second variant,
+#ffiCall(Address, Args, FixedTypes, VariadicTypes, ReturnType takes an
+integer address of a function, a List of Bytes containing the arguments
+of the call, a List of FFITypes containing the types of the fixed
+parameters of the function, a List of FFITypes containing the types of the
+variadic parameters of the function, and an FFIType containing the return
+type of the function, and returns the return value of the function as a
+Bytes.

+
  syntax Bytes ::= "#ffiCall" "(" Int "," List "," List "," List "," FFIType ")" [function, hook(FFI.call_variadic)]
+

Generic

+ +

In the third variant,
+#ffiCall(IsVariadic, Address, Args, ArgTypes, NFixed, ReturnType takes
+a boolean indicating whether the function is variadic or not, an integer
+address of a function, a List of Bytes containing the arguments of the
+call, a List of FFITypes containing the parameter typess of the call
+followed by the types of the variadic arguments of the call, if any, an Int
+containing how many of the arguments of the call are fixed or not, and an
+FFIType containing the return type of the function, and returns the return
+value of the function as a Bytes.

+
  syntax Bytes ::= "#ffiCall" "(" Bool "," Int "," List "," List "," Int "," FFIType ")" [function]
+
+  rule #ffiCall(false, Addr::Int, Args::List, Types::List, _, Ret::FFIType) => #ffiCall(Addr, Args, Types, Ret)
+  rule #ffiCall(true, Addr::Int, Args::List, Types::List, NFixed::Int, Ret::FFIType) => #ffiCall(Addr, Args, range(Types, 0, size(Types) -Int NFixed), range(Types, NFixed, 0), Ret)
+

Symbol Lookup

+

The FFI module provides a mechanism to look up any function symbol and return
+that function's address.

+
  syntax Int ::= "#functionAddress" "(" String ")" [function, hook(FFI.address)]
+

Direct Memory Management

+

Most memory used by the LLVM backend to represent terms is managed
+automatically via garbage collection. However, a consequence of this is that
+a particular term does not have a fixed address across its entire lifetime
+in most cases. Sometimes this is undesirable, especially if you intend for
+the address of the memory to be taken by the semantics or if you intend
+to pass this memory directly to native code. As a result, the FFI module
+exposes the following unsafe APIs for memory management. Note that use of
+these APIs leaves the burden of memory management completely on the user,
+and thus misuse of these functions can lead to things like use-after-free
+and other memory corruption bugs.

+

Allocation

+ +

#alloc(Key, Size, Align) will allocate Size bytes with an alignment
+requirement of Align (which must be a power of two), and return it as a
+Bytes term. The memory is uniquely identified by its key and that key will
+be used later to free the memory. The memory is not implicitly freed by garbage
+collection; failure to call #free on the memory at a later date can lead to
+memory leaks.

+
  syntax Bytes ::= "#alloc" "(" KItem "," Int "," Int ")" [function, hook(FFI.alloc)]
+

Addressing

+ +

#addess(B) will return an Int representing the address of the first byte of
+B, which must be a Bytes. Unless the Bytes term was allocated by #alloc,
+the return value is unspecified and may not be the same across multipl
+invocations on the same byte buffer. However, it is guaranteed that memory
+allocated by #alloc will have the same address throughout its lifetime.

+
  syntax Int ::= "#address" "(" Bytes ")" [function, hook(FFI.bytes_address)]
+

Deallocation

+ +

#free(Key) will free the memory of the Bytes object that was allocated
+by a previous call to #alloc. If Key was not used in a previous call to
+#alloc, or the memory was already freed, no action is taken. It will generate
+undefined behavior if the Bytes term returned by the previous call to
+#alloc is still referenced by any other term in the configuration or a
+currently evaluating rule. The function returns .K.

+
  syntax K ::= "#free" "(" KItem ")" [function, hook(FFI.free)]
+

Reading

+ +

#nativeRead(Addr, Mem) will read native memory at address Addr into Mem,
+reading exactly lengthBytes(Mem) bytes. This will generate undefined behavior
+if Addr does not point to a readable segment of memory at least
+lengthBytes(Mem) bytes long.

+
  syntax K ::= "#nativeRead" "(" Int "," Bytes ")" [function, hook(FFI.read)]
+

Writing

+ +

#nativeWrite(Addr, Mem) will write the contents of Mem to native memory at
+address Addr. The memory will be read prior to being written, and a write
+will only happen if the memory has a different value than the current value of
+Mem. This will generate undefined behavior if Addr does not point to a
+readable segment of memory at least lengthBytes(Mem) bytes long, or if the
+memory at address Addr has a different value than currently contained in
+Mem, and the memory in question is not writeable.

+
  syntax K ::= "#nativeWrite" "(" Int "," Bytes ")" [function, hook(FFI.write)]
+endmodule
+

Syntax of JSON

+

K provides builtin support for reading/writing to JSON. While the JSON-SYNTAX
+module is not precisely the syntax of JSON (utilizing K's syntax for strings,
+integers, and floating point numbers rather than the syntax used by JSON),
+you can still convert directly to/from the actual syntax of JSON using
+the JSON2String and String2JSON hooks.

+
module JSON-SYNTAX
+    imports INT-SYNTAX
+    imports STRING-SYNTAX
+    imports BOOL-SYNTAX
+    imports FLOAT-SYNTAX
+
+    syntax JSONs   ::= List{JSON,","}      [symbol(JSONs)]
+    syntax JSONKey ::= String
+    syntax JSON    ::= "null"              [klabel(JSONnull)   , symbol]
+                     | String | Int | Float | Bool
+                     | JSONKey ":" JSON    [klabel(JSONEntry)  , symbol]
+                     | "{" JSONs "}"       [klabel(JSONObject) , symbol]
+                     | "[" JSONs "]"       [klabel(JSONList)   , symbol]
+endmodule
+

Conversion between JSON and String

+

Given a string written in valid JSON, you can convert it to the JSON
+sort with the String2JSON function. Assuming the user has not extended
+the syntax of the JSON sort with their own constructors, any term of sort
+JSON can also be converted to a String using the JSON2String function.

+
module JSON
+    imports JSON-SYNTAX
+
+    syntax String ::= JSON2String(JSON) [function, symbol(JSON2String), hook(JSON.json2string)]
+
+    syntax JSON ::= String2JSON(String) [function, symbol(String2JSON), hook(JSON.string2json)]
+endmodule
+

Rational Numbers in K

+

K provides support for arbitrary-precision rational numbers represented as a
+quotient between two integers. The sort representing these values is Rat.
+Int is a subsort of Rat, and it is guaranteed that any integer will be
+represented as an Int and can be matched as such on the left hand side
+of rules. K also supports the usual arithmetic operators over rational numbers.

+
module RAT-SYNTAX
+  imports INT-SYNTAX
+  imports private BOOL
+
+  syntax Rat
+
+  syntax Rat ::= Int
+

Arithmetic

+

You can:

+
    +
  • Raise a rational number to any negative or nonnegative integer.
  • +
  • Multiply or divide two rational numbers to obtain a product or quotient.
  • +
  • Add or subtract two rational numbers to obtain a sum or difference.
  • +
+
  syntax Rat ::= left:
+                 Rat "^Rat" Int [function, total, klabel(_^Rat_), symbol, smtlib(ratpow), hook(RAT.pow)]
+               > left:
+                 Rat "*Rat" Rat [function, total, klabel(_*Rat_), symbol, left, smtlib(ratmul), hook(RAT.mul)]
+               | Rat "/Rat" Rat [function,             klabel(_/Rat_), symbol, left, smtlib(ratdiv), hook(RAT.div)]
+               > left:
+                 Rat "+Rat" Rat [function, total, klabel(_+Rat_), symbol, left, smtlib(ratadd), hook(RAT.add)]
+               | Rat "-Rat" Rat [function, total, klabel(_-Rat_), symbol, left, smtlib(ratsub), hook(RAT.sub)]
+

Comparison

+

You can determine whether two rational numbers are equal, unequal, or compare
+one of less than, less than or equalto, greater than, or greater than or equal
+to the other:

+
  syntax Bool ::= Rat  "==Rat" Rat [function, total, klabel(_==Rat_),  symbol, smtlib(rateq), hook(RAT.eq)]
+                | Rat "=/=Rat" Rat [function, total, klabel(_=/=Rat_), symbol, smtlib(ratne), hook(RAT.ne)]
+                | Rat   ">Rat" Rat [function, total, klabel(_>Rat_),   symbol, smtlib(ratgt), hook(RAT.gt)]
+                | Rat  ">=Rat" Rat [function, total, klabel(_>=Rat_),  symbol, smtlib(ratge), hook(RAT.ge)]
+                | Rat   "<Rat" Rat [function, total, klabel(_<Rat_),   symbol, smtlib(ratlt), hook(RAT.lt)]
+                | Rat  "<=Rat" Rat [function, total, klabel(_<=Rat_),  symbol, smtlib(ratle), hook(RAT.le)]
+

Min/Max

+

You can compute the minimum and maximum of two rational numbers:

+
  syntax Rat ::= minRat(Rat, Rat) [function, total, klabel(minRat), symbol, smtlib(ratmin), hook(RAT.min)]
+               | maxRat(Rat, Rat) [function, total, klabel(maxRat), symbol, smtlib(ratmax), hook(RAT.max)]
+

Conversion to Floating Point

+

You can convert a rational number to the nearest floating point number that
+is representable in a Float of a specified number of precision and exponent
+bits:

+
  syntax Float ::= Rat2Float(Rat, precision: Int, exponentBits: Int) [function]
+endmodule
+

Implementation of Rational Numbers

+

The remainder of this file consists of an implementation in K of the
+operations listed above. Users of the RAT module should not use any of the
+syntax defined in any of these modules.

+

As a point of reference for users, it is worth noting that rational numbers
+are normalized to a canonical form by this module,. with the canonical form
+bearing the property that it is either an Int, or a pair of integers
+I /Rat J such that
+I =/=Int 0 andBool J >=Int 2 andBool gcdInt(I, J) ==Int 1 is always true.

+
module RAT-COMMON
+  imports RAT-SYNTAX
+
+  // invariant of < I , J >Rat : I =/= 0, J >= 2, and I and J are coprime
+  syntax Rat ::= "<" Int "," Int ">Rat" [format(%2 /Rat %4)]
+endmodule
+
+module RAT-SYMBOLIC [symbolic]
+  imports private RAT-COMMON
+  imports ML-SYNTAX
+  imports private BOOL
+
+  rule
+    #Ceil(@R1:Rat /Rat @R2:Rat)
+  =>
+    {(@R2 =/=Rat 0) #Equals true} #And #Ceil(@R1) #And #Ceil(@R2)
+  [simplification]
+endmodule
+
+module RAT-KORE
+  imports private RAT-COMMON
+  imports private K-EQUAL
+
+  /*
+   * equalities
+   */
+
+  // NOTE: the two rules below may not work correctly in non-kore backends
+
+  rule R ==Rat S => R ==K S
+
+  rule R =/=Rat S => R =/=K S
+endmodule
+
+module RAT [private]
+  imports private RAT-COMMON
+  imports public RAT-SYMBOLIC
+  imports public RAT-KORE
+  imports public RAT-SYNTAX
+  imports private INT
+  imports private BOOL
+
+  /*
+   * arithmetic
+   */
+
+  rule < I , I' >Rat +Rat < J , J' >Rat => ((I *Int J') +Int (I' *Int J)) /Rat (I' *Int J')
+  rule I:Int         +Rat < J , J' >Rat => ((I *Int J') +Int J) /Rat J'
+  rule < J , J' >Rat +Rat I:Int         => I +Rat < J , J' >Rat
+  rule I:Int         +Rat J:Int         => I +Int J
+
+  rule < I , I' >Rat *Rat < J , J' >Rat => (I *Int J) /Rat (I' *Int J')
+  rule I:Int         *Rat < J , J' >Rat => (I *Int J) /Rat J'
+  rule < J , J' >Rat *Rat I:Int         => I *Rat < J , J' >Rat
+  rule I:Int         *Rat J:Int         => I *Int J
+
+  rule < I , I' >Rat /Rat < J , J' >Rat => (I *Int J') /Rat (I' *Int J)
+  rule I:Int         /Rat < J , J' >Rat => (I *Int J') /Rat J
+  rule < I , I' >Rat /Rat J:Int         => I /Rat (I' *Int J) requires J =/=Int 0
+  rule I:Int         /Rat J:Int         => makeRat(I, J)      requires J =/=Int 0
+
+  // derived
+
+  rule R -Rat S => R +Rat (-1 *Rat S)
+
+  // normalize
+
+  syntax Rat ::= makeRat(Int, Int)      [function]
+               | makeRat(Int, Int, Int) [function]
+
+  rule makeRat(0, J) => 0 requires J =/=Int 0
+
+  rule makeRat(I, J) => makeRat(I, J, gcdInt(I,J)) requires I =/=Int 0 andBool J =/=Int 0
+
+  // makeRat(I, J, D) is defined when I =/= 0, J =/= 0, D > 0, and D = gcd(I,J)
+  rule makeRat(I, J, D) => I /Int D                       requires J ==Int D // implies J > 0 since D > 0
+  rule makeRat(I, J, D) => < I /Int D , J /Int D >Rat     requires J >Int 0 andBool J =/=Int D
+  rule makeRat(I, J, D) => makeRat(0 -Int I, 0 -Int J, D) requires J <Int 0
+
+  // gcdInt(a,b) computes the gcd of |a| and |b|, which is positive.
+  syntax Int ::= gcdInt(Int, Int) [function, public]
+
+  rule gcdInt(A, 0) => A        requires A >Int 0
+  rule gcdInt(A, 0) => 0 -Int A requires A <Int 0
+  rule gcdInt(A, B) => gcdInt(B, A %Int B) requires B =/=Int 0 // since |A %Int B| = |A| %Int |B|
+
+  /*
+   * exponentiation
+   */
+
+  rule _ ^Rat 0 => 1
+  rule 0 ^Rat N => 0 requires N =/=Int 0
+
+  rule < I , J >Rat ^Rat N => powRat(< I , J >Rat, N) requires N >Int 0
+  rule X:Int        ^Rat N => X ^Int N                requires N >Int 0
+
+  rule X ^Rat N => (1 /Rat X) ^Rat (0 -Int N) requires X =/=Rat 0 andBool N <Int 0
+
+  // exponentiation by squaring
+
+  syntax Rat ::= powRat(Rat, Int) [function]
+
+  // powRat(X, N) is defined when X =/= 0 and N > 0
+  rule powRat(X, 1) => X
+  rule powRat(X, N) => powRat(X *Rat X, N /Int 2) requires N >Int 1 andBool N %Int 2  ==Int 0
+  rule powRat(X, N) => powRat(X, N -Int 1) *Rat X requires N >Int 1 andBool N %Int 2 =/=Int 0
+
+  /*
+   * inequalities
+   */
+
+  rule R >Rat S => R -Rat S >Rat 0 requires S =/=Rat 0
+
+  rule < I , _ >Rat >Rat 0 => I >Int 0
+  rule I:Int        >Rat 0 => I >Int 0
+
+  // derived
+
+  rule R >=Rat S => notBool R <Rat S
+
+  rule R <Rat S => S >Rat R
+
+  rule R <=Rat S => S >=Rat R
+
+  rule minRat(R, S) => R requires R <=Rat S
+  rule minRat(R, S) => S requires S <=Rat R
+
+  rule maxRat(R, S) => R requires R >=Rat S
+  rule maxRat(R, S) => S requires S >=Rat R
+
+  syntax Float ::= #Rat2Float(Int, Int, Int, Int) [function, hook(FLOAT.rat2float)]
+  rule Rat2Float(Num:Int, Prec:Int, Exp:Int) => #Rat2Float(Num, 1, Prec, Exp)
+  rule Rat2Float(< Num, Dem >Rat, Prec, Exp) => #Rat2Float(Num, Dem, Prec, Exp)
+
+endmodule
+

Capture-Aware Substitution in K

+

One of the traditional ways in which functional languages are given operational
+semantics is via substitution. In particular, you can view a function as
+declaring a particular bound variable, the parameter of the function, as well
+as the body of the function, within which both bound and free variables can
+occur, and implement the process of beta-reduction (one of the axioms of the
+lambda calculus) by means of a substitution operator which is aware of the
+difference between free variables and bound variables and prevents variable
+capture.

+

In K this is implemented using two mechanisms: The KVar sort, and the
+binder attribute.

+

The KVar Sort

+

K introduces a new hooked sort, KVar, which the substitution operator
+(defined below) understands in a particular way. The syntax of KVar is the
+same as for sort Id in DOMAINS, but with a different sort name. Similarly,
+some of the same operators are defined over KVar which are defined for Id,
+such as conversion from String to KVar and support for the !Var:KVar
+syntax.

+

A KVar is simply an identifier with special meaning during substitution.
+KVars must begin with a letter or underscore,
+and can be followed by zero or more letters, numbers, or underscores.

+
module KVAR-SYNTAX-PROGRAM-PARSING
+  imports BUILTIN-ID-TOKENS
+
+  syntax KVar ::= r"[A-Za-z\\_][A-Za-z0-9\\_]*"     [prec(1), token]
+                | #LowerId                                             [token]
+                | #UpperId                                             [token]
+endmodule
+
+module KVAR-SYNTAX
+  syntax KVar [token, hook(KVAR.KVar)]
+endmodule
+
+module KVAR-COMMON
+  imports KVAR-SYNTAX
+  imports private STRING
+
+  syntax KVar ::= String2KVar (String) [function, total, hook(STRING.string2token)]
+  syntax KVar ::= freshKVar(Int)    [freshGenerator, function, total, private]
+
+  rule freshKVar(I:Int) => String2KVar("_" +String Int2String(I))
+endmodule
+
+module KVAR
+  imports KVAR-COMMON
+endmodule
+

The binder Attribute

+

A production can be given the attribute binder. Such a production must have
+at least two nonterminals. The first nonterminal from left to right must be of
+sort KVar, and contains the bound variable. The last nonterminal from left
+to right contains the term that is bound. For example, I could describe lambdas
+in the lambda calculus with the production
+syntax Val ::= "lambda" KVar "." Exp [binder].

+

Substitution

+

K provides a hooked implementation of substitution, currently only implemented
+on the Java and LLVM backends. Two variants exist: the first substitutes
+a single KVar for a single KItem. The second takes a Map with KVar
+keys and KItem values, and substitutes each element in the map atomically.

+

Internally, this is implemented in the LLVM backend by a combination of
+de Bruijn indices for bound variables and names for free variables. Free
+variables are also sometimes given a unique numeric identifier in order to
+prevent capture, and the rewriter will automatically assign unique names to
+such identifiers when rewriting finishes. The names assigned will always begin
+with the original name of the variable and be followed by a unique integer
+suffix. However, the names assigned after rewriting finishes might be different
+from the names that would be assigned if rewriting were to halt prematurely,
+for example due to krun --depth.

+
module SUBSTITUTION
+  imports private MAP
+  imports KVAR
+
+  syntax {Sort} Sort ::= Sort "[" KItem "/" KItem "]"  [function, hook(SUBSTITUTION.substOne), impure]
+  syntax {Sort} Sort ::= Sort "[" Map "]"      [function, hook(SUBSTITUTION.substMany), impure]
+endmodule
+

K PL Tutorial

+ +

Here you will learn how to use the K tool to define languages by means of a series of screencast movies. It is recommended to do these in the indicated order, because K features already discussed in a previous language definition will likely not be rediscussed in latter definitions. The screencasts follow quite closely the structure of the files under the tutorial folder in the K tool distribution. If you'd rather follow the instructions there and do the tutorial exercises yourself, then go back to https://kframework.org and download the K tool, if you have not done it already. Or, you can first watch the screencasts below and then do the exercises, or do them in parallel.

+

K Overview

+ +

Make sure you watch the K overview video before you do the K tutorial:

+ +

Learning K

+ +

[34'46"] Part 1: Defining LAMBDA

+ +

Here you will learn how to define a very simple functional language in K and the basics of how to use the K tool. The language is a call-by-value variant of lambda calculus with builtins and mu, and its definition is based on substitution.

+ +

[37'07"] Part 2: Defining IMP

+ +

Here you will learn how to define a very simple, prototypical textbook C-like imperative language, called IMP, and several new features of the K tool.

+ +

[33'10"] Part 3: Defining LAMBDA++

+ +

Here you will learn how to define constructs which abruptly change the execution control, as well as how to define functional languages using environments and closures. LAMBDA++ extends the LAMBDA language above with a callcc construct.

+ +

[46'46"] Part 4: Defining IMP++

+ +

Here you will learn how to refine configurations, how to generate fresh elements, how to tag syntactic constructs and rules, how to exhaustively search the space of non-deterministic or concurrent program executions, etc. IMP++ extends the IMP language above with increment, blocks and locals, dynamic threads, input/output, and abrupt termination.

+ +

[17'03"] Part 5: Defining Type Systems

+ +

Here you will learn how to define various kinds of type systems following various approaches or styles using K.

+ +

[??'??"] Part 6: Miscellaneous Other K Features

+ +

Here you will learn a few other K features, and better understand how features that you have already seen work.

+
    +
  • [??'??"] ...
  • +
+

Learning Language Design and Semantics using K

+ +

[??'??"] Part 7: SIMPLE: Designing Imperative Programming Languages

+ +

Here you will learn how to design imperative programming languages using K. SIMPLE is an imperative language with functions, threads, pointers, exceptions, multi-dimensional arrays, etc. We first define an untyped version of SIMPLE, then a typed version. For the typed version, we define both a static and a dynamic semantics.

+ +

[??'??"] Part 8: KOOL: Designing Object-Oriented Programming Languages

+ +

Here woul will learn how to design object-oriented programming languages using K. KOOL is an object-oriented language that extends SIMPLE with classes and objects. We first define an untyped version of KOOL, then a typed version, with both a dynamic and a static semantics.

+ +

[??'??"] Part 9: FUN: Designing Functional Programming Languages

+ +

H
+ere woul will learn how to design functional programming languages using K. FUN is a higher-order functional language with general let, letrec, pattern matching, references, lists, callcc, etc. We first define an untyped version of FUN, then a let-polymorphic type inferencer.

+ +

[??'??"] Part 10: LOGIK: Designing Logic Programming Languages

+ +

Here you will learn how to design a logic programming language using K.

+ +

K overview

+ + +

Go to Youtube mirror, if the above does not work.

+

Go back to https://kframework.org for further links, the K tool and contact information.

+

Learning K

+ +

We start by introducing the basic features of K by means of a series
+of very simple languages. The objective here is neither to learn those
+languages nor to study their underlying paradigm, but simply to learn K.

+
    +
  • LAMBDA: Lambda calculus defined.
  • +
  • IMP: A simple imperative language.
  • +
  • LAMBDA++: LAMBDA extended with control flow.
  • +
  • IMP++: IMP extended with threads and IO.
  • +
  • TYPES: LAMBDA type system.
  • +
+

Part 1: Defining LAMBDA

+ +

Here you will learn how to define a very simple language in K and the basics
+of how to use the K tool. The language is a variant of call-by-value lambda
+calculus and its definition is based on substitution. Specifically, you will
+learn the following:

+
    +
  • How to define a module.
  • +
  • How to define a language syntax.
  • +
  • How to use the defined syntax to parse programs.
  • +
  • How to import predefined modules.
  • +
  • How to define evaluation strategies using strictness attributes.
  • +
  • How to define semantic rules.
  • +
  • How the predefined generic substitution works.
  • +
  • How to generate PDF and HTML documentation from ASCII definitions.
  • +
  • How to include builtins (integers and Booleans) into your language.
  • +
  • How to define derived language constructs.
  • +
+

This folder contains several lessons, each adding new features to LAMBDA.

+

Syntax Modules and Basic K Commands

+ +

Here we define our first K module, which contains the initial syntax of the
+LAMBDA language, and learn how to use the basic K commands.

+

Let us create an empty working folder, and open a terminal window
+(to the left) and an editor window (to the right). We will edit our K
+definition in the right window in a file called lambda.k, and will call
+the K tool commands in the left window.

+

Let us start by defining a K module, containing the syntax of LAMBDA.

+

K modules are introduced with the keywords module ... endmodule.

+

The keyword syntax adds new productions to the syntax grammar, using a
+BNF-like notation.

+

Terminals are enclosed in double-quotes, like strings.

+

You can define multiple productions for the same non-terminal in the same
+syntax declaration using the | separator.

+

Productions can have attributes, which are enclosed in square brackets.

+

The attribute left tells the parser that we want the lambda application to be
+left associative. For example, a b c d will then parse as (((a b) c) d).

+

The attribute bracket tells the parser to not generate a node for the
+parenthesis production in the abstract syntax trees associated to programs.
+In other words, we want to allow parentheses to be used for grouping, but we
+do not want to bother to give them their obvious (ignore) semantics.

+

In our variant of lambda calculus defined here, identifiers and lambda
+abstractions are meant to be irreducible, that is, are meant to be values.
+However, so far Val is just another non-terminal, just like Exp,
+without any semantic meaning. It will get a semantic meaning later.

+

After we are done typing our definition in the file lambda.k, we can kompile
+it with the command:

+
kompile lambda.k
+
+

If we get no errors then a parser has been generated. This parser will be
+called from now on by default by the krun tool. To see whether and how the
+parser works, we are going to write some LAMBDA programs and store them in
+files with the extension .lambda.

+

Let us create a file identity.lambda, which contains the identity lambda
+abstraction:

+
lambda x . x
+
+

Now let us call krun on identity.lambda:

+
krun identity.lambda
+
+

Make sure you call the krun command from the folder containing your language
+definition (otherwise type krun --help to learn how to pass a language
+definition as a parameter to krun). The krun command produces the output:

+
<k>
+  lambda x . x
+</k>
+
+

If you see such an output it means that your program has been parsed (and then
+pretty printed) correctly. If you want to see the internal abstract syntax
+tree (AST) representation of the parsed program, which we call the K AST, then
+type kast in the command instead of krun:

+
kast identity.lambda
+
+

You should normally never need to see this internal representation in your
+K definitions, so do not get scared (yes, it is ugly for humans, but it is
+very convenient for tools).

+

Note that krun placed the program in a <k> ... </k> cell. In K, computations
+happen only in cells. If you do not define a configuration in your definition,
+like we did here, then a configuration will be created automatically for you
+which contains only one cell, the default k cell, which holds the program.

+

Next, let us create a file free-variable-capture.lambda, which contains an
+expression which, in order to execute correctly in a substitution-based
+semantics of LAMBDA, the substitution operation needs to avoid
+variable-capture:

+
a (((lambda x.lambda y.x) y) z)
+
+

Next, file closed-variable-capture.lambda shows an expression which also
+requires a capture-free substitution, but this expression is closed (that is,
+it has no free variables) and all its bound variables are distinct (I believe
+this is the smallest such expression):

+
(lambda z.(z z)) (lambda x.lambda y.(x y))
+
+

Finally, the file omega.lambda contains the classic omega combinator
+(or closed expression), which is the smallest expression which loops forever
+(not now, but after we define the semantics of LAMBDA):

+
(lambda x.(x x)) (lambda x.(x x))
+
+

Feel free to define and parse several other LAMBDA programs to get a feel for
+how the parser works. Parse also some incorrect programs, to see how the
+parser generates error messages.

+

In the next lesson we will see how to define semantic rules that iteratively
+rewrite expressions over the defined syntax until they evaluate to a result.
+This way, we obtain our first programming language defined using K.

+

Go to Lesson 2, LAMBDA: Module Importing, Rules, Variables

+

MOVIE (out of date) [4'07"]

+

Module Importing, Rules, Variables

+ +

We here learn how to include a predefined module (SUBSTITUTION), how to
+use it to define a K rule (the characteristic rule of lambda calculus),
+and how to make proper use of variables in rules.

+

Let us continue our lambda.k definition started in the previous lesson.

+

The requires keyword takes a .k file containing language features that
+are needed for the current definition, which can be found in the
+k-distribution/include/kframework/builtin folder. Thus, the command

+
requires "substitution.k"
+
+

says that the subsequent definition of LAMBDA needs the generic substitution,
+which is predefined in file substitution.k under the folder
+k-distribution/include/kframework/builtin. Note that substitution can be defined itself in K,
+although it uses advanced features that we have not discussed yet in this
+tutorial, so it may not be easy to understand now.

+

Using the imports keyword, we can now modify LAMBDA to import the module
+SUBSTITUTION, which is defined in the required substitution.k file.

+

Now we have all the substitution machinery available for our definition.
+However, since our substitution is generic, it cannot know which language
+constructs bind variables, and what counts as a variable; however, this
+information is critical in order to correctly solve the variable capture
+problem. Thus, you have to tell the substitution that your lambda construct
+is meant to be a binder, and that your Id terms should be treated as variables
+for substitution. The former is done using the attribute binder.
+By default, binder binds all the variables occurring anywhere in the first
+argument of the corresponding syntactic construct within its other arguments;
+you can configure which arguments are bound where, but that will be discussed
+in subsequent lectures. To tell K which terms are meant to act as variables
+for binding and substitution, we have to explicitly subsort the desired syntactic
+categories to the builtin KVariable sort.

+

Now we are ready to define our first K rule. Rules are introduced with the
+keyword rule and make use of the rewrite symbol, =>. In our case,
+the rule defines the so-called lambda calculus beta-reduction, which
+makes use of substitution in its right-hand side, as shown in lambda.k.

+

By convention, variables that appear in rules start with a capital letter
+(the current implementation of the K tool may even enforce that).

+

Variables may be explicitly tagged with their syntactic category (also called
+sort). If tagged, the matching term will be checked at run-time for
+membership to the claimed sort. If not tagged, then no check will be made.
+The former is safer, but involves the generation of a side condition to the
+rule, so the resulting definition may execute slightly slower overall.

+

In our rule in lambda.k we tagged all variables with their sorts, so we chose
+the safest path. Only the V variable really needs to be tagged there,
+because we can prove (using other means, not the K tool, as the K tool is not
+yet concerned with proving) that the first two variables will always have the
+claimed sorts whenever we execute any expression that parses within our
+original grammar.

+

Let us compile the definition and then run some programs. For example,

+
krun closed-variable-capture.lambda
+
+

yields the output

+
<k>
+  lambda y . ((lambda x . (lambda y . (x  y))) y)
+</k> 
+
+

Notice that only certain programs reduce (some even yield non-termination,
+such as omega.lambda), while others do not. For example,
+free-variable-capture.lambda does not reduce its second argument expression
+to y, as we would expect. This is because the K rewrite rules between syntactic
+terms do not apply anywhere they match. They only apply where they have been
+given permission to apply by means of appropriate evaluation strategies of language
+constructs, which is done using strictness attributes, evaluation contexts,
+heating/cooling rules, etc., as discussed in the next lessons.

+

The next lesson will show how to add LAMBDA the desired evaluation strategies
+using strictness attributes.

+

Go to Lesson 3, LAMBDA: Evaluation Strategies using Strictness

+

MOVIE (out of date) [4'03"]

+

Evaluation Strategies using Strictness

+ +

Here we learn how to use the K strict attribute to define desired evaluation
+strategies. We will also learn how to tell K which terms are already
+evaluated, so it does not attempt to evaluate them anymore and treats them
+internally as results of computations.

+

Recall from the previous lecture that the LAMBDA program
+free-variable-capture.lambda was stuck, because K was not given permission
+to evaluate the arguments of the lambda application construct.

+

You can use the attribute strict to tell K that the corresponding construct
+has a strict evaluation strategy, that is, that its arguments need to be
+evaluated before the semantics of the construct applies. The order of
+argument evaluation is purposely unspecified when using strict, and indeed
+the K tool allows us to detect all possible non-deterministic behaviors that
+result from such intended underspecification of evaluation strategies. We will
+learn how to do that when we define the IMP language later in this tutorial;
+we will also learn how to enforce a particular order of evaluation.

+

In order for the above strictness declaration to work effectively and
+efficiently, we need to tell the K tool which expressions are meant to be
+results of computations, so that it will not attempt to evaluate them anymore.
+One way to do it is to make Val a syntactic subcategory of the builtin
+KResult syntactic category. Since we use the same K parser to also parse
+the semantics, we use the same syntax keyword to define additional syntax
+needed exclusively for the semantics (like KResults). See lambda.k.

+

Compile again and then run some programs. They should all work as expected.
+In particular, free-variable-capture.lambda now evaluates to a y.

+

We now got a complete and working semantic definition of call-by-value
+lambda-calculus. While theoretically correct, our definition is not
+easy to use and disseminate. In the next lessons we will learn how to
+generate formatted documentation for LAMBDA and how to extend LAMBDA
+in order to write human readable and interesting programs.

+

Go to Lesson 4, LAMBDA: Generating Documentation; Latex Attributes.

+

MOVIE (out of date) [2'20"]

+

Generating Documentation; Latex Attributes

+ +

In this lesson we learn how to generate formatted documentation from K
+language definitions. We also learn how to use Latex attributes to control
+the formatting of language constructs, particularly of ones which have a
+mathematical flavor and we want to display accordingly.

+

To enhance readability, we may want to replace the keyword lambda by the
+mathematical lambda symbol in the generated documentation. We can control
+the way we display language constructs in the generated documentation
+by associating them Latex attributes.

+

This is actually quite easy. All we have to do is to associate a latex
+attribute to the production defining the construct in question, following
+the Latex syntax for defining new commands (or macros).

+

In our case, we associate the attribute latex(\lambda{#1}.{#2}) to the
+production declaring the lambda abstraction (recall that in Latex, #n refers
+to the n-th argument of the defined new command).

+

We will later see, in Lesson 9, that we can add arbitrarily complex Latex
+comments and headers to our language definitions, which give us maximum
+flexibility in formatting our language definitions.

+

Now we have a simple programming language, with a nice documentation. However,
+it is not easy to write interesting programs in this language. Almost all
+programming languages build upon existing data-types and libraries. The K
+tool provides a few of these (and you can add more).

+

In the next lesson we show how we can add builtin integers and Booleans to
+LAMBDA, so we can start to evaluate meaningful expressions.

+

Go to Lesson 5, LAMBDA: Adding Builtins; Side Conditions.

+

MOVIE (out of date) [3'13"]

+

Adding Builtins; Side Conditions

+ +

We have already added the builtin identifiers (sort Id) to LAMBDA expressions,
+but those had no operations on them. In this lesson we add integers and
+Booleans to LAMBDA, and extend the builtin operations on them into
+corresponding operations on LAMBDA expressions. We will also learn how to add
+side conditions to rules, to limit the number of instances where they can
+apply.

+

The K tool provides several builtins, which are automatically included in all
+definitions. These can be used in the languages that we define, typically by
+including them in the desired syntactic categories. You can also define your
+own builtins in case the provided ones are not suitable for your language
+(e.g., the provided builtin integers and operations on them are arbitrary
+precision).

+

For example, to add integers and Booleans as values to our LAMBDA, we have to
+add the productions

+
syntax Val ::= Int | Bool
+
+

Int and Bool are the nonterminals that correspond to these builtins.

+

To make use of these builtins, we have to add some arithmetic operation
+constructs to our language. We prefer to use the conventional infix notation
+for these, and the usual precedences (i.e., multiplication and division bind
+tighter than addition, which binds tighter than relational operators).
+Inspired from SDF, we use > instead of
+| to state that all the previous constructs bind tighter than all the
+subsequent ones. See lambda.k.

+

The only thing left is to link the LAMBDA arithmetic operations to the
+corresponding builtin operations, when their arguments are evaluated.
+This can be easily done using trivial rewrite rules, as shown in lambda.k.
+In general, the K tool attempts to uniformly add the corresponding builtin
+name as a suffix to all the operations over builtins. For example, the
+addition over integers is an infix operation named +Int.

+

Compile the new lambda.k definition and evaluate some simple arithmetic
+expressions. For example, if arithmetic.lambda is (1+2*3)/4 <= 1, then

+
krun arithmetic.lambda
+
+

yields, as expected, true. Note that the parser took the desired operation
+precedence into account.

+

Let us now try to evaluate an expression which performs a wrong computation,
+namely a division by zero. Consider the expression arithmetic-div-zero.lambda
+which is 1/(2/3). Since division is strict and 2/3 evaluates to 0, this
+expression reduces to 1/0, which further reduces to 1 /Int 0 by the rule for
+division, which is now stuck (with the current back-end to the K tool).

+

In fact, depending upon the back-end that we use to execute K definitions and
+in particular to evaluate expressions over builtins, 1 /Int 0 can evaluate to
+anything. It just happens that the current back-end keeps it as an
+irreducible term. Other K back-ends may reduce it to an explicit error
+element, or issue a segmentation fault followed by a core dump, or throw an
+exception, etc.

+

To avoid requesting the back-end to perform an illegal operation, we may use a
+side condition in the rule of division, to make sure it only applies when the
+denominator is non-zero.

+

Like in other operational formalisms, the role of the K side
+conditions is to filter the number of instances of the rule. The notion
+of a side condition comes from logics, where a sharp distinction is made
+between a side condition (cheap) and a premise (expensive). Premises are
+usually resolved using further (expensive) logical derivations, while side
+conditions are simple (cheap) conditions over the rule meta-variables within
+the underlying mathematical domains (which in K can be extended by the user,
+as we will see in future lessons). Regarded as a logic, K derives rewrite
+rules from other rewrite rules; therefore, the K side conditions cannot
+contain other rewrites in them (using =>). This contrasts other rewrite
+engines, for example Maude, which
+allow conditional rules with rewrites in conditions.
+The rationale behind this deliberate restriction in K is twofold:

+
    +
  • On the one hand, general conditional rules require a complex, and thus slower
    +rewrite engine, which starts recursive (sometimes exhaustive) rewrite sessions
    +to resolve the rewrites in conditions. In contrast, the side conditions in K
    +can be evaluated efficiently by back-ends, for example by evaluating builtin
    +expressions and/or by calling builtin functions.
  • +
  • On the other hand, the semantic definitional philosophy of K is that rule
    +premises are unnecessary, so there is no need to provide support for them.
  • +
+

Having builtin arithmetic is useful, but writing programs with just lambda
+and arithmetic constructs is still a pain. In the next two lessons we will
+add conditional (if_then_else) and binding (let and letrec) constructs,
+which will allow us to write nicer programs.

+

Go to Lesson 6, LAMBDA: Selective Strictness; Anonymous Variables.

+

MOVIE (out of date) [4'52"]

+

Selective Strictness; Anonymous Variables

+ +

We here show how to define selective strictness of language constructs,
+that is, how to state that certain language constructs are strict only
+in some arguments. We also show how to use anonymous variables.

+

We next define a conditional if construct, which takes three arguments,
+evaluates only the first one, and then reduces to either the second or the
+third, depending on whether the first one evaluated to true or to false.

+

K allows to define selective strictness using the same strict attribute,
+but passing it a list of numbers. The numbers correspond to the arguments
+in which we want the defined construct to be strict. In our case,

+
syntax Exp ::= "if" Exp "then" Exp "else" Exp   [strict(1)]
+
+

states that the conditional construct is strict in the first argument.

+

We can now assume that its first argument will eventually reduce to a value, so
+we only write the following two semantic rules:

+
rule if true  then E else _ => E
+rule if false then _ else E => E
+
+

Thus, we assume that the first argument evaluates to either true or false.

+

Note the use of the anonymous variable _. We use such variables purely for
+structural reasons, to state that something is there but we don't care what.
+An anonymous variable is therefore completely equivalent to a normal variable
+which is unsorted and different from all the other variables in the rule. If
+you use _ multiple times in a rule, they will all be considered distinct.

+

Compile lambda.k and write and execute some interesting expressions making
+use of the conditional construct. For example, the expression

+
if 2<=1 then 3/0 else 10
+
+

evaluates to 10 and will never evaluate 3/0, thus avoiding an unwanted
+division-by-zero.

+

In the next lesson we will introduce two new language constructs, called
+let and letrec and conventionally found in functional programming
+languages, which will allow us to already write interesting LAMBDA programs.

+

Go to Lesson 7, LAMBDA: Derived Constructs; Extending Predefined Syntax.

+

MOVIE (out of date) [2'14"]

+

Derived Constructs, Extending Predefined Syntax

+ +

In this lesson we will learn how to define derived language constructs, that
+is, ones whose semantics is defined completely in terms of other language
+constructs. We will also learn how to add new constructs to predefined
+syntactic categories.

+

When defining a language, we often want certain language constructs to be
+defined in terms of other constructs. For example, a let-binding construct
+of the form

+
let x = e in e'
+
+

is nothing but syntactic sugar for

+
(lambda x . e') e
+
+

This can be easily achieved with a rule, as shown in lambda.k.

+

Compile lambda.k and write some programs using let binders.

+

For example, consider a lets.lambda program which takes arithmetic.lambda
+and replaces each integer by a let-bound variable. It should evaluate to
+true, just like the original arithmetic.lambda.

+

Let us now consider a more interesting program, namely one that calculates the
+factorial of 10:

+
let f = lambda x . (
+        (lambda t . lambda x . (t t x))
+        (lambda f . lambda x . (if x <= 1 then 1 else (x * (f f (x + -1)))))
+        x
+      )
+in (f 10)
+
+

This program follows a common technique to define fixed points in untyped
+lambda calculus, based on passing a function to itself.

+

We may not like to define fixed-points following the approach above, because
+it requires global changes in the body of the function meant to be recursive,
+basically to pass it to itself (f f in our case above). The approach below
+isolates the fixed-point aspect of the function in a so-called fixed-point
+combinator
, which we call fix below, and then apply it to the function
+defining the body of the factorial, without any changes to it:

+
let fix = lambda f . (
+          (lambda x . (f (lambda y . (x x y))))
+          (lambda x . (f (lambda y . (x x y))))
+        )
+in let f = fix (lambda f . lambda x .
+                (if x <= 1 then 1 else (x * (f (x + -1)))))
+   in (f 10)
+
+

Although the above techniques are interesting and powerful (indeed, untyped
+lambda calculus is in fact Turing complete), programmers will probably not
+like to write programs this way.

+

We can easily define a more complex derived construct, called letrec and
+conventionally encountered in functional programming languages, whose semantics
+captures the fixed-point idea above. In order to keep its definition simple
+and intuitive, we define a simplified variant of letrec, namely one which only
+allows to define one recursive one-argument function. See lambda.k.

+

There are two interesting observations here.

+

First, note that we have already in-lined the definition of the fix
+combinator in the definition of the factorial, to save one application of the
+beta reduction rule (and the involved substitution steps). We could have
+in-lined the definition of the remaining let, too, but we believe that the
+current definition is easier to read.

+

Second, note that we extended the predefined Id syntactic category with two
+new constants, $x and $y. The predefined identifiers cannot start with
+$, so programs that will be executed with this semantics cannot possibly
+contain the identifiers xandx andy. In other words, by adding them to Id they
+become indirectly reserved for the semantics. This is indeed desirable,
+because any possible uses of xinthebodyofthefunctiondefinedusingletrecwouldbecapturedbythelambdax in the body of the function defined +using `letrec` would be captured by the `lambdaxdeclaration in the definition ofletrec`.

+

Using letrec, we can now write the factorial program as elegantly as it can
+be written in a functional language:

+
letrec f x = if x <= 1 then 1 else (x * (f (x + -1)))
+in (f 10)
+
+

In the next lesson we will discuss an alternative definition of letrec, based
+on another binder, mu, specifically designed to define fixed points.

+

Go to Lesson 8, LAMBDA: Multiple Binding Constructs.

+

MOVIE (out of date) [5'10"]

+

Multiple Binding Constructs

+ +

Here we learn how multiple language constructs that bind variables can
+coexist. We will also learn about or recall another famous binder besides
+lambda, namely mu, which can be used to elegantly define all kinds of
+interesting fixed-point constructs.

+

The mu binder has the same syntax as lambda, except that it replaces
+lambda with mu.

+

Since mu is a binder, in order for substitution to know how to deal with
+variable capture in the presence of mu, we have to tell it that mu is a
+binding construct, same like lambda. We take advantage of being there and
+also add mu its desired latex attribute.

+

The intuition for

+
mu x . e
+
+

is that it reduces to e, but each free occurrence of x in e behaves
+like a pointer that points back to mu x . e.

+

With that in mind, let us postpone the definition of mu and instead redefine
+letrec F X = E in E' as a derived construct, assuming mu available. The
+idea is to simply regard F as a fixed-point of the function

+
lambda X . E
+
+

that is, to first calculate

+
mu F . lambda X . E
+
+

and then to evaluate E' where F is bound to this fixed-point:

+
let F = mu F . lambda X . E in E'
+
+

This new definition of letrec may still look a bit tricky, particularly
+because F is bound twice, but it is much simpler and cleaner than our
+previous definition. Moreover, now it is done in a type-safe manner
+(this aspect goes beyond our objective in this tutorial).

+

Let us now define the semantic rule of mu.

+

The semantics of mu is actually disarmingly simple. We just have to
+substitute mu X . E for each free occurrence of X in E:

+
mu X . E => E[(mu X . E) / X]
+
+

Compile lambda.k and execute some recursive programs. They should be now
+several times faster. Write a few more recursive programs, for example ones
+for calculating the Ackermann function, for calculating the number of moves
+needed to solve the Hanoi tower problem, etc.

+

We have defined our first programming language in K, which allows us to
+write interesting functional programs. In the next lesson we will learn how
+to fully document our language definition, in order to disseminate it, to ship
+it to colleagues or friends, to publish it, to teach it, and so on.

+

Go to Lesson 9, LAMBDA: A Complete and Commented Definition.

+

MOVIE (out of date) [2'40"]

+

A Complete and Documented K Definition

+ +

In this lesson you will learn how to add formal comments to your K definition,
+in order to nicely document it. The generated document can be then used for
+various purposes: to ease understanding the K definition, to publish it,
+to send it to others, etc.

+

The K tool allows a literate programming style, where the executable
+language definition can be documented by means of annotations. One such
+annotation is the latex(_) annotation, where you can specify how to format
+the given production when producing Latex output via the --output latex
+option to krun, kast, and kprove.

+

There are three types of comments, which we discuss next.

+

Ordinary comments

+ +

These use // or /* ... */, like in various programming languages. These
+comments are completely ignored.

+

Document annotations

+ +

Use the @ symbol right after // or /* in order for the comment to be
+considered an annotation and thus be processed by the K tool when it
+generates documentation.

+

As an example, we can go ahead and add such an annotation at the beginning
+of the LAMBDA module, explaining how we define the syntax of this language.

+

Header annotations

+ +

Use the ! symbol right after // or /* if you want the comment to be
+considered a header annotation, that is, one which goes before
+\begin{document} in the generated Latex. You typically need header
+annotations to include macros, or to define a title, etc.

+

As an example, let us set a Latex length and then add a title and an
+author to this K definition.

+

Compile the documentation and take a look at the results. Notice the title.

+

Feel free to now add lots of annotations to lambda.k.

+

Then compile and check the result. Depending on your PDF viewer, you
+may also see a nice click-able table of contents, with all the sections
+of your document. This could be quite convenient when you define large
+languages, because it helps you jump to any part of the semantics.

+

Tutorial 1 is now complete. The next tutorial will take us through the
+definition of a simple imperative language and will expose us to more
+feature of the K framework and the K tool.

+

MOVIE (out of date) [6'07"]

+

Part 2: Defining IMP

+ +

Here you will learn how to define a very simple imperative language in K
+and the basics of how to work with configurations, cells, and computations.
+Specifically, you will learn the following:

+
    +
  • How to define languages using multiple modules.
  • +
  • How to define sequentially strict syntactic constructs.
  • +
  • How to use K's syntactic lists.
  • +
  • How to define, initialize and configure configurations.
  • +
  • How the language syntax is swallowed by the builtin K syntactic category.
  • +
  • The additional syntax of the K syntactic category.
  • +
  • How the strictness annotations are automatically desugared into rules.
  • +
  • The first steps of the configuration abstraction mechanism.
  • +
+

Like in the previous tutorial, this folder contains several lessons, each
+adding new features to IMP. Do them in order. Also, make sure you completed
+and understood the previous tutorial.

+

Defining a More Complex Syntax

+ +

Here we learn how to define a more complex language syntax than LAMBDA's,
+namely the C-like syntax of IMP. Also, we will learn how to define languages
+using multiple modules, because we are going to separate IMP's syntax from
+its semantics using modules. Finally, we will also learn how to use K's
+builtin support for syntactic lists.

+

The K tool provides modules for grouping language features. In general, we
+can organize our languages in arbitrarily complex module structures.
+While there are no rigid requirements or even guidelines for how to group
+language features in modules, we often separate the language syntax from the
+language semantics in different modules.

+

In our case here, we start by defining two modules, IMP-SYNTAX and IMP, and
+import the first in the second, using the keyword imports. As their names
+suggest, we will place all IMP's syntax definition in IMP-SYNTAX and all its
+semantics in IMP.

+

Note, however, that K does no more than simply includes all the
+contents of the imported module in the one which imports it (making sure
+that everything is only kept once, even if you import it multiple times).
+In other words, there is currently nothing fancy in K tool's module system.

+

IMP has six syntactic categories, as shown in imp.k: AExp for arithmetic
+expressions, BExp for Boolean expressions, Block for blocks, Stmt for
+statements, Pgm for programs and Ids for comma-separated lists of
+identifiers. Blocks are special statements, whose role is to syntactically
+constrain the conditional statement and the while loop statement to only
+take blocks as branches and body, respectively.

+

There is nothing special about arithmetic and Boolean expressions. They
+are given the expected strictness attributes, except for <= and &&,
+for demonstration purposes.

+

The <= is defined to be seqstrict, which means that it evaluates its
+arguments in order, from left-to-right (recall that the strict operators
+can evaluate their arguments in any, fully interleaved, orders). Like
+strict, the seqstrict annotation can also be configured; for example, one
+can specify in which arguments and in what order. By default, seqstrict
+refers to all the arguments, in their left-to-right order. In our case here,
+it is equivalent with seqstrict(1 2).

+

The && is only strict in its first argument, because we will give it a
+short-circuited semantics (its second argument will only be evaluated when
+the first evaluates to true). Recall the K tool also allows us to associate
+LaTex attributes to constructs, telling the document generator how to display
+them. For example, we associate <= the attribute latex({#1}\leq{#2}),
+which makes it be displayed \leq everywhere in the generated LaTex
+documentation.

+

In this tutorial we take the freedom to associate the various constructs
+parsing precedences that we have already tested and we know work well, so that
+we can focus on the semantics here instead of syntax. In practice, though,
+you typically need to experiment with precedences until you obtain the desired
+parser.

+

Blocks are defined using curly brackets, and they can either be empty or
+hold a statement.

+

Nothing special about the IMP statements. Note that ; is an assignment
+statement terminator, not a statement separator. Note also that blocks are
+special statements.

+

An IMP program declares a comma-separated list of variables using the keyword
+int like in C, followed by a semicolon ;, followed by a statement.
+Syntactically, the idea here is that we can wrap any IMP program within a
+main(){...} function and get a valid C program. IMP does not allow variable
+declarations anywhere else except through this construct, at the top-level of
+the program. Other languages provided with the K distribution (see, e.g., the
+IMP++ language also discussed in this tutorial) remove this top-level program
+construct of IMP and add instead variable declaration as a statement construct,
+which can be used anywhere in the program, not only at the top level.

+

Note how we defined the comma-separated list of identifiers using
+List{Id,","}. The K tool provides builtin support for generic syntactic
+lists. In general,

+
syntax B ::= List{A,T}
+
+

declares a new non-terminal, B, corresponding to T-separated sequences of
+elements of A, where A is a non-terminal and T is a terminal. These
+lists can also be empty, that is, IMP programs declaring no variable are also
+allowed (e.g., int; {} is a valid IMP program). To instantiate and use
+the K builtin lists, you should alias each instance with a (typically fresh)
+non-terminal in your syntax, like we do with the Ids nonterminal.

+

Like with other K features, there are ways to configure the syntactic lists,
+but we do not discuss them here.

+

Recall from Tutorial 1 (LAMBDA) that in order for strictness to work well
+we also need to tell K which computations are meant to be results. We do
+this as well now, in the module IMP: integers and Booleans are K results.

+

Kompile imp.k and test the generated parser by running some programs.
+Since IMP is a fragment of C, you may want to select the C mode in your
+editor when writing these programs. This will also give your the feel that
+you are writing programs in a real programming language.

+

For example, here is sum.imp, which sums in sum all numbers up to n:

+
int n, sum;
+n = 100;
+sum=0;
+while (!(n <= 0)) {
+  sum = sum + n;
+  n = n + -1;
+}
+
+

Now krun it and see how it looks parsed in the default k cell.

+

The program collatz.imp tests the Collatz conjecture for all numbers up to
+m and accumulates the total number of steps in s:

+
int m, n, q, r, s;
+m = 10;
+while (!(m<=2)) {
+  n = m;
+  m = m + -1;
+  while (!(n<=1)) {
+    s = s+1;
+    q = n/2;
+    r = q+q+1;
+    if (r<=n) {
+      n = n+n+n+1;         // n becomes 3*n+1 if odd
+    } else {n=q;}          //        of   n/2 if even
+  }
+}
+
+

Finally, program primes.imp counts in s all the prime numbers up to m:

+
int i, m, n, q, r, s, t, x, y, z;
+m = 10;  n = 2;
+while (n <= m) {
+  // checking primality of n and writing t to 1 or 0
+  i = 2;  q = n/i;  t = 1;
+  while (i<=q && 1<=t) {
+    x = i;
+    y = q;
+    // fast multiplication (base 2) algorithm
+    z = 0;
+    while (!(x <= 0)) {
+      q = x/2;
+      r = q+q+1;
+      if (r <= x) { z = z+y; } else {}
+      x = q;
+      y = y+y;
+    } // end fast multiplication
+    if (n <= z) { t = 0; } else { i = i+1;  q = n/i; }
+  } // end checking primality
+  if (1 <= t) { s = s+1; } else {}
+  n = n+1;
+}
+
+

All the programs above will run once we define the semantics of IMP. If you
+want to execute them now, wrap them in a main(){...} function and compile
+them and run them with your favorite C compiler.

+

Before we move to the K semantics of IMP, we would like to make some
+clarifications regarding the K builtin parser, kast. Although it is quite
+powerful, you should not expect magic from it! While the K parser can parse
+many non-trivial languages (see, for example, the KOOL language in
+pl-tutorial/2_languages) in the K distribution), it was
+never meant to be a substitute for real parsers. We often call the syntax
+defined in K the syntax of the semantics, to highlight the fact that its
+role is to serve as a convenient notation when writing the semantics, not
+necessarily as a means to define concrete syntax of arbitrarily complex
+programming languages. See the KERNELC language for an example on how to connect an external parser for concrete syntax to
+the K tool.

+

The above being said, we strongly encourage you to strive to make the
+builtin parser work with your desired language syntax! Do not give up
+simply because you don't want to deal with syntactic problems. On the
+contrary, fight for your syntax! If you really cannot define your desired
+syntax because of tool limitations, we would like to know. Please tell us.

+

Until now we have only seen default configurations. In the next lesson we
+will learn how to define a K custom configuration.

+

Go to Lesson 2, IMP: Defining a Configuration.

+

MOVIE (out of date) [09'15"]

+

Defining a Configuration

+ +

Here we learn how to define a configuration in K. We also learn how to
+initialize and how to display it.

+

As explained in the overview presentation on K, configurations are quite
+important, because all semantic rules match and apply on them.
+Moreover, they are the backbone of configuration abstraction, which allows
+you to only mention the relevant cells in each semantic rule, the rest of
+the configuration context being inferred automatically. The importance of
+configuration abstraction will become clear when we define more complex
+languages (even in IMP++). IMP does not really need it. K configurations
+are constructed making use of cells, which are labeled and can be arbitrarily
+nested.

+

Configurations are defined with the keyword configuration. Cells are
+defined using an XML-ish notation stating clearly where the cell starts
+and where it ends.

+

While not enforced by the tool, we typically like to put the entire
+configuration in a top-level cell, called T. So let's define it:

+
configuration <T>...</T>
+
+

Cells can have other cells inside. In our case of IMP, we need a cell to
+hold the remaining program, cell which we typically call k, and a cell to
+hold the program state. Let us add them:

+
configuration <T> <k>...</k> <state>...</state> </T>
+
+

K allows us to also specify how to initialize a configuration at the same
+time with declaring the configuration. All we have to do is to fill in
+the contents of the cells with some terms. The syntactic categories of
+those terms will also indirectly define the types of the corresponding
+cells.

+

For example, we want the k cell to initially hold the program that is passed
+to krun. K provides a builtin configuration variable, called $PGM, which
+is specifically designed for this purpose: krun will place its program there
+(after it parses it, or course). The K tool allows users to define their own
+configuration variables, too, which can be used to develop custom
+initializations of program configurations with the help of krun; this can be
+quite useful when defining complex languages, but we do not discuss it in
+this tutorial.

+
configuration <T> <k> $PGM </k> <state>...</state>  </T>
+
+

Moreover, we want the program to be a proper Pgm term (because we do not
+want to allow krun to take fragments of programs, for example, statements).
+Therefore, we tag $PGM with the desired syntactic category, Pgm:

+
configuration <T> <k> $PGM:Pgm </k> <state>...</state>  </T>
+
+

Like for other variable tags in K, a run-time check will be performed and the
+semantics will get stuck if the passed term is not a well-formed program.

+

We next tell K that the state cell should be initialized with the empty map:

+
configuration <T> <k> $PGM:Pgm </k> <state> .Map </state>  </T>
+
+

Recall that in K . stands for nothing. However, since there are various
+types of nothing, to avoid confusion we can suffix the . with its desired
+type. K has several builtin data-types, including lists, sets, bags, and
+maps. .Map is the empty map.

+

Kompile imp.k and run several programs to see how the configuration is
+initialized as desired.

+

When configurations get large, and they do when defining large programming
+languages, you may want to color the cells in order to more easily distinguish
+them. This can be easily achieved using the color cell attribute, following
+again an XML-ish style:

+
configuration <T color="yellow">
+                <k color="green"> $PGM:Pgm </k>
+                <state color="red"> .Map </state>
+              </T>
+
+

In the next lesson we will learn how to write rules that involve cells.

+

Go to Lesson 3, IMP: Computations, Results, Strictness; Rules Involving Cells.

+

MOVIE (out of date) [04'21"]

+

Computations, Results, Strictness; Rules Involving Cells

+ +

In this lesson we will learn about the syntactic category K of computations,
+about how strictness attributes are in fact syntactic sugar for rewrite rules
+over computations, and why it is important to tell the tool which
+computations are results. We will also see a K rule that involves cells.

+

K Computations

+ +

Computation structures, or more simply computations, extend the abstract
+syntax of your language with a list structure using ~> (read followed
+by
or and then, and written \curvearrowright in Latex) as a separator.
+K provides a distinguished sort, K, for computations. The extension of the
+abstract syntax of your language into computations is done automatically by
+the K tool when you declare constructs using the syntax keyword, so the K
+semantic rules can uniformly operate only on terms of sort K. The intuition
+for computation structures of the form

+
t1 ~> t2 ~> ... ~> tn
+
+

is that the listed tasks are to be processed in order. The initial
+computation typically contains the original program as its sole task, but
+rules can then modify it into task sequences, as seen shortly.

+

Strictness in Theory

+ +

The strictness attributes, used as annotations to language constructs,
+actually correspond to rules over computations. For example, the
+strict(2) attribute of the assignment statement corresponds to the
+following two opposite rules (X ranges over Id and A over AExp):

+
X=A; => A ~> X=[];
+A ~> X=[]; => X=A;
+
+

The first rule pulls A from the syntactic context X=A; and schedules it
+for processing. The second rule plugs A back into its context.
+Inspired from the chemical abstract machine, we call rules of the first
+type above heating rules and rules of the second type cooling rules.
+Similar rules are generated for other arguments in which operations are
+strict. Iterative applications of heating rules eventually bring to the
+top of the computation atomic tasks, such as a variable lookup, or a
+builtin operation, which then make computational progress by means of other
+rules. Once progress is made, cooling rules can iteratively plug the result
+back into context, so that heating rules can pick another candidate for
+reduction, and so on and so forth.

+

When operations are strict only in some of their arguments, the corresponding
+positions of the arguments in which they are strict are explicitly enumerated
+in the argument of the strict attribute, e.g., strict(2) like above, or
+strict(2 3) for an operation strict in its second and third arguments, etc.
+If an operation is simply declared strict then it means that it is strict
+in all its arguments. For example, the strictness of addition yields:

+
A1+A2 => A1 ~> []+A2
+A1 ~> []+A2 => A1+A2
+A1+A2 => A2 ~> A1+[]
+A2 ~> A1+[] => A1+A2
+
+

It can be seen that such heating/cooling rules can easily lead to
+non-determinism, since the same term may be heated many different ways;
+these different evaluation orders may lead to different behaviors in some
+languages (not in IMP, because its expressions do not have side effects,
+but we will experiment with non-determinism in its successor, IMP++).

+

A similar desugaring applies to sequential strictness, declared with the
+keyword seqstrict. While the order of arguments of strict is irrelevant,
+it matters in the case of seqstrict: they are to be evaluated in the
+specified order; if no arguments are given, then they are assumed by default
+to be evaluated from left-to-right. For example, the default heating/cooling
+rules associated to the sequentially strict <= construct above are
+(A1, A2 range over AExp and I1 over Int):

+
A1<=A2 => A1 ~> []<=A2
+A1 ~> []<=A2 => A1<=A2
+I1<=A2 => A2 ~> I1<=[]
+A2 ~> I1<=[] => I1<=A2
+
+

In other words, A2 is only heated/cooled after A1 is already evaluated.

+

While the heating/cooling rules give us a nice and uniform means to define
+all the various allowable ways in which a program can evaluate, all based
+on rewriting, the fact that they are reversible comes with a serious practical
+problem: they make the K definitions unexecutable, because they lead to
+non-termination.

+

Strictness in Practice; K Results

+ +

To break the reversibility of the theoretical heating/cooling rules, and,
+moreover, to efficiently execute K definitions, the current implementation of
+the K tool relies on users giving explicit definitions of their languages'
+results.

+

The K tool provides a predicate isKResult, which is automatically defined
+as we add syntactic constructs to KResult (in fact the K tool defines such
+predicates for all syntactic categories, which are used, for example, as
+rule side conditions to check user-declared variable memberships, such as
+V:Val stating that V belongs to Val).

+

The kompile tool, depending upon what it is requested to do, changes the
+reversible heating/cooling rules corresponding to evaluation strategy
+definitions (e.g., those corresponding to strictness attributes) to avoid
+non-termination. For example, when one is interested in obtaining an
+executable model of the language (which is the default compilation mode of
+kompile), then heating is performed only when the to-be-pulled syntactic
+fragment is not a result, and the corresponding cooling only when the
+to-be-plugged fragment is a result. In this case, e.g., the heating/cooling
+rules for assignment are modified as follows:

+
X=A; => A ~> X=[];  requires notBool isKResult(A)
+A ~> X=[]; => X=A;  requires isKResult(A)
+
+

Note that non-termination of heating/cooling is avoided now. The only thing
+lost is the number of possible behaviors that a program can manifest, but
+this is irrelevant when all we want is one behavior.

+

As will be discussed in the IMP++ tutorial, the heating/cooling rules are
+modified differently by kompile when we are interested in other aspects
+of the language definition, such us, for example, in a search-able model that
+comprises all program behaviors. This latter model is obviously more general
+from a theoretical perspective, but, in practice, it is also slower to execute.
+The kompile tool strives to give you the best model of the language for the
+task you are interested in.

+

Can't Results be Inferred Automatically?

+ +

This is a long story, but the short answer is: No!. Maybe in some cases
+it is possible, but we prefer to not attempt it in the K tool. For example,
+you most likely do not want any stuck computation to count as a result,
+since some of them can happen simply because you forgot a semantic rule that
+could have further reduce it! Besides, in our experience with defining large
+languages, it is quite useful to take your time and think of what the results
+of your language's computations are. This fact in itself may help you improve
+your overall language design. We typically do it at the same time with
+defining the evaluation strategies of our languages. Although in theory K
+could infer the results of your language as the stuck computations, based on
+the above we have deliberately decided to not provide this feature, in spite
+of requests from some users. So you currently do have to explicitly define
+your K results if you want to effectively use the K tool. Note, however, that
+theoretical definitions, not meant to be executed, need not worry about
+defining results (that's because in theory semantic rules apply modulo the
+reversible heating/cooling rules, so results are not necessary).

+

A K Rule Involving Cells

+ +

All our K rules so far in the tutorial were of the form

+
rule left => right requires condition
+
+

where left and right were syntactic, or more generally computation, terms.

+

Here is our first K rule explicitly involving cells:

+
rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>
+
+

Recall that the k cell holds computations, which are sequences of tasks
+separated by ~>. Also, the state cell holds a map, which is a set of
+bindings, each binding being a pair of computations (currently, the
+K builtin data-structures, like maps, are untyped; or, said differently,
+they are all over the type of computations, K).

+

Therefore, the two cells mentioned in the rule above hold collections
+of things, ordered or not. The ...s, which we also call cell frames,
+stand for more stuff there, which we do not care about.

+

The rewrite relation => is allowed in K to appear anywhere in a term, its
+meaning being that the corresponding subterm is rewritten as indicated in the
+shown context. We say that K's rewriting is local.

+

The rule above says that if the identifier X is the first task in the k
+cell, and if X is bound to I somewhere in the state, then X rewrites
+to I locally in the k cell. Therefore, IMP variables need to be already
+declared when looked up.

+

Of course, the K rule above can be translated into an ordinary rewrite rule
+of the form

+
rule <k> X ~> Rest </k> <state> Before (X |-> I) After </state>
+  => <k> I ~> Rest </k> <state> Before (X |-> I) After </state>
+
+

Besides being more verbose and thus tedious to write, this ordinary rule
+is also more error-prone; for example, we may forget the Rest variable
+in the right-hand-side, etc. Moreover, the concurrent semantics of K
+allows for its rules to be interpreted as concurrent transactions, where
+the context is the read-only component of the transaction, while the
+subterms which are rewritten are read/write component of the transaction;
+thus, K rule instances can apply concurrently if they only overlap
+on read-only parts, while they cannot if regarded as ordinary rewrite logic
+rules. Note: our current implementation of the K tool is not concurrent,
+so K rules are in fact desugared as normal rewrite rules in the K tool.

+

Kompile imp.k using a documentation option and check out how the K rule
+looks in the generated document. The ... frames are displayed as cell
+tears, metaphorically implying that those parts of the cells that we
+do not care about are torn away. The rewrite relation is replaced by a
+horizontal line: specifically, the subterm which rewrites, X, is
+underlined, and its replacement is written underneath the line.

+

In the next lesson we define the complete K semantics of IMP and
+run the programs we parsed in the first lesson.

+

Go to Lesson 4, IMP: Configuration Abstraction, Part 1; Types of Rules.

+

MOVIE (out of date) [10'30"]

+

Configuration Abstraction, Part 1; Types of Rules

+ +

Here we will complete the K definition of IMP and, while doing so, we will
+learn the very first step of what we call configuration abstraction.

+

The IMP Semantic Rules

+ +

Let us add the remaining rules, in the order in which the language constructs
+were defined in IMP-SYNTAX.

+

The rules for the arithmetic and Boolean constructs are self-explanatory.
+Note, however, that K will infer the correct sorts of all the variables in
+these rules, because they appear as arguments of the builtin operations
+(_+Int_, etc.). Moreover, the inferred sorts will be enforced dynamically.
+Indeed, we do not want to apply the rule for addition, for example, when the
+two arguments are not integers. In the rules for &&, although we prefer to
+not do it here for simplicity, we could have eliminated the dynamic check by
+replacing B (and similarly for _) with B:K. Indeed, it can be shown
+that whenever any of these rules apply, B (or _) is a BExp anyway.
+That's because there is no rule that can touch such a B (or _); this
+will become clearer shortly, when we discuss the first step of configuration
+abstraction. Therefore, since we know that B will be a BExp anyway, we
+could save the time it takes to check its sort; such times may look minor,
+but they accumulate, so some designers may prefer to avoid run-time checks
+whenever possible.

+

The block rules are trivial. However, the rule for non-empty blocks is
+semantically correct only because we do not have local variable declarations
+in IMP. We will have to change this rule in IMP++.

+

The assignment rule has two =>: one in the k cell dissolving the
+assignment statement, and the other in the state cell updating the value of
+the assigned variable. Note that the one in the state is surrounded by
+parentheses: (_ => I). That is because => is greedy: it matches as much
+as it can to the left and to the right, until it reaches the cell boundaries
+(closed or open). If you want to limit its scope, or for clarity, you can use
+parentheses like here.

+

The rule for sequential composition simply desugars S1 S2 into S1 ~> S2.
+Indeed, the two have exactly the same semantics. Note that statements
+evaluate to nothing (.), so once S1 is processed in S1 ~> S2, then the
+next task is automatically S2, without wasting any step for the transition.

+

The rules for the conditional and while statements are clear. One thing to
+keep in mind now is that the while unrolling rule will not apply
+indefinitely in the positive branch of the resulting conditional, because
+of K's configuration abstraction, which will be discussed shortly.

+

An IMP program declares a set of variables and then executes a
+statement in the state obtained after initializing all those variables
+to 0. The rules for programs initialize the declared variables one by one,
+checking also that there are no duplicates. We check for duplicates only for
+demonstration purposes, to illustrate the keys predefined operation that
+returns the set of keys of a map, and the set membership operation in.
+In practice, we typically define a static type checker for our language,
+which we execute before the semantics and reject inappropriate programs.

+

The use of the .Ids in the second rule is not necessary. We could have
+written int; S instead of int .Ids; S and the K tool would parse it and
+kompile the definition correctly, because it uses the same parser used for
+parsing programs also to parse the semantics. However, we typically prefer to
+explicitly write the nothing values in the semantics, for clarity;
+the parser has been extended to accept these. Note that the first rule
+matches the entire k cell, because int_;_ is the top-level program
+construct in IMP, so there is nothing following it in the computation cell.
+The anonymous variable stands for the second argument of this top-level program
+construct, not for the rest of the computation. The second rule could have
+also been put in a complete k cell, but we preferred not to, for simplicity.

+

Our IMP semantics is now complete, but there are a few more things that we
+need to understand and do.

+

Configuration Abstraction, Part 1

+ +

First, let us briefly discuss the very first step of configuration abstraction.
+In K, all semantic rules are in fact rules between configurations. As soon
+explained in the IMP++ tutorial, the declared configuration cell structure is
+used to automatically complete the missing configuration parts in rules.
+However, many rules do not involve any cells, being rules between syntactic
+terms (of sort K); for example, we had only three rules involving cells in our
+IMP semantics. In this case, the k cell will be added automatically and the
+actual rewrite will happen on top of the enclosed computation. For example,
+the rule for the while loop is automatically translated into the following:

+
rule <k> while (B) S => if (B) {S while (B) S} else {} ...</k>
+
+

Since the first task in computations is what needs to be done next, the
+intuition for this rule completion is that the syntactic transition
+only happens when the term to rewrite is ready for processing. This explains,
+for example, why the while loop unrolling does not indefinitely apply in the
+positive branch of the conditional: the inner while loop is not ready for
+evaluation yet. We call this rule completion process, as well as other
+similar ones, configuration abstraction. That is because the incomplete
+rule abstracts away the configuration structure, thus being easier to read.
+As seen soon when we define IMP++, configuration abstraction is not only a
+user convenience; it actually significantly increases the modularity of our
+definitions. The k-cell-completion is only the very first step, though.

+

If you really want certain rewrites over syntactic terms to apply
+anywhere they match, then you should tag the rule with the attribute
+anywhere, which was discussed in Tutorial 1, Lesson 2.5.

+

Kompile and then krun the programs that you only parsed in Lesson 1. They
+should all execute as expected. The state cell shows the final state
+of the program. The k cell shows the final code contents, which should be
+empty whenever the IMP program executes correctly.

+

Kompile also with the documentation option and take a look at the generated
+documentation. The assignment rule should particularly be of interest,
+because it contains two local rewrites.

+

In the next lesson we comment the IMP definition and conclude this tutorial.

+

Go to Lesson 5, IMP: Completing and Documenting IMP.

+

MOVIE (out of date) [09'16"]

+

Completing and Documenting IMP

+ +

We here learn no new concepts, but it is a good moment to take a break
+and contemplate what we learned so far.

+

Let us add lots of formal annotations to imp.k.

+

Once we are done with the annotations, we kompile with the documentation
+option and then take a look at the produced document. We often call these
+documents language posters. Depending on how much information you add to
+these language posters, they can serve as standalone, formal presentations
+of your languages. For example, you can print them as large posters and
+post them on the wall, or in poster sessions at conferences.

+

This completes our second tutorial. The next tutorials will teach us more
+features of the K framework, such as how to define languages with complex
+control constructs (like callcc), languages which are concurrent, and so on.

+

MOVIE (out of date) [03'45"]

+

Part 3: Defining LAMBDA++

+ +

Here you will learn how to define language constructs which abruptly change
+the execution control flow, and how to define language semantics following
+and environment/store style. Specifically, you will learn the following:

+
    +
  • How to define constructs like callcc, which allow you to take snapshots of
    +program executions and to go back in time at any moment.
  • +
  • How to define languages in an environment/store style.
  • +
  • Some basic notions about the use of closures and closure-like semantic
    +structures to save and restore execution environments.
  • +
  • Some basic intuitions about reusing existing semantics in new languages,
    +as well as some of the pitfalls in doing so.
  • +
+

Abrupt Changes of Control

+ +

Here we add call-with-current-continuation (callcc) to the definition of
+LAMBDA completed in Tutorial 1, and call the resulting language LAMBDA++.
+While doing so, we will learn how to define language constructs that
+abruptly change the execution control flow.

+

Take over the lambda.k definition from Lesson 8 in Part 1 of this Tutorial,
+which is the complete definition of the LAMBDA language, but without the
+comments.

+

callcc is a good example for studying the capabilities of a framework to
+support abrupt changes of control, because it is one of the most
+control-intensive language constructs known. Scheme is probably the first
+programming language that incorporated the callcc construct, although
+similar constructs have been recently included in many other languages in
+one form or another.

+

Here is a quick description: callcc e passes the remaining computation
+context, packaged as a function k, to e (which is expected to be a function);
+if during its evaluation e passes any value to k, then the current
+execution context is discarded and replaced by the one encoded by k and
+the value is passed to it; if e evaluates normally to some value v and
+passes nothing to k in the process, then v is returned as a result of
+callcc e and the execution continues normally. For example, we want the
+program callcc-jump.lambda:

+
(callcc (lambda k . ((k 5) + 2))) + 10
+
+

to evaluate to 15, not 17! Indeed, the computation context [] + 10 is
+passed to callcc's argument, which then sends it a 5, so the computation
+resumes to 5 + 10. On the other hand, the program callcc-not-jump.lambda

+
(callcc (lambda k . (5 + 2))) + 10
+
+

evaluates to 17.

+

If you like playing games, you can metaphorically think of callcc e as
+saving your game state in a file and passing it to your friend e.
+Then e can decide at some moment to drop everything she was doing, load
+your game and continue to play it from where you were.

+

The behavior of many popular control-changing constructs can be obtained
+using callcc. The program callcc-return.lambda shows, for example, how to
+obtain the behavior of a return statement, which exits the current execution
+context inside a function and returns a value to the caller's context:

+
letrec f x = callcc (lambda return . (
+  f (if (x <= 0) then ((return 1) / 0) else 2)
+))
+in (f -3)
+
+

This should evaluate to 1, in spite of the recursive call to f
+and of the division by zero! Note that return is nothing but a variable
+name, but one which is bound to the current continuation at the beginning of
+the function execution. As soon as 1 is passed to return, the computation
+jumps back in time to where callcc was defined! Change -3 to 3 and the
+program will loop forever.

+

callcc is quite a powerful and beautiful language construct, although one
+which is admittedly hard to give semantics to in some frameworks.
+But not in K 😃 Here is the entire K syntax and semantics of callcc:

+
syntax Exp ::= "callcc" Exp  [strict]
+syntax Val ::= cc(K)
+rule <k> (callcc V:Val => V cc(K)) ~> K </k>
+rule <k> cc(K) V ~> _ =>  V ~> K </k>
+
+

Let us first discuss the annotated syntax. We declared callcc strict,
+because its argument may not necessarily be a function yet, so it may need
+to be evaluated. As explained above, we need to encode the remaining
+computation somehow and pass it to callcc's argument. More specifically,
+since LAMBDA is call-by-value, we have to encode the remaining computation as
+a value. We do not want to simply subsort computations to Val, because there
+are computations which we do not want to be values. A simple solution to
+achieve our goal here is to introduce a new value construct, say cc (from
+current-continuation), which holds any computation.

+

Note that, inspired from SDF,
+K allows you to define the syntax of helping semantic operations, like cc,
+more compactly. Typically, we do not need a fancy syntax for such operators;
+all we need is a name, followed by open parenthesis, followed by a
+comma-separated list of arguments, followed by closed parenthesis. If this
+is the syntax that you want for a particular construct, then K allows you to
+drop all the quotes surrounding the terminals, as we did above for cc.

+

The semantic rules do exactly what the English semantics of callcc says.
+Note that here, unlike in our definition of LAMBDA in Tutorial 1, we had
+to mention the cell <k/> in our rules. This is because we need to make sure
+that we match the entire remaining computation, not only a fragment of it!
+For example, if we replace the two rules above with

+
rule (callcc V:Val => V cc(K)) ~> K
+rule cc(K) V ~> _ =>  V ~> K
+
+

then we get a callcc which is allowed to non-deterministically pick a
+prefix of the remaining computation and pass it to its argument, and then
+when invoked within its argument, a non-deterministic prefix of the new
+computation is discarded and replaced by the saved one. Wow, that would
+be quite a language! Would you like to write programs in it? 😃

+

Consequently, in K we can abruptly change the execution control flow of a
+program by simply changing the contents of the <k/> cell. This is one of
+the advantages of having an explicit representation of the execution context,
+like in K or in reduction semantics with evaluation contexts. Constructs like
+callcc are very hard and non-elegant to define in frameworks such as SOS,
+because those implicitly represent the execution context as proof context,
+and the latter cannot be easily changed.

+

Now that we know how to handle cells in configurations and use them in rules,
+in the next lesson we take a fresh look at LAMBDA and define it using
+an environment-based style, which avoids the complexity of substitution
+(e.g., having to deal with variable capture) and is closer in spirit to how
+functional languages are implemented.

+

Go to Lesson 2, LAMBDA++: Semantic (Non-Syntactic) Computation Items.

+

MOVIE (out of date) [6'28"]

+

Semantic (Non-Syntactic) Computation Items

+ +

In this lesson we start another semantic definition of LAMBDA++, which
+follows a style based on environments instead of substitution. In terms of
+K, we will learn how easy it is to add new items to the syntactic category
+of computations K, even ones which do not have a syntactic nature.

+

An environment binds variable names of interest to locations where their
+values are stored. The idea of environment-based definitions is to maintain
+a global store mapping locations to values, and then have environments
+available when we evaluate expressions telling where the variables are
+located in the store. Since LAMBDA++ is a relatively simple language, we
+only need to maintain one global environment. Following a similar style
+like in IMP, we place all cells into a top cell T:

+
configuration <T>
+                <k> $PGM:Exp </k>
+                <env> .Map </env>
+                <store> .Map </store>
+              </T>
+
+

Recall that $PGM is where the program is placed by krun after parsing. So
+the program execution starts with an empty environment and an empty store.

+

In environment-based definitions of lambda-calculi, lambda abstractions
+evaluate to so-called closures:

+
rule <k> lambda X:Id . E => closure(Rho,X,E) ...</k>
+     <env> Rho </env>
+
+

A closure is like a lambda abstraction, but it also holds the environment
+in which it was declared. This way, when invoked, a closure knows where to
+find in the store the values of all the variables that its body expression
+refers to. We will define the lookup rule shortly.

+

Therefore, unlike in the substitution-based definitions of LAMBDA and
+LAMBDA++, neither the lambda abstractions nor the identifiers are values
+anymore here, because they both evaluate further: lambda abstractions to
+closures and identifiers to their values in the store. In fact, the only
+values at this moment are the closures, and they are purely semantic entities,
+which cannot be used explicitly in programs. That's why we modified the
+original syntax of the language to include no Val syntactic category
+anymore, and that's why we need to add closures as values now; same like
+before, we add a Val syntactic category which is subsorted
+to KResult. In general, whenever you have any strictness attributes,
+your should also define some K results.

+

Invoking a closure is a bit more involved than the substitution-based
+beta-reduction: we need to switch to the closure's environment, then create a
+new, or fresh, binding for the closure's parameter to the value passed to the
+closure, then evaluate the closure's body, and then switch back to the
+caller's environment, which needs to be stored somewhere in the meanwhile.
+We can do all these with one rule:

+
rule <k> closure(Rho,X,E) V:Val => E ~> Rho' ...</k>
+     <env> Rho' => Rho[X <- !N] </env>
+     <store>... .Map => (!N:Int |-> V) ...</store>
+
+

Therefore, we atomically do all the following:

+
    +
  • switch the computation to the closure's body, E, followed by a
    +caller-environment-recovery task Rho' (note that Rho' is the
    +current environment),
  • +
  • generate a fresh location !N (the ! is important, we discuss it below),
    +bind X to !N in closure's environment and switch the current environment
    +Rho' to that one,
  • +
  • write the value passed to the closure, V, at location !N.
  • +
+

This was the most complex K rule we've seen so far in the tutorial. Note,
+however, that this one rule achieves a lot. It is, in fact, quite compact
+considering how much it does. Note also that everything that this K rule
+mentions is needed also conceptually in order to achieve this task, so it
+is minimal from that point of view. That would not be the case if we
+used, instead, a conventional rewrite rule, because we would have had to
+mention the remaining store, say Sigma, in both sides of the rule, to say
+it stays unchanged. Here we just use ....

+

The declaration of the fresh variable above, !N, is new and needs
+some explanation. First, note that !N appears only in the right-hand-side
+terms in the rule, that is, it is not matched when the rule is applied.
+Instead, a fresh Nat element is generated each time the rule is applied.
+In K, we can define syntactic categories which have the capability to
+generate fresh elements like above, using unbound variables whose name starts
+with a !. The details of how to do that are beyond the scope of this
+tutorial (see Tutorial 6). All we need to know here is that an arbitrary
+fresh element of that syntactic category is generated each time the rule
+is applied. We cannot rely on the particular name or value of the generated
+element, because that can change with the next version of the K tool, or
+even from execution to execution with the same version. All you can rely
+on is that each newly generated element is distinct from the previously
+generated elements for the same syntactic category.

+

Unlike in the substitution-based definition, we now also need a lookup rule:

+
rule <k> X => V ...</k>
+     <env>... X |-> N ...</env>
+     <store>... N |-> V ...</store>
+
+

This rule speaks for itself: replace X by the value V located in the store
+at X's location N in the current environment.

+

The only thing left to define is the auxiliary environment-recovery operation:

+

rule _:Val ~> (Rho => .) ... _ => Rho

+

When the item preceding the environment recovery task Rho in the
+computation becomes a value, replace the current environment with Rho
+and dissolve Rho from the computation.

+

Let us kompile and ... fail:

+
kompile lambda
+
+

gives a parsing error saying that V:Val does not fit there in the closure
+invocation rule. That's because Val and Exp are currently completely
+disconnected, so K rightfully complains that we want to apply a value to
+another one, because application was defined to work with expressions, not
+values. What we forgot here was to state that Exp includes Val:

+
syntax Exp ::= Val
+
+

Now everything works, but it is a good time to reflect a bit.

+

So we added closures, which are inherently semantic entities, to the syntax
+of expressions. Does that mean that we can now write LAMBDA programs with
+closures in them? Interestingly, with our current definition of LAMBDA,
+which purposely did not follow the nice organization of IMP into syntax and
+semantic modules, and with K's default parser, kast, you can. But you are
+not supposed to speculate this! In fact, if you use an external parser, that
+parser will reject programs with explicit closures. Also, if we split the
+LAMBDA definition into two modules, one called LAMBDA-SYNTAX containing
+exclusively the desired program syntax and one called LAMBDA importing the
+former and defining the syntax of the auxiliary operations and the semantics,
+then even K's default parser will reject programs using auxiliary syntactic
+constructs.

+

Indeed, when you kompile a language, say lang.k, the tool will by default
+attempt to find a module LANG-SYNTAX and generate the program parser from
+that. If it cannot find it, then it will use the module LANG instead. There
+are also ways to tell kompile precisely which syntax module you want to use
+for the program parser if you don't like the default convention.
+See kompile --help.

+

Another insightful thought to reflect upon, is the relationship between your
+language's values and other syntactic categories. It is often the case that
+values form a subset of the original language syntax, like in IMP (Part 2 of
+the tutorial), but sometimes that is not true, like in our case here. When
+that happens, in order for the semantics to be given smoothly and uniformly
+using the original syntax, you need to extend your language's original
+syntactic categories with the new values. The same holds true in other
+semantic approaches, not only in K, even in ones which are considered purely
+syntactic. As it should be clear by now, K does not enforce you to use a
+purely syntactic style in your definitions; nevertheless, K does allow you to
+develop purely syntactic definitions, like LAMBDA in Part 1 of the tutorial,
+if you prefer those.

+

krun some programs, such as those provided in Lesson 1 of the LAMBDA
+tutorial (Part 1). Note the closures, both as results in the <k/> cell,
+and as values in the store. Also, since variables are not values anymore,
+expressions that contain free variables may get stuck with one of those on
+top of their computation. See, for example, free-variable-capture.lambda,
+which gets stuck on z, because z is free, so it cannot evaluate it.
+If you want, you can go ahead and manually provide a configuration with
+z mapped to some location in the environment and that location mapped to
+some value in the store, and then you can also execute this program. The
+program omega.lambda should still loop.

+

Although we completely changed the definitional style of LAMBDA, the semantics
+of the other constructs do not need to change, as seen in the next lesson.

+

Go to Lesson 3, LAMBDA++: Reusing Existing Semantics.

+

MOVIE (out of date) [8'02"]

+

Reusing Existing Semantics

+ +

In this lesson we will learn that, in some cases, we can reuse existing
+semantics of language features without having to make any change!

+

Although the definitional style of the basic LAMBDA language changed quite
+radically in our previous lesson, compared to its original definition in
+Part 1 of the tutorial, we fortunately can reuse a large portion of the
+previous definition. For example, let us just cut-and-paste the rest of the
+definition from Lesson 7 in Part 1 of the tutorial.

+

Let us kompile and krun all the remaining programs from Part 1 of the
+tutorial. Everything should work fine, although the store contains lots of
+garbage. Garbage collection is an interesting topic, but we do not do it
+here. Nevertheless, much of this garbage is caused by the intricate use of
+the fixed-point combinator to define recursion. In a future lesson in this
+tutorial we will see that a different, environment-based definition of
+fixed-points will allocate much less memory.

+

One interesting question at this stage is: how do we know when we can reuse
+an existing semantics of a language feature? Well, I'm afraid the answer is:
+we don't. In the next lesson we will learn how reuse can fail for quite subtle
+reasons, which are impossible to detect statically (and some non-experts may
+fail to even detect them at all).

+

Go to Lesson 4, LAMBDA++: Do Not Reuse Blindly!.

+

MOVIE (out of date) [3'21"]

+

Do Not Reuse Blindly!

+ +

It may be tempting to base your decision to reuse an existing semantics of
+a language feature solely on syntactic considerations; for example, to reuse
+whenever the parser does not complain. As seen in this lesson, this could
+be quite risky.

+

Let's try (and fail) to reuse the definition of callcc from Lesson 1:

+
syntax Exp ::= "callcc" Exp  [strict]
+syntax Val ::= cc(K)
+rule <k> (callcc V:Val => V cc(K)) ~> K </k>
+rule <k> cc(K) V ~> _ =>  V ~> K </k>
+
+

The callcc examples that we tried in Lesson 1 work, so it may look it works.

+

However, the problem is that cc(K) should also include an environment,
+and that environment should also be restored when cc(K) is invoked.
+Let's try to illustrate this bug with callcc-env1.lambda

+
let x = 1 in
+  ((callcc lambda k . (let x = 2 in (k x))) + x)
+
+

where the second argument of +, x, should be bound to the top x, which
+is 1. However, since callcc does not restore the environment, that x
+should be looked up in the wrong, callcc-inner environment, so we should see
+the overall result 4.

+

Hm, we get the right result, 3 ... (Note: you may get 4, depending on
+your version of K and platform; but both 3 and 4 are possible results, as
+explained below and seen in the tests). How can we get 3? Well, recall that
++ is strict, which means that it can evaluate its arguments in any order.
+It just happened that in the execution that took place above its second
+argument was evaluated first, to 1, and then the callcc was evaluated, but
+its cc value K had already included the 1 instead of x ... In Part 4 of
+the tutorial we will see how to explore all the non-deterministic behaviors of
+a program; we could use that feature of K to debug semantics, too.
+For example, in this case, we could search for all behaviors of this program
+and we would indeed get two possible value results: 3 and 4.

+

One may think that the problem is the non-deterministic evaluation order
+of +, and thus that all we need to do is to enforce a deterministic order
+in which the arguments of + are evaluated. Let us follow this path to
+see what happens. There are two simple ways to make the evaluation order
+of +'s arguments deterministic. One is to make + seqstrict in the
+semantics, to enforce its evaluation from left-to-right. Do it and then
+run the program above again; you should get only one behavior for the
+program above, 4, which therefore shows that copying-and-pasting our old
+definition of callcc was incorrect. However, as seen shortly, that only
+fixed the problem for the particular example above, but not in general.
+Another conventional approach to enforce the desired evaluation order is to
+modify the program to enforce the left-to-right evaluation order using let
+binders, as we do in callcc-env2.lambda:

+
let x = 1 in
+  let a = callcc lambda k . (let x = 2 in (k x)) in
+    let b = x in
+      (a + b)
+
+

With your installation of K you may get the "expected" result 4 when you
+execute this program, so it may look like our non-deterministic problem is
+fixed. Unfortunately, it is not. Using the K tool to search for all the
+behaviors in the program above reveals that the final result 3 is still
+possible. Moreover, both the 3 and the 4 behaviors are possible regardless
+of whether + is declared to be seqstrict or just strict. How is that
+possible? The problem is now the non-deterministic evaluation strategy of
+the function application construct. Indeed, recall that the semantics of
+the let-in construct is defined by desugaring to lambda application:

+
rule let X = E in E' => (lambda X . E') E
+
+

With this, the program above eventually reduces to

+
(lambda a . ((lambda b . a + b) x))
+(callcc lambda k . (let x = 2 in (k x)))
+
+

in an environment where x is 1. If the first expression evaluates first,
+then it does so to a closure in which x is bound to a location holding 1,
+so when applied later on to the x inside the argument of callcc (which is
+2), it will correctly lookup x in its enclosed environment and thus the
+program will evaluate to 3. On the other hand, if the second expression
+evaluates first, then the cc value will freeze the first expression as is,
+breaking the relationship between its x and the current environment in which
+it is bound to 1, being inadvertently captured by the environment of the
+let-in construct inside the callcc and thus making the entire expression
+evaluate to 4.

+

So the morale is: Do not reuse blindly. Think!

+

In the next lesson we fix the environment-based semantics of callcc by having
+cc also wrap an environment, besides a computation. We will also give a more
+direct semantics to recursion, based on environments instead of fixed-point
+combinators.

+

Go to Lesson 5, LAMBDA++: More Semantic Computation Items.

+

MOVIE (out of date) [3'37"]

+

More Semantic Computation Items

+ +

In this lesson we see more examples of semantic (i.e., non-syntactic)
+computational items, and how useful they can be. Specifically, we fix the
+environment-based definition of callcc and give an environment-based
+definition of the mu construct for recursion.

+

Let us first fix callcc. As discussed in Lesson 4, the problem that we
+noticed there was that we only recovered the computation, but not the
+environment, when a value was passed to the current continuation. This is
+quite easy to fix: we modify cc to take both an environment and a
+computation, and its rules to take a snapshot of the current environment with
+it, and to recover it at invocation time:

+
syntax Val ::= cc(Map,K)
+rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k> <env> Rho </env>
+rule <k> cc(Rho,K) V:Val ~> _ =>  V ~> K </k> <env> _ => Rho </env>
+
+

Let us kompile and make sure it works with the callcc-env2.lambda program,
+which should evaluate to 3, not to 4.

+

Note that the cc value, which can be used as a computation item in the <k/>
+cell, is now quite semantic in nature, pretty much the same as the closures.

+

Let us next add one more closure-like semantic computational item, for mu.
+But before that, let us reuse the semantics of letrec in terms of mu that
+was defined in Lesson 8 of Part 1 of the tutorial on LAMBDA:

+
syntax Exp ::= "letrec" Id Id "=" Exp "in" Exp [macro]
+             | "mu" Id "." Exp                 [latex(\mu{#1}.{#2})]
+rule letrec F:Id X = E in E' => let F = mu F . lambda X . E in E'
+
+

We removed the binder annotation of mu, because it is not necessary
+anymore (since we do not work with substitutions anymore).

+

To save the number of locations needed to evaluate mu X . E, let us replace
+it with a special closure which already binds X to a fresh location holding
+the closure itself:

+
syntax Exp ::= muclosure(Map,Exp)
+
+rule <k> mu X . E => muclosure(Rho[X <- !N], E) ...</k>
+     <env> Rho </env>
+     <store>... .Map => (!N:Int |-> muclosure(Rho[X <- !N], E)) ...</store>
+
+

Since each time mu X . E is encountered during the evaluation it needs to
+evaluate E, we conclude that muclosure cannot be a value. We can declare
+it as either an expression or as a computation. Let's go with the former.

+

Finally, here is the rule unrolling the muclosure:

+

rule muclosure(Rho,E) => E ~> Rho' ...
+ Rho' => Rho

+

Note that the current environment Rho' needs to be saved before and
+restored after E is executed, because the fixed point may be invoked
+from a context with a completely different environment from the one
+in which mu X . E was declared.

+

We are done. Let us now kompile and krun factorial-letrec.lambda from
+Lesson 7 in Part 1 of the tutorial on LAMBDA. Recall that in the previous
+lesson this program generated a lot of garbage into the store, due to the
+need to allocate space for the arguments of all those lambda abstractions
+needed to run the fixed-point combinator. Now we need much fewer locations,
+essentially only locations for the argument of the factorial function, one at
+each recursive call. Anyway, much better than before.

+

In the next lesson we wrap up the environment definition of LAMBDA++ and
+generate its documentation.

+

Go to Lesson 6, LAMBDA++: Wrapping Up and Documenting LAMBDA++.

+

MOVIE (out of date) [5'19"]

+

Wrapping Up and Documenting LAMBDA++

+ +

In this lesson we wrap up and nicely document LAMBDA++. In doing so, we also
+take the freedom to reorganize the semantics a bit, to make it look better.

+

See the lambda.k file, which is self-explanatory.

+

Part 3 of the tutorial is now complete. Part 4 will teach you more features
+of the K framework, in particular how to exhaustively explore the behaviors
+of non-deterministic or concurrent programs.

+

MOVIE (out of date) [6'23"]

+

Part 4: Defining IMP++

+ +

IMP++ extends IMP, which was discussed in Part 2 of this tutorial, with several
+new syntactic constructs. Also, some existing syntax is generalized, which
+requires non-modular changes of the existing IMP semantics. For example,
+global variable declarations become local declarations and can occur
+anywhere a statement can occur. In this tutorial we will learn the following:

+
    +
  • That (and how) existing syntax/semantics may change as a language evolves.
  • +
  • How to refine configurations as a language evolves.
  • +
  • How to define and use fresh elements of desired sorts.
  • +
  • How to tag syntactic constructs and rules, and how to use such tags
    +with the superheat/supercool options of kompile.
  • +
  • How the search option of krun works.
  • +
  • How to stream cells holding semantic lists to the standard input/output,
    +and thus obtain interactive interpreters for the defined languages.
  • +
  • How to delete, save and restore cell contents.
  • +
  • How to add/delete cells dynamically.
  • +
  • More details on how the configuration abstraction mechanism works.
  • +
+

Like in the previous tutorials, this folder contains several lessons, each
+adding new features to IMP++. Do them in order and make sure you completed
+and understood the previous tutorials.

+

Extending/Changing an Existing Language Syntax

+ +

Here we learn how to extend the syntax of an existing language, both with
+new syntactic constructs and with more general uses of existing constructs.
+The latter, in particular, requires changes of the existing semantics.

+

Consider the IMP language, as defined in Lesson 4 of Part 2 of the tutorial.

+

Let us first add the new syntactic constructs, with their precedences:

+
    +
  • variable increment, ++, which increments an integer variable and
    +evaluates to the new value;
  • +
  • read, which reads and evaluates to a new integer from the input buffer;
  • +
  • print, which takes a comma-separated list of arithmetic expressions and
    +evaluates and prints each of them in order, from left to right, to the
    +output buffer; we therefore define a new list syntactic category, AExps,
    +which we pass as an argument to print; note we do not want to declare
    +print to be strict, because we do not want to first evaluate the
    +arguments and then print them (for example, if the second argument performs
    +an illegal operation, say division by zero, we still want to print the first
    +argument); we also go ahead and add strings as arithmetic expressions,
    +because we intend print to also take strings, in order to print nice
    +messages to the user;
  • +
  • halt, which abruptly terminates the program; and
  • +
  • spawn, which takes a statement and creates a new concurrent thread
    +executing it and sharing its environment with the parent thread.
  • +
+

Also, we want to allow local variable declarations, which can appear anywhere
+a statement can appear. Their scope ranges from the place they are defined
+until the end of the current block, and they can shadow previous declarations,
+both inside and outside the current block. The simplest way to define the
+syntax of the new variable declarations is as ordinary statements, at the same
+time removing the previous Pgm syntactic category and its construct.
+Programs are now just statements.

+

We are now done with adding the new syntax and modifying the old one.
+Note that the old syntax was modified in a way which makes the previous IMP
+programs still parse, but this time as statements. Let us then modify
+the configuration variable $PGM to have the sort Stmt instead of Pgm,
+and let us try to run the old IMP programs, for example sum.imp.

+

Note that they actually get stuck with the global declaration on the top
+of their computations. This is because variable declarations are now treated
+like any statements, in particular, the sequential composition rule applies.
+This makes the old IMP rule for global variable declarations not match anymore.
+We can easily fix it by replacing the anonymous variable _, which matched
+the program's statement that now turned into the remaining computation in
+the <k/> cell, with the cell frame variable ..., which matches the
+remaining computation. Similarly, we have to change the rule for the case
+where there are no variables left to declare into one that dissolves itself.

+

We can now run all the previous IMP programs, in spite of the fact that
+our IMP++ semantics is incomplete and, more interestingly, in spite of the
+fact that our current semantics of blocks is incorrect in what regards the
+semantics of local variable declarations (note that the old IMP programs do
+not declare block-local variables, which is why they still run correctly).

+

Let us also write some proper IMP++ programs, which we would like to execute
+once we give semantics to the new constructs.

+

div.imp is a program manifesting non-deterministic behaviors due to the
+desired non-deterministic evaluation strategy of division and the fact that
+expressions will have side effects once we add variable increment. We will
+be able to see all the different behaviors of this program. Challenge: can
+you identify the behavior where the program performs a division-by-zero?

+

If we run div.imp now, it will get stuck with the variable increment
+construct on top of the computation cell. Once we give it a semantics,
+div.imp will execute completely (all the other constructs in div.imp
+already have their semantics defined as part of IMP).

+

Note that some people prefer to define all their semantics in a by need
+style, that is, they first write and parse lots of programs, and then they
+add semantics to each language construct on which any of the programs gets
+stuck, and so on and so forth until they can run all the programs.

+

io.imp is a program which exercises the input/output capabilities of the
+language: reads two integers and prints three strings and an integer.
+Note that the variable declaration is not the first statement anymore.

+

sum-io.imp is an interactive variant of the sum program.

+

spawn.imp is a program which dynamically creates two threads that interact
+with the main thread via the shared variable x. Lots of behaviors will be
+seen here once we give spawn the right semantics.

+

Finally, locals.imp tests whether variable shadowing/unshadowing works well.

+

In the next lesson we will prepare the configuration for the new constructs,
+and will see what it takes to adapt the semantics to the new configuration.
+Specifically, we will split the state cell into an environment cell and a
+store cell, like in LAMBDA++ in Part 3 of the tutorial.

+

Go to Lesson 2, IMP++: Configuration Refinement; Freshness.

+

MOVIE (out of date) [07'47"]

+

Configuration Refinement; Freshness

+ +

To prepare for the semantics of threads and local variables, in this lesson we
+split the state cell into an environment and a store. The environment and
+the store will be similar to those in the definition of LAMBDA++ in Part
+3 of the Tutorial. This configuration refinement will require us to change
+some of IMP's rules, namely those that used the state.

+

To split the state map, which binds program variables to values, into an
+environment mapping program variables to locations and a store mapping
+locations to values, we replace in the configuration declaration the cell

+
<state color="red"> .Map </state>
+
+

with two cells

+
<env color="LightSkyBlue"> .Map </env>
+<store color="red"> .Map </store>
+
+

Structurally speaking, this split of a cell into other cells is a major
+semantic change, which, unfortunately, requires us to revisit the existing
+rules that used the state cell. One could, of course, argue that we could
+have avoided this problem if we had followed from the very beginning the
+good-practice style to work with an environment and a store, instead of a
+monolithic state. While that is a valid argument, highlighting the fact that
+modularity is not only a feature of the framework alone, but one should also
+follow good practices to achieve it, it is also true that if all we wanted
+in Part 2 of the tutorial was to define IMP as is, then the split of the state
+in an environment and a store is unnecessary and not really justified.

+

The first rule which used a state cell is the lookup rule:

+
rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>
+
+

We modify it as follows:

+
rule <k> X:Id => I ...</k>
+     <env>... X |-> N ...</env>
+     <store>... N |-> I ...</store>
+
+

So we first match the location N of X in the environment, then the value
+I at location N in the store, and finally we rewrite X to I into the
+computation. This rule also shows an instance of a more complex
+multiset matching, where two variables (X and N) are matched each twice.

+

The assignment rule is modified quite similarly.

+

The variable declaration rule is trickier, though, because we need to allocate
+a fresh location in the store and bind the newly declared variable to it.
+This is quite similar to the way we allocated space for variables in
+the environment-based definition of LAMBDA++ in Part 3 of the tutorial.

+
rule <k> int (X,Xs => Xs); ...</k>
+     <env> Rho => Rho[X <- !N:Int] </env>
+     <store>... .Map => !N |-> 0 ...</store>
+
+

Note the use of the fresh (!N) variable notation above. Recall from
+the LAMBDA++ tutorial that each time the rule with fresh (!) variables is
+applied, fresh elements of corresponding sorts are generated for the fresh
+variables, distinct from all the previously generated elements; also, we
+cannot and should not assume anything about the particular element that is
+being generated, except that it is different from the previous ones.

+

kompile and krun sum.imp to see how the fresh locations have been
+generated and used. There were two fresh locations needed, for the two
+variables. Note also that a cell holding the counter has been added to the
+configuration.

+

In the next lesson we will add the semantics of variable increment, and see
+how that yields non-deterministic behaviors in programs and how to explore
+those behaviors using the K tool.

+

Go to Lesson 3, IMP++: Tagging; Superheat/Supercool Kompilation Options.

+

MOVIE (out of date) [04'06"]

+

Variable increment; Search

+ +

In this lesson we add the semantics of variable increment. We also learn
+how to instruct the kompile tool to instrument the language model for
+exhaustive analysis.

+

The variable increment rule is self-explanatory:

+
rule <k> ++X => I +Int 1 ...</k>
+     <env>... X |-> N ...</env>
+     <store>... N |-> (I => I +Int 1) ...</store>
+
+

We can now run programs like our div.imp program introduced in Lesson 1.
+Do it.

+

The addition of increment makes the evaluation of expressions have side
+effects. That, in combination with the non-determinism allowed by the
+strictness attributes in how expression constructs evaluate their
+arguments, makes expressions in particular and programs in general have
+non-deterministic behaviors. One possible execution of the div.imp program
+assigns 1 to y's location, for example, but this program manifests several
+other behaviors, too.

+

To see all the (final-state) behaviors that a program can have, you can kompile
+the semantics with --enable-search and call the krun tool with the option
+--search. For example:

+
krun div.imp --search
+
+

In the next lesson we add input/output to our language and learn how to
+generate a model of it which behaves like an interactive interpreter!

+

Go to Lesson 4, IMP++: Semantic Lists; Input/Output Streaming.

+

MOVIE (out of date) [06'56"]

+

Semantic Lists; Input/Output Streaming

+ +

In this lesson we add semantics to the read and print IMP++ constructs.
+In doing so, we also learn how to use semantic lists and how to connect
+cells holding semantic lists to the standard input and standard output.
+This allows us to turn the K semantics into an interactive interpreter.

+

We start by adding two new cells to the configuration,

+
<in color="magenta"> .List </in>
+<out color="Orchid"> .List </out>
+
+

each holding a semantic list, initially empty. Semantic lists are
+space-separated sequences of items, each item being a term of the form
+ListItem(t), where t is a term of sort K. Recall that the semantic maps,
+which we use for states, environments, stores, etc., are sets of pairs
+t1 |-> t2, where t1 and t2 are terms of sort K. The ListItem wrapper
+is currently needed, to avoid parsing ambiguities.

+

Since we want the print statement to also print strings, we need to tell
+K that strings are results. To make it more interesting, let us also overload
+the + symbol on arithmetic expressions to also take strings and, as a
+result, to concatenate them. Since + is already strict, we only need to add
+a rule reducing the IMP addition of strings to the builtin operation +String
+which concatenates two strings.

+

The semantics of read is immediate: read and consumes the first integer item
+from the <in/> cell; note that our read only reads integer values (it gets
+stuck if the first item in the <in/> cell is not an integer).

+

The semantics of print is a bit trickier. Recall that print takes an
+arbitrary number of arithmetic expression arguments, and evaluates and outputs
+each of them in order, from left to right. For example,
+print("Hello", 3/0, "Bye"); outputs "Hello" and then gets stuck on the
+illegal division by zero operation. In other words, we do not want it to
+first evaluate all its arguments and then print them, because that would miss
+outputting potentially valuable information. So the first step is to evaluate
+the first argument of print. In some sense, what we'd like to say is that
+print has the evaluation strategy strict(1). However, strictness
+attributes only work with individual language constructs, while what we need
+is an evaluation strategy that involves two constructs: print and the list
+(comma) construct of AExps. If we naively associate print the strict(1)
+evaluation strategy then its first and unique argument, an AExps list, will
+be scheduled for evaluation and the execution will get stuck because we have
+no rules for evaluating AExps terms. If we make the list construct of
+AExps strict then we get the wrong semantics for print which first
+evaluates all its arguments and then outputs them. The correct way to
+tell K that print should evaluate only its first argument is by using a
+context declaration:

+
context print(HOLE:AExp, _);
+
+

Note the HOLE of sort AExp above. Contexts allow us to define finer-grain
+evaluation strategies than the strictness attributes, involving potentially
+more than one language construct, like above. The HOLE indicates the
+argument which is requested to be evaluated. For example, the strict
+attribute of division corresponds to two contexts:

+
context HOLE / _
+context _ / HOLE
+
+

In their full generality, contexts can be any terms with precisely one
+occurrence of a HOLE, and with arbitrary side conditions on any variables
+occurring in the context term as well as on the HOLE. See Part 6 of the
+tutorial for more examples.

+

Once evaluated, the first argument of print is expected to become either an
+integer or a string. Since we want to print both integers and string values,
+to avoid writing two rules, one for each type of value, we instead add a new
+syntactic category, Printable, which is the union of integers and strings.

+

Let us kompile and krun the io.imp program discussed in Lesson 1. As
+expected, it gets stuck with a read construct on top of the computation and
+with an empty <in/> cell. To run it, we need to provide some items in the
+<in/> cell, so that the rule of read can match. Let us add

+
<in> ListItem(3) ListItem(5) ListItem(7) </in>
+
+

Now, if we krun io.imp, we can see that its execution completes normally
+(the <k/> cell is empty), that the first two items have been removed by the
+two read constructs from the <in/> cell, and that the desired strings and
+numbers have been placed into the <out/> cell.

+

Cells holding semantic lists can be connected to the standard input and
+standard output buffers, and krun knows how to handle these appropriately.
+Let us connect the <in/> cell to the standard input using the cell attribute
+stream="stdin" and the <out/> cell to the standard output with the
+attribute stream="sdtout". A cell connected to the standard input will
+take its items from the standard input and block the rewriting process when
+an input is needed until an item is available in the standard input buffer.
+A cell connected to the standard output buffer will send all its items, in
+order, to the standard output.

+

Let us kompile and krun io.imp again. It prints the message and then
+waits for your input numbers. Type in two numbers, then press <Enter>.
+A message with their sum is then printed, followed by the final configuration.
+If you do not want to see the final configuration, and thus obtain a realistic
+interpreter for our language, then call krun with the option --output none:

+
krun io.imp --output none
+
+

Let us now krun our interactive sum program, which continuously reads numbers
+from the console and prints the sum of numbers up to them:

+
krun sum-io.imp
+
+

Try a few numbers, then 0. Note that the program terminated, but with junk
+in the <k/> cell, essentially with a halt statement on its top. Of course,
+because halt has been reached and it has no semantics yet.

+

In the next lesson we give the semantics of halt and also fix the semantics
+of blocks with local variable declarations.

+

Go to Lesson 5, IMP++: Deleting, Saving and Restoring Cell Contents.

+

MOVIE (out of date) [05'21"]

+

Deleting, Saving and Restoring Cell Contents

+ +

In this lesson we will see how easily we can delete, save and/or restore
+contents of cells in order to achieve the desired semantics of language
+constructs that involve abrupt changes of control or environments. We have
+seen similar or related K features in the LAMBDA++ language in Part 3 of the
+tutorial.

+

Let us start by adding semantics to the halt statement. As its name says,
+what we want is to abruptly terminate the execution of the program. Moreover,
+we want the program configuration to look as if the program terminated
+normally, with an empty computation cell. The simplest way to achieve that is
+to simply empty the computation cell when halt is encountered:

+
rule <k> halt; ~> _ => . </k>
+
+

It is important to mention the entire <k/> cell here, with both its membranes
+closed, to make sure that its entire contents is discarded. Note the
+anonymous variable, which matches the rest of the computation.

+

kompile and krun sum-io.imp. Note that unlike in Lesson 4, the program
+terminates with an empty computation cell now.

+

As mentioned earlier, the semantics of blocks that was inherited from IMP is
+wrong. Program locals.imp shows it very clearly: the environments are not
+correctly restored at block exits. One way to fix the problem is to take
+a snapshot of the current environment when a block is entered and save it
+somewhere, and then to restore it when the block is left. There are many
+ways to do this, which you can explore on your own: for example you can add
+a new list cell for this task where to push/pop the environment snapshots in
+a stack style; or you can use the existing environment cell for this purpose,
+but then you need to change the variable access rules to search through the
+stacked environments for the variable.

+

My preferred solution is to follow a style similar to how we saved/restored
+LAMBDA++ environments in Part 3 of the Tutorial, namely to use the already
+existing <k/> cell for such operations. More specifically, we place a
+reminder item in the computation whenever we need to take a snapshot of
+some cell contents; the item simply consists of the entire contents of the cell.
+Then, when the reminder item is reached, we restore the contents of the cell:

+
rule <k> {S} => S ~> Rho ...</k> <env> Rho </env>
+
+

The only thing left now is to give the definition of environment restore:

+
rule <k> Rho => . ...</k> <env> _ => Rho </env>
+
+

Done. kompile and krun locals.imp. Everything should work correctly now.
+Note that the rule above is different from the one we had for LAMBDA++ in
+Part 3 of the tutorial, in that here there is no value preceding the environment
+restoration item in the computation; that's because IMP++ statements,
+unlike LAMBDA++'s expressions, evaluate to nothing (.).

+

In the next lesson we will give semantics to the spawn S construct, which
+dynamically creates a concurrent shared-memory thread executing statement S.

+

Go to Lesson 6, IMP++: Adding/Deleting Cells Dynamically; Configuration Abstraction, Part 2.

+

MOVIE (out of date) [04'30"]

+

Adding/Deleting Cells Dynamically; Configuration Abstraction, Part 2

+ +

In this lesson we add dynamic thread creation and termination to IMP, and
+while doing so we learn how to define and use configurations whose structure
+can evolve dynamically.

+

Recall that the intended semantics of spawn S is to spawn a new concurrent
+thread that executes S. The new thread is being passed at creation time
+its parent's environment, so it can share with its parent the memory
+locations that its parent had access to at creation time. No other locations
+can be shared, and no other memory sharing mechanism is available.
+The parent and the child threads can evolve unrestricted, in particular they
+can change their environments by declaring new variables or shadowing existing
+ones, can create other threads, and so on.

+

The above suggests that each thread should have its own computation and its
+own environment. This can be elegantly achieved if we group the <k/> and
+<env/> cells in a <thread/> cell in the configuration. Since at any given
+moment during the execution of a program there could be zero, one or more
+instances of such a <thread/> cell in the configuration, it is a good idea
+to declare the <thread/> cell with multiplicity * (i.e., zero, one or more):

+
<thread multiplicity="*" color="blue">
+  <k color="green"> $PGM:Stmt </k>
+  <env color="LightSkyBlue"> .Map </env>
+</thread>
+
+

This multiplicity declaration is not necessary, but it is a good idea to do
+it for several reasons:

+
    +
  1. it may help the configuration abstraction process,
    +which may in turn significantly increase the compactness and modularity of
    +your subsequent rules;
  2. +
  3. it may help various analysis and execution tools,
    +for example static analyzers to give you error messages when you create cells
    +where you should not, or K compilers to improve performance by starting
    +actual concurrent hardware threads or processes corresponding to each cell
    +instance; and
  4. +
  5. it may help you better understand and control the dynamics
    +of your configuration, and thus your overall semantics.
  6. +
+

For good encapsulation, I also prefer to put all thread cells into one cell,
+<threads/>. This is technically unnecessary, though; to convince yourself
+that this is indeed the case, you can remove this cell once we are done with
+the semantics and everything will work without having to make any changes.

+

Before we continue, let us kompile an krun some programs that used to
+work, say sum-io.imp. In spite of the relatively radical configuration
+reorganization, those programs execute just fine! How is that possible?
+In particular, why do rules like the lookup and assignment still work,
+unchanged, in spite of the fact that the <k/> and <env/> cells are not at
+the same level with the <store/> cell in the configuration anymore?

+

Welcome to configuration abstraction, part 2. Recall that the role of
+configuration abstraction is to allow you to only write the relevant
+information in each rule, and have the compiler fill-in the obvious and boring
+details. According to the configuration that we declared for our new
+language, there is only one reasonable way to complete rules like the lookup,
+namely to place the <k/> and </env> cells inside a <thread/> cell,
+inside a <threads/> cell:

+
rule <threads>...
+       <thread>...
+         <k> X:Id => I ...</k>
+         <env>... X |-> N ...</env>
+       ...</thread>
+     ...<threads/>
+     <store>... N |-> I ...</store>  [lookup]
+
+

This is the most direct, compact and local way to complete the configuration
+context of the lookup rule. If for some reason you wanted here to match the
+<k/> cell of one thread and the <env/> cell of another thread, then you
+would need to explicitly tell K so, by mentioning the two thread cells,
+for example:

+
rule <thread>...
+         <k> X:Id => I ...</k>
+     ...</thread>
+     <thread>...
+         <env>... X |-> N ...</env>
+     ...</thread>
+     <store>... N |-> I ...</store>  [lookup]
+
+

By default, K completes rules in a greedy style. Think this way: what is the
+minimal number of changes to my rule to make it fit the declared
+configuration? That's what the K tool will do.

+

Configuration abstraction is technically unnecessary, but once you start
+using it and get a feel for how it works, it will become your best friend.
+It allows you to focus on the essentials of your semantics, and at the same
+time gives you flexibility in changing the configuration later on without
+having to touch the rules. For example, it allows you to remove the
+<threads/> cell from the configuration, if you don't like it, without
+having to touch any rule.

+

We are now ready to give the semantics of spawn:

+
rule <k> spawn S => . ...</k> <env> Rho </env>
+     (. => <thread>... <k> S </k> <env> Rho </env> ...</thread>)
+
+

Note configuration abstraction at work, again. Taking into account
+the declared configuration, and in particular the multiplicity information
+* in the <thread/> cell, the only reasonable way to complete the rule
+above is to wrap the <k/> and <env/> cells on the first line within a
+<thread/> cell, and to fill-in the ...s in the child thread with the
+default contents of the other subcells in <thread/>. In this case there
+are no other cells, so we can get rid of those ...s, but that would
+decrease the modularity of this rule: indeed, we may later on add other
+cells within <thread/> as the language evolves, for example a function
+or an exception stack, etc.

+

In theory, we should be able to write the rule above even more compactly
+and modularly, namely as

+
rule <k> spawn S => . ...</k> <env> Rho </env>
+     (. => <k> S </k> <env> Rho </env>)
+
+

Unfortunately, this currently does not work in the K tool, due to some
+known limitations of our current configuration abstraction algorithm.
+This latter rule would be more modular, because it would not even depend
+on the cell name thread. For example, we may later decide to change
+thread into agent, and we would not have to touch this rule.
+We hope this current limitation will be eliminated soon.

+

Once a thread terminates, its computation cell becomes empty. When that
+happens, we can go ahead and remove the useless thread cell:

+
rule <thread>... <k> . </k> ...</thread> => .
+
+

Let's see what we've got. kompile and krun spawn.imp.
+Note the following:

+
    +
  • The <threads/> cell is empty, so all threads terminated normally;
  • +
  • The value printed is different from the value in the store; the store value
    +is not even the one obtained if the threads executed sequentially.
  • +
+

Therefore, interesting behaviors may happen; we would like to see them all!

+
krun spawn.imp --search
+
+

However, the above does not work.

+

spawn.imp is an interactive program, which reads a number from the
+standard input. When analyzing programs exhaustively using the search option,
+krun has to disable the streaming capabilities (just think about it and you
+will realize why). The best you can do in terms of interactivity with search
+is to pipe some input to krun: krun will flush the standard input buffer
+into the cells connected to it when creating the initial configuration (will
+do that no matter whether you run it with or without the --search option).
+For example:

+
echo 23 | krun spawn.imp --search
+
+

puts 23 in the standard input buffer, which is then transferred in the
+<in/> cell as a list item, and then the exhaustive search procedure is
+invoked.

+

However, even after piping some input, the spawn.imp program outputs
+an error:

+
[Error] krun: You must pass --enable-search to kompile to be able to use krun --search with the LLVM backend
+
+

As explained in Lesson 3, by default kompile optimizes the generated
+language model for execution. In particular, it does not insert any
+backtracking markers where transition attempts should be made, so krun
+lacks the information it needs to exhaustively search the generated language
+model.

+

kompile with the search feature enabled:

+
kompile imp --enable-search
+
+

Now echo 23 | krun spawn.imp --search gives us all 12 behaviors of the
+spawn.imp program.

+

We currently have no mechanism for thread synchronization. In the next lesson
+we add a join statement, which allows a thread to wait until another completes.

+

Go to Lesson 7, IMP++: Everything Changes: Syntax, Configuration, Semantics.

+

MOVIE (out of date) [11'40"]

+

Everything Changes: Syntax, Configuration, Semantics

+ +

In this lesson we add thread joining, one of the simplest thread
+synchronization mechanisms. In doing so, we need to add unique ids
+to threads in the configuration, and to modify the syntax to allow spawn
+to return the id of the newly created thread. This gives us an opportunity
+to make several other small syntactic and semantics changes to the language,
+which make it more powerful or more compact at a rather low cost.

+

Before we start, let us first copy and modify the previous spawn.imp program
+from Lesson 1 to make use of thread joining. Recall from Lesson 6 that in some
+runs of this program the main thread completed before the child threads,
+printing a possibly undesired value of x. What we want now is to assign
+unique ids to the two spawned threads, and then to modify the main thread to
+join the two child threads before printing. To avoid adding a new type to
+the language, let's assume that thread ids are integer numbers. So we declare
+two integers, t1 and t2, and assign them the two spawn commands. In order
+for this to parse, we will have to change the syntax of spawn to be an
+arithmetic expression construct instead of a statement. Once we do that,
+we have a slight syntactic annoyance: we need to put two consecutive ;
+after the spawn assignment, one for the assignment statement inside the spawn,
+and another for the outer assignment. To avoid the two consecutive semicolons,
+we can syntactically enforce spawn to take a block as argument, instead of a
+statement. Now it looks better. The new spawn.imp program is still
+non-deterministic, because the two threads can execute in any order and even
+continue to have a data-race on the shared variable x, but we should see fewer
+behaviors when we use the join statements. If we want to fully synchronize
+this program, we can have the second thread start with a join(t1) statement.
+Then we should only see one behavior for this program.

+

Let us now modify the language semantics. First, we move the spawn
+construct from statements to expressions, and make it take a block.
+Second, we add one more sub-cell to the thread cell in the configuration,
+<id/>, to hold the unique identifier of the thread. We want the main
+thread to have id 0, so we initialize this cell with 0. Third, we modify
+the spawn rule to generate a fresh integer identifier, which is put in the
+<id/> cell of the child thread and returned as a result of spawn in the
+parent thread. Fourth, let us add the join statement to the language,
+both syntactically and semantically. So in order for the join(T) statement
+to execute, thread T must have its computation empty. However, in order
+for this to work we have to get rid of the thread termination cleanup rule.
+Indeed, we need to store somewhere the information that thread T terminated;
+the simplest way to do it is to not remove the terminated threads. Feel free
+to experiment with other possibilities, too, here. For example, you may add
+another cell, <done/>, in which you can store all the thread ids of the
+terminated and garbage-collected threads.

+

Let us now kompile imp.k and convince ourselves that the new spawn.imp
+with join statements indeed has fewer behaviors than its variant without
+join statements. Also, let us convince ourselves that the fully synchronized
+variant of it indeed has only one behavior.

+

Note that now spawn, like variable increment, makes the evaluation of
+expressions to have side effects. Many programming languages in fact allow
+expressions to be evaluated only for their side effects, and not for their
+value. This is typically done by simply adding a ; after the expression
+and thus turning it into a statement. For example, ++x;. Let as also
+allow arithmetic expressions in our language to be used as statements, by
+simply adding the production AExp ";" to Stmt, with evaluation strategy
+strict and with the expected semantics discarding the value of the AExp.

+

Another simple change in syntax and semantics which gives our language more
+power, is to remove the ; from the syntax of variable assignments and to make
+them expression instead of statement constructs. This change, combined with
+the previous one, will still allow us to parse all the programs that we could
+parse before, but will also allow us to parse more programs. For example, we
+can now do sequence assignments like in C: x = y = z = 0. The semantics
+of assignment now has to return the assigned value also to the computation,
+because we want the assignment expression to evaluate to the assigned value.

+

Let us also make another change, but this time one which only makes the
+definition more compact. Instead of defining statement sequential
+composition as a binary construct for statements, let us define a new
+syntactic construct, Stmts, as whitespace-separated lists of Stmt. This
+allows us to get rid of the empty blocks, because we can change the syntax of
+blocks to {Stmts} and Stmts also allows the empty sequence of statements.
+However, we do have to make sure that .Stmts dissolves.

+

In general, unless you are defining a well-established programming language,
+it is quite likely that your definitions will suffer lots of changes like the
+ones seen in this lecture. You add a new construct, which suggests changes
+in the existing syntax making in fact your language parse more programs,
+which then requires corresponding changes in the semantics, and so on.
+Also, compact definitions are desirable in general, because they are easier
+to read and easier to change if needed later.

+

In the next lesson we wrap up and document the definition of IMP++.

+

Go to Lesson 8, IMP++: Wrapping up Larger Languages.

+

Wrapping up Larger Languages

+ +

In this lesson we wrap up IMP++'s semantics and also generate its poster.
+While doing so, we also learn how to display larger configurations in order
+to make them easier to read and print.

+

Note that we rearrange a bit the semantics, to group the semantics of old
+IMP's constructs together, and separate it from the new IMP++'s semantics.

+

You can go even further and manually edit the generated Latex document.
+You typically want to do that when you want to publish your language
+definition, or parts of it, and you need to finely tune it to fit the
+editing requirements. For example, you may want to insert some negative
+spaces, etc.

+

Part 4 of the tutorial is now complete. At this moment you should know most
+of K framework's features and how to use the K tool. You can now define or
+design your own programming languages, and then execute and analyze programs.

+

MOVIE (out of date) [06'26"]

+

Part 5: Defining Type Systems

+ +

In this part of the tutorial we will show that defining type systems for
+languages is essentially no different from defining semantics. The major
+difference is that programs and fragments of programs now rewrite to their
+types, instead of to concrete values. In terms of K, we will learn how
+to use it for a certain particular but important kind of applications.

+

Imperative, Environment-Based Type Systems

+ +

In this lesson you learn how to define a type system for an imperative
+language (the IMP++ language defined in Part 4 of the tutorial), using a style
+based on type environments.

+

Let us copy the imp.k file from Part 4 of the tutorial, Lesson 7, which holds
+the semantics of IMP++, and modify it into a type system. The resulting type
+system, when executed, yields a type checker.

+

We start by defining the new strictness attributes of the IMP++ syntax.
+While doing so, remember that programs and fragments of programs now reduce
+to their types. So types will be the new results of our new (type) semantics.
+We also clean up the semantics by removing the unnecessary tags, and also
+use strict instead of seqstrict wherever possible, because strict gives
+implementations more freedom. Interestingly, note that spawn is strict now,
+because the code of the child thread should type in the current parent's type
+environment. Note that this is not always the case for threads, see for example
+SIMPLE in the languages tutorial, but it works here for our simpler IMP++.

+

From a typing perspective, the && construct is strict in both its arguments;
+its short-circuit (concrete) semantics is irrelevant for its (static) type
+system. Similarly, both the conditional and the while loop are strict
+constructs when regarded through the typing lenses.

+

Finally, the sequential composition is now sequentially strict! Indeed,
+statements are now going to reduce to their type, stmt, and it is critical
+for sequential composition to type its argument statements left-to-right;
+for example, imagine that the second argument is a variable declaration (whose
+type semantics will modify the type environment).

+

We continue by defining the new results of computations, that is, the actual
+types. In this simple imperative language, we only have a few constant types:
+int, bool, string, block and stmt.

+

We next define the new configuration, which is actually quite simple. Besides
+the <k/> cell, all we need is a type environment cell, <tenv/>, which will
+hold a map from identifiers to their types. A type environment is therefore
+like a state in the abstract domain of type values.

+

Let us next modify the semantic rules, turning them into a type system. In
+short, the idea is to reduce the basic values to their types, and then have a
+rule for each language construct reducing it to its result type whenever its
+arguments have the expected types.

+

We write the rules in the order given by the syntax declarations, to make
+sure we do not forget any construct.

+

Integers reduce to their type, int.

+

So do the strings.

+

Variables are now looked up in the type environment and reduced to their type
+there. Since we only declare integer variables in IMP++, their type in tenv
+will always be int. Nevertheless, we write the rule generically, so that we
+would not have to change it later if we add other type declarations to IMP++.
+Note that we reject programs which lookup undeclared variables. Rejection,
+in this case, means rewriting getting stuck.

+

Variable increment types to int, provided the variable has type int.

+

Read types to int, because we only allow integer input.

+

Division is only allowed on integers, so it rewrites to int provided that its
+arguments rewrite to int. Note, however, that in order to write int / int,
+we have to explicitly add int to the syntax of arithmetic expressions.
+Otherwise, the K parser rightfully complains, because / was declared on
+arithmetic expressions, not on types. One simple and generic way to allow
+types to appear anywhere, is to define Type as a syntactic subcategory of all
+the other syntactic categories. Let's do it on a by-need basis, though.

+

Addition is overloaded, so we add two typing rules for it: one for integers
+and another for strings.

+

As discussed, spawn types to stmt provided that its argument types to
+block.

+

The assignment construct was strict(2); its typing policy is that the declared
+type of X should be identical to the type of the assigned value. Like for
+lookup, we define this rule more generically than needed for IMP++, for any
+type, not only for int.

+

The typing rules for Boolean expression constructs are in the same spirit.
+Note that we need only one rule for &&.

+

The typing of blocks is a bit trickier. First, note that we still need to
+recover the environment after the block is typed, because we do not want the
+block-local variables to be visible in the outer type environment. We recover
+the type environment only after the block-enclosed statements type; moreover,
+we also opportunistically yield a block type on the computation when we
+discard the type environment recovery item. To account for the fact that the
+block-enclosed statement can itself be a block (e.g., {{S}}), we would need an
+additional rule. Since we do not like repetition, we instead group the types
+block and stmt into one syntactic category, BlockOrStmtType, and now we
+can have only one rule. We also include BlockOrStmtType in Type, as a
+replacement for the two basic types.

+

The expression statement types as expected. Recall that we only allow
+arithmetic expressions, which type to int, to be used as statements in IMP++.

+

The conditional was declared strict in all its arguments. Its typing policy
+is that its first argument types to bool and its two branches to block.
+If that is the case, then it yields a stmt type.

+

For while, its first argument should type to bool and its second to block.

+

Variable declarations add new bindings to the type environment. Recall that
+we can only declare variables of integer type in IMP++.

+

The typing policy of print is that it can only print integer or string values,
+and in that case it types to stmt. Like for BlockOrStmtType, to avoid
+having two similar rules, one for int and another for string, we prefer to
+introduce an additional syntactic category, PrintableType, which includes both
+int and string types.

+

halt types to stmt; so its subsequent code is also typed.

+

join types to stmt, provided that its argument types to int.

+

Sequential composition was declared as a whitespace-separated sequentially
+strict list. Its typing policy is that all the statements in the list should
+type to stmt or block in order for the list to type to stmt. Since
+lists are maintained internally as cons-lists, this is probably the simplest
+way to do it:

+
rule .Stmts => stmt
+rule _:BlockOrStmtType Ss => Ss
+
+

Note that the first rule, which types the empty sequence of statements to stmt,
+is needed anyway, to type empty blocks {} (together with the block rule).

+

kompile imp.k and krun all the programs in Part 4 of the tutorial. They
+should all type to stmt.

+

In the next lesson we will define a substitution-based type system for LAMBDA.

+

Go to Lesson 2, Type Systems: Substitution-Based Higher-Order Type Systems.

+

MOVIE (out of date) [10'11"]

+

Substitution-Based Higher-Order Type Systems

+ +

In this lesson you learn how to define a substitution-based type system for
+a higher-order language, namely the LAMBDA language defined in Part 1 of the
+tutorial.

+

Let us copy the definition of LAMBDA from Part 1 of the tutorial, Lesson 8.
+We are going to modify it into a type systems for LAMBDA.

+

Before we start, it is important to clarify an important detail, namely that
+our type system will yield a type checker when executed, not a type
+inferencer. In particular, we are going to change the LAMBDA syntax
+to allow us to associate a type to each declared variable. The
+constructs which declare variables are lambda, let, letrec and mu.
+The syntax of all these will therefore change.

+

Since here we are not interested in a LAMBDA semantics anymore, we take the
+freedom to eliminate the Val syntactic category, our previous results.
+Our new results are going to be the types, because programs will now reduce
+to their types.

+

As explained, the syntax of the lambda construct needs to change, to also
+declare the type of the variable that it binds. We add the new syntactic
+category Type, with the following constructs: int, bool, the function
+type (which gives it its higher-order status), and parentheses as bracket.
+Also, we make types our K results.

+

We are now ready to define the typing rules.

+

Let us start with the typing rule for lambda abstraction: lambda X : T . E
+types to the function type T -> T', where T' is the type obtained by further
+typing E[T/X]. This can be elegantly achieved by reducing the lambda
+abstraction to T -> E[T/X], provided that we extend the function type construct
+to take expressions, not only types, as arguments, and to be strict.
+This can be easily achieved by redeclaring it as a strict expression construct
+(strictness in the second argument would suffice in this example, but it is
+more uniform to define it strict overall).

+

The typing rule for application is as simple as it can get: (T1->T2) T1 => T2.

+

Let us now give the typing rules of arithmetic and Boolean expression
+constructs. First, let us get rid of Val. Second, rewrite each value to its
+type, similarly to the type system for IMP++ in the previous lesson. Third,
+replace each semantic rule by its typing rule. Fourth, make sure you
+do not forget to subsort Type to Exp, so your rules above will parse.

+

The typing policy of the conditional statement is that its first argument
+should type to bool and its other two arguments should type to the same type
+T, which will also be the result type of the conditional. So we make the
+conditional construct strict in all its three arguments and we write the
+obvious rule: if bool then T:Type else T => T. We want a runtime check that
+the latter arguments are actually typed, so we write T:Type.

+

There is nothing special about let, except that we have to make sure we
+change its syntax to account for the type of the variable that it binds.
+This rule is a macro, so the let is desugared statically.

+

Similarly, the syntax of letrec and mu needs to change to account for the
+type of the variable that they bind. The typing of letrec remains based on
+its desugaring to mu; we have to make sure the types are also included now.

+

The typing policy of mu is that its body should type to the same type T of
+its variable, which is also the type of the entire mu expression. This can
+be elegantly achieved by rewriting it to (T -> T) E[T/X]. Recall that
+application is strict, so E[T/X] will be eventually reduced to its type.
+Then the application types correctly only if that type is also T, and in
+that case the result type will also be T.

+

kompile and krun some programs. You can, for example, take the LAMBDA
+programs from the first tutorial, modify them by adding types to their
+variable declarations, and then type check them using krun.

+

In the next lesson we will discuss an environment-based type system
+for LAMBDA.

+

Go to Lesson 3, Type Systems: Environment-Based Higher-Order Type Systems.

+

MOVIE (out of date) [6'52"]

+

Environment-Based Higher-Order Type Systems

+ +

In this lesson you learn how to define an environment-based type system for
+a higher-order language, namely the LAMBDA language defined in Part 1 of the
+tutorial.

+

The simplest and fastest way to proceed is to copy the substitution-based
+type system of LAMBDA from the previous lesson and modify it into an
+environment-based one. A large portion of the substitution-based definition
+will remain unchanged. We only have to modify the rules that use
+substitution.

+

We do not need the substitution anymore, so we can remove the require and
+import statements. The syntax of types and expressions stays unchanged, but
+we can now remove the binder tag of lambda.

+

Like in the type system of IMP++ in Lesson 1, we need a configuration that
+contains, besides the <k/> cell, a <tenv/> cell that will hold the type
+environment.

+

In an environment-based definition, unlike in a substitution-based one, we
+need to lookup variables in the environment. So let us start with the
+type lookup rule:

+
rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</k>
+
+

The type environment is populated by the semantic rule of lambda:

+
rule <k> lambda X : T . E => (T -> E) ~> Rho ...</k>
+     <tenv> Rho => Rho[X <- T] </tenv>
+
+

So X is bound to its type T in the type environment, and then T -> E
+is scheduled for processing. Recall that the arrow type construct has been
+extended into a strict expression construct, so E will be eventually reduced
+to its type. Like in other environment-based definitions, we need to make
+sure that we recover the type environment after the computation in the scope
+of the declared variable terminates.

+

The typing rule of application does not change, so it stays as elegant as it
+was in the substitution-based definition:

+
rule (T1 -> T2) T1 => T2
+
+

So do the rules for arithmetic and Boolean constructs, and those for the
+if, and let, and letrec.

+

The mu rule needs to change, because it was previously defined using
+substitution. We modify it in the same spirit as we modified the lambda
+rule: bind X to its type in the environment, schedule its body for typing
+in its right context, and then recover the type environment.

+

Finally, we give the semantics of environment recovery, making sure
+the environment is recovered only after the preceding computation is
+reduced to a type:

+

rule _:Type ~> (Rho => .) ... _ => Rho

+

The changes that we applied to the substitution-based definition were
+therefore quite systematic: each substitution invocation was replaced with
+an appropriate type environment update/recovery.

+

Go to Lesson 4, Type Systems: A Naive Substitution-Based Type Inferencer.

+

A Naive Substitution-Based Type Inferencer

+ +

In this lesson you learn how to define a naive substitution-based type
+inferencer for a higher-order language, namely the LAMBDA language
+defined in Part 1 of the tutorial.

+

Unlike in the type checker defined in Lessons 2 and 3, where we had to
+associate a type with each declared variable, a type inferencer
+attempts to infer the types of all the variables from the way those
+variables are used. Let us take a look at this program, say plus.lambda:

+
lambda x . lambda y . x + y
+
+

Since x and y are used in an integer addition context, we can infer
+that they must have the type int and the result of the addition is
+also an int, so the type of the entire expression is int -> int -> int.
+Similarly, the program if.lambda

+
lambda x . lambda y . lambda z .
+  if x then y else z
+
+

can only make sense when x has type bool and y and z have the same
+type, say t, in which case the type of the entire expression is
+bool -> t -> t -> t. Since the type t can be anything, we say that
+the type of this expression is polymorphic. That means that the code
+above can be used in different contexts, where t can be an int, a
+bool, a function type int -> int, and so on.

+

In the identity.lambda program

+
let f = lambda x . x
+in f 1
+
+

f has such a polymorphic type, which is then applied to an integer,
+so this program is type-safe and its type is int.

+

A typical polymorphic expression is the composition

+
lambda f . lambda g . lambda x .
+  g (f x)
+
+

which has the type (t1 -> t2) -> (t2 -> t3) -> (t1 -> t3), polymorphic
+in 3 types.

+

Let us now define our naive type inferencer and then we discuss more
+examples. The idea is quite simple: we conceptually do the same
+operations like we did within the type checker defined in Lesson 2,
+with two important differences:

+
    +
  1. instead of declaring a type with each declared variable, we assume
    +a fresh type for that variable; and
  2. +
  3. instead of checking that the types of expressions satisfy the
    +type properties of the context in which they are used, we impose
    +those properties as type equality constraints. A general-purpose
    +unification-based constraint solving mechanism is then used to solve
    +the generated type constraints.
  4. +
+

Let us start with the syntax, which is essentially identical to that
+of the type checker in Lesson 2, except that bound variables are not
+declared a type anymore. Also, to keep things more compact, we put
+all the Exp syntax declarations in one syntax declaration this time.

+

Before we modify the rules, let us first define our machinery for
+adding and solving constraints. First, we require and import the
+unification procedure. We do not discuss unification here, but if you
+are interested you can consult the unification.k files under
+k-distribution/include/kframework/builtin, which contains our current generic
+definition of unification, which is written also in K. The generic unification
+provides a sort, Mgu, for most-general-unifier, an operation
+updateMgu(Mgu,T1,T2) which updates Mgu with additional constraints
+generated by forcing the terms T1 and T2 to be equal, and an operation
+applyMgu(Mgu,T) which applies Mgu to term T. For our use
+of unification here, we do not even need to know how Mgu terms are
+represented internally.

+

We define a K item construct, =, which takes two Type terms and
+enforces them to be equal by means of updating the current Mgu.
+Once the constraints are added to the Mgu, the equality dissolves
+itself. With this semantics of = in mind, we can now go ahead and
+modify the rules of the type checker systematically into rules
+for a type inferencer. The changes are self-explanatory and
+mechanical: for example, the rule

+
rule int * int => int
+
+

changes into rule

+
rule T1:Type  * T2:Type => T1 = int ~> T2 = int ~> int
+
+

generating the constraints that the two arguments of multiplication
+have the type int, and the result type is int. Recall that each type
+equality on the <k/> cell updates the current Mgu appropriately and
+then dissolves itself; thus, the above says that after imposing the
+constraints T1=int and T2=int, multiplication yields a type int.

+

As mentioned above, since types of variables are not declared anymore,
+but inferred, we have to generate a fresh type for each variable at its
+declaration time, and then generate appropriately constraints for it.
+For example, the type semantics of lambda and mu become:

+
rule lambda X . E => T -> E[T/X]  when fresh(T:Type)
+rule mu X . E => (T -> T) E[T/X]  when fresh(T:Type)
+
+

that is, we add a condition stating that the previously declared type
+is now a fresh one. This type will be further constrained by how the
+variable X is being used within E.

+

Interestingly, the previous typing rule for lambda application is not
+powerful enough anymore. Indeed, since types are not given anymore,
+it may very well be the case that the inferred type of the first
+argument of the application construct is not yet a function type
+(remember, for example, the program composition.lambda above). What
+we have to do is to enforce it to be a function type, by means of
+fresh types and constraints. We can introduce a fresh type for the
+result of the application, and then write the expected rule as
+follows:

+
rule T1:Type T2:Type => T1 = (T2 -> T) ~> T  when fresh(T:Type)
+
+

The conditional requires that its first argument is a bool and its
+second and third arguments have the same type, which is also the
+result type.

+

The macros do not change, in particular let is desugared into lambda
+application. We will next see that this is a significant restriction,
+because it limits the polymorphism of our type system.

+

We are done. We have a working type inferencer for LAMBDA.

+

Let's kompile it and krun the programs above. They all work as
+expected. Let us also try some additional programs, to push it to its
+limits.

+

First, let us test mu by means of a letrec example:

+
letrec f x = 3
+in f
+
+

We can also try all the programs that we had in our first tutorial, on
+lambda, for example the factorial.imp program:

+
letrec f x = if x <= 1 then 1 else (x * (f (x + -1)))
+in (f 10)
+
+

Those programs are simple enough that they should all work as
+expected with our naive type inferencer here.

+

Let us next try to type some tricky programs, which involve more
+complex and indirect type constraints.

+

tricky-1.lambda:

+
lambda f . lambda x . lambda y . (
+  (f x y) + x + (let x = y in x)
+)
+
+

tricky-2.lambda:

+
lambda x .
+  let f = lambda y . if true then y else x
+  in (lambda x . f 0)
+
+

tricky-3.lambda:

+
lambda x . let f = lambda y . if true then x 7 else x y
+           in f
+
+

tricky-4.lambda:

+
lambda x . let f = lambda x . x
+           in let d = (f x) + 1
+              in x
+
+

tricky-5.lambda:

+
lambda x . let f = lambda y . x y
+           in let z = x 0 in f
+
+

It is now time to see the limitations of this naive type inferencer.
+Consider the program

+
let id = lambda x . x
+in if (id true) then (id 1) else (id 2)
+
+

Our type inferencer fails graciously with a clash in the <mgu/> cell
+between int and bool. Indeed, the desugaring macro of let turns it
+into a lambda and an application, which further enforce id to have a
+type of the form t -> t for some fresh type t. The first use of id
+in the condition of if will then constrain t to be bool, while the
+other uses in the two branches will enforce t to be int. Thus the
+clash in the <mgu/> cell.

+

Similarly, the program

+
let id = lambda x . x
+in id id
+
+

yields a different kind of conflict: if id has type t -> t, in order
+to apply id to itself it must be the case that its argument, t, equals
+t -> t. These two type terms cannot be unified because there is a
+circular dependence on t, so we get a cycle in the <mgu/> cell.

+

Both limitations above will be solved when we change the semantics of
+let later on, to account for the desired polymorphism.

+

Before we conclude this lesson, let us see one more interesting
+example, where the lack of let-polymorphism leads not to a type error,
+but to a less generic type:

+
let f1 = lambda x . x in
+  let f2 = f1 in
+    let f3 = f2 in
+      let f4 = f3 in
+        let f5 = f4 in
+          if (f5 true) then f2 else f3
+
+

Our current type inferencer will infer the type bool -> bool for the
+program above. Nevertheless, since all functions f1, f2, f3, f4, f5
+are the identity function, which is polymorphic, we would expect the
+entire program to type to the same polymorphic identity function type.

+

This limitation will be also addressed when we define our
+let-polymorphic type inferencer.

+

Before that, in the next lesson we will show how easily we can turn
+the naive substitution-based type inferencer discussed in this lesson
+into a similarly naive, but environment-based type inferencer.

+

Go to Lesson 5, Type Systems: A Naive Environment-Based Type Inferencer.

+

A Naive Environment-Based Type Inferencer

+ +

In this lesson you learn how to define a naive environment-based type
+inferencer for a higher-order language. Specifically, we take the
+substitution-based type inferencer for LAMBDA defined in Lesson 4 and
+turn it into an environment-based one.

+

Recall from Lesson 3, where we defined an environment-based type
+checker for LAMBDA based on the substitution-based one in Lesson 2,
+that the transition from a substitution-based definition to an
+environment-based one was quite systematic and mechanical: each
+substitution occurrence E[T/X] is replaced by E, but at the same time
+the variable X is bound to type T in the type environment. One benefit
+of using type environments instead of substitution is that we replace
+a linear complexity operation (the substitution) with a constant
+complexity one (the variable lookup).

+

There is not much left to say which has not been already said in
+Lesson 3: we remove the unnecessary binder annotations for the
+variable binding operations, then add a <tenv/> cell to the
+configuration to hold the type environment, then add a new rule for
+variable lookup, and finally apply the transformation of substitutions
+E[T/X] into E as explained above.

+

The resulting type inferencer should now work exactly the same way as
+the substitution-based one, except, of course, that the resulting
+configurations will contain a <tenv/> cell now.

+

As sanity check, let us consider two more LAMBDA programs that test
+the static scoping nature of the inferencer. We do that because
+faulty environment-based definitions often have this problem. The
+program

+
let x = 1
+in let f = lambda a . x
+   in let x = true
+      in f 3
+
+

should type to int, not to bool, and so it does. Similarly, the
+program

+
let y = 0
+in letrec f x = if x <= 0
+                then y
+                else let y = true
+                     in f (x + 1)
+   in f 1
+
+

should also type to int, not bool, and so it does, too.

+

The type inferencer defined in this lesson has the same limitations,
+in terms of polymorphism, as the one in Lesson 4. In the next
+lesson we will see how it can be parallelized, and in further lessons
+how to make it polymorphic.

+

Go to Lesson 6, Type Systems: Parallel Type Checkers/Inferencers.

+

Parallel Type Checkers/Inferencers

+ +

In this lesson you learn how to define parallel type checkers or
+inferencers. For the sake of a choice, we will parallelize the one in
+the previous lesson, but the ideas are general. We are using the same
+idea to define type checkers for other languages in the K tool
+distribution, such as SIMPLE and KOOL.

+

The idea is in fact quite simple. Instead of one monolithic typing
+task, we generate many smaller tasks, which can be processed in
+parallel. We use the same approach to define parallel semantics as we
+used for threads in IMP++ in Part 4 of the tutorial, that is, we add a
+cell holding all the parallel tasks, making sure we declare the cell
+holding a task with multiplicity *. For the particular type
+inferencer that we chose here, the one in Lesson 5, each task will
+hold an expression to type together with a type environment (so it
+knows where to lookup its free variables). We have the following
+configuration then:

+
configuration <tasks color="yellow">
+                <task color="orange" multiplicity="*">
+                  <k color="green"> $PGM:Exp </k>
+                  <tenv color="red"> .Map </tenv>
+                </task>
+              </tasks>
+              <mgu color="blue"> .Mgu </mgu>
+
+

Now we have to take each typing rule we had before and change it to
+yield parallel typing. For example, our rule for typing
+multiplication was the following in Lesson 5:

+
rule T1:Type * T2:Type => T1 = int ~> T2 = int ~> int
+
+

Since * was strict, its two arguments eventually type, and once that
+happens the rule above fires. Unfortunately, the strictness of
+multiplication makes the typing of the two expressions sequential in
+our previous definition. To avoid typing the two expressions
+sequentially and instead generating two parallel tasks, we remove the
+strict attribute of multiplication and replace the rule above with the
+following:

+
rule <k> E1 * E2 => int ...</k> <tenv> Rho </tenv>
+     (. => <task> <k> E1 = int </k> <tenv> Rho </tenv> </task>
+           <task> <k> E2 = int </k> <tenv> Rho </tenv> </task>)
+
+

Therefore, we generate two tasks for typing E1 and E2 in the same type
+environment as the current task, and let the current task continue by
+simply optimistically reducing E1*E2 to its expected result type, int.
+If E1 or E2 will not type to int, then either their corresponding
+tasks will get stuck or the <mgu/> cell will result into a clash or cycle,
+so the program will not type overall in spite of the fact that we
+allowed the task containing the multiplication to continue. This is
+how we get maximum of parallelism in this case.

+

Before we continue, note that the new tasks hold equalities in them,
+where one of its arguments is an expression, while previously the
+equality construct was declared to take types. What we want now is
+for the equality construct to possibly take any expressions, and first
+type them and then generate the type constraint like before. This can
+be done very easily by just extending the equality construct to
+expressions and declaring it strict:

+
syntax KItem ::= Exp "=" Exp  [strict]
+
+

Unlike before, where we only passed types to the equality construct,
+we now need a runtime check that its arguments are indeed types before
+we can generate the updateMgu command:

+
rule <k> T:Type = T':Type => . ...</k>
+     <mgu> Theta:Mgu => updateMgu(Theta,T,T') </mgu>
+
+

Like before, an equality will therefore update the <mgu/> cell and then
+it dissolves itself, letting the <k/> cell in the corresponding task
+empty. Such empty tasks are unnecessary, so they can be erased:

+
rule <task>... <k> . </k> ...</task> => .
+
+

We can now follow the same style as for multiplication to write the
+parallel typing rules of the other arithmetic constructs, and even for
+the conditional.

+

To parallelize the typing of lambda we generate two fresh types, one
+for the variable and one for the body, and make sure that we generate
+the correct type constraint and environment in the body task:

+
rule <k> lambda X . E => Tx -> Te ...</k> <tenv> TEnv </tenv>
+     (. => <task> <k> E = Te </k> <tenv> TEnv[Tx/X] </tenv> </task>)
+  when fresh(Tx:Type) andBool fresh(Te:Type)
+
+

Note that the above also allows us to not need to change and then
+recover the environment of the current cell.

+

For function application we also need to generate two fresh types:

+
rule <k> E1 E2 => T ...</k> <tenv> Rho </tenv>
+     (. => <task> <k> E1 = T2 -> T </k> <tenv> Rho </tenv> </task>
+           <task> <k> E2 = T2 </k> <tenv> Rho </tenv> </task>)
+  when fresh(T2:Type) andBool fresh(T:Type)
+
+

The only rule left is that of mu X . E. In this case we only need one
+fresh type, because X, E and mu X . E have all the same type:

+
rule <k> mu X . E => T ...</k>  <tenv> TEnv </tenv>
+     (. => <task> <k> E = T </k> <tenv> TEnv[T/X] </tenv> </task>)
+  when fresh(T:Type)
+
+

We do not need the type environment recovery operation, so we delete it.

+

We can now kompile and krun all the programs that we typed in Lesson 5.
+Everything should work.

+

In this lesson we only aimed at parallelizing the type inferencer in
+Lesson 5, not to improve its expressiveness; it still has the same
+limitations in terms of polymorphism. The next lessons are dedicated
+to polymorphic type inferencers.

+

Go to Lesson 7, Type Systems: A Naive Substitution-based Polymorphic Type Inferencer.

+

A Naive Substitution-based Polymorphic Type Inferencer

+ +

In this lesson you learn how little it takes to turn a naive monomorphic
+type inferencer into a naive polymorphic one, basically only changing
+a few characters. In terms of the K framework, you will learn that
+you can have complex combinations of substitutions in K, both over
+expressions and over types.

+

Let us start directly with the change. All we have to do is to take
+the LAMBDA type inferencer in Lesson 4 and only change the macro

+
rule let X = E in E' => (lambda X . E') E  [macro]
+
+

as follows:

+
rule let X = E in E' => E'[E/X]  [macro]
+
+

In other words, we are inlining the beta-reduction rule of
+lambda-calculus within the original rule. In terms of typing,
+the above forces the type inferencer to type E in place for each
+occurrence of X in E'. Unlike in the first rule, where X had to get
+one type only which satisfied the constrains of all X's occurrences in
+E', we now never associate any type to X anymore.

+

Let us kompile and krun some examples. Everything that worked with
+the type inferencer in Lesson 4 should still work here, although the
+types of some programs can now be more general. For example, reconsider
+the nested-lets.lambda program

+
let f1 = lambda x . x in
+  let f2 = f1 in
+    let f3 = f2 in
+      let f4 = f3 in
+        let f5 = f4 in
+          if (f5 true) then f2 else f3
+
+

which was previously typed to bool -> bool. With the new rule above,
+the sequence of lets is iteratively eliminated and we end up with the
+program

+
if (lambda x . x) true then (lambda x . x) else (lambda x . x)
+
+

which now types (with both type inferencers) to a type of the form
+t -> t, for some type variable t, which is more general than the
+previous bool -> bool type that the program typed to in Lesson 4.

+

We can also now type programs that were not typable before, such as

+
let id = lambda x . x
+in if (id true) then (id 1) else (id 2)
+
+

and

+
let id = lambda x . x
+in id id
+
+

Let us also test it on some trickier programs, also not typable
+before, such as

+
let f = lambda x . x
+in let g = lambda y . f y
+   in g g
+
+

which gives us a type of the form t -> t for some type variable t,
+and as

+
let f = let g = lambda x . x
+        in let h = lambda x . lambda x . (g g g g)
+           in h
+in f
+
+

which types to t1 -> t2 -> t3 -> t3 for some type variables t1, t2, t3.

+

Here is another program which was not typable before, which is
+trickier than the others above in that a lambda-bound variable appears
+free in a let-bound expression:

+
lambda x . (
+  let y = lambda z . x
+  in if (y true) then (y 1) else (y (lambda x . x))
+)
+
+

The above presents no problem now, because once lambda z . x gets
+substituted for y we get a well-typed expression which yields that x
+has the type bool, so the entire expression types to bool -> bool.

+

The cheap type inferencer that we obtained above therefore works as
+expected. However, it has two problems which justify a more advanced
+solution. First, substitution is typically considered an elegant
+mathematical instrument which is not too practical in implementations,
+so an implementation of this type inferencer will likely be based on
+type environments anyway. Additionally, we mix two kinds of
+substitutions in this definition, one where we substitute types and
+another where we substitute expressions, which can only make things
+harder to implement efficiently. Second, our naive substitution of E
+for X in E' can yield an exponential explosion in size of the original
+program. Consider, for example, the following classic example which
+is known to generate a type whose size is exponential in the size of
+the program (and is thus used as an argument for why let-polymorphic
+type inference is exponential in the worst-case):

+
let f00 = lambda x . lambda y . x in
+  let f01 = lambda x . f00 (f00 x) in
+    let f02 = lambda x . f01 (f01 x) in
+      let f03 = lambda x . f02 (f02 x) in
+        let f04 = lambda x . f03 (f03 x) in
+          // ... you can add more nested lets here
+          f04
+
+

The particular instance of the pattern above generates a type which
+has 17 type variables! The desugaring of each let doubles the size of
+the program and of its resulting type. While such programs are little
+likely to appear in practice, it is often the case that functions can
+be quite complex and large while their type can be quite simple in the
+end, so we should simply avoid retyping each function each time it is
+used.

+

This is precisely what we will do next. Before we present the classic
+let-polymorphic type inferencer in Lesson 9, which is based on
+environments, we first quickly discuss in Lesson 8 an intermediate
+step, namely a naive environment-based variant of the inferencer
+defined here.

+

Go to Lesson 8, Type Systems: A Naive Environment-based Polymorphic Type Inferencer.

+

A Naive Environment-based Polymorphic Type Inferencer

+ +

In this short lesson we discuss how to quickly turn a naive
+environment-based monomorphic type inferencer into a naive let-polymorphic
+one. Like in the previous lesson, we only need to change a few
+characters. In terms of the K framework, you will learn how to have
+both environments and substitution in the same definition.

+

Like in the previous lesson, all we have to do is to take the LAMBDA
+type inferencer in Lesson 5 and only change the rule

+
rule let X = E in E' => (lambda X . E') E
+
+

as follows:

+
rule let X = E in E' => E'[E/X]
+
+

The reasons why this works have already been explained in the previous
+lesson, so we do not repeat them here.

+

Since our new let rule uses substitution, we have to require the
+substitution module at the top and also import SUBSTITUTION in the
+current module, besides the already existing UNIFICATION.

+

Everything which worked with the type inferencer in Lesson 7 should
+also work now. Let us only try the exponential type example,

+
let f00 = lambda x . lambda y . x in
+  let f01 = lambda x . f00 (f00 x) in
+    let f02 = lambda x . f01 (f01 x) in
+      let f03 = lambda x . f02 (f02 x) in
+        let f04 = lambda x . f03 (f03 x) in
+          f04
+
+

As expected, this gives us precisely the same type as in Lesson 7.

+

So the only difference between this type inferencer and the one in
+Lesson 7 is that substitution is only used for LAMBDA-to-LAMBDA
+transformations, but not for infusing types within LAMBDA programs.
+Thus, the syntax of LAMBDA programs is preserved intact, which some
+may prefer. Nevertheless, this type inferencer is still expensive and
+wasteful, because the let-bound expression is typed over and over
+again in each place where the let-bound variable occurs.

+

In the next lesson we will discuss a type inferencer based on the
+classic Damas-Hindley-Milner type system, which maximizes the reuse of
+typing work by means of parametric types.

+

Go to Lesson 9, Type Systems: Let-Polymorphic Type Inferencer (Damas-Hindley-Milner).

+

Let-Polymorphic Type Inferencer (Damas-Hindley-Milner)

+ +

In this lesson we discuss a type inferencer based on what we call today
+the Damas-Hindley-Milner type system, which is at the core of many
+modern functional programming languages. The first variant of it was
+proposed by Hindley in 1969, then, interestingly, Milner rediscovered
+it in 1978 in the context of the ML language. Damas formalized it as
+a type system in his PhD thesis in 1985. More specifically, our type
+inferencer here, like many others as well as many implementations of
+it, follows more closely the syntax-driven variant proposed by Clement
+in 1987.

+

In terms of K, we will see how easily we can turn one definition which
+is considered naive (our previous type inferencer in Lesson 8) into a
+definition which is considered advanced. All we have to do is to
+change one existing rule (the rule of the let binder) and to add a new
+one. We will also learn some new predefined features of K, which make
+the above possible.

+

The main idea is to replace the rule

+
rule let X = E in E' => E'[E/X]
+
+

which creates potentially many copies of E within E' with a rule
+which types E once and then reuses that type in each place where X
+occurs free in E'. The simplest K way to type E is to declare the
+let construct strict(2). Now we cannot simply bind X to the type
+of E, because we would obtain a variant of the naive type inferencer
+we already discussed, together with its limitations, in Lesson 5 of this
+tutorial. The trick here is to parameterize the type of E in all its
+unconstrained fresh types, and then create fresh copies of those
+parameters in each free occurrence of X in E'.

+

Let us discuss some examples, before we go into the technical details.
+Consider the first let-polymorphic example which failed to be typed
+with our first naive type-inferencer:

+
let id = lambda x . x
+in if (id true) then (id 1) else (id 2)
+
+

When typing lambda x . x, we get a type of the form t -> t, for some
+fresh type t. Instead of assigning this type to id as we did in the
+naive type inferencers, we now first parametrize this type in its
+fresh variable t, written

+
(forall t) t -> t
+
+

and then bind id to this parametric type. The intuition for the
+parameter is that it can be instantiated with any other type, so this
+parametric type stands, in fact, for infinitely many non-parametric
+types. This is similar to what happens in formal logic proof systems,
+where rule schemas stand for infinitely many concrete instances of
+them. For this reason, parametric types are also called type schemas.

+

Now each time id is looked up within the let-body, we create a fresh
+copy of the parameter t, which can this way be independently
+constrained by each local context. Let's suppose that the three id
+lookups yield the types t1 -> t1, t2 -> t2, and respectively t3 -> t3.
+Then t1 will be constrained to be bool, and t2 and t3 to be int,
+so we can now safely type the program above to int.

+

Therefore, a type schema comprises a summary of all the typing work
+that has been done for typing the corresponding expression, and an
+instantiation of its parameters with fresh copies represents an
+elegant way to reuse all that typing work.

+

There are some subtleties regarding what fresh types can be made
+parameters. Let us consider another example, discussed as part of
+Lesson 7 on naive let-polymorphism:

+
lambda x . (
+  let y = lambda z . x
+  in if (y true) then (y 1) else (y (lambda x . x))
+)
+
+

This program should type to bool -> bool, as explained in Lesson 7.
+The lambda construct will bind x to some fresh type tx. Then the
+let-bound expression lambda z . x types to tz -> tx for some
+additional fresh type tz. The question now is what should the
+parameters of this type be when we generate the type schema? If we
+naively parameterize in all fresh variables, that is in both tz and
+tx obtaining the type schema (forall tz,tx) tz -> tx, then there will
+be no way to infer that the type of x, tx, must be a bool! The
+inferred type of this expression would then wrongly be tx -> t for
+some fresh types tx and t. That's because the parameters are replaced
+with fresh copies in each occurrence of y, and thus their relationship
+to the original x is completely lost. This tells us that we cannot
+parameterize in all fresh types that appear in the type of the
+let-bound expression. In particular, we cannot parameterize in those
+which some variables are already bound to in the current type
+environment (like x is bound to tx in our example above).
+In our example, the correct type schema is (forall tz) tz -> tx,
+which now allows us to correctly infer that tx is bool.

+

Let us now discuss another example, which should fail to type:

+
lambda x .
+  let f = lambda y . x y
+  in if (f true) then (f 1) else (f 2)
+
+

This should fail to type because lambda y . x y is equivalent to x,
+so the conditional imposes the conflicting constraints that x should be
+a function whose argument is either a bool or an int. Let us try to
+type it using our currently informal procedure. Like in the previous
+example, x will be bound to a fresh type tx. Then the let-bound
+expression types to ty -> tz with ty and tz fresh types, adding also
+the constraint tx = ty -> tz. What should the parameters of this type
+be? If we ignore the type constraint and simply make both ty and tz
+parameters because no variable is bound to them in the type
+environment (indeed, the only variable x in the type environment is
+bound to tx), then we can wrongly type this program to tx -> tz
+following a reasoning similar to the one in the example above.
+In fact, in this example, none of ty and tz can be parameters, because
+they are constrained by tx.

+

The examples above tell us two things: first, that we have to take the
+type constraints into account when deciding the parameters of the
+schema; second, that after applying the most-general-unifier solution
+given by the type constraints everywhere, the remaining fresh types
+appearing anywhere in the type environment are consequently constrained
+and cannot be turned into parameters. Since the type environment can in
+fact also hold type schemas, which already bind some types, we only need
+to ensure that none of the fresh types appearing free anywhere in the
+type environment are turned into parameters of type schemas.

+

Thanks to generic support offered by the K tool, we can easily achieve
+all the above as follows.

+

First, add syntax for type schemas:

+
syntax TypeSchema ::= "(" "forall" Set ")" Type  [binder]
+
+

The definition below will be given in such a way that the Set argument
+of a type schema will always be a set of fresh types. We also declare
+this construct to be a binder, so that we can make use of the generic
+free variable function provided by the K tool.

+

We now replace the old rule for let

+
rule let X = E in E' => E'[E/X]
+
+

with the following rule:

+
rule <k> let X = T:Type in E => E ~> tenv(TEnv) ...</k>
+     <mgu> Theta:Mgu </mgu>
+     <tenv> TEnv
+      => TEnv[(forall freeVariables(applyMgu(Theta, T)) -Set
+                      freeVariables(applyMgu(Theta, values TEnv))
+              ) applyMgu(Theta, T) / X]
+     </tenv>
+
+

So the type T of E is being parameterized and then bound to X in the
+type environment. The current mgu Theta, which comprises all the type
+constraints accumulated so far, is applied to both T and the types in
+the type environment. The remaining fresh types in T which do not
+appear free in the type environment are then turned into type parameters.
+The function freeVariables returns, as expected, the free variables of
+its argument as a Set; this is why we declared the type schema to be a
+binder above.

+

Now a LAMBDA variable in the type environment can be bound to either a
+type or a type schema. In the first case, the previous rule we had
+for variable lookup can be reused, but we have to make sure we check
+that T there is of sort Type (adding a sort membership, for example).
+In the second case, as explained above, we have to create fresh copies
+of the parameters. This can be easily achieved with another
+predefined K function, as follows:

+
rule <k> X:Id => freshVariables(Tvs,T) ...</k>
+     <tenv>... X |-> (forall Tvs) T ...</tenv>
+
+

Indeed, freshVariables takes a set of variables and a term, and returns the
+same term but with each of the given variables replaced by a fresh copy.

+

The operations freeVariables and freshVariables are useful in many K
+definitions, so they are predefined in module substitution.k.

+

Our definition of this let-polymorphic type inferencer is now
+complete. To test it, kompile it and then krun all the LAMBDA
+programs discussed since Lesson 4. They should all work as expected.

+

K Languages

+ +

Here we present several "real-world" language examples. These languages
+demonstrate many of the features you would expect to find in a full-fledged
+programming language.

+
    +
  • SIMPLE: Imperative programming language with threads.
  • +
  • KOOL: SIMPLE extended with object-oriented features.
  • +
  • FUN: A functional language with algebraic data-types and pattern-matching.
  • +
  • LOGIK: A logical programming language based on clause unification.
  • +
+

SIMPLE — Untyped

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of the untyped SIMPLE language.
+SIMPLE is intended to be a pedagogical and research language that captures
+the essence of the imperative programming paradigm, extended with several
+features often encountered in imperative programming languages.
+A program consists of a set of global variable declarations and
+function definitions. Like in C, function definitions cannot be
+nested and each program must have one function called main,
+which is invoked when the program is executed. To make it more
+interesting and to highlight some of K's strengths, SIMPLE includes
+the following features in addition to the conventional imperative
+expression and statement constructs:

+
    +
  • +

    Multidimensional arrays and array references. An array evaluates
    +to an array reference, which is a special value holding a location (where
    +the elements of the array start) together with the size of the array;
    +the elements of the array can be array references themselves (particularly
    +when the array is multi-dimensional). Array references are ordinary values,
    +so they can be assigned to variables and passed/received by functions.

    +
  • +
  • +

    Functions and function values. Functions can have zero or
    +more parameters and can return abruptly using a return statement.
    +SIMPLE follows a call-by-value parameter passing style, with static scoping.
    +Function names evaluate to function abstractions, which hereby become ordinary
    +values in the language, same like the array references.

    +
  • +
  • +

    Blocks with locals. SIMPLE variables can be declared
    +anywhere, their scope being from the place where they are declared
    +until the end of the most nested enclosing block.

    +
  • +
  • +

    Input/Output. The expression read() evaluates to the
    +next value in the input buffer, and the statement write(e)
    +evaluates e and outputs its value to the output buffer. The
    +input and output buffers are lists of values.

    +
  • +
  • +

    Exceptions. SIMPLE has parametric exceptions (the value thrown as
    +an exception can be caught and bound).

    +
  • +
  • +

    Concurrency via dynamic thread creation/termination and
    +synchronization. One can spawn a thread to execute any statement.
    +The spawned thread shares with its parent its environment at creation time.
    +Threads can be synchronized via a join command which blocks the current thread
    +until the joined thread completes, via re-entrant locks which can be acquired
    +and released, as well as through rendezvous commands.

    +
  • +
+

Like in many other languages, some of SIMPLE's constructs can be
+desugared into a smaller set of basic constructs. We do that at the end
+of the syntax module, and then we only give semantics to the core constructs.

+

Note: This definition is commented slightly more than others, because it is
+intended to be one of the first non-trivial definitions that the new
+user of K sees. We recommend the beginner user to first check the
+language definitions discussed in the K tutorial.

+
module SIMPLE-UNTYPED-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

We start by defining the SIMPLE syntax. The language constructs discussed
+above have the expected syntax and evaluation strategies. Recall that in K
+we annotate the syntax with appropriate strictness attributes, thus giving
+each language construct the desired evaluation strategy.

+

Identifiers

+ +

Recall from the K tutorial that identifiers are builtin and come under the
+syntactic category Id. The special identifier for the function
+main belongs to all programs, and plays a special role in the semantics,
+so we declare it explicitly. This would not be necessary if the identifiers
+were all included automatically in semantic definitions, but that is not
+possible because of parsing reasons (e.g., K variables used to match
+concrete identifiers would then be ambiguously parsed as identifiers). They
+are only included in the parser generated to parse programs (and used by the
+kast tool). Consequently, we have to explicitly declare all the
+concrete identifiers that play a special role in the semantics, like
+main below.

+
  syntax Id ::= "main" [token]
+

Declarations

+ +

There are two types of declarations: for variables (including arrays) and
+for functions. We are going to allow declarations of the form
+var x=10, a[10,10], y=23;, which is why we allow the var
+keyword to take a list of expressions. The non-terminals used in the two
+productions below are defined shortly.

+
  syntax Stmt ::= "var" Exps ";"
+                | "function" Id "(" Ids ")" Block
+

Expressions

+ +

The expression constructs below are standard. Increment (++) takes
+an expression rather than a variable because it can also increment an array
+element. Recall that the syntax we define in K is what we call the syntax
+of the semantics
: while powerful enough to define non-trivial syntaxes
+(thanks to the underlying SDF technology that we use), we typically refrain
+from defining precise syntaxes, that is, ones which accept precisely the
+well-formed programs (that would not be possible anyway in general). That job
+is deferred to type systems, which can also be defined in K. In other words,
+we are not making any effort to guarantee syntactically that only variables
+or array elements are passed to the increment construct, we allow any
+expression. Nevertheless, we will only give semantics to those, so expressions
+of the form ++5, which parse (but which will be rejected by our type
+system in the typed version of SIMPLE later), will get stuck when executed.
+Arrays can be multidimensional and can hold other arrays, so their
+lookup operation takes a list of expressions as argument and applies to an
+expression (which can in particular be another array lookup), respectively.
+The construct sizeOf gives the size of an array in number of elements
+of its first dimension. Note that almost all constructs are strict. The only
+constructs which are not strict are the increment (since its first argument
+gets updated, so it cannot be evaluated), the input read which takes no
+arguments so strictness is irrelevant for it, the logical and and or constructs
+which are short-circuited, the thread spawning construct which creates a new
+thread executing the argument expression and return its unique identifier to
+the creating thread (so it cannot just evaluate its argument in place), and the
+assignment which is only strict in its second argument (for the same reason as
+the increment).

+
  syntax Exp ::= Int | Bool | String | Id
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict]
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict(1), left]
+               | Exp "||" Exp            [strict(1), left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+

We also need comma-separated lists of identifiers and of expressions.
+Moreover, we want them to be strict, that is, to evaluate to lists of results
+whenever requested (e.g., when they appear as strict arguments of
+the constructs above).

+
  syntax Ids  ::= List{Id,","}           [overload(Exps)]
+  syntax Exps ::= List{Exp,","}          [overload(Exps), strict]  // automatically hybrid now
+  syntax Exps ::= Ids
+  syntax Val
+  syntax Vals ::= List{Val,","}          [overload(Exps)]
+  syntax Bottom
+  syntax Bottoms ::= List{Bottom,","}    [overload(Exps)]
+  syntax Ids ::= Bottoms
+

Statements

+ +

Most of the statement constructs are standard for imperative languages.
+We syntactically distinguish between empty and non-empty blocks, because we
+chose Stmts not to be a (;-separated) list of
+Stmt. Variables can be declared anywhere inside a block, their scope
+ending with the block. Expressions are allowed to be used for their side
+effects only (followed by a semicolon ;). Functions are allowed
+to abruptly return. The exceptions are parametric, i.e., one can throw a value
+which is bound to the variable declared by catch. Threads can be
+dynamically created and terminated, and can synchronize with join,
+acquire, release and rendezvous. Note that the
+strictness attributes obey the intended evaluation strategy of the various
+constructs. In particular, the if-then-else construct is strict only in its
+first argument (the if-then construct will be desugared into if-then-else),
+while the loop constructs are not strict in any arguments. The print
+statement construct is variadic, that is, it takes an arbitrary number of
+arguments.

+
  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                               [strict]
+                | "if" "(" Exp ")" Block "else" Block   [avoid, strict(1)]
+                | "if" "(" Exp ")" Block                [macro]
+                | "while" "(" Exp ")" Block
+                | "for" "(" Stmt Exp ";" Exp ")" Block  [macro]
+                | "return" Exp ";"                      [strict]
+                | "return" ";"                          [macro]
+                | "print" "(" Exps ")" ";"              [strict]
+// NOTE: print strict allows non-deterministic evaluation of its arguments
+// Either keep like this but document, or otherwise make Exps seqstrict.
+// Of define and use a different expression list here, which is seqstrict.
+                | "try" Block "catch" "(" Id ")" Block
+                | "throw" Exp ";"                       [strict]
+                | "join" Exp ";"                        [strict]
+                | "acquire" Exp ";"                     [strict]
+                | "release" Exp ";"                     [strict]
+                | "rendezvous" Exp ";"                  [strict]
+

The reason we allow Stmts as the first argument of for
+instead of Stmt is because we want to allow more than one statement
+to be executed when the loop is initialized. Also, as seens shorly, macros
+may expand one statement into more statements; for example, an initialized
+variable declaration statement var x=0; desugars into two statements,
+namely var x; x=0;, so if we use Stmt instead of Stmts
+in the production of for above then we risk that the macro expansion
+of statement var x=0; happens before the macro expansion of for,
+also shown below, in which case the latter would not apply anymore because
+of syntactic mismatch.

+
  syntax Stmt ::= Stmt Stmt                          [right]
+
+// I wish I were able to write the following instead, but confuses the parser.
+//
+// syntax Stmts ::= List{Stmt,""}
+// syntax Top ::= Stmt | "function" Id "(" Ids ")" Block
+// syntax Pgm ::= List{Top,""}
+//
+// With that, I could have also eliminated the empty block
+

Desugared Syntax

+ +

This part desugars some of SIMPLE's language constructs into core ones.
+We only want to give semantics to core constructs, so we get rid of the
+derived ones before we start the semantics. All desugaring macros below are
+straightforward.

+
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}}
+  rule for(Start Cond; Step) {} => {Start while (Cond) {Step;}}
+  rule var E1:Exp, E2:Exp, Es:Exps; => var E1; var E2, Es;
+  rule var X:Id = E; => var X; X = E;
+

For the semantics, we can therefore assume from now on that each
+conditional has both branches, that there are only while loops, and
+that each variable is declared alone and without any initialization as part of
+the declaration.

+
endmodule
+
+
+module SIMPLE-UNTYPED
+  imports SIMPLE-UNTYPED-SYNTAX
+  imports DOMAINS
+

Basic Semantic Infrastructure

+ +

Before one starts adding semantic rules to a K definition, one needs to
+define the basic semantic infrastructure consisting of definitions for
+values and configuration. As discussed in the definitions
+in the K tutorial, the values are needed to know when to stop applying
+the heating rules and when to start applying the cooling rules corresponding
+to strictness or context declarations. The configuration serves as a backbone
+for the process of configuration abstraction which allows users to only
+mention the relevant cells in each semantic rule, the rest of the configuration
+context being inferred automatically. Although in some cases the configuration
+could be automatically inferred from the rules, we believe that it is very
+useful for language designers/semanticists to actually think of and design
+their configuration explicitly, so the current implementation of K requires
+one to define it.

+

Values

+ +

We here define the values of the language that the various fragments of
+programs evaluate to. First, integers and Booleans are values. As discussed,
+arrays evaluate to special array reference values holding (1) a location from
+where the array's elements are contiguously allocated in the store, and
+(2) the size of the array. Functions evaluate to function values as
+λ-abstractions (we do not need to evaluate functions to closures
+because each function is executed in the fixed global environment and
+function definitions cannot be nested). Like in IMP and other
+languages, we finally tell the tool that values are K results.

+
  syntax Val ::= Int | Bool | String
+               | array(Int,Int)
+               | lambda(Ids,Stmt)
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax Vals ::= Bottoms
+  syntax KResult ::= Val
+                   | Vals  // TODO: should not need this
+

The inclusion of values in expressions follows the methodology of
+syntactic definitions (like, e.g., in SOS): extend the syntax of the language
+to encompass all values and additional constructs needed to give semantics.
+In addition to that, it allows us to write the semantic rules using the
+original syntax of the language, and to parse them with the same (now extended
+with additional values) parser. If writing the semantics directly on the K
+AST, using the associated labels instead of the syntactic constructs, then one
+would not need to include values in expressions.

+

Configuration

+ +

The K configuration of SIMPLE consists of a top level cell, T,
+holding a threads cell, a global environment map cell genv
+mapping the global variables and function names to their locations, a shared
+store map cell store mapping each location to some value, a set cell
+busy holding the locks which have been acquired but not yet released
+by threads, a set cell terminated holding the unique identifiers of
+the threads which already terminated (needed for join), input
+and output list cells, and a nextLoc cell holding a natural
+number indicating the next available location. Unlike in the small languages
+in the K tutorial, where we used the fresh predicate to generate fresh
+locations, in larger languages, like SIMPLE, we prefer to explicitly manage
+memory. The location counter in nextLoc models an actual physical
+location in the store; for simplicity, we assume arbitrarily large memory and
+no garbage collection. The threads cell contains one thread
+cell for each existing thread in the program. Note that the thread cell has
+multiplicity *, which means that at any given moment there could be zero,
+one or more thread cells. Each thread cell contains a
+computation cell k, a control cell holding the various
+control structures needed to jump to certain points of interest in the program
+execution, a local environment map cell env mapping the thread local
+variables to locations in the store, and finally a holds map cell
+indicating what locks have been acquired by the thread and not released so far
+and how many times (SIMPLE's locks are re-entrant). The control cell
+currently contains only two subcells, a function stack fstack which
+is a list and an exception stack xstack which is also a list.
+One can add more control structures in the control cell, such as a
+stack for break/continue of loops, etc., if the language is extended with more
+control-changing constructs. Note that all cells except for k are
+also initialized, in that they contain a ground term of their corresponding
+sort. The k cell is initialized with the program that will be passed
+to the K tool, as indicated by the $PGM variable, followed by the
+execute task (defined shortly).

+
  // the syntax declarations below are required because the sorts are
+  // referenced directly by a production and, because of the way KIL to KORE
+  // is implemented, the configuration syntax is not available yet
+  // should simply work once KIL is removed completely
+  // check other definitions for this hack as well
+
+  syntax ControlCell
+  syntax ControlCellFragment
+
+  configuration <T color="red">
+                  <threads color="orange">
+                    <thread multiplicity="*" type="Map" color="yellow">
+                      <id color="pink"> -1 </id>
+                      <k color="green"> $PGM:Stmt ~> execute </k>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <control color="cyan">
+                        <fstack color="blue"> .List </fstack>
+                        <xstack color="purple"> .List </xstack>
+                      </control>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <env color="violet"> .Map </env>
+                      <holds color="black"> .Map </holds>
+                    </thread>
+                  </threads>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <genv color="pink"> .Map </genv>
+                  <store color="white"> .Map </store>
+                  <busy color="cyan"> .Set </busy>
+                  <terminated color="red"> .Set </terminated>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <input color="magenta" stream="stdin"> .List </input>
+                  <output color="brown" stream="stdout"> .List </output>
+                  <nextLoc color="gray"> 0 </nextLoc>
+                </T>
+

Declarations and Initialization

+ +

We start by defining the semantics of declarations (for variables,
+arrays and functions).

+

Variable Declaration

+ +

The SIMPLE syntax was desugared above so that each variable is
+declared alone and its initialization is done as a separate statement.
+The semantic rule below matches resulting variable declarations of the
+form var X; on top of the k cell
+(indeed, note that the k cell is complete, or round, to the
+left, and is torn, or ruptured, to the right), allocates a fresh
+location L in the store which is initialized with a special value
+ (indeed, the unit ., or nothing, is matched anywhere
+in the map ‒note the tears at both sides‒ and replaced with the
+mapping L ↦ ⊥), and binds X to L in the local
+environment shadowing previous declarations of X, if any.
+This possible shadowing of X requires us to therefore update the
+entire environment map, which is expensive and can significantly slow
+down the execution of larger programs. On the other hand, since we know
+that L is not already bound in the store, we simply add the binding
+L ↦ ⊥ to the store, thus avoiding a potentially complete
+traversal of the the store map in order to update it. We prefer the approach
+used for updating the store whenever possible, because, in addition to being
+faster, it offers more true concurrency than the latter; indeed, according
+to the concurrent semantics of K, the store is not frozen while
+L ↦ ⊥ is added to it, while the environment is frozen during the
+update operation Env[L/X]. The variable declaration command is
+also removed from the top of the computation cell and the fresh location
+counter is incremented. The undefined symbol added in the store
+is of sort KItem, instead of Val, on purpose; this way, the
+store lookup rules will get stuck when one attempts to lookup an
+uninitialized location. All the above happen in one transactional step,
+with the rule below. Note also how configuration abstraction allows us to
+only mention the needed cells; indeed, as the configuration above states,
+the k and env cells are actually located within a
+thread cell within the threads cell, but one needs
+not mention these: the configuration context of the rule is
+automatically transformed to match the declared configuration
+structure.

+
  syntax KItem ::= "undefined"
+
+  rule <k> var X:Id; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> undefined ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

Array Declaration

+ +

The K semantics of the uni-dimensional array declaration is somehow similar
+to the above declaration of ordinary variables. First, note the
+context declaration below, which requests the evaluation of the array
+dimension. Once evaluated, say to a natural number N, then
+N +Int 1 locations are allocated in the store for
+an array of size N, the additional location (chosen to be the first
+one allocated) holding the array reference value. The array reference
+value array(L,N) states that the array has size N and its
+elements are located contiguously in the store starting with location
+L. The operation L … L' ↦ V, defined at the end of this
+file in the auxiliary operation section, initializes each location in
+the list L … L' to V. Note that, since the dimensions of
+array declarations can be arbitrary expressions, this virtually means
+that we can dynamically allocate memory in SIMPLE by means of array
+declarations.

+
  context var _:Id[HOLE];
+
+  rule <k> var X:Id[N:Int]; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> array(L +Int 1, N)
+                          (L +Int 1) ... (L +Int N) |-> undefined ...</store>
+       <nextLoc> L => L +Int 1 +Int N </nextLoc>
+    requires N >=Int 0
+

SIMPLE allows multi-dimensional arrays. For semantic simplicity, we
+desugar them all into uni-dimensional arrays by code transformation.
+This way, we only need to give semantics to uni-dimensional arrays.
+First, note that the context rule above actually evaluates all the array
+dimensions (that's why we defined the expression lists strict!):
+Upon evaluating the array dimensions, the code generation rule below
+desugars multi-dimensional array declaration to uni-dimensional declarations.
+To this aim, we introduce two special unique variable identifiers,
+$1 and $2. The first variable, $1, iterates
+through and initializes each element of the first dimension with an array
+of the remaining dimensions, declared as variable $2:

+
  syntax Id ::= "$1" [token] | "$2" [token]
+  rule var X:Id[N1:Int, N2:Int, Vs:Vals];
+    => var X[N1];
+       {
+         for(var $1 = 0; $1 <= N1 - 1; ++$1) {
+           var $2[N2, Vs];
+           X[$1] = $2;
+         }
+       }
+

Ideally, one would like to perform syntactic desugarings like the one
+above before the actual semantics. Unfortunately, that was not possible in
+this case because the dimension expressions of the multi-dimensional array need
+to be evaluated first. Indeed, the desugaring rule above does not work if the
+dimensions of the declared array are arbitrary expressions, because they can
+have side effects (e.g., a[++x,++x]) and those side effects would be
+propagated each time the expression is evaluated in the desugaring code (note
+that both the loop condition and the nested multi-dimensional declaration
+would need to evaluate the expressions given as array dimensions).

+

Function declaration

+ +

Functions are evaluated to λ-abstractions and stored like any other
+values in the store. A binding is added into the environment for the function
+name to the location holding its body. Similarly to the C language, SIMPLE
+only allows function declarations at the top level of the program. More
+precisely, the subsequent semantics of SIMPLE only works well when one
+respects this requirement. Indeed, the simplistic context-free parser
+generated by the grammar above is more generous than we may want, in that it
+allows function declarations anywhere any declaration is allowed, including
+inside arbitrary blocks. However, as the rule below shows, we are not
+storing the declaration environment with the λ-abstraction value as
+closures do. Instead, as seen shortly, we switch to the global environment
+whenever functions are invoked, which is consistent with our requirement that
+functions should only be declared at the top. Thus, if one declares local
+functions, then one may see unexpected behaviors (e.g., when one shadows a
+global variable before declaring a local function). The type checker of
+SIMPLE, also defined in K (see examples/simple/typed/static),
+discards programs which do not respect this requirement.

+
  rule <k> function F(Xs) S => .K ...</k>
+       <env> Env => Env[F <- L] </env>
+       <store>... .Map => L |-> lambda(Xs, S) ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

When we are done with the first pass (pre-processing), the computation
+cell k contains only the token execute (see the configuration
+declaration above, where the computation item execute was placed
+right after the program in the k cell of the initial configuration)
+and the cell genv is empty. In this case, we have to call
+main() and to initialize the global environment by transferring the
+contents of the local environment into it. We prefer to do it this way, as
+opposed to processing all the top level declarations directly within the global
+environment, because we want to avoid duplication of semantics: the syntax of
+the global declarations is identical to that of their corresponding local
+declarations, so the semantics of the latter suffices provided that we copy
+the local environment into the global one once we are done with the
+pre-processing. We want this separate pre-processing step precisely because
+we want to create the global environment. All (top-level) functions end up
+having their names bound in the global environment and, as seen below, they
+are executed in that same global environment; all these mean, in particular,
+that the functions "see" each other, allowing for mutual recursion, etc.

+
  syntax KItem ::= "execute"
+  rule <k> execute => main(.Exps); </k>
+       <env> Env </env>
+       <genv> .Map => Env </genv>
+

Expressions

+ +

We next define the K semantics of all the expression constructs.

+

Variable lookup

+ +

When a variable X is the first computational task, and X is bound to some
+location L in the environment, and L is mapped to some value V in the
+store, then we rewrite X into V:

+
  rule <k> X:Id => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+

Note that the rule above excludes reading , because is not
+a value and V is checked at runtime to be a value.

+

Variable/Array increment

+ +

This is tricky, because we want to allow both ++x and ++a[5].
+Therefore, we need to extract the lvalue of the expression to increment.
+To do that, we state that the expression to increment should be wrapped
+by the auxiliary lvalue operation and then evaluated. The semantics
+of this auxiliary operation is defined at the end of this file. For now, all
+we need to know is that it takes an expression and evaluates to a location
+value. Location values, also defined at the end of the file, are integers
+wrapped with the operation loc, to distinguish them from ordinary
+integers.

+
  context ++(HOLE => lvalue(HOLE))
+  rule <k> ++loc(L) => I +Int 1 ...</k>
+       <store>... L |-> (I => I +Int 1) ...</store>
+

Arithmetic operators

+ +

There is nothing special about the following rules. They rewrite the
+language constructs to their library counterparts when their arguments
+become values of expected sorts:

+
  rule I1 + I2 => I1 +Int I2
+  rule Str1 + Str2 => Str1 +String Str2
+  rule I1 - I2 => I1 -Int I2
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+

The equality and inequality constructs reduce to syntactic comparison
+of the two argument values (which is what the equality on K terms does).

+
  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+

The logical negation is clear, but the logical conjunction and disjunction
+are short-circuited:

+
  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+

Array lookup

+ +

Untyped SIMPLE does not check array bounds (the dynamically typed version of
+it, in examples/simple/typed/dynamic, does check for array out of
+bounds). The first rule below desugars the multi-dimensional array access to
+uni-dimensional array access; recall that the array access operation was
+declared strict, so all sub-expressions involved are already values at this
+stage. The second rule rewrites the array access to a lookup operation at a
+precise location; we prefer to do it this way to avoid locking the store.
+The semantics of the auxiliary lookup operation is straightforward,
+and is defined at the end of the file.

+
// The [anywhere] feature is underused, because it would only be used
+// at the top of the computation or inside the lvalue wrapper. So it
+// may not be worth, or we may need to come up with a special notation
+// allowing us to enumerate contexts for [anywhere] rules.
+  rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs]
+    [anywhere]
+
+  rule array(L,_)[N:Int] => lookup(L +Int N)
+    [anywhere]
+

Size of an array

+ +

The size of the array is stored in the array reference value, and the
+sizeOf construct was declared strict, so:

+
  rule sizeOf(array(_,N)) => N
+

Function call

+ +

Function application was strict in both its arguments, so we can
+assume that both the function and its arguments are evaluated to
+values (the former expected to be a λ-abstraction). The first
+rule below matches a well-formed function application on top of the
+computation and performs the following steps atomically: it switches
+to the function body followed by return; (for the case in
+which the function does not use an explicit return statement); it
+pushes the remaining computation, the current environment, and the
+current control data onto the function stack (the remaining
+computation can thus also be discarded from the computation cell,
+because an unavoidable subsequent return statement ‒see
+above‒ will always recover it from the stack); it switches the
+current environment (which is being pushed on the function stack) to
+the global environment, which is where the free variables in the
+function body should be looked up; it binds the formal parameters to
+fresh locations in the new environment, and stores the actual
+arguments to those locations in the store (this latter step is easily
+done by reducing the problem to variable declarations, whose semantics
+we have already defined; the auxiliary operation mkDecls is
+defined at the end of the file). The second rule pops the
+computation, the environment and the control data from the function
+stack when a return statement is encountered as the next
+computational task, passing the returned value to the popped
+computation (the popped computation was the context in which the
+returning function was called). Note that the pushing/popping of the
+control data is crucial. Without it, one may have a function that
+contains an exception block with a return statement inside, which
+would put the xstack cell in an inconsistent state (since the
+exception block modifies it, but that modification should be
+irrelevant once the function returns). We add an artificial
+nothing value to the language, which is returned by the
+nulary return; statements.

+
  syntax KItem ::=  (Map,K,ControlCellFragment)
+
+  rule <k> lambda(Xs,S)(Vs:Vals) ~> K => mkDecls(Xs,Vs) S return; </k>
+       <control>
+         <fstack> .List => ListItem((Env,K,C)) ...</fstack>
+         C
+       </control>
+       <env> Env => GEnv </env>
+       <genv> GEnv </genv>
+
+  rule <k> return(V:Val); ~> _ => V ~> K </k>
+       <control>
+         <fstack> ListItem((Env,K,C)) => .List ...</fstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+
+  syntax Val ::= "nothing"
+  rule return; => return nothing;
+

Like for division-by-zero, it is left unspecified what happens
+when the nothing value is used in domain calculations. For
+example, from the the perspective of the language semantics,
+7 +Int nothing can evaluate to anything, or
+may not evaluate at all (be undefined). If one wants to make sure that
+such artificial values are never misused, then one needs to define a static
+checker (also using K, like our the type checker in
+examples/simple/typed/static) and reject programs that do.
+Note that, unlike the undefined symbol which had the sort K
+instead of Val, we defined nothing to be a value. That
+is because, as explained above, we do not want the program to get
+stuck when nothing is returned by a function. Instead, we want the
+behavior to be unspecified; in particular, if one is careful to never
+use the returned value in domain computation, like it happens when we
+call a function for its side effects (e.g., with a statement of the
+form f(x);), then the program does not get stuck.

+

Read

+ +

The read() expression construct simply evaluates to the next
+input value, at the same time discarding the input value from the
+in cell.

+
  rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input>
+

Assignment

+ +

In SIMPLE, like in C, assignments are expression constructs and not statement
+constructs. To make it a statement all one needs to do is to follow it by a
+semi-colon ; (see the semantics for expression statements below).
+Like for the increment, we want to allow assignments not only to variables but
+also to array elements, e.g., e1[e2] = e3 where e1 evaluates
+to an array reference, e2 to a natural number, and e3 to any
+value. Thus, we first compute the lvalue of the left-hand-side expression
+that appears in an assignment, and then we do the actual assignment to the
+resulting location:

+
  context (HOLE => lvalue(HOLE)) = _
+
+  rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store>
+

Statements

+ +

We next define the K semantics of statements.

+

Blocks

+ +

Empty blocks are simply discarded, as shown in the first rule below.
+For non-empty blocks, we schedule the enclosed statement but we have to
+make sure the environment is recovered after the enclosed statement executes.
+Recall that we allow local variable declarations, whose scope is the block
+enclosing them. That is the reason for which we have to recover the
+environment after the block. This allows us to have a very simple semantics
+for variable declarations, as we did above. One can make the two rules below
+computational if one wants them to count as computational steps.

+
  rule {} => .K
+  rule <k> { S } => S ~> setEnv(Env) ...</k>  <env> Env </env>
+

The basic definition of environment recovery is straightforward and
+given in the section on auxiliary constructs at the end of the file.

+

There are two common alternatives to the above semantics of blocks.
+One is to keep track of the variables which are declared in the block and only
+recover those at the end of the block. This way one does more work for
+variable declarations but conceptually less work for environment recovery; we
+say conceptually because it is not clear that it is indeed the case that
+one does less work when AC matching is involved. The other alternative is to
+work with a stack of environments instead of a flat environment, and push the
+current environment when entering a block and pop it when exiting it. This
+way, one does more work when accessing variables (since one has to search the
+variable in the environment stack in a top-down manner), but on the other hand
+uses smaller environments and the definition gets closer to an implementation.
+Based on experience with dozens of language semantics and other K definitions,
+we have found that our approach above is the best trade-off between elegance
+and efficiency (especially since rewrite engines have built-in techniques to
+lazily copy terms, by need, thus not creating unnecessary copies),
+so it is the one that we follow in general.

+

Sequential composition

+ +

Sequential composition is desugared into K's builtin sequentialization
+operation (recall that, like in C, the semi-colon ; is not a
+statement separator in SIMPLE — it is either a statement terminator or a
+construct for a statement from an expression). Note that K allows
+to define the semantics of SIMPLE in such a way that statements eventually
+dissolve from the top of the computation when they are completed; this is in
+sharp contrast to (artificially) evaluating them to a special
+skip statement value and then getting rid of that special value, as
+it is the case in other semantic approaches (where everything must evaluate
+to something). This means that once S₁ completes in the rule below, S₂
+becomes automatically the next computation item without any additional
+(explicit or implicit) rules.

+
  rule S1:Stmt S2:Stmt => S1 ~> S2
+

A subtle aspect of the rule above is that S₁ is declared to have sort
+Stmts and not Stmt. That is because desugaring macros can indeed
+produce left associative sequential composition of statements. For example,
+the code var x=0; x=1; is desugared to
+(var x; x=0;) x=1;, so although originally the first term of
+the sequential composition had sort Stmt, after desugaring it became
+of sort Stmts. Note that the attribute [right] associated
+to the sequential compositon production is an attribute of the syntax, and not
+of the semantics: e.g., it tells the parser to parse
+var x; x=0; x=1; as var x; (x=0; x=1;), but it
+does not tell the rewrite engine to rewrite (var x; x=0;) x=1; to
+var x; (x=0; x=1;).

+

Expression statements

+ +

Expression statements are only used for their side effects, so their result
+value is simply discarded. Common examples of expression statements are ones
+of the form ++x;, x=e;, e1[e2]=e3;, etc.

+
  rule _:Val; => .K
+

Conditional

+ +

Since the conditional was declared with the strict(1) attribute, we
+can assume that its first argument will eventually be evaluated. The rules
+below cover the only two possibilities in which the conditional is allowed to
+proceed (otherwise the rewriting process gets stuck).

+
  rule if ( true) S else _ => S
+  rule if (false) _ else S => S
+

While loop

+ +

The simplest way to give the semantics of the while loop is by unrolling.
+Note, however, that its unrolling is only allowed when the while loop reaches
+the top of the computation (to avoid non-termination of unrolling). The
+simple while loop semantics below works because our while loops in SIMPLE are
+indeed very basic. If we allowed break/continue of loops then we would need
+a completely different semantics, which would also involve the control cell.

+
  rule while (E) S => if (E) {S while(E)S}
+

Print

+ +

The print statement was strict, so all its arguments are now
+evaluated (recall that print is variadic). We append each of
+its evaluated arguments to the output buffer, and discard the residual
+print statement with an empty list of arguments.

+
  rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output>
+  rule print(.Vals); => .K
+

Exceptions

+ +

SIMPLE allows parametric exceptions, in that one can throw and catch a
+particular value. The statement try S₁ catch(X) S₂
+proceeds with the evaluation of S₁. If S₁ evaluates normally, i.e.,
+without any exception thrown, then S₂ is discarded and the execution
+continues normally. If S₁ throws an exception with a statement of the
+form throw E, then E is first evaluated to some value V
+(throw was declared to be strict), then V is bound to X, then
+S₂ is evaluated in the new environment while the reminder of S₁ is
+discarded, then the environment is recovered and the execution continues
+normally with the statement following the try S₁ catch(X) S₂ statement.
+Exceptions can be nested and the statements in the
+catch part (S₂ in our case) can throw exceptions to the
+upper level. One should be careful with how one handles the control data
+structures here, so that the abrupt changes of control due to exception
+throwing and to function returns interact correctly with each other.
+For example, we want to allow function calls inside the statement S₁ in
+a try S₁ catch(X) S₂ block which can throw an exception
+that is not caught by the function but instead is propagated to the
+try S₁ catch(X) S₂ block that called the function.
+Therefore, we have to make sure that the function stack as well as other
+potential control structures are also properly modified when the exception
+is thrown to correctly recover the execution context. This can be easily
+achieved by pushing/popping the entire current control context onto the
+exception stack. The three rules below modularly do precisely the above.

+
  syntax KItem ::= (Id,Stmt,K,Map,ControlCellFragment)
+
+  syntax KItem ::= "popx"
+
+  rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k>
+       <control>
+         <xstack> .List => ListItem((X, S2, K, Env, C)) ...</xstack>
+         C
+       </control>
+       <env> Env </env>
+
+  rule <k> popx => .K ...</k>
+       <xstack> ListItem(_) => .List ...</xstack>
+
+  rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k>
+       <control>
+         <xstack> ListItem((X, S2, K, Env, C)) => .List ...</xstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+

The catch statement S₂ needs to be executed in the original environment,
+but where the thrown value V is bound to the catch variable X. We here
+chose to rely on two previously defined constructs when giving semantics to
+the catch part of the statement: (1) the variable declaration with
+initialization, for binding X to V; and (2) the block construct for
+preventing X from shadowing variables in the original environment upon the
+completion of S₂.

+

Threads

+ +

SIMPLE's threads can be created and terminated dynamically, and can
+synchronize by acquiring and releasing re-entrant locks and by rendezvous.
+We discuss the seven rules giving the semantics of these operations below.

+

Thread creation

+ +

Threads can be created by any other threads using the spawn S
+construct. The spawn expression construct evaluates to the unique identifier
+of the newly created thread and, at the same time, a new thread cell is added
+into the configuration, initialized with the S statement and sharing the
+same environment with the parent thread. Note that the newly created
+thread cell is torn. That means that the remaining cells are added
+and initialized automatically as described in the definition of SIMPLE's
+configuration. This is part of K's configuration abstraction mechanism.

+
  rule <thread>...
+         <k> spawn S => !T:Int ...</k>
+         <env> Env </env>
+       ...</thread>
+       (.Bag => <thread>...
+               <k> S </k>
+               <env> Env </env>
+               <id> !T </id>
+             ...</thread>)
+

Thread termination

+ +

Dually to the above, when a thread terminates its assigned computation (the
+contents of its k cell) is empty, so the thread can be dissolved.
+However, since no discipline is imposed on how locks are acquired and released,
+it can be the case that a terminating thread still holds locks. Those locks
+must be released, so other threads attempting to acquire them do not deadlock.
+We achieve that by removing all the locks held by the terminating thread in its
+holds cell from the set of busy locks in the busy cell
+(keys(H) returns the domain of the map H as a set, that is, only
+the locks themselves ignoring their multiplicity). As seen below, a lock is
+added to the busy cell as soon as it is acquired for the first time
+by a thread. The unique identifier of the terminated thread is also collected
+into the terminated cell, so the join construct knows which
+threads have terminated.

+
  rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag)
+       <busy> Busy => Busy -Set keys(H) </busy>
+       <terminated>... .Set => SetItem(T) ...</terminated>
+

Thread joining

+ +

Thread joining is now straightforward: all we need to do is to check whether
+the identifier of the thread to be joined is in the terminated cell.
+If yes, then the join statement dissolves and the joining thread
+continues normally; if not, then the joining thread gets stuck.

+
  rule <k> join T:Int; => .K ...</k>
+       <terminated>... SetItem(T) ...</terminated>
+

Acquire lock

+ +

There are two cases to distinguish when a thread attempts to acquire a lock
+(in SIMPLE any value can be used as a lock):
+(1) The thread does not currently have the lock, in which case it has to
+take it provided that the lock is not already taken by another thread (see
+the side condition of the first rule).
+(2) The thread already has the lock, in which case it just increments its
+counter for the lock (the locks are re-entrant). These two cases are captured
+by the two rules below:

+
  rule <k> acquire V:Val; => .K ...</k>
+       <holds>... .Map => V |-> 0 ...</holds>
+       <busy> Busy (.Set => SetItem(V)) </busy>
+    requires (notBool(V in Busy))
+
+  rule <k> acquire V; => .K ...</k>
+       <holds>... V:Val |-> (N => N +Int 1) ...</holds>
+

Release lock

+ +

Similarly, there are two corresponding cases to distinguish when a thread
+releases a lock:
+(1) The thread holds the lock more than once, in which case all it needs to do
+is to decrement the lock counter.
+(2) The thread holds the lock only once, in which case it needs to remove it
+from its holds cell and also from the the shared busy cell,
+so other threads can acquire it if they need to.

+
  rule <k> release V:Val; => .K ...</k>
+       <holds>... V |-> (N => N -Int 1) ...</holds>
+    requires N >Int 0
+
+  rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds>
+       <busy>... SetItem(V) => .Set ...</busy>
+

Rendezvous synchronization

+ +

In addition to synchronization through acquire and release of locks, SIMPLE
+also provides a construct for rendezvous synchronization. A thread whose next
+statement to execute is rendezvous(V) gets stuck until another
+thread reaches an identical statement; when that happens, the two threads
+drop their rendezvous statements and continue their executions. If three
+threads happen to have an identical rendezvous statement as their next
+statement, then precisely two of them will synchronize and the other will
+remain blocked until another thread reaches a similar rendezvous statement.
+The rule below is as simple as it can be. Note, however, that, again, it is
+K's mechanism for configuration abstraction that makes it work as desired:
+since the only cell which can multiply containing a k cell inside is
+the thread cell, the only way to concretize the rule below to the
+actual configuration of SIMPLE is to include each k cell in a
+thread cell.

+
  rule <k> rendezvous V:Val; => .K ...</k>
+       <k> rendezvous V; => .K ...</k>
+

Auxiliary declarations and operations

+ +

In this section we define all the auxiliary constructs used in the
+above semantics.

+

Making declarations

+ +

The mkDecls auxiliary construct turns a list of identifiers
+and a list of values in a sequence of corresponding variable
+declarations.

+
  syntax Stmt ::= mkDecls(Ids,Vals)  [function]
+  rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs)
+  rule mkDecls(.Ids,.Vals) => {}
+

Location lookup

+ +

The operation below is straightforward.

+
  syntax Exp ::= lookup(Int)
+  rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store>
+

Environment recovery

+ +

We have already discussed the environment recovery auxiliary operation in the
+IMP++ tutorial:

+
// TODO: eliminate the env wrapper, like we did in IMP++
+
+  syntax KItem ::= setEnv(Map)
+  rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env>
+

While theoretically sufficient, the basic definition for environment
+recovery alone is suboptimal. Consider a loop while (E)S,
+whose semantics (see above) was given by unrolling. S
+is a block. Then the semantics of blocks above, together with the
+unrolling semantics of the while loop, will yield a computation
+structure in the k cell that increasingly grows, adding a new
+environment recovery task right in front of the already existing sequence of
+similar environment recovery tasks (this phenomenon is similar to the ``tail
+recursion'' problem). Of course, when we have a sequence of environment
+recovery tasks, we only need to keep the last one. The elegant rule below
+does precisely that, thus avoiding the unnecessary computation explosion
+problem:

+
  rule (setEnv(_) => .K) ~> setEnv(_)
+

In fact, the above follows a common convention in K for recovery
+operations of cell contents: the meaning of a computation task of the form
+cell(C) that reaches the top of the computation is that the current
+contents of cell cell is discarded and gets replaced with C. We
+did not add support for these special computation tasks in our current
+implementation of K, so we need to define them as above.

+

lvalue and loc

+ +

For convenience in giving the semantics of constructs like the increment and
+the assignment, that we want to operate the same way on variables and on
+array elements, we used an auxiliary lvalue(E) construct which was
+expected to evaluate to the lvalue of the expression E. This is only
+defined when E has an lvalue, that is, when E is either a variable or
+evaluates to an array element. lvalue(E) evaluates to a value of
+the form loc(L), where L is the location where the value of E
+can be found; for clarity, we use loc to structurally distinguish
+natural numbers from location values. In giving semantics to lvalue
+there are two cases to consider. (1) If E is a variable, then all we need
+to do is to grab its location from the environment. (2) If E is an array
+element, then we first evaluate the array and its index in order to identify
+the exact location of the element of concern, and then return that location;
+the last rule below works because its preceding context declarations ensure
+that the array and its index are evaluated, and then the rule for array lookup
+(defined above) rewrites the evaluated array access construct to its
+corresponding store lookup operation.

+
// For parsing reasons, we prefer to allow lvalue to take a K
+
+  syntax Exp ::= lvalue(K)
+  syntax Val ::= loc(Int)
+
+// Local variable
+
+  rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env>
+
+// Array element: evaluate the array and its index;
+// then the array lookup rule above applies.
+
+  context lvalue(_::Exp[HOLE::Exps])
+  context lvalue(HOLE::Exp[_::Exps])
+
+// Finally, return the address of the desired object member
+
+  rule lvalue(lookup(L:Int) => loc(L))
+

Initializing multiple locations

+ +

The following operation initializes a sequence of locations with the same
+value:

+
  syntax Map ::= Int "..." Int "|->" K [function]
+  rule N...M |-> _ => .Map  requires N >Int M
+  rule N...M |-> K => N |-> K (N +Int 1)...M |-> K  requires N <=Int M
+

The semantics of SIMPLE is now complete. Make sure you kompile the
+definition with the right options in order to generate the desired model.
+No kompile options are needed if you only only want to execute the definition
+(and thus get an interpreter), but if you want to search for a different
+program behaviors then you need to kompile with the --enable-search option

+
endmodule
+

Go to Lesson 2, SIMPLE typed static

+

SIMPLE — Untyped

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of the untyped SIMPLE language.
+SIMPLE is intended to be a pedagogical and research language that captures
+the essence of the imperative programming paradigm, extended with several
+features often encountered in imperative programming languages.
+A program consists of a set of global variable declarations and
+function definitions. Like in C, function definitions cannot be
+nested and each program must have one function called main,
+which is invoked when the program is executed. To make it more
+interesting and to highlight some of K's strengths, SIMPLE includes
+the following features in addition to the conventional imperative
+expression and statement constructs:

+
    +
  • +

    Multidimensional arrays and array references. An array evaluates
    +to an array reference, which is a special value holding a location (where
    +the elements of the array start) together with the size of the array;
    +the elements of the array can be array references themselves (particularly
    +when the array is multi-dimensional). Array references are ordinary values,
    +so they can be assigned to variables and passed/received by functions.

    +
  • +
  • +

    Functions and function values. Functions can have zero or
    +more parameters and can return abruptly using a return statement.
    +SIMPLE follows a call-by-value parameter passing style, with static scoping.
    +Function names evaluate to function abstractions, which hereby become ordinary
    +values in the language, same like the array references.

    +
  • +
  • +

    Blocks with locals. SIMPLE variables can be declared
    +anywhere, their scope being from the place where they are declared
    +until the end of the most nested enclosing block.

    +
  • +
  • +

    Input/Output. The expression read() evaluates to the
    +next value in the input buffer, and the statement write(e)
    +evaluates e and outputs its value to the output buffer. The
    +input and output buffers are lists of values.

    +
  • +
  • +

    Exceptions. SIMPLE has parametric exceptions (the value thrown as
    +an exception can be caught and bound).

    +
  • +
  • +

    Concurrency via dynamic thread creation/termination and
    +synchronization. One can spawn a thread to execute any statement.
    +The spawned thread shares with its parent its environment at creation time.
    +Threads can be synchronized via a join command which blocks the current thread
    +until the joined thread completes, via re-entrant locks which can be acquired
    +and released, as well as through rendezvous commands.

    +
  • +
+

Like in many other languages, some of SIMPLE's constructs can be
+desugared into a smaller set of basic constructs. We do that at the end
+of the syntax module, and then we only give semantics to the core constructs.

+

Note: This definition is commented slightly more than others, because it is
+intended to be one of the first non-trivial definitions that the new
+user of K sees. We recommend the beginner user to first check the
+language definitions discussed in the K tutorial.

+
module SIMPLE-UNTYPED-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

We start by defining the SIMPLE syntax. The language constructs discussed
+above have the expected syntax and evaluation strategies. Recall that in K
+we annotate the syntax with appropriate strictness attributes, thus giving
+each language construct the desired evaluation strategy.

+

Identifiers

+ +

Recall from the K tutorial that identifiers are builtin and come under the
+syntactic category Id. The special identifier for the function
+main belongs to all programs, and plays a special role in the semantics,
+so we declare it explicitly. This would not be necessary if the identifiers
+were all included automatically in semantic definitions, but that is not
+possible because of parsing reasons (e.g., K variables used to match
+concrete identifiers would then be ambiguously parsed as identifiers). They
+are only included in the parser generated to parse programs (and used by the
+kast tool). Consequently, we have to explicitly declare all the
+concrete identifiers that play a special role in the semantics, like
+main below.

+
  syntax Id ::= "main" [token]
+

Declarations

+ +

There are two types of declarations: for variables (including arrays) and
+for functions. We are going to allow declarations of the form
+var x=10, a[10,10], y=23;, which is why we allow the var
+keyword to take a list of expressions. The non-terminals used in the two
+productions below are defined shortly.

+
  syntax Stmt ::= "var" Exps ";"
+                | "function" Id "(" Ids ")" Block
+

Expressions

+ +

The expression constructs below are standard. Increment (++) takes
+an expression rather than a variable because it can also increment an array
+element. Recall that the syntax we define in K is what we call the syntax
+of the semantics
: while powerful enough to define non-trivial syntaxes
+(thanks to the underlying SDF technology that we use), we typically refrain
+from defining precise syntaxes, that is, ones which accept precisely the
+well-formed programs (that would not be possible anyway in general). That job
+is deferred to type systems, which can also be defined in K. In other words,
+we are not making any effort to guarantee syntactically that only variables
+or array elements are passed to the increment construct, we allow any
+expression. Nevertheless, we will only give semantics to those, so expressions
+of the form ++5, which parse (but which will be rejected by our type
+system in the typed version of SIMPLE later), will get stuck when executed.
+Arrays can be multidimensional and can hold other arrays, so their
+lookup operation takes a list of expressions as argument and applies to an
+expression (which can in particular be another array lookup), respectively.
+The construct sizeOf gives the size of an array in number of elements
+of its first dimension. Note that almost all constructs are strict. The only
+constructs which are not strict are the increment (since its first argument
+gets updated, so it cannot be evaluated), the input read which takes no
+arguments so strictness is irrelevant for it, the logical and and or constructs
+which are short-circuited, the thread spawning construct which creates a new
+thread executing the argument expression and return its unique identifier to
+the creating thread (so it cannot just evaluate its argument in place), and the
+assignment which is only strict in its second argument (for the same reason as
+the increment).

+
  syntax Exp ::= Int | Bool | String | Id
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict]
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict(1), left]
+               | Exp "||" Exp            [strict(1), left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+

We also need comma-separated lists of identifiers and of expressions.
+Moreover, we want them to be strict, that is, to evaluate to lists of results
+whenever requested (e.g., when they appear as strict arguments of
+the constructs above).

+
  syntax Ids  ::= List{Id,","}           [overload(Exps)]
+  syntax Exps ::= List{Exp,","}          [overload(Exps), strict]  // automatically hybrid now
+  syntax Exps ::= Ids
+  syntax Val
+  syntax Vals ::= List{Val,","}          [overload(Exps)]
+  syntax Bottom
+  syntax Bottoms ::= List{Bottom,","}    [overload(Exps)]
+  syntax Ids ::= Bottoms
+

Statements

+ +

Most of the statement constructs are standard for imperative languages.
+We syntactically distinguish between empty and non-empty blocks, because we
+chose Stmts not to be a (;-separated) list of
+Stmt. Variables can be declared anywhere inside a block, their scope
+ending with the block. Expressions are allowed to be used for their side
+effects only (followed by a semicolon ;). Functions are allowed
+to abruptly return. The exceptions are parametric, i.e., one can throw a value
+which is bound to the variable declared by catch. Threads can be
+dynamically created and terminated, and can synchronize with join,
+acquire, release and rendezvous. Note that the
+strictness attributes obey the intended evaluation strategy of the various
+constructs. In particular, the if-then-else construct is strict only in its
+first argument (the if-then construct will be desugared into if-then-else),
+while the loop constructs are not strict in any arguments. The print
+statement construct is variadic, that is, it takes an arbitrary number of
+arguments.

+
  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                               [strict]
+                | "if" "(" Exp ")" Block "else" Block   [avoid, strict(1)]
+                | "if" "(" Exp ")" Block                [macro]
+                | "while" "(" Exp ")" Block
+                | "for" "(" Stmt Exp ";" Exp ")" Block  [macro]
+                | "return" Exp ";"                      [strict]
+                | "return" ";"                          [macro]
+                | "print" "(" Exps ")" ";"              [strict]
+// NOTE: print strict allows non-deterministic evaluation of its arguments
+// Either keep like this but document, or otherwise make Exps seqstrict.
+// Of define and use a different expression list here, which is seqstrict.
+                | "try" Block "catch" "(" Id ")" Block
+                | "throw" Exp ";"                       [strict]
+                | "join" Exp ";"                        [strict]
+                | "acquire" Exp ";"                     [strict]
+                | "release" Exp ";"                     [strict]
+                | "rendezvous" Exp ";"                  [strict]
+

The reason we allow Stmts as the first argument of for
+instead of Stmt is because we want to allow more than one statement
+to be executed when the loop is initialized. Also, as seens shorly, macros
+may expand one statement into more statements; for example, an initialized
+variable declaration statement var x=0; desugars into two statements,
+namely var x; x=0;, so if we use Stmt instead of Stmts
+in the production of for above then we risk that the macro expansion
+of statement var x=0; happens before the macro expansion of for,
+also shown below, in which case the latter would not apply anymore because
+of syntactic mismatch.

+
  syntax Stmt ::= Stmt Stmt                          [right]
+
+// I wish I were able to write the following instead, but confuses the parser.
+//
+// syntax Stmts ::= List{Stmt,""}
+// syntax Top ::= Stmt | "function" Id "(" Ids ")" Block
+// syntax Pgm ::= List{Top,""}
+//
+// With that, I could have also eliminated the empty block
+

Desugared Syntax

+ +

This part desugars some of SIMPLE's language constructs into core ones.
+We only want to give semantics to core constructs, so we get rid of the
+derived ones before we start the semantics. All desugaring macros below are
+straightforward.

+
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}}
+  rule for(Start Cond; Step) {} => {Start while (Cond) {Step;}}
+  rule var E1:Exp, E2:Exp, Es:Exps; => var E1; var E2, Es;
+  rule var X:Id = E; => var X; X = E;
+

For the semantics, we can therefore assume from now on that each
+conditional has both branches, that there are only while loops, and
+that each variable is declared alone and without any initialization as part of
+the declaration.

+
endmodule
+
+
+module SIMPLE-UNTYPED
+  imports SIMPLE-UNTYPED-SYNTAX
+  imports DOMAINS
+

Basic Semantic Infrastructure

+ +

Before one starts adding semantic rules to a K definition, one needs to
+define the basic semantic infrastructure consisting of definitions for
+values and configuration. As discussed in the definitions
+in the K tutorial, the values are needed to know when to stop applying
+the heating rules and when to start applying the cooling rules corresponding
+to strictness or context declarations. The configuration serves as a backbone
+for the process of configuration abstraction which allows users to only
+mention the relevant cells in each semantic rule, the rest of the configuration
+context being inferred automatically. Although in some cases the configuration
+could be automatically inferred from the rules, we believe that it is very
+useful for language designers/semanticists to actually think of and design
+their configuration explicitly, so the current implementation of K requires
+one to define it.

+

Values

+ +

We here define the values of the language that the various fragments of
+programs evaluate to. First, integers and Booleans are values. As discussed,
+arrays evaluate to special array reference values holding (1) a location from
+where the array's elements are contiguously allocated in the store, and
+(2) the size of the array. Functions evaluate to function values as
+λ-abstractions (we do not need to evaluate functions to closures
+because each function is executed in the fixed global environment and
+function definitions cannot be nested). Like in IMP and other
+languages, we finally tell the tool that values are K results.

+
  syntax Val ::= Int | Bool | String
+               | array(Int,Int)
+               | lambda(Ids,Stmt)
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax Vals ::= Bottoms
+  syntax KResult ::= Val
+                   | Vals  // TODO: should not need this
+

The inclusion of values in expressions follows the methodology of
+syntactic definitions (like, e.g., in SOS): extend the syntax of the language
+to encompass all values and additional constructs needed to give semantics.
+In addition to that, it allows us to write the semantic rules using the
+original syntax of the language, and to parse them with the same (now extended
+with additional values) parser. If writing the semantics directly on the K
+AST, using the associated labels instead of the syntactic constructs, then one
+would not need to include values in expressions.

+

Configuration

+ +

The K configuration of SIMPLE consists of a top level cell, T,
+holding a threads cell, a global environment map cell genv
+mapping the global variables and function names to their locations, a shared
+store map cell store mapping each location to some value, a set cell
+busy holding the locks which have been acquired but not yet released
+by threads, a set cell terminated holding the unique identifiers of
+the threads which already terminated (needed for join), input
+and output list cells, and a nextLoc cell holding a natural
+number indicating the next available location. Unlike in the small languages
+in the K tutorial, where we used the fresh predicate to generate fresh
+locations, in larger languages, like SIMPLE, we prefer to explicitly manage
+memory. The location counter in nextLoc models an actual physical
+location in the store; for simplicity, we assume arbitrarily large memory and
+no garbage collection. The threads cell contains one thread
+cell for each existing thread in the program. Note that the thread cell has
+multiplicity *, which means that at any given moment there could be zero,
+one or more thread cells. Each thread cell contains a
+computation cell k, a control cell holding the various
+control structures needed to jump to certain points of interest in the program
+execution, a local environment map cell env mapping the thread local
+variables to locations in the store, and finally a holds map cell
+indicating what locks have been acquired by the thread and not released so far
+and how many times (SIMPLE's locks are re-entrant). The control cell
+currently contains only two subcells, a function stack fstack which
+is a list and an exception stack xstack which is also a list.
+One can add more control structures in the control cell, such as a
+stack for break/continue of loops, etc., if the language is extended with more
+control-changing constructs. Note that all cells except for k are
+also initialized, in that they contain a ground term of their corresponding
+sort. The k cell is initialized with the program that will be passed
+to the K tool, as indicated by the $PGM variable, followed by the
+execute task (defined shortly).

+
  // the syntax declarations below are required because the sorts are
+  // referenced directly by a production and, because of the way KIL to KORE
+  // is implemented, the configuration syntax is not available yet
+  // should simply work once KIL is removed completely
+  // check other definitions for this hack as well
+
+  syntax ControlCell
+  syntax ControlCellFragment
+
+  configuration <T color="red">
+                  <threads color="orange">
+                    <thread multiplicity="*" type="Map" color="yellow">
+                      <id color="pink"> -1 </id>
+                      <k color="green"> $PGM:Stmt ~> execute </k>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <control color="cyan">
+                        <fstack color="blue"> .List </fstack>
+                        <xstack color="purple"> .List </xstack>
+                      </control>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <env color="violet"> .Map </env>
+                      <holds color="black"> .Map </holds>
+                    </thread>
+                  </threads>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <genv color="pink"> .Map </genv>
+                  <store color="white"> .Map </store>
+                  <busy color="cyan"> .Set </busy>
+                  <terminated color="red"> .Set </terminated>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <input color="magenta" stream="stdin"> .List </input>
+                  <output color="brown" stream="stdout"> .List </output>
+                  <nextLoc color="gray"> 0 </nextLoc>
+                </T>
+

Declarations and Initialization

+ +

We start by defining the semantics of declarations (for variables,
+arrays and functions).

+

Variable Declaration

+ +

The SIMPLE syntax was desugared above so that each variable is
+declared alone and its initialization is done as a separate statement.
+The semantic rule below matches resulting variable declarations of the
+form var X; on top of the k cell
+(indeed, note that the k cell is complete, or round, to the
+left, and is torn, or ruptured, to the right), allocates a fresh
+location L in the store which is initialized with a special value
+ (indeed, the unit ., or nothing, is matched anywhere
+in the map ‒note the tears at both sides‒ and replaced with the
+mapping L ↦ ⊥), and binds X to L in the local
+environment shadowing previous declarations of X, if any.
+This possible shadowing of X requires us to therefore update the
+entire environment map, which is expensive and can significantly slow
+down the execution of larger programs. On the other hand, since we know
+that L is not already bound in the store, we simply add the binding
+L ↦ ⊥ to the store, thus avoiding a potentially complete
+traversal of the the store map in order to update it. We prefer the approach
+used for updating the store whenever possible, because, in addition to being
+faster, it offers more true concurrency than the latter; indeed, according
+to the concurrent semantics of K, the store is not frozen while
+L ↦ ⊥ is added to it, while the environment is frozen during the
+update operation Env[L/X]. The variable declaration command is
+also removed from the top of the computation cell and the fresh location
+counter is incremented. The undefined symbol added in the store
+is of sort KItem, instead of Val, on purpose; this way, the
+store lookup rules will get stuck when one attempts to lookup an
+uninitialized location. All the above happen in one transactional step,
+with the rule below. Note also how configuration abstraction allows us to
+only mention the needed cells; indeed, as the configuration above states,
+the k and env cells are actually located within a
+thread cell within the threads cell, but one needs
+not mention these: the configuration context of the rule is
+automatically transformed to match the declared configuration
+structure.

+
  syntax KItem ::= "undefined"
+
+  rule <k> var X:Id; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> undefined ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

Array Declaration

+ +

The K semantics of the uni-dimensional array declaration is somehow similar
+to the above declaration of ordinary variables. First, note the
+context declaration below, which requests the evaluation of the array
+dimension. Once evaluated, say to a natural number N, then
+N +Int 1 locations are allocated in the store for
+an array of size N, the additional location (chosen to be the first
+one allocated) holding the array reference value. The array reference
+value array(L,N) states that the array has size N and its
+elements are located contiguously in the store starting with location
+L. The operation L … L' ↦ V, defined at the end of this
+file in the auxiliary operation section, initializes each location in
+the list L … L' to V. Note that, since the dimensions of
+array declarations can be arbitrary expressions, this virtually means
+that we can dynamically allocate memory in SIMPLE by means of array
+declarations.

+
  context var _:Id[HOLE];
+
+  rule <k> var X:Id[N:Int]; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> array(L +Int 1, N)
+                          (L +Int 1) ... (L +Int N) |-> undefined ...</store>
+       <nextLoc> L => L +Int 1 +Int N </nextLoc>
+    requires N >=Int 0
+

SIMPLE allows multi-dimensional arrays. For semantic simplicity, we
+desugar them all into uni-dimensional arrays by code transformation.
+This way, we only need to give semantics to uni-dimensional arrays.
+First, note that the context rule above actually evaluates all the array
+dimensions (that's why we defined the expression lists strict!):
+Upon evaluating the array dimensions, the code generation rule below
+desugars multi-dimensional array declaration to uni-dimensional declarations.
+To this aim, we introduce two special unique variable identifiers,
+$1 and $2. The first variable, $1, iterates
+through and initializes each element of the first dimension with an array
+of the remaining dimensions, declared as variable $2:

+
  syntax Id ::= "$1" [token] | "$2" [token]
+  rule var X:Id[N1:Int, N2:Int, Vs:Vals];
+    => var X[N1];
+       {
+         for(var $1 = 0; $1 <= N1 - 1; ++$1) {
+           var $2[N2, Vs];
+           X[$1] = $2;
+         }
+       }
+

Ideally, one would like to perform syntactic desugarings like the one
+above before the actual semantics. Unfortunately, that was not possible in
+this case because the dimension expressions of the multi-dimensional array need
+to be evaluated first. Indeed, the desugaring rule above does not work if the
+dimensions of the declared array are arbitrary expressions, because they can
+have side effects (e.g., a[++x,++x]) and those side effects would be
+propagated each time the expression is evaluated in the desugaring code (note
+that both the loop condition and the nested multi-dimensional declaration
+would need to evaluate the expressions given as array dimensions).

+

Function declaration

+ +

Functions are evaluated to λ-abstractions and stored like any other
+values in the store. A binding is added into the environment for the function
+name to the location holding its body. Similarly to the C language, SIMPLE
+only allows function declarations at the top level of the program. More
+precisely, the subsequent semantics of SIMPLE only works well when one
+respects this requirement. Indeed, the simplistic context-free parser
+generated by the grammar above is more generous than we may want, in that it
+allows function declarations anywhere any declaration is allowed, including
+inside arbitrary blocks. However, as the rule below shows, we are not
+storing the declaration environment with the λ-abstraction value as
+closures do. Instead, as seen shortly, we switch to the global environment
+whenever functions are invoked, which is consistent with our requirement that
+functions should only be declared at the top. Thus, if one declares local
+functions, then one may see unexpected behaviors (e.g., when one shadows a
+global variable before declaring a local function). The type checker of
+SIMPLE, also defined in K (see examples/simple/typed/static),
+discards programs which do not respect this requirement.

+
  rule <k> function F(Xs) S => .K ...</k>
+       <env> Env => Env[F <- L] </env>
+       <store>... .Map => L |-> lambda(Xs, S) ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

When we are done with the first pass (pre-processing), the computation
+cell k contains only the token execute (see the configuration
+declaration above, where the computation item execute was placed
+right after the program in the k cell of the initial configuration)
+and the cell genv is empty. In this case, we have to call
+main() and to initialize the global environment by transferring the
+contents of the local environment into it. We prefer to do it this way, as
+opposed to processing all the top level declarations directly within the global
+environment, because we want to avoid duplication of semantics: the syntax of
+the global declarations is identical to that of their corresponding local
+declarations, so the semantics of the latter suffices provided that we copy
+the local environment into the global one once we are done with the
+pre-processing. We want this separate pre-processing step precisely because
+we want to create the global environment. All (top-level) functions end up
+having their names bound in the global environment and, as seen below, they
+are executed in that same global environment; all these mean, in particular,
+that the functions "see" each other, allowing for mutual recursion, etc.

+
  syntax KItem ::= "execute"
+  rule <k> execute => main(.Exps); </k>
+       <env> Env </env>
+       <genv> .Map => Env </genv>
+

Expressions

+ +

We next define the K semantics of all the expression constructs.

+

Variable lookup

+ +

When a variable X is the first computational task, and X is bound to some
+location L in the environment, and L is mapped to some value V in the
+store, then we rewrite X into V:

+
  rule <k> X:Id => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+

Note that the rule above excludes reading , because is not
+a value and V is checked at runtime to be a value.

+

Variable/Array increment

+ +

This is tricky, because we want to allow both ++x and ++a[5].
+Therefore, we need to extract the lvalue of the expression to increment.
+To do that, we state that the expression to increment should be wrapped
+by the auxiliary lvalue operation and then evaluated. The semantics
+of this auxiliary operation is defined at the end of this file. For now, all
+we need to know is that it takes an expression and evaluates to a location
+value. Location values, also defined at the end of the file, are integers
+wrapped with the operation loc, to distinguish them from ordinary
+integers.

+
  context ++(HOLE => lvalue(HOLE))
+  rule <k> ++loc(L) => I +Int 1 ...</k>
+       <store>... L |-> (I => I +Int 1) ...</store>
+

Arithmetic operators

+ +

There is nothing special about the following rules. They rewrite the
+language constructs to their library counterparts when their arguments
+become values of expected sorts:

+
  rule I1 + I2 => I1 +Int I2
+  rule Str1 + Str2 => Str1 +String Str2
+  rule I1 - I2 => I1 -Int I2
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+

The equality and inequality constructs reduce to syntactic comparison
+of the two argument values (which is what the equality on K terms does).

+
  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+

The logical negation is clear, but the logical conjunction and disjunction
+are short-circuited:

+
  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+

Array lookup

+ +

Untyped SIMPLE does not check array bounds (the dynamically typed version of
+it, in examples/simple/typed/dynamic, does check for array out of
+bounds). The first rule below desugars the multi-dimensional array access to
+uni-dimensional array access; recall that the array access operation was
+declared strict, so all sub-expressions involved are already values at this
+stage. The second rule rewrites the array access to a lookup operation at a
+precise location; we prefer to do it this way to avoid locking the store.
+The semantics of the auxiliary lookup operation is straightforward,
+and is defined at the end of the file.

+
// The [anywhere] feature is underused, because it would only be used
+// at the top of the computation or inside the lvalue wrapper. So it
+// may not be worth, or we may need to come up with a special notation
+// allowing us to enumerate contexts for [anywhere] rules.
+  rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs]
+    [anywhere]
+
+  rule array(L,_)[N:Int] => lookup(L +Int N)
+    [anywhere]
+

Size of an array

+ +

The size of the array is stored in the array reference value, and the
+sizeOf construct was declared strict, so:

+
  rule sizeOf(array(_,N)) => N
+

Function call

+ +

Function application was strict in both its arguments, so we can
+assume that both the function and its arguments are evaluated to
+values (the former expected to be a λ-abstraction). The first
+rule below matches a well-formed function application on top of the
+computation and performs the following steps atomically: it switches
+to the function body followed by return; (for the case in
+which the function does not use an explicit return statement); it
+pushes the remaining computation, the current environment, and the
+current control data onto the function stack (the remaining
+computation can thus also be discarded from the computation cell,
+because an unavoidable subsequent return statement ‒see
+above‒ will always recover it from the stack); it switches the
+current environment (which is being pushed on the function stack) to
+the global environment, which is where the free variables in the
+function body should be looked up; it binds the formal parameters to
+fresh locations in the new environment, and stores the actual
+arguments to those locations in the store (this latter step is easily
+done by reducing the problem to variable declarations, whose semantics
+we have already defined; the auxiliary operation mkDecls is
+defined at the end of the file). The second rule pops the
+computation, the environment and the control data from the function
+stack when a return statement is encountered as the next
+computational task, passing the returned value to the popped
+computation (the popped computation was the context in which the
+returning function was called). Note that the pushing/popping of the
+control data is crucial. Without it, one may have a function that
+contains an exception block with a return statement inside, which
+would put the xstack cell in an inconsistent state (since the
+exception block modifies it, but that modification should be
+irrelevant once the function returns). We add an artificial
+nothing value to the language, which is returned by the
+nulary return; statements.

+
  syntax KItem ::=  (Map,K,ControlCellFragment)
+
+  rule <k> lambda(Xs,S)(Vs:Vals) ~> K => mkDecls(Xs,Vs) S return; </k>
+       <control>
+         <fstack> .List => ListItem((Env,K,C)) ...</fstack>
+         C
+       </control>
+       <env> Env => GEnv </env>
+       <genv> GEnv </genv>
+
+  rule <k> return(V:Val); ~> _ => V ~> K </k>
+       <control>
+         <fstack> ListItem((Env,K,C)) => .List ...</fstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+
+  syntax Val ::= "nothing"
+  rule return; => return nothing;
+

Like for division-by-zero, it is left unspecified what happens
+when the nothing value is used in domain calculations. For
+example, from the the perspective of the language semantics,
+7 +Int nothing can evaluate to anything, or
+may not evaluate at all (be undefined). If one wants to make sure that
+such artificial values are never misused, then one needs to define a static
+checker (also using K, like our the type checker in
+examples/simple/typed/static) and reject programs that do.
+Note that, unlike the undefined symbol which had the sort K
+instead of Val, we defined nothing to be a value. That
+is because, as explained above, we do not want the program to get
+stuck when nothing is returned by a function. Instead, we want the
+behavior to be unspecified; in particular, if one is careful to never
+use the returned value in domain computation, like it happens when we
+call a function for its side effects (e.g., with a statement of the
+form f(x);), then the program does not get stuck.

+

Read

+ +

The read() expression construct simply evaluates to the next
+input value, at the same time discarding the input value from the
+in cell.

+
  rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input>
+

Assignment

+ +

In SIMPLE, like in C, assignments are expression constructs and not statement
+constructs. To make it a statement all one needs to do is to follow it by a
+semi-colon ; (see the semantics for expression statements below).
+Like for the increment, we want to allow assignments not only to variables but
+also to array elements, e.g., e1[e2] = e3 where e1 evaluates
+to an array reference, e2 to a natural number, and e3 to any
+value. Thus, we first compute the lvalue of the left-hand-side expression
+that appears in an assignment, and then we do the actual assignment to the
+resulting location:

+
  context (HOLE => lvalue(HOLE)) = _
+
+  rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store>
+

Statements

+ +

We next define the K semantics of statements.

+

Blocks

+ +

Empty blocks are simply discarded, as shown in the first rule below.
+For non-empty blocks, we schedule the enclosed statement but we have to
+make sure the environment is recovered after the enclosed statement executes.
+Recall that we allow local variable declarations, whose scope is the block
+enclosing them. That is the reason for which we have to recover the
+environment after the block. This allows us to have a very simple semantics
+for variable declarations, as we did above. One can make the two rules below
+computational if one wants them to count as computational steps.

+
  rule {} => .K
+  rule <k> { S } => S ~> setEnv(Env) ...</k>  <env> Env </env>
+

The basic definition of environment recovery is straightforward and
+given in the section on auxiliary constructs at the end of the file.

+

There are two common alternatives to the above semantics of blocks.
+One is to keep track of the variables which are declared in the block and only
+recover those at the end of the block. This way one does more work for
+variable declarations but conceptually less work for environment recovery; we
+say conceptually because it is not clear that it is indeed the case that
+one does less work when AC matching is involved. The other alternative is to
+work with a stack of environments instead of a flat environment, and push the
+current environment when entering a block and pop it when exiting it. This
+way, one does more work when accessing variables (since one has to search the
+variable in the environment stack in a top-down manner), but on the other hand
+uses smaller environments and the definition gets closer to an implementation.
+Based on experience with dozens of language semantics and other K definitions,
+we have found that our approach above is the best trade-off between elegance
+and efficiency (especially since rewrite engines have built-in techniques to
+lazily copy terms, by need, thus not creating unnecessary copies),
+so it is the one that we follow in general.

+

Sequential composition

+ +

Sequential composition is desugared into K's builtin sequentialization
+operation (recall that, like in C, the semi-colon ; is not a
+statement separator in SIMPLE — it is either a statement terminator or a
+construct for a statement from an expression). Note that K allows
+to define the semantics of SIMPLE in such a way that statements eventually
+dissolve from the top of the computation when they are completed; this is in
+sharp contrast to (artificially) evaluating them to a special
+skip statement value and then getting rid of that special value, as
+it is the case in other semantic approaches (where everything must evaluate
+to something). This means that once S₁ completes in the rule below, S₂
+becomes automatically the next computation item without any additional
+(explicit or implicit) rules.

+
  rule S1:Stmt S2:Stmt => S1 ~> S2
+

A subtle aspect of the rule above is that S₁ is declared to have sort
+Stmts and not Stmt. That is because desugaring macros can indeed
+produce left associative sequential composition of statements. For example,
+the code var x=0; x=1; is desugared to
+(var x; x=0;) x=1;, so although originally the first term of
+the sequential composition had sort Stmt, after desugaring it became
+of sort Stmts. Note that the attribute [right] associated
+to the sequential compositon production is an attribute of the syntax, and not
+of the semantics: e.g., it tells the parser to parse
+var x; x=0; x=1; as var x; (x=0; x=1;), but it
+does not tell the rewrite engine to rewrite (var x; x=0;) x=1; to
+var x; (x=0; x=1;).

+

Expression statements

+ +

Expression statements are only used for their side effects, so their result
+value is simply discarded. Common examples of expression statements are ones
+of the form ++x;, x=e;, e1[e2]=e3;, etc.

+
  rule _:Val; => .K
+

Conditional

+ +

Since the conditional was declared with the strict(1) attribute, we
+can assume that its first argument will eventually be evaluated. The rules
+below cover the only two possibilities in which the conditional is allowed to
+proceed (otherwise the rewriting process gets stuck).

+
  rule if ( true) S else _ => S
+  rule if (false) _ else S => S
+

While loop

+ +

The simplest way to give the semantics of the while loop is by unrolling.
+Note, however, that its unrolling is only allowed when the while loop reaches
+the top of the computation (to avoid non-termination of unrolling). The
+simple while loop semantics below works because our while loops in SIMPLE are
+indeed very basic. If we allowed break/continue of loops then we would need
+a completely different semantics, which would also involve the control cell.

+
  rule while (E) S => if (E) {S while(E)S}
+

Print

+ +

The print statement was strict, so all its arguments are now
+evaluated (recall that print is variadic). We append each of
+its evaluated arguments to the output buffer, and discard the residual
+print statement with an empty list of arguments.

+
  rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output>
+  rule print(.Vals); => .K
+

Exceptions

+ +

SIMPLE allows parametric exceptions, in that one can throw and catch a
+particular value. The statement try S₁ catch(X) S₂
+proceeds with the evaluation of S₁. If S₁ evaluates normally, i.e.,
+without any exception thrown, then S₂ is discarded and the execution
+continues normally. If S₁ throws an exception with a statement of the
+form throw E, then E is first evaluated to some value V
+(throw was declared to be strict), then V is bound to X, then
+S₂ is evaluated in the new environment while the reminder of S₁ is
+discarded, then the environment is recovered and the execution continues
+normally with the statement following the try S₁ catch(X) S₂ statement.
+Exceptions can be nested and the statements in the
+catch part (S₂ in our case) can throw exceptions to the
+upper level. One should be careful with how one handles the control data
+structures here, so that the abrupt changes of control due to exception
+throwing and to function returns interact correctly with each other.
+For example, we want to allow function calls inside the statement S₁ in
+a try S₁ catch(X) S₂ block which can throw an exception
+that is not caught by the function but instead is propagated to the
+try S₁ catch(X) S₂ block that called the function.
+Therefore, we have to make sure that the function stack as well as other
+potential control structures are also properly modified when the exception
+is thrown to correctly recover the execution context. This can be easily
+achieved by pushing/popping the entire current control context onto the
+exception stack. The three rules below modularly do precisely the above.

+
  syntax KItem ::= (Id,Stmt,K,Map,ControlCellFragment)
+
+  syntax KItem ::= "popx"
+
+  rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k>
+       <control>
+         <xstack> .List => ListItem((X, S2, K, Env, C)) ...</xstack>
+         C
+       </control>
+       <env> Env </env>
+
+  rule <k> popx => .K ...</k>
+       <xstack> ListItem(_) => .List ...</xstack>
+
+  rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k>
+       <control>
+         <xstack> ListItem((X, S2, K, Env, C)) => .List ...</xstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+

The catch statement S₂ needs to be executed in the original environment,
+but where the thrown value V is bound to the catch variable X. We here
+chose to rely on two previously defined constructs when giving semantics to
+the catch part of the statement: (1) the variable declaration with
+initialization, for binding X to V; and (2) the block construct for
+preventing X from shadowing variables in the original environment upon the
+completion of S₂.

+

Threads

+ +

SIMPLE's threads can be created and terminated dynamically, and can
+synchronize by acquiring and releasing re-entrant locks and by rendezvous.
+We discuss the seven rules giving the semantics of these operations below.

+

Thread creation

+ +

Threads can be created by any other threads using the spawn S
+construct. The spawn expression construct evaluates to the unique identifier
+of the newly created thread and, at the same time, a new thread cell is added
+into the configuration, initialized with the S statement and sharing the
+same environment with the parent thread. Note that the newly created
+thread cell is torn. That means that the remaining cells are added
+and initialized automatically as described in the definition of SIMPLE's
+configuration. This is part of K's configuration abstraction mechanism.

+
  rule <thread>...
+         <k> spawn S => !T:Int ...</k>
+         <env> Env </env>
+       ...</thread>
+       (.Bag => <thread>...
+               <k> S </k>
+               <env> Env </env>
+               <id> !T </id>
+             ...</thread>)
+

Thread termination

+ +

Dually to the above, when a thread terminates its assigned computation (the
+contents of its k cell) is empty, so the thread can be dissolved.
+However, since no discipline is imposed on how locks are acquired and released,
+it can be the case that a terminating thread still holds locks. Those locks
+must be released, so other threads attempting to acquire them do not deadlock.
+We achieve that by removing all the locks held by the terminating thread in its
+holds cell from the set of busy locks in the busy cell
+(keys(H) returns the domain of the map H as a set, that is, only
+the locks themselves ignoring their multiplicity). As seen below, a lock is
+added to the busy cell as soon as it is acquired for the first time
+by a thread. The unique identifier of the terminated thread is also collected
+into the terminated cell, so the join construct knows which
+threads have terminated.

+
  rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag)
+       <busy> Busy => Busy -Set keys(H) </busy>
+       <terminated>... .Set => SetItem(T) ...</terminated>
+

Thread joining

+ +

Thread joining is now straightforward: all we need to do is to check whether
+the identifier of the thread to be joined is in the terminated cell.
+If yes, then the join statement dissolves and the joining thread
+continues normally; if not, then the joining thread gets stuck.

+
  rule <k> join T:Int; => .K ...</k>
+       <terminated>... SetItem(T) ...</terminated>
+

Acquire lock

+ +

There are two cases to distinguish when a thread attempts to acquire a lock
+(in SIMPLE any value can be used as a lock):
+(1) The thread does not currently have the lock, in which case it has to
+take it provided that the lock is not already taken by another thread (see
+the side condition of the first rule).
+(2) The thread already has the lock, in which case it just increments its
+counter for the lock (the locks are re-entrant). These two cases are captured
+by the two rules below:

+
  rule <k> acquire V:Val; => .K ...</k>
+       <holds>... .Map => V |-> 0 ...</holds>
+       <busy> Busy (.Set => SetItem(V)) </busy>
+    requires (notBool(V in Busy))
+
+  rule <k> acquire V; => .K ...</k>
+       <holds>... V:Val |-> (N => N +Int 1) ...</holds>
+

Release lock

+ +

Similarly, there are two corresponding cases to distinguish when a thread
+releases a lock:
+(1) The thread holds the lock more than once, in which case all it needs to do
+is to decrement the lock counter.
+(2) The thread holds the lock only once, in which case it needs to remove it
+from its holds cell and also from the the shared busy cell,
+so other threads can acquire it if they need to.

+
  rule <k> release V:Val; => .K ...</k>
+       <holds>... V |-> (N => N -Int 1) ...</holds>
+    requires N >Int 0
+
+  rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds>
+       <busy>... SetItem(V) => .Set ...</busy>
+

Rendezvous synchronization

+ +

In addition to synchronization through acquire and release of locks, SIMPLE
+also provides a construct for rendezvous synchronization. A thread whose next
+statement to execute is rendezvous(V) gets stuck until another
+thread reaches an identical statement; when that happens, the two threads
+drop their rendezvous statements and continue their executions. If three
+threads happen to have an identical rendezvous statement as their next
+statement, then precisely two of them will synchronize and the other will
+remain blocked until another thread reaches a similar rendezvous statement.
+The rule below is as simple as it can be. Note, however, that, again, it is
+K's mechanism for configuration abstraction that makes it work as desired:
+since the only cell which can multiply containing a k cell inside is
+the thread cell, the only way to concretize the rule below to the
+actual configuration of SIMPLE is to include each k cell in a
+thread cell.

+
  rule <k> rendezvous V:Val; => .K ...</k>
+       <k> rendezvous V; => .K ...</k>
+

Auxiliary declarations and operations

+ +

In this section we define all the auxiliary constructs used in the
+above semantics.

+

Making declarations

+ +

The mkDecls auxiliary construct turns a list of identifiers
+and a list of values in a sequence of corresponding variable
+declarations.

+
  syntax Stmt ::= mkDecls(Ids,Vals)  [function]
+  rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs)
+  rule mkDecls(.Ids,.Vals) => {}
+

Location lookup

+ +

The operation below is straightforward.

+
  syntax Exp ::= lookup(Int)
+  rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store>
+

Environment recovery

+ +

We have already discussed the environment recovery auxiliary operation in the
+IMP++ tutorial:

+
// TODO: eliminate the env wrapper, like we did in IMP++
+
+  syntax KItem ::= setEnv(Map)
+  rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env>
+

While theoretically sufficient, the basic definition for environment
+recovery alone is suboptimal. Consider a loop while (E)S,
+whose semantics (see above) was given by unrolling. S
+is a block. Then the semantics of blocks above, together with the
+unrolling semantics of the while loop, will yield a computation
+structure in the k cell that increasingly grows, adding a new
+environment recovery task right in front of the already existing sequence of
+similar environment recovery tasks (this phenomenon is similar to the ``tail
+recursion'' problem). Of course, when we have a sequence of environment
+recovery tasks, we only need to keep the last one. The elegant rule below
+does precisely that, thus avoiding the unnecessary computation explosion
+problem:

+
  rule (setEnv(_) => .K) ~> setEnv(_)
+

In fact, the above follows a common convention in K for recovery
+operations of cell contents: the meaning of a computation task of the form
+cell(C) that reaches the top of the computation is that the current
+contents of cell cell is discarded and gets replaced with C. We
+did not add support for these special computation tasks in our current
+implementation of K, so we need to define them as above.

+

lvalue and loc

+ +

For convenience in giving the semantics of constructs like the increment and
+the assignment, that we want to operate the same way on variables and on
+array elements, we used an auxiliary lvalue(E) construct which was
+expected to evaluate to the lvalue of the expression E. This is only
+defined when E has an lvalue, that is, when E is either a variable or
+evaluates to an array element. lvalue(E) evaluates to a value of
+the form loc(L), where L is the location where the value of E
+can be found; for clarity, we use loc to structurally distinguish
+natural numbers from location values. In giving semantics to lvalue
+there are two cases to consider. (1) If E is a variable, then all we need
+to do is to grab its location from the environment. (2) If E is an array
+element, then we first evaluate the array and its index in order to identify
+the exact location of the element of concern, and then return that location;
+the last rule below works because its preceding context declarations ensure
+that the array and its index are evaluated, and then the rule for array lookup
+(defined above) rewrites the evaluated array access construct to its
+corresponding store lookup operation.

+
// For parsing reasons, we prefer to allow lvalue to take a K
+
+  syntax Exp ::= lvalue(K)
+  syntax Val ::= loc(Int)
+
+// Local variable
+
+  rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env>
+
+// Array element: evaluate the array and its index;
+// then the array lookup rule above applies.
+
+  context lvalue(_::Exp[HOLE::Exps])
+  context lvalue(HOLE::Exp[_::Exps])
+
+// Finally, return the address of the desired object member
+
+  rule lvalue(lookup(L:Int) => loc(L))
+

Initializing multiple locations

+ +

The following operation initializes a sequence of locations with the same
+value:

+
  syntax Map ::= Int "..." Int "|->" K [function]
+  rule N...M |-> _ => .Map  requires N >Int M
+  rule N...M |-> K => N |-> K (N +Int 1)...M |-> K  requires N <=Int M
+

The semantics of SIMPLE is now complete. Make sure you kompile the
+definition with the right options in order to generate the desired model.
+No kompile options are needed if you only only want to execute the definition
+(and thus get an interpreter), but if you want to search for a different
+program behaviors then you need to kompile with the --enable-search option

+
endmodule
+

Go to Lesson 2, SIMPLE typed static

+

SIMPLE — Typed — Static

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K definition of the static semantics of the typed SIMPLE
+language, or in other words, a type system for the typed SIMPLE
+language in K. We do not re-discuss the various features of the
+SIMPLE language here. The reader is referred to the untyped version of
+the language for such discussions. We here only focus on the new and
+interesting problems raised by the addition of type declarations, and
+what it takes to devise a type system/checker for the language.

+

When designing a type system for a language, no matter in what
+paradigm, we have to decide upon the intended typing policy. Note
+that we can have multiple type systems for the same language, one for
+each typing policy. For example, should we accept programs which
+don't have a main function? Or should we allow functions that do not
+return explicitly? Or should we allow functions whose type expects
+them to return a value (say an int) to use a plain
+return; statement, which returns no value, like in C?
+And so on and so forth. Typically, there are two opposite tensions
+when designing a type system. On the one hand, you want your type
+system to be as permissive as possible, that is, to accept as many
+programs that do not get stuck when executed with the untyped
+semantics as possible; this will keep the programmers using your
+language happy. On the other hand, you want your type system to have
+a reasonable performance when implemented; this will keep both the
+programmers and the implementers of your language happy. For example,
+a type system for rejecting programs that could perform
+division-by-zero is not expected to be feasible in general. A simple
+guideline when designing typing policies is to imagine how the
+semantics of the untyped language may get stuck and try to prevent
+those situations from happening.

+

Before we give the K type system of SIMPLE formally, we discuss,
+informally, the intended typing policy:

+
    +
  • +

    Each program should contain a main() function. Indeed,
    +the untyped SIMPLE semantics will get stuck on any program which does
    +not have a main function.

    +
  • +
  • +

    Each primitive value has its own type, which can be int
    +bool, or string. There is also a type void
    +for nonexistent values, for example for the result of a function meant
    +to return no value (but only be used for its side effects, like a
    +procedure).

    +
  • +
  • +

    The syntax of untyped SIMPLE is extended to allow type
    +declarations for all the variables, including array variables. This is
    +done in a C/Java-style. For example, int x; or
    +int x=7, y=x+3;, or int[][][] a[10,20];
    +(the latter defines a 10 × 20 matrix of arrays of integers).
    +Recall from untyped SIMPLE that, unlike in C/Java, our multi-dimensional
    +arrays use comma-separated arguments, although they have the array-of-array
    +semantics.

    +
  • +
  • +

    Functions are also typed in a C/Java style. However, since in SIMPLE
    +we allow functions to be passed to and returned by other functions, we also
    +need function types. We will use the conventional higher-order arrow-notation
    +for function types, but will separate the argument types with commas. For
    +example, a function returning an array of bool elements and
    +taking as argument an array x of two-integer-argument functions
    +returning an integer, is declared using a syntax of the form
    +bool[] f(((int,int)->int)[] x) { ... }
    +and has the type ((int,int)->int)[] -> bool[].

    +
  • +
  • +

    We allow any variable declarations at the top level. Functions
    +can only be declared at the top level. Each function can only access the
    +other functions and variables declared at the top level, or its own locally
    +declared variables. SIMPLE has static scoping.

    +
  • +
  • +

    The various expression and statement constructs take only elements of
    +the expected types.

    +
  • +
  • +

    Increment and assignment can operate both on variables and on array
    +elements. For example, if f has type int->int[][] and
    +function g has the type int->int, then the
    +increment expression ++f(7)[g(2),g(3)] is valid.

    +
  • +
  • +

    Functions should only return values of their declared result
    +type. To give the programmers more flexibility, we allow functions to
    +use return; statements to terminate without returning an
    +actual value, or to not explicitly use any return statement,
    +regardless of their declared return type. This flexibility can be
    +handy when writing programs using certain functions only for their
    +side effects. Nevertheless, as the dynamic semantics shows, a return
    +value is automatically generated when an explicit return
    +statement is not encountered.

    +
  • +
  • +

    For simplicity, we here limit exceptions to only throw and catch
    +integer values. We let it as an exercise to the reader to extend the
    +semantics to allow throwing and catching arbitrary-type exceptions.
    +Like in programming languages like Java, one can go even further and
    +define a semantics where thrown exceptions are propagated through
    +try-catch statements until one of the corresponding type is found.
    +We will do this when we define the KOOL language, not here.
    +To keep the definition if SIMPLE simple, here we do not attempt to
    +reject programs which throw uncaught exceptions.

    +
  • +
+

Like in untyped SIMPLE, some constructs can be desugared into a
+smaller set of basic constructs. In general, it should be clear why a
+program does not type by looking at the top of the k cells in
+its stuck configuration.

+
module SIMPLE-TYPED-STATIC-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of typed SIMPLE extends that of untyped SIMPLE with support
+for declaring types to variables and functions.

+
  syntax Id ::= "main" [token]
+

Types

+ +

Primitive, array and function types, as well as lists (or tuples) of types.
+The lists of types are useful for function arguments.

+
  syntax Type ::= "void" | "int" | "bool" | "string"
+                | Type "[" "]"
+                | "(" Type ")"             [bracket]
+                > Types "->" Type
+
+  syntax Types ::= List{Type,","}          [overload(exps)]
+

Declarations

+ +

Variable and function declarations have the expected syntax. For variables,
+we basically just replaced the var keyword of untyped SIMPLE with a
+type. For functions, besides replacing the function keyword with a
+type, we also introduce a new syntactic category for typed variables,
+Param, and lists over it.

+
  syntax Param ::= Type Id
+  syntax Params ::= List{Param,","}
+
+  syntax Stmt ::= Type Exps ";"
+                | Type Id "(" Params ")" Block
+

Expressions

+ +

The syntax of expressions is identical to that in untyped SIMPLE,
+except for the logical conjunction and disjunction which have
+different strictness attributes, because they now have different
+evaluation strategies.

+
  syntax Exp ::= Int | Bool | String | Id
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict]
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict, left]
+               | Exp "||" Exp            [strict, left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+

Note that spawn has not been declared strict. This may
+seem unexpected, because the child thread shares the same environment
+with the parent thread, so from a typing perspective the spawned
+statement makes the same sense in a child thread as it makes in the
+parent thread. The reason for not declaring it strict is because we
+want to disallow programs where the spawned thread calls the
+return statement, because those programs would get stuck in
+the dynamic semantics. The type semantics of spawn below will reject
+such programs.

+

We still need lists of expressions, defined below, but note that we do
+not need lists of identifiers anymore. They have been replaced by the lists
+of parameters.

+
  syntax Exps ::= List{Exp,","}          [strict, overload(exps)]
+

Statements

+ +

The statements have the same syntax as in untyped SIMPLE, except for
+the exceptions, which now type their parameter. Note that, unlike in untyped
+SIMPLE, all statement constructs which have arguments and are not desugared
+are strict, including the conditional and the while. Indeed, from a
+typing perspective, they are all strict: first type their arguments and then
+type the actual construct.

+
  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                                  [strict]
+                | "if" "(" Exp ")" Block "else" Block      [avoid, strict]
+                | "if" "(" Exp ")" Block                   [macro]
+                | "while" "(" Exp ")" Block                [strict]
+                | "for" "(" Stmt Exp ";" Exp ")" Block     [macro]
+                | "return" Exp ";"                         [strict]
+                | "return" ";"
+                | "print" "(" Exps ")" ";"                 [strict]
+                | "try" Block "catch" "(" Param ")" Block  [strict(1)]
+                | "throw" Exp ";"                          [strict]
+                | "join" Exp ";"                           [strict]
+                | "acquire" Exp ";"                        [strict]
+                | "release" Exp ";"                        [strict]
+                | "rendezvous" Exp ";"                     [strict]
+

Note that the sequential composition is now sequentially strict,
+because, unlike in the dynamic semantics where statements dissolved,
+they now reduce to the stmt type, which is a result.

+
  syntax Stmt ::= Stmt Stmt                             [seqstrict, right]
+

Desugaring macros

+ +

We use the same desugaring macros like in untyped SIMPLE, but, of
+course, including the types of the involved variables.

+
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}}
+  rule for(Start Cond; Step) {} => {Start while(Cond){Step;}}
+  rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es;               [anywhere]
+  rule T:Type X:Id = E; => T X; X = E;                                  [anywhere]
+
+endmodule
+
+
+module SIMPLE-TYPED-STATIC
+  imports SIMPLE-TYPED-STATIC-SYNTAX
+  imports DOMAINS
+

Static semantics

+ +

Here we define the type system of SIMPLE. Like concrete semantics,
+type systems defined in K are also executable. However, K type
+systems turn into type checkers instead of interpreters when executed.

+

The typing process is done in two (overlapping) phases. In the first
+phase the global environment is built, which contains type bindings
+for all the globally declared variables and functions. For functions,
+the declared types will be ``trusted'' during the first phase and
+simply bound to their corresponding function names and placed in the
+global type environment. At the same time, type-checking tasks that
+the function bodies indeed respect their claimed types are generated.
+All these tasks are (concurrently) verified during the second phase.
+This way, all the global variable and function declarations are
+available in the global type environment and can be used in order to
+type-check each function code. This is consistent with the semantics
+of untyped SIMPLE, where functions can access all the global variables
+and can call any other function declared in the same program. The
+two phases may overlap because of the K concurrent semantics. For
+example, a function task can be started while the first phase is still
+running; moreover, it may even complete before the first phase does,
+namely when all the global variables and functions that it needs have
+already been processed and made available in the global environment by
+the first phase task.

+

Extended syntax and results

+ +

The idea is to start with a configuration holding the program to type
+in one of its cells, then apply rewrite rules on it mixing types and
+language syntax, and eventually obtain a type instead of the original
+program. In other words, the program reduces to its type using
+the K rules giving the type system of the language. In doing so,
+additional typing tasks for function bodies are generated and solved
+the same way. If this rewriting process gets stuck, then we say that
+the program is not well-typed. Otherwise the program is well-typed
+(by definition). We did not need types for statements and for blocks
+as part of the typed SIMPLE syntax, because programmers are not allowed
+to use such types explicitly. However, we are going to need them in the
+type system, because blocks and statements reduce to them.

+

We start by allowing types to be used inside expressions and statements in
+our language. This way, types can be used together with language syntax in
+subsequent K rules without any parsing errors. Like in the type system of
+IMP++ in the K tutorial, we prefer to group the block and statement types
+under one syntactic sub-category of types, because this allows us to more
+compactly state that certain terms can be either blocks or statements. Also,
+since programs and fragments of program will reduce to their types, in order
+for the strictness and context declarations to be executable we state that
+types are results (same like we did in the IMP++ tutorial).

+
  syntax Exp ::= Type
+  syntax Exps ::= Types
+  syntax BlockOrStmtType ::= "block" | "stmt"
+  syntax Type ::= BlockOrStmtType
+  syntax Block ::= BlockOrStmtType
+  syntax KResult ::= Type
+                   | Types    //TODO: remove this, eventually
+

Configuration

+ +

The configuration of our type system consists of a tasks cell
+holding various typing task cells, and a global type environment.
+Each task includes a k cell holding the code to type, a tenv
+cell holding the local type environment, and a return cell holding
+the return type of the currently checked function. The latter is needed in
+order to check whether return statements return values of the expected type.
+Initially, the program is placed in a k cell inside a
+task cell. Since the cells with multiplicity ? are not
+included in the initial configuration, the task cell holding
+the original program in its k cell will contain no other
+subcells.

+
  configuration <T color="yellow">
+                  <tasks color="orange">
+                    <task multiplicity="*" color="yellow" type="Set">
+                      <k color="green"> $PGM:Stmt </k>
+                      <tenv multiplicity="?" color="cyan"> .Map </tenv>
+                      <returnType multiplicity="?" color="black"> void </returnType>
+                    </task>
+                  </tasks>
+//                  <br/>
+                  <gtenv color="blue"> .Map </gtenv>
+                </T>
+

Variable declarations

+ +

Variable declarations type as statements, that is, they reduce to the
+type stmt. There are only two cases that need to be
+considered: when a simple variable is declared and when an array
+variable is declared. The macros at the end of the syntax module
+above take care of reducing other variable declarations, including
+ones where the declared variables are initialized, to only these two
+cases. The first case has two subcases: when the variable declaration
+is global (i.e., the task cell contains only the k
+cell), in which case it is added to the global type environment
+checking at the same time that the variable has not been already
+declared; and when the variable declaration is local (i.e., a
+tenv cell is available), in which case it is simply added to
+the local type environment, possibly shadowing previous homonymous
+variables. The third case reduces to the second, incrementally moving
+the array dimension into the type until the array becomes a simple
+variable.

+
  rule <task> <k> T:Type X:Id; => stmt ...</k> </task>
+       <gtenv> Rho (.Map => X |-> T) </gtenv>
+    requires notBool(X in keys(Rho))
+  rule <k> T:Type X:Id; => stmt ...</k> <tenv> Rho => Rho[X <- T] </tenv>
+
+  context _:Type _::Exp[HOLE::Exps];
+// The rule below may need to sort E to Exp in the future, if the
+// parser gets stricter; without that information, it may not be able
+// to complete the LHS into T E[int,Ts],.Exps; (and similarly for the RHS)
+  rule T:Type E:Exp[int,Ts:Types]; => T[] E[Ts];
+// I want to write the rule below as _:Type (E:Exp[.Types] => E),
+// but the list completion seems to not work well with that.
+  rule T:Type E:Exp[.Types]; => T E;
+

Function declarations

+ +

Functions are allowed to be declared only at the top level (the
+task cell holds only its k subcell). Each function
+declaration reduces to a variable declaration (a binding of its name
+to its declared function type), but also adds a task into the
+tasks cell. The task consists of a typing of the statement
+declaring all the function parameters followed by the function body,
+together with the expected return type of the function. The
+getTypes and mkDecls functions, defined at the end of
+the file in the section on auxiliary operations, extracts the list of
+types and makes a sequence of variable declarations from a list of
+function parameters, respectively. Note that, although in the dynamic
+semantics we include a terminating return statement at the
+end of the function body to eliminate from the analysis the case when
+the function does not provide an explicit return, we do not need to
+include such a similar return statement here. That's because
+the return statements type to stmt anyway, and the
+entire code of the function body needs to type anyway.

+
  rule <task> <k> T:Type F:Id(Ps:Params) S => getTypes(Ps)->T F; ...</k> </task>
+       (.Bag => <task>
+               <k> mkDecls(Ps) S </k> <tenv> .Map </tenv> <returnType> T </returnType>
+             </task>)
+

Checking if main() exists}

+ +

Once the entire program is processed (generating appropriate tasks
+to type check its function bodies), we can dissolve the main
+task cell (the one holding only a k subcell). Since
+we want to enforce that programs include a main function, we also
+generate a function task executing main() to ensure that it
+types (remove this task creation if you do not want your type system
+to reject programs without a main function).

+
  rule <task> <k> stmt => main(.Exps); </k> (.Bag => <tenv> .Map </tenv>) </task>
+

Collecting the terminated tasks

+ +

Similarly, once a non-main task (i.e., one which contains a
+tenv subcells) is completed using the subsequent rules (i.e.,
+its k cell holds only the block or stmt
+type), we can dissolve its corresponding cell. Note that it is
+important to ensure that we only dissolve tasks containing a
+tenv cell with the rule below, because the main task should
+not dissolve this way! It should do what the above rule says.
+In the end, there should be no task cell left in the configuration
+when the program correctly type checks.

+
  rule <task>... <k> _:BlockOrStmtType </k> <tenv> _ </tenv> ...</task> => .Bag
+

Basic values

+ +

The first three rewrite rules below reduce the primitive values to
+their types, as we typically do when we define type systems in K.

+
  rule _:Int => int
+  rule _:Bool => bool
+  rule _:String => string
+

Variable lookup

+ +

There are three cases to distinguish for variable lookup: (1) if the
+variable is bound in the local type environment, then look its type up
+there; (2) if a local environment exists and the variable is not bound
+in it, then look its type up in the global environment; (3) finally,
+if there is no local environment, meaning that we are executing the
+top-level pass, then look the variable's type up in the global
+environment, too.

+
  rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</tenv>
+
+  rule <k> X:Id => T ...</k> <tenv> Rho </tenv> <gtenv>... X |-> T ...</gtenv>
+    requires notBool(X in keys(Rho))
+
+  rule <task> <k> X:Id => T ...</k> </task> <gtenv>... X |-> T ...</gtenv>
+

Increment

+ +

We want the increment operation to apply to any lvalue, including
+array elements, not only to variables. For that reason, we define a
+special context extracting the type of the argument of the increment
+operation only if that argument is an lvalue. Otherwise the rewriting
+process gets stuck. The operation ltype is defined at the
+end of this file, in the auxiliary operation section. It essentially
+acts as a filter, getting stuck if its argument is not an lvalue and
+letting it reduce otherwise. The type of the lvalue is expected to be
+an integer in order to be allowed to be incremented, as seen in the
+rule ++ int => int below.

+
  context ++(HOLE => ltype(HOLE))
+  rule ++ int => int
+

Common expression constructs

+ +

The rules below are straightforward and self-explanatory:

+
  rule int + int => int
+  rule string + string => string
+  rule int - int => int
+  rule int * int => int
+  rule int / int => int
+  rule int % int => int
+  rule - int => int
+  rule int < int => bool
+  rule int <= int => bool
+  rule int > int => bool
+  rule int >= int => bool
+  rule T:Type == T => bool
+  rule T:Type != T => bool
+  rule bool && bool => bool
+  rule bool || bool => bool
+  rule ! bool => bool
+

Array access and size

+ +

Array access requires each index to type to an integer, and the
+array type to be at least as deep as the number of indexes:

+
// NOTE:
+// We used to need parentheses in the RHS, to avoid capturing Ts as an attribute
+// Let's hope that is not a problem anymore.
+
+  rule (T[])[int, Ts:Types] => T[Ts]
+  rule T:Type[.Types] => T
+

sizeOf only needs to check that its argument is an array:

+
  rule sizeOf(_T[]) => int
+

Input/Output

+ +

The read expression construct types to an integer, while print types
+to a statement provided that all its arguments type to integers or
+strings.

+
  rule read() => int
+
+  rule print(T:Type, Ts => Ts); requires T ==K int orBool T ==K string
+  rule print(.Types); => stmt
+

Assignment

+ +

The special context and the rule for assignment below are similar
+to those for increment: the LHS of the assignment must be an lvalue
+and, in that case, it must have the same type as the RHS, which then
+becomes the type of the assignment.

+
  context (HOLE => ltype(HOLE)) = _
+  rule T:Type = T => T
+

Function application and return

+ +

Function application requires the type of the function and the
+types of the passed values to be compatible. Note that a special case
+is needed to handle the no-argument case:

+
  rule (Ts:Types -> T)(Ts) => T requires Ts =/=K .Types
+  rule (void -> T)(.Types) => T
+

The returned value must have the same type as the declared
+function return type. If an empty return is encountered, than
+we should check that we are in a function (and not a thread)
+context, that is, a return cell must be available:

+
  rule <k> return T:Type; => stmt ...</k> <returnType> T </returnType>
+  rule <k> return; => stmt ...</k> <returnType> _ </returnType>
+

Blocks

+ +

To avoid having to recover type environments after blocks, we prefer
+to start a new task for block body, making sure that the new task
+is passed the same type environment and return cells. The value
+returned by return statements must have the same type as
+stated in the return cell. The print variadic
+function is allowed to only print integers and strings. The thrown
+exceptions can only have integer type.

+
  rule {} => block
+
+  rule <task> <k> {S} => block ...</k> <tenv> Rho </tenv> R </task>
+       (.Bag => <task> <k> S </k> <tenv> Rho </tenv> R </task>)
+

Expression statement

+ +
  rule _:Type; => stmt
+

Conditional and while loop

+ +
  rule if (bool) block else block => stmt
+  rule while (bool) block => stmt
+

Exceptions

+ +

We currently force the parameters of exceptions to only be integers.
+Moreover, for simplicity, we assume that integer exceptions can be
+thrown from anywhere, including from functions which do not define
+any try-catch block (with the currently unchecked ‒also for
+simplicity‒ expectation that the caller functions would catch those
+exceptions).

+
  rule try block catch(int X:Id) {S} => {int X; S}
+  rule try block catch(int X:Id) {} => {int X;}
+  rule throw int; => stmt
+

Concurrency

+ +

Nothing special about typing the concurrency constructs, except that
+we do not want the spawned thread to return, so we do not include any
+return cell in the new task cell for the thread statement.
+Same like with the functions above, we do not check for thrown
+exceptions which are not caught.

+
  rule <k> spawn S => int ...</k> <tenv> Rho </tenv>
+       (.Bag => <task> <k> S </k> <tenv> Rho </tenv> </task>)
+  rule join int; => stmt
+  rule acquire _:Type; => stmt
+  rule release _:Type; => stmt
+  rule rendezvous _:Type; => stmt
+
+  rule _:BlockOrStmtType _:BlockOrStmtType => stmt
+

Auxiliary constructs

+ +

The function mkDecls turns a list of parameters into a
+list of variable declarations.

+
  syntax Stmt ::= mkDecls(Params)  [function]
+  rule mkDecls(T:Type X:Id, Ps:Params) => T X; mkDecls(Ps)
+  rule mkDecls(.Params) => {}
+

The ltype context allows only expressions which have an
+lvalue to evaluate.

+
  syntax LValue ::= Id
+  rule isLValue(_:Exp[_:Exps]) => true
+  syntax Exp ::= LValue  // K should be able to infer this
+                         // if not added, then it gets stuck with an Id on k cell
+
+// Instead of the second LValue production above you can use a rule:
+//  rule isLValue(_:Exp[_:Exps]) => true
+
+  syntax Exp ::= ltype(Exp)
+//  context ltype(HOLE:LValue)
+// The above context does not work due to some error, so we write instead
+  context ltype(HOLE) requires isLValue(HOLE)
+

The function getTypes is the same as in SIMPLE typed dynamic.

+
  syntax Types ::= getTypes(Params)  [function]
+  rule getTypes(T:Type _:Id) => T, .Types   // I would like to not use .Types
+  rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps)
+  rule getTypes(.Params) => void, .Types
+
+endmodule
+

Go to Lesson 3, SIMPLE typed dynamic

+

SIMPLE — Typed — Dynamic

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K dynamic semantics of the typed SIMPLE language.
+It is very similar to the semantics of the untyped SIMPLE, the
+difference being that we now dynamically check the typing policy
+described in the static semantics of typed SIMPLE. Because of the
+dynamic nature of the semantics, we can also perform some additional
+checks which were not possible in the static semantics, such as
+memory leaks due to accessing an array out of its bounds. We will
+highlight the differences between the dynamically typed and the
+untyped SIMPLE as we proceed with the semantics. We recommend the
+reader to consult the typing policy and the syntax of types discussed
+in the static semantics of the typed SIMPLE language.

+
module SIMPLE-TYPED-DYNAMIC-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of typed SIMPLE extends that of untyped SIMPLE with support
+for declaring types to variables and functions.

+

The syntax below is identical to that of the static semantics of typed
+SIMPLE. However, the K strictness attributes are like those of the untyped
+SIMPLE, to capture the desired evaluation strategies of the various language
+constructs.

+
  syntax Id ::= "main" [token]
+

Types

+ +
  syntax Type ::= "void" | "int" | "bool" | "string"
+                | Type "[" "]"
+                | "(" Type ")"           [bracket]
+                > Types "->" Type
+  syntax Types ::= List{Type,","}        [overload(exps)]
+

Declarations

+ +
  syntax Param ::= Type Id
+  syntax Params ::= List{Param,","}
+
+  syntax Stmt ::= Type Exps ";"
+                | Type Id "(" Params ")" Block
+

Expressions

+ +
  syntax Exp ::= Int | Bool | String | Id
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict]
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict(1), left]
+               | Exp "||" Exp            [strict(1), left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+

Like in the static semantics, there is no need for lists of identifiers
+(because we now have lists of parameters).

+
  syntax Exps ::= List{Exp,","}          [strict, overload(exps)]
+  syntax Val
+  syntax Vals ::= List{Val,","}          [overload(exps)]
+

Statements

+ +
  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                               [strict]
+                | "if" "(" Exp ")" Block "else" Block   [avoid, strict(1)]
+                | "if" "(" Exp ")" Block                [macro]
+                | "while" "(" Exp ")" Block
+                | "for" "(" Stmt Exp ";" Exp ")" Block  [macro]
+                | "print" "(" Exps ")" ";"              [strict]
+                | "return" Exp ";"                      [strict]
+                | "return" ";"
+                | "try" Block "catch" "(" Param ")" Block
+            | "throw" Exp ";"                       [strict]
+                | "join" Exp ";"                        [strict]
+                | "acquire" Exp ";"                     [strict]
+                | "release" Exp ";"                     [strict]
+                | "rendezvous" Exp ";"                  [strict]
+
+  syntax Stmt ::= Stmt Stmt                          [right]
+

The same desugaring macros like in the statically typed SIMPLE.

+
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}}
+  rule for(Start Cond; Step) {} => {Start while(Cond){Step;}}
+  rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es;               [anywhere]
+  rule T:Type X:Id = E; => T X; X = E;                                  [anywhere]
+
+endmodule
+
+
+module SIMPLE-TYPED-DYNAMIC
+  imports SIMPLE-TYPED-DYNAMIC-SYNTAX
+  imports DOMAINS
+

Semantics

+ +

Values and results

+ +

These are similar to those of untyped SIMPLE, except that the array
+references and the function abstrations now also hold their types.
+These types are needed in order to easily compute the type of any
+value in the language (see the auxiliary typeOf operation at
+the end of this module).

+
  syntax Val ::= Int | Bool | String
+               | array(Type,Int,Int)
+               | lambda(Type,Params,Stmt)
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax KResult ::= Val
+                   | Vals  // TODO: should not need this
+

Configuration

+ +

The configuration is almost identical to that of untyped SIMPLE,
+except for a return cell inside the control cell.
+This return cell will hold, like in the static semantics of
+typed SIMPLE, the expected type of the value returned by the function
+being executed. The contents of this cell will be set whenever a
+function is invoked and will be checked whenever the evaluation of the
+function body encounters an explicit return statement.

+
  // the syntax declarations below are required because the sorts are
+  // referenced directly by a production and, because of the way KIL to KORE
+  // is implemented, the configuration syntax is not available yet
+  // should simply work once KIL is removed completely
+  // check other definitions for this hack as well
+
+  syntax ControlCell
+  syntax ControlCellFragment
+
+  configuration <T color="red">
+                  <threads color="orange">
+                    <thread multiplicity="*" color="yellow" type="Map">
+                      <id color="pink"> 0 </id>
+                      <k color="green"> ($PGM:Stmt ~> execute) </k>
+//                      <br/>
+                      <control color="cyan">
+                        <fstack color="blue"> .List </fstack>
+                        <xstack color="purple"> .List </xstack>
+                        <returnType color="LimeGreen"> void </returnType>
+                       </control>
+//                      <br/>
+                      <env color="violet"> .Map </env>
+                      <holds color="black"> .Map </holds>
+                    </thread>
+                  </threads>
+//                  <br/>
+                  <genv color="pink"> .Map </genv>
+                  <store color="white"> .Map </store>
+                  <busy color="cyan">.Set</busy>
+                  <terminated color="red"> .Set </terminated>
+                  <input color="magenta" stream="stdin"> .List </input>
+                  <output color="brown" stream="stdout"> .List </output>
+                  <nextLoc color="gray"> 0 </nextLoc>
+                </T>
+

Declarations and Initialization

+ +

Variable Declaration

+ +

The undefined construct is now parameterized by a type.
+A main difference between untyped SIMPLE and dynamically typed SIMPLE
+is that the latter assigns a type to each of its locations and that
+type cannot be changed during the execution of the program. We do not
+do any memory management in our semantic definitions here, so
+locations cannot be reclaimed, garbage collected and/or reused. Each
+location corresponds precisely to an allocated variable or array
+element, whose type was explicitly or implicitly declared in the
+program and does not change. It is therefore safe to type each
+location and then never allow that type to change. The typed
+undefined values effectively assign both a type and an undefined value
+to a location.

+
  syntax KItem ::= undefined(Type)
+
+  rule <k> T:Type X:Id; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> undefined(T) ...</store>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+

Array Declaration

+ +

The dynamic semantics of typed array declarations is similar to that
+in untyped SIMPLE, but we have to make sure that we associate the
+right type to the allocated locations.

+
  rule <k> T:Type X:Id[N:Int]; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> array(T, L +Int 1, N)
+                          (L +Int 1)...(L +Int N) |-> undefined(T) ...</store>
+       <nextLoc> L:Int => L +Int 1 +Int N </nextLoc>
+    requires N >=Int 0
+
+  context _:Type _::Exp[HOLE::Exps];
+

The desugaring of multi-dimensional arrays into unidimensional
+ones is also similar to that in untyped SIMPLE, although we have to
+make sure that all the declared variables have the right types. The
+auxiliary operation T<Vs>, defined at the end of the file,
+adds the length of Vs dimensions to the type T.

+
// TODO: Check the desugaring below to be consistent with the one for untyped simple
+
+  syntax Id ::= "$1" [token] | "$2" [token]
+  rule T:Type X:Id[N1:Int, N2:Int, Vs:Vals];
+    => T[]<Vs> X[N1];
+       {
+         T[][]<Vs> $1=X;
+         for(int $2=0; $2 <= N1 - 1; ++$2) {
+           T X[N2,Vs];
+           $1[$2] = X;
+         }
+       }
+

Function declaration

+ +

Store all function parameters, as well as the return type, as part
+of the lambda abstraction. In the spirit of dynamic typing, we will
+make sure that parameters are well typed when the function is invoked.

+
  rule <k> T:Type F:Id(Ps:Params) S => .K ...</k>
+       <env> Env => Env[F <- L] </env>
+       <store>... .Map => L |-> lambda(T, Ps, S) ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

Calling main()

+ +

When done with the first pass, call main().

+
  syntax KItem ::= "execute"
+  rule <k> execute => main(.Exps); </k>
+       <env> Env </env>
+       <genv> .Map => Env </genv>
+

Expressions

+ +

Variable lookup

+ +
  rule <k> X:Id => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+

Variable/Array increment

+ +
  context ++(HOLE => lvalue(HOLE))
+  rule <k> ++loc(L) => I +Int 1 ...</k>
+       <store>... L |-> (I:Int => I +Int 1) ...</store>
+

Arithmetic operators

+ +
  rule I1 + I2 => I1 +Int I2
+  rule Str1 + Str2 => Str1 +String Str2
+  rule I1 - I2 => I1 -Int I2
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+

Array lookup

+ +

Check array bounds, as part of the dynamic typing policy.

+
// Same comment as for simple untyped regarding [anywhere]
+  rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs]
+    [anywhere]
+
+// Same comment as for simple untyped regarding [anywhere]
+  rule array(_:Type, L:Int, M:Int)[N:Int] => lookup(L +Int N)
+    requires N >=Int 0 andBool N <Int M  [anywhere]
+

Size of an array

+ +
  rule sizeOf(array(_,_,N)) => N
+

Function call

+ +

Define function call and return together, to see their relationship.
+Note that the operation mkDecls now declares properly typed
+instantiated variables, and that the semantics of return also
+checks that that type of the returned value is expected one.

+
  syntax KItem ::= (Type,Map,K,ControlCellFragment)
+
+  rule <k> lambda(T,Ps,S)(Vs:Vals) ~> K => mkDecls(Ps,Vs) S return; </k>
+       <control>
+         <fstack> .List => ListItem((T',Env,K,C)) ...</fstack>
+         <returnType> T' => T </returnType>
+         C
+       </control>
+       <env> Env => GEnv </env>
+       <genv> GEnv </genv>
+
+  rule <k> return V:Val; ~> _ => V ~> K </k>
+       <control>
+         <fstack> ListItem((T',Env,K,C)) => .List ...</fstack>
+         <returnType> T => T' </returnType>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+    requires typeOf(V) ==K T   // check the type of the returned value
+

Like the undefined above, nothing also gets
+tagged with a type now. The empty return statement is
+completed to return the nothing value tagged as expected.

+
  syntax Val ::= nothing(Type)
+  rule <k> return; => return nothing(T); ...</k> <returnType> T </returnType>
+

Read

+ +
  rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input>
+

Assignment

+ +

The assignment now checks that the type of the assigned location is
+preserved:

+
  context (HOLE => lvalue(HOLE)) = _
+
+  rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (V' => V) ...</store>
+    requires typeOf(V) ==K typeOf(V')
+

Statements

+ +

Blocks

+ +
  rule {} => .K
+  rule <k> { S } => S ~> setEnv(Env) ...</k>  <env> Env </env>
+

Sequential composition

+ +
  rule S1:Stmt S2:Stmt => S1 ~> S2
+

Expression statements

+ +
  rule _:Val; => .K
+

Conditional

+ +
  rule if ( true) S else _ => S
+  rule if (false) _ else S => S
+

While loop

+ +
  rule while (E) S => if (E) {S while(E)S}
+

Print

+ +

We only allow printing integers and strings:

+
  rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output>
+    requires typeOf(V) ==K int orBool typeOf(V) ==K string
+  rule print(.Vals); => .K
+

Exceptions

+ +

Exception parameters are now typed, but note that the semantics below
+works correctly only when the thrown exception has the same type as
+the innermost try-catch paramete. To keep things simple, for the time
+being we can assume that SIMPLE only throws and catches integer
+values, in which case our semantics below works fine:

+
  syntax KItem ::= (Param,Stmt,K,Map,ControlCellFragment)  // Param instead of Id
+
+  syntax KItem ::= "popx"
+
+  rule <k> (try S1 catch(P) S2 => S1 ~> popx) ~> K </k>
+       <control>
+         <xstack> .List => ListItem((P, S2, K, Env, C)) ...</xstack>
+         C
+       </control>
+       <env> Env </env>
+
+  rule <k> popx => .K ...</k>
+       <xstack> ListItem(_) => .List ...</xstack>
+
+  rule <k> throw V:Val; ~> _ => { T X = V; S2 } ~> K </k>
+       <control>
+         <xstack> ListItem((T:Type X:Id, S2, K, Env, C)) => .List ...</xstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+

Threads

+ +

Thread creation

+ +
   rule <thread>...
+          <k> spawn S => !T:Int +Int 1 ...</k>
+          <env> Env </env>
+        ...</thread>
+        (.Bag => <thread>...
+                <k> S </k>
+                <env> Env </env>
+                <id> !T +Int 1 </id>
+              ...</thread>)
+

Thread termination

+ +
   rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag)
+        <busy> Busy => Busy -Set keys(H) </busy>
+        <terminated>... .Set => SetItem(T) ...</terminated>
+

Thread joining

+ +
   rule <k> join T:Int; => .K ...</k>
+        <terminated>... SetItem(T) ...</terminated>
+

Acquire lock

+ +
   rule <k> acquire V:Val; => .K ...</k>
+        <holds>... .Map => V |-> 0 ...</holds>
+        <busy> Busy (.Set => SetItem(V)) </busy>
+     requires (notBool(V in Busy:Set))
+
+   rule <k> acquire V; => .K ...</k>
+        <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds>
+

Release lock

+ +
   rule <k> release V:Val; => .K ...</k>
+        <holds>... V |-> (N => N:Int -Int 1) ...</holds>
+      requires N >Int 0
+
+   rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds>
+        <busy>... SetItem(V) => .Set ...</busy>
+

Rendezvous synchronization

+ +
   rule <k> rendezvous V:Val; => .K ...</k>
+        <k> rendezvous V; => .K ...</k>
+

Auxiliary declarations and operations

+ +

Turns a list of parameters and a list of instance values for them
+into a list of variable declarations.

+
  syntax Stmt ::= mkDecls(Params,Vals)  [function]
+  rule mkDecls((T:Type X:Id, Ps:Params), (V:Val, Vs:Vals))
+    => T X=V; mkDecls(Ps,Vs)
+  rule mkDecls(.Params,.Vals) => {}
+

Location lookup.

+
  syntax Exp ::= lookup(Int)  // see NOTES.md for why Exp instead of KItem
+  rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store>
+

Environment recovery.

+
// TODO: same comment regarding setEnv(...) as for simple untyped
+
+  syntax KItem ::= setEnv(Map)
+  rule <k> setEnv(Env) => .K ...</k>  <env> _ => Env </env>
+  rule (setEnv(_) => .K) ~> setEnv(_)
+

lvalue and loc

+
  syntax Exp ::= lvalue(K)
+  syntax Val ::= loc(Int)
+
+  rule <k> lvalue(X:Id => loc(L)) ...</k>  <env>... X |-> L:Int ...</env>
+
+  //context lvalue(_[HOLE])
+  //context lvalue(HOLE[_])
+  context lvalue(_::Exp[HOLE::Exps])
+  context lvalue(HOLE::Exp[_::Exps])
+
+  rule lvalue(lookup(L:Int) => loc(L))
+

Adds the corresponding depth to an array type

+
  syntax Type ::= Type "<" Vals ">"  [function]
+  rule T:Type<_,Vs:Vals> => T[]<Vs>
+  rule T:Type<.Vals> => T
+

Sequences of locations.

+
  syntax Map ::= Int "..." Int "|->" K [function]
+  rule N...M |-> _ => .Map  requires N >Int M
+  rule N...M |-> K => N |-> K (N +Int 1)...M |-> K  requires N <=Int M
+
+// Type of a value.
+  syntax Type ::= typeOf(K)  [function]
+  rule typeOf(_:Int) => int
+  rule typeOf(_:Bool) => bool
+  rule typeOf(_:String) => string
+  rule typeOf(array(T,_,_)) => (T[])   // () needed! K parses [] as "no tags"
+  rule typeOf(lambda(T,Ps,_)) => getTypes(Ps) -> T
+  rule typeOf(undefined(T)) => T
+  rule typeOf(nothing(T)) => T
+

List of types of a parameter.

+
  syntax Types ::= getTypes(Params)  [function]
+  rule getTypes(T:Type _:Id) => T, .Types   // I would like to not use .Types
+  rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps)
+  rule getTypes(.Params) => void, .Types
+endmodule
+

KOOL — Untyped

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of the untyped KOOL language. KOOL
+is aimed at being a pedagogical and research language that captures
+the essence of the object-oriented programming paradigm. Its untyped
+variant discussed here is simpler than the typed one, ignoring several
+intricate aspects of types in the presence of objects. A program
+consists of a set of class declarations. Each class can extend at
+most one other class (KOOL is single-inheritance). A class can
+declare a set of fields and a set of methods, all public and called
+the class' members. Specifically, KOOL includes the
+following features:

+
    +
  • +

    Class declarations, where a class may or may not explicitly
    +extend another class. In case a class does not explicitly extend
    +another class, then it is assumed that it extends the default top-most
    +and empty (i.e., no members) class called Object. Each class
    +is required to declare precisely one homonymous method, called its
    +constructor. Each valid program should contain one class
    +named Main, whose constructor, Main(), takes no
    +arguments. The execution of a program consists of creating an object
    +instance of class Main and invoking the constructor
    +Main() on it, that is, of executing new Main();.

    +
  • +
  • +

    All features of SIMPLE (see examples/simple/untyped),
    +i.e., multidimensional arrays, function (here called "method")
    +abstractions with call-by-value parameter passing style and static
    +scoping, blocks with locals, input/output, parametric exceptions, and
    +concurrency via dynamic thread creation/termination and synchronization.
    +The only change in the syntax of SIMPLE when imported in KOOL is the
    +function declaration keyword, function, which is changed into
    +method. The exact same desugaring macros from SIMPLE are
    +also included in KOOL. We can think of KOOL's classes as embedding
    +SIMPLE programs (extended with OO constructs, as discussed next).

    +
  • +
  • +

    Object creation using the new C(e1,...,en)
    +expression construct. An object instance of class C is first
    +created and then the constructor C(e1,...,en) is implicitly
    +called on that object. KOOL only allows (and requires) one
    +constructor per class. The class constructor can be called either
    +implicitly during a new object creation for the class, or explicitly.
    +The superclass constructor is not implicitly invoked when a
    +class constructor is invoked; if you want to invoke the superclass
    +constructor from a subclass constructor then you have to do it
    +explicitly.

    +
  • +
  • +

    An expression construct this, which evaluates to the
    +current object.

    +
  • +
  • +

    An expression construct super, which is used (only) in
    +combination with member lookup (see next) to refer to a superclass
    +field or method.

    +
  • +
  • +

    A member lookup expression construct e.x, where e
    +is an expression (either an expression expected to evaluate to an object
    +or the super construct) and x is a class member name,
    +that is, a field or a method name.

    +
  • +
  • +

    Expression constructs e instanceOf C and
    +(C) e, where e is an expression expected
    +to evaluate to an object and C a class name. The former
    +tells whether the class of e is a subclass of C,
    +that is, whether e can be used as an instance of C,
    +and the latter changes the class of e to C. These
    +operations always succeed: the former returns a Boolean value, while
    +the latter changes the current class of e to C
    +regardless of whether it is safe to do so or not. The typed version
    +of KOOL will check the safety of casting by ensuring that the instance
    +class of the object is a subclass of C. In untyped KOOL we
    +do not want to perform this check because we want to allow the
    +programmer maximum of flexibility: if one always accesses only
    +available members, then the program can execute successfully despite
    +the potentially unsafe cast.

    +
  • +
+

There are some specific aspects of KOOL that need to be discussed.

+

First, KOOL is higher-order, allowing function abstractions to be
+treated like any other values in the language. For example, if
+m is a method of object e then e.m
+evaluates to the corresponding function abstraction. The function
+abstraction is in fact a closure, because in addition to the method
+parameters and body it also encapsulates the object value (i.e., the
+environment of the object together with its current class—see below)
+that e evaluates to. This way, function abstractions can be
+invoked anywhere and have the capability to change the state of their
+object. For example, if m is a method of object e
+which increments a field c of e when invoked, and if
+getm is another method of e which simply returns
+m when invoked, then the double application
+(e.getm())() has the same effect as e.m(), that is,
+increments the counter c of e. Note that the
+higher-order nature of KOOL was not originally planned; it came as a
+natural consequence of evaluating methods to closures and we decided
+to keep it. If you do not like it then do not use it.

+

Second, since all the fields and methods are public in KOOL and since
+they can be redeclared in subclasses, it is not immediately clear how
+to lookup the member x when we write e.x and
+e is different from super. We distinguish two cases,
+depending on whether e.x occurs in a method invocation
+context (i.e., e.x(...)) or in a field context. KOOL has
+dynamic method dispatch, so if e.x is invoked as a method
+then x will be searched for starting with the instance class of
+the object value to which e evaluates. If e.x
+occurs in a non-method-invocation context then x will be
+treated as a field (although it may hold a method closure due to the
+higher-order nature of KOOL) and thus will be searched starting with
+the current class of the object value of e (which, because of
+this and casting, may be different from its instance class).
+In order to achieve the above, each object value will consist of a
+pair holding the current class of the object and an environment stack
+with one layer for each class in the object's instance class hierarchy.

+

Third, although KOOL is dynamic method dispatch, its capabilities
+described above are powerful enough to allow us to mimic static
+method dispatch. For example, suppose that you want to invoke method
+m() statically. Then all you need to do is to declare a
+local variable and bind it to m, for example var staticm = m;, and
+then call staticm(). This works because
+staticm is first bound to the method closure that m
+evaluates to, and then looked up as any local variable when invoked.
+We only enable the dynamic method dispatch when we have an object
+member on an application position, e.g., m().

+

In what follows, we limit our comments to the new, KOOL-specific
+aspects of the language. We refer the reader to the untyped SIMPLE
+language for documentation on the the remaining features, because
+those were all borrowed from SIMPLE.

+
module KOOL-UNTYPED-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of KOOL extends that of SIMPLE with object-oriented
+constructs. We removed from the K annotated syntax of SIMPLE two
+constructs, namely the one for function declarations (because we want
+to call them methods now) and the one for function application
+(because application is not strict in the first argument
+anymore—needs to initiate dynamic method dispatch). The additional
+syntax includes:

+
    +
  • First, we need a new dedicated identifier, Object, for
    +the default top-most class.
  • +
  • Second, we rename the function keyword of SIMPLE into method.
  • +
  • Third, we add syntax for class declarations together with a
    +macro making classes which extend nothing to extend Object.
  • +
  • Fourth, we change the strictness attribute of application
    +into strict(2).
  • +
  • Finally, we add syntax and corresponding strictness
    +for the KOOL object-oriented constructs.
  • +
+
  syntax Id ::= "Object" [token] | "Main" [token]
+
+  syntax Stmt ::= "var" Exps ";"
+                | "method" Id "(" Ids ")" Block  // called "function" in SIMPLE
+                | "class" Id Block               // KOOL
+                | "class" Id "extends" Id Block  // KOOL
+
+  syntax Exp ::= Int | Bool | String | Id
+               | "this"                                 // KOOL
+               | "super"                                // KOOL
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               | Exp "instanceOf" Id     [strict(1)]    // KOOL
+               | "(" Id ")" Exp          [strict(2)]    // KOOL  cast
+               | "new" Id "(" Exps ")"   [strict(2)]    // KOOL
+               | Exp "." Id                             // KOOL
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict(2)]    // was strict in SIMPLE
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict(1), left]
+               | Exp "||" Exp            [strict(1), left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+
+  syntax Ids  ::= List{Id,","}
+
+  syntax Exps ::= List{Exp,","}          [strict, overload(exps)]
+  syntax Val
+  syntax Vals ::= List{Val,","}          [overload(exps)]
+
+  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                               [strict]
+                | "if" "(" Exp ")" Block "else" Block   [avoid, strict(1)]
+                | "if" "(" Exp ")" Block                [macro]
+                | "while" "(" Exp ")" Block
+                | "for" "(" Stmt Exp ";" Exp ")" Block  [macro]
+                | "return" Exp ";"                      [strict]
+                | "return" ";"                          [macro]
+                | "print" "(" Exps ")" ";"              [strict]
+                | "try" Block "catch" "(" Id ")" Block
+                | "throw" Exp ";"                       [strict]
+                | "join" Exp ";"                        [strict]
+                | "acquire" Exp ";"                     [strict]
+                | "release" Exp ";"                     [strict]
+                | "rendezvous" Exp ";"                  [strict]
+
+  syntax Stmt ::= Stmt Stmt                          [right]
+

Old desugaring rules, from SIMPLE

+
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}}
+  rule var E1::Exp, E2::Exp, Es::Exps; => var E1; var E2, Es;       [anywhere]
+  rule var X::Id = E; => var X; X = E;                              [anywhere]
+

New desugaring rule

+
  rule class C:Id S => class C extends Object S                     // KOOL
+
+endmodule
+

Semantics

+ +

We first discuss the new configuration of KOOL, which extends that of
+SIMPLE. Then we include the semantics of the constructs borrowed from
+SIMPLE unchanged; we refrain from discussing those, because they were
+already discussed in the K definition of SIMPLE. Then we discuss
+changes to SIMPLE's semantics needed for the more general meaning of
+the previous SIMPLE constructs (for example for thread spawning,
+assignment, etc.). Finally, we discuss in detail the
+semantics of the additional KOOL constructs.

+
module KOOL-UNTYPED
+  imports KOOL-UNTYPED-SYNTAX
+  imports DOMAINS
+

Configuration

+ +

KOOL removes one cell and adds two nested cells to the configuration
+of SIMPLE. The cell which is removed is the one holding the global
+environment, because a KOOL program consists of a set of classes only,
+with no global declarations. In fact, since informally speaking each
+KOOL class now includes a SIMPLE program, it is safe to say that the
+global variables in SIMPLE became class fields in KOOL. Let us now
+discuss the new cells that are added to the configuration of SIMPLE.

+
    +
  • +

    The cell crntObj holds data pertaining to the current
    +object, that is, the object environment in which the code in cell
    +k executes: crntClass holds the current class (which
    +can change as methods of the current object are invoked);
    +envStack holds the stack of environments as a list,
    +each layer corresponding to one class in the objects' instance class
    +hierarchy; location, which is optional, holds the location in
    +the store where the current object is or has to be located (this is
    +useful both for method closures and for the semantics of object
    +creation).

    +
  • +
  • +

    The cell classes holds all the declared classes, each
    +class being held in its own class cell which contains a name
    +(className), a parent (extends), and the actual
    +member declarations (declarations).

    +
  • +
+
  // the syntax declarations below are required because the sorts are
+  // referenced directly by a production and, because of the way KIL to KORE
+  // is implemented, the configuration syntax is not available yet
+  // should simply work once KIL is removed completely
+  // check other definitions for this hack as well
+  syntax EnvCell
+  syntax ControlCell
+  syntax EnvStackCell
+  syntax CrntObjCellFragment
+
+  configuration <T color="red">
+                  <threads color="orange">
+                    <thread multiplicity="*" type="Set" color="yellow">
+                      <k color="green"> $PGM:Stmt ~> execute </k>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <control color="cyan">
+                        <fstack color="blue"> .List </fstack>
+                        <xstack color="purple"> .List </xstack>
+                      //<br/> // TODO(KORE): support latex annotations #1799
+                        <crntObj color="Fuchsia">  // KOOL
+                           <crntClass> Object </crntClass>
+                           <envStack> .List </envStack>
+                           <location multiplicity="?"> .K </location>
+                        </crntObj>
+                      </control>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <env color="violet"> .Map </env>
+                      <holds color="black"> .Map </holds>
+                      <id color="pink"> 0 </id>
+                    </thread>
+                  </threads>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <store color="white"> .Map </store>
+                  <busy color="cyan">.Set </busy>
+                  <terminated color="red"> .Set </terminated>
+                  <input color="magenta" stream="stdin"> .List </input>
+                  <output color="brown" stream="stdout"> .List </output>
+                  <nextLoc color="gray"> 0 </nextLoc>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <classes color="Fuchsia">        // KOOL
+                     <classData multiplicity="*" type="Map" color="Fuchsia">
+                        // the Map has as its key the first child of the cell,
+                        // in this case the className cell.
+                        <className color="Fuchsia"> Main </className>
+                        <baseClass color="Fuchsia"> Object </baseClass>
+                        <declarations color="Fuchsia"> .K </declarations>
+                     </classData>
+                  </classes>
+                </T>
+

Unchanged Semantics from untyped SIMPLE

+ +

The semantics below is taken over from SIMPLE unchanged.
+The semantics of function declaration and invocation, including the
+use of the special lambda abstraction value, needs to change
+in order to account for the fact that methods are now invoked into
+their object's environment. The semantics of function return actually
+stays unchanged. Also, the semantics of program initialization is
+different: now we have to create an instance of the Main
+class which also calls the constructor Main(), while in
+SIMPLE we only had to invoke the function Main().
+Finally, the semantics of thread spawning needs to change, too: the
+parent thread needs to also share its object environment with the
+spawned thread (in addition to its local environment, like in SIMPLE).
+This is needed in order to be able to spawn method invokations under
+dynamic method dispatch; for example, spawn { run(); }
+will need to look up the method run() in the newly created
+thread, operation which will most likely fail unless the child thread
+sees the object environment of the parent thread. Note that the
+spawn statement of KOOL is more permissive than the threads
+of Java. In fact, the latter can be implemented in terms of our
+spawn—see the program threads.kool for a sketch.

+

Below is a subset of the values of SIMPLE, which are also values
+of KOOL. We will add other values later in the semantics, such as
+object and method closures.

+
  syntax Val ::= Int | Bool | String
+               | array(Int,Int)
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax KResult ::= Val
+  syntax KResult ::= Vals
+

The semantics below are taken verbatim from the untyped SIMPLE
+definition.

+
  syntax KItem ::= "undefined"
+
+  rule <k> var X:Id; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> undefined ...</store>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+
+
+  context var _:Id[HOLE];
+
+  rule <k> var X:Id[N:Int]; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> array(L +Int 1, N)
+                          (L +Int 1) ... (L +Int N) |-> undefined ...</store>
+       <nextLoc> L:Int => L +Int 1 +Int N </nextLoc>
+    requires N >=Int 0
+
+
+  syntax Id ::= "$1" [token] | "$2" [token]
+  rule var X:Id[N1:Int, N2:Int, Vs:Vals];
+    => var X[N1];
+       {
+         var $1=X;
+         for(var $2=0; $2 <= N1 - 1; ++$2) {
+           var X[N2,Vs];
+           $1[$2] = X;
+         }
+       }
+
+
+  rule <k> X:Id => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+
+
+  context ++(HOLE => lvalue(HOLE))
+  rule <k> ++loc(L) => I +Int 1 ...</k>
+       <store>... L |-> (I:Int => I +Int 1) ...</store>
+
+
+  rule I1 + I2 => I1 +Int I2
+  rule Str1 + Str2 => Str1 +String Str2
+  rule I1 - I2 => I1 -Int I2
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+
+
+  rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs]
+    [anywhere]
+
+  rule array(L,_)[N:Int] => lookup(L +Int N)
+    [anywhere]
+
+
+  rule sizeOf(array(_,N)) => N
+

The semantics of function application needs to change into dynamic
+method dispatch invocation, which is defined shortly. However,
+interestingly, the semantics of return stays unchanged.

+
  rule <k> return(V:Val); ~> _ => V ~> K </k>
+       <control>
+         <fstack> ListItem(fstackFrame(Env,K,XS,<crntObj> CO </crntObj>)) => .List ...</fstack>
+         <xstack> _ => XS </xstack>
+         <crntObj> _ => CO </crntObj>
+       </control>
+       <env> _ => Env </env>
+
+  syntax Val ::= "nothing"
+  rule return; => return nothing;
+
+
+  rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input>
+
+
+  context (HOLE => lvalue(HOLE)) = _
+
+  rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store>
+
+  rule {} => .K
+  rule <k> { S } => S ~> setEnv(Env) ...</k>  <env> Env </env>
+
+
+  rule S1::Stmt S2::Stmt => S1 ~> S2
+
+  rule _:Val; => .K
+
+  rule if ( true) S else _ => S
+  rule if (false) _ else S => S
+
+  rule while (E) S => if (E) {S while(E)S}
+
+  rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output>
+  rule print(.Vals); => .K
+
+
+  syntax KItem ::= xstackFrame(Id,Stmt,K,Map,K)
+  // TODO(KORE): drop the additional production once parsing issue #1842 is fixed
+                 | (Id,Stmt,K,Map,K)
+
+  syntax KItem ::= "popx"
+
+  rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k>
+       <control>
+         <xstack> .List => ListItem(xstackFrame(X, S2, K, Env, C)) ...</xstack>
+         C
+       </control>
+       <env> Env </env>
+
+  rule <k> popx => .K ...</k>
+       <xstack> ListItem(_) => .List ...</xstack>
+
+  rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k>
+       <control>
+         <xstack> ListItem(xstackFrame(X, S2, K, Env, C)) => .List ...</xstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+

Thread spawning needs a new semantics, because we want the child
+thread to also share the object environment with its parent. The new
+semantics of thread spawning will be defined shortly. However,
+interestingly, the other concurrency constructs keep their semantics
+from SIMPLE unchanged.

+
  // TODO(KORE): ..Bag should be . throughout this definition #1772
+  rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag)
+  /*
+  rule (<thread>... <k>.</k> <holds>H</holds> <id>T</id> ...</thread> => .)
+  */
+       <busy> Busy => Busy -Set keys(H) </busy>
+       <terminated>... .Set => SetItem(T) ...</terminated>
+
+  rule <k> join T:Int; => .K ...</k>
+       <terminated>... SetItem(T) ...</terminated>
+
+  rule <k> acquire V:Val; => .K ...</k>
+       <holds>... .Map => V |-> 0 ...</holds>
+       <busy> Busy (.Set => SetItem(V)) </busy>
+    requires (notBool(V in Busy:Set))
+
+  rule <k> acquire V; => .K ...</k>
+       <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds>
+
+  rule <k> release V:Val; => .K ...</k>
+       <holds>... V |-> (N => N:Int -Int 1) ...</holds>
+    requires N >Int 0
+
+  rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds>
+       <busy>... SetItem(V) => .Set ...</busy>
+
+  rule <k> rendezvous V:Val; => .K ...</k>
+       <k> rendezvous V; => .K ...</k>
+

Unchanged auxiliary operations from untyped SIMPLE

+ +
  syntax Stmt ::= mkDecls(Ids,Vals)  [function]
+  rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs)
+  rule mkDecls(.Ids,.Vals) => {}
+
+  // TODO(KORE): clarify sort inferences #1803
+  syntax Exp ::= lookup(Int)
+  /*
+  syntax KItem ::= lookup(Int)
+  */
+  rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store>
+
+  syntax KItem ::= setEnv(Map)
+  rule <k> setEnv(Env) => .K ...</k>  <env> _ => Env </env>
+  rule (setEnv(_) => .K) ~> setEnv(_)
+  // TODO: How can we make sure that the second rule above applies before the first one?
+  //       Probably we'll deal with this using strategies, eventually.
+
+  syntax Exp ::= lvalue(K)
+  syntax Val ::= loc(Int)
+
+  rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env>
+
+  context lvalue(_::Exp[HOLE::Exps])
+  context lvalue(HOLE::Exp[_::Exps])
+
+  rule lvalue(lookup(L:Int) => loc(L))
+
+
+  syntax Map ::= Int "..." Int "|->" K
+    [function]
+  rule N...M |-> _ => .Map  requires N >Int M
+  rule N...M |-> K => N |-> K (N +Int 1)...M |-> K  requires N <=Int M
+

Changes to the existing untyped SIMPLE semantics

+ +

When we extend a language, sometimes we need to do more than just add
+new language constructs and semantics for them. Sometimes we want to
+also extend the semantics of existing language constructs, in order to
+get more from them.

+

Program initialization

+ +

In SIMPLE, once all the global declarations were processed, the
+function main() was invoked. In KOOL, the global
+declarations are classes, and their specific semantics is given
+shortly; essentially, they are pre-processed one by one and added
+into the class cell structure in the configuration.
+Once all the classes are processed, the computation item
+execute, which was placed right after the program in the
+initial configuration, is reached. In SIMPLE, the program was
+initialized by calling the method main(). In KOOL, the
+program is initialized by creating an object instance of class
+Main. This will also implicitly call the method
+Main() (the Main class constructor). The emptiness
+of the env cell below is just a sanity check, to make sure
+that the user has not declared anything but classes at the top level
+of the program.

+
  syntax KItem ::= "execute"
+  rule <k> execute => new Main(.Exps); </k> <env> .Map </env>
+

The semantics of new (defined below) requires the
+execution of all the class' declarations (and also of its
+superclasses').

+

Object and method closures

+ +

Before we can define the semantics of method application (previously
+called function application in SIMPLE), we need to add two more values
+to the language, namely object and method closures:

+
  syntax Val ::= objectClosure(Id, List)
+               | methodClosure(Id,Int,Ids,Stmt)
+

An object value consists of an objectClosure-wrapped bag
+containing the current class of the object and the environment stack
+of the object. The current class of an object will always be one of
+the classes mapped to an environment in the environment stack of the
+object. A method closure encapsulates the method's parameters and
+code (last two arguments), as well as the object context in which the
+method code should execute. This object context includes the current
+class of the object (the first argument of methodClosure) and
+the object environment stack (located in the object stored at the
+location specified as the second argument of methodClosure).

+

Method application

+ +

KOOL has a complex mechanism to invoke methods, because it allows both
+dynamic method dispatch and methods as first-class-citizen values (the
+latter making it a higher-order language). The invocation mechanism
+will be defined later. What is sufficient to know for now is that
+the two arguments of the application construct eventually reduce to
+values, the first being a method closure and the latter a list of
+values. The semantics of the method closure application is then as
+expected: the local environment and control are stacked, then we
+switch to method closure's class and object environment and execute
+the method body. The mkDecls construct is the one that came
+with the unchanged semantics of SIMPLE above.

+
  syntax KItem ::= fstackFrame(Map,K,List,K)
+  // TODO(KORE): drop the additional production once parsing issue #1842 is fixed
+                 | (Map,K,K)
+
+  rule <k> methodClosure(Class,OL,Xs,S)(Vs:Vals) ~> K
+           => mkDecls(Xs,Vs) S return; </k>
+       <env> Env => .Map </env>
+       <store>... OL |-> objectClosure(_, EnvStack)...</store>
+     //<br/> // TODO(KORE): support latex annotations #1799
+       <control>
+          <xstack> XS </xstack>
+          <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj' </crntObj>))
+          ...</fstack>
+          <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EnvStack </envStack> </crntObj>
+       </control>
+

Spawn

+ +

We want to extend the semantics of spawn to also share the
+current object environment with the child thread, in addition to the
+current environment. This extension will allow us to also use method
+invocations in the spawned statements, which will be thus looked up as
+expected, using dynamic method dispatch. This lookup operation would
+fail if the child thread did not have access to its parent's object
+environment.

+
  rule <thread>...
+         <k> spawn S => !T:Int ...</k>
+         <env> Env </env>
+         <crntObj> Obj </crntObj>
+       ...</thread>
+       (.Bag => <thread>...
+               <k> S </k>
+               <env> Env </env>
+               <id> !T </id>
+               <crntObj> Obj </crntObj>
+             ...</thread>)
+

Semantics of the new KOOL constructs

+ +

Class declaration

+ +

Initially, the classes forming the program are moved into their
+corresponding cells:

+
  rule <k> class Class1 extends Class2 { S } => .K ...</k>
+       <classes>... (.Bag => <classData>
+                            <className> Class1 </className>
+                            <baseClass> Class2 </baseClass>
+                            <declarations> S </declarations>
+                        </classData>)
+       ...</classes>
+

Method declaration

+ +

Like in SIMPLE, method names are added to the environment and bound
+to their code. However, unlike in SIMPLE where each function was
+executed in the same environment, namely the program global
+environment, a method in KOOL needs to be executed into its object's
+environment. Thus, methods evaluate to closures, which encapsulate
+their object's context (i.e., the current class and environment stack
+of the object) in addition to method's parameters and body. This
+approach to bind method names to method closures in the environment
+will also allow objects to pass their methods to other objects, to
+dynamically change their methods by assigning them other method
+closures, and even to allow all these to be done from other objects.
+This gives the KOOL programmer a lot of power; one should use this
+power wisely, though, because programs can become easily hard to
+understand and reason about if one overuses these features.

+
  rule <k> method F:Id(Xs:Ids) S => .K ...</k>
+       <crntClass> Class:Id </crntClass>
+       <location> OL:Int </location>
+       <env> Env => Env[F <- L] </env>
+       <store>... .Map => L |-> methodClosure(Class,OL,Xs,S) ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

New

+ +

The semantics of new consists of two actions: memory
+allocation for the new object and execution of the corresponding
+constructor. Then the created object is returned as the result of the
+new operation; the value returned by the constructor, if any,
+is discarded. The current environment and object are stored onto the
+stack and recovered after new (according to the semantics of
+return borrowed from SIMPLE, when the statement
+return this; in the rule below is reached and evaluated),
+because the object creation part of new will destroy them.
+The rule below also initializes the object creation process by
+emptying the local environment and the current object, and allocating
+a location in the store where the created object will be eventually
+stored (this is what the storeObj task after the object
+creation task in the rule below will do—its rule is defined
+shortly). The location where the object will be stored is also made
+available in the crntObj cell, so that method closures can
+refer to it (see rule above).

+
  syntax KItem ::= "envStackFrame" "(" Id "," Map ")"
+
+  rule <k> new Class:Id(Vs:Vals) ~> K
+           => create(Class) ~> storeObj ~> Class(Vs); return this; </k>
+       <env> Env => .Map </env>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+     //<br/> // TODO(KORE): support latex annotations #1799
+       <control> <xstack> XS </xstack>
+         <crntObj> Obj
+                   => <crntClass> Object </crntClass>
+                      <envStack> ListItem(envStackFrame(Object, .Map)) </envStack>
+                      <location> L </location>
+         </crntObj>
+         <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj </crntObj>)) ...</fstack>
+       </control>
+

The creation of a new object (the memory allocation part only) is
+a recursive process, requiring to first create an object for the
+superclass. A memory object representation is a layered structure:
+for each class on the path from the instance class to the root of the
+hierarchy there is a layer including the memory allocated for the
+members (both fields and methods) of that class.

+
  syntax KItem ::= create(Id)
+
+  rule <k> create(Class:Id)
+           => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k>
+       <className> Class </className>
+       <baseClass> Class1:Id </baseClass>
+       <declarations> S </declarations>
+
+  rule <k> create(Object) => .K ...</k>
+

The next operation sets the current class of the current object.
+This is necessary to be done at each layer, because the current class
+of the object is enclosed as part of the method closures (see the
+semantics of method declarations above).

+
  syntax KItem ::= setCrntClass(Id)
+
+  rule <k> setCrntClass(C) => .K ...</k>
+       <crntClass> _ => C </crntClass>
+

The next operation adds a new tagged environment layer to the
+current object and gets ready for the next layer by clearing the
+environment (note that create expects the environment to be
+empty).

+
  syntax KItem ::= "addEnvLayer"
+
+  rule <k> addEnvLayer => .K ...</k>
+       <env> Env => .Map </env>
+       <crntClass> Class:Id </crntClass>
+       <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack>
+

The following operation stores the created object at the location
+reserved by new. Note that the location reserved by
+new was temporarily stored in the crntObj cell
+precisely for this purpose. Now that the newly created object is
+stored at its location and that all method closures are aware of it,
+the location is unnecessary and thus we delete it from the
+crntObj cell.

+
  syntax KItem ::= "storeObj"
+
+  rule <k> storeObj => .K ...</k>
+       <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> (<location> L:Int </location> => .Bag) </crntObj>
+       <store>... .Map => L |-> objectClosure(CC, ES) ...</store>
+

Self reference

+ +

The semantics of this is straightforward: evaluate to the
+current object.

+
  rule <k> this => objectClosure(CC, ES) ...</k>
+       <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> </crntObj>
+

Object member access

+ +

We can access an object member (field or method) either explicitly,
+using the construct e.x, or implicitly, using only the member
+name x directly. The borrowed semantics of SIMPLE will
+already lookup a sole name in the local environment. The first rule
+below reduces implicit member access to explicit access when the name
+cannot be found in the local environment. There are two cases to
+analyze for explicit object member access, depending upon whether the
+object is a proper object or it is just a redirection to the parent
+class via the construct super. In the first case, we
+evaluate the object expression and lookup the member starting with the
+current class (static scoping). Note the use of the conditional
+evaluation context. In the second case, we just lookup the member
+starting with the superclass of the current class. In both cases,
+the lookupMember task eventually yields a lookup(L)
+task for some appropriate location L, which will be further
+solved with the corresponding rule borrowed from SIMPLE. Note that the
+current object is not altered by super, so future method
+invocations see the entire object, as needed for dynamic method dispatch.

+
  rule <k> X:Id => this . X ...</k> <env> Env:Map </env>
+    requires notBool(X in keys(Env))
+
+  context HOLE._::Id requires (HOLE =/=K super)
+
+// TODO: explain how Assoc matching has been replaced with two rules here.
+// Maybe also improve it a bit.
+
+/*  rule objectClosure(<crntClass> Class:Id </crntClass>
+                     <envStack>... envStackFrame(Class,EnvC) EStack </envStack>)
+       . X:Id
+    => lookupMember(envStackFrame(Class,EnvC) EStack, X) */
+
+  rule objectClosure(Class:Id, ListItem(envStackFrame(Class,Env)) EStack)
+       . X:Id
+    => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X)
+  rule objectClosure(Class:Id, (ListItem(envStackFrame(Class':Id,_)) => .List) _)
+       . _X:Id
+    requires Class =/=K Class'
+
+/*  rule <k> super . X => lookupMember(EStack, X) ...</k>
+       <crntClass> Class </crntClass>
+       <envStack>... envStackFrame(Class,EnvC) EStack </envStack> */
+  rule <k> super . X => lookupMember(EStack, X) ...</k>
+       <crntClass> Class:Id </crntClass>
+       <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack>
+  rule <k> super . _X ...</k>
+       <crntClass> Class </crntClass>
+       <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack>
+    requires Class =/=K Class'
+

Method invocation

+ +

Unlike in SIMPLE, in KOOL application was declared strict only in its
+second argument. That is because we want to ensure dynamic method
+dispatch when the first argument is a method access. As a
+consequence, we need to consider all the cases of interest for the
+first argument and to explicitly say what to do in each case. In all
+cases except for method access in a proper object (i.e., not
+super), we want the same behavior for the first argument as
+if it was not in a method invocation position. When it is a member
+access (the third rule below), we look it up starting with the
+instance class of the corresponding object. This ensures dynamic
+dispatch for methods; it actually dynamically dispatches field
+accesses, too, which is correct in KOOL, because one can assign method
+closures to fields and the field appeared in a method invocation
+context. The last context declaration below says that method
+applications or array accesses are also allowed as first argument to
+applications; that is because methods are allowed to return methods
+and arrays are allowed to hold methods in KOOL, since it is
+higher-order. If that is the case, then we want to evaluate the
+method call or the array access.

+
  rule <k> (X:Id => V)(_:Exps) ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+
+  rule <k> (X:Id => this . X)(_:Exps) ...</k>
+       <env> Env </env>
+    requires notBool(X in keys(Env))
+
+  context HOLE._::Id(_) requires HOLE =/=K super
+
+  rule (objectClosure(_, EStack) . X
+    => lookupMember(EStack, X:Id))(_:Exps)
+
+/*  rule <k> (super . X
+            => lookupMember(EStack,X))(_:Exps)...</k>
+       <crntClass> Class </crntClass>
+       <envStack>... envStackFrame(Class,_) EStack </envStack> */
+  rule <k> (super . X
+            => lookupMember(EStack,X))(_:Exps)...</k>
+       <crntClass> Class </crntClass>
+       <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack>
+  rule <k> (super . _X)(_:Exps) ...</k>
+       <crntClass> Class </crntClass>
+       <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack>
+    requires Class =/=K Class'
+
+  // TODO(KORE): fix getKLabel #1801
+  rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C)
+  rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C)
+  rule V:Val ~> #freezerFunCall(C:Exps) => V(C)
+  syntax KItem ::= "#freezerFunCall" "(" K ")"
+  /*
+  context HOLE(_:Exps)
+    when getKLabel(HOLE) ==K #klabel(`_(_)`) orBool getKLabel(HOLE) ==K #klabel(`_[_]`)
+  */
+

Eventually, each of the rules above produces a lookup(L)
+task as a replacement for the method. When that happens, we just
+lookup the value at location L:

+
  rule <k> (lookup(L) => V)(_:Exps) ...</k>  <store>... L |-> V:Val ...</store>
+

The value V looked up above is expected to be a method closure,
+in which case the semantics of method application given above will
+apply. Otherwise, the execution will get stuck.

+

Instance Of

+ +

It searches the object environment for a layer corresponding to the
+desired class. It returns true iff it can find the class,
+otherwise it returns false; it only gets stuck when its first
+argument does not evaluate to an object.

+
  rule objectClosure(_, ListItem(envStackFrame(C,_)) _)
+       instanceOf C => true
+
+  rule objectClosure(_, (ListItem(envStackFrame(C,_)) => .List) _)
+       instanceOf C'  requires C =/=K C'
+//TODO: remove the sort cast ::Id of C above, when sort inference bug fixed
+
+  rule objectClosure(_, .List) instanceOf _ => false
+

Cast

+ +

In untyped KOOL, we prefer to not check the validity of casting. In
+other words, any cast is allowed on any object, simply changing the
+current class of the object to the desired class. The execution will
+get stuck later if one attempts to access a field which is not
+available. Moreover, the execution may complete successfully even
+in the presence of invalid casts, provided that each accessed member
+during the current execution is, or happens to be, available.

+
  rule (C) objectClosure(_ , EnvStack) => objectClosure(C ,EnvStack)
+

KOOL-specific auxiliary declarations and operations

+ +

Here we define all the auxiliary constructs used in the above
+KOOL-specific semantics (those used in the SIMPLE fragment
+have already been defined in a corresponding section above).

+

Objects as lvalues

+ +

The current machinery borrowed with the semantics of SIMPLE allows us
+to enrich the set of lvalues, this way allowing new means to assign
+values to locations. In KOOL, we want object member names to be
+lvalues, so that we can assign values to them using the already
+existing machinery. The first rule below ensures that the object is
+always explicit, the evaluation context enforces the object to be
+evaluated, and finally the second rule initiates the lookup for the
+member's location based on the current class of the object.

+
  rule <k> lvalue(X:Id => this . X) ...</k>  <env> Env </env>
+    requires notBool(X in keys(Env))
+
+  context lvalue((HOLE . _)::Exp)
+
+/*  rule lvalue(objectClosure(<crntClass> C </crntClass>
+                            <envStack>... envStackFrame(C,EnvC) EStack </envStack>)
+              . X
+              => lookupMember(<envStack> envStackFrame(C,EnvC) EStack </envStack>,
+                              X))  */
+  rule lvalue(objectClosure(Class, ListItem(envStackFrame(Class,Env)) EStack)
+              . X
+              => lookupMember(ListItem(envStackFrame(Class,Env)) EStack,
+                              X))
+  rule lvalue(objectClosure(Class, (ListItem(envStackFrame(Class':Id,_)) => .List) _)
+              . _X)
+    requires Class =/=K Class'
+

Lookup member

+ +

It searches for the given member in the given environment stack,
+starting with the most concrete class and going up in the hierarchy.

+
  // TODO(KORE): clarify sort inferences #1803
+  syntax Exp ::= lookupMember(List, Id)  [function]
+  /*
+  syntax KItem ::= lookupMember(EnvStackCell,Id)  [function]
+  */
+
+//  rule lookupMember(<envStack> envStackFrame(_, <env>... X|->L ...</env>) ...</envStack>, X)
+//    => lookup(L)
+  rule lookupMember(ListItem(envStackFrame(_, X|->L _)) _, X)
+    => lookup(L)
+
+//  rule lookupMember(<envStack> envStackFrame(_, <env> Env </env>) => .List ...</envStack>, X)
+//    when notBool(X in keys(Env))
+  rule lookupMember(ListItem(envStackFrame(_, Env)) Rest, X) =>
+       lookupMember(Rest, X)
+    requires notBool(X in keys(Env))
+//TODO: beautify the above
+
+endmodule
+

Go to Lesson 2, KOOL typed dynamic.

+

KOOL — Untyped

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of the untyped KOOL language. KOOL
+is aimed at being a pedagogical and research language that captures
+the essence of the object-oriented programming paradigm. Its untyped
+variant discussed here is simpler than the typed one, ignoring several
+intricate aspects of types in the presence of objects. A program
+consists of a set of class declarations. Each class can extend at
+most one other class (KOOL is single-inheritance). A class can
+declare a set of fields and a set of methods, all public and called
+the class' members. Specifically, KOOL includes the
+following features:

+
    +
  • +

    Class declarations, where a class may or may not explicitly
    +extend another class. In case a class does not explicitly extend
    +another class, then it is assumed that it extends the default top-most
    +and empty (i.e., no members) class called Object. Each class
    +is required to declare precisely one homonymous method, called its
    +constructor. Each valid program should contain one class
    +named Main, whose constructor, Main(), takes no
    +arguments. The execution of a program consists of creating an object
    +instance of class Main and invoking the constructor
    +Main() on it, that is, of executing new Main();.

    +
  • +
  • +

    All features of SIMPLE (see examples/simple/untyped),
    +i.e., multidimensional arrays, function (here called "method")
    +abstractions with call-by-value parameter passing style and static
    +scoping, blocks with locals, input/output, parametric exceptions, and
    +concurrency via dynamic thread creation/termination and synchronization.
    +The only change in the syntax of SIMPLE when imported in KOOL is the
    +function declaration keyword, function, which is changed into
    +method. The exact same desugaring macros from SIMPLE are
    +also included in KOOL. We can think of KOOL's classes as embedding
    +SIMPLE programs (extended with OO constructs, as discussed next).

    +
  • +
  • +

    Object creation using the new C(e1,...,en)
    +expression construct. An object instance of class C is first
    +created and then the constructor C(e1,...,en) is implicitly
    +called on that object. KOOL only allows (and requires) one
    +constructor per class. The class constructor can be called either
    +implicitly during a new object creation for the class, or explicitly.
    +The superclass constructor is not implicitly invoked when a
    +class constructor is invoked; if you want to invoke the superclass
    +constructor from a subclass constructor then you have to do it
    +explicitly.

    +
  • +
  • +

    An expression construct this, which evaluates to the
    +current object.

    +
  • +
  • +

    An expression construct super, which is used (only) in
    +combination with member lookup (see next) to refer to a superclass
    +field or method.

    +
  • +
  • +

    A member lookup expression construct e.x, where e
    +is an expression (either an expression expected to evaluate to an object
    +or the super construct) and x is a class member name,
    +that is, a field or a method name.

    +
  • +
  • +

    Expression constructs e instanceOf C and
    +(C) e, where e is an expression expected
    +to evaluate to an object and C a class name. The former
    +tells whether the class of e is a subclass of C,
    +that is, whether e can be used as an instance of C,
    +and the latter changes the class of e to C. These
    +operations always succeed: the former returns a Boolean value, while
    +the latter changes the current class of e to C
    +regardless of whether it is safe to do so or not. The typed version
    +of KOOL will check the safety of casting by ensuring that the instance
    +class of the object is a subclass of C. In untyped KOOL we
    +do not want to perform this check because we want to allow the
    +programmer maximum of flexibility: if one always accesses only
    +available members, then the program can execute successfully despite
    +the potentially unsafe cast.

    +
  • +
+

There are some specific aspects of KOOL that need to be discussed.

+

First, KOOL is higher-order, allowing function abstractions to be
+treated like any other values in the language. For example, if
+m is a method of object e then e.m
+evaluates to the corresponding function abstraction. The function
+abstraction is in fact a closure, because in addition to the method
+parameters and body it also encapsulates the object value (i.e., the
+environment of the object together with its current class—see below)
+that e evaluates to. This way, function abstractions can be
+invoked anywhere and have the capability to change the state of their
+object. For example, if m is a method of object e
+which increments a field c of e when invoked, and if
+getm is another method of e which simply returns
+m when invoked, then the double application
+(e.getm())() has the same effect as e.m(), that is,
+increments the counter c of e. Note that the
+higher-order nature of KOOL was not originally planned; it came as a
+natural consequence of evaluating methods to closures and we decided
+to keep it. If you do not like it then do not use it.

+

Second, since all the fields and methods are public in KOOL and since
+they can be redeclared in subclasses, it is not immediately clear how
+to lookup the member x when we write e.x and
+e is different from super. We distinguish two cases,
+depending on whether e.x occurs in a method invocation
+context (i.e., e.x(...)) or in a field context. KOOL has
+dynamic method dispatch, so if e.x is invoked as a method
+then x will be searched for starting with the instance class of
+the object value to which e evaluates. If e.x
+occurs in a non-method-invocation context then x will be
+treated as a field (although it may hold a method closure due to the
+higher-order nature of KOOL) and thus will be searched starting with
+the current class of the object value of e (which, because of
+this and casting, may be different from its instance class).
+In order to achieve the above, each object value will consist of a
+pair holding the current class of the object and an environment stack
+with one layer for each class in the object's instance class hierarchy.

+

Third, although KOOL is dynamic method dispatch, its capabilities
+described above are powerful enough to allow us to mimic static
+method dispatch. For example, suppose that you want to invoke method
+m() statically. Then all you need to do is to declare a
+local variable and bind it to m, for example var staticm = m;, and
+then call staticm(). This works because
+staticm is first bound to the method closure that m
+evaluates to, and then looked up as any local variable when invoked.
+We only enable the dynamic method dispatch when we have an object
+member on an application position, e.g., m().

+

In what follows, we limit our comments to the new, KOOL-specific
+aspects of the language. We refer the reader to the untyped SIMPLE
+language for documentation on the the remaining features, because
+those were all borrowed from SIMPLE.

+
module KOOL-UNTYPED-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of KOOL extends that of SIMPLE with object-oriented
+constructs. We removed from the K annotated syntax of SIMPLE two
+constructs, namely the one for function declarations (because we want
+to call them methods now) and the one for function application
+(because application is not strict in the first argument
+anymore—needs to initiate dynamic method dispatch). The additional
+syntax includes:

+
    +
  • First, we need a new dedicated identifier, Object, for
    +the default top-most class.
  • +
  • Second, we rename the function keyword of SIMPLE into method.
  • +
  • Third, we add syntax for class declarations together with a
    +macro making classes which extend nothing to extend Object.
  • +
  • Fourth, we change the strictness attribute of application
    +into strict(2).
  • +
  • Finally, we add syntax and corresponding strictness
    +for the KOOL object-oriented constructs.
  • +
+
  syntax Id ::= "Object" [token] | "Main" [token]
+
+  syntax Stmt ::= "var" Exps ";"
+                | "method" Id "(" Ids ")" Block  // called "function" in SIMPLE
+                | "class" Id Block               // KOOL
+                | "class" Id "extends" Id Block  // KOOL
+
+  syntax Exp ::= Int | Bool | String | Id
+               | "this"                                 // KOOL
+               | "super"                                // KOOL
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               | Exp "instanceOf" Id     [strict(1)]    // KOOL
+               | "(" Id ")" Exp          [strict(2)]    // KOOL  cast
+               | "new" Id "(" Exps ")"   [strict(2)]    // KOOL
+               | Exp "." Id                             // KOOL
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict(2)]    // was strict in SIMPLE
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict(1), left]
+               | Exp "||" Exp            [strict(1), left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+
+  syntax Ids  ::= List{Id,","}
+
+  syntax Exps ::= List{Exp,","}          [strict, overload(exps)]
+  syntax Val
+  syntax Vals ::= List{Val,","}          [overload(exps)]
+
+  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                               [strict]
+                | "if" "(" Exp ")" Block "else" Block   [avoid, strict(1)]
+                | "if" "(" Exp ")" Block                [macro]
+                | "while" "(" Exp ")" Block
+                | "for" "(" Stmt Exp ";" Exp ")" Block  [macro]
+                | "return" Exp ";"                      [strict]
+                | "return" ";"                          [macro]
+                | "print" "(" Exps ")" ";"              [strict]
+                | "try" Block "catch" "(" Id ")" Block
+                | "throw" Exp ";"                       [strict]
+                | "join" Exp ";"                        [strict]
+                | "acquire" Exp ";"                     [strict]
+                | "release" Exp ";"                     [strict]
+                | "rendezvous" Exp ";"                  [strict]
+
+  syntax Stmt ::= Stmt Stmt                          [right]
+

Old desugaring rules, from SIMPLE

+
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}}
+  rule var E1::Exp, E2::Exp, Es::Exps; => var E1; var E2, Es;       [anywhere]
+  rule var X::Id = E; => var X; X = E;                              [anywhere]
+

New desugaring rule

+
  rule class C:Id S => class C extends Object S                     // KOOL
+
+endmodule
+

Semantics

+ +

We first discuss the new configuration of KOOL, which extends that of
+SIMPLE. Then we include the semantics of the constructs borrowed from
+SIMPLE unchanged; we refrain from discussing those, because they were
+already discussed in the K definition of SIMPLE. Then we discuss
+changes to SIMPLE's semantics needed for the more general meaning of
+the previous SIMPLE constructs (for example for thread spawning,
+assignment, etc.). Finally, we discuss in detail the
+semantics of the additional KOOL constructs.

+
module KOOL-UNTYPED
+  imports KOOL-UNTYPED-SYNTAX
+  imports DOMAINS
+

Configuration

+ +

KOOL removes one cell and adds two nested cells to the configuration
+of SIMPLE. The cell which is removed is the one holding the global
+environment, because a KOOL program consists of a set of classes only,
+with no global declarations. In fact, since informally speaking each
+KOOL class now includes a SIMPLE program, it is safe to say that the
+global variables in SIMPLE became class fields in KOOL. Let us now
+discuss the new cells that are added to the configuration of SIMPLE.

+
    +
  • +

    The cell crntObj holds data pertaining to the current
    +object, that is, the object environment in which the code in cell
    +k executes: crntClass holds the current class (which
    +can change as methods of the current object are invoked);
    +envStack holds the stack of environments as a list,
    +each layer corresponding to one class in the objects' instance class
    +hierarchy; location, which is optional, holds the location in
    +the store where the current object is or has to be located (this is
    +useful both for method closures and for the semantics of object
    +creation).

    +
  • +
  • +

    The cell classes holds all the declared classes, each
    +class being held in its own class cell which contains a name
    +(className), a parent (extends), and the actual
    +member declarations (declarations).

    +
  • +
+
  // the syntax declarations below are required because the sorts are
+  // referenced directly by a production and, because of the way KIL to KORE
+  // is implemented, the configuration syntax is not available yet
+  // should simply work once KIL is removed completely
+  // check other definitions for this hack as well
+  syntax EnvCell
+  syntax ControlCell
+  syntax EnvStackCell
+  syntax CrntObjCellFragment
+
+  configuration <T color="red">
+                  <threads color="orange">
+                    <thread multiplicity="*" type="Set" color="yellow">
+                      <k color="green"> $PGM:Stmt ~> execute </k>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <control color="cyan">
+                        <fstack color="blue"> .List </fstack>
+                        <xstack color="purple"> .List </xstack>
+                      //<br/> // TODO(KORE): support latex annotations #1799
+                        <crntObj color="Fuchsia">  // KOOL
+                           <crntClass> Object </crntClass>
+                           <envStack> .List </envStack>
+                           <location multiplicity="?"> .K </location>
+                        </crntObj>
+                      </control>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <env color="violet"> .Map </env>
+                      <holds color="black"> .Map </holds>
+                      <id color="pink"> 0 </id>
+                    </thread>
+                  </threads>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <store color="white"> .Map </store>
+                  <busy color="cyan">.Set </busy>
+                  <terminated color="red"> .Set </terminated>
+                  <input color="magenta" stream="stdin"> .List </input>
+                  <output color="brown" stream="stdout"> .List </output>
+                  <nextLoc color="gray"> 0 </nextLoc>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <classes color="Fuchsia">        // KOOL
+                     <classData multiplicity="*" type="Map" color="Fuchsia">
+                        // the Map has as its key the first child of the cell,
+                        // in this case the className cell.
+                        <className color="Fuchsia"> Main </className>
+                        <baseClass color="Fuchsia"> Object </baseClass>
+                        <declarations color="Fuchsia"> .K </declarations>
+                     </classData>
+                  </classes>
+                </T>
+

Unchanged Semantics from untyped SIMPLE

+ +

The semantics below is taken over from SIMPLE unchanged.
+The semantics of function declaration and invocation, including the
+use of the special lambda abstraction value, needs to change
+in order to account for the fact that methods are now invoked into
+their object's environment. The semantics of function return actually
+stays unchanged. Also, the semantics of program initialization is
+different: now we have to create an instance of the Main
+class which also calls the constructor Main(), while in
+SIMPLE we only had to invoke the function Main().
+Finally, the semantics of thread spawning needs to change, too: the
+parent thread needs to also share its object environment with the
+spawned thread (in addition to its local environment, like in SIMPLE).
+This is needed in order to be able to spawn method invokations under
+dynamic method dispatch; for example, spawn { run(); }
+will need to look up the method run() in the newly created
+thread, operation which will most likely fail unless the child thread
+sees the object environment of the parent thread. Note that the
+spawn statement of KOOL is more permissive than the threads
+of Java. In fact, the latter can be implemented in terms of our
+spawn—see the program threads.kool for a sketch.

+

Below is a subset of the values of SIMPLE, which are also values
+of KOOL. We will add other values later in the semantics, such as
+object and method closures.

+
  syntax Val ::= Int | Bool | String
+               | array(Int,Int)
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax KResult ::= Val
+  syntax KResult ::= Vals
+

The semantics below are taken verbatim from the untyped SIMPLE
+definition.

+
  syntax KItem ::= "undefined"
+
+  rule <k> var X:Id; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> undefined ...</store>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+
+
+  context var _:Id[HOLE];
+
+  rule <k> var X:Id[N:Int]; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> array(L +Int 1, N)
+                          (L +Int 1) ... (L +Int N) |-> undefined ...</store>
+       <nextLoc> L:Int => L +Int 1 +Int N </nextLoc>
+    requires N >=Int 0
+
+
+  syntax Id ::= "$1" [token] | "$2" [token]
+  rule var X:Id[N1:Int, N2:Int, Vs:Vals];
+    => var X[N1];
+       {
+         var $1=X;
+         for(var $2=0; $2 <= N1 - 1; ++$2) {
+           var X[N2,Vs];
+           $1[$2] = X;
+         }
+       }
+
+
+  rule <k> X:Id => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+
+
+  context ++(HOLE => lvalue(HOLE))
+  rule <k> ++loc(L) => I +Int 1 ...</k>
+       <store>... L |-> (I:Int => I +Int 1) ...</store>
+
+
+  rule I1 + I2 => I1 +Int I2
+  rule Str1 + Str2 => Str1 +String Str2
+  rule I1 - I2 => I1 -Int I2
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+
+
+  rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs]
+    [anywhere]
+
+  rule array(L,_)[N:Int] => lookup(L +Int N)
+    [anywhere]
+
+
+  rule sizeOf(array(_,N)) => N
+

The semantics of function application needs to change into dynamic
+method dispatch invocation, which is defined shortly. However,
+interestingly, the semantics of return stays unchanged.

+
  rule <k> return(V:Val); ~> _ => V ~> K </k>
+       <control>
+         <fstack> ListItem(fstackFrame(Env,K,XS,<crntObj> CO </crntObj>)) => .List ...</fstack>
+         <xstack> _ => XS </xstack>
+         <crntObj> _ => CO </crntObj>
+       </control>
+       <env> _ => Env </env>
+
+  syntax Val ::= "nothing"
+  rule return; => return nothing;
+
+
+  rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input>
+
+
+  context (HOLE => lvalue(HOLE)) = _
+
+  rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store>
+
+  rule {} => .K
+  rule <k> { S } => S ~> setEnv(Env) ...</k>  <env> Env </env>
+
+
+  rule S1::Stmt S2::Stmt => S1 ~> S2
+
+  rule _:Val; => .K
+
+  rule if ( true) S else _ => S
+  rule if (false) _ else S => S
+
+  rule while (E) S => if (E) {S while(E)S}
+
+  rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output>
+  rule print(.Vals); => .K
+
+
+  syntax KItem ::= xstackFrame(Id,Stmt,K,Map,K)
+  // TODO(KORE): drop the additional production once parsing issue #1842 is fixed
+                 | (Id,Stmt,K,Map,K)
+
+  syntax KItem ::= "popx"
+
+  rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k>
+       <control>
+         <xstack> .List => ListItem(xstackFrame(X, S2, K, Env, C)) ...</xstack>
+         C
+       </control>
+       <env> Env </env>
+
+  rule <k> popx => .K ...</k>
+       <xstack> ListItem(_) => .List ...</xstack>
+
+  rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k>
+       <control>
+         <xstack> ListItem(xstackFrame(X, S2, K, Env, C)) => .List ...</xstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+

Thread spawning needs a new semantics, because we want the child
+thread to also share the object environment with its parent. The new
+semantics of thread spawning will be defined shortly. However,
+interestingly, the other concurrency constructs keep their semantics
+from SIMPLE unchanged.

+
  // TODO(KORE): ..Bag should be . throughout this definition #1772
+  rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag)
+  /*
+  rule (<thread>... <k>.</k> <holds>H</holds> <id>T</id> ...</thread> => .)
+  */
+       <busy> Busy => Busy -Set keys(H) </busy>
+       <terminated>... .Set => SetItem(T) ...</terminated>
+
+  rule <k> join T:Int; => .K ...</k>
+       <terminated>... SetItem(T) ...</terminated>
+
+  rule <k> acquire V:Val; => .K ...</k>
+       <holds>... .Map => V |-> 0 ...</holds>
+       <busy> Busy (.Set => SetItem(V)) </busy>
+    requires (notBool(V in Busy:Set))
+
+  rule <k> acquire V; => .K ...</k>
+       <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds>
+
+  rule <k> release V:Val; => .K ...</k>
+       <holds>... V |-> (N => N:Int -Int 1) ...</holds>
+    requires N >Int 0
+
+  rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds>
+       <busy>... SetItem(V) => .Set ...</busy>
+
+  rule <k> rendezvous V:Val; => .K ...</k>
+       <k> rendezvous V; => .K ...</k>
+

Unchanged auxiliary operations from untyped SIMPLE

+ +
  syntax Stmt ::= mkDecls(Ids,Vals)  [function]
+  rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs)
+  rule mkDecls(.Ids,.Vals) => {}
+
+  // TODO(KORE): clarify sort inferences #1803
+  syntax Exp ::= lookup(Int)
+  /*
+  syntax KItem ::= lookup(Int)
+  */
+  rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store>
+
+  syntax KItem ::= setEnv(Map)
+  rule <k> setEnv(Env) => .K ...</k>  <env> _ => Env </env>
+  rule (setEnv(_) => .K) ~> setEnv(_)
+  // TODO: How can we make sure that the second rule above applies before the first one?
+  //       Probably we'll deal with this using strategies, eventually.
+
+  syntax Exp ::= lvalue(K)
+  syntax Val ::= loc(Int)
+
+  rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env>
+
+  context lvalue(_::Exp[HOLE::Exps])
+  context lvalue(HOLE::Exp[_::Exps])
+
+  rule lvalue(lookup(L:Int) => loc(L))
+
+
+  syntax Map ::= Int "..." Int "|->" K
+    [function]
+  rule N...M |-> _ => .Map  requires N >Int M
+  rule N...M |-> K => N |-> K (N +Int 1)...M |-> K  requires N <=Int M
+

Changes to the existing untyped SIMPLE semantics

+ +

When we extend a language, sometimes we need to do more than just add
+new language constructs and semantics for them. Sometimes we want to
+also extend the semantics of existing language constructs, in order to
+get more from them.

+

Program initialization

+ +

In SIMPLE, once all the global declarations were processed, the
+function main() was invoked. In KOOL, the global
+declarations are classes, and their specific semantics is given
+shortly; essentially, they are pre-processed one by one and added
+into the class cell structure in the configuration.
+Once all the classes are processed, the computation item
+execute, which was placed right after the program in the
+initial configuration, is reached. In SIMPLE, the program was
+initialized by calling the method main(). In KOOL, the
+program is initialized by creating an object instance of class
+Main. This will also implicitly call the method
+Main() (the Main class constructor). The emptiness
+of the env cell below is just a sanity check, to make sure
+that the user has not declared anything but classes at the top level
+of the program.

+
  syntax KItem ::= "execute"
+  rule <k> execute => new Main(.Exps); </k> <env> .Map </env>
+

The semantics of new (defined below) requires the
+execution of all the class' declarations (and also of its
+superclasses').

+

Object and method closures

+ +

Before we can define the semantics of method application (previously
+called function application in SIMPLE), we need to add two more values
+to the language, namely object and method closures:

+
  syntax Val ::= objectClosure(Id, List)
+               | methodClosure(Id,Int,Ids,Stmt)
+

An object value consists of an objectClosure-wrapped bag
+containing the current class of the object and the environment stack
+of the object. The current class of an object will always be one of
+the classes mapped to an environment in the environment stack of the
+object. A method closure encapsulates the method's parameters and
+code (last two arguments), as well as the object context in which the
+method code should execute. This object context includes the current
+class of the object (the first argument of methodClosure) and
+the object environment stack (located in the object stored at the
+location specified as the second argument of methodClosure).

+

Method application

+ +

KOOL has a complex mechanism to invoke methods, because it allows both
+dynamic method dispatch and methods as first-class-citizen values (the
+latter making it a higher-order language). The invocation mechanism
+will be defined later. What is sufficient to know for now is that
+the two arguments of the application construct eventually reduce to
+values, the first being a method closure and the latter a list of
+values. The semantics of the method closure application is then as
+expected: the local environment and control are stacked, then we
+switch to method closure's class and object environment and execute
+the method body. The mkDecls construct is the one that came
+with the unchanged semantics of SIMPLE above.

+
  syntax KItem ::= fstackFrame(Map,K,List,K)
+  // TODO(KORE): drop the additional production once parsing issue #1842 is fixed
+                 | (Map,K,K)
+
+  rule <k> methodClosure(Class,OL,Xs,S)(Vs:Vals) ~> K
+           => mkDecls(Xs,Vs) S return; </k>
+       <env> Env => .Map </env>
+       <store>... OL |-> objectClosure(_, EnvStack)...</store>
+     //<br/> // TODO(KORE): support latex annotations #1799
+       <control>
+          <xstack> XS </xstack>
+          <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj' </crntObj>))
+          ...</fstack>
+          <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EnvStack </envStack> </crntObj>
+       </control>
+

Spawn

+ +

We want to extend the semantics of spawn to also share the
+current object environment with the child thread, in addition to the
+current environment. This extension will allow us to also use method
+invocations in the spawned statements, which will be thus looked up as
+expected, using dynamic method dispatch. This lookup operation would
+fail if the child thread did not have access to its parent's object
+environment.

+
  rule <thread>...
+         <k> spawn S => !T:Int ...</k>
+         <env> Env </env>
+         <crntObj> Obj </crntObj>
+       ...</thread>
+       (.Bag => <thread>...
+               <k> S </k>
+               <env> Env </env>
+               <id> !T </id>
+               <crntObj> Obj </crntObj>
+             ...</thread>)
+

Semantics of the new KOOL constructs

+ +

Class declaration

+ +

Initially, the classes forming the program are moved into their
+corresponding cells:

+
  rule <k> class Class1 extends Class2 { S } => .K ...</k>
+       <classes>... (.Bag => <classData>
+                            <className> Class1 </className>
+                            <baseClass> Class2 </baseClass>
+                            <declarations> S </declarations>
+                        </classData>)
+       ...</classes>
+

Method declaration

+ +

Like in SIMPLE, method names are added to the environment and bound
+to their code. However, unlike in SIMPLE where each function was
+executed in the same environment, namely the program global
+environment, a method in KOOL needs to be executed into its object's
+environment. Thus, methods evaluate to closures, which encapsulate
+their object's context (i.e., the current class and environment stack
+of the object) in addition to method's parameters and body. This
+approach to bind method names to method closures in the environment
+will also allow objects to pass their methods to other objects, to
+dynamically change their methods by assigning them other method
+closures, and even to allow all these to be done from other objects.
+This gives the KOOL programmer a lot of power; one should use this
+power wisely, though, because programs can become easily hard to
+understand and reason about if one overuses these features.

+
  rule <k> method F:Id(Xs:Ids) S => .K ...</k>
+       <crntClass> Class:Id </crntClass>
+       <location> OL:Int </location>
+       <env> Env => Env[F <- L] </env>
+       <store>... .Map => L |-> methodClosure(Class,OL,Xs,S) ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

New

+ +

The semantics of new consists of two actions: memory
+allocation for the new object and execution of the corresponding
+constructor. Then the created object is returned as the result of the
+new operation; the value returned by the constructor, if any,
+is discarded. The current environment and object are stored onto the
+stack and recovered after new (according to the semantics of
+return borrowed from SIMPLE, when the statement
+return this; in the rule below is reached and evaluated),
+because the object creation part of new will destroy them.
+The rule below also initializes the object creation process by
+emptying the local environment and the current object, and allocating
+a location in the store where the created object will be eventually
+stored (this is what the storeObj task after the object
+creation task in the rule below will do—its rule is defined
+shortly). The location where the object will be stored is also made
+available in the crntObj cell, so that method closures can
+refer to it (see rule above).

+
  syntax KItem ::= "envStackFrame" "(" Id "," Map ")"
+
+  rule <k> new Class:Id(Vs:Vals) ~> K
+           => create(Class) ~> storeObj ~> Class(Vs); return this; </k>
+       <env> Env => .Map </env>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+     //<br/> // TODO(KORE): support latex annotations #1799
+       <control> <xstack> XS </xstack>
+         <crntObj> Obj
+                   => <crntClass> Object </crntClass>
+                      <envStack> ListItem(envStackFrame(Object, .Map)) </envStack>
+                      <location> L </location>
+         </crntObj>
+         <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj </crntObj>)) ...</fstack>
+       </control>
+

The creation of a new object (the memory allocation part only) is
+a recursive process, requiring to first create an object for the
+superclass. A memory object representation is a layered structure:
+for each class on the path from the instance class to the root of the
+hierarchy there is a layer including the memory allocated for the
+members (both fields and methods) of that class.

+
  syntax KItem ::= create(Id)
+
+  rule <k> create(Class:Id)
+           => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k>
+       <className> Class </className>
+       <baseClass> Class1:Id </baseClass>
+       <declarations> S </declarations>
+
+  rule <k> create(Object) => .K ...</k>
+

The next operation sets the current class of the current object.
+This is necessary to be done at each layer, because the current class
+of the object is enclosed as part of the method closures (see the
+semantics of method declarations above).

+
  syntax KItem ::= setCrntClass(Id)
+
+  rule <k> setCrntClass(C) => .K ...</k>
+       <crntClass> _ => C </crntClass>
+

The next operation adds a new tagged environment layer to the
+current object and gets ready for the next layer by clearing the
+environment (note that create expects the environment to be
+empty).

+
  syntax KItem ::= "addEnvLayer"
+
+  rule <k> addEnvLayer => .K ...</k>
+       <env> Env => .Map </env>
+       <crntClass> Class:Id </crntClass>
+       <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack>
+

The following operation stores the created object at the location
+reserved by new. Note that the location reserved by
+new was temporarily stored in the crntObj cell
+precisely for this purpose. Now that the newly created object is
+stored at its location and that all method closures are aware of it,
+the location is unnecessary and thus we delete it from the
+crntObj cell.

+
  syntax KItem ::= "storeObj"
+
+  rule <k> storeObj => .K ...</k>
+       <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> (<location> L:Int </location> => .Bag) </crntObj>
+       <store>... .Map => L |-> objectClosure(CC, ES) ...</store>
+

Self reference

+ +

The semantics of this is straightforward: evaluate to the
+current object.

+
  rule <k> this => objectClosure(CC, ES) ...</k>
+       <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> </crntObj>
+

Object member access

+ +

We can access an object member (field or method) either explicitly,
+using the construct e.x, or implicitly, using only the member
+name x directly. The borrowed semantics of SIMPLE will
+already lookup a sole name in the local environment. The first rule
+below reduces implicit member access to explicit access when the name
+cannot be found in the local environment. There are two cases to
+analyze for explicit object member access, depending upon whether the
+object is a proper object or it is just a redirection to the parent
+class via the construct super. In the first case, we
+evaluate the object expression and lookup the member starting with the
+current class (static scoping). Note the use of the conditional
+evaluation context. In the second case, we just lookup the member
+starting with the superclass of the current class. In both cases,
+the lookupMember task eventually yields a lookup(L)
+task for some appropriate location L, which will be further
+solved with the corresponding rule borrowed from SIMPLE. Note that the
+current object is not altered by super, so future method
+invocations see the entire object, as needed for dynamic method dispatch.

+
  rule <k> X:Id => this . X ...</k> <env> Env:Map </env>
+    requires notBool(X in keys(Env))
+
+  context HOLE._::Id requires (HOLE =/=K super)
+
+// TODO: explain how Assoc matching has been replaced with two rules here.
+// Maybe also improve it a bit.
+
+/*  rule objectClosure(<crntClass> Class:Id </crntClass>
+                     <envStack>... envStackFrame(Class,EnvC) EStack </envStack>)
+       . X:Id
+    => lookupMember(envStackFrame(Class,EnvC) EStack, X) */
+
+  rule objectClosure(Class:Id, ListItem(envStackFrame(Class,Env)) EStack)
+       . X:Id
+    => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X)
+  rule objectClosure(Class:Id, (ListItem(envStackFrame(Class':Id,_)) => .List) _)
+       . _X:Id
+    requires Class =/=K Class'
+
+/*  rule <k> super . X => lookupMember(EStack, X) ...</k>
+       <crntClass> Class </crntClass>
+       <envStack>... envStackFrame(Class,EnvC) EStack </envStack> */
+  rule <k> super . X => lookupMember(EStack, X) ...</k>
+       <crntClass> Class:Id </crntClass>
+       <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack>
+  rule <k> super . _X ...</k>
+       <crntClass> Class </crntClass>
+       <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack>
+    requires Class =/=K Class'
+

Method invocation

+ +

Unlike in SIMPLE, in KOOL application was declared strict only in its
+second argument. That is because we want to ensure dynamic method
+dispatch when the first argument is a method access. As a
+consequence, we need to consider all the cases of interest for the
+first argument and to explicitly say what to do in each case. In all
+cases except for method access in a proper object (i.e., not
+super), we want the same behavior for the first argument as
+if it was not in a method invocation position. When it is a member
+access (the third rule below), we look it up starting with the
+instance class of the corresponding object. This ensures dynamic
+dispatch for methods; it actually dynamically dispatches field
+accesses, too, which is correct in KOOL, because one can assign method
+closures to fields and the field appeared in a method invocation
+context. The last context declaration below says that method
+applications or array accesses are also allowed as first argument to
+applications; that is because methods are allowed to return methods
+and arrays are allowed to hold methods in KOOL, since it is
+higher-order. If that is the case, then we want to evaluate the
+method call or the array access.

+
  rule <k> (X:Id => V)(_:Exps) ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+
+  rule <k> (X:Id => this . X)(_:Exps) ...</k>
+       <env> Env </env>
+    requires notBool(X in keys(Env))
+
+  context HOLE._::Id(_) requires HOLE =/=K super
+
+  rule (objectClosure(_, EStack) . X
+    => lookupMember(EStack, X:Id))(_:Exps)
+
+/*  rule <k> (super . X
+            => lookupMember(EStack,X))(_:Exps)...</k>
+       <crntClass> Class </crntClass>
+       <envStack>... envStackFrame(Class,_) EStack </envStack> */
+  rule <k> (super . X
+            => lookupMember(EStack,X))(_:Exps)...</k>
+       <crntClass> Class </crntClass>
+       <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack>
+  rule <k> (super . _X)(_:Exps) ...</k>
+       <crntClass> Class </crntClass>
+       <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack>
+    requires Class =/=K Class'
+
+  // TODO(KORE): fix getKLabel #1801
+  rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C)
+  rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C)
+  rule V:Val ~> #freezerFunCall(C:Exps) => V(C)
+  syntax KItem ::= "#freezerFunCall" "(" K ")"
+  /*
+  context HOLE(_:Exps)
+    when getKLabel(HOLE) ==K #klabel(`_(_)`) orBool getKLabel(HOLE) ==K #klabel(`_[_]`)
+  */
+

Eventually, each of the rules above produces a lookup(L)
+task as a replacement for the method. When that happens, we just
+lookup the value at location L:

+
  rule <k> (lookup(L) => V)(_:Exps) ...</k>  <store>... L |-> V:Val ...</store>
+

The value V looked up above is expected to be a method closure,
+in which case the semantics of method application given above will
+apply. Otherwise, the execution will get stuck.

+

Instance Of

+ +

It searches the object environment for a layer corresponding to the
+desired class. It returns true iff it can find the class,
+otherwise it returns false; it only gets stuck when its first
+argument does not evaluate to an object.

+
  rule objectClosure(_, ListItem(envStackFrame(C,_)) _)
+       instanceOf C => true
+
+  rule objectClosure(_, (ListItem(envStackFrame(C,_)) => .List) _)
+       instanceOf C'  requires C =/=K C'
+//TODO: remove the sort cast ::Id of C above, when sort inference bug fixed
+
+  rule objectClosure(_, .List) instanceOf _ => false
+

Cast

+ +

In untyped KOOL, we prefer to not check the validity of casting. In
+other words, any cast is allowed on any object, simply changing the
+current class of the object to the desired class. The execution will
+get stuck later if one attempts to access a field which is not
+available. Moreover, the execution may complete successfully even
+in the presence of invalid casts, provided that each accessed member
+during the current execution is, or happens to be, available.

+
  rule (C) objectClosure(_ , EnvStack) => objectClosure(C ,EnvStack)
+

KOOL-specific auxiliary declarations and operations

+ +

Here we define all the auxiliary constructs used in the above
+KOOL-specific semantics (those used in the SIMPLE fragment
+have already been defined in a corresponding section above).

+

Objects as lvalues

+ +

The current machinery borrowed with the semantics of SIMPLE allows us
+to enrich the set of lvalues, this way allowing new means to assign
+values to locations. In KOOL, we want object member names to be
+lvalues, so that we can assign values to them using the already
+existing machinery. The first rule below ensures that the object is
+always explicit, the evaluation context enforces the object to be
+evaluated, and finally the second rule initiates the lookup for the
+member's location based on the current class of the object.

+
  rule <k> lvalue(X:Id => this . X) ...</k>  <env> Env </env>
+    requires notBool(X in keys(Env))
+
+  context lvalue((HOLE . _)::Exp)
+
+/*  rule lvalue(objectClosure(<crntClass> C </crntClass>
+                            <envStack>... envStackFrame(C,EnvC) EStack </envStack>)
+              . X
+              => lookupMember(<envStack> envStackFrame(C,EnvC) EStack </envStack>,
+                              X))  */
+  rule lvalue(objectClosure(Class, ListItem(envStackFrame(Class,Env)) EStack)
+              . X
+              => lookupMember(ListItem(envStackFrame(Class,Env)) EStack,
+                              X))
+  rule lvalue(objectClosure(Class, (ListItem(envStackFrame(Class':Id,_)) => .List) _)
+              . _X)
+    requires Class =/=K Class'
+

Lookup member

+ +

It searches for the given member in the given environment stack,
+starting with the most concrete class and going up in the hierarchy.

+
  // TODO(KORE): clarify sort inferences #1803
+  syntax Exp ::= lookupMember(List, Id)  [function]
+  /*
+  syntax KItem ::= lookupMember(EnvStackCell,Id)  [function]
+  */
+
+//  rule lookupMember(<envStack> envStackFrame(_, <env>... X|->L ...</env>) ...</envStack>, X)
+//    => lookup(L)
+  rule lookupMember(ListItem(envStackFrame(_, X|->L _)) _, X)
+    => lookup(L)
+
+//  rule lookupMember(<envStack> envStackFrame(_, <env> Env </env>) => .List ...</envStack>, X)
+//    when notBool(X in keys(Env))
+  rule lookupMember(ListItem(envStackFrame(_, Env)) Rest, X) =>
+       lookupMember(Rest, X)
+    requires notBool(X in keys(Env))
+//TODO: beautify the above
+
+endmodule
+

Go to Lesson 2, KOOL typed dynamic.

+

KOOL — Typed — Dynamic

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K dynamic semantics of the typed KOOL language. It is
+very similar to the semantics of the untyped KOOL, the difference
+being that we now check the typing policy dynamically. Since we have
+to now declare the types of variables and methods, we adopt a syntax
+for those which is close to Java. Like in the semantics of
+untyped KOOL, where we borrowed almost all the semantics of untyped
+SIMPLE, we are going to also borrow much of the semantics of
+dynamically typed SIMPLE here. We will highlight the differences
+between the dynamically typed and the untyped KOOL as we proceed with
+the semantics. In general, the type policy of the typed KOOL language
+is similar to that of Java. You may find it useful to also read
+the discussion in the preamble of the static semantics of typed KOOL
+before proceeding.

+
module KOOL-TYPED-DYNAMIC-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

Like for the untyped KOOL language, the syntax of typed KOOL extends
+that of typed SIMPLE with object-oriented constructs.
+The syntax below was produced by copying and modifying/extending the
+syntax of dynamically typed SIMPLE. In fact, the only change we made
+to the existing syntax of dynamically typed SIMPLE was to change the
+strictness of the application construct like in untyped KOOL, from
+strict to strict(2) (because application is not
+strict in the first argument anymore due to dynamic method dispatch).
+The KOOL-specific syntactic extensions are identical to those in
+untyped KOOL.

+
  syntax Id ::= "Object" [token] | "Main" [token]
+

Types

+ +
  syntax Type ::= "void" | "int" | "bool" | "string"
+                | Id                              // KOOL class
+                | Type "[" "]"
+                | "(" Type ")"           [bracket]
+                > Types "->" Type
+  // TODO(KORE): drop klabel once issues #1913 are fixed
+  syntax Types ::= List{Type,","}   [symbol(_,_::Types)]
+  /*
+  syntax Types ::= List{Type,","}
+  */
+

Declarations

+ +
  syntax Param ::= Type Id
+  syntax Params ::= List{Param,","}
+
+  syntax Stmt ::= Type Exps ";" [avoid]
+                | Type Id "(" Params ")" Block    // stays like in typed SIMPLE
+                | "class" Id Block                // KOOL
+                | "class" Id "extends" Id Block   // KOOL
+

Expressions

+ +
  syntax Exp ::= Int | Bool | String | Id
+               | "this"                                 // KOOL
+               | "super"                                // KOOL
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               | Exp "instanceOf" Id     [strict(1)]    // KOOL
+               | "(" Id ")" Exp          [strict(2)]    // KOOL  cast
+               | "new" Id "(" Exps ")"   [strict(2)]    // KOOL
+               | Exp "." Id                             // KOOL
+               > Exp "[" Exps "]"        [strict]
+               > Exp "(" Exps ")"        [strict(2)]    // was strict in SIMPLE
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict(1), left]
+               | Exp "||" Exp            [strict(1), left]
+               > "spawn" Block
+               > Exp "=" Exp             [strict(2), right]
+
+  syntax Exps ::= List{Exp,","}          [strict, overload(exps)]
+  syntax Val
+  syntax Vals ::= List{Val,","}          [overload(exps)]
+

Statements

+ +
  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                               [strict]
+                | "if" "(" Exp ")" Block "else" Block   [avoid, strict(1)]
+                | "if" "(" Exp ")" Block                [macro]
+                | "while" "(" Exp ")" Block
+                | "for" "(" Stmt Exp ";" Exp ")" Block  [macro]
+                | "print" "(" Exps ")" ";"              [strict]
+                | "return" Exp ";"                      [strict]
+                | "return" ";"
+                | "try" Block "catch" "(" Param ")" Block
+                | "throw" Exp ";"                       [strict]
+                | "join" Exp ";"                        [strict]
+                | "acquire" Exp ";"                     [strict]
+                | "release" Exp ";"                     [strict]
+                | "rendezvous" Exp ";"                  [strict]
+
+  syntax Stmt ::= Stmt Stmt                          [right]
+

Desugaring macros

+ +
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S::Stmt} => {Start while(Cond){S Step;}}
+  rule T::Type E1::Exp, E2::Exp, Es::Exps; => T E1; T E2, Es;           [anywhere]
+  rule T::Type X::Id = E; => T X; X = E;                                [anywhere]
+
+  rule class C:Id S => class C extends Object S                     // KOOL
+
+endmodule
+

Semantics

+ +

We first discuss the new configuration, then we include the semantics of
+the constructs borrowed from SIMPLE which stay unchanged, then those
+whose semantics had to change, and finally the semantics of the
+KOOL-specific constructs.

+
module KOOL-TYPED-DYNAMIC
+  imports KOOL-TYPED-DYNAMIC-SYNTAX
+  imports DOMAINS
+

Configuration

+ +

The configuration of dynamically typed KOOL is almost identical to
+that of its untyped variant. The only difference is the cell
+return, inside the control cell, whose role is to
+hold the expected return type of the invoked method. That is because
+we want to dynamically check that the value that a method returns has
+the expected type.

+
  // the syntax declarations below are required because the sorts are
+  // referenced directly by a production and, because of the way KIL to KORE
+  // is implemented, the configuration syntax is not available yet
+  // should simply work once KIL is removed completely
+  // check other definitions for this hack as well
+  syntax EnvCell
+  syntax ControlCellFragment
+  syntax EnvStackCell
+  syntax CrntObjCellFragment
+
+  configuration <T color="red">
+                  <threads color="orange">
+                    <thread multiplicity="*" type="Set" color="yellow">
+                      <k color="green"> ($PGM:Stmt ~> execute) </k>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <control color="cyan">
+                        <fstack color="blue"> .List </fstack>
+                        <xstack color="purple"> .List </xstack>
+                        <returnType color="LimeGreen"> void </returnType>  // KOOL
+                      //<br/> // TODO(KORE): support latex annotations #1799
+                        <crntObj color="Fuchsia">  // KOOL
+                           <crntClass> Object </crntClass>
+                           <envStack> .List </envStack>
+                           <location multiplicity="?"> .K </location>
+                        </crntObj>
+                      </control>
+                    //<br/> // TODO(KORE): support latex annotations #1799
+                      <env color="violet"> .Map </env>
+                      <holds color="black"> .Map </holds>
+                      <id color="pink"> 0 </id>
+                    </thread>
+                  </threads>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <store color="white"> .Map </store>
+                  <busy color="cyan">.Set </busy>
+                  <terminated color="red"> .Set </terminated>
+                  <input color="magenta" stream="stdin"> .List </input>
+                  <output color="brown" stream="stdout"> .List </output>
+                  <nextLoc color="gray"> 0 </nextLoc>
+                //<br/> // TODO(KORE): support latex annotations #1799
+                  <classes color="Fuchsia">        // KOOL
+                     <classData multiplicity="*" type="Map" color="Fuchsia">
+                        <className color="Fuchsia"> Main </className>
+                        <baseClass color="Fuchsia"> Object </baseClass>
+                        <declarations color="Fuchsia"> .K </declarations>
+                     </classData>
+                  </classes>
+                </T>
+

Unchanged semantics from dynamically typed SIMPLE

+ +

The semantics below is taken over from dynamically typed SIMPLE
+unchanged. Like for untyped KOOL, the semantics of function/method
+declaration and invocation, and of program initialization needs to
+change. Moreover, due to subtyping, the semantics of several imported
+SIMPLE constructs can be made more general, such as that of the
+return statement, that of the assignment, and that of the exceptions.
+We removed all these from the imported semantics of SIMPLE below and
+gave their modified semantics right after, together with the extended
+semantics of thread spawning (which is identical to that of untyped
+KOOL).

+
  syntax Val ::= Int | Bool | String
+               | array(Type,Int,Int)
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax KResult ::= Val
+  syntax KResult ::= Vals
+
+
+  syntax KItem ::= undefined(Type)
+
+  rule <k> T:Type X:Id; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> undefined(T) ...</store>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+
+
+  rule <k> T:Type X:Id[N:Int]; => .K ...</k>
+       <env> Env => Env[X <- L] </env>
+       <store>... .Map => L |-> array(T, L +Int 1, N)
+                          (L +Int 1)...(L +Int N) |-> undefined(T) ...</store>
+       <nextLoc> L:Int => L +Int 1 +Int N </nextLoc>
+    requires N >=Int 0
+
+  context _:Type _::Exp[HOLE::Exps];
+
+
+  syntax Id ::= "$1" [token] | "$2" [token]
+  rule T:Type X:Id[N1:Int, N2:Int, Vs:Vals];
+    => T[]<Vs> X[N1];
+       {
+         T[][]<Vs> $1=X;
+         for(int $2=0; $2 <= N1 - 1; ++$2) {
+           T X[N2,Vs];
+           $1[$2] = X;
+         }
+       }
+
+
+  rule <k> X:Id => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+
+
+  context ++(HOLE => lvalue(HOLE))
+  rule <k> ++loc(L) => I +Int 1 ...</k>
+       <store>... L |-> (I:Int => I +Int 1) ...</store>
+
+
+  rule I1 + I2 => I1 +Int I2
+  rule Str1 + Str2 => Str1 +String Str2
+  rule I1 - I2 => I1 -Int I2
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+
+
+  rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs]
+    [anywhere]
+
+  rule array(_:Type, L:Int, M:Int)[N:Int] => lookup(L +Int N)
+    requires N >=Int 0 andBool N <Int M  [anywhere]
+
+  rule sizeOf(array(_,_,N)) => N
+
+
+  syntax Val ::= nothing(Type)
+  rule <k> return; => return nothing(T); ...</k> <returnType> T </returnType>
+
+
+  rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input>
+
+
+  context (HOLE => lvalue(HOLE)) = _
+
+
+  rule {} => .K
+  rule <k> { S } => S ~> setEnv(Env) ...</k>  <env> Env </env>
+
+
+  rule S1:Stmt S2:Stmt => S1 ~> S2
+
+
+  rule _:Val; => .K
+
+
+  rule if ( true) S else _ => S
+  rule if (false) _ else S => S
+
+
+  rule while (E) S => if (E) {S while(E)S}
+
+
+  rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output>
+    requires typeOf(V) ==K int orBool typeOf(V) ==K string
+  rule print(.Vals); => .K
+
+
+  rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag)
+       <busy> Busy => Busy -Set keys(H) </busy>
+       <terminated>... .Set => SetItem(T) ...</terminated>
+
+  rule <k> join T:Int; => .K ...</k>
+       <terminated>... SetItem(T) ...</terminated>
+
+  rule <k> acquire V:Val; => .K ...</k>
+       <holds>... .Map => V |-> 0 ...</holds>
+       <busy> Busy (.Set => SetItem(V)) </busy>
+    requires (notBool(V in Busy:Set))
+
+  rule <k> acquire V; => .K ...</k>
+       <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds>
+
+  rule <k> release V:Val; => .K ...</k>
+       <holds>... V |-> (N => N:Int -Int 1) ...</holds>
+    requires N >Int 0
+
+  rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds>
+       <busy>... SetItem(V) => .Set ...</busy>
+
+  rule <k> rendezvous V:Val; => .K ...</k>
+       <k> rendezvous V; => .K ...</k>
+

Unchanged auxiliary operations from dynamically typed SIMPLE

+ +
  syntax Stmt ::= mkDecls(Params,Vals)  [function]
+  rule mkDecls((T:Type X:Id, Ps:Params), (V:Val, Vs:Vals))
+    => T X=V; mkDecls(Ps,Vs)
+  rule mkDecls(.Params,.Vals) => {}
+
+  syntax Exp ::= lookup(Int)
+  rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store>
+
+  syntax KItem ::= setEnv(Map)
+  rule <k> setEnv(Env) => .K ...</k>  <env> _ => Env </env>
+  rule (setEnv(_) => .K) ~> setEnv(_)
+
+  syntax Exp ::= lvalue(K)
+  syntax Val ::= loc(Int)
+  rule <k> lvalue(X:Id => loc(L)) ...</k>  <env>... X |-> L:Int ...</env>
+
+  context lvalue(_::Exp[HOLE::Exps])
+  context lvalue(HOLE::Exp[_::Exps])
+
+  rule lvalue(lookup(L:Int) => loc(L))
+
+  syntax Type ::= Type "<" Vals ">"  [function]
+  rule T:Type<_,Vs:Vals> => T[]<Vs>
+  rule T:Type<.Vals> => T
+
+  syntax Map ::= Int "..." Int "|->" K [function]
+  rule N...M |-> _ => .Map  requires N >Int M
+  rule N...M |-> K => N |-> K (N +Int 1)...M |-> K  requires N <=Int M
+
+  syntax Type ::= typeOf(K)  [function]
+  rule typeOf(_:Int) => int
+  rule typeOf(_:Bool) => bool
+  rule typeOf(_:String) => string
+  rule typeOf(array(T,_,_)) => (T[])
+  rule typeOf(undefined(T)) => T
+  rule typeOf(nothing(T)) => T
+
+  syntax Types ::= getTypes(Params)  [function]
+  rule getTypes(T:Type _:Id) => T, .Types
+  rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps)
+  rule getTypes(.Params) => void, .Types
+

Changes to the existing dynamically typed SIMPLE semantics

+ +

We extend/change the semantics of several SIMPLE constructs in order
+to take advantage of the richer KOOL semantic infrastructure and thus
+get more from the existing SIMPLE constructs.

+

Program initialization

+ +

Like in untyped KOOL.

+
  syntax KItem ::= "execute"
+  rule <k> execute => new Main(.Exps); </k> <env> .Map </env>
+

Method application

+ +

The only change to untyped KOOL's values is that method closures are
+now typed (their first argument holds their type):

+
 syntax Val ::= objectClosure(Id,List)
+              | methodClosure(Type,Id,Int,Params,Stmt)
+

The type held by a method clossure will be the entire type of the
+method, not only its result type like the lambda-closure of typed
+SIMPLE. The reason for this change comes from the the need to
+dynamically upcast values when passed to contexts where values of
+superclass types are expected; since we want method closures to be
+first-class-citizen values in our language, we have to be able to
+dynamically upcast them, and in order to do that elegantly it is
+convenient to store the entire ``current type'' of the method closure
+instead of just its result type. Note that this was unnecessary in
+the semantics of the dynamically typed SIMPLE language.

+

Method closure application needs to also set a new return type in
+the return cell, like in dynamically typed SIMPLE, in order
+for the values returned by its body to be checked against the return
+type of the method. To do this correctly, we also need to stack the
+current status of the return cell and then pop it when the
+method returns. We have to do the same with the current object
+environment, so we group them together in the stack frame.

+
  syntax KItem ::= fstackFrame(Map, K, List, Type, K)
+
+  rule <k> methodClosure(_->T,Class,OL,Ps,S)(Vs:Vals) ~> K
+           => mkDecls(Ps,Vs) S return; </k>
+       <env> Env => .Map </env>
+       <store>... OL |-> objectClosure(_, EStack)...</store>
+     //<br/> // TODO(KORE): support latex annotations #1799
+       <control>
+          <fstack> .List => ListItem(fstackFrame(Env, K, XS, T', <crntObj> Obj' </crntObj>)) ...</fstack>
+          <xstack> XS </xstack>
+          <returnType> T' => T </returnType>
+          <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EStack </envStack> </crntObj>
+       </control>
+

At method return, we have to check that the type of the returned
+value is a subtype of the expected return type. Moreover, if that is
+the case, then we also upcast the returned value to one of the
+expected type. The computation item unsafeCast(V,T) changes
+the typeof V to T without any additional checks; however, it only
+does it when V is an object or a method, otherwise it returns V
+unchanged.

+
  rule <k> return V:Val; ~> _
+           => subtype(typeOf(V), T) ~> true? ~> unsafeCast(V, T) ~> K
+       </k>
+       <control>
+         <fstack> ListItem(fstackFrame(Env, K, XS, RT, <crntObj> CO </crntObj>)) => .List ...</fstack>
+         <xstack> _ => XS </xstack>
+         <returnType> T:Type => RT </returnType>
+         <crntObj> _ => CO </crntObj>
+       </control>
+       <env> _ => Env </env>
+

Assignment

+ +

Typed KOOL allows to assign subtype instance values to supertype
+lvalues. The semantics of assignment below is similar in spirit to
+dynamically typed SIMPLE's, but a check is performed that the assigned
+value's type is a subtype of the location's type. If that is the
+case, then the assigned value is returned as a result and stored, but
+it is upcast appropriately first, so the context will continue to see
+a value of the expected type of the location. Note that the type of a
+location is implicit in the type of its contents and it never changes
+during the execution of a program; its type is assigned when the
+location is allocated and initialized, and then only type-preserving
+values are allowed to be stored in each location.

+
  rule <k> loc(L) = V:Val
+           => subtype(typeOf(V),typeOf(V')) ~> true?
+              ~> unsafeCast(V, typeOf(V')) ...</k>
+       <store>... L |-> (V' => unsafeCast(V, typeOf(V'))) ...</store>
+

Typed exceptions

+ +

Exceptions are propagated now until a catch that can handle them is
+encountered.

+
  syntax KItem ::= xstackFrame(Param, Stmt, K, Map, K)
+  syntax KItem ::= "popx"
+
+  rule <k> (try S1 catch(P) S2 => S1 ~> popx) ~> K </k>
+       <control>
+         <xstack> .List => ListItem(xstackFrame(P, S2, K, Env, C)) ...</xstack>
+         C
+       </control>
+       <env> Env </env>
+
+  rule <k> popx => .K ...</k>
+       <xstack> ListItem(_) => .List ...</xstack>
+
+  rule <k> throw V:Val; ~> _
+        => if (subtype(typeOf(V),T)) { T X = V; S2 } else { throw V; } ~> K
+       </k>
+       <control>
+         <xstack> ListItem(xstackFrame(T:Type X:Id, S2, K, Env, C)) => .List ...</xstack>
+         (_ => C)
+       </control>
+       <env> _ => Env </env>
+

Spawn

+ +

Like in untyped KOOL.

+
  rule <thread>...
+         <k> spawn S => !T:Int ...</k>
+         <env> Env </env>
+         <crntObj> Obj </crntObj>
+       ...</thread>
+       (.Bag => <thread>...
+               <k> S </k>
+               <env> Env </env>
+               <id> !T </id>
+               <crntObj> Obj </crntObj>
+             ...</thread>)
+

Semantics of the new KOOL constructs

+ +

Class declaration

+ +

Like in untyped KOOL.

+
  rule <k> class Class1 extends Class2 { S } => .K ...</k>
+       <classes>... (.Bag => <classData>
+                            <className> Class1 </className>
+                            <baseClass> Class2 </baseClass>
+                            <declarations> S </declarations>
+                        </classData>)
+       ...</classes>
+

Method declaration

+ +

Methods are now typed and we need to store their types in their
+closures, so that their type contract can be checked at invocation
+time. The rule below is conceptually similar to that of untyped KOOL;
+the only difference is the addition of the types.

+
  rule <k> T:Type F:Id(Ps:Params) S => .K ...</k>
+       <crntClass> C </crntClass>
+       <location> OL </location>
+       <env> Env => Env[F <- L] </env>
+       <store>... .Map => L|->methodClosure(getTypes(Ps)->T,C,OL,Ps,S) ...</store>
+       <nextLoc> L => L +Int 1 </nextLoc>
+

New

+ +

The semantics of new in dynamically typed KOOL is also
+similar to that in untyped KOOL, the main difference being the
+management of the return types. Indeed, when a new object is created
+we also have to stack the current type in the return cell in
+order to be recovered after the creation of the new object. Only the
+first rule below needs to be changed; the others are identical to
+those in untyped KOOL.

+
  syntax KItem ::= envStackFrame(Id, Map)
+
+  rule <k> new Class:Id(Vs:Vals) ~> K
+           => create(Class) ~> (storeObj ~> ((Class(Vs)); return this;)) </k>
+       <env> Env => .Map </env>
+       <nextLoc> L:Int => L +Int 1 </nextLoc>
+     //<br/> // TODO(KORE): support latex annotations #1799
+       <control>
+         <xstack> XS </xstack>
+         <crntObj> Obj
+                   => <crntClass> Object </crntClass>
+                      <envStack> ListItem(envStackFrame(Object, .Map)) </envStack>
+                      <location> L </location>
+         </crntObj>
+         <returnType> T => Class </returnType>
+         <fstack> .List => ListItem(fstackFrame(Env, K, XS, T, <crntObj>Obj</crntObj>)) ...</fstack>
+       </control>
+
+  syntax KItem ::= create(Id)
+
+  rule <k> create(Class:Id)
+           => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k>
+       <className> Class </className>
+       <baseClass> Class1:Id </baseClass>
+       <declarations> S </declarations>
+
+  rule <k> create(Object) => .K ...</k>
+
+  syntax KItem ::= setCrntClass(Id)
+
+  rule <k> setCrntClass(C) => .K ...</k>
+       <crntClass> _ => C </crntClass>
+
+  syntax KItem ::= "addEnvLayer"
+
+  rule <k> addEnvLayer => .K ...</k>
+       <env> Env => .Map </env>
+       <crntClass> Class:Id </crntClass>
+       <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack>
+
+  syntax KItem ::= "storeObj"
+
+  rule <k> storeObj => .K ...</k>
+       <crntObj>
+         <crntClass> Class </crntClass>
+         <envStack> EStack </envStack>
+         (<location> L:Int </location> => .Bag)
+       </crntObj>
+       <store>... .Map => L |-> objectClosure(Class, EStack) ...</store>
+

Self reference

+ +

Like in untyped KOOL.

+
  rule <k> this => objectClosure(Class, EStack) ...</k>
+       <crntObj>
+         <crntClass> Class </crntClass>
+         <envStack> EStack </envStack>
+         ...
+       </crntObj>
+

Object member access

+ +

Like in untyped KOOL.

+
  rule <k> X:Id => this . X ...</k> <env> Env:Map </env>
+    requires notBool(X in keys(Env))
+
+  context HOLE . _::Id requires (HOLE =/=K super)
+
+/*  rule objectClosure(<crntObj> <crntClass> Class:Id </crntClass>
+                     <envStack>... ListItem((Class,EnvC:EnvCell)) EStack </envStack> </crntObj>)
+       . X:Id
+    => lookupMember(<envStack> ListItem((Class,EnvC)) EStack </envStack>, X) */
+  rule objectClosure(Class:Id,
+                     ListItem(envStackFrame(Class,Env)) EStack)
+       . X:Id
+    => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X)
+  rule objectClosure(Class:Id,
+                     (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack)
+       . _X:Id
+    requires Class =/=K Class'
+
+/*  rule <k> super . X => lookupMember(<envStack>EStack</envStack>, X) ...</k>
+       <crntClass> Class </crntClass>
+       <envStack>... ListItem((Class,EnvC:EnvCell)) EStack </envStack> */
+  rule <k> super . X => lookupMember(EStack, X) ...</k>
+       <crntClass> Class:Id </crntClass>
+       <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack>
+  rule <k> super . _X ...</k>
+       <crntClass> Class:Id </crntClass>
+       <envStack> (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack </envStack>
+    requires Class =/=K Class'
+

Method invocation

+ +

The method lookup is the same as in untyped KOOL.

+
  rule <k> (X:Id => V)(_:Exps) ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V:Val ...</store>
+
+  rule <k> (X:Id => this . X)(_:Exps) ...</k>
+       <env> Env </env>
+    requires notBool(X in keys(Env))
+
+  context HOLE._::Id(_) requires HOLE =/=K super
+
+  rule (objectClosure(_, EStack) . X
+    => lookupMember(EStack, X:Id))(_:Exps)
+
+/*  rule <k> (super . X
+            => lookupMember(<envStack>EStack</envStack>,X))(_:Exps)...</k>
+       <crntClass> Class </crntClass>
+       <envStack>... ListItem((Class,_)) EStack </envStack> */
+  rule <k> (super . X
+            => lookupMember(EStack,X))(_:Exps)...</k>
+       <crntClass> Class:Id </crntClass>
+       <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack>
+  rule <k> (super . _X)(_:Exps)...</k>
+       <crntClass> Class:Id </crntClass>
+       <envStack> (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack </envStack>
+    requires Class =/=K Class'
+
+  // TODO(KORE): fix getKLabel #1801
+  rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C)
+  rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C)
+  rule V:Val ~> #freezerFunCall(C:Exps) => V(C)
+  syntax KItem ::= "#freezerFunCall" "(" K ")"
+  /*
+  context HOLE(_:Exps)
+    requires getKLabel HOLE ==KLabel '_`(_`) orBool getKLabel HOLE ==KLabel '_`[_`]
+  */
+
+  rule <k> (lookup(L) => V)(_:Exps) ...</k>  <store>... L |-> V:Val ...</store>
+

Instance of

+ +

Like in untyped KOOL.

+
  rule objectClosure(_, ListItem(envStackFrame(C,_)) _)
+       instanceOf C => true
+
+  rule objectClosure(_, (ListItem(envStackFrame(C::Id,_)) => .List) _)
+       instanceOf C'  requires C =/=K C'
+
+  rule objectClosure(_, .List) instanceOf _ => false
+

Cast

+ +

Unlike in untyped KOOL, in typed KOOL we actually check that the object
+can indeed be cast to the claimed type.

+
  rule (C:Id) objectClosure(Irrelevant, EStack)
+    => objectClosure(Irrelevant, EStack) instanceOf C ~> true?
+       ~> objectClosure(C, EStack)
+

KOOL-specific auxiliary declarations and operations

+ +

Objects as lvalues

+ +

Like in untyped KOOL.

+
  rule <k> lvalue(X:Id => this . X) ...</k>  <env> Env </env>
+    requires notBool(X in keys(Env))
+
+  context lvalue((HOLE . _)::Exp)
+
+/*  rule lvalue(objectClosure(<crntObj> <crntClass> C </crntClass>
+                            <envStack>... ListItem((C,EnvC:EnvCell)) EStack </envStack> </crntObj>)
+              . X
+              => lookupMember(<envStack> ListItem((C,EnvC)) EStack </envStack>,
+                              X)) */
+  rule lvalue(objectClosure(C:Id,
+                            ListItem(envStackFrame(C,Env)) EStack)
+              . X
+              => lookupMember(ListItem(envStackFrame(C,Env)) EStack,
+                              X))
+  rule lvalue(objectClosure(C,
+                            (ListItem(envStackFrame(C',_)) => .List) _EStack)
+              . _X)
+    requires C =/=K C'
+

Lookup member

+ +

Like in untyped KOOL.

+
  syntax Exp ::= lookupMember(List,Id)  [function]
+
+  rule lookupMember(ListItem(envStackFrame(_, X |-> L _)) _, X) => lookup(L)
+
+  // TODO: fix rule below as shown once we support functions with deep rewrites
+  // rule lookupMember(<envStack> ListItem((_, <env> Env </env>)) => .List
+  //                     ...</envStack>, X)
+  //   requires notBool(X in keys(Env))
+  rule lookupMember(ListItem(envStackFrame(_, Env)) L, X)
+    => lookupMember(L, X)
+    requires notBool(X in keys(Env))
+

typeOf for the additional values}

+ +
  rule typeOf(objectClosure(C,_)) => C
+  rule typeOf(methodClosure(T:Type,_,_,_Ps:Params,_)) => T
+

Subtype checking

+ +

The subclass relation induces a subtyping relation.

+
  syntax Exp ::= subtype(Types,Types)
+
+  rule subtype(T:Type, T) => true
+
+  rule <k> subtype(C1:Id, C:Id) => subtype(C2, C) ...</k>
+       <className> C1 </className>
+       <baseClass> C2:Id </baseClass>
+    requires C1 =/=K C
+
+  rule subtype(Object,Class:Id) => false
+    requires Class =/=K Object
+
+  rule subtype(Ts1->T2,Ts1'->T2') => subtype(((T2)::Type,Ts1'),((T2')::Type,Ts1))
+
+// Note that the following rule would be wrong!
+//  rule subtype(T[],T'[]) => subtype(T,T')
+
+  rule subtype((T:Type,Ts),(T':Type,Ts')) => subtype(T,T') && subtype(Ts,Ts')
+    requires Ts =/=K .Types
+  rule subtype(.Types,.Types) => true
+

Unsafe Casting

+ +

Performs unsafe casting. One should only use it in combination with
+the subtype relation above.

+
  syntax Val ::= unsafeCast(Val,Type)  [function]
+
+  rule unsafeCast(objectClosure(_,EStack), C:Id)
+    => objectClosure(C,EStack)
+
+  rule unsafeCast(methodClosure(_T',C,OL,Ps,S), T) => methodClosure(T,C,OL,Ps,S)
+
+  rule unsafeCast(V:Val, T:Type) => V  requires typeOf(V) ==K T
+

Generic guard

+ +

A generic computational guard: it allows the computation to continue
+only if a prefix guard evaluates to true.

+
  syntax KItem ::= "true?"
+  rule true ~> true? => .K
+
+endmodule
+

Go to Lesson 3, KOOL typed static.

+

KOOL — Typed — Static

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K static semantics of the typed KOOL language.
+It extends the static semantics of typed SIMPLE with static semantics
+for the object-oriented constructs. Also, the static semantics of
+some of the existing SIMPLE constructs need to change, in order to
+become more generous with regards to the set of accepted programs,
+mostly due to subtyping. For example, the assignment construct
+x = e required that both the variable x and the
+expression e had the same type in SIMPLE. In KOOL, the type
+of e can be a subtype of the type of x.
+Specifically, we define the following typing policy for KOOL,
+everything else not mentioned below borrowing its semantics from
+SIMPLE:

+
    +
  • +

    Each class C yields a homonymous type, which can be
    +explicitly used in programs to type variables and methods, possibly in
    +combination with other types.

    +
  • +
  • +

    Since now we have user-defined types, we check that each type
    +used in a KOOL program is well-formed, that is, it is constructed only
    +from primitive and class types corresponding to declared classes.

    +
  • +
  • +

    Class members and their types form a class type
    +environment
    . Each class will have such a type environment.
    +Each member in a class is allowed to be declared only once. Since in
    +KOOL we allow methods to be assigned to fields, we make no distinction
    +between field and method members; in other words, we reject programs
    +declaring both a field and a method with the same name.

    +
  • +
  • +

    If an identifier is not found in the local type environment, it
    +will be searched for in the current class type environment. If not
    +there, then it will be searched for in its superclass' type
    +environment. And so on and so forth. If not found until the
    +Object class is reached, a typing error is reported.

    +
  • +
  • +

    The assignment allows variables to be assigned values of
    +more concrete types. The result type of the assignment expression
    +construct will be the (more abstract) type of the assigned variable,
    +and not the (more concrete) type of the expression, like in Java.

    +
  • +
  • +

    Exceptions are changed (from SIMPLE) to allow throwing and
    +catching only objects, like in Java. Also, unlike in SIMPLE, we do
    +not check whether the type of the thrown exception matches the type of
    +the caught variable, because exceptions can be caught by other
    +try/catch blocks, even by ones in other methods. To avoid
    +having to annotate each method with what exceptions it can throw, we
    +prefer to not check the type safety of exceptions (although this is an
    +excellent homework!). We only check that the try block
    +type-checks and that the catch block type-checks after we bind
    +the caught variable to its claimed type.

    +
  • +
  • +

    Class declarations are not allowed to have any cycles in their
    +extends relation. Such cycles would lead to non-termination of
    +new, as it actually does in the dynamic semantics of KOOL
    +where no such circularity checks are performed.

    +
  • +
  • +

    Methods overriding other methods should be in the right subtyping
    +relationship with the overridden methods: co-variant in the codomain
    +and contra-variant in the domain.

    +
  • +
+
module KOOL-TYPED-STATIC-SYNTAX
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of statically typed KOOL is identical to that of
+dynamically typed KOOL, they both taking as input the same programs.
+What differs is the K strictness attributes. Like in statically
+typed SIMPLE, almost all language constructs are strict now, since we
+want each to type its arguments almost all the time. Like in the
+other two KOOL definitions, we prefer to copy and then modify/extend
+the syntax of statically typed SIMPLE.

+

Note: This paragraph is old, now we can do things better. We keep
+it here only for historical reasons, to see how much we used to suffer 😃

+

Annoying K-tool technical problem:
+Currently, the K tool treats the "non-terminal" productions (i.e.,
+productions consisting of just one non-terminal), also called
+"subsorting" production, differently from the other productions.
+Specifically, it does not insert a node in the AST for them. This may
+look desirable at first, but it has a big problem: it does not allow
+us to treat the subsort differently in different context. For
+example, since we want Id to be both a type (a class name) and a
+program variable, and since we want expressions to reduce to their
+types, we are in an impossible situations in which we do not know how
+to treat an identifier in the semantics: as a type, i.e., a result of
+computations, or as a program variable, i.e., a non-result. Ideally,
+we would like to tag the identifiers at parse-time with their local
+interpretation, but that, unfortunately, is not possible with the
+current parsing capabilities of the K tool, because it requires to
+insert additional information in the AST for the subsort productions.
+This will be fixed soon. Until then, unfortunately, we have to do the
+job of the parser manually. Instead of subsorting Id directly
+to Type, we "wrap" it first, say with a wrapper called
+class(...), exactly how the parser should have done.
+The major drawback of this is that all the typed KOOL programs
+in kool/typed/programs need to also be modified to always
+declare class types accordingly. The modified programs can be found
+in kool/typed/static/programs. So make sure you execute the
+static semantics of KOOL using the modified programs. To avoid seeing
+the wrapper in the generated documentation, we associate it an
+"invisibility" latex attribute below.

+
  syntax Id ::= "Object" [token] | "Main" [token]
+

Types

+ +
  syntax Type ::= "void" | "int" | "bool" | "string"
+                | Id                     [klabel("class"), symbol, avoid]  // see next
+                | Type "[" "]"
+                | "(" Type ")"           [bracket]
+                > Types "->" Type
+
+  syntax Types ::= List{Type,","}        [overload(exps)]
+

Declarations

+ +
  syntax Param ::= Type Id
+  syntax Params ::= List{Param,","}
+
+  syntax Stmt ::= Type Exps ";" [avoid]
+                | Type Id "(" Params ")" Block
+                | "class" Id Block
+                | "class" Id "extends" Id Block
+

Expressions

+ +
  syntax FieldReference ::= Exp "." Id          [strict(1)]
+  syntax ArrayReference ::= Exp "[" Exps "]"    [strict]
+
+  syntax Exp ::= Int | Bool | String | Id
+               | "this"
+               | "super"
+               | "(" Exp ")"             [bracket]
+               | "++" Exp
+               | Exp "instanceOf" Id     [strict(1)]
+               | "(" Id ")" Exp          [strict(2)]
+               | "new" Id "(" Exps ")"   [strict(2)]
+               > Exp "(" Exps ")"        [strict]
+               | "-" Exp                 [strict]
+               | "sizeOf" "(" Exp ")"    [strict]
+               | "read" "(" ")"
+               > left:
+                 Exp "*" Exp             [strict, left]
+               | Exp "/" Exp             [strict, left]
+               | Exp "%" Exp             [strict, left]
+               > left:
+                 Exp "+" Exp             [strict, left]
+               | Exp "-" Exp             [strict, left]
+               > non-assoc:
+                 Exp "<" Exp             [strict, non-assoc]
+               | Exp "<=" Exp            [strict, non-assoc]
+               | Exp ">" Exp             [strict, non-assoc]
+               | Exp ">=" Exp            [strict, non-assoc]
+               | Exp "==" Exp            [strict, non-assoc]
+               | Exp "!=" Exp            [strict, non-assoc]
+               > "!" Exp                 [strict]
+               > left:
+                 Exp "&&" Exp            [strict, left]
+               | Exp "||" Exp            [strict, left]
+               > "spawn" Block  // not strict: to check return and exceptions
+               > Exp "=" Exp             [strict(2), right]
+
+  syntax Exp ::= FieldReference | ArrayReference
+  syntax priority _.__KOOL-TYPED-STATIC-SYNTAX > _[_]_KOOL-TYPED-STATIC-SYNTAX > _(_)_KOOL-TYPED-STATIC-SYNTAX
+
+  syntax Exps ::= List{Exp,","}          [strict, overload(exps)]
+

Statements

+ +
  syntax Block ::= "{" "}"
+                | "{" Stmt "}"
+
+  syntax Stmt ::= Block
+                | Exp ";"                                 [strict]
+                | "if" "(" Exp ")" Block "else" Block     [avoid, strict]
+                | "if" "(" Exp ")" Block                  [macro]
+                | "while" "(" Exp ")" Block               [strict]
+                | "for" "(" Stmt Exp ";" Exp ")" Block    [macro]
+                | "return" Exp ";"                        [strict]
+                | "return" ";"
+                | "print" "(" Exps ")" ";"                [strict]
+                | "try" Block "catch" "(" Param ")" Block [strict(1)]
+                | "throw" Exp ";"                         [strict]
+                | "join" Exp ";"                          [strict]
+                | "acquire" Exp ";"                       [strict]
+                | "release" Exp ";"                       [strict]
+                | "rendezvous" Exp ";"                    [strict]
+
+  syntax Stmt ::= Stmt Stmt                            [seqstrict, right]
+

Desugaring macros

+ +
  rule if (E) S => if (E) S else {}
+  rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}}
+  rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es;               [anywhere]
+  rule T:Type X:Id = E; => T X; X = E;                                  [anywhere]
+
+  rule class C:Id S => class C extends Object S
+
+endmodule
+

Static semantics

+ +

We first discuss the configuration, then give the static semantics
+taken over unchanged from SIMPLE, then discuss the static semantics of
+SIMPLE syntactic constructs that needs to change, and in the end we
+discuss the static semantics and additional checks specifically
+related to the KOOL proper syntax.

+
module KOOL-TYPED-STATIC
+  imports KOOL-TYPED-STATIC-SYNTAX
+  imports DOMAINS
+

Configuration

+ +

The configuration of our type system consists of a tasks
+cell with the same meaning like in statically typed SIMPLE, of an
+out cell streamed to the standard output that will be used to
+display typing error messages, and of a cell classes holding
+data about each class in a separate class cell. The
+task cells now have two additional optional subcells, namely
+ctenvT and inClass. The former holds a temporary
+class type environment; its contents will be transferred into the
+ctenv cell of the corresponding class as soon as all the
+fields and methods in the task are processed. In fact, there will be
+three types of tasks in the subsequent semantics, each determined by
+the subset of cells that it holds:

+
    +
  1. +

    Main task, holding only a k cell holding the
    +original program as a set of classes. The role of this task is to
    +process each class, generating a class task (see next) for each.

    +
  2. +
  3. +

    Class task, holding k, ctenvT, and
    +inClass subcells. The role of this task type is to process
    +a class' contents, generating a class type environment in the
    +ctenvT cell and a method task (see next) for each method in
    +the class. To avoid interference with object member lookup rules
    +below, it is important to add the class type environment to a class
    +atomically; this is the reason for which we use ctenvT
    +temporary cells within class tasks (instead of adding each member
    +incrementally to the class' type environment).

    +
  4. +
  5. +

    Method task, holding k, tenv and
    +return cells. These tasks are similar to SIMPLE's function
    +tasks, so we do not discuss them here any further.

    +
  6. +
+

Each class cell hods its name (in the className
+cell) and the name of the class it extends (in the extends
+cell), as well as its type environment (in the ctenv cell)
+and the set of all its superclasses (in the extendsAll cell).
+The later is useful for example for checking whether there are cycles
+in the class extends relation.

+
  configuration <T multiplicity="?" color="yellow">
+                  <tasks color="orange" multiplicity="?">
+                    <task multiplicity="*" color="yellow" type="Set">
+                      <k color="green"> $PGM:Stmt </k>
+                      <tenv multiplicity="?" color="cyan"> .Map </tenv>
+                      <ctenvT multiplicity="?" color="blue"> .Map </ctenvT>
+                      <returnType multiplicity="?" color="black"> void </returnType>
+                      <inClass multiplicity="?" color="Fuchsia"> .K </inClass>
+                    </task>
+                  </tasks>
+//                  <br/>
+                  <classes color="Fuchsia">
+                    <classData multiplicity="*" type="Map">
+                      <className color="Fuchsia"> Object </className>
+                      <baseClass color="Fuchsia"> .K </baseClass>
+                      <baseClasses color="Fuchsia"> .Set </baseClasses>
+                      <ctenv multiplicity="?" color="blue"> .Map </ctenv>
+                    </classData>
+                  </classes>
+                </T>
+                <output color="brown" stream="stdout"> .List </output>
+

Unchanged semantics from statically typed SIMPLE

+ +

The syntax and rules below are borrowed unchanged from statically
+typed SIMPLE, so we do not discuss them much here.

+
  syntax Exp ::= Type
+  syntax Exps ::= Types
+  syntax BlockOrStmtType ::= "block" | "stmt"
+  syntax Type ::= BlockOrStmtType
+  syntax Block ::= BlockOrStmtType
+  syntax KResult ::= Type
+                   | Types  // TODO: should not be needed
+
+
+  context _:Type _::Exp[HOLE::Exps];
+
+  rule T:Type E:Exp[int,Ts:Types]; => T[] E[Ts];
+  rule T:Type E:Exp[.Types]; => T E;
+
+
+  rule <task>... <k> _:BlockOrStmtType </k> <tenv> _ </tenv> ...</task> => .Bag
+
+
+  rule _:Int => int
+  rule _:Bool => bool
+  rule _:String => string
+
+
+  rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</tenv>
+
+
+  context ++(HOLE => ltype(HOLE))
+  rule ++ int => int
+  rule int + int => int
+  rule string + string => string
+  rule int - int => int
+  rule int * int => int
+  rule int / int => int
+  rule int % int => int
+  rule - int => int
+  rule int < int => bool
+  rule int <= int => bool
+  rule int > int => bool
+  rule int >= int => bool
+  rule T:Type == T => bool
+  rule T:Type != T => bool
+  rule bool && bool => bool
+  rule bool || bool => bool
+  rule ! bool => bool
+
+
+  rule (T[])[int, Ts:Types] => T[Ts]
+  rule T:Type[.Types] => T
+
+  rule sizeOf(_T[]) => int
+
+
+  rule read() => int
+
+  rule print(T:Type, Ts => Ts); requires T ==K int orBool T ==K string
+  rule print(.Types); => stmt
+
+
+  context (HOLE => ltype(HOLE)) = _
+
+
+  rule <k> return; => stmt ...</k> <returnType> _ </returnType>
+
+
+  rule {} => block
+
+  rule <task> <k> {S:Stmt} => block ...</k> <tenv> Rho </tenv> R </task>
+       (.Bag => <task> <k> S </k> <tenv> Rho </tenv> R </task>)
+
+  rule _:Type; => stmt
+  rule if (bool) block else block => stmt
+  rule while (bool) block => stmt
+
+  rule join int; => stmt
+  rule acquire _:Type; => stmt
+  rule release _:Type; => stmt
+  rule rendezvous _:Type; => stmt
+
+  syntax Stmt ::= BlockOrStmtType
+  rule _:BlockOrStmtType _:BlockOrStmtType => stmt
+

Unchanged auxiliary operations from dynamically typed SIMPLE

+ +
  syntax Stmt ::= mkDecls(Params)  [function]
+  rule mkDecls(T:Type X:Id, Ps:Params) => T X; mkDecls(Ps)
+  rule mkDecls(.Params) => {}
+
+  syntax LValue ::= Id
+                  | FieldReference
+                  | ArrayReference
+  syntax Exp ::= LValue
+
+  syntax Exp ::= ltype(Exp)
+// We would like to say:
+//  context ltype(HOLE:LValue)
+// but we currently cannot type the HOLE
+  context ltype(HOLE) requires isLValue(HOLE)
+
+// OLD approach:
+//  syntax Exp ::= ltype(Exp)  [function]
+//  rule ltype(X:Id) => X
+//  rule ltype(E:Exp [Es:Exps]) => E[Es]
+
+  syntax Types ::= getTypes(Params)  [function]
+  rule getTypes(T:Type _:Id) => T, .Types
+  rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps)
+  rule getTypes(.Params) => void, .Types
+

Changes to the existing statically typed SIMPLE semantics

+ +

Below we give the new static semantics for language constructs that
+come from SIMPLE, but whose SIMPLE static semantics was too
+restrictive or too permissive and thus had to change.

+

Local variable declaration

+ +

Since we can define new types in KOOL (corresponding to classes), the
+variable declaration needs to now check that the claimed types exist.
+The operation checkType, defined at the end of this module,
+checks whether the argument type is correct (it actually works with
+lists of types as well).

+
  rule <k> T:Type X:Id; => checkType(T) ~> stmt ...</k>
+       <tenv> Rho => Rho[X <- T] </tenv>
+

Class member declaration

+ +

In class tasks, variable declarations mean class member declarations.
+Since we reduce method declarations to variable declarations (see
+below), a variable declaration in a class task can mean either a field
+or a method declaration. Unlike local variable declarations, which
+can shadow previous homonymous local or member declarations, member
+declarations are regarded as a set, so we disallow multiple
+declarations for the same member (one could improve upon this, like in
+Java, by treating members with different types or number of arguments
+as different, etc., but we do not do it here). We also issue an error
+message if one attempts to redeclare the same class member. The
+framed variable declaration in the second rule below should be read
+"stuck". In fact, it is nothing but a unary operation called
+stuck, which takes a K-term as argument and does nothing
+with it; this stuck operation is displayed as a frame in this
+PDF document because of its latex attribute (see the ASCII .k file,
+at the end of this module).

+
  rule <k> T:Type X:Id; => checkType(T) ~> stmt ...</k>
+       <ctenvT> Rho (.Map => X |-> T) </ctenvT>
+    requires notBool(X in keys(Rho))
+
+  rule <k> T:Type X:Id; => stuck(T X;) ...</k>
+       <ctenvT>... X |-> _ ...</ctenvT>
+       <inClass> C:Id </inClass>
+//       <br/>
+       <output>... .List => ListItem("Member \"" +String Id2String(X)
+                              +String "\" declared twice in class \""
+                              +String Id2String(C) +String "\"!\n") </output>
+

Method declaration

+ +

A method declaration requires two conceptual checks to be performed:
+first, that the method's type is consistent with the type of the
+homonymous method that it overrides, if any; and second, that its body
+types correctly. At the same time, it should also be added to the
+type environment of its class. The first conceptual task is performed
+using the checkMethod operation defined below, and the second
+by generating a corresponding method task. To add it to the class
+type environment, we take advantage of the fact that KOOL is higher
+order and reduce the problem to a field declaration problem, which we
+have already defined. The role of the ctenvT cell in the
+rule below is to structurally ensure that the method declaration takes
+place in a class task (we do not want to allow methods to be declared,
+for example, inside other methods).

+
  rule <k> T:Type F:Id(Ps:Params) S
+        => checkMethod(F, getTypes(Ps)->T, C')
+           ~> getTypes(Ps)->T F; ...</k>
+//       <br/>
+       <inClass> C </inClass>
+       <ctenvT> _ </ctenvT> // to ensure we are in a class pass
+       <className> C </className>
+       <baseClass> C' </baseClass>
+//       <br/>
+       (.Bag => <task>
+               <k> mkDecls(Ps) S </k>
+               <inClass> C </inClass>
+               <tenv> .Map </tenv>
+               <returnType> T </returnType>
+             </task>)
+

Assignment

+ +

A more concrete value is allowed to be assigned to a more abstract
+variable. The operation checkSubtype is defined at the end
+of the module and it also works with pairs of lists of types.

+
  rule T:Type = T':Type => checkSubtype(T', T) ~> T
+

Method invocation and return

+ +

Methods can be applied on values of more concrete types than their
+arguments:

+
  rule (Ts:Types -> T:Type) (Ts':Types) => checkSubtype(Ts',Ts) ~> T
+

Similarly, we allow values of more concrete types to be returned by
+methods:

+
  rule <k> return T:Type; => checkSubtype(T,T') ~> stmt ...</k>
+       <returnType> T':Type </returnType>
+

Exceptions

+ +

Exceptions can throw and catch values of any types. Since unlike in Java
+KOOL's methods do not declare the exception types that they can throw,
+we cannot test the full type safety of exceptions. Instead, we
+only check that the try and the catch statements
+type correctly.

+
  rule try block catch(T:Type X:Id) S => {T X; S}
+  rule throw _T:Type ; => stmt
+

Spawn

+ +

The spawned cell needs to also be passed the parent's class.

+
// explain why
+
+  rule <k> spawn S:Block => int ...</k>
+       <tenv> Rho </tenv>
+       <inClass> C </inClass>
+       (.Bag => <task>
+               <k> S </k>
+               <tenv> Rho </tenv>
+               <inClass> C </inClass>
+             </task>)
+

Semantics of the new KOOL constructs

+ +

Class declaration

+ +

We process each class in the main task, adding the corresponding data
+into its class cell and also adding a class task for it. We
+also perform some well-formedness checks on the class hierarchy.

+

Initiate class processing
+We create a class cell and a class task for each task. Also, we start
+the class task with a check that the class it extends is declared
+(this delays the task until that class is processed using another
+instance of this rule).

+
// There seems to be some error with the configuration concretization,
+// as the rule below does not work when rewriting . to both the task
+// and the class cells; I had to include two separate . rewrites
+
+// TODO: the following fails krun; see #2117
+  rule <task> <k> class C:Id extends C':Id { S:Stmt } => stmt ...</k> </task>
+       (.Bag => <classData>...
+               <className> C </className>
+               <baseClass> C' </baseClass>
+             ...</classData>)
+//       <br/>
+       (.Bag => <task>
+                <k> checkType(`class`(C')) ~> S </k>
+                <inClass> C </inClass>
+                <ctenvT> .Map </ctenvT>
+             </task>)
+
+// You may want to try the thing below, but that failed, too
+/*
+syntax Type ::= "stmtStop"
+
+  rule <tasks>...
+       <task> <k> class C:Id extends C':Id { S:Stmt } => stmtStop ...</k> </task>
+       (.Bag => <task>
+                <k> checkType(`class`(C')) ~> S </k>
+                <inClass> C </inClass>
+                <ctenvT> .Map </ctenvT>
+             </task>)
+       ...</tasks>
+       <classes>...
+       .Bag => <classData>...
+               <className> C </className>
+               <baseClass> C' </baseClass>
+             ...</classData>
+       ...</classes>
+//       <br/>
+*/
+

Check for unique class names

+ +
  rule (<T>...
+          <className> C </className>
+          <className> C </className>
+        ...</T> => .Bag)
+       <output>... .List => ListItem("Class \"" +String Id2String(C)
+                                  +String "\" declared twice!\n") </output>
+

Check for cycles in class hierarchy
+We check for cycles in the class hierarchy by transitively closing the
+class extends relation using the extendsAll cells, and
+checking that a class will never appear in its own extendsAll
+cell. The first rule below initiates the transitive closure of the
+superclass relation, the second transitively closes it, and the third
+checks for cycles.

+
  rule <baseClass> C </baseClass>
+       <baseClasses> .Set => SetItem(C) </baseClasses>  [priority(25)]
+
+  rule <classData>...
+         <baseClasses> SetItem(C) Cs:Set (.Set => SetItem(C')) </baseClasses>
+       ...</classData>
+       <classData>... <className>C</className> <baseClass>C'</baseClass> ...</classData>
+    requires notBool(C' in (SetItem(C) Cs))  [priority(25)]
+
+  rule (<T>...
+          <className> C </className>
+          <baseClasses>... SetItem(C) ...</baseClasses>
+        ...</T> => .Bag)
+       <output>... .List => ListItem("Class \"" +String Id2String(C)
+                                  +String "\" is in a cycle!\n") </output>
+    [priority(25)]
+

New

+ +

To type new we only need to check that the class constructor
+can be called with arguments of the given types, so we initiate a call
+to the constructor method in the corresponding class. If that
+succeeds, meaning that it types to stmt, then we discard the
+stmt type and produce instead the corresponding class type of
+the new object. The auxiliary discard operation is defined
+also at the end of this module.

+
  rule new C:Id(Ts:Types) => `class`(C) . C (Ts) ~> discard ~> `class`(C)
+

Self reference

+ +

The typing rule for this is straightforward: reduce to the
+current class type.

+
  rule <k> this => `class`(C) ...</k>
+       <inClass> C:Id </inClass>
+

Super

+ +

Similarly, super types to the parent class type.
+Note that for typing concerns, super can be considered as an object
+(recall that this was not the case in the dynamic semantics).

+
   rule <k> super => `class`(C') ...</k>
+        <inClass> C:Id </inClass>
+        <className> C </className>
+        <baseClass> C':Id </baseClass>
+

Object member access

+ +

There are several cases to consider here. First, if we are in a class
+task, we should lookup the member into the temporary class type
+environemnt in cell ctenvT. That is because we want to allow
+initialized field declarations in classes, such as int x=10;.
+This is desugared to a declaration of x, which is added to
+ctenvT during the class task processing, followed by an
+assignment of x to 10. In order for the assignment to type
+check, we need to know that x has been declared with type
+int; this information can only be found in the
+ctenvT cell. Second, we should redirect non-local variable
+lookups in method tasks to corresponding member accesses (the
+local variables are handled by the rule borrowed from SIMPLE).
+This is what the second rule below does. Third, we should allow
+object member accesses as lvalues, which is done by the third rule
+below. These last two rules therefore ensure that each necessary
+object member access is explicitly allowed for evaluation. Recall
+from the annotated syntax module above that the member access
+operation is strict in the object. That means that the object is
+expected to evaluate to a class type. The next two rules below define
+the actual member lookup operation, moving the search to the
+superclass when the member is not found in the current class. Note
+that this works because we create the class type environments
+atomically; thus, a class either has its complete type environment
+available, in which case these rules can safely apply, or its cell
+ctenv is not yet available, in which case these rules have to
+wait. Finally, the sixth rule below reports an error when the
+Object class is reached.

+
  rule <k> X:Id => T ...</k>
+       <ctenvT>... X |-> T ...</ctenvT>
+
+  rule <k> X:Id => this . X ...</k>
+       <tenv> Rho </tenv>
+    requires notBool(X in keys(Rho))
+
+// OLD approach:
+//  rule ltype(E:Exp . X:Id) => E . X
+
+  rule <k> `class`(C:Id) . X:Id => T ...</k>
+       <className> C </className>
+       <ctenv>... X |-> T:Type ...</ctenv>
+
+  rule <k> `class`(C1:Id => C2) . X:Id ...</k>
+       <className> C1 </className>
+       <baseClass> C2:Id </baseClass>
+       <ctenv> Rho </ctenv>
+    requires notBool(X in keys(Rho))
+
+  rule <k> `class`(Object) . X:Id => stuck(`class`(Object) . X) ...</k>
+       <inClass> C:Id </inClass>
+//      <br/>
+       <output>... .List => ListItem("Member \"" +String Id2String(X)
+                              +String "\" not declared! (see class \""
+                              +String Id2String(C) +String "\")\n") </output>
+

Instance of and casting

+ +

As it is hard to check statically whether casting is always safe,
+the programmer is simply trusted from a typing perspective. We only
+do some basic upcasting and downcasting checks, to reject casts which
+will absolutely fail. However, dynamic semantics or implementations
+of the language need to insert runtime checks for downcasting to be safe.

+
  rule `class`(_C1:Id) instanceOf _C2:Id => bool
+  rule (C:Id) `class`(C) => `class`(C)
+  rule <k> (C2:Id) `class`(C1:Id) => `class`(C2) ...</k>
+       <className> C1 </className>
+       <baseClasses>...SetItem(C2)...</baseClasses>    // upcast
+  rule <k> (C2:Id) `class`(C1:Id) => `class`(C2) ...</k>
+       <className> C2 </className>
+       <baseClasses>...SetItem(C1)...</baseClasses>    // downcast
+  rule <k> (C2) `class`(C1:Id) => stuck((C2) `class`(C1)) ...</k>
+       <classData>...
+         <className> C1 </className>
+         <baseClasses> S1 </baseClasses>
+       ...</classData>
+       <classData>...
+         <className> C2 </className>
+         <baseClasses> S2 </baseClasses>
+       ...</classData>
+       <output>... .List => ListItem("Classes \"" +String Id2String(C1)
+                              +String "\" and \"" +String Id2String(C2)
+                              +String "\" are incompatible!\n") </output>
+    requires notBool(C1 in S2) andBool notBool(C2 in S1)
+

Cleanup tasks

+ +

Finally, we need to clean up the terminated tasks. Each of the three
+types of tasks is handled differently. The main task is replaced by a
+method task holding new main();, which will ensure that a
+main class with a main() method actually exists
+(first rule below). A class task moves its temporary class type
+environment into its class' cell, and then it dissolves itself (second
+rule). A method task simply dissolves when terminated (third rule);
+the presence of the tenv cell in that rule ensures that that
+task is a method task.
+Finally, when all the tasks are cleaned up, we can also remove the
+tasks cell, issuing a corresponding message. Note that
+checking for cycles or duplicate methods can still be performed after
+the tasks cell has been removed.

+
// discard main task when done, issuing a "new main();" command to
+// make sure that the class main and the method main() are declared.
+
+  rule <task> <k> stmt => new Main(.Exps); </k>
+              (.Bag => <tenv> .Map </tenv>
+                    <returnType> void </returnType>
+                    <inClass> Main </inClass>)
+       </task>
+
+// discard class task when done, adding a ctenv in class
+
+  rule (<task>
+          <k> stmt </k>
+          <ctenvT> Rho </ctenvT>
+          <inClass> C:Id </inClass>
+        </task> => .Bag)
+        <className> C </className>
+        (.Bag => <ctenv> Rho </ctenv>)
+
+// discard method task when done
+
+  rule <task>...
+         <k> stmt </k>
+         <tenv> _ </tenv>  // only to ensure that this is a method task
+       ...</task> => .Bag
+
+// cleanup tasks and output a success message when done
+
+  rule (<T>... <tasks> .Bag </tasks> ...</T> => .Bag)
+       <output>... .List => ListItem("Type checked!\n") </output>
+

KOOL-specific auxiliary declarations and operations

+ +

Subtype checking

+ +

The subclass relation introduces a subtyping relation.

+
  syntax KItem ::= checkSubtype(Types,Types)
+
+  rule checkSubtype(T:Type, T) => .K
+
+  rule <k> checkSubtype(`class`(C:Id), `class`(C':Id)) => .K ...</k>
+       <className> C </className>
+       <baseClasses>... SetItem(C') ...</baseClasses>
+
+  rule checkSubtype(Ts1->T2,Ts1'->T2')
+    => checkSubtype(((T2)::Type,Ts1'),((T2')::Type,Ts1))
+
+// note that the following rule would be wrong!
+//  rule checkSubtype(T[],T'[]) => checkSubtype(T,T')
+
+  rule checkSubtype((T:Type,Ts),(T':Type,Ts'))
+    => checkSubtype(T,T') ~> checkSubtype(Ts,Ts')
+    requires Ts =/=K .Types
+
+  rule checkSubtype(.Types,.Types) => .K
+  rule checkSubtype(.Types,void) => .K
+

Checking well-formedness of types

+ +

Since now any Id can be used as the type of a class, we need to
+check that the types used in the program actually exists

+
  syntax KItem ::= checkType(Types)
+
+  rule checkType(T:Type,Ts:Types) => checkType(T) ~> checkType(Ts)
+    requires Ts =/=K .Types
+  rule checkType(.Types) => .K
+  rule checkType(int) => .K
+  rule checkType(bool) => .K
+  rule checkType(string) => .K
+  rule checkType(void) => .K
+  rule <k> checkType(`class`(C:Id)) => .K ...</k> <className> C </className>
+  rule checkType(`class`(Object)) => .K
+  rule checkType(Ts:Types -> T:Type) => checkType(T,Ts)
+  rule checkType(T:Type[]) => checkType(T)
+

Checking correct overiding of methods

+ +

The checkMethod operation below searches to see whether
+the current method overrides some other method in some superclass.
+If yes, then it issues an additional check that the new method's type
+is more concrete than the overridden method's. The types T and T'
+below can only be function types. See the definition of
+checkSubtype on function types at the end of this module (it
+is co-variant in the codomain and contra-variant in the domain).

+
  syntax KItem ::= checkMethod(Id,Type,Id)
+
+  rule <k> checkMethod(F:Id, T:Type, C:Id) => checkSubtype(T, T') ...</k>
+       <className> C </className>
+       <ctenv>... F |-> T':Type ...</ctenv>
+
+  rule <k> checkMethod(F:Id, _T:Type, (C:Id => C')) ...</k>
+       <className> C </className>
+       <baseClass> C':Id </baseClass>
+       <ctenv> Rho </ctenv>
+    requires notBool(F in keys(Rho))
+
+  rule checkMethod(_:Id,_,Object) => .K
+

Generic operations which could be part of the K framework

+ +
  syntax KItem ::= stuck(K)
+
+  syntax KItem ::= "discard"
+  rule _:KResult ~> discard => .K
+
+endmodule
+

FUN — Untyped — Environment

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of the untyped FUN language.
+FUN is a pedagogical and research language that captures the essence
+of the functional programming paradigm, extended with several features
+often encountered in functional programming languages.
+Like many functional languages, FUN is an expression language, that
+is, everything, including the main program, is an expression.
+Functions can be declared anywhere and are first class values in the
+language.
+FUN is call-by-value here, but it has been extended (as student
+homework assignments) with other parameter-passing styles.
+To make it more interesting and to highlight some of K's strengths,
+FUN includes the following features:

+
    +
  • +

    The basic builtin data-types of integers, booleans and strings.

    +
  • +
  • +

    Builtin lists, which can hold any elements, including other lists.
    +Lists are enclosed in square brackets and their elements are
    +comma-separated; e.g., [1,2,3].

    +
  • +
  • +

    User-defined data-types, by means of constructor terms.
    +Constructor names start with a capital letter (while any other
    +identifier in the language starts with a lowercase letter), and they
    +can be followed by an arbitrary number of comma-separated arguments
    +enclosed in parentheses; parentheses are not needed when the
    +constructor takes no arguments.
    +For example, Pair(5,7) is a constructor term holding two
    +numbers, Cons(1,Cons(2,Cons(3,Nil))) is a list-like
    +constructor term holding 3 elements, and
    +Tree(Tree(Leaf(1), Leaf(2)), Leaf(3)) is a tree-like
    +constructor term holding 3 elements.
    +In the untyped version of the FUN language, no type checking or
    +inference is performed to ensure that the data constructors are used
    +correctly.
    +The execution will simply get stuck when they are misused.
    +Moreover, since no type checking is performed, the data-types are not
    +even declared in the untyped version of FUN.

    +
  • +
  • +

    Functions and let/letrec binders can take
    +multiple space-separated arguments, but these are desugared to
    +ones that only take one argument, by currying. For example, the
    +expressions

    +
    fun x y -> x y
    +let x y = y in x
    +

    are desugared, respectively, into the following expressions:

    +
    fun x -> fun y -> x y
    +let x = fun y -> y in x
    +
  • +
  • +

    Functions can be defined using pattern matching over the
    +available data-types. For example, the program

    +
    letrec max = fun [h] -> h
    +             |   [h|t] -> let x = max t
    +                          in  if h > x then h else x
    +in max [1, 3, 5, 2, 4, 0, -1, -5]
    +

    defines a function max that calculates the maximum element of
    +a non-empty list, and the function

    +
    letrec ack = fun Pair(0,n) -> n + 1
    +             |   Pair(m,0) -> ack Pair(m - 1, 1)
    +             |   Pair(m,n) -> ack Pair(m - 1, ack Pair(m, n - 1))
    +in ack Pair(2,3)
    +

    calculates the Ackermann function applied to a particular pair of numbers.
    +Patterns can be nested. Patterns can currently only be used in function
    +definitions, and not directly in let/letrec binders.
    +For example, this is not allowed:

    +
    letrec Pai(x,y) = Pair(1,2) in x+y
    +

    But this is allowed:

    +
    let f Pair(x,y) = x+y in f Pair(1,2)
    +

    because it is first reduced to

    +
    let f = fun Pair(x,y) -> x+y in f Pair(1,2)
    +

    by uncurrying of the let binder, and pattern matching is
    +allowed in function arguments.

    +
  • +
  • +

    We include a callcc construct, for two reasons: first,
    +several functional languages support this construct; second, some
    +semantic frameworks have difficulties defining it. Not K.

    +
  • +
  • +

    Finally, we include mutables by means of referencing an
    +expression, getting the reference of a variable, dereferencing and
    +assignment. We include these for the same reasons as above: there are
    +languages which have them, and they are not easy to define in some
    +semantic frameworks.

    +
  • +
+

Like in many other languages, some of FUN's constructs can be
+desugared into a smaller set of basic constructs. We do that as usual,
+using macros, and then we only give semantics to the core constructs.

+

Note:
+We recommend the reader to first consult the dynamic semantics of the
+LAMBDA++ language in the first part of the K Tutorial.
+To keep the comments below small and focused, we will not re-explain
+functional or K features that have already been explained in there.

+

Syntax

+ +
//require "modules/pattern-matching.k"
+
+module FUN-UNTYPED-COMMON
+  imports DOMAINS-SYNTAX
+

FUN is an expression language. The constructs below fall into
+several categories: names, arithmetic constructs, conventional
+functional constructs, patterns and pattern matching, data constructs,
+lists, references, and call-with-current-continuation (callcc).
+The arithmetic constructs are standard; they are present in almost all
+our K language definitions. The meaning of FUN's constructs are
+discussed in more depth when we define their semantics in the next
+module.

+

The Syntactic Constructs

+ +

We start with the syntactic definition of FUN names.
+We have several categories of names: ones to be used for functions and
+variables, others to be used for data constructors, others for types and
+others for type variables. We will introduce them as needed, starting
+with the former category. We prefer the names of variables and functions
+to start with lower case letters. We take the freedom to tacitly introduce
+syntactic lists/sequences for each nonterminal for which we need them:

+
  syntax Name                                      [token]
+  syntax Names ::= List{Name,","}                  [overload(exps)]
+

Expression constructs will be defined throughtout the syntax module.
+Below are the very basic ones, namely the builtins, the names, and the
+parentheses used as brackets for grouping. Lists of expressions are
+declared strict, so all expressions in the list get evaluated whenever
+the list is on a position which can be evaluated:

+
  syntax Exp ::= Int | Bool | String | Name
+               | "(" Exp ")"                       [bracket]
+  syntax Exps  ::= List{Exp,","}                   [strict, overload(exps)]
+  syntax Val
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax Vals ::= List{Val,","}                    [overload(exps)]
+  syntax Bottom
+  syntax Bottoms ::= List{Bottom,","}              [overload(exps)]
+

We next define the syntax of arithmetic constructs, together with
+their relative priorities and left-/non-associativities. We also
+tag all these rules as members of a new group, "arith", so we can more easily
+define global syntax priorities later (at the end of the syntax module).

+
  syntax Exp ::= left:
+                 Exp "*" Exp                       [strict, group(arith)]
+               | Exp "/" Exp                       [strict, group(arith)]
+               | Exp "%" Exp                       [strict, group(arith)]
+               > left:
+                 Exp "+" Exp                       [strict, left, group(arith)]
+               | Exp "^" Exp                       [strict, left, group(arith)]
+// left attribute should not be necessary; currently a parsing bug
+               | Exp "-" Exp                       [strict, prefer, group(arith)]
+// the "prefer" attribute above is to not parse x-1 as x(-1)
+// Due to some parsing problems, we currently cannot add unary minus:
+               | "-" Exp                           [strict, group(arith)]
+               > non-assoc:
+                 Exp "<" Exp                       [strict, group(arith)]
+               | Exp "<=" Exp                      [strict, group(arith)]
+               | Exp ">" Exp                       [strict, group(arith)]
+               | Exp ">=" Exp                      [strict, group(arith)]
+               | Exp "==" Exp                      [strict, group(arith)]
+               | Exp "!=" Exp                      [strict, group(arith)]
+               > "!" Exp                           [strict, group(arith)]
+               > Exp "&&" Exp                      [strict(1), left, group(arith)]
+               > Exp "||" Exp                      [strict(1), left, group(arith)]
+

The conditional construct has the expected evaluation strategy,
+stating that only the first argument is evaluate:

+
  syntax Exp ::= "if" Exp "then" Exp "else" Exp    [strict(1)]
+

FUN's builtin lists are formed by enclosing comma-separated
+sequences of expressions (i.e., terms of sort Exps) in square
+brackets. The list constructor cons adds a new element to the
+top of the list, head and tail get the first element
+and the tail sublist of a list if they exist, respectively, and get
+stuck otherwise, and null?? tests whether a list is empty or
+not; syntactically, these are just expression constants.
+In function patterns, we are also going to allow patterns following the
+usual head/tail notation; for example, the pattern [x_1,...,x_n|t]
+binds x_1, ..., x_n to the first elements of the matched list,
+and t to the list formed with the remaining elements. We define list
+patterns as ordinary expression constructs, although we will make sure that
+we do not give them semantics if they appear in any other place then in a
+function case pattern.

+
  syntax Exp ::= "[" Exps "]"                             [strict, klabel(list)]
+               | "head" [macro] | "tail" [macro] | "null?" [macro]
+               | "[" Exps "|" Exp "]"
+  syntax Val ::= "[" Vals "]"                             [klabel(list)]
+  syntax Cons ::= "cons"
+  syntax Val ::= Cons
+  syntax Val ::= Cons Val                                 [klabel(apply)]
+

Data constructors start with capital letters and they may or may
+not have arguments. We need to use the attribute "prefer" to make
+sure that, e.g., Cons(a) parses as constructor Cons with
+argument a, and not as the expression Cons (because
+constructor names are also expressions) regarded as a function applied
+to the expression a. Also, note that the constructor is strict
+in its second argument, because we want to evaluate its arguments but
+not the constuctor name itsef.

+
  syntax ConstructorName                         [token]
+  syntax Exp ::= ConstructorName
+               | ConstructorName "(" Exps ")"    [prefer, strict(2), klabel(constructor)]
+  syntax Val ::= ConstructorName "(" Vals ")"    [klabel(constructor)]
+

A function is essentially a |-separated ordered
+sequence of cases, each case of the form pattern -> expression,
+preceded by the language construct fun. Patterns will be defined
+shortly, both for the builtin lists and for user-defined constructors.
+Recall that the syntax we define in K is not meant to serve as a
+ultimate parser for the defined language, but rather as a convenient
+notation for K abstract syntax trees, which we prefer when we write
+the semantic rules. It is therefore often the case that we define a
+more ``generous'' syntax than we want to allow programs to use.
+We do it here, too. Specifically, the syntax of Cases
+below allows any expressions to appear as pattern. This syntactic
+relaxation permits many wrong programs to be parsed, but that is not a
+problem because we are not going to give semantics to wrong combinations,
+so those programs will get stuck; moreover, our type inferencer will reject
+those programs anyway. Function application is just concatenation of
+expressions, without worrying about type correctness. Again, the type
+system will reject type-incorrect programs.

+
  syntax Exp ::= "fun" Cases
+               | Exp Exp                              [strict, left, klabel(apply)]
+// NOTE: We would like eventually to also have Exp "(" Exps ")
+  syntax Case  ::= Exp "->" Exp
+  syntax Cases ::= List{Case, "|"}
+

The let and letrec binders have the usual syntax
+and functional meaning. We allow multiple and-separated bindings.
+Like for the function cases above, we allow a more generous syntax for
+the left-hand sides of bindings, noting that the semantics will get stuck
+on incorrect bindings and that the type system will reject those programs.

+
  syntax Exp ::= "let" Bindings "in" Exp
+               | "letrec" Bindings "in" Exp                 [prefer]
+// The "prefer" attribute for letrec currently needed due to tool bug,
+// to make sure that "letrec" is not parsed as "let rec".
+  syntax Binding  ::= Exp "=" Exp
+  syntax Bindings ::= List{Binding,"and"}
+

References are first class values in FUN. The construct ref
+takes an expression, evaluates it, and then it stores the resulting value
+at a fresh location in the store and returns that reference. Syntactically,
+ref is just an expression constant. The construct &
+takes a name as argument and evaluates to a reference, namely the store
+reference where the variable passed as argument stores its value; this
+construct is a bit controversial and is further discussed in the
+environment-based semantics of the FUN language, where we desugar
+ref to it. The construct @ takes a reference
+and evaluates to the value stored there. The construct := takes
+two expressions, the first expected to evaluate to a reference; the value
+of its second argument will be stored at the location to which the first
+points (the old value is thus lost). Finally, since expression evaluation
+now has side effects, it makes sense to also add a sequential composition
+construct, which is sequentially strict. This evaluates to the value of
+its second argument; the value of the first argument is lost (which has
+therefore been evaluated only for its side effects.

+
  syntax Exp ::= "ref"                             [macro]
+               | "&" Name
+               | "@" Exp                                     [strict]
+               | Exp ":=" Exp                                [strict]
+               | Exp ";" Exp                       [strict(1), right]
+

Call-with-current-continuation, named callcc in FUN, is a
+powerful control operator that originated in the Scheme programming
+language, but it now exists in many other functional languages. It works
+by evaluating its argument, expected to evaluate to a function, and by
+passing the current continuation, or evaluation context (or computation,
+in K terminology), as a special value to it. When/If this special value
+is invoked, the current context is discarded and replaced with the one
+held by the special value and the computation continues from there.
+It is like taking a snapshot of the execution context at some moment
+in time and then, when desired, being able to get back in time to that
+point. If you like games, it is like saving the game now (so you can
+work on your homework!) and then continuing the game tomorrow or whenever
+you wish. To issustrate the strength of callcc, we also
+allow exceptions in FUN by means of a conventional try-catch
+construct, which will desugar to callcc. We also need to
+introduce the special expression contant throw, but we need to
+use it as a function argument name in the desugaring macro, so we define
+it as a name instead of as an expression constant:

+
  syntax Exp ::= "try" Exp "catch" "(" Name ")" Exp [macro]
+  syntax Val ::= "callcc"
+  syntax Name ::= "throw" [token]
+

Finally, FUN also allows polymorphic datatype declarations. These
+will be useful when we define the type system later on.

+
  syntax Exp ::= "datatype" Type "=" TypeCases Exp [macro]
+// NOTE: In a future version of K, we want the datatype declaration
+// to be a construct by itself, but that is not possible currently
+// because K's parser wronly identifies the __ operation allowing
+// a declaration to appear in front of an expression with the function
+// application construct, giving ambiguous parsing errors.
+

We next need to define the syntax of types and type cases that appear
+in datatype declarations.

+

Like in many functional languages, type parameters/variables in
+user-defined types are quoted identifiers.

+
  syntax TypeVar                        [token]
+  syntax TypeVars ::= List{TypeVar,","} [overload(types)]
+

Types can be basic types, function types, or user-defined
+parametric types. In the dynamic semantics we are going to simply ignore
+all the type declations, so here the syntax of types below is only useful
+for generating the desired parser. To avoid syntactic ambiguities with
+the arrow construct for function cases, we use the symbol --> as
+a constructor for function types:

+
  syntax TypeName [token]
+  syntax Type ::= "int" | "bool" | "string"
+                | Type "-->" Type                            [right]
+                | "(" Type ")"                             [bracket]
+                | TypeVar
+                | TypeName             [klabel(TypeName), avoid]
+                | Type TypeName   [klabel(Type-TypeName), symbol, macro]
+                | "(" Types ")" TypeName                    [prefer]
+  syntax Types ::= List{Type,","} [overload(types)]
+  syntax Types ::= TypeVars
+
+  syntax TypeCase ::= ConstructorName
+                    | ConstructorName "(" Types ")"
+  syntax TypeCases ::= List{TypeCase,"|"}     [symbol(_|TypeCase_)]
+

Additional Priorities

+ +
  syntax priority @__FUN-UNTYPED-COMMON
+                > apply
+                > arith
+                > _:=__FUN-UNTYPED-COMMON
+                > let_in__FUN-UNTYPED-COMMON
+                  letrec_in__FUN-UNTYPED-COMMON
+                  if_then_else__FUN-UNTYPED-COMMON
+                > _;__FUN-UNTYPED-COMMON
+                > fun__FUN-UNTYPED-COMMON
+                > datatype_=___FUN-UNTYPED-COMMON
+endmodule
+
+module FUN-UNTYPED-MACROS
+  imports FUN-UNTYPED-COMMON
+

Desugaring macros

+ +

We desugar the list non-constructor operations to functions matching
+over list patterns. In order to do that we need some new variables; for
+those, we follow the same convention like in the K tutorial, where we
+added them as new identifier constructs starting with the character $,
+so we can easily recognize them when we debug or trace the semantics.

+
  syntax Name ::= "$h" [token] | "$t" [token]
+  rule head => fun [$h|$t] -> $h
+  rule tail => fun [$h|$t] -> $t
+  rule null? => fun [.Exps] -> true | [$h|$t] -> false
+

Multiple-head list patterns desugar into successive one-head patterns:

+
  rule [E1,E2,Es:Exps|T] => [E1|[E2,Es|T]]                   [anywhere]
+

Uncurrying of multiple arguments in functions and binders:

+
  rule P1 P2 -> E => P1 -> fun P2 -> E                       [anywhere]
+  rule F P = E => F = fun P -> E                             [anywhere]
+

We desugar the try-catch construct into callcc:

+
  syntax Name ::= "$k" [token] | "$v" [token]
+  rule try E catch(X) E'
+    => callcc (fun $k -> (fun throw -> E)(fun X -> $k E'))
+

For uniformity, we reduce all types to their general form:

+
  rule `Type-TypeName`(T:Type, Tn:TypeName) => (T) Tn
+

The dynamic semantics ignores all the type declarations:

+
  rule datatype _T = _TCs E => E
+
+endmodule
+
+
+module FUN-UNTYPED-SYNTAX
+  imports FUN-UNTYPED-COMMON
+  imports BUILTIN-ID-TOKENS
+
+  syntax Name ::= r"[a-z][_a-zA-Z0-9]*"           [token, prec(2)]
+                | #LowerId                        [token]
+  syntax ConstructorName ::= #UpperId             [token]
+  syntax TypeVar  ::= r"['][a-z][_a-zA-Z0-9]*"    [token]
+  syntax TypeName ::= Name                        [token]
+endmodule
+

Semantics

+ +

The semantics below is environment-based. A substitution-based
+definition of FUN is also available, but that drops the &
+construct as explained above.

+
module FUN-UNTYPED
+  imports FUN-UNTYPED-COMMON
+  imports FUN-UNTYPED-MACROS
+  imports DOMAINS
+  //imports PATTERN-MATCHING
+

Configuration

+ +

The k, env, and store cells are standard
+(see, for example, the definition of LAMBDA++ or IMP++ in the first
+part of the K tutorial).

+
  configuration <T color="yellow">
+                  <k color="green"> $PGM:Exp </k>
+                  <env color="violet"> .Map </env>
+                  <store color="white"> .Map </store>
+                </T>
+

Values and results

+ +

We only define integers, Booleans and strings as values here, but will
+add more values later.

+
  syntax Val ::= Int | Bool | String
+  syntax Vals ::= Bottoms
+  syntax KResult ::= Val
+

Lookup

+ +
  rule <k> X:Name => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V ...</store>
+

Arithmetic expressions

+ +
  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule I1 + I2 => I1 +Int I2
+  rule S1 ^ S2 => S1 +String S2
+  rule I1 - I2 => I1 -Int I2
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+

Conditional

+ +
  rule if  true then E else _ => E
+  rule if false then _ else E => E
+

Lists

+ +

We have already declared the syntactic list of expressions strict, so
+we can assume that all the elements that appear in a FUN list are
+evaluated. The only thing left to do is to state that a list of
+values is a value itself, that is, that the list square-bracket
+construct is indeed a constructor, and to give the semantics of
+cons. Since cons is a builtin function and is
+expected to take two arguments, we have to also state that
+cons itself is a value (specifically, a function/closure
+value, but we do not need that level of detail here), and also that
+cons applied to a value is a value (specifically, it would be
+a function/closure value that expects the second, list argument):

+
  rule cons V:Val [Vs:Vals] => [V,Vs]
+

Data Constructors

+ +

Constructors take values as arguments and produce other values:

+
  syntax Val ::= ConstructorName
+

Functions and Closures

+ +

Like in the environment-based semantics of LAMBDA++ in the first part
+of the K tutorial, functions evaluate to closures. A closure includes
+the current environment besides the function contents; the environment
+will be used at execution time to lookup all the variables that appear
+free in the function body (we want static scoping in FUN).

+
  syntax Val ::= closure(Map,Cases)
+  rule <k> fun Cases => closure(Rho,Cases) ...</k>  <env> Rho </env>
+

Note: The reader may want to get familiar with
+how the pre-defined pattern matching works before proceeding.
+The best way to do that is to consult
+k/include/modules/pattern-matching.k.

+

We distinguish two cases when the closure is applied.
+If the first pattern matches, then we pick the first case: switch to
+the closed environment, get the matching map and bind all its
+variables, and finally evaluate the function body of the first case,
+making sure that the environment is properly recovered afterwards.
+If the first pattern does not match, then we drop it and thus move on
+to the next one.

+
  rule (.K => getMatching(P, V)) ~> closure(_, P->_ | _) V:Val
+  rule <k> matchResult(M:Map) ~> closure(Rho, _->E | _) _
+           => bindMap(M) ~> E ~> setEnv(Rho') ...</k>
+       <env> Rho' => Rho </env>
+  rule (matchFailure => .K) ~> closure(_, (_->_ | Cs:Cases => Cs)) _
+//  rule <k> closure(Rho, P->E | _) V:Val
+//           => bindMap(getMatching(P,V)) ~> E ~> setEnv(Rho') ...</k>
+//       <env> Rho' => Rho </env>  when isMatching(P,V)
+//  rule closure(_, (P->_ | Cs:Cases => Cs)) V:Val  when notBool isMatching(P,V)
+

Let and Letrec

+ +

To highlight the similarities and differences between let and
+letrec, we prefer to give them direct semantics instead of
+to desugar them like in LAMBDA. See the formal definitions of
+bindTo, bind, and assignTo at the end of
+this module. Informally, bindTo(Xs, Es) first
+evaluates the expressions Es in Exps in the current
+environment (i.e., it is strict in its second argument), then it binds
+the variables in Xs in Names to new locations and adds
+those bindings to the environment, and finally writes the values
+previously obtained after evaluating the expressions Es to those
+new locations; bind(Xs) does only the bindings of
+Xs to new locations and adds those bindings to the environment;
+and assignTo(Xs,Es) evaluates the expressions
+Es in the current environment and then it writes the resulting
+values to the locations to which the variables Xs are already
+bound to in the environment.

+

Therefore, let Xs = Es in E first
+evaluates Es in the current environment, then adds new
+bindings for Xs to fresh locations in the environment, then
+writes the values of Es to those locations, and finally
+evaluates E in the new environment, making sure that the
+environment is properly recovered after the evaluation of E.
+On the other hand, letrec does the same things but in a
+different order: it first adds new bindings for Xs to fresh
+locations in the environment, then it evaluates Es in the new
+environment, then it writes the resulting values to their
+corresponding locations, and finally it evaluates E and
+recovers the environment. The crucial difference is that the
+expressions Es now see the locations of the variables Xs
+in the environment, so if they are functions, which is typically the
+case with letrec, their closures will encapsulate in their
+environments the bindings of all the bound variables, including
+themselves (thus, we may have a closure value stored at location
+L, whose environment contains a binding of the form
+F ↦ L; this way, the closure can invoke
+itself).

+
  rule <k> let Bs in E
+        => bindTo(names(Bs),exps(Bs)) ~> E ~> setEnv(Rho) ...</k>
+       <env> Rho </env>
+
+  rule <k> letrec Bs in E
+        => bind(names(Bs))~>assignTo(names(Bs),exps(Bs))~>E~>setEnv(Rho)...</k>
+       <env> Rho </env>
+

Recall that our syntax allows let and letrec to
+take any expression in place of its binding. This allows us to use
+the already existing function application construct to bind names to
+functions, such as, e.g., let x y = y in ....
+The desugaring macro in the syntax module uncurries such declarations,
+and then the semantic rules above only work when the remaining
+bindings are identifiers, so the semantics will get stuck on programs
+that misuse the let and letrec binders.

+

References

+ +

The semantics of references is self-explanatory, except maybe for the
+desugaring rule of ref, which is further discussed. Note
+that &X grabs the location of X from the environment.
+Sequential composition, which is needed only to accumulate the
+side effects due to assignments, was strict in the first argument.
+Once evaluated, its first argument is simply discarded:

+
  syntax Name ::= "$x" [token]
+  rule ref => fun $x -> & $x
+  rule <k> & X => L ...</k>  <env>... X |-> L ...</env>
+  rule <k> @ L:Int => V:Val ...</k>  <store>... L |-> V ...</store>
+  rule <k> L:Int := V:Val => V ...</k>  <store>... L |-> (_=>V) ...</store>
+  rule _V:Val; E => E
+

The desugaring rule of ref (first rule above) works
+because & takes a variable and returns its location (like in C).
+Note that some ``pure'' functional programming researchers strongly dislike
+the & construct, but favor ref. We refrain from having
+a personal opinion on this issue here, but support & in the
+environment-based definition of FUN because it is, technically speaking,
+more powerful than ref. From a language design perspective, it
+would be equally easy to drop & and instead give a direct
+semantics to ref. In fact, this is precisely what we do in the
+substitution-based definition of FUN, because there appears to be no way
+to give a substitution-based definition to the & construct.

+

Callcc

+ +

As we know it from the LAMBDA++ tutorial, call-with-current-continuation
+is quite easy to define in K. We first need to define a special
+value wrapping an execution context, that is, an environment saying
+where the variables should be looked up, and a computation structure
+saying what is left to execute (in a substitution-based definition,
+this special value would be even simpler, as it would only need to
+wrap the computation structure---see, for example, the
+substitution-based semantics of LAMBDA++ in the the first part of the
+K tutorial, or the substitution-based definition of FUN). Then
+callcc creates such a value containing the current
+environment and the current remaining computation, and passes it to
+its argument function. When/If invoked, the special value replaces
+the current execution context with its own and continues the execution
+normally.

+
  syntax Val ::= cc(Map,K)
+  rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k>  <env> Rho </env>
+  rule <k> cc(Rho,K) V:Val ~> _ => V ~> K </k>  <env> _ => Rho </env>
+

Auxiliary operations

+ +

Environment recovery

+ +

The environment recovery operation is the same as for the LAMBDA++
+language in the K tutorial and many other languages provided with the
+K distribution. The first ``anywhere'' rule below shows an elegant
+way to achieve the benefits of tail recursion in K.

+
  syntax KItem ::= setEnv(Map)  // TODO: get rid of env
+  //rule (setEnv(_) => .) ~> setEnv(_)  [anywhere]
+  rule <k> _:Val ~> (setEnv(Rho) => .K) ...</k> <env> _ => Rho </env>
+

bindTo, bind and assignTo

+ +

The meaning of these operations has already been explained when we
+discussed the let and letrec language constructs
+above.

+
  syntax KItem ::= bindTo(Names,Exps)         [strict(2)]
+                 | bindMap(Map)
+                 | bind(Names)
+
+  rule (.K => getMatchingAux(Xs,Vs)) ~> bindTo(Xs:Names,Vs:Vals)
+  rule matchResult(M:Map) ~> bindTo(_:Names, _:Vals) => bindMap(M)
+
+  rule bindMap(.Map) => .K
+  rule <k> bindMap((X:Name |-> V:Val => .Map) _:Map) ...</k>
+       <env> Rho => Rho[X <- !L:Int] </env>
+       <store>... .Map => !L |-> V ...</store>
+
+  rule bind(.Names) => .K
+  rule <k> bind(X:Name,Xs => Xs) ...</k>
+       <env> Rho => Rho[X <- !_L:Int] </env>
+
+  syntax KItem ::= assignTo(Names,Exps)  [strict(2)]
+
+  rule <k> assignTo(.Names,.Vals) => .K ...</k>
+  rule <k> assignTo((X:Name,Xs => Xs),(V:Val,Vs:Vals => Vs)) ...</k>
+       <env>... X |-> L ...</env>
+       <store>... .Map => L |-> V ...</store>
+

Getters

+ +

The following auxiliary operations extract the list of identifiers
+and of expressions in a binding, respectively.

+
  syntax Names ::= names(Bindings)  [function]
+  rule names(.Bindings) => .Names
+  rule names(X:Name=_ and Bs) => (X,names(Bs))::Names
+
+  syntax Exps ::= exps(Bindings)  [function]
+  rule exps(.Bindings) => .Exps
+  rule exps(_:Name=E and Bs) => E,exps(Bs)
+
+  /* Extra kore stuff */
+  syntax KResult ::= Vals
+  syntax Exps ::= Names
+  syntax Names ::= Bottoms
+
+  /* Matching */
+  syntax MatchResult ::= getMatching(Exp, Val)                      [function]
+                       | getMatchingAux(Exps, Vals)                 [function]
+                       | mergeMatching(MatchResult, MatchResult)    [function]
+                       | matchResult(Map)
+                       | "matchFailure"
+
+  rule getMatching(C:ConstructorName(Es:Exps), C(Vs:Vals)) => getMatchingAux(Es, Vs)
+  rule getMatching([Es:Exps], [Vs:Vals])                   => getMatchingAux(Es, Vs)
+  rule getMatching(C:ConstructorName, C) => matchResult(.Map)
+  rule getMatching(B:Bool, B)            => matchResult(.Map)
+  rule getMatching(I:Int, I)             => matchResult(.Map)
+  rule getMatching(S:String, S)          => matchResult(.Map)
+  rule getMatching(N:Name, V:Val) => matchResult(N |-> V)
+  rule getMatching(_, _) => matchFailure        [owise]
+
+  rule getMatchingAux((E:Exp, Es:Exps), (V:Val, Vs:Vals)) => mergeMatching(getMatching(E, V), getMatchingAux(Es, Vs))
+  rule getMatchingAux(.Exps, .Vals)                       => matchResult(.Map)
+  rule getMatchingAux(_, _) => matchFailure     [owise]
+
+  rule mergeMatching(matchResult(M1:Map), matchResult(M2:Map)) => matchResult(M1 M2)
+    requires intersectSet(keys(M1), keys(M2)) ==K .Set
+  //rule mergeMatching(_, _) => matchFailure      [owsie]
+  rule mergeMatching(matchResult(_:Map), matchFailure) => matchFailure
+  rule mergeMatching(matchFailure, matchResult(_:Map)) => matchFailure
+  rule mergeMatching(matchFailure, matchFailure)       => matchFailure
+

Besides the generic decomposition rules for patterns and values,
+we also want to allow [head|tail] matching for lists, so we add
+the following custom pattern decomposition rule:

+
  rule getMatching([H:Exp | T:Exp], [V:Val, Vs:Vals])
+    => getMatchingAux((H, T), (V, [Vs]))
+endmodule
+

Go to Lesson 2, FUN untyped, Substitution-Based.

+

FUN — Untyped — Environment

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of the untyped FUN language.
+FUN is a pedagogical and research language that captures the essence
+of the functional programming paradigm, extended with several features
+often encountered in functional programming languages.
+Like many functional languages, FUN is an expression language, that
+is, everything, including the main program, is an expression.
+Functions can be declared anywhere and are first class values in the
+language.
+FUN is call-by-value here, but it has been extended (as student
+homework assignments) with other parameter-passing styles.
+To make it more interesting and to highlight some of K's strengths,
+FUN includes the following features:

+
    +
  • +

    The basic builtin data-types of integers, booleans and strings.

    +
  • +
  • +

    Builtin lists, which can hold any elements, including other lists.
    +Lists are enclosed in square brackets and their elements are
    +comma-separated; e.g., [1,2,3].

    +
  • +
  • +

    User-defined data-types, by means of constructor terms.
    +Constructor names start with a capital letter (while any other
    +identifier in the language starts with a lowercase letter), and they
    +can be followed by an arbitrary number of comma-separated arguments
    +enclosed in parentheses; parentheses are not needed when the
    +constructor takes no arguments.
    +For example, Pair(5,7) is a constructor term holding two
    +numbers, Cons(1,Cons(2,Cons(3,Nil))) is a list-like
    +constructor term holding 3 elements, and
    +Tree(Tree(Leaf(1), Leaf(2)), Leaf(3)) is a tree-like
    +constructor term holding 3 elements.
    +In the untyped version of the FUN language, no type checking or
    +inference is performed to ensure that the data constructors are used
    +correctly.
    +The execution will simply get stuck when they are misused.
    +Moreover, since no type checking is performed, the data-types are not
    +even declared in the untyped version of FUN.

    +
  • +
  • +

    Functions and let/letrec binders can take
    +multiple space-separated arguments, but these are desugared to
    +ones that only take one argument, by currying. For example, the
    +expressions

    +
    fun x y -> x y
    +let x y = y in x
    +

    are desugared, respectively, into the following expressions:

    +
    fun x -> fun y -> x y
    +let x = fun y -> y in x
    +
  • +
  • +

    Functions can be defined using pattern matching over the
    +available data-types. For example, the program

    +
    letrec max = fun [h] -> h
    +             |   [h|t] -> let x = max t
    +                          in  if h > x then h else x
    +in max [1, 3, 5, 2, 4, 0, -1, -5]
    +

    defines a function max that calculates the maximum element of
    +a non-empty list, and the function

    +
    letrec ack = fun Pair(0,n) -> n + 1
    +             |   Pair(m,0) -> ack Pair(m - 1, 1)
    +             |   Pair(m,n) -> ack Pair(m - 1, ack Pair(m, n - 1))
    +in ack Pair(2,3)
    +

    calculates the Ackermann function applied to a particular pair of numbers.
    +Patterns can be nested. Patterns can currently only be used in function
    +definitions, and not directly in let/letrec binders.
    +For example, this is not allowed:

    +
    letrec Pai(x,y) = Pair(1,2) in x+y
    +

    But this is allowed:

    +
    let f Pair(x,y) = x+y in f Pair(1,2)
    +

    because it is first reduced to

    +
    let f = fun Pair(x,y) -> x+y in f Pair(1,2)
    +

    by uncurrying of the let binder, and pattern matching is
    +allowed in function arguments.

    +
  • +
  • +

    We include a callcc construct, for two reasons: first,
    +several functional languages support this construct; second, some
    +semantic frameworks have difficulties defining it. Not K.

    +
  • +
  • +

    Finally, we include mutables by means of referencing an
    +expression, getting the reference of a variable, dereferencing and
    +assignment. We include these for the same reasons as above: there are
    +languages which have them, and they are not easy to define in some
    +semantic frameworks.

    +
  • +
+

Like in many other languages, some of FUN's constructs can be
+desugared into a smaller set of basic constructs. We do that as usual,
+using macros, and then we only give semantics to the core constructs.

+

Note:
+We recommend the reader to first consult the dynamic semantics of the
+LAMBDA++ language in the first part of the K Tutorial.
+To keep the comments below small and focused, we will not re-explain
+functional or K features that have already been explained in there.

+

Syntax

+ +
//require "modules/pattern-matching.k"
+
+module FUN-UNTYPED-COMMON
+  imports DOMAINS-SYNTAX
+

FUN is an expression language. The constructs below fall into
+several categories: names, arithmetic constructs, conventional
+functional constructs, patterns and pattern matching, data constructs,
+lists, references, and call-with-current-continuation (callcc).
+The arithmetic constructs are standard; they are present in almost all
+our K language definitions. The meaning of FUN's constructs are
+discussed in more depth when we define their semantics in the next
+module.

+

The Syntactic Constructs

+ +

We start with the syntactic definition of FUN names.
+We have several categories of names: ones to be used for functions and
+variables, others to be used for data constructors, others for types and
+others for type variables. We will introduce them as needed, starting
+with the former category. We prefer the names of variables and functions
+to start with lower case letters. We take the freedom to tacitly introduce
+syntactic lists/sequences for each nonterminal for which we need them:

+
  syntax Name                                      [token]
+  syntax Names ::= List{Name,","}                  [overload(exps)]
+

Expression constructs will be defined throughtout the syntax module.
+Below are the very basic ones, namely the builtins, the names, and the
+parentheses used as brackets for grouping. Lists of expressions are
+declared strict, so all expressions in the list get evaluated whenever
+the list is on a position which can be evaluated:

+
  syntax Exp ::= Int | Bool | String | Name
+               | "(" Exp ")"                       [bracket]
+  syntax Exps  ::= List{Exp,","}                   [strict, overload(exps)]
+  syntax Val
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax Vals ::= List{Val,","}                    [overload(exps)]
+  syntax Bottom
+  syntax Bottoms ::= List{Bottom,","}              [overload(exps)]
+

We next define the syntax of arithmetic constructs, together with
+their relative priorities and left-/non-associativities. We also
+tag all these rules as members of a new group, "arith", so we can more easily
+define global syntax priorities later (at the end of the syntax module).

+
  syntax Exp ::= left:
+                 Exp "*" Exp                       [strict, group(arith)]
+               | Exp "/" Exp                       [strict, group(arith)]
+               | Exp "%" Exp                       [strict, group(arith)]
+               > left:
+                 Exp "+" Exp                       [strict, left, group(arith)]
+               | Exp "^" Exp                       [strict, left, group(arith)]
+// left attribute should not be necessary; currently a parsing bug
+               | Exp "-" Exp                       [strict, prefer, group(arith)]
+// the "prefer" attribute above is to not parse x-1 as x(-1)
+// Due to some parsing problems, we currently cannot add unary minus:
+               | "-" Exp                           [strict, group(arith)]
+               > non-assoc:
+                 Exp "<" Exp                       [strict, group(arith)]
+               | Exp "<=" Exp                      [strict, group(arith)]
+               | Exp ">" Exp                       [strict, group(arith)]
+               | Exp ">=" Exp                      [strict, group(arith)]
+               | Exp "==" Exp                      [strict, group(arith)]
+               | Exp "!=" Exp                      [strict, group(arith)]
+               > "!" Exp                           [strict, group(arith)]
+               > Exp "&&" Exp                      [strict(1), left, group(arith)]
+               > Exp "||" Exp                      [strict(1), left, group(arith)]
+

The conditional construct has the expected evaluation strategy,
+stating that only the first argument is evaluate:

+
  syntax Exp ::= "if" Exp "then" Exp "else" Exp    [strict(1)]
+

FUN's builtin lists are formed by enclosing comma-separated
+sequences of expressions (i.e., terms of sort Exps) in square
+brackets. The list constructor cons adds a new element to the
+top of the list, head and tail get the first element
+and the tail sublist of a list if they exist, respectively, and get
+stuck otherwise, and null?? tests whether a list is empty or
+not; syntactically, these are just expression constants.
+In function patterns, we are also going to allow patterns following the
+usual head/tail notation; for example, the pattern [x_1,...,x_n|t]
+binds x_1, ..., x_n to the first elements of the matched list,
+and t to the list formed with the remaining elements. We define list
+patterns as ordinary expression constructs, although we will make sure that
+we do not give them semantics if they appear in any other place then in a
+function case pattern.

+
  syntax Exp ::= "[" Exps "]"                             [strict, klabel(list)]
+               | "head" [macro] | "tail" [macro] | "null?" [macro]
+               | "[" Exps "|" Exp "]"
+  syntax Val ::= "[" Vals "]"                             [klabel(list)]
+  syntax Cons ::= "cons"
+  syntax Val ::= Cons
+  syntax Val ::= Cons Val                                 [klabel(apply)]
+

Data constructors start with capital letters and they may or may
+not have arguments. We need to use the attribute "prefer" to make
+sure that, e.g., Cons(a) parses as constructor Cons with
+argument a, and not as the expression Cons (because
+constructor names are also expressions) regarded as a function applied
+to the expression a. Also, note that the constructor is strict
+in its second argument, because we want to evaluate its arguments but
+not the constuctor name itsef.

+
  syntax ConstructorName                         [token]
+  syntax Exp ::= ConstructorName
+               | ConstructorName "(" Exps ")"    [prefer, strict(2), klabel(constructor)]
+  syntax Val ::= ConstructorName "(" Vals ")"    [klabel(constructor)]
+

A function is essentially a |-separated ordered
+sequence of cases, each case of the form pattern -> expression,
+preceded by the language construct fun. Patterns will be defined
+shortly, both for the builtin lists and for user-defined constructors.
+Recall that the syntax we define in K is not meant to serve as a
+ultimate parser for the defined language, but rather as a convenient
+notation for K abstract syntax trees, which we prefer when we write
+the semantic rules. It is therefore often the case that we define a
+more ``generous'' syntax than we want to allow programs to use.
+We do it here, too. Specifically, the syntax of Cases
+below allows any expressions to appear as pattern. This syntactic
+relaxation permits many wrong programs to be parsed, but that is not a
+problem because we are not going to give semantics to wrong combinations,
+so those programs will get stuck; moreover, our type inferencer will reject
+those programs anyway. Function application is just concatenation of
+expressions, without worrying about type correctness. Again, the type
+system will reject type-incorrect programs.

+
  syntax Exp ::= "fun" Cases
+               | Exp Exp                              [strict, left, klabel(apply)]
+// NOTE: We would like eventually to also have Exp "(" Exps ")
+  syntax Case  ::= Exp "->" Exp
+  syntax Cases ::= List{Case, "|"}
+

The let and letrec binders have the usual syntax
+and functional meaning. We allow multiple and-separated bindings.
+Like for the function cases above, we allow a more generous syntax for
+the left-hand sides of bindings, noting that the semantics will get stuck
+on incorrect bindings and that the type system will reject those programs.

+
  syntax Exp ::= "let" Bindings "in" Exp
+               | "letrec" Bindings "in" Exp                 [prefer]
+// The "prefer" attribute for letrec currently needed due to tool bug,
+// to make sure that "letrec" is not parsed as "let rec".
+  syntax Binding  ::= Exp "=" Exp
+  syntax Bindings ::= List{Binding,"and"}
+

References are first class values in FUN. The construct ref
+takes an expression, evaluates it, and then it stores the resulting value
+at a fresh location in the store and returns that reference. Syntactically,
+ref is just an expression constant. The construct &
+takes a name as argument and evaluates to a reference, namely the store
+reference where the variable passed as argument stores its value; this
+construct is a bit controversial and is further discussed in the
+environment-based semantics of the FUN language, where we desugar
+ref to it. The construct @ takes a reference
+and evaluates to the value stored there. The construct := takes
+two expressions, the first expected to evaluate to a reference; the value
+of its second argument will be stored at the location to which the first
+points (the old value is thus lost). Finally, since expression evaluation
+now has side effects, it makes sense to also add a sequential composition
+construct, which is sequentially strict. This evaluates to the value of
+its second argument; the value of the first argument is lost (which has
+therefore been evaluated only for its side effects.

+
  syntax Exp ::= "ref"                             [macro]
+               | "&" Name
+               | "@" Exp                                     [strict]
+               | Exp ":=" Exp                                [strict]
+               | Exp ";" Exp                       [strict(1), right]
+

Call-with-current-continuation, named callcc in FUN, is a
+powerful control operator that originated in the Scheme programming
+language, but it now exists in many other functional languages. It works
+by evaluating its argument, expected to evaluate to a function, and by
+passing the current continuation, or evaluation context (or computation,
+in K terminology), as a special value to it. When/If this special value
+is invoked, the current context is discarded and replaced with the one
+held by the special value and the computation continues from there.
+It is like taking a snapshot of the execution context at some moment
+in time and then, when desired, being able to get back in time to that
+point. If you like games, it is like saving the game now (so you can
+work on your homework!) and then continuing the game tomorrow or whenever
+you wish. To issustrate the strength of callcc, we also
+allow exceptions in FUN by means of a conventional try-catch
+construct, which will desugar to callcc. We also need to
+introduce the special expression contant throw, but we need to
+use it as a function argument name in the desugaring macro, so we define
+it as a name instead of as an expression constant:

+
  syntax Exp ::= "try" Exp "catch" "(" Name ")" Exp [macro]
+  syntax Val ::= "callcc"
+  syntax Name ::= "throw" [token]
+

Finally, FUN also allows polymorphic datatype declarations. These
+will be useful when we define the type system later on.

+
  syntax Exp ::= "datatype" Type "=" TypeCases Exp [macro]
+// NOTE: In a future version of K, we want the datatype declaration
+// to be a construct by itself, but that is not possible currently
+// because K's parser wronly identifies the __ operation allowing
+// a declaration to appear in front of an expression with the function
+// application construct, giving ambiguous parsing errors.
+

We next need to define the syntax of types and type cases that appear
+in datatype declarations.

+

Like in many functional languages, type parameters/variables in
+user-defined types are quoted identifiers.

+
  syntax TypeVar                        [token]
+  syntax TypeVars ::= List{TypeVar,","} [overload(types)]
+

Types can be basic types, function types, or user-defined
+parametric types. In the dynamic semantics we are going to simply ignore
+all the type declations, so here the syntax of types below is only useful
+for generating the desired parser. To avoid syntactic ambiguities with
+the arrow construct for function cases, we use the symbol --> as
+a constructor for function types:

+
  syntax TypeName [token]
+  syntax Type ::= "int" | "bool" | "string"
+                | Type "-->" Type                            [right]
+                | "(" Type ")"                             [bracket]
+                | TypeVar
+                | TypeName             [klabel(TypeName), avoid]
+                | Type TypeName   [klabel(Type-TypeName), symbol, macro]
+                | "(" Types ")" TypeName                    [prefer]
+  syntax Types ::= List{Type,","} [overload(types)]
+  syntax Types ::= TypeVars
+
+  syntax TypeCase ::= ConstructorName
+                    | ConstructorName "(" Types ")"
+  syntax TypeCases ::= List{TypeCase,"|"}     [symbol(_|TypeCase_)]
+

Additional Priorities

+ +
  syntax priority @__FUN-UNTYPED-COMMON
+                > apply
+                > arith
+                > _:=__FUN-UNTYPED-COMMON
+                > let_in__FUN-UNTYPED-COMMON
+                  letrec_in__FUN-UNTYPED-COMMON
+                  if_then_else__FUN-UNTYPED-COMMON
+                > _;__FUN-UNTYPED-COMMON
+                > fun__FUN-UNTYPED-COMMON
+                > datatype_=___FUN-UNTYPED-COMMON
+endmodule
+
+module FUN-UNTYPED-MACROS
+  imports FUN-UNTYPED-COMMON
+

Desugaring macros

+ +

We desugar the list non-constructor operations to functions matching
+over list patterns. In order to do that we need some new variables; for
+those, we follow the same convention like in the K tutorial, where we
+added them as new identifier constructs starting with the character $,
+so we can easily recognize them when we debug or trace the semantics.

+
  syntax Name ::= "$h" [token] | "$t" [token]
+  rule head => fun [$h|$t] -> $h
+  rule tail => fun [$h|$t] -> $t
+  rule null? => fun [.Exps] -> true | [$h|$t] -> false
+

Multiple-head list patterns desugar into successive one-head patterns:

+
  rule [E1,E2,Es:Exps|T] => [E1|[E2,Es|T]]                   [anywhere]
+

Uncurrying of multiple arguments in functions and binders:

+
  rule P1 P2 -> E => P1 -> fun P2 -> E                       [anywhere]
+  rule F P = E => F = fun P -> E                             [anywhere]
+

We desugar the try-catch construct into callcc:

+
  syntax Name ::= "$k" [token] | "$v" [token]
+  rule try E catch(X) E'
+    => callcc (fun $k -> (fun throw -> E)(fun X -> $k E'))
+

For uniformity, we reduce all types to their general form:

+
  rule `Type-TypeName`(T:Type, Tn:TypeName) => (T) Tn
+

The dynamic semantics ignores all the type declarations:

+
  rule datatype _T = _TCs E => E
+
+endmodule
+
+
+module FUN-UNTYPED-SYNTAX
+  imports FUN-UNTYPED-COMMON
+  imports BUILTIN-ID-TOKENS
+
+  syntax Name ::= r"[a-z][_a-zA-Z0-9]*"           [token, prec(2)]
+                | #LowerId                        [token]
+  syntax ConstructorName ::= #UpperId             [token]
+  syntax TypeVar  ::= r"['][a-z][_a-zA-Z0-9]*"    [token]
+  syntax TypeName ::= Name                        [token]
+endmodule
+

Semantics

+ +

The semantics below is environment-based. A substitution-based
+definition of FUN is also available, but that drops the &
+construct as explained above.

+
module FUN-UNTYPED
+  imports FUN-UNTYPED-COMMON
+  imports FUN-UNTYPED-MACROS
+  imports DOMAINS
+  //imports PATTERN-MATCHING
+

Configuration

+ +

The k, env, and store cells are standard
+(see, for example, the definition of LAMBDA++ or IMP++ in the first
+part of the K tutorial).

+
  configuration <T color="yellow">
+                  <k color="green"> $PGM:Exp </k>
+                  <env color="violet"> .Map </env>
+                  <store color="white"> .Map </store>
+                </T>
+

Values and results

+ +

We only define integers, Booleans and strings as values here, but will
+add more values later.

+
  syntax Val ::= Int | Bool | String
+  syntax Vals ::= Bottoms
+  syntax KResult ::= Val
+

Lookup

+ +
  rule <k> X:Name => V ...</k>
+       <env>... X |-> L ...</env>
+       <store>... L |-> V ...</store>
+

Arithmetic expressions

+ +
  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0
+  rule I1 + I2 => I1 +Int I2
+  rule S1 ^ S2 => S1 +String S2
+  rule I1 - I2 => I1 -Int I2
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+

Conditional

+ +
  rule if  true then E else _ => E
+  rule if false then _ else E => E
+

Lists

+ +

We have already declared the syntactic list of expressions strict, so
+we can assume that all the elements that appear in a FUN list are
+evaluated. The only thing left to do is to state that a list of
+values is a value itself, that is, that the list square-bracket
+construct is indeed a constructor, and to give the semantics of
+cons. Since cons is a builtin function and is
+expected to take two arguments, we have to also state that
+cons itself is a value (specifically, a function/closure
+value, but we do not need that level of detail here), and also that
+cons applied to a value is a value (specifically, it would be
+a function/closure value that expects the second, list argument):

+
  rule cons V:Val [Vs:Vals] => [V,Vs]
+

Data Constructors

+ +

Constructors take values as arguments and produce other values:

+
  syntax Val ::= ConstructorName
+

Functions and Closures

+ +

Like in the environment-based semantics of LAMBDA++ in the first part
+of the K tutorial, functions evaluate to closures. A closure includes
+the current environment besides the function contents; the environment
+will be used at execution time to lookup all the variables that appear
+free in the function body (we want static scoping in FUN).

+
  syntax Val ::= closure(Map,Cases)
+  rule <k> fun Cases => closure(Rho,Cases) ...</k>  <env> Rho </env>
+

Note: The reader may want to get familiar with
+how the pre-defined pattern matching works before proceeding.
+The best way to do that is to consult
+k/include/modules/pattern-matching.k.

+

We distinguish two cases when the closure is applied.
+If the first pattern matches, then we pick the first case: switch to
+the closed environment, get the matching map and bind all its
+variables, and finally evaluate the function body of the first case,
+making sure that the environment is properly recovered afterwards.
+If the first pattern does not match, then we drop it and thus move on
+to the next one.

+
  rule (.K => getMatching(P, V)) ~> closure(_, P->_ | _) V:Val
+  rule <k> matchResult(M:Map) ~> closure(Rho, _->E | _) _
+           => bindMap(M) ~> E ~> setEnv(Rho') ...</k>
+       <env> Rho' => Rho </env>
+  rule (matchFailure => .K) ~> closure(_, (_->_ | Cs:Cases => Cs)) _
+//  rule <k> closure(Rho, P->E | _) V:Val
+//           => bindMap(getMatching(P,V)) ~> E ~> setEnv(Rho') ...</k>
+//       <env> Rho' => Rho </env>  when isMatching(P,V)
+//  rule closure(_, (P->_ | Cs:Cases => Cs)) V:Val  when notBool isMatching(P,V)
+

Let and Letrec

+ +

To highlight the similarities and differences between let and
+letrec, we prefer to give them direct semantics instead of
+to desugar them like in LAMBDA. See the formal definitions of
+bindTo, bind, and assignTo at the end of
+this module. Informally, bindTo(Xs, Es) first
+evaluates the expressions Es in Exps in the current
+environment (i.e., it is strict in its second argument), then it binds
+the variables in Xs in Names to new locations and adds
+those bindings to the environment, and finally writes the values
+previously obtained after evaluating the expressions Es to those
+new locations; bind(Xs) does only the bindings of
+Xs to new locations and adds those bindings to the environment;
+and assignTo(Xs,Es) evaluates the expressions
+Es in the current environment and then it writes the resulting
+values to the locations to which the variables Xs are already
+bound to in the environment.

+

Therefore, let Xs = Es in E first
+evaluates Es in the current environment, then adds new
+bindings for Xs to fresh locations in the environment, then
+writes the values of Es to those locations, and finally
+evaluates E in the new environment, making sure that the
+environment is properly recovered after the evaluation of E.
+On the other hand, letrec does the same things but in a
+different order: it first adds new bindings for Xs to fresh
+locations in the environment, then it evaluates Es in the new
+environment, then it writes the resulting values to their
+corresponding locations, and finally it evaluates E and
+recovers the environment. The crucial difference is that the
+expressions Es now see the locations of the variables Xs
+in the environment, so if they are functions, which is typically the
+case with letrec, their closures will encapsulate in their
+environments the bindings of all the bound variables, including
+themselves (thus, we may have a closure value stored at location
+L, whose environment contains a binding of the form
+F ↦ L; this way, the closure can invoke
+itself).

+
  rule <k> let Bs in E
+        => bindTo(names(Bs),exps(Bs)) ~> E ~> setEnv(Rho) ...</k>
+       <env> Rho </env>
+
+  rule <k> letrec Bs in E
+        => bind(names(Bs))~>assignTo(names(Bs),exps(Bs))~>E~>setEnv(Rho)...</k>
+       <env> Rho </env>
+

Recall that our syntax allows let and letrec to
+take any expression in place of its binding. This allows us to use
+the already existing function application construct to bind names to
+functions, such as, e.g., let x y = y in ....
+The desugaring macro in the syntax module uncurries such declarations,
+and then the semantic rules above only work when the remaining
+bindings are identifiers, so the semantics will get stuck on programs
+that misuse the let and letrec binders.

+

References

+ +

The semantics of references is self-explanatory, except maybe for the
+desugaring rule of ref, which is further discussed. Note
+that &X grabs the location of X from the environment.
+Sequential composition, which is needed only to accumulate the
+side effects due to assignments, was strict in the first argument.
+Once evaluated, its first argument is simply discarded:

+
  syntax Name ::= "$x" [token]
+  rule ref => fun $x -> & $x
+  rule <k> & X => L ...</k>  <env>... X |-> L ...</env>
+  rule <k> @ L:Int => V:Val ...</k>  <store>... L |-> V ...</store>
+  rule <k> L:Int := V:Val => V ...</k>  <store>... L |-> (_=>V) ...</store>
+  rule _V:Val; E => E
+

The desugaring rule of ref (first rule above) works
+because & takes a variable and returns its location (like in C).
+Note that some ``pure'' functional programming researchers strongly dislike
+the & construct, but favor ref. We refrain from having
+a personal opinion on this issue here, but support & in the
+environment-based definition of FUN because it is, technically speaking,
+more powerful than ref. From a language design perspective, it
+would be equally easy to drop & and instead give a direct
+semantics to ref. In fact, this is precisely what we do in the
+substitution-based definition of FUN, because there appears to be no way
+to give a substitution-based definition to the & construct.

+

Callcc

+ +

As we know it from the LAMBDA++ tutorial, call-with-current-continuation
+is quite easy to define in K. We first need to define a special
+value wrapping an execution context, that is, an environment saying
+where the variables should be looked up, and a computation structure
+saying what is left to execute (in a substitution-based definition,
+this special value would be even simpler, as it would only need to
+wrap the computation structure---see, for example, the
+substitution-based semantics of LAMBDA++ in the the first part of the
+K tutorial, or the substitution-based definition of FUN). Then
+callcc creates such a value containing the current
+environment and the current remaining computation, and passes it to
+its argument function. When/If invoked, the special value replaces
+the current execution context with its own and continues the execution
+normally.

+
  syntax Val ::= cc(Map,K)
+  rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k>  <env> Rho </env>
+  rule <k> cc(Rho,K) V:Val ~> _ => V ~> K </k>  <env> _ => Rho </env>
+

Auxiliary operations

+ +

Environment recovery

+ +

The environment recovery operation is the same as for the LAMBDA++
+language in the K tutorial and many other languages provided with the
+K distribution. The first ``anywhere'' rule below shows an elegant
+way to achieve the benefits of tail recursion in K.

+
  syntax KItem ::= setEnv(Map)  // TODO: get rid of env
+  //rule (setEnv(_) => .) ~> setEnv(_)  [anywhere]
+  rule <k> _:Val ~> (setEnv(Rho) => .K) ...</k> <env> _ => Rho </env>
+

bindTo, bind and assignTo

+ +

The meaning of these operations has already been explained when we
+discussed the let and letrec language constructs
+above.

+
  syntax KItem ::= bindTo(Names,Exps)         [strict(2)]
+                 | bindMap(Map)
+                 | bind(Names)
+
+  rule (.K => getMatchingAux(Xs,Vs)) ~> bindTo(Xs:Names,Vs:Vals)
+  rule matchResult(M:Map) ~> bindTo(_:Names, _:Vals) => bindMap(M)
+
+  rule bindMap(.Map) => .K
+  rule <k> bindMap((X:Name |-> V:Val => .Map) _:Map) ...</k>
+       <env> Rho => Rho[X <- !L:Int] </env>
+       <store>... .Map => !L |-> V ...</store>
+
+  rule bind(.Names) => .K
+  rule <k> bind(X:Name,Xs => Xs) ...</k>
+       <env> Rho => Rho[X <- !_L:Int] </env>
+
+  syntax KItem ::= assignTo(Names,Exps)  [strict(2)]
+
+  rule <k> assignTo(.Names,.Vals) => .K ...</k>
+  rule <k> assignTo((X:Name,Xs => Xs),(V:Val,Vs:Vals => Vs)) ...</k>
+       <env>... X |-> L ...</env>
+       <store>... .Map => L |-> V ...</store>
+

Getters

+ +

The following auxiliary operations extract the list of identifiers
+and of expressions in a binding, respectively.

+
  syntax Names ::= names(Bindings)  [function]
+  rule names(.Bindings) => .Names
+  rule names(X:Name=_ and Bs) => (X,names(Bs))::Names
+
+  syntax Exps ::= exps(Bindings)  [function]
+  rule exps(.Bindings) => .Exps
+  rule exps(_:Name=E and Bs) => E,exps(Bs)
+
+  /* Extra kore stuff */
+  syntax KResult ::= Vals
+  syntax Exps ::= Names
+  syntax Names ::= Bottoms
+
+  /* Matching */
+  syntax MatchResult ::= getMatching(Exp, Val)                      [function]
+                       | getMatchingAux(Exps, Vals)                 [function]
+                       | mergeMatching(MatchResult, MatchResult)    [function]
+                       | matchResult(Map)
+                       | "matchFailure"
+
+  rule getMatching(C:ConstructorName(Es:Exps), C(Vs:Vals)) => getMatchingAux(Es, Vs)
+  rule getMatching([Es:Exps], [Vs:Vals])                   => getMatchingAux(Es, Vs)
+  rule getMatching(C:ConstructorName, C) => matchResult(.Map)
+  rule getMatching(B:Bool, B)            => matchResult(.Map)
+  rule getMatching(I:Int, I)             => matchResult(.Map)
+  rule getMatching(S:String, S)          => matchResult(.Map)
+  rule getMatching(N:Name, V:Val) => matchResult(N |-> V)
+  rule getMatching(_, _) => matchFailure        [owise]
+
+  rule getMatchingAux((E:Exp, Es:Exps), (V:Val, Vs:Vals)) => mergeMatching(getMatching(E, V), getMatchingAux(Es, Vs))
+  rule getMatchingAux(.Exps, .Vals)                       => matchResult(.Map)
+  rule getMatchingAux(_, _) => matchFailure     [owise]
+
+  rule mergeMatching(matchResult(M1:Map), matchResult(M2:Map)) => matchResult(M1 M2)
+    requires intersectSet(keys(M1), keys(M2)) ==K .Set
+  //rule mergeMatching(_, _) => matchFailure      [owsie]
+  rule mergeMatching(matchResult(_:Map), matchFailure) => matchFailure
+  rule mergeMatching(matchFailure, matchResult(_:Map)) => matchFailure
+  rule mergeMatching(matchFailure, matchFailure)       => matchFailure
+

Besides the generic decomposition rules for patterns and values,
+we also want to allow [head|tail] matching for lists, so we add
+the following custom pattern decomposition rule:

+
  rule getMatching([H:Exp | T:Exp], [V:Val, Vs:Vals])
+    => getMatchingAux((H, T), (V, [Vs]))
+endmodule
+

Go to Lesson 2, FUN untyped, Substitution-Based.

+

// NOTE: this definition is not up to date with the latest version of K, as it
+// uses both substitution and symbolic reasoning.
+// It is intended for documentation and academic purposes only.

+

FUN — Untyped — Substitution

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the substitution-based definition of FUN. For additional
+explanations regarding the semantics of the various FUN constructs,
+the reader should consult the emvironment-based definition of FUN.

+

Syntax

+ +
requires "substitution.md"
+//requires "modules/pattern-matching.k"
+
+module FUN-UNTYPED-COMMON
+  imports DOMAINS-SYNTAX
+

The Syntactic Constructs

+ +
  syntax Name
+  syntax Names ::= List{Name,","}
+
+  syntax Exp ::= Int | Bool | String | Name
+               | "(" Exp ")"                       [bracket]
+  syntax Exps  ::= List{Exp,","}                   [strict]
+  syntax Val
+  syntax Vals ::= List{Val,","}
+
+  syntax Exp ::= left:
+                 Exp "*" Exp                       [strict, arith]
+               | Exp "/" Exp                       [strict, arith]
+               | Exp "%" Exp                       [strict, arith]
+               > left:
+                 Exp "+" Exp                       [strict, left, arith]
+               | Exp "^" Exp                       [strict, left, arith]
+               | Exp "-" Exp                       [strict, prefer, arith]
+               | "-" Exp                           [strict, arith]
+               > non-assoc:
+                 Exp "<" Exp                       [strict, arith]
+               | Exp "<=" Exp                      [strict, arith]
+               | Exp ">" Exp                       [strict, arith]
+               | Exp ">=" Exp                      [strict, arith]
+               | Exp "==" Exp                      [strict, arith]
+               | Exp "!=" Exp                      [strict, arith]
+               > "!" Exp                           [strict, arith]
+               > Exp "&&" Exp                      [strict(1), left, arith]
+               > Exp "||" Exp                      [strict(1), left, arith]
+
+  syntax Exp ::= "if" Exp "then" Exp "else" Exp    [strict(1)]
+
+  syntax Exp ::= "[" Exps "]"                      [strict]
+               | "cons" |  "head" | "tail" | "null?"
+               | "[" Exps "|" Exp "]"
+  syntax Val ::= "[" Vals "]"
+
+  syntax ConstructorName
+  syntax Exp ::= ConstructorName
+               | ConstructorName "(" Exps ")"      [prefer, strict(2)]
+  syntax Val ::= ConstructorName "(" Vals ")"
+
+  syntax Exp ::= "fun" Cases
+               | Exp Exp                           [strict, left]
+  syntax Case  ::= Exp "->" Exp                    [binder]
+// NOTE: The binder attribute above is the only difference between this
+// module and the syntax module of environment-based FUN.  We need
+// to fix a bug in order to import modules and override the attributes
+// of operations.
+  syntax Cases ::= List{Case, "|"}
+
+  syntax Exp ::= "let" Bindings "in" Exp
+               | "letrec" Bindings "in" Exp                 [prefer]
+  syntax Binding  ::= Exp "=" Exp
+  syntax Bindings ::= List{Binding,"and"}
+
+  syntax Exp ::= "ref"
+               | "&" Name
+               | "@" Exp                           [strict]
+               | Exp ":=" Exp                      [strict]
+               | Exp ";" Exp                       [strict(1), right]
+
+  syntax Exp ::= "callcc"
+               | "try" Exp "catch" "(" Name ")" Exp
+  syntax Name ::= "throw" [token]
+
+  syntax Exp ::= "datatype" Type "=" TypeCases Exp
+
+  syntax TypeVar
+  syntax TypeVars ::= List{TypeVar,","}
+
+  syntax TypeName
+  syntax Type ::= "int" | "bool" | "string"
+                | Type "-->" Type                            [right]
+                | "(" Type ")"                             [bracket]
+                | TypeVar
+                | TypeName             [klabel(TypeName), avoid]
+                | Type TypeName   [klabel(Type-TypeName), onlyLabel]
+                | "(" Types ")" TypeName                    [prefer]
+  syntax Types ::= List{Type,","}
+  syntax Types ::= TypeVars
+
+  syntax TypeCase ::= ConstructorName
+                    | ConstructorName "(" Types ")"
+  syntax TypeCases ::= List{TypeCase,"|"}     [klabel(_|TypeCase_)]
+

Additional Priorities

+ +
  syntax priority @__FUN-UNTYPED-COMMON
+                > ___FUN-UNTYPED-COMMON
+                > arith
+                > _:=__FUN-UNTYPED-COMMON
+                > let_in__FUN-UNTYPED-COMMON
+                  letrec_in__FUN-UNTYPED-COMMON
+                  if_then_else__FUN-UNTYPED-COMMON
+                > _;__FUN-UNTYPED-COMMON
+                > fun__FUN-UNTYPED-COMMON
+                > datatype_=___FUN-UNTYPED-COMMON
+endmodule
+
+module FUN-UNTYPED-MACROS
+  imports FUN-UNTYPED-COMMON
+

Desugaring macros

+ +
  rule P1 P2 -> E => P1 -> fun P2 -> E                       [macro-rec]
+  rule F P = E => F = fun P -> E                             [macro-rec]
+
+  rule [E1,E2,Es:Exps|T] => [E1|[E2,Es|T]]                   [macro-rec]
+
+//  rule 'TypeName(Tn:TypeName) => (.TypeVars) Tn              [macro]
+  rule `Type-TypeName`(T:Type, Tn:TypeName) => (T) Tn          [macro]
+
+  syntax Name ::= "$h" | "$t"
+  rule head => fun [$h|$t] -> $h                             [macro]
+  rule tail => fun [$h|$t] -> $t                             [macro]
+  rule null? => fun [.Exps] -> true | [$h|$t] -> false       [macro]
+
+  syntax Name ::= "$k" | "$v"
+  rule try E catch(X) E'
+    => callcc (fun $k -> (fun throw -> E)(fun X -> $k E'))   [macro]
+
+  rule datatype _T = _TCs E => E                               [macro]
+

mu needed for letrec, but we put it here so we can also write
+programs with mu in them, which is particularly useful for testing.

+
  syntax Exp ::= "mu" Case
+
+endmodule
+
+
+module FUN-UNTYPED-SYNTAX
+  imports FUN-UNTYPED-COMMON
+  imports BUILTIN-ID-TOKENS
+
+  syntax Name ::= r"[a-z][_a-zA-Z0-9]*"            [token, prec(2)]
+                | #LowerId                         [token]
+  syntax ConstructorName ::= #UpperId              [token]
+  syntax TypeVar  ::= r"['][a-z][_a-zA-Z0-9]*"     [token]
+  syntax TypeName ::= Name                         [token]
+endmodule
+

Semantics

+ +
module FUN-UNTYPED
+  imports FUN-UNTYPED-COMMON
+  imports FUN-UNTYPED-MACROS
+  imports DOMAINS
+  imports SUBSTITUTION
+  //imports PATTERN-MATCHING
+
+  configuration <T color="yellow">
+                  <k color="green"> $PGM:Exp </k>
+                  <store color="white"> .Map </store>
+                </T>
+

Both Name and functions are values now:

+
  syntax Val ::= Int | Bool | String | Name
+  syntax Exp ::= Val
+  syntax Exps ::= Vals
+  syntax KResult ::= Val
+  syntax Exps ::= Names
+  syntax Vals ::= Names
+
+  rule I1 * I2 => I1 *Int I2
+  rule I1 / I2 => I1 /Int I2 when I2 =/=K 0
+  rule I1 % I2 => I1 %Int I2 when I2 =/=K 0
+  rule I1 + I2 => I1 +Int I2
+  rule S1 ^ S2 => S1 +String S2
+  rule I1 - I2 => I1 -Int I2
+  rule - I => 0 -Int I
+  rule I1 < I2 => I1 <Int I2
+  rule I1 <= I2 => I1 <=Int I2
+  rule I1 > I2 => I1 >Int I2
+  rule I1 >= I2 => I1 >=Int I2
+  rule V1:Val == V2:Val => V1 ==K V2
+  rule V1:Val != V2:Val => V1 =/=K V2
+  rule ! T => notBool(T)
+  rule true  && E => E
+  rule false && _ => false
+  rule true  || _ => true
+  rule false || E => E
+
+  rule if  true then E else _ => E
+  rule if false then _ else E => E
+
+  rule isVal(cons) => true
+  rule isVal(cons _V:Val) => true
+  rule cons V:Val [Vs:Vals] => [V,Vs]
+
+  syntax Val ::= ConstructorName
+
+  rule isVal(fun _) => true
+  syntax KVar ::= Name
+  syntax Name ::= freshName(Int)    [freshGenerator, function]
+  rule freshName(I:Int) => {#parseToken("Name", "#" +String Int2String(I))}:>Name
+
+  rule (. => getMatching(P, V)) ~> (fun P->_ | _) V:Val
+  rule matchResult(M:Map) ~> (fun _->E | _) _ => E[M]
+  rule (matchFailure => .) ~> (fun (_->_ | Cs:Cases => Cs)) _
+//  rule (fun P->E | _) V:Val => E[getMatching(P,V)]  when isMatching(P,V)
+//  rule (fun (P->_ | Cs:Cases => Cs)) V:Val  when notBool isMatching(P,V)
+

We can reduce multiple bindings to one list binding, and then
+apply the usual desugaring of let into function application.
+It is important that the rule below is a macro, so let is eliminated
+immediately, otherwise it may interfere in ugly ways with substitution.

+
  rule let Bs in E => ((fun [names(Bs)] -> E) [exps(Bs)])    [macro]
+

We only give the semantics of one-binding letrec.
+Multipe bindings are left as an exercise.

+
  // changed because of parsing error
+  //rule mu X:Name -> E => E[(mu X -> E) / X]
+  rule mu X:Name -> E => E[X |-> (mu X -> E)]
+  rule letrec F:Name = E in E' => let F = (mu F -> E) in E'  [macro]
+

We cannot have & anymore, but we can give direct
+semantics to ref. We also have to declare ref to
+be a value, so that we will never heat on it.

+
//  rule <k> & X => L ...</k>  <env>... X |-> L </env>
+  rule isVal(ref) => true
+  rule <k> ref V:Val => !L:Int ...</k> <store>... .Map => !L |-> V ...</store>
+  rule <k> @ L:Int => V:Val ...</k>  <store>... L |-> V ...</store>
+  rule <k> L:Int := V:Val => V ...</k>  <store>... L |-> (_=>V) ...</store>
+  rule _V:Val; E => E
+
+  syntax Val ::= cc(K)
+  rule isVal(callcc) => true
+  rule <k> (callcc V:Val => V cc(K)) ~> K </k>
+  rule <k> cc(K) V:Val ~> _ => V ~> K </k>
+

Auxiliary getters

+
  syntax Names ::= names(Bindings)  [function]
+  rule names(.Bindings) => .Names
+  rule names(X:Name=_ and Bs) => X,names(Bs)
+
+  syntax Exps ::= exps(Bindings)  [function]
+  rule exps(.Bindings) => .Exps
+  rule exps(_:Name=E and Bs) => E,exps(Bs)
+
+  /* Extra kore stuff */
+  syntax KResult ::= Vals
+  syntax Exps ::= Names
+
+  /* Matching */
+  syntax MatchResult ::= getMatching(Exp, Val)                      [function]
+                       | getMatchingAux(Exps, Vals)                 [function]
+                       | mergeMatching(MatchResult, MatchResult)    [function]
+                       | matchResult(Map)
+                       | "matchFailure"
+
+  rule getMatching(C:ConstructorName(Es:Exps), C(Vs:Vals)) => getMatchingAux(Es, Vs)
+  rule getMatching([Es:Exps], [Vs:Vals])                   => getMatchingAux(Es, Vs)
+  rule getMatching(C:ConstructorName, C) => matchResult(.Map)
+  rule getMatching(B:Bool, B)            => matchResult(.Map)
+  rule getMatching(I:Int, I)             => matchResult(.Map)
+  rule getMatching(S:String, S)          => matchResult(.Map)
+  rule getMatching(N:Name, V:Val) => matchResult(N |-> V)
+  rule getMatching(_, _) => matchFailure        [owise]
+
+  rule getMatchingAux((E:Exp, Es:Exps), (V:Val, Vs:Vals)) => mergeMatching(getMatching(E, V), getMatchingAux(Es, Vs))
+  rule getMatchingAux(.Exps, .Vals)                       => matchResult(.Map)
+  rule getMatchingAux(_, _) => matchFailure     [owise]
+
+  rule mergeMatching(matchResult(M1:Map), matchResult(M2:Map)) => matchResult(M1 M2)
+    requires intersectSet(keys(M1), keys(M2)) ==K .Set
+  //rule mergeMatching(_, _) => matchFailure      [owsie]
+  rule mergeMatching(matchResult(_:Map), matchFailure) => matchFailure
+  rule mergeMatching(matchFailure, matchResult(_:Map)) => matchFailure
+  rule mergeMatching(matchFailure, matchFailure)       => matchFailure
+

Besides the generic decomposition rules for patterns and values,
+we also want to allow [head|tail] matching for lists, so we add
+the following custom pattern decomposition rule:

+
  rule getMatching([H:Exp | T:Exp], [V:Val, Vs:Vals])
+    => getMatchingAux((H, T), (V, [Vs]))
+endmodule
+

// NOTE: this definition is not runnable as is.
+// It is intended for documentation and academic purposes only.

+

LOGIK

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of LOGIK, a trivial language
+capturing the essence of the logic programming paradigm. In this
+definition, we explicitly focus on simplicity and mathematical
+clarity, not on advanced logic programming features or performance.
+Those are covered in the LOGIK++ extension under examples/logik++.

+

Specifically, a LOGIK program consists of a sequence of Horn clauses
+of the form

+
P :- P1, P2, ..., Pn .
+

followed by a query of the form

+
?- Q1, Q2, ..., Qm .
+

where P, P1, P2, ..., Pn, Q1, Q2,
+..., Qm are literals. The
+symbol :- is read "if". A literal has the form
+p(T1,T2,...,Tk), where p is a predicate symbol
+and where T1,T2,...,Tk are terms. Terms are built as
+usual, with operation symbols and variables. A common
+convention in logic programming languages, also adopted here, is that
+variables are capitalized and operation symbols are not. Operations
+with zero arguments are called constants and are written without
+parentheses, that is, c instead of c(). Horn
+clauses without conditions, called facts, are written
+without :-, that is, P. instead of P :- ..

+

For example, the LOGIK program below gives a few facts about a
+parent predicate, then several clauses defining some useful
+predicates including an ancestor predicate, and finally a
+query asking for those who both have ancestors and are ancestors
+themselves in the parent relation:

+
parent(david,john).
+parent(jim,david).
+parent(steve,jim).
+parent(nathan,steve).
+
+grandparent(A,B):-
+  parent(A,X),
+  parent(X,B).
+
+ancestor(A,B):-
+  parent(A,X),
+  parents(X,B).
+
+parents(X,X).
+parents(A,B):-
+  ancestor(A,B).
+
+both(X) :- ancestor(A,X), ancestor(X,B).
+
+?- both(X).
+

Above, we only have constant operation symbols, so these and variables
+are the only terms that can be used in predicates. As expected, the
+LOGIK program above will give us three solutions for X:
+david, steve, and jim. If we inline the
+both(X) predicate in the query, that is, if we replace the
+query with ?- ancestor(A,X), ancestor(X,B). then we get
+10 solutions, one for for each triple A, X, and
+B satisfying both predicates ancestor(A,X) and
+ancestor(X,B).

+

As another example, the program below defines an append
+predicate followed by a simple goal:

+
append(nil,L,L).
+append(cons(H,T),L,cons(H,Z)) :- append(T,L,Z).
+
+?- append(cons(a,nil), cons(b,nil), V).
+

Besides the predicate symbol append, the program above also
+includes a constant symbol nil and a binary operation symbol
+cons. Additionally, the query also includes two more
+constants, a and b. The capitalized identifiers are
+all variables. As expected, the LOGIK program above yields only one
+solution, namely V = cons(a,cons(b,nil)). On the other hand,
+if we change the query to:

+
?- append(L1, cons(a,L2), cons(a,cons(b,cons(a,nil)))).
+

then LOGIK yields two solutions: one where L1 is
+cons(a,cons(b,nil)) and L2 is nil,
+and another where L1 is nil and L2 is
+cons(a,cons(b,nil)).

+

The programs above all generated ground solutions, that is,
+solutions where the query variables are mapped to ground terms (i.e.,
+terms without variables). Let us now consider the following query:

+
?- append(cons(a,nil), Y, Z).
+

There are obviously infinitely many ground solutions for the query
+above, e.g.,
+Y = nil and Z = cons(a,nil),
+Y = cons(a,nil) and Z = cons(a,cons(a,nil)),
+Y = cons(b,nil) and Z = cons(a,cons(b,nil)),
+Y = cons(c,cons(b,nil)) and Z = cons(a,cons(c,cons(b,nil))),
+etc. However, all the ground solutions for the query above can be
+elegantly characterized by the property that Z is bound to a list
+starting with a and followed by the list that Y is
+bound to. This property can in fact be described as a symbolic solution
+to the query: Z = cons(a,Y) or, equivalently,
+Y = Symb and Z = cons(a,Symb). It is possible to
+define a ``more general than'' relation on such symbolic solutions,
+in the sense that the more particular solution can be obtained as a
+specialization/substitution of the more general one, and then it can
+be shown that the above is the most general solution to the
+stated query. Logic programming languages, including our LOGIK,
+attempt to always compute such most general solutions.

+

Logic programming languages are highly non-deterministic, in that
+several Horn clauses may be used at the same time, each possibly
+resulting in a different solution. Implementations of logic
+programming languages consist of complex, optimized search and
+indexing algorithms, which we are not concerned with here. Instead,
+we here take advantage of K's builtin support for search.
+Specifically, to find all the solutions of a LOGIK program, we have to
+use krun with the option --search. However, note
+that some programs have infinitely many solutions which cannot relate
+to each other by the "more general" relation. For example, the query

+
?- append(L1, cons(a,L2), L3) .
+

To address such cases and terminate, logic programming languages allow
+the user to choose how many solutions to be computed and displayed.
+In LOGIK, we can use the --bound option of krun for
+this purpose.

+

Finally, note that some queries have no solution. In some cases that
+is easy to detect by exhaustive analysis, such as for the following
+query:

+
?- append(cons(a,L1), L2, cons(b,L3)).
+

Logic programming languages, including LOGIK, terminate in such cases
+and report a no solution answer. However, there are cases where
+exhaustive analysis is not sufficient, such as for the query:

+
?- append(cons(a,L), nil, L).
+

In such cases, logic programming languages do not terminate. While
+one may devise techniques to detect non-termination in some cases,
+one cannot do it in general (same like for all Turing-complete
+languages).

+
requires "unification.k"
+
+module LOGIK-COMMON
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of LOGIK is straightforward: a program is a sequence of
+Horn clauses followed by a query:

+
  syntax Literal
+  syntax Term ::= Literal | Literal "(" Terms ")"
+  syntax Terms ::= List{Term,","}
+  syntax Clause ::= Term ":-" Terms "." | Term "."
+  syntax Query ::= "?-" Terms "."
+  syntax Pgm ::= Query | Clause Pgm
+endmodule
+
+module LOGIK-SYNTAX
+  imports LOGIK-COMMON
+  imports BUILTIN-ID-TOKENS
+

Variables and literals are defined as tokens following the conventions
+used in Prolog (variables start with _ or capital letter, while literals
+start with lower case letters):

+
  syntax #KVariable ::= r"[A-Z_][A-Za-z0-9_]*"   [token, prec(2)]
+                      | #UpperId                 [token]
+  syntax Term ::= #KVariable [klabel(#SemanticCastToTerm)]
+  syntax Literal ::= r"[a-z][a-zA-Z0-9_]*"                 [token]
+                   | #LowerId                              [token]
+endmodule
+
+module LOGIK
+  imports LOGIK-COMMON
+  imports DOMAINS
+  imports UNIFICATION
+

Unification is at the core of logic programming. Here we are
+going to use the predefined unification procedure (the same one we
+used in the type inferencers in Tutorial 5).

+

Configuration

+ +

The configuration stores each clause in its own cell for easy access,
+and the most general unifier in a cell named mgu, same like
+the type inferencers. The k cell holds the query and the
+fresh cell holds a fresh clause instance to be attempted on
+the next query item. To more easily read the solutions, we add a
+second top-level cell, solution. Both top cells are
+optional. Indeed, we start with the main top cell and, when a
+solution is found, we move it into the solution cell and
+discard the main cell.

+
  configuration <T color="yellow" multiplicity="?">
+                  <k color="green"> $PGM:Pgm </k>
+                  <fresh color="orange"> .K </fresh>
+                  <clauses color="red">
+                    <clause color="pink" multiplicity="*"> .K </clause>
+                  </clauses>
+                  <mgu> .K </mgu>
+                </T>
+                <solution multiplicity="?"> .K </solution>
+

Pre- and post-processing

+ +

Before we launch the semantics, we first scan the given program and
+place each clause in its own cell, and then place the query in the
+k cell and initialize the mgu with the variables from the query.

+

Note that we put a fresh instance of the clause to avoid interference with
+the query variables. By a "fresh instance" of a clause we mean one whose
+variables are renamed with fresh names; we need that in order to avoid
+undesired unification conflicts due to particular names chosen for
+variables in the original program, as well as conflicts due to
+subsequent uses of the same clause. It is safe to rename the
+variables in a clause, because clauses are universally quantified in
+their variables. This process of creating a fresh instance of a
+clause is similar to how we created fresh instances of type schemas in
+the higher-order type inferencer discussed in Tutorial 5. Indeed, we
+can safely regard clauses as "clause schemas" comprising infinitely
+many instances, one for each context.

+
  rule <k> C:Clause Pgm => Pgm </k>
+       (.Bag => <clause> #renameVariables(C) </clause>)
+
+  rule <k> ?- Ls:Terms. => Ls ...</k>
+       <mgu> _ => #variablesMap(#variables(Ls)) </mgu>
+

We also sequentialize the goals for easier processing:

+
  rule L:Term, Ls:Terms => L ~> Ls
+  rule .Terms => .
+

When all the goals are solved, indicated by the empty k
+cell, the calculated most general unifier (mgu) is in the mgu
+cell. In that case, to ease reading of the final solution we move the
+mgu in the solution cell and delete the rest of the
+configuration:

+
rule <T>... <k> . </k> <mgu> Theta </mgu> ...</T>
+  => <solution> Theta </solution>
+

Since we are not interested in seeing the failed attempts to solve
+the query, we collapse all the error configurations into an empty
+configuration (recall that both top-level cells in the configuration
+were declared optional). This way, if we see an empty configuration
+when we search for all solutions, we know that some attempts failed
+(but we do not know which ones).

+
// this would be nice, but we need feedback from the external unifier
+// for this.
+//  rule <T>... <mgu> _:MguError </mgu> ...</T> => .
+

Semantics

+ +

Once all the infrastructure is in place, the actual semantics of LOGIK
+is quite simple. All we have to do is to pick some (fresh instance of
+a) clause, then unify its conclusion with the first query literal, and
+then replace that literal with condition of the clause. The intuition
+here is the following: to satisfy the first literal in the query, we
+need to find some instance of some clause that matches it, and then to
+similarly show that we can satisfy the conditions of that clause.
+Mathematically, this is an instance of the proof principle called
+resolution: if p ∨ q and ¬ p ∨ r hold, then so does
+q ∨ r. We let it as an exercise to the reader to see how the two
+relate (hint: assume the negation of the goal together with all the
+clauses, and then derive false).

+

The following two rules are tightly connected and they together
+perform the following core task: pick a fresh instance of a clause
+which unifies with the first goal item, then add its conditions as new
+goals.

+

Pick a clause and generate a fresh instance of it when the
+fresh cell is empty:

+
  rule <fresh> . => #renameVariables(C) </fresh> <clause> C </clause>
+       <k> T:Term ...</k>
+  requires #unifiable(T,head(C))
+
+  syntax Term ::= head(Clause) [function]
+  rule head(L.) => L
+  rule head(L:-_.) => L
+

If the goal is unifiable with the fresh clause's head, replace the goal
+with the clause body, and empty the fresh cell (so that
+another clause can be chosen using the rule above):

+
  rule <k> L:Term => . ...</k>
+       <fresh>  L:Term . => . </fresh>
+
+  rule <k> L:Term :KItem => Ls ...</k>
+       <fresh>  L:Term :- Ls:Terms. => . </fresh>
+

Note that there is no problem if a clause is chosen whose
+conclusion literal does not unify with the first goal literal.
+The search
+option of krun will systematically try all clauses, so no
+solution is missed. Of course, the above is not the most efficient
+way to implement a logic programming language, but recall that our
+objective here was to present a simple and mathematically clean
+solution. We encourage the interested reader to consult the LOGIK++
+language definition for a more efficient definition of a richer logic
+programming language.

+
endmodule
+

// NOTE: this definition is not runnable as is.
+// It is intended for documentation and academic purposes only.

+

LOGIK

+ +

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+ +

This is the K semantic definition of LOGIK, a trivial language
+capturing the essence of the logic programming paradigm. In this
+definition, we explicitly focus on simplicity and mathematical
+clarity, not on advanced logic programming features or performance.
+Those are covered in the LOGIK++ extension under examples/logik++.

+

Specifically, a LOGIK program consists of a sequence of Horn clauses
+of the form

+
P :- P1, P2, ..., Pn .
+

followed by a query of the form

+
?- Q1, Q2, ..., Qm .
+

where P, P1, P2, ..., Pn, Q1, Q2,
+..., Qm are literals. The
+symbol :- is read "if". A literal has the form
+p(T1,T2,...,Tk), where p is a predicate symbol
+and where T1,T2,...,Tk are terms. Terms are built as
+usual, with operation symbols and variables. A common
+convention in logic programming languages, also adopted here, is that
+variables are capitalized and operation symbols are not. Operations
+with zero arguments are called constants and are written without
+parentheses, that is, c instead of c(). Horn
+clauses without conditions, called facts, are written
+without :-, that is, P. instead of P :- ..

+

For example, the LOGIK program below gives a few facts about a
+parent predicate, then several clauses defining some useful
+predicates including an ancestor predicate, and finally a
+query asking for those who both have ancestors and are ancestors
+themselves in the parent relation:

+
parent(david,john).
+parent(jim,david).
+parent(steve,jim).
+parent(nathan,steve).
+
+grandparent(A,B):-
+  parent(A,X),
+  parent(X,B).
+
+ancestor(A,B):-
+  parent(A,X),
+  parents(X,B).
+
+parents(X,X).
+parents(A,B):-
+  ancestor(A,B).
+
+both(X) :- ancestor(A,X), ancestor(X,B).
+
+?- both(X).
+

Above, we only have constant operation symbols, so these and variables
+are the only terms that can be used in predicates. As expected, the
+LOGIK program above will give us three solutions for X:
+david, steve, and jim. If we inline the
+both(X) predicate in the query, that is, if we replace the
+query with ?- ancestor(A,X), ancestor(X,B). then we get
+10 solutions, one for for each triple A, X, and
+B satisfying both predicates ancestor(A,X) and
+ancestor(X,B).

+

As another example, the program below defines an append
+predicate followed by a simple goal:

+
append(nil,L,L).
+append(cons(H,T),L,cons(H,Z)) :- append(T,L,Z).
+
+?- append(cons(a,nil), cons(b,nil), V).
+

Besides the predicate symbol append, the program above also
+includes a constant symbol nil and a binary operation symbol
+cons. Additionally, the query also includes two more
+constants, a and b. The capitalized identifiers are
+all variables. As expected, the LOGIK program above yields only one
+solution, namely V = cons(a,cons(b,nil)). On the other hand,
+if we change the query to:

+
?- append(L1, cons(a,L2), cons(a,cons(b,cons(a,nil)))).
+

then LOGIK yields two solutions: one where L1 is
+cons(a,cons(b,nil)) and L2 is nil,
+and another where L1 is nil and L2 is
+cons(a,cons(b,nil)).

+

The programs above all generated ground solutions, that is,
+solutions where the query variables are mapped to ground terms (i.e.,
+terms without variables). Let us now consider the following query:

+
?- append(cons(a,nil), Y, Z).
+

There are obviously infinitely many ground solutions for the query
+above, e.g.,
+Y = nil and Z = cons(a,nil),
+Y = cons(a,nil) and Z = cons(a,cons(a,nil)),
+Y = cons(b,nil) and Z = cons(a,cons(b,nil)),
+Y = cons(c,cons(b,nil)) and Z = cons(a,cons(c,cons(b,nil))),
+etc. However, all the ground solutions for the query above can be
+elegantly characterized by the property that Z is bound to a list
+starting with a and followed by the list that Y is
+bound to. This property can in fact be described as a symbolic solution
+to the query: Z = cons(a,Y) or, equivalently,
+Y = Symb and Z = cons(a,Symb). It is possible to
+define a ``more general than'' relation on such symbolic solutions,
+in the sense that the more particular solution can be obtained as a
+specialization/substitution of the more general one, and then it can
+be shown that the above is the most general solution to the
+stated query. Logic programming languages, including our LOGIK,
+attempt to always compute such most general solutions.

+

Logic programming languages are highly non-deterministic, in that
+several Horn clauses may be used at the same time, each possibly
+resulting in a different solution. Implementations of logic
+programming languages consist of complex, optimized search and
+indexing algorithms, which we are not concerned with here. Instead,
+we here take advantage of K's builtin support for search.
+Specifically, to find all the solutions of a LOGIK program, we have to
+use krun with the option --search. However, note
+that some programs have infinitely many solutions which cannot relate
+to each other by the "more general" relation. For example, the query

+
?- append(L1, cons(a,L2), L3) .
+

To address such cases and terminate, logic programming languages allow
+the user to choose how many solutions to be computed and displayed.
+In LOGIK, we can use the --bound option of krun for
+this purpose.

+

Finally, note that some queries have no solution. In some cases that
+is easy to detect by exhaustive analysis, such as for the following
+query:

+
?- append(cons(a,L1), L2, cons(b,L3)).
+

Logic programming languages, including LOGIK, terminate in such cases
+and report a no solution answer. However, there are cases where
+exhaustive analysis is not sufficient, such as for the query:

+
?- append(cons(a,L), nil, L).
+

In such cases, logic programming languages do not terminate. While
+one may devise techniques to detect non-termination in some cases,
+one cannot do it in general (same like for all Turing-complete
+languages).

+
requires "unification.k"
+
+module LOGIK-COMMON
+  imports DOMAINS-SYNTAX
+

Syntax

+ +

The syntax of LOGIK is straightforward: a program is a sequence of
+Horn clauses followed by a query:

+
  syntax Literal
+  syntax Term ::= Literal | Literal "(" Terms ")"
+  syntax Terms ::= List{Term,","}
+  syntax Clause ::= Term ":-" Terms "." | Term "."
+  syntax Query ::= "?-" Terms "."
+  syntax Pgm ::= Query | Clause Pgm
+endmodule
+
+module LOGIK-SYNTAX
+  imports LOGIK-COMMON
+  imports BUILTIN-ID-TOKENS
+

Variables and literals are defined as tokens following the conventions
+used in Prolog (variables start with _ or capital letter, while literals
+start with lower case letters):

+
  syntax #KVariable ::= r"[A-Z_][A-Za-z0-9_]*"   [token, prec(2)]
+                      | #UpperId                 [token]
+  syntax Term ::= #KVariable [klabel(#SemanticCastToTerm)]
+  syntax Literal ::= r"[a-z][a-zA-Z0-9_]*"                 [token]
+                   | #LowerId                              [token]
+endmodule
+
+module LOGIK
+  imports LOGIK-COMMON
+  imports DOMAINS
+  imports UNIFICATION
+

Unification is at the core of logic programming. Here we are
+going to use the predefined unification procedure (the same one we
+used in the type inferencers in Tutorial 5).

+

Configuration

+ +

The configuration stores each clause in its own cell for easy access,
+and the most general unifier in a cell named mgu, same like
+the type inferencers. The k cell holds the query and the
+fresh cell holds a fresh clause instance to be attempted on
+the next query item. To more easily read the solutions, we add a
+second top-level cell, solution. Both top cells are
+optional. Indeed, we start with the main top cell and, when a
+solution is found, we move it into the solution cell and
+discard the main cell.

+
  configuration <T color="yellow" multiplicity="?">
+                  <k color="green"> $PGM:Pgm </k>
+                  <fresh color="orange"> .K </fresh>
+                  <clauses color="red">
+                    <clause color="pink" multiplicity="*"> .K </clause>
+                  </clauses>
+                  <mgu> .K </mgu>
+                </T>
+                <solution multiplicity="?"> .K </solution>
+

Pre- and post-processing

+ +

Before we launch the semantics, we first scan the given program and
+place each clause in its own cell, and then place the query in the
+k cell and initialize the mgu with the variables from the query.

+

Note that we put a fresh instance of the clause to avoid interference with
+the query variables. By a "fresh instance" of a clause we mean one whose
+variables are renamed with fresh names; we need that in order to avoid
+undesired unification conflicts due to particular names chosen for
+variables in the original program, as well as conflicts due to
+subsequent uses of the same clause. It is safe to rename the
+variables in a clause, because clauses are universally quantified in
+their variables. This process of creating a fresh instance of a
+clause is similar to how we created fresh instances of type schemas in
+the higher-order type inferencer discussed in Tutorial 5. Indeed, we
+can safely regard clauses as "clause schemas" comprising infinitely
+many instances, one for each context.

+
  rule <k> C:Clause Pgm => Pgm </k>
+       (.Bag => <clause> #renameVariables(C) </clause>)
+
+  rule <k> ?- Ls:Terms. => Ls ...</k>
+       <mgu> _ => #variablesMap(#variables(Ls)) </mgu>
+

We also sequentialize the goals for easier processing:

+
  rule L:Term, Ls:Terms => L ~> Ls
+  rule .Terms => .
+

When all the goals are solved, indicated by the empty k
+cell, the calculated most general unifier (mgu) is in the mgu
+cell. In that case, to ease reading of the final solution we move the
+mgu in the solution cell and delete the rest of the
+configuration:

+
rule <T>... <k> . </k> <mgu> Theta </mgu> ...</T>
+  => <solution> Theta </solution>
+

Since we are not interested in seeing the failed attempts to solve
+the query, we collapse all the error configurations into an empty
+configuration (recall that both top-level cells in the configuration
+were declared optional). This way, if we see an empty configuration
+when we search for all solutions, we know that some attempts failed
+(but we do not know which ones).

+
// this would be nice, but we need feedback from the external unifier
+// for this.
+//  rule <T>... <mgu> _:MguError </mgu> ...</T> => .
+

Semantics

+ +

Once all the infrastructure is in place, the actual semantics of LOGIK
+is quite simple. All we have to do is to pick some (fresh instance of
+a) clause, then unify its conclusion with the first query literal, and
+then replace that literal with condition of the clause. The intuition
+here is the following: to satisfy the first literal in the query, we
+need to find some instance of some clause that matches it, and then to
+similarly show that we can satisfy the conditions of that clause.
+Mathematically, this is an instance of the proof principle called
+resolution: if p ∨ q and ¬ p ∨ r hold, then so does
+q ∨ r. We let it as an exercise to the reader to see how the two
+relate (hint: assume the negation of the goal together with all the
+clauses, and then derive false).

+

The following two rules are tightly connected and they together
+perform the following core task: pick a fresh instance of a clause
+which unifies with the first goal item, then add its conditions as new
+goals.

+

Pick a clause and generate a fresh instance of it when the
+fresh cell is empty:

+
  rule <fresh> . => #renameVariables(C) </fresh> <clause> C </clause>
+       <k> T:Term ...</k>
+  requires #unifiable(T,head(C))
+
+  syntax Term ::= head(Clause) [function]
+  rule head(L.) => L
+  rule head(L:-_.) => L
+

If the goal is unifiable with the fresh clause's head, replace the goal
+with the clause body, and empty the fresh cell (so that
+another clause can be chosen using the rule above):

+
  rule <k> L:Term => . ...</k>
+       <fresh>  L:Term . => . </fresh>
+
+  rule <k> L:Term :KItem => Ls ...</k>
+       <fresh>  L:Term :- Ls:Terms. => . </fresh>
+

Note that there is no problem if a clause is chosen whose
+conclusion literal does not unify with the first goal literal.
+The search
+option of krun will systematically try all clauses, so no
+solution is missed. Of course, the above is not the most efficient
+way to implement a logic programming language, but recall that our
+objective here was to present a simple and mathematically clean
+solution. We encourage the interested reader to consult the LOGIK++
+language definition for a more efficient definition of a richer logic
+programming language.

+
endmodule
+

Projects using K

+ +

A list of projects using the K framework. If you are working on something interesting, and you want to share it with the community,
+let us know on our socials, and we will feature you on this list.

+
+ + +
+
    +
  • +

    KAVM (Feb 2022 - Present)

    +

    The Algorand Virtual Machine and TEAL Semantics in K
    +KAVM leverages the K Framework to empower Algorand smart contracts' developers
    +with property-based testing and formal verification.

    +
  • +
  • +

    KPlutus (2016 - Present)

    +

    The K Semantics of Plutus-Core

    +
  • +
  • +

    Dedukti (Mar 2021 - Present)

    +

    This project aims to translate real K semantics into Dedukti.

    +
  • +
  • +

    KWasm (Aug 2015 - Present)

    +

    KWasm is the K semantics of WebAssembly.
    +WebAssembly is a low-level (but simple and streamlined) assembly language that was originally developed to provide a fast execution engine for browser-based tools.
    +More recently, it has been used in several blockchain smart-contract platforms as the underlying language for executing financial agreements.
    +KWasm has been used for measuring coverage of test-suites over Wasm code and verifying programs which are compiled to Wasm.

    +
  • +
  • +

    KEVM (Sep 2017 - Present)

    +

    KEVM is the K semantics of the Ethereum Virtual Machine.
    +It passes all the Ethereum Test Suite, and is used for verifying EVM programs.

    +
  • +
  • +

    IELE (Oct 2016 - Present)

    +

    IELE is the underlying VM integrated into the Cardano blockchain.
    +IELE is a register-based VM (inspired by LLVM), which attempts to avoid many of the missteps in design present in EVM.

    +
  • +
  • +

    K-Michelson (Oct 2019 - Present)

    +

    K-Michelson is the K semantics of Michelson blockchain programming language, which powers the Tezos blockchain.
    +KMichelson provides additional testing tools for developers, including a unit-testing framework which is extendable to symbolic property testing.

    +
  • +
  • +

    C (Jul 2010 - Present)

    +

    The K semantics of the C programming language specifies the translation, linking, and execution semantics of the C language according to the official C standard.
    +It has been used to build tools like RV-Match, which detects undefined behaviors in users programs by running their test-suites through the C semantics.

    +
  • +
+

Archived

+ + +
+
+ + diff --git a/exports/K.mobi b/exports/K.mobi new file mode 100644 index 00000000000..78a31e1ce7a Binary files /dev/null and b/exports/K.mobi differ diff --git a/exports/K.pdf b/exports/K.pdf new file mode 100644 index 00000000000..898ae572e7c Binary files /dev/null and b/exports/K.pdf differ diff --git a/faq/index.html b/faq/index.html new file mode 100644 index 00000000000..3a047aabca7 --- /dev/null +++ b/faq/index.html @@ -0,0 +1,468 @@ + + + + + + + + + + + + + + +FAQ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

FAQ

+

General questions

+

What is K?

+

[13 Dec, 2013] K is a framework for defining programming languages. Once you define a language, K gives you a series of tools for that language, such as: a parser, an interpreter, a state-space explorer (like a model-checker for reachability), and even a deductive program verifier. We continuously work on making these tools better and on adding new tools.

+

What is a language definition?

+

[13 Dec, 2013] A language definition consists of two parts: syntax and semantics. The syntax is defined using a BNF-style, enriched with several features to ease the semantics. The semantics tells what each language construct is meant to do. This way, a language definition says both how the programs in your language should look like and also what they mean, or how they execute.

+

What is the difference between a definition and an implementation?

+

[13 Dec, 2013] No difference in K. We think of K definitions as formal, rigorous implementations of the language. In fact, many users of K have no background on programming language semantics, they think of K as a domain-specific language for implementing programming languages. The benefit of implementing your language in K is that you can make use of the tools that K offers, which is not possible when you implement your language in a conventional programming language.

+

Why K?

+

[13 Dec, 2013] There was and still is a considerable amount of effort spent by many scientists on developing parsing, model-checking, program verification and other formal program analysis techniques. Most of these techniques are language independent, yet a considerable amount of effort is then spent on developing language-specific tools based on these techniques. For example, developing a model-checker or a program verifier for Java, or C, or Python, is a serious endeavor, that only very few highly-skilled people can attempt. We believe that all these language-specific tools can be automatically derived from the K language definition, so that language designers spend the time only once to define their language and then get not only an implementation of their language, but also all the other tools, essentially for free.

+

What is the difference between K and ...

+

SDF

+

[13 Dec, 2013]sdf is a parser generator. Simply speaking, it takes as input a grammar written in the SDF format and a text, and creates the abstract-syntax tree of that text corresponding to the grammar specification. K currently uses SDF for its parsing needs, but we integrated it into a more complex environment suitable for semantic definitions. Using the same language specification, we generate multiple parsers for different purposes: parse programs, parse rewrite rules, etc. Another difference is that we changed a bit the syntax of the grammar specification. We adopted a BNF-style notation whereas SDF uses an algebraic specification, but we keept the same disambiguation system with priorities and associativity filters.

+

Maude

+

PLT Redex

+

[16 Dec, 2013]plt redex is a language definitional framework based on reduction semantics with evaluation contexts, a type of Structural Operational Semantics. A PLT definition consists of the syntax for the language (including the syntax of the execution configuration, if needed), followed by a syntax for evaluation contexts which allows identifying the next reducible expression (redex). The rules can specify the parts of the context (and abstract parts of it using variables), and can alter both the redex and the context. PLT Redex offers a suite of tools built on top of the Racket Scheme-based IDE to help visualize and explore executions. K borrows from PLT Redex the idea of evaluation contexts, and extends it further allowing more complex conditions be put on them. A distinctive difference between Redex and K is the fact that in K evaluation contexts are used only for the computational fragment of the executing configuration, the rules applying modulo the configuration abstraction. This, for example, allows K to more easily specify synchronous communication of agents or threads.

+

Spoofax

+

Rascal

+

OTT

+

ATL and Model-Driven Engineering

+

[14 Dec, 2013]atl (Atlas Transformation Language) falls in the Model-Driven Engineering (MDE) field and includes a model transformation language and toolkit. ATL is also based on rules, which provide a means to produce a target model Mb conforming to a meta-model MMb, from a source model Ma conforming to a meta-model MMa. It should not be difficult to define such model transformations using K, this way effectively using the target meta-model MMb to give semantics to the source meta-model MMa. Moreover, if MMa and MMb have K semantics themselves, then the K tool can be used for proving the conformance of the transformation. Note, however, that K does not currently supply any explicit support for meta-model technologies, such as EMF (Eclipse Modelling Framework), etc.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + diff --git a/index.html b/index.html new file mode 100644 index 00000000000..d6cdff3e2fc --- /dev/null +++ b/index.html @@ -0,0 +1,421 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K is a rewrite-based +executable semantic framework in which programming languages, type +systems and formal analysis tools can be defined using configurations +and rules. Configurations organize the state in units called cells, +which are labeled and can be nested. K rewrite rules make it explicit +which parts of the term are read-only, write-only, read-write, or +unused. This makes K suitable for defining truly concurrent languages +even in the presence of sharing. Computations are represented as +syntactic extensions of the original language abstract syntax, using a +nested list structure which sequentializes computational tasks, such +as program fragments. Computations are like any other terms in a +rewriting environment: they can be matched, moved from one place to +another, modified, or deleted. This makes K suitable for defining +control-intensive features such as abrupt termination, exceptions, or +call/cc.

+

K Tool Download

+
    +
  • Install from the latest K GitHub Release.
  • +
  • Install pyk, K's scripting interface for Python. Check the API documentation for a complete reference of supported features.
  • +
  • Try our Editor Support page for links to K syntax highlighting definitions for various popular editors/IDEs. Please feel free to contribute.
  • +
  • Build or browse the code on GitHub, where you can also report bugs.
  • +
+

Learn K

+ +

Support

+ +

Resources

+ +
+
+ + + +
+ +
+
+ + + + + + + + + + + + diff --git a/install b/install new file mode 100644 index 00000000000..70476dbcd6f --- /dev/null +++ b/install @@ -0,0 +1,71 @@ +#!/usr/bin/env bash + +{ # Prevent execution if this script was only partially downloaded + set -e + + GREEN='\033[0;32m' + RED='\033[0;31m' + NC='\033[0m' + + NIX_POST_INSTALL_MESSAGE="To ensure that the necessary environment variables are set, either log in again, or type + + . /nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh + +in your shell." + + oops() { + >&2 echo -e "${RED}error:${NC} $1" + exit 1 + } + + [[ "$(id -u)" -eq 0 ]] && oops "Please run this script as a regular user" + + # Check if nix is already installed and is at least version 2.4 + if command -v nix > /dev/null; then + NIX_VERSION=$(nix --version | sed -ne 's/[^0-9]*\(\([0-9]\.\)\)/\1/p') + NIX_VERSION_MINOR=$(echo "$NIX_VERSION" | cut -d. -f2) + if [ "$NIX_VERSION_MINOR" -gt "3" ]; then + echo -e "Detected nix version $NIX_VERSION. Proceeding with K framework install." + else + oops "It appears that you have a version of nix on your system that's too old. The K framework installer requires nix >=2.4. Please update nix and try again." + fi + else + read -p "It appears that you don't have nix installed. Since the K framework needs nix for distribution, this script will attempt to install nix first. Would you like to proceed? [y/N]" -n 1 -r + echo + if [[ $REPLY =~ ^[Yy]$ ]] + then + echo "Downloading nix and running the installer..." + curl --proto '=https' --tlsv1.2 -sSf -L https://install.determinate.systems/nix | sh -s -- install --no-confirm \ + --extra-conf "trusted-public-keys = cache.nixos.org-1:6NCHdD59X431o0gWypbMrAURkbJ16ZPMQFGspcDShjY= k-framework.cachix.org-1:jeyMXB2h28gpNRjuVkehg+zLj62ma1RnyyopA/20yFE= k-framework-binary.cachix.org-1:pJedQ8iG19BW3v/DMMmiRVtwRBGO3fyMv2Ws0OpBADs=" \ + --extra-conf "substituters = https://cache.nixos.org https://k-framework.cachix.org" + if [ -e '/nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh' ]; then + . '/nix/var/nix/profiles/default/etc/profile.d/nix-daemon.sh' + else + oops "Could not source nix." + fi + NIX_FRESH_INSTALL=true + else + oops "Cannot proceed with the installation without nix." + fi + fi + + PREV_KUP_INSTALL=$(nix profile list --experimental-features 'nix-command flakes' | awk '/packages\..*\.kup/ {print $1}') + if ! [[ -z "$PREV_KUP_INSTALL" ]]; then + echo "Removing previous K framework installer versions ..." + GC_DONT_GC=1 nix profile remove $PREV_KUP_INSTALL \ + --experimental-features 'nix-command flakes' + fi + + echo "Installing the K framework installer utility (kup) ..." + + GC_DONT_GC=1 nix profile install github:runtimeverification/kup#kup \ + --option extra-substituters 'https://k-framework.cachix.org' \ + --option extra-trusted-public-keys 'k-framework.cachix.org-1:jeyMXB2h28gpNRjuVkehg+zLj62ma1RnyyopA/20yFE=' \ + --experimental-features 'nix-command flakes' + + echo -e "${GREEN}All set!${NC}" + if [ -n "$NIX_FRESH_INSTALL" ]; then + echo -e "$NIX_POST_INSTALL_MESSAGE" + fi + +} diff --git a/k-distribution/INSTALL/index.html b/k-distribution/INSTALL/index.html new file mode 100644 index 00000000000..80e96f9d648 --- /dev/null +++ b/k-distribution/INSTALL/index.html @@ -0,0 +1,597 @@ + + + + + + + + + + + + + + +Installing the K Framework | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Installing the K Framework

+

Fast Installation (preferred)

+

The preferred way to install K is the kup tool, which is based on Nix. +No knowledge of Nix is required to use kup.

+

Install kup and K by running the following:

+
shell
bash <(curl https://kframework.org/install) +kup install k +
+

List available versions with:

+
shell
kup list k +
+

If kup indicates that there's a newer version, you can update by simply running:

+
shell
kup install k +
+

To install a specific version, run:

+
shell
kup install k --version v6.3.11 +
+

Note that the versions marked as ✅ are cached in Runtime Verification's Nix binary cache and thus are the fastest to install.

+

Install through packages

+

We currently strive to provide packages for the following platforms:

+
    +
  • Ubuntu Jammy Jellyfish (22.04)
  • +
  • macOS Ventura (13) via Homebrew
  • +
  • Docker Images
  • +
+

Pre-installation Notes

+
    +
  • +

    We do not currently support running K natively on Windows. To use K on +Windows 10, you are encouraged to install the +Windows Subsystem for Linux (version 2) +and follow the instructions for installing Ubuntu Jammy.

    +

    If you have already installed WSL, before proceeding, you will need to +enter the WSL environment. You can do this by:

    +
      +
    1. opening up the command prompt (accessible by searching cmd or +command prompt from the start menu);
    2. +
    3. using the wsl.exe command to access the WSL environment.
    4. +
    +
  • +
  • +

    To use K in other non-linux environments (e.g. Windows 8 or earlier), +you will need to use a virtual machine (VM) software. We assume you have:

    +
      +
    1. Created a virtual machine
    2. +
    3. Installed a Linux distribution (e.g. Ubuntu Jammy Jellyfish) on your +virtual machine
    4. +
    +

    Consult your virtual machine software if you need help with the above +steps. We recommend the free VirtualBox virtual machine software.

    +

    Before proceeding, follow the virtual machine softare UI to start your +Linux virtual machine and enter the command line environment.

    +
  • +
  • +

    WSL and virtual machine users should be aware that, if you use your web +browser to download the package, you will need to make it accessible to +the command line environment. For this reason, we recommend downloading the +package from the command line directly using a tool like wget. For +example, you could copy the package download URL and then type:

    +
    wget <package-download-url>
    +
    +

    where <package-download-url> is replaced by the URL you just copied.

    +
  • +
  • +

    K depends on version 4.8.15 of Z3, which may not be supplied by package +managers. If this is the case, it should be built and installed from source +following the +instructions in +the Z3 repository. Other versions (older and newer) are not supported by K, +and may lead to incorrect behaviour or performance issues.

    +
  • +
+

Downloading Packages

+

Download the appropriate package from the GitHub, via the +Releases page. +Releases are generated as often as possible from master build.

+

Installing Packages

+

For version X.Y.Z, distribution DISTRO, and package ID ID, the following +instructions tell you how to install on each system. Note that this typically +requires about ~1.4GB of dependencies and will take some time.

+
    +
  • On Linux systems, K will typically be installed under /usr.
  • +
  • On macOS/brew, K will typically be installed under /usr/local.
  • +
+

Ubuntu Jammy (22.04)

+
sh
sudo apt install ./kframework_amd64_ubuntu_jammy.deb +
+

macOS (Homebrew)

+

Homebrew (or just brew) is a third-party package manager +for MacOS. +If you have not installed brew, you must do so before installing the K +Framework brew package.

+

With brew installed, do the following to install the K Framework brew package +(with build number BN):

+
sh
brew install kframework--X.Y.Z.ID.bottle.BN.tar.gz -v +
+

Homebrew Alternate Installation

+

To directly install the latest K Framework brew package without needing to +download it separately, do the following:

+
sh
brew install runtimeverification/k/kframework +
+

Or, to streamline future K Framework upgrades, you can tap the K Framework +package repository. This lets future installations/upgrades/etc... use the +unprefixed package name.

+
sh
brew tap runtimeverification/k +brew install kframework +
+

Docker Images

+

Docker images with K pre-installed are available at the +runtimeverification/kframework-k Docker Hub repository.

+

Each release at COMMIT_ID has an image associated with it at +runtimeverificationinc/kframework-k:ubuntu-jammy-COMMIT_ID.

+

To run the image directly:

+
sh
docker run -it runtimeverificationinc/kframework-k:ubuntu-jammy-COMMIT_ID +
+

and to make a Docker Image based on it, use the following line in your +Dockerfile:

+
Dockerfile
FROM runtimeverificationinc/kframework-k:ubuntu-jammy-COMMIT_ID +
+

We also create Ubuntu 22.04 images with the ubuntu-jammy-COMMIT_ID tags.

+

Testing Packages

+

The easiest way to test the K package is to copy a K tutorial language and +check if you can compile and run an included example.

+
    +
  1. +

    Start by cloning the K tutorial from the K PL Tutorial. This command typically will be like:

    +
    sh
    $ git clone https://www.github.com/runtimeverification/pl-tutorial +
    +
  2. +
  3. +

    Now you can try to run some programs:

    +
    sh
    $ cd pl-tutorial/2_languages/1_simple/1_untyped +$ make kompile +$ krun tests/diverse/factorial.simple +
    +
  4. +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/domains/index.html b/k-distribution/include/kframework/builtin/domains/index.html new file mode 100644 index 00000000000..4406736c19e --- /dev/null +++ b/k-distribution/include/kframework/builtin/domains/index.html @@ -0,0 +1,3839 @@ + + + + + + + + + + + + + + +Basic Builtin Types in K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Basic Builtin Types in K

+

A major piece of the K prelude consists of a series of modules that contain +implementations of basic data types and language features in K. You do not need +to require this file yourself; it is required automatically in every K +definition unless --no-prelude is passed to kompile. K may not work correctly +if some of these modules do not exist or do not declare certain functions.

+

Note that some functions in the K prelude functions are not total, that is, +they are not defined on all possible input values. When you invoke such a +function on an undefined input, the behavior is undefined. In particular, when +this happens, interpreters generated by the K LLVM backend may crash.

+
k
requires "kast.md" +
+

Default Modules

+

K declares certain modules that contain most of the builtins you usually want +when defining a language in K. In particular, this includes integers, booleans, +strings, identifiers, I/O, lists, maps, and sets. The DOMAINS-SYNTAX module +is designed to be imported by the syntax module of the language and contains +only the program-level syntax of identifiers, integers, booleans, and strings. +The DOMAINS module contains the rest of the syntax, including builtin +functions over those and the remaining types.

+

Note that not all modules are included in DOMAINS. A few less-common modules +are not, including ARRAY, COLLECTIONS, FLOAT, STRING-BUFFER, BYTES, +K-REFLECTION, MINT.

+
k
module DOMAINS-SYNTAX + imports SORT-K + imports ID-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + imports STRING-SYNTAX +endmodule + +module DOMAINS + imports DOMAINS-SYNTAX + imports INT + imports BOOL + imports STRING + imports BASIC-K + imports LIST + imports K-IO + imports MAP + imports SET + imports ID + imports K-EQUAL +endmodule +
+

Arrays

+

Provided here is an implementation for fixed-sized, contiguous maps from Int +to KItem. In some previous versions of K, the Array type was a builtin type +backed by mutable arrays of objects. However, in modern K, the Array type is +implemented by means of the List type; users should not access this interface +directly and should instead make only of the functions listed below. Users of +this module should import only the ARRAY module.

+
k
module ARRAY-SYNTAX + imports private LIST + + syntax Array +
+

Array lookup

+

You can look up an element in an Array by its index in O(log(N)) time. Note +that the base of the logarithm is a relatively high number and thus the time is +effectively constant.

+
k
syntax KItem ::= Array "[" Int "]" [function] +
+

Array update

+

You can create a new Array with a new value for a key in O(log(N)) time, or +effectively constant.

+
k
syntax Array ::= Array "[" key: Int "<-" value: KItem "]" [function, klabel(_[_<-_]), symbol] +
+

Array reset

+

You can create a new Array where a particular key is reset to its default +value in O(log(N)) time, or effectively constant.

+
k
syntax Array ::= Array "[" Int "<-" "undef" "]" [function] +
+

Multiple array update

+

You can create a new Array from a List L of size N where the N +elements starting at index are replaced with the contents of L, in +O(N*log(K)) time (where K is the size of the array), or effectively linear. +Having index + N > K yields an exception.

+
k
syntax Array ::= updateArray(Array, index: Int, List) [function] +
+

Array fill

+

You can create a new Array where the length elements starting at index +are replaced with value, in O(length*log(N)) time, or effectively linear.

+
k
syntax Array ::= fillArray(Array, index: Int, length: Int, value: KItem) [function] +
+

Array range check

+

You can test whether an integer is within the bounds of an array in O(1) time.

+
k
syntax Bool ::= Int "in_keys" "(" Array ")" [function, total] +
+
k
endmodule + +module ARRAY-IN-K [private] + imports public ARRAY-SYNTAX + imports private LIST + imports private K-EQUAL + imports private INT + imports private BOOL +
+

Array creation

+

You can create an array with length elements where each element is +initialized to value in O(1) time. Note that the array is stored in a manner +where only the highest element that is actually modified is given a value +in its internal representation, which means that subsequent array operations +may incur a one-time O(N) resizing cost, possibly amortized across multiple +operations.

+
k
syntax Array ::= makeArray(length: Int, value: KItem) [function, public] +
+

Implementation of Arrays

+

The remainder of this section consists of an implementation in K of the +operations listed above. Users of the ARRAY module should not make use +of any of the syntax defined in any of these modules.

+
k
syntax Array ::= arr(List, Int, KItem) + + rule makeArray(I::Int, D::KItem) => arr(.List, I, D) + + rule arr(L::List, _, _ ) [ IDX::Int ] => L[IDX] requires 0 <=Int IDX andBool IDX <Int size(L) + rule arr(_ , _, D::KItem) [ _ ] => D [owise] + + syntax List ::= ensureOffsetList(List, Int, KItem) [function] + rule ensureOffsetList(L::List, IDX::Int, D::KItem) => L makeList(IDX +Int 1 -Int size(L), D) requires IDX >=Int size(L) + rule ensureOffsetList(L::List, IDX::Int, _::KItem) => L requires notBool IDX >=Int size(L) + + rule arr(L::List, I::Int, D::KItem) [ IDX::Int <- VAL::KItem ] => arr(ensureOffsetList(L, IDX, D) [ IDX <- VAL ], I, D) + + rule arr(L::List, I::Int, D::KItem) [ IDX::Int <- undef ] => arr(L, I, D) [ IDX <- D ] + + rule updateArray(arr(L::List, I::Int, D::KItem), IDX::Int, L2::List) => arr(updateList(ensureOffsetList(L, IDX +Int size(L2) -Int 1, D), IDX, L2), I, D) + + rule fillArray(arr(L::List, I::Int, D::KItem), IDX::Int, LEN::Int, VAL::KItem) => arr(fillList(ensureOffsetList(L, IDX +Int LEN -Int 1, D), IDX, LEN, VAL), I, D) + + rule IDX::Int in_keys(arr(_, I::Int, _)) => IDX >=Int 0 andBool IDX <Int I +endmodule + +module ARRAY-SYMBOLIC [symbolic] + imports ARRAY-IN-K +endmodule + +module ARRAY-KORE + imports ARRAY-IN-K +endmodule + +module ARRAY + imports ARRAY-SYMBOLIC + imports ARRAY-KORE +endmodule +
+

Maps

+

Provided here is the syntax of an implementation of immutable, associative, +commutative maps from KItem to KItem. This type is hooked to an +implementation of maps provided by the backend. For more information on +matching on maps and allowable patterns for doing so, refer to K's +user documentation.

+
k
module MAP + imports private BOOL-SYNTAX + imports private INT-SYNTAX + imports private LIST + imports private SET + + syntax Map [hook(MAP.Map)] +
+

Map concatenation

+

The Map sort represents a generalized associative array. Each key can be +paired with an arbitrary value, and can be used to reference its associated +value. Multiple bindings for the same key are not allowed.

+

You can construct a new Map consisting of key/value pairs of two Maps. The +result is #False if the maps have keys in common (in particular, this will +yield an exception during concrete execution). This operation is O(Nlog(M)) +where N is the size of the smaller map, when it appears on the right hand side. +When it appears on the left hand side and all variables are bound, it is +O(Nlog(M)) where M is the size of the map it is matching and N is the number +of elements being matched. When it appears on the left hand side containing +variables not bound elsewhere in the term, it is O(N^K) where N is the size of +the map it is matching and K is the number of unbound keys being matched. In +other words, one unbound variable is linear, two is quadratic, three is cubic, +etc.

+
k
syntax Map ::= Map Map [left, function, hook(MAP.concat), klabel(_Map_), symbol, assoc, comm, unit(.Map), element(_|->_), index(0), format(%1%n%2)] +
+

Map unit

+

The map with zero elements is represented by .Map.

+
k
syntax Map ::= ".Map" [function, total, hook(MAP.unit), klabel(.Map), symbol] +
+

Map elements

+

An element of a Map is constructed via the |-> operator. The key is on the +left and the value is on the right.

+
k
syntax Map ::= KItem "|->" KItem [function, total, hook(MAP.element), klabel(_|->_), symbol, injective] + + syntax priority _|->_ > _Map_ .Map + syntax non-assoc _|->_ +
+

Map lookup

+

You can look up the value associated with the key of a map in O(log(N)) time. +Note that the base of the logarithm is a relatively high number and thus the +time is effectively constant. The value is #False if the key is not in the +map (in particular, this will yield an exception during concrete execution).

+
k
syntax KItem ::= Map "[" KItem "]" [function, hook(MAP.lookup), klabel(Map:lookup), symbol] +
+

Map lookup with default

+

You can also look up the value associated with the key of a map using a +total function that assigns a specific default value if the key is not present +in the map. This operation is also O(log(N)), or effectively constant.

+
k
syntax KItem ::= Map "[" KItem "]" "orDefault" KItem [function, total, hook(MAP.lookupOrDefault), klabel(Map:lookupOrDefault)] +
+

Map update

+

You can insert a key/value pair into a map in O(log(N)) time, or effectively +constant.

+
k
syntax Map ::= Map "[" key: KItem "<-" value: KItem "]" [function, total, klabel(Map:update), symbol, hook(MAP.update), prefer] +
+

Map delete

+

You can remove a key/value pair from a map via its key in O(log(N)) time, or +effectively constant.

+
k
syntax Map ::= Map "[" KItem "<-" "undef" "]" [function, total, hook(MAP.remove), klabel(_[_<-undef]), symbol] +
+

Map difference

+

You can remove the key/value pairs in a map that are present in another map in +O(N*log(M)) time (where M is the size of the first map and N is the size of the +second), or effectively linear. Note that only keys whose value is the same +in both maps are removed. To remove all the keys in one map from another map, +you can say removeAll(M1, keys(M2)).

+
k
syntax Map ::= Map "-Map" Map [function, total, hook(MAP.difference)] +
+

Multiple map update

+

You can update a map by adding all the key/value pairs in the second map in +O(N*log(M)) time (where M is the size of the first map and N is the size of the +second map), or effectively linear. If any keys are present in both maps, the +value from the second map overwrites the value in the first. This function is +total, which is distinct from map concatenation, a partial function only +defined on maps with disjoint keys.

+
k
syntax Map ::= updateMap(Map, Map) [function, total, hook(MAP.updateAll)] +
+

Multiple map removal

+

You can remove a Set of keys from a map in O(N*log(M)) time (where M is the +size of the Map and N is the size of the Set), or effectively linear.

+
k
syntax Map ::= removeAll(Map, Set) [function, total, hook(MAP.removeAll)] +
+

Map keys (as Set)

+

You can get a Set of all the keys in a Map in O(N) time.

+
k
syntax Set ::= keys(Map) [function, total, hook(MAP.keys)] +
+

Map keys (as List)

+

You can get a List of all the keys in a Map in O(N) time.

+
k
syntax List ::= "keys_list" "(" Map ")" [function, hook(MAP.keys_list)] +
+

Map key membership

+

You can check whether a key is present in a map in O(1) time.

+
k
syntax Bool ::= KItem "in_keys" "(" Map ")" [function, total, hook(MAP.in_keys)] +
+

Map values (as List)

+

You can get a List of all the values in a map in O(N) time.

+
k
syntax List ::= values(Map) [function, hook(MAP.values)] +
+

Map size

+

You can get the number of key/value pairs in a map in O(1) time.

+
k
syntax Int ::= size(Map) [function, total, hook(MAP.size), klabel(sizeMap)] +
+

Map inclusion

+

You can determine whether a Map is a strict subset of another Map in O(N) +time (where N is the size of the first map). Only keys that are bound to the +same value are considered equal.

+
k
syntax Bool ::= Map "<=Map" Map [function, total, hook(MAP.inclusion)] +
+

Map choice

+

You can get an arbitrarily chosen key of a Map in O(1) time. The same key +will always be returned for the same map, but no guarantee is given that two +different maps will return the same element, even if they are similar.

+
k
syntax KItem ::= choice(Map) [function, hook(MAP.choice), klabel(Map:choice)] +
+

Implementation of Maps

+

The remainder of this section contains lemmas used by the Java and Haskell +backend to simplify expressions of sort Map. They do not affect the semantics +of maps, merely describing additional rules that the backend can use to +simplify terms.

+
k
endmodule + +module MAP-KORE-SYMBOLIC [symbolic,haskell] + imports MAP + imports private K-EQUAL + imports private BOOL + + rule #Ceil(@M:Map [@K:KItem]) => {(@K in_keys(@M)) #Equals true} #And #Ceil(@M) #And #Ceil(@K) [simplification] + + // Symbolic update + + // Adding the definedness condition `notBool (K in_keys(M))` in the ensures clause of the following rule would be redundant + // because K also appears in the rhs, preserving the case when it's #Bottom. + rule (K |-> _ M:Map) [ K <- V ] => (K |-> V M) [simplification] + rule M:Map [ K <- V ] => (K |-> V M) requires notBool (K in_keys(M)) [simplification] + rule M:Map [ K <- _ ] [ K <- V ] => M [ K <- V ] [simplification] + // Adding the definedness condition `notBool (K1 in_keys(M))` in the ensures clause of the following rule would be redundant + // because K1 also appears in the rhs, preserving the case when it's #Bottom. + rule (K1 |-> V1 M:Map) [ K2 <- V2 ] => (K1 |-> V1 (M [ K2 <- V2 ])) requires K1 =/=K K2 [simplification] + + // Symbolic remove + rule (K |-> _ M:Map) [ K <- undef ] => M ensures notBool (K in_keys(M)) [simplification] + rule M:Map [ K <- undef ] => M requires notBool (K in_keys(M)) [simplification] + // Adding the definedness condition `notBool (K1 in_keys(M))` in the ensures clause of the following rule would be redundant + // because K1 also appears in the rhs, preserving the case when it's #Bottom. + rule (K1 |-> V1 M:Map) [ K2 <- undef ] => (K1 |-> V1 (M [ K2 <- undef ])) requires K1 =/=K K2 [simplification] + + // Symbolic lookup + rule (K |-> V M:Map) [ K ] => V ensures notBool (K in_keys(M)) [simplification] + rule (K1 |-> _V M:Map) [ K2 ] => M [K2] requires K1 =/=K K2 ensures notBool (K1 in_keys(M)) [simplification] + rule (_MAP:Map [ K <- V1 ]) [ K ] => V1 [simplification] + rule ( MAP:Map [ K1 <- _V1 ]) [ K2 ] => MAP [ K2 ] requires K1 =/=K K2 [simplification] + + rule (K |-> V M:Map) [ K ] orDefault _ => V ensures notBool (K in_keys(M)) [simplification] + rule (K1 |-> _V M:Map) [ K2 ] orDefault D => M [K2] orDefault D requires K1 =/=K K2 ensures notBool (K1 in_keys(M)) [simplification] + rule (_MAP:Map [ K <- V1 ]) [ K ] orDefault _ => V1 [simplification] + rule ( MAP:Map [ K1 <- _V1 ]) [ K2 ] orDefault D => MAP [ K2 ] orDefault D requires K1 =/=K K2 [simplification] + rule .Map [ _ ] orDefault D => D [simplification] + + // Symbolic in_keys + rule K in_keys(_M [ K <- undef ]) => false [simplification] + rule K in_keys(_M [ K <- _ ]) => true [simplification] + rule K1 in_keys(M [ K2 <- _ ]) => true requires K1 ==K K2 orBool K1 in_keys(M) [simplification] + rule K1 in_keys(M [ K2 <- _ ]) => K1 in_keys(M) requires K1 =/=K K2 [simplification] + + rule {false #Equals @Key in_keys(.Map)} => #Ceil(@Key) [simplification] + rule {@Key in_keys(.Map) #Equals false} => #Ceil(@Key) [simplification] + rule {false #Equals @Key in_keys(Key' |-> Val @M)} => #Ceil(@Key) #And #Ceil(Key' |-> Val @M) #And #Not({@Key #Equals Key'}) #And {false #Equals @Key in_keys(@M)} [simplification] + rule {@Key in_keys(Key' |-> Val @M) #Equals false} => #Ceil(@Key) #And #Ceil(Key' |-> Val @M) #And #Not({@Key #Equals Key'}) #And {@Key in_keys(@M) #Equals false} [simplification] + +/* +// The rule below is automatically generated by the frontend for every sort +// hooked to MAP.Map. It is left here to serve as documentation. + + rule #Ceil(@M:Map (@K:KItem |-> @V:KItem)) => {(@K in_keys(@M)) #Equals false} #And #Ceil(@M) #And #Ceil(@K) #And #Ceil(@V) + [simplification] +*/ +endmodule + +module MAP-SYMBOLIC + imports MAP-KORE-SYMBOLIC +endmodule +
+

Range Maps

+

Provided here is the syntax of an implementation of immutable, associative, +commutative range maps from Int to KItem. This type is hooked to an +implementation of range maps provided by the LLVM backend. +Currently, this type is not supported by other backends. +Although the underlying range map data structure supports any key sort, the +current implementation by the backend only supports Int keys due to +limitations of the underlying ordering function.

+
k
module RANGEMAP + imports private BOOL-SYNTAX + imports private INT-SYNTAX + imports private LIST + imports private SET + +
+

Range, bounded inclusively below and exclusively above.

+
k
syntax Range ::= "[" KItem "," KItem ")" [klabel(Rangemap:Range), symbol] + + syntax RangeMap [hook(RANGEMAP.RangeMap)] +
+

Range map concatenation

+

The RangeMap sort represents a map whose keys are stored as ranges, bounded +inclusively below and exclusively above. Contiguous or overlapping ranges that +map to the same value are merged into a single range.

+

You can construct a new RangeMap consisting of range/value pairs of two +RangeMaps. If the RangeMaps have overlapping ranges an exception will be +thrown during concrete execution. This operation is O(N*log(M)) (where N is +the size of the smaller map and M is the size of the larger map).

+
k
syntax RangeMap ::= RangeMap RangeMap [left, function, hook(RANGEMAP.concat), klabel(_RangeMap_), symbol, assoc, comm, unit(.RangeMap), element(_r|->_), index(0), format(%1%n%2)] +
+

Range map unit

+

The RangeMap with zero elements is represented by .RangeMap.

+
k
syntax RangeMap ::= ".RangeMap" [function, total, hook(RANGEMAP.unit), klabel(.RangeMap), symbol] +
+

Range map elements

+

An element of a RangeMap is constructed via the r|-> operator. The range +of keys is on the left, and the value is on the right.

+
k
syntax RangeMap ::= Range "r|->" KItem [function, hook(RANGEMAP.elementRng), klabel(_r|->_), symbol, injective] + + syntax priority _r|->_ > _RangeMap_ .RangeMap + syntax non-assoc _r|->_ +
+

Range map lookup

+

You can look up the value associated with a key of a RangeMap in O(log(N)) +time (where N is the size of the RangeMap). This will yield an exception +during concrete execution if the key is not in the range map.

+
k
syntax KItem ::= RangeMap "[" KItem "]" [function, hook(RANGEMAP.lookup), klabel(RangeMap:lookup), symbol] +
+

Range map lookup with default

+

You can also look up the value associated with a key of a RangeMap using a +total function that assigns a specific default value if the key is not present +in the RangeMap. This operation is also O(log(N)) (where N is the size of +the range map).

+
k
syntax KItem ::= RangeMap "[" KItem "]" "orDefault" KItem [function, total, hook(RANGEMAP.lookupOrDefault), klabel(RangeMap:lookupOrDefault)] +
+

Range map lookup for range of key

+

You can look up for the range that a key of a RangeMap is stored in in +O(log(N)) time (where N is the size of the RangeMap). This will yield an +exception during concrete execution if the key is not in the range map.

+
k
syntax Range ::= "find_range" "(" RangeMap "," KItem ")" [function, hook(RANGEMAP.find_range), klabel(RangeMap:find_range)] +
+

Range map update

+

You can insert a range/value pair into a RangeMap in O(log(N)) time (where N +is the size of the RangeMap). Any ranges adjacent to or overlapping with the +range to be inserted will be updated accordingly.

+
k
syntax RangeMap ::= RangeMap "[" keyRange: Range "<-" value: KItem "]" [function, klabel(RangeMap:update), symbol, hook(RANGEMAP.updateRng), prefer] +
+

Range map delete

+

You can remove a range/value pair from a RangeMap in O(log(N)) time (where N +is the size of the RangeMap). If all or any part of the range is present in +the range map, it will be removed.

+
k
syntax RangeMap ::= RangeMap "[" Range "<-" "undef" "]" [function, hook(RANGEMAP.removeRng), klabel(_r[_<-undef]), symbol] +
+

Range map difference

+

You can remove the range/value pairs in a RangeMap that are also present in +another RangeMap in O(max{M,N}*log(M)) time (where M is the size of the +first RangeMap and N is the size of the second RangeMap). Note that only +the parts of overlapping ranges whose value is the same in both range maps +will be removed.

+
k
syntax RangeMap ::= RangeMap "-RangeMap" RangeMap [function, total, hook(RANGEMAP.difference)] +
+

Multiple range map update

+

You can update a RangeMap by adding all the range/value pairs in the second +RangeMap in O(N*log(M+N)) time (where M is the size of the first RangeMap +and N is the size of the second RangeMap). If any ranges are overlapping, +the value from the second range map overwrites the value in the first for the +parts where ranges are overlapping. This function is total, which is distinct +from range map concatenation, a partial function only defined on range maps +with non overlapping ranges.

+
k
syntax RangeMap ::= updateRangeMap(RangeMap, RangeMap) [function, total, hook(RANGEMAP.updateAll)] +
+

Multiple range map removal

+

You can remove a Set of ranges from a RangeMap in O(N*log(M)) time (where +M is the size of the RangeMap and N is the size of the Set). For every +range in the set, all or any part of it that is present in the range map will +be removed.

+
k
syntax RangeMap ::= removeAll(RangeMap, Set) [function, hook(RANGEMAP.removeAll)] +
+

Range map keys (as Set)

+

You can get a Set of all the ranges in a RangeMap in O(N) time (where N +is the size of the RangeMap).

+
k
syntax Set ::= keys(RangeMap) [function, total, hook(RANGEMAP.keys)] +
+

Range map keys (as List)

+

You can get a List of all the ranges in a RangeMap in O(N) time (where N +is the size of the RangeMap).

+
k
syntax List ::= "keys_list" "(" RangeMap ")" [function, hook(RANGEMAP.keys_list)] +
+

Range map key membership

+

You can check whether a key is present in a RangeMap in O(log(N)) time (where +N is the size of the RangeMap).

+
k
syntax Bool ::= KItem "in_keys" "(" RangeMap ")" [function, total, hook(RANGEMAP.in_keys)] +
+

Range map values (as List)

+

You can get a List of all values in a RangeMap in O(N) time (where N is the +size of the RangeMap).

+
k
syntax List ::= values(RangeMap) [function, hook(RANGEMAP.values)] +
+

Range map size

+

You can get the number of range/value pairs in a RangeMap in O(1) time.

+
k
syntax Int ::= size(RangeMap) [function, total, hook(RANGEMAP.size), klabel(sizeRangeMap)] +
+

Range map inclusion

+

You can determine whether a RangeMap is a strict subset of another RangeMap +in O(M+N) time (where M is the size of the first RangeMap and N is the size +of the second RangeMap). Only keys within equal or overlapping ranges that +are bound to the same value are considered equal.

+
k
syntax Bool ::= RangeMap "<=RangeMap" RangeMap [function, total, hook(RANGEMAP.inclusion)] +
+

Range map choice

+

You can get an arbitrarily chosen key of a RangeMap in O(1) time. The same +key will always be returned for the same range map, but no guarantee is given +that two different range maps will return the same element, even if they are +similar.

+
k
syntax KItem ::= choice(RangeMap) [function, hook(RANGEMAP.choice), klabel(RangeMap:choice)] +endmodule +
+

Sets

+

Provided here is the syntax of an implementation of immutable, associative, +commutative sets of KItem. This type is hooked to an implementation of sets +provided by the backend. For more information on matching on sets and allowable +patterns for doing so, refer to K's +user documentation.

+
k
module SET + imports private INT-SYNTAX + imports private BASIC-K + + syntax Set [hook(SET.Set)] +
+

Set concatenation

+

The Set sort represents a mathematical set (A collection of unique items). +The sets are nilpotent, i.e., the concatenation of two sets containing elements +in common is #False (note however, this may be silently allowed during +concrete execution). If you intend to add an element to a set that might +already be present in the set, use the |Set operator instead.

+

The concatenation operator is O(Nlog(M)) where N is the size of the smaller +set, when it appears on the right hand side. When it appears on the left hand +side and all variables are bound, it is O(Nlog(M)) where M is the size of the +set it is matching and N is the number of elements being matched. When it +appears on the left hand side containing variables not bound elsewhere in the +term, it is O(N^K) where N is the size of the set it is matching and K is the +number of unbound keys being mached. In other words, one unbound variable is +linear, two is quadratic, three is cubic, etc.

+
k
syntax Set ::= Set Set [left, function, hook(SET.concat), klabel(_Set_), symbol, assoc, comm, unit(.Set), idem, element(SetItem), format(%1%n%2)] +
+

Set unit

+

The set with zero elements is represented by .Set.

+
k
syntax Set ::= ".Set" [function, total, hook(SET.unit), klabel(.Set), symbol] +
+

Set elements

+

An element of a Set is constructed via the SetItem operator.

+
k
syntax Set ::= SetItem(KItem) [function, total, hook(SET.element), klabel(SetItem), symbol, injective] +
+

Set union

+

You can compute the union of two sets in O(N*log(M)) time (Where N is the size +of the smaller set). Note that the base of the logarithm is a relatively high +number and thus the time is effectively linear. The union consists of all the +elements present in either set.

+
k
syntax Set ::= Set "|Set" Set [left, function, total, hook(SET.union), comm] + rule S1:Set |Set S2:Set => S1 (S2 -Set S1) [concrete] +
+

Set intersection

+

You can compute the intersection of two sets in O(N*log(M)) time (where N +is the size of the smaller set), or effectively linear. The intersection +consists of all the elements present in both sets.

+
k
syntax Set ::= intersectSet(Set, Set) [function, total, hook(SET.intersection), comm] +
+

Set complement

+

You can compute the relative complement of two sets in O(N*log(M)) time (where +N is the size of the second set), or effectively linear. This is the set of +elements in the first set that are not present in the second set.

+
k
syntax Set ::= Set "-Set" Set [function, total, hook(SET.difference), klabel(Set:difference), symbol] +
+

Set membership

+

You can compute whether an element is a member of a set in O(1) time.

+
k
syntax Bool ::= KItem "in" Set [function, total, hook(SET.in), klabel(Set:in), symbol] +
+

Set inclusion

+

You can determine whether a Set is a strict subset of another Set in O(N) +time (where N is the size of the first set).

+
k
syntax Bool ::= Set "<=Set" Set [function, total, hook(SET.inclusion)] +
+

Set size

+

You can get the number of elements (the cardinality) of a set in O(1) time.

+
k
syntax Int ::= size(Set) [function, total, hook(SET.size)] +
+

Set choice

+

You can get an arbitrarily chosen element of a Set in O(1) time. The same +element will always be returned for the same set, but no guarantee is given +that two different sets will return the same element, even if they are similar.

+
k
syntax KItem ::= choice(Set) [function, hook(SET.choice), klabel(Set:choice)] +
+
k
endmodule +
+

Implementation of Sets

+

The following lemmas are simplifications that the Haskell backend can +apply to simplify expressions of sort Set.

+
k
module SET-KORE-SYMBOLIC [symbolic,haskell] + imports SET + imports private K-EQUAL + imports private BOOL + + //Temporarly rule for #Ceil simplification, should be generated in front-end + +// Matching for this version not implemented. + // rule #Ceil(@S1:Set @S2:Set) => + // {intersectSet(@S1, @S2) #Equals .Set} #And #Ceil(@S1) #And #Ceil(@S2) + // [simplification] + +//simpler version + rule #Ceil(@S:Set SetItem(@E:KItem)) => + {(@E in @S) #Equals false} #And #Ceil(@S) #And #Ceil(@E) + [simplification] + + // -Set simplifications + rule S -Set .Set => S [simplification] + rule .Set -Set _ => .Set [simplification] + rule SetItem(X) -Set (S SetItem(X)) => .Set + ensures notBool (X in S) [simplification] + rule S -Set (S SetItem(X)) => .Set + ensures notBool (X in S) [simplification] + rule (S SetItem(X)) -Set S => SetItem(X) + ensures notBool (X in S) [simplification] + rule (S SetItem(X)) -Set SetItem(X) => S + ensures notBool (X in S) [simplification] + // rule SetItem(X) -Set S => SetItem(X) + // requires notBool (X in S) [simplification] + // rule (S1 SetItem(X)) -Set (S2 SetItem(X)) => S1 -Set S2 + // ensures notBool (X in S1) + // andBool notBool (X in S2) [simplification] + + + + // |Set simplifications + rule S |Set .Set => S [simplification, comm] + rule S |Set S => S [simplification] + + rule (S SetItem(X)) |Set SetItem(X) => S SetItem(X) + ensures notBool (X in S) [simplification, comm] + // Currently disabled, see runtimeverification/haskell-backend#3301 + // rule (S SetItem(X)) |Set S => S SetItem(X) + // ensures notBool (X in S) [simplification, comm] + + // intersectSet simplifications + rule intersectSet(.Set, _ ) => .Set [simplification, comm] + rule intersectSet( S , S ) => S [simplification] + + rule intersectSet( S SetItem(X), SetItem(X)) => SetItem(X) + ensures notBool (X in S) [simplification, comm] + // Currently disabled, see runtimeverification/haskell-backend#3294 + // rule intersectSet( S SetItem(X) , S) => S ensures notBool (X in S) [simplification, comm] + rule intersectSet( S1 SetItem(X), S2 SetItem(X)) => intersectSet(S1, S2) SetItem(X) + ensures notBool (X in S1) + andBool notBool (X in S2) [simplification] + + // membership simplifications + rule _E in .Set => false [simplification] + rule E in (S SetItem(E)) => true + ensures notBool (E in S) [simplification] + +// These two rules would be sound but impose a giant overhead on `in` evaluation: + // rule E1 in (S SetItem(E2)) => true requires E1 in S + // ensures notBool (E2 in S) [simplification] + // rule E1 in (S SetItem(E2)) => E1 in S requires E1 =/=K E2 + // ensures notBool (E2 in S) [simplification] + + rule X in ((SetItem(X) S) |Set _ ) => true + ensures notBool (X in S) [simplification] + rule X in ( _ |Set (SetItem(X) S)) => true + ensures notBool (X in S) [simplification] + +endmodule + +module SET-SYMBOLIC + imports SET-KORE-SYMBOLIC +endmodule +
+

Lists

+

Provided here is the syntax of an implementation of immutable, associative +lists of KItem. This type is hooked to an implementation of lists provided +by the backend. For more information on matching on lists and allowable +patterns for doing so, refer to K's +user documentation.

+
k
module LIST + imports private INT-SYNTAX + imports private BASIC-K + + syntax List [hook(LIST.List)] +
+

List concatenation

+

The List sort is an ordered collection that may contain duplicate elements. +They are backed by relaxed radix balanced trees, which means that they support +efficiently adding elements to both sides of the list, concatenating two lists, +indexing, and updating elements.

+

The concatenation operator is O(log(N)) (where N is the size of the longer +list) when it appears on the right hand side. When it appears on the left hand +side, it is O(N), where N is the number of elements matched on the front and +back of the list.

+
k
syntax List ::= List List [left, function, total, hook(LIST.concat), klabel(_List_), symbol, smtlib(smt_seq_concat), assoc, unit(.List), element(ListItem), format(%1%n%2)] +
+

List unit

+

The list with zero elements is represented by .List.

+
k
syntax List ::= ".List" [function, total, hook(LIST.unit), klabel(.List), symbol, smtlib(smt_seq_nil)] +
+

List elements

+

An element of a List is constucted via the ListItem operator.

+
k
syntax List ::= ListItem(KItem) [function, total, hook(LIST.element), klabel(ListItem), symbol, smtlib(smt_seq_elem)] +
+

List prepend

+

An element can be added to the front of a List using the pushList operator.

+
k
syntax List ::= pushList(KItem, List) [function, total, hook(LIST.push), klabel(pushList), symbol] + rule pushList(K::KItem, L1::List) => ListItem(K) L1 +
+

List indexing

+

You can get an element of a list by its integer offset in O(log(N)) time, or +effectively constant. Positive indices are 0-indexed from the beginning of the +list, and negative indices are -1-indexed from the end of the list. In other +words, 0 is the first element and -1 is the last element.

+
k
syntax KItem ::= List "[" Int "]" [function, hook(LIST.get), klabel(List:get), symbol] +
+

List update

+

You can create a new List with a new value at a particular index in +O(log(N)) time, or effectively constant.

+
k
syntax List ::= List "[" index: Int "<-" value: KItem "]" [function, hook(LIST.update), klabel(List:set)] +
+

List of identical elements

+

You can create a list with length elements, each containing value, in O(N) +time.

+
k
syntax List ::= makeList(length: Int, value: KItem) [function, hook(LIST.make)] +
+

Multiple list update

+

You can create a new List which is equal to dest except the N elements +starting at index are replaced with the contents of src in O(N*log(K)) time +(where K is the size of destand N is the size of src), or effectively linear. Having index + N > K yields an exception.

+
k
syntax List ::= updateList(dest: List, index: Int, src: List) [function, hook(LIST.updateAll)] +
+

List fill

+

You can create a new List where the length elements starting at index +are replaced with value, in O(length*log(N)) time, or effectively linear.

+
k
syntax List ::= fillList(List, index: Int, length: Int, value: KItem) [function, hook(LIST.fill)] +
+

List slicing

+

You can compute a new List by removing fromFront elements from the front +of the list and fromBack elements from the back of the list in +O((fromFront+fromBack)*log(N)) time, or effectively linear.

+
k
syntax List ::= range(List, fromFront: Int, fromBack: Int) [function, hook(LIST.range), klabel(List:range), symbol] +
+

List membership

+

You can compute whether an element is in a list in O(N) time. For repeated +comparisons, it is much better to first convert to a set using List2Set.

+
k
syntax Bool ::= KItem "in" List [function, total, hook(LIST.in), klabel(_inList_)] +
+

List size

+

You can get the number of elements of a list in O(1) time.

+
k
syntax Int ::= size(List) [function, total, hook(LIST.size), klabel (sizeList), smtlib(smt_seq_len)] +
+
k
endmodule +
+

Collection Conversions

+

It is possible to convert from a List to a Set or from a Set to a list. +Converting from a List to a Set and back will not provide the same list; +duplicates will have been removed and the list may be reordered. Converting +from a Set to a List and back will generate the same set.

+

Note that because sets are unordered and lists are ordered, converting from a +Set to a List will generate some arbitrary ordering of elements, which may +be different from the natural ordering you might assume, or may not. Two +equal sets are guaranteed to generate the same ordering, but no guarantee is +otherwise provided about what the ordering will be. In particular, adding an +element to a set may completely reorder the elements already in the set, when +it is converted to a list.

+
k
module COLLECTIONS + imports LIST + imports SET + imports MAP + + syntax List ::= Set2List(Set) [function, total, hook(SET.set2list)] + syntax Set ::= List2Set(List) [function, total, hook(SET.list2set)] + +endmodule +
+

Booleans

+

Provided here is the syntax of an implementation of boolean algebra in K. +This type is hooked to an implementation of booleans provided by the backend. +Note that this algebra is different from the builtin truth in matching logic. +You can, however, convert from the truth of the Bool sort to the truth in +matching logic via the expression {B #Equals true}.

+

The boolean values are true and false.

+
k
module SORT-BOOL + syntax Bool [hook(BOOL.Bool)] +endmodule + +module BOOL-SYNTAX + imports SORT-BOOL + syntax Bool ::= "true" [token] + syntax Bool ::= "false" [token] +endmodule + +module BOOL-COMMON + imports private BASIC-K + imports BOOL-SYNTAX +
+

Basic boolean arithmetic

+

You can:

+
    +
  • Negate a boolean value.
  • +
  • AND two boolean values.
  • +
  • XOR two boolean values.
  • +
  • OR two boolean values.
  • +
  • IMPLIES two boolean values (i.e., P impliesBool Q is the same as +notBool P orBool Q)
  • +
  • Check equality of two boolean values.
  • +
  • Check inequality of two boolean values.
  • +
+

Note that only andThenBool and orElseBool are short-circuiting. andBool +and orBool may be short-circuited in concrete backends, but in symbolic +backends, both arguments will be evaluated.

+
k
syntax Bool ::= "notBool" Bool [function, total, klabel(notBool_), symbol, smt-hook(not), group(boolOperation), hook(BOOL.not)] + > Bool "andBool" Bool [function, total, klabel(_andBool_), symbol, left, smt-hook(and), group(boolOperation), hook(BOOL.and)] + | Bool "andThenBool" Bool [function, total, klabel(_andThenBool_), symbol, left, smt-hook(and), group(boolOperation), hook(BOOL.andThen)] + | Bool "xorBool" Bool [function, total, klabel(_xorBool_), symbol, left, smt-hook(xor), group(boolOperation), hook(BOOL.xor)] + | Bool "orBool" Bool [function, total, klabel(_orBool_), symbol, left, smt-hook(or), group(boolOperation), hook(BOOL.or)] + | Bool "orElseBool" Bool [function, total, klabel(_orElseBool_), symbol, left, smt-hook(or), group(boolOperation), hook(BOOL.orElse)] + | Bool "impliesBool" Bool [function, total, klabel(_impliesBool_), symbol, left, smt-hook(=>), group(boolOperation), hook(BOOL.implies)] + > left: + Bool "==Bool" Bool [function, total, klabel(_==Bool_), symbol, left, comm, smt-hook(=), hook(BOOL.eq)] + | Bool "=/=Bool" Bool [function, total, klabel(_=/=Bool_), symbol, left, comm, smt-hook(distinct), hook(BOOL.ne)] +
+

Implementation of Booleans

+

The remainder of this section consists of an implementation in K of the +operations listed above.

+
k
rule notBool true => false + rule notBool false => true + + rule true andBool B:Bool => B:Bool + rule B:Bool andBool true => B:Bool [simplification] + rule false andBool _:Bool => false + rule _:Bool andBool false => false [simplification] + + rule true andThenBool K::Bool => K + rule K::Bool andThenBool true => K [simplification] + rule false andThenBool _ => false + rule _ andThenBool false => false [simplification] + + rule false xorBool B:Bool => B:Bool + rule B:Bool xorBool false => B:Bool [simplification] + rule B:Bool xorBool B:Bool => false + + rule true orBool _:Bool => true + rule _:Bool orBool true => true [simplification] + rule false orBool B:Bool => B + rule B:Bool orBool false => B [simplification] + + rule true orElseBool _ => true + rule _ orElseBool true => true [simplification] + rule false orElseBool K::Bool => K + rule K::Bool orElseBool false => K [simplification] + + rule true impliesBool B:Bool => B + rule false impliesBool _:Bool => true + rule _:Bool impliesBool true => true [simplification] + rule B:Bool impliesBool false => notBool B [simplification] + + rule B1:Bool =/=Bool B2:Bool => notBool (B1 ==Bool B2) +endmodule + +module BOOL-KORE [symbolic] + imports BOOL-COMMON + + rule {true #Equals notBool @B} => {false #Equals @B} [simplification] + rule {notBool @B #Equals true} => {@B #Equals false} [simplification] + rule {false #Equals notBool @B} => {true #Equals @B} [simplification] + rule {notBool @B #Equals false} => {@B #Equals true} [simplification] + + rule {true #Equals @B1 andBool @B2} => {true #Equals @B1} #And {true #Equals @B2} [simplification] + rule {@B1 andBool @B2 #Equals true} => {@B1 #Equals true} #And {@B2 #Equals true} [simplification] + rule {false #Equals @B1 orBool @B2} => {false #Equals @B1} #And {false #Equals @B2} [simplification] + rule {@B1 orBool @B2 #Equals false} => {@B1 #Equals false} #And {@B2 #Equals false} [simplification] +endmodule + +module BOOL + imports BOOL-COMMON + imports BOOL-KORE +endmodule +
+

Integers

+

Provided here is the syntax of an implementation of arbitrary-precision +integer arithmetic in K. This type is hooked to an implementation of integers +provided by the backend. For a fixed-width integer type, see the MINT module +below.

+

The UNSIGNED-INT-SYNTAX module provides a syntax of whole numbers in K. +This is useful because often programming languages implement the sign of an +integer as a unary operator rather than part of the lexical syntax of integers. +However, you can also directly reference integers with a sign using the +INT-SYNTAX module.

+
k
module UNSIGNED-INT-SYNTAX + syntax Int [hook(INT.Int)] + syntax Int ::= r"[0-9]+" [prefer, token, prec(2)] +endmodule + +module INT-SYNTAX + imports UNSIGNED-INT-SYNTAX + syntax Int ::= r"[\\+\\-]?[0-9]+" [prefer, token, prec(2)] +endmodule + +module INT-COMMON + imports INT-SYNTAX + imports private BOOL +
+

Integer arithmetic

+

You can:

+
    +
  • Compute the bitwise complement ~Int of an integer value in twos-complement.
  • +
  • Compute the exponentiation ^Int of two integers.
  • +
  • Compute the exponentiation of two integers modulo another integer (^%Int). +A ^%Int B C is equal in value to (A ^Int B) %Int C, but has a better +asymptotic complexity.
  • +
  • Compute the product *Int of two integers.
  • +
  • Compute the quotient /Int or modulus %Int of two integers using +t-division, which rounds towards zero. Division by zero is #False.
  • +
  • Compute the quotient divInt or modulus modInt of two integers using +Euclidean division, in which the remainder is always non-negative. Division +by zero is #False.
  • +
  • Compute the sum +Int or difference -Int of two integers.
  • +
  • Compute the arithmetic right shift >>Int of two integers. Shifting by a +negative quantity is #False.
  • +
  • Compute the left shift of two integers. Shifting by a negative quantity is +#False.
  • +
  • Compute the bitwise and of two integers in twos-complement.
  • +
  • Compute the bitwise xor of two integers in twos-complement.
  • +
  • Compute the bitwise inclusive-or of two integers in twos-complement.
  • +
+
k
syntax Int ::= "~Int" Int [function, klabel(~Int_), symbol, total, hook(INT.not), smtlib(notInt)] + > left: + Int "^Int" Int [function, klabel(_^Int_), symbol, left, smt-hook(^), hook(INT.pow)] + | Int "^%Int" Int Int [function, klabel(_^%Int__), symbol, left, smt-hook((mod (^ #1 #2) #3)), hook(INT.powmod)] + > left: + Int "*Int" Int [function, total, klabel(_*Int_), symbol, left, comm, smt-hook(*), hook(INT.mul)] + /* FIXME: translate /Int and %Int into smtlib */ + /* /Int and %Int implement t-division, which rounds towards 0 */ + | Int "/Int" Int [function, klabel(_/Int_), symbol, left, smt-hook(div), hook(INT.tdiv)] + | Int "%Int" Int [function, klabel(_%Int_), symbol, left, smt-hook(mod), hook(INT.tmod)] + /* divInt and modInt implement e-division according to the Euclidean division theorem, therefore the remainder is always positive */ + | Int "divInt" Int [function, klabel(_divInt_), symbol, left, smt-hook(div), hook(INT.ediv)] + | Int "modInt" Int [function, klabel(_modInt_), symbol, left, smt-hook(mod), hook(INT.emod)] + > left: + Int "+Int" Int [function, total, klabel(_+Int_), symbol, left, comm, smt-hook(+), hook(INT.add)] + | Int "-Int" Int [function, total, klabel(_-Int_), symbol, left, smt-hook(-), hook(INT.sub)] + > left: + Int ">>Int" Int [function, klabel(_>>Int_), symbol, left, hook(INT.shr), smtlib(shrInt)] + | Int "<<Int" Int [function, klabel(_<<Int_), symbol, left, hook(INT.shl), smtlib(shlInt)] + > left: + Int "&Int" Int [function, total, klabel(_&Int_), symbol, left, comm, hook(INT.and), smtlib(andInt)] + > left: + Int "xorInt" Int [function, total, klabel(_xorInt_), symbol, left, comm, hook(INT.xor), smtlib(xorInt)] + > left: + Int "|Int" Int [function, total, klabel(_|Int_), symbol, left, comm, hook(INT.or), smtlib(orInt)] +
+

Integer minimum and maximum

+

You can compute the minimum and maximum minInt and maxInt of two integers.

+
k
syntax Int ::= "minInt" "(" Int "," Int ")" [function, total, smt-hook((ite (< #1 #2) #1 #2)), hook(INT.min)] + | "maxInt" "(" Int "," Int ")" [function, total, smt-hook((ite (< #1 #2) #2 #1)), hook(INT.max)] +
+

Absolute value

+

You can compute the absolute value absInt of an integer.

+
k
syntax Int ::= absInt ( Int ) [function, total, smt-hook((ite (< #1 0) (- 0 #1) #1)), hook(INT.abs)] +
+

Log base 2

+

You can compute the log base 2, rounded towards zero, of an integer. The log +base 2 of an integer is equal to the index of the highest bit set in the +representation of a positive integer. Log base 2 of zero or a negative number +is #False.

+
k
syntax Int ::= log2Int ( Int ) [function, hook(INT.log2)] +
+

Bit slicing

+

You can compute the value of a range of bits in the twos-complement +representation of an integer, as interpeted either unsigned or signed, of an +integer. index is offset from 0 and length is the number of bits, starting +with index, that should be read. The number is assumed to be represented +in little endian notation with each byte going from least significant to +most significant. In other words, 0 is the least-significant bit, and each +successive bit is more significant than the last.

+
k
syntax Int ::= bitRangeInt ( Int, index: Int, length: Int ) [function, hook(INT.bitRange)] + | signExtendBitRangeInt ( Int, index: Int, length: Int ) [function, hook(INT.signExtendBitRange)] +
+

Integer comparisons

+

You can compute whether two integers are less than or equal to, less than, +greater than or equal to, greater than, equal, or unequal to another integer.

+
k
syntax Bool ::= Int "<=Int" Int [function, total, klabel(_<=Int_), symbol, smt-hook(<=), hook(INT.le)] + | Int "<Int" Int [function, total, klabel(_<Int_), symbol, smt-hook(<), hook(INT.lt)] + | Int ">=Int" Int [function, total, klabel(_>=Int_), symbol, smt-hook(>=), hook(INT.ge)] + | Int ">Int" Int [function, total, klabel(_>Int_), symbol, smt-hook(>), hook(INT.gt)] + | Int "==Int" Int [function, total, klabel(_==Int_), symbol, comm, smt-hook(=), hook(INT.eq)] + | Int "=/=Int" Int [function, total, klabel(_=/=Int_), symbol, comm, smt-hook(distinct), hook(INT.ne)] +
+

Divides

+

You can compute whether one integer evenly divides another. This is the +case when the second integer modulo the first integer is equal to zero.

+
k
syntax Bool ::= Int "dividesInt" Int [function] +
+

Random integers

+

You can, on concrete backends, compute a pseudorandom integer, or seed the +pseudorandom number generator. These operations are represented as +uninterpreted functions on symbolic backends.

+
k
syntax Int ::= randInt(Int) [function, hook(INT.rand), impure] + syntax K ::= srandInt(Int) [function, hook(INT.srand), impure] +
+

Implementation of Integers

+

The remainder of this section consists of an implementation in K of some +of the operators above, as well as lemmas used by the Java and Haskell backend +to simplify expressions of sort Int. They do not affect the semantics of +integers, merely describing additional rules that the backend can use to +simplify terms.

+
k
endmodule + +module INT-SYMBOLIC [symbolic] + imports INT-COMMON + imports INT-SYMBOLIC-KORE + imports private BOOL + + // Arithmetic Normalization + rule I +Int 0 => I [simplification] + rule I -Int 0 => I [simplification] + + rule X modInt N => X requires 0 <=Int X andBool X <Int N [simplification] + rule X %Int N => X requires 0 <=Int X andBool X <Int N [simplification] + + // Bit-shifts + rule X <<Int 0 => X [simplification] + rule 0 <<Int _ => 0 [simplification] + rule X >>Int 0 => X [simplification] + rule 0 >>Int _ => 0 [simplification] +endmodule + +module INT-SYMBOLIC-KORE [symbolic, haskell] + imports INT-COMMON + imports ML-SYNTAX + imports private BOOL + + // Definability Conditions + rule #Ceil(@I1:Int /Int @I2:Int) => {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification] + rule #Ceil(@I1:Int %Int @I2:Int) => {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification] + rule #Ceil(@I1:Int modInt @I2:Int) => {(@I2 =/=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification] + rule #Ceil(@I1:Int >>Int @I2:Int) => {(@I2 >=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification] + rule #Ceil(@I1:Int <<Int @I2:Int) => {(@I2 >=Int 0) #Equals true} #And #Ceil(@I1) #And #Ceil(@I2) [simplification] +endmodule + +module INT-KORE [symbolic] + imports private K-EQUAL + imports private BOOL + imports INT-COMMON + + rule [eq-k-to-eq-int] : I1:Int ==K I2:Int => I1 ==Int I2 [simplification] + rule [eq-int-true-left] : {K1 ==Int K2 #Equals true} => {K1 #Equals K2} [simplification] + rule [eq-int-true-rigth] : {true #Equals K1 ==Int K2} => {K1 #Equals K2} [simplification] + rule [eq-int-false-left] : {K1 ==Int K2 #Equals false} => #Not({K1 #Equals K2}) [simplification] + rule [eq-int-false-rigth] : {false #Equals K1 ==Int K2} => #Not({K1 #Equals K2}) [simplification] + rule [neq-int-true-left] : {K1 =/=Int K2 #Equals true} => #Not({K1 #Equals K2}) [simplification] + rule [neq-int-true-right] : {true #Equals K1 =/=Int K2} => #Not({K1 #Equals K2}) [simplification] + rule [neq-int-false-left] : {K1 =/=Int K2 #Equals false} => {K1 #Equals K2} [simplification] + rule [neq-int-false-right]: {false #Equals K1 =/=Int K2} => {K1 #Equals K2} [simplification] + + // Arithmetic Normalization + rule I +Int B => B +Int I [concrete(I), symbolic(B), simplification(51)] + rule A -Int I => A +Int (0 -Int I) [concrete(I), symbolic(A), simplification(51)] + + rule (A +Int I2) +Int I3 => A +Int (I2 +Int I3) [concrete(I2, I3), symbolic(A), simplification] + rule I1 +Int (B +Int I3) => B +Int (I1 +Int I3) [concrete(I1, I3), symbolic(B), simplification] + rule I1 -Int (B +Int I3) => (I1 -Int I3) -Int B [concrete(I1, I3), symbolic(B), simplification] + rule I1 +Int (I2 +Int C) => (I1 +Int I2) +Int C [concrete(I1, I2), symbolic(C), simplification] + rule I1 +Int (I2 -Int C) => (I1 +Int I2) -Int C [concrete(I1, I2), symbolic(C), simplification] + rule (I1 -Int B) +Int I3 => (I1 +Int I3) -Int B [concrete(I1, I3), symbolic(B), simplification] + rule I1 -Int (I2 +Int C) => (I1 -Int I2) -Int C [concrete(I1, I2), symbolic(C), simplification] + rule I1 -Int (I2 -Int C) => (I1 -Int I2) +Int C [concrete(I1, I2), symbolic(C), simplification] + rule (C -Int I2) -Int I3 => C -Int (I2 +Int I3) [concrete(I2, I3), symbolic(C), simplification] + + rule I1 &Int (I2 &Int C) => (I1 &Int I2) &Int C [concrete(I1, I2), symbolic(C), simplification] +endmodule + +module INT + imports INT-COMMON + imports INT-SYMBOLIC + imports INT-KORE + imports private K-EQUAL + imports private BOOL + + rule bitRangeInt(I::Int, IDX::Int, LEN::Int) => (I >>Int IDX) modInt (1 <<Int LEN) + + rule signExtendBitRangeInt(I::Int, IDX::Int, LEN::Int) => (bitRangeInt(I, IDX, LEN) +Int (1 <<Int (LEN -Int 1))) modInt (1 <<Int LEN) -Int (1 <<Int (LEN -Int 1)) + + rule I1:Int divInt I2:Int => (I1 -Int (I1 modInt I2)) /Int I2 + requires I2 =/=Int 0 + rule + I1:Int modInt I2:Int + => + ((I1 %Int absInt(I2)) +Int absInt(I2)) %Int absInt(I2) + requires I2 =/=Int 0 [concrete, simplification] + + rule minInt(I1:Int, I2:Int) => I1 requires I1 <=Int I2 + rule minInt(I1:Int, I2:Int) => I2 requires I1 >=Int I2 + + rule I1:Int =/=Int I2:Int => notBool (I1 ==Int I2) + rule (I1:Int dividesInt I2:Int) => (I2 %Int I1) ==Int 0 + + syntax Int ::= freshInt(Int) [freshGenerator, function, total, private] + rule freshInt(I:Int) => I +endmodule +
+

IEEE 754 Floating-point Numbers

+

Provided here is the syntax of an implementation of arbitrary-precision +floating-point arithmetic in K based on a generalization of the IEEE 754 +standard. This type is hooked to an implementation of floats provided by the +backend.

+

The syntax of ordinary floating-point values in K consists of an optional sign +(+ or -) followed by an optional integer part, followed by a decimal point, +followed by an optional fractional part. Either the integer part or the +fractional part must be specified. The mantissa is followed by an optional +exponent part, which consists of an e or E, an optional sign (+ or -), +and an integer. The expoennt is followed by an optional suffix, which can be +either f, F, d, D, or pNxM where N and M are positive integers. +p and x can be either upper or lowercase.

+

The value of a floating-point literal is computed as follows: First the +mantissa is read as a rational number. Then it is multiplied by 10 to the +power of the exponent, which is interpreted as an integer, and defaults to +zero if it is not present. Finally, it is rounded to the nearest possible +value in a floating-point type represented like an IEEE754 floating-point type, +with the number of bits of precision and exponent specified by the suffix. +A suffix of f or f represents the IEEE binary32 format. A suffix of d +or D, or no suffix, represents the IEEE binary64 format. A suffix of +pNxM (either upper or lowercase) specifies exactly N bits of precision and +M bits of exponent. The number of bits of precision is assumed to include +any optional 1 that precedes the IEEE 754 mantissa. In other words, p24x8 +is equal to the IEEE binary32 format, and p53x11 is equal to the IEEE +binary64 format.

+
k
module FLOAT-SYNTAX + syntax Float [hook(FLOAT.Float)] + syntax Float ::= r"([\\+\\-]?[0-9]+(\\.[0-9]*)?|\\.[0-9]+)([eE][\\+\\-]?[0-9]+)?([fFdD]|([pP][0-9]+[xX][0-9]+))?" [token, prec(1)] + syntax Float ::= r"[\\+\\-]?Infinity([fFdD]|([pP][0-9]+[xX][0-9]+))?" [token, prec(3)] + syntax Float ::= r"NaN([fFdD]|([pP][0-9]+[xX][0-9]+))?" [token, prec(3)] +endmodule + +module FLOAT + imports FLOAT-SYNTAX + imports private BOOL + imports private INT-SYNTAX +
+

Float precision

+

You can retrieve the number of bits of precision in a Float.

+
k
syntax Int ::= precisionFloat(Float) [function, total, hook(FLOAT.precision)] +
+

Float exponent bits

+

You can retrieve the number of bits of exponent range in a Float.

+
k
syntax Int ::= exponentBitsFloat(Float) [function, total, hook(FLOAT.exponentBits)] +
+

Float exponent

+

You can retrieve the value of the exponent bits of a Float as an integer.

+
k
syntax Int ::= exponentFloat(Float) [function, total, hook(FLOAT.exponent)] +
+

Float sign

+

You can retrieve the value of the sign bit of a Float as a boolean. True +means the sign bit is set.

+
k
syntax Bool ::= signFloat(Float) [function, total, hook(FLOAT.sign)] +
+

Float special values

+

You can check whether a Float value is infinite or Not-a-Number.

+
k
syntax Bool ::= isNaN(Float) [function, total, smt-hook(fp.isNaN), hook(FLOAT.isNaN)] + | isInfinite(Float) [function, total] +
+

Float arithmetic

+

You can:

+
    +
  • Compute the unary negation --Float of a float. --Float X is distinct +from 0.0 -Float X. For example, 0.0 -Float 0.0 is positive zero. +--Float 0.0 is negative zero.
  • +
  • Compute the exponentation ^Float of two floats.
  • +
  • Compute the product *Float, quotient /Float, or remainder %Float of two +floats. The remainder is computed based on rounding the quotient of the two +floats to the nearest integer.
  • +
  • Compute the sum +Float or difference -Float of two floats.
  • +
+
k
syntax Float ::= "--Float" Float [function, total, smt-hook(fp.neg), hook(FLOAT.neg)] + > Float "^Float" Float [function, left, hook(FLOAT.pow)] + > left: + Float "*Float" Float [function, left, smt-hook((fp.mul roundNearestTiesToEven #1 #2)), hook(FLOAT.mul)] + | Float "/Float" Float [function, left, smt-hook((fp.div roundNearestTiesToEven #1 #2)), hook(FLOAT.div)] + | Float "%Float" Float [function, left, smt-hook((fp.rem roundNearestTiesToEven #1 #2)), hook(FLOAT.rem)] + > left: + Float "+Float" Float [function, left, smt-hook((fp.add roundNearestTiesToEven #1 #2)), hook(FLOAT.add)] + | Float "-Float" Float [function, left, smt-hook((fp.sub roundNearestTiesToEven #1 #2)), hook(FLOAT.sub)] +
+

Floating-point mathematics

+

You can:

+
    +
  • Compute the Nth integer root rootFloat of a float.
  • +
  • Compute the absolute value absFloat of a float.
  • +
  • Round a floating-point number to a specified precision and exponent +range (roundFloat). The resulting Float will yield the specified values +when calling precisionFloat and exponentBitsFloat and when performing +further computation.
  • +
  • Round a float to the next lowest floating-point value which is an integer +(floorFloat).
  • +
  • Round a float to the next highest floating-point value which is an integer +(ceilFloat).
  • +
  • Round a float to the next closest floating-point value which is an integer, in +the direction of zero (truncFloat).
  • +
  • Compute the natural exponential expFloat of a float (i.e. e^x).
  • +
  • Compute the natural logarithm logFloat of a float.
  • +
  • Compute the sine sinFloat of a float.
  • +
  • Compute the cosine cosFloat of a float.
  • +
  • Compute the tangent tanFlooat of a float.
  • +
  • Compute the arcsine asinFloat of a float.
  • +
  • Compute the arccosine acosFloat of a float.
  • +
  • Compute the arctangent atanFloat of a float.
  • +
  • Compute the arctangent atan2Float of two floats.
  • +
  • Compute the maximum maxFloat of two floats.
  • +
  • Compute the minimum minFloat of two floats.
  • +
  • Compute the square root sqrtFloat of a float.
  • +
  • Compute the largest finite value expressible in a specified precision and +exponent range (maxValueFloat).
  • +
  • Compute the smallest positive finite value expressible in a specified +precision and exponent range (minValueFloat).
  • +
+
k
syntax Float ::= rootFloat(Float, Int) [function, hook(FLOAT.root)] + | absFloat(Float) [function, total, smt-hook(fp.abs), hook(FLOAT.abs)] + | roundFloat(Float, precision: Int, exponentBits: Int) [function, hook(FLOAT.round)] + | floorFloat(Float) [function, total, hook(FLOAT.floor)] + | ceilFloat(Float) [function, total, hook(FLOAT.ceil)] + | truncFloat(Float) [function, total, hook(FLOAT.trunc)] + | expFloat(Float) [function, total, hook(FLOAT.exp)] + | logFloat(Float) [function, hook(FLOAT.log)] + | sinFloat(Float) [function, total, hook(FLOAT.sin)] + | cosFloat(Float) [function, total, hook(FLOAT.cos)] + | tanFloat(Float) [function, hook(FLOAT.tan)] + | asinFloat(Float) [function, hook(FLOAT.asin)] + | acosFloat(Float) [function, hook(FLOAT.acos)] + | atanFloat(Float) [function, total, hook(FLOAT.atan)] + | atan2Float(Float, Float) [function, hook(FLOAT.atan2)] + | maxFloat(Float, Float) [function, smt-hook(fp.max), hook(FLOAT.max)] + | minFloat(Float, Float) [function, smt-hook(fp.min), hook(FLOAT.min)] + | sqrtFloat(Float) [function] + | maxValueFloat(precision: Int, exponentBits: Int) [function, hook(FLOAT.maxValue)] + | minValueFloat(precision: Int, exponentBits: Int) [function, hook(FLOAT.minValue)] +
+

Floating-point comparisons

+

Compute whether a float is less than or equasl to, less than, greater than or +equal to, greater than, equal, or unequal to another float. Note that +X ==Float Y and X ==K Y might yield different values. The latter should be +used in cases where you want to compare whether two values of sort Float +contain the same term. The former should be used when you want to implement +the == operator of a programming language. In particular, NaN =/=Float NaN +is true, because NaN compares unequal to all values, including itself, in +IEEE 754 arithmetic. 0.0 ==Float -0.0 is also true.

+
k
syntax Bool ::= Float "<=Float" Float [function, smt-hook(fp.leq), hook(FLOAT.le)] + | Float "<Float" Float [function, smt-hook(fp.lt), hook(FLOAT.lt)] + | Float ">=Float" Float [function, smt-hook(fp.geq), hook(FLOAT.ge)] + | Float ">Float" Float [function, smt-hook(fg.gt), hook(FLOAT.gt)] + | Float "==Float" Float [function, comm, smt-hook(fp.eq), hook(FLOAT.eq), klabel(_==Float_)] + | Float "=/=Float" Float [function, comm, smt-hook((not (fp.eq #1 #2)))] + + rule F1:Float =/=Float F2:Float => notBool (F1 ==Float F2) +
+

Conversion between integer and float

+

You can convert an integer to a floating-point number with the specified +precision and exponent range. You can also convert a floating-point number +to the nearest integer. This operation rounds to the nearest integer, but it +also avoids the double-rounding that is present in ceilFloat and floorFloat +if the nearest integer is not representable in the specified floating-point +type.

+
k
syntax Float ::= Int2Float(Int, precision: Int, exponentBits: Int) [function, hook(FLOAT.int2float)] + syntax Int ::= Float2Int(Float) [function, total, hook(FLOAT.float2int)] +
+

Implementation of Floats

+

The remainder of this section consists of an implementation in K of some of the +operators above.

+
k
rule sqrtFloat(F:Float) => rootFloat(F, 2) + + rule isInfinite(F:Float) => F >Float maxValueFloat(precisionFloat(F), exponentBitsFloat(F)) orBool F <Float --Float maxValueFloat(precisionFloat(F), exponentBitsFloat(F)) + +endmodule +
+

Strings

+

Provided here is the syntax of an implementation of Unicode strings in K. This +type is hooked to an implementation of strings provided by the backend. The +implementation is currently incomplete and does not fully support encodings +and code points beyond the initial 256 code points of the Basic Latin and +Latin-1 Supplement blocks. In the future, there may be breaking changes to +the semantics of this module in order to support this functionality.

+

The syntax of strings in K is delineated by double quotes. Inside the double +quotes, any character can appear verbatim except double quotes, backslash, +newline, and carriage return. K also supports the following escape sequences:

+
    +
  • " - the " character
  • +
  • \ - the \ character
  • +
  • \n - newline character
  • +
  • \r - carriage return character
  • +
  • \t - tab character
  • +
  • \f - form feed character
  • +
  • \xFF - \x followed by two hexadecimal characters indicates a code point +between 0x00 and 0xff
  • +
  • \uFFFF - \u followed by four hexadecimal characters indicates a code point +between 0x0000 and 0xffff
  • +
  • \UFFFFFFFF - \U followed by eight hexadecimal characters indicates a code +point between 0x000000 and 0x10ffff
  • +
+
k
module STRING-SYNTAX + syntax String [hook(STRING.String)] + syntax String ::= r"[\\\"](([^\\\"\\n\\r\\\\])|([\\\\][nrtf\\\"\\\\])|([\\\\][x][0-9a-fA-F]{2})|([\\\\][u][0-9a-fA-F]{4})|([\\\\][U][0-9a-fA-F]{8}))*[\\\"]" [token] +endmodule + +module STRING-COMMON + imports STRING-SYNTAX + imports private INT + imports private FLOAT-SYNTAX + imports private K-EQUAL + imports private BOOL +
+

String concatenation

+

You can concatenate two strings in O(N) time. For successive concatenation +operations, it may be better to use the STRING-BUFFER module.

+
k
syntax String ::= String "+String" String [function, total, left, hook(STRING.concat)] +
+

String length

+

You can get the length of a string in O(1) time.

+
k
syntax Int ::= lengthString ( String ) [function, total, hook(STRING.length)] +
+

Character and integer conversion

+

You can convert between a character (as represented by a string containing +a single code point) and an integer in O(1) time.

+
k
syntax String ::= chrChar ( Int ) [function, hook(STRING.chr)] + syntax Int ::= ordChar ( String ) [function, hook(STRING.ord)] +
+

String substring

+

You can compute a substring of a string in O(N) time (where N is the +length of the substring). There are two important facts to note:

+
    +
  1. the range generated includes the character at startIndex but excludes the +character at endIndex, i.e., the range is [startIndex..endIndex).
  2. +
  3. this function is only defined on valid indices (i.e., it is defined when +startIndex < endIndex and endIndex is less than or equal to the string +length).
  4. +
+
k
syntax String ::= substrString ( String , startIndex: Int , endIndex: Int ) [function, total, hook(STRING.substr)] +
+ +

You can find the first (respectively, last) occurrence of a substring, starting +at a certain index, in another string in O(N*M) time. +Returns -1 if the substring is not found.

+
k
syntax Int ::= findString ( haystack: String , needle: String , index: Int ) [function, hook(STRING.find)] + syntax Int ::= rfindString ( haystack: String , needle: String , index: Int ) [function, hook(STRING.rfind)] +
+ +

You can find the first (respectively, last) occurrence of one of the characters +of the search string, starting at a certain index, in another string in +O(N*M) time.

+
k
syntax Int ::= findChar ( haystack: String , needles: String , index: Int ) [function, hook(STRING.findChar)] + syntax Int ::= rfindChar ( haystack: String , needles: String , index: Int ) [function, hook(STRING.rfindChar)] +
+

String and Bool conversion

+
k
syntax String ::= Bool2String(Bool) [function, total] + rule Bool2String(true) => "true" + rule Bool2String(false) => "false" +
+
k
syntax Bool ::= String2Bool(String) [function] + rule String2Bool("true") => true + rule String2Bool("false") => false +
+

String and float conversion

+

You can convert between a String and a Float. The String will be +represented in the syntax of the Float sort (see the section on the FLOAT +module above for details of that syntax). Which particular string is returned +by Float2String is determined by the backend, but the same Float is +guaranteed to return the same String, and converting that String back to a +Float is guaranteed to return the original Float.

+

You can also convert a Float to a string in a particular syntax using the +variant of Float2String with a format. In this case, the resulting string +is one which results directly from passing that format to mpfr_printf. This +functionality may not be supported on backends that do not use Gnu MPFR to +implement floating-point numbers.

+
k
syntax String ::= Float2String ( Float ) [function, total, hook(STRING.float2string)] + syntax String ::= Float2String ( Float , format: String ) [function, klabel(FloatFormat), hook(STRING.floatFormat)] + syntax Float ::= String2Float ( String ) [function, hook(STRING.string2float)] +
+

String and integer conversions

+

You can convert between a String and an Int. The String will be represented +in the syntax of the INT module (i.e., a nonempty sequence of digits +optionally prefixed by a sign). When converting from an Int to a String, +the sign will not be present unless the integer is negative.

+

You can also convert between a String and an Int in a particular radix. +This radix can be anywhere between 2 and 36. For a radix 2 <= N <= 10, the +digits 0 to N-1 will be used. For a radix 11 <= N <= 36, the digits 0 to 9 +and the first N-10 letters of the Latin alphabet will be used. Both uppercase +and lowercase letters are supported by String2Base. Whether the letters +returned by Base2String are upper or lowercase is determined by the backend, +but the backend will consistently choose one or the other.

+
k
syntax Int ::= String2Int ( String ) [function, hook(STRING.string2int)] + syntax String ::= Int2String ( Int ) [function, total, hook(STRING.int2string)] + syntax String ::= Base2String ( Int , base: Int ) [function, hook(STRING.base2string)] + syntax Int ::= String2Base ( String , base: Int ) [function, hook(STRING.string2base)] +
+

String count and replace

+

You can replace one, some, or all occurrences of a string within another +string in O(N*M) time. The replaceAll, replace, and replaceFirst methods +are identical, except replaceFirst replaces exactly one ocurrence of the +string, the first occurrence. replace replaces the first times occurrences. +And replaceAll replaces every occurrence.

+

You can also count the number of times a string occurs within another string +using countAllOccurrences.

+
k
syntax String ::= "replaceAll" "(" haystack: String "," needle: String "," replacement: String ")" [function, total, hook(STRING.replaceAll)] + syntax String ::= "replace" "(" haystack: String "," needle: String "," replacement: String "," times: Int ")" [function, hook(STRING.replace)] + syntax String ::= "replaceFirst" "(" haystack: String "," needle: String "," replacement: String ")" [function, total, hook(STRING.replaceFirst)] + syntax Int ::= "countAllOccurrences" "(" haystack: String "," needle: String ")" [function, total, hook(STRING.countAllOccurrences)] +
+

String equality and lexicographic comparison

+

You can compare whether two strings are equal or unequal, or whether one string +is less than, less than or equal to, greater than, or greater than or equal to +another according to the natural lexicographic ordering of strings.

+
k
syntax Bool ::= String "==String" String [function, total, comm, hook(STRING.eq)] + | String "=/=String" String [function, total, comm, hook(STRING.ne)] + rule S1:String =/=String S2:String => notBool (S1 ==String S2) + + syntax Bool ::= String "<String" String [function, total, hook(STRING.lt)] + | String "<=String" String [function, total, hook(STRING.le)] + | String ">String" String [function, total, hook(STRING.gt)] + | String ">=String" String [function, total, hook(STRING.ge)] +
+

Implementation of Strings

+

What follows is a few String hooks which are deprecated and only are supported +on certain outdated backends of K, as well as an implementation of several +of the above operations in K.

+
k
syntax String ::= categoryChar(String) [function, hook(STRING.category)] + | directionalityChar(String) [function, hook(STRING.directionality)] + + syntax String ::= "newUUID" [function, hook(STRING.uuid), impure] + + rule S1:String <=String S2:String => notBool (S2 <String S1) + rule S1:String >String S2:String => S2 <String S1 + rule S1:String >=String S2:String => notBool (S1 <String S2) + + rule findChar(S1:String, S2:String, I:Int) => #if findString(S1, substrString(S2, 0, 1), I) ==Int -1 #then findChar(S1, substrString(S2, 1, lengthString(S2)), I) #else #if findChar(S1, substrString(S2, 1, lengthString(S2)), I) ==Int -1 #then findString(S1, substrString(S2, 0, 1), I) #else minInt(findString(S1, substrString(S2, 0, 1), I), findChar(S1, substrString(S2, 1, lengthString(S2)), I)) #fi #fi requires S2 =/=String "" + rule findChar(_, "", _) => -1 + rule rfindChar(S1:String, S2:String, I:Int) => maxInt(rfindString(S1, substrString(S2, 0, 1), I), rfindChar(S1, substrString(S2, 1, lengthString(S2)), I)) requires S2 =/=String "" + rule rfindChar(_, "", _) => -1 + + rule countAllOccurrences(Source:String, ToCount:String) => 0 + requires findString(Source, ToCount, 0) <Int 0 + rule countAllOccurrences(Source:String, ToCount:String) => 1 +Int countAllOccurrences(substrString(Source, findString(Source, ToCount, 0) +Int lengthString(ToCount), lengthString(Source)), ToCount) + requires findString(Source, ToCount, 0) >=Int 0 + + rule replaceFirst(Source:String, ToReplace:String, Replacement:String) => substrString(Source, 0, findString(Source, ToReplace, 0)) + +String Replacement +String substrString(Source, findString(Source, ToReplace, 0) +Int lengthString(ToReplace), lengthString(Source)) + requires findString(Source, ToReplace, 0) >=Int 0 + rule replaceFirst(Source:String, ToReplace:String, _:String) => Source + requires findString(Source, ToReplace, 0) <Int 0 + + + // Note that the replace function is undefined when Count < 0. This allows different backends to + // implement their own behavior without contradicting these semantics. For instance, a symbolic + // backend can return #Bottom for that case, while a concrete backend can throw an exception. + rule replace(Source:String, ToReplace:String, Replacement:String, Count:Int) => + substrString(Source, 0, findString(Source, ToReplace, 0)) +String Replacement +String + replace(substrString(Source, findString(Source, ToReplace, 0) +Int lengthString(ToReplace), lengthString(Source)), ToReplace, Replacement, Count -Int 1) + requires Count >Int 0 andBool findString(Source, ToReplace, 0) >=Int 0 + rule replace(Source:String, _, _, Count) => Source + requires Count >=Int 0 [owise] + rule replaceAll(Source:String, ToReplace:String, Replacement:String) => replace(Source, ToReplace, Replacement, countAllOccurrences(Source, ToReplace)) + +endmodule + +module STRING-KORE [symbolic] + imports private K-EQUAL + imports STRING-COMMON + + rule S1:String ==K S2:String => S1 ==String S2 [simplification] + +endmodule + +module STRING + imports STRING-COMMON + imports STRING-KORE +endmodule +
+

String Buffers

+

It is a well known fact that repeated string concatenations are quadratic +in performance whereas use of an efficient mutable representation of arrays +can yield linear performance. We thus provide such a sort, the StringBuffer +sort. Axiomatically, it is implemented below on symbolic backends using the +String module. However, on concrete backends it provides an efficient +implementation of string concatenation. There are three operations:

+
    +
  • .StringBuffer creates a new StringBuffer with current content equal +to the empty string.
  • +
  • +String takes a StringBuffer and a String and appends the String to +the end of the StringBuffer
  • +
  • StringBuffer2String converts a StringBuffer to a String. This operation +copies the string so that subsequent modifications to the StringBuffer +will not change the value of the String returned by this function.
  • +
+
k
module STRING-BUFFER-IN-K [symbolic] + imports private BASIC-K + imports STRING + + syntax StringBuffer ::= ".StringBuffer" [function, total] + syntax StringBuffer ::= StringBuffer "+String" String [function, total, avoid] + syntax StringBuffer ::= String + syntax String ::= StringBuffer2String ( StringBuffer ) [function, total] + + rule {SB:String +String S:String}::StringBuffer => (SB +String S)::String + rule .StringBuffer => "" + rule StringBuffer2String(S:String) => S +endmodule + +module STRING-BUFFER-HOOKED [concrete] + imports private BASIC-K + imports STRING + + syntax StringBuffer [hook(BUFFER.StringBuffer)] + syntax StringBuffer ::= ".StringBuffer" [function, total, hook(BUFFER.empty), impure] + syntax StringBuffer ::= StringBuffer "+String" String [function, total, hook(BUFFER.concat), avoid] + syntax String ::= StringBuffer2String ( StringBuffer ) [function, total, hook(BUFFER.toString)] +endmodule + +module STRING-BUFFER + imports STRING-BUFFER-HOOKED + imports STRING-BUFFER-IN-K +endmodule +
+

Byte Arrays

+

Provided here is the syntax of an implementation of fixed-width arrays of Bytes +in K. This type is hooked to an implementation of bytes provided by the backend. +On the LLVM backend, it is possible to opt in to a faster, mutable +representation (using the --llvm-mutable-bytes flag to kompile) where +multiple references can occur to the same Bytes object and when one is +modified, the others are also modified. Care should be taken when using this +feature, however, as it is possible to experience divergent behavior with +symbolic backends unless the Bytes type is used in a manner that preserves +consistency.

+
k
module BYTES-SYNTAX + imports private STRING-SYNTAX + + syntax Bytes [hook(BYTES.Bytes)] + syntax Bytes ::= r"b[\\\"](([ !#-\\[\\]-~])|([\\\\][tnfr\\\"\\\\])|([\\\\][x][0-9a-fA-F]{2}))*[\\\"]" [token] +endmodule +
+
k
module BYTES-STRING-ENCODE [symbolic] + imports BYTES-SYNTAX +
+

Encoding/decoding between Bytes and String

+

You can encode/decode between Bytes and String using UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, and UTF-32BE

+
k
syntax String ::= decodeBytes ( encoding: String , contents: Bytes ) [function, hook(BYTES.decodeBytes)] + syntax Bytes ::= encodeBytes ( encoding: String , contents: String ) [function, hook(BYTES.encodeBytes)] +endmodule +
+
k
module BYTES-HOOKED + imports STRING-SYNTAX + imports BYTES-SYNTAX + imports BYTES-STRING-ENCODE +
+

Empty byte array

+

The byte array of length zero is represented by .Bytes.

+
k
syntax Bytes ::= ".Bytes" [function, total, hook(BYTES.empty)] +
+

Endianness

+

When converting to/from an integer, byte arrays can be treated as either little +endian (ie, least significant byte first) or big endian (ie, most significant +byte first).

+
k
syntax Endianness ::= "LE" [klabel(littleEndianBytes), symbol] + | "BE" [klabel(bigEndianBytes), symbol] +
+

Signedness

+

When converting to/from an integer, byte arrays can be treated as either signed +or unsigned.

+
k
syntax Signedness ::= "Signed" [klabel(signedBytes), symbol] + | "Unsigned" [klabel(unsignedBytes), symbol] +
+

Integer and Bytes conversion

+

You can convert from a Bytes to an Int. In order to do this, the endianness +and signedness of the Bytes must be provided. The resulting integer is +created by means of interpreting the Bytes as either a twos-complement +representation, or an unsigned representation, of an integer, in the specified +byte order.

+

You can also convert from an Int to a Bytes. This comes in two variants. +In the first, the length of the resulting Bytes in bytes is explicitly +specified. If the length is greater than the highest set bit in the magnitude +of the integer, the result is padded with 0 bits if the number is positive +and 1 bits if the number is negative. If the length is less than the highest +bit set in the magnitude of the integer, the most-significant bits of the +integer will be truncated. The endianness of the resulting Bytes object +is as specified.

+

In the second variant, both endianness and signedness are specified, and +the resulting Bytes object will be the smallest number of bytes necessary +for the resulting Bytes object to be convertible back to the original integer +via Bytes2Int. In other words, if the highest bit set in the magnitude of the +integer is N, then the byte array will be at least N+1 bits long, rounded up +to the nearest byte.

+
k
syntax Int ::= Bytes2Int(Bytes, Endianness, Signedness) [function, total, hook(BYTES.bytes2int)] + syntax Bytes ::= Int2Bytes(length: Int, Int, Endianness) [function, total, hook(BYTES.int2bytes)] + | Int2Bytes(Int, Endianness, Signedness) [function, total, klabel(Int2BytesNoLen)] +
+

String and Bytes conversion

+

You can convert between a Bytes and a String in O(N) time. The resulting +value is a copy of the original and will not be affected by subsequent +mutations of the input or output value.

+
k
syntax String ::= Bytes2String(Bytes) [function, total, hook(BYTES.bytes2string)] + syntax Bytes ::= String2Bytes(String) [function, total, hook(BYTES.string2bytes)] +
+

Bytes update

+

You can set the value of a particular byte in a Bytes object in O(1) time. +The result is #False if value is not in the range [0..255] or if index +is not a valid index (ie, less than zero or greater than or equal to the length +of the Bytes term).

+
k
syntax Bytes ::= Bytes "[" index: Int "<-" value: Int "]" [function, hook(BYTES.update)] +
+

Bytes lookup

+

You can get the value of a particular byte in a Bytes object in O(1) time. +The result is #False if index is not a valid index (see above).

+
k
syntax Int ::= Bytes "[" Int "]" [function, hook(BYTES.get)] +
+

Bytes substring

+

You can get a new Bytes object containing a range of bytes from the input +Bytes in O(N) time (where N is the length of the substring). The range +of bytes included is [startIndex..endIndex). The resulting Bytes is +a copy and mutations to it do not affect mutations to the original Bytes. +The result is #False if startIndex or endIndex are not valid.

+
k
syntax Bytes ::= substrBytes(Bytes, startIndex: Int, endIndex: Int) [function, hook(BYTES.substr)] +
+

Multiple bytes update

+

You can modify a Bytes to return a Bytes which is equal to dest except the +N elements starting at index are replaced with the contents of src in O(N) +time. If --llvm-mutable-bytes is active, this will not create a new Bytes +object and will instead modify the original on concrete backends. The result is +#False if index + N is not a valid index.

+
k
syntax Bytes ::= replaceAtBytes(dest: Bytes, index: Int, src: Bytes) [function, hook(BYTES.replaceAt)] +
+

Multiple bytes update

+

You can modify a Bytes to return a Bytes which is equal to dest except the +count bytes starting at index are replaced with count bytes of value +Int2Bytes(1, v, LE/BE) in O(count) time. This does not create a new Bytes +object and will instead modify the original if --llvm-mutable-bytes is active. +This will throw an exception if index + count is not a valid index. The +acceptable range of values for v is -128 to 127. This will throw an exception +if v is outside of this range. This is implemented only for the LLVM backend.

+
k
syntax Bytes ::= memsetBytes(dest: Bytes, index: Int, count: Int, v: Int) [function, hook(BYTES.memset)] +
+

Bytes padding

+

You can create a new Bytes object which is at least length bytes long by +taking the input sequence and padding it on the right (respectively, on the +left) with the specified value. If --llvm-mutable-bytes is active, this does +not create a new Bytes object if the input is already at least length bytes +long, and will instead return the input unchanged. The result is #False if +value is not in the range [0..255], or if the length is negative.

+
k
syntax Bytes ::= padRightBytes(Bytes, length: Int, value: Int) [function, hook(BYTES.padRight)] + | padLeftBytes(Bytes, length: Int, value: Int) [function, hook(BYTES.padLeft)] +
+

Bytes reverse

+

You can reverse a Bytes object in O(N) time. If --llvm-mutable-bytes is +active, this will not create a new Bytes object and will instead modify the +original.

+
k
syntax Bytes ::= reverseBytes(Bytes) [function, total, hook(BYTES.reverse)] +
+

Bytes length

+

You can get the length of a Bytes term in O(1) time.

+
k
syntax Int ::= lengthBytes(Bytes) [function, total, hook(BYTES.length), smtlib(lengthBytes)] +
+

Bytes concatenation

+

You can create a new Bytes object by concatenating two Bytes objects +together in O(N) time.

+
k
syntax Bytes ::= Bytes "+Bytes" Bytes [function, total, hook(BYTES.concat), right] + +endmodule +
+

Implementation of Bytes

+

The remainder of this module consists of an implementation of some of the +operators listed above in K.

+
k
module BYTES-CONCRETE [concrete] + imports BYTES-HOOKED +endmodule + +module BYTES-KORE + imports BYTES-HOOKED + imports BYTES-SYMBOLIC-CEIL +endmodule + +module BYTES-SYMBOLIC-CEIL [symbolic] + imports BYTES-HOOKED + imports private INT + imports private BOOL + + rule #Ceil(padRightBytes(_, LEN, VAL)) => {(0 <=Int LEN andBool 0 <=Int VAL andBool VAL <Int 256) #Equals true} [simplification] + rule #Ceil(padLeftBytes(_, LEN, VAL)) => {(0 <=Int LEN andBool 0 <=Int VAL andBool VAL <Int 256) #Equals true} [simplification] +endmodule + +module BYTES + imports BYTES-CONCRETE + imports BYTES-KORE + imports private INT + + rule Int2Bytes(I::Int, E::Endianness, Unsigned) => Int2Bytes((log2Int(I) +Int 8) /Int 8, I, E) + requires I >Int 0 + rule Int2Bytes(0, _::Endianness, _) => .Bytes + rule Int2Bytes(I::Int, E::Endianness, Signed) => Int2Bytes((log2Int(I) +Int 9) /Int 8, I, E) + requires I >Int 0 + rule Int2Bytes(I::Int, E::Endianness, Signed) => Int2Bytes((log2Int(~Int I) +Int 9) /Int 8, I, E) + requires I <Int -1 + rule Int2Bytes(-1, E::Endianness, Signed) => Int2Bytes(1, -1, E) +endmodule +
+

Program identifiers

+

Provided here is an implementation for program identifiers in K. Developers +of semantics for a particular language may wish to use their own implementation +instead of the one provided here if their syntax differs from the syntax +defined below. However, this is provided for convenience for developers who +do not care about the lexical syntax of identifiers.

+

Provided are the following pieces of functionality:

+
    +
  • Id2String - Convert an Id to a String containing its name
  • +
  • String2Id - Convert a String to an Id with the specified name
  • +
  • !X:Id - You can get a fresh identifier distinct from any previous identifier +generated by this syntax.
  • +
+
k
module ID-SYNTAX-PROGRAM-PARSING + imports BUILTIN-ID-TOKENS + syntax Id ::= r"[A-Za-z\\_][A-Za-z0-9\\_]*" [prec(1), token] + | #LowerId [token] + | #UpperId [token] +endmodule + +module ID-SYNTAX + syntax Id [token] +endmodule + +module ID-COMMON + imports ID-SYNTAX + imports private STRING + + syntax String ::= Id2String ( Id ) [function, total, hook(STRING.token2string)] + syntax Id ::= String2Id (String) [function, total, hook(STRING.string2token)] + syntax Id ::= freshId(Int) [freshGenerator, function, total, private] + + rule freshId(I:Int) => String2Id("_" +String Int2String(I)) +endmodule + +module ID + imports ID-COMMON +endmodule +
+

Equality and conditionals

+

Provided here are implementations of two important primitives in K:

+
    +
  • ==K - the equality between two terms. Returns true if they are equal +and false if they are not equal.
  • +
  • #if #then #else #fi - polymorphic conditional function. If the first +argument evaluates to true, the second argument is returned. Otherwise, +the third argument is returned. Note that this does not short-circuit on +symbolic backends.
  • +
+
k
module K-EQUAL-SYNTAX + imports private BOOL + imports private BASIC-K + + syntax Bool ::= left: + K "==K" K [function, total, comm, smt-hook(=), hook(KEQUAL.eq), klabel(_==K_), symbol, group(equalEqualK)] + | K "=/=K" K [function, total, comm, smt-hook(distinct), hook(KEQUAL.ne), klabel(_=/=K_), symbol, group(notEqualEqualK)] + + syntax priority equalEqualK notEqualEqualK > boolOperation mlOp + + syntax {Sort} Sort ::= "#if" Bool "#then" Sort "#else" Sort "#fi" [function, total, symbol(ite), smt-hook(ite), hook(KEQUAL.ite)] + +endmodule + +module K-EQUAL-KORE [symbolic] + imports private BOOL + imports K-EQUAL-SYNTAX + + rule K1:Bool ==K K2:Bool => K1 ==Bool K2 [simplification] + rule {K1 ==K K2 #Equals true} => {K1 #Equals K2} [simplification] + rule {true #Equals K1 ==K K2} => {K1 #Equals K2} [simplification] + rule {K1 ==K K2 #Equals false} => #Not({K1 #Equals K2}) [simplification] + rule {false #Equals K1 ==K K2} => #Not({K1 #Equals K2}) [simplification] + rule {K1 =/=K K2 #Equals true} => #Not({K1 #Equals K2}) [simplification] + rule {true #Equals K1 =/=K K2} => #Not({K1 #Equals K2}) [simplification] + rule {K1 =/=K K2 #Equals false} => {K1 #Equals K2} [simplification] + rule {false #Equals K1 =/=K K2} => {K1 #Equals K2} [simplification] + +endmodule + +module K-EQUAL + imports private BOOL + imports K-EQUAL-SYNTAX + imports K-EQUAL-KORE + + rule K1:K =/=K K2:K => notBool (K1 ==K K2) + + rule #if C:Bool #then B1::K #else _ #fi => B1 requires C + rule #if C:Bool #then _ #else B2::K #fi => B2 requires notBool C + +endmodule +
+

Meta operations

+

Provided below are a few miscellaneous, mostly deprecated functions in K. +It is not recommended to use any of them directly as they are largely +unsupported in modern K. There are a few exceptions:

+
    +
  • #getenv - Returns the value of an environment variable
  • +
  • #kompiledDirectory - Returns the path to the current compiled K definition +directory.
  • +
  • #unparseKORE - Takes a K term and converts it to a string.
  • +
+
k
module K-REFLECTION + imports BASIC-K + imports STRING + + syntax K ::= "#configuration" [function, impure, hook(KREFLECTION.configuration)] + syntax String ::= #sort(K) [function, hook(KREFLECTION.sort)] + syntax KItem ::= #fresh(String) [function, hook(KREFLECTION.fresh), impure] + syntax KItem ::= getKLabel(K) [function, hook(KREFLECTION.getKLabel)] + + syntax K ::= #getenv(String) [function, impure, hook(KREFLECTION.getenv)] + + syntax String ::= #kompiledDirectory() [function, hook(KREFLECTION.kompiledDir)] + + // meaningful only for the purposes of compilation to a binary, otherwise + // undefined + syntax List ::= #argv() [function, hook(KREFLECTION.argv)] + + syntax {Sort} String ::= #unparseKORE(Sort) [function, hook(KREFLECTION.printKORE)] + syntax IOError ::= "#noParse" "(" String ")" [klabel(#noParse), symbol] + +endmodule +
+

I/O in K

+

Concrete execution in K supports I/O operations. This functionality is not +supported during symbolic execution, because symbolic execution must exist +completely free of side-effects, and I/O is an irreducible type of side effect. +However, it is useful in many cases when defining concrete execution to be able +to make reference to I/O operations.

+

The design of these I/O operations is based on the POSIX standard, for the most +part. For example, the #read K function maps to the read POSIX function. We +do not at this time have a higher-level API for I/O, but this may be +implemented at some point in the future.

+

I/O operations generally return either their result, or an IOError term +corresponding to the errno returned by the underlying system call.

+
k
module K-IO + imports private LIST + imports private STRING + imports private INT +
+

I/O errors

+

Aside from EOF, which is returned by #getc if the file is at end-of-file, all +of the below I/O errors correspond to possible values for errno after calling +a library function. If the errno returned is not one of the below errnos +known to K, #unknownIOError is returned along with the integer errno value.

+
k
syntax IOError ::= "#EOF" [klabel(#EOF), symbol] + | #unknownIOError(errno: Int) [klabel(#unknownIOError), symbol] + | "#E2BIG" [klabel(#E2BIG), symbol] + | "#EACCES" [klabel(#EACCES), symbol] + | "#EAGAIN" [klabel(#EAGAIN), symbol] + | "#EBADF" [klabel(#EBADF), symbol] + | "#EBUSY" [klabel(#EBUSY), symbol] + | "#ECHILD" [klabel(#ECHILD), symbol] + | "#EDEADLK" [klabel(#EDEADLK), symbol] + | "#EDOM" [klabel(#EDOM), symbol] + | "#EEXIST" [klabel(#EEXIST), symbol] + | "#EFAULT" [klabel(#EFAULT), symbol] + | "#EFBIG" [klabel(#EFBIG), symbol] + | "#EINTR" [klabel(#EINTR), symbol] + | "#EINVAL" [klabel(#EINVAL), symbol] + | "#EIO" [klabel(#EIO), symbol] + | "#EISDIR" [klabel(#EISDIR), symbol] + | "#EMFILE" [klabel(#EMFILE), symbol] + | "#EMLINK" [klabel(#EMLINK), symbol] + | "#ENAMETOOLONG" [klabel(#ENAMETOOLONG), symbol] + | "#ENFILE" [klabel(#ENFILE), symbol] + | "#ENODEV" [klabel(#ENODEV), symbol] + | "#ENOENT" [klabel(#ENOENT), symbol] + | "#ENOEXEC" [klabel(#ENOEXEC), symbol] + | "#ENOLCK" [klabel(#ENOLCK), symbol] + | "#ENOMEM" [klabel(#ENOMEM), symbol] + | "#ENOSPC" [klabel(#ENOSPC), symbol] + | "#ENOSYS" [klabel(#ENOSYS), symbol] + | "#ENOTDIR" [klabel(#ENOTDIR), symbol] + | "#ENOTEMPTY" [klabel(#ENOTEMPTY), symbol] + | "#ENOTTY" [klabel(#ENOTTY), symbol] + | "#ENXIO" [klabel(#ENXIO), symbol] + | "#EPERM" [klabel(#EPERM), symbol] + | "#EPIPE" [klabel(#EPIPE), symbol] + | "#ERANGE" [klabel(#ERANGE), symbol] + | "#EROFS" [klabel(#EROFS), symbol] + | "#ESPIPE" [klabel(#ESPIPE), symbol] + | "#ESRCH" [klabel(#ESRCH), symbol] + | "#EXDEV" [klabel(#EXDEV), symbol] + | "#EWOULDBLOCK" [klabel(#EWOULDBLOCK), symbol] + | "#EINPROGRESS" [klabel(#EINPROGRESS), symbol] + | "#EALREADY" [klabel(#EALREADY), symbol] + | "#ENOTSOCK" [klabel(#ENOTSOCK), symbol] + | "#EDESTADDRREQ" [klabel(#EDESTADDRREQ), symbol] + | "#EMSGSIZE" [klabel(#EMSGSIZE), symbol] + | "#EPROTOTYPE" [klabel(#EPROTOTYPE), symbol] + | "#ENOPROTOOPT" [klabel(#ENOPROTOOPT), symbol] + | "#EPROTONOSUPPORT" [klabel(#EPROTONOSUPPORT), symbol] + | "#ESOCKTNOSUPPORT" [klabel(#ESOCKTNOSUPPORT), symbol] + | "#EOPNOTSUPP" [klabel(#EOPNOTSUPP), symbol] + | "#EPFNOSUPPORT" [klabel(#EPFNOSUPPORT), symbol] + | "#EAFNOSUPPORT" [klabel(#EAFNOSUPPORT), symbol] + | "#EADDRINUSE" [klabel(#EADDRINUSE), symbol] + | "#EADDRNOTAVAIL" [klabel(#EADDRNOTAVAIL), symbol] + | "#ENETDOWN" [klabel(#ENETDOWN), symbol] + | "#ENETUNREACH" [klabel(#ENETUNREACH), symbol] + | "#ENETRESET" [klabel(#ENETRESET), symbol] + | "#ECONNABORTED" [klabel(#ECONNABORTED), symbol] + | "#ECONNRESET" [klabel(#ECONNRESET), symbol] + | "#ENOBUFS" [klabel(#ENOBUFS), symbol] + | "#EISCONN" [klabel(#EISCONN), symbol] + | "#ENOTCONN" [klabel(#ENOTCONN), symbol] + | "#ESHUTDOWN" [klabel(#ESHUTDOWN), symbol] + | "#ETOOMANYREFS" [klabel(#ETOOMANYREFS), symbol] + | "#ETIMEDOUT" [klabel(#ETIMEDOUT), symbol] + | "#ECONNREFUSED" [klabel(#ECONNREFUSED), symbol] + | "#EHOSTDOWN" [klabel(#EHOSTDOWN), symbol] + | "#EHOSTUNREACH" [klabel(#EHOSTUNREACH), symbol] + | "#ELOOP" [klabel(#ELOOP), symbol] + | "#EOVERFLOW" [klabel(#EOVERFLOW), symbol] +
+

I/O result sorts

+

Here we see sorts defined to contain either an Int or an IOError, or +either a String or an IOError. These sorts are used to implement the +return sort of functions that may succeed, in which case they return a value, +or may fail, in which case their return value indicates an error and the +error indicated is returned via errno.

+
k
syntax IOInt ::= Int | IOError + syntax IOString ::= String | IOError +
+

Opening a file

+

You can open a file in K using #open. An optional mode indicates the file +open mode, which can have any value allowed by the fopen function in C. +The returned value is the file descriptor that was opened, or an error.

+
k
syntax IOInt ::= "#open" "(" path: String ")" [function] + | "#open" "(" path: String "," mode: String ")" [function, hook(IO.open), impure] + + rule #open(S:String) => #open(S:String, "r+") +
+

Get/set position in file

+

You can get the current offset in a file using #tell. You can also seek +to a particular offset using #seek or #seekEnd. #seek is implemented via +a call to lseek with the SEEK_SET whence. #seekEnd is implemented via a +call to lseek with the SEEK_END whence. You can emulate the SEEK_CUR +whence by means of #seek(FD, #tell(FD) +Int Offset).

+
k
syntax IOInt ::= "#tell" "(" fd: Int ")" [function, hook(IO.tell), impure] + syntax K ::= "#seek" "(" fd: Int "," index: Int ")" [function, hook(IO.seek), impure] + | "#seekEnd" "(" fd: Int "," fromEnd: Int ")" [function, hook(IO.seekEnd), impure] +
+

Read from file

+

You can read a single character from a file using #getc. #EOF is returned +if you are at end-of-fie.

+

You can also read up to length characters in a file using #read. The +resulting read characters are returned, which may be fewer characters than +requested. A string of zero length being returned indicates end-of-file.

+
k
syntax IOInt ::= "#getc" "(" fd: Int ")" [function, hook(IO.getc), impure] + syntax IOString ::= "#read" "(" fd: Int "," length: Int ")" [function, hook(IO.read), impure] +
+

Write to file

+

You can write a single character to a file using #putc. You can also write +a string to a file using #write. The returned value on success is .K.

+
k
syntax K ::= "#putc" "(" fd: Int "," value: Int ")" [function, hook(IO.putc), impure] + | "#write" "(" fd: Int "," value: String ")" [function, hook(IO.write), impure] +
+

Closing a file

+

You can close a file using #close. The returned value on success is .K.

+
k
syntax K ::= "#close" "(" fd: Int ")" [function, hook(IO.close), impure] +
+

Locking/unlocking a file

+

You can lock or unlock parts of a file using the #lock and #unlock +functions. The lock starts at the beginning of the file and continues for +endIndex bytes. Note that Unix systems do not actually prevent locked files +from being read and modified; you will have to lock both sides of a concurrent +access to guarantee exclusivity.

+
k
syntax K ::= "#lock" "(" fd: Int "," endIndex: Int ")" [function, hook(IO.lock), impure] + | "#unlock" "(" fd: Int "," endIndex: Int ")" [function, hook(IO.unlock), impure] +
+

Networking

+

You can accept a connection on a socket using #accept, or shut down the +write end of a socket with #shutdownWrite. Note that facility is not provided +for opening, binding, and listening on sockets. These functions are implemented +in order to support creating stateful request/response servers where the +request loop is implemented using rewriting in K, but the connection +initialization is written in native code and linked into the LLVM backend.

+
k
syntax IOInt ::= "#accept" "(" fd: Int ")" [function, hook(IO.accept), impure] + syntax K ::= "#shutdownWrite" "(" fd: Int ")" [function, hook(IO.shutdownWrite), impure] +
+

Time

+

You can get the current time in seconds since midnight UTC on January 1, 1970 +using #time.

+
k
syntax Int ::= "#time" "(" ")" [function, hook(IO.time), impure] +
+

Builtin file descriptors

+

Provided here are functions that return the file descriptor for standard input, +standard output, and standard error.

+
k
syntax Int ::= "#stdin" [function, total] + | "#stdout" [function, total] + | "#stderr" [function, total] + + rule #stdin => 0 + rule #stdout => 1 + rule #stderr => 2 +
+

Shell access

+

You can execute a command using the shell using the #system operator. Care +must be taken to sanitize inputs to this function or security issues may +result. Note that K has no facility for reasoning about logic that happens +outside its process, so any functionality that you wish to be able to formally +reason about in K should not be implemented via the #system operator.

+
k
syntax KItem ::= #system ( String ) [function, hook(IO.system), impure] + | "#systemResult" "(" Int /* exit code */ "," String /* stdout */ "," String /* stderr */ ")" [klabel(#systemResult), symbol] +
+

Temporary files

+

You can get a temporary file and open it atomically using the #mkstemp +operator. The resulting file will be closed and deleted when K rewriting ends. +For more info on the argument to #mkstemp, see man mkstemp.

+
k
syntax IOFile ::= #mkstemp(template: String) [function, hook(IO.mkstemp), impure] + syntax IOFile ::= IOError + | "#tempFile" "(" path: String "," fd: Int ")" [klabel(#tempFile), symbol] +
+

Deleting a file

+

You can delete a file using its absolute or relative path using the #remove +operator. It returns .K on success or an IOError on failure.

+
k
syntax K ::= #remove(path: String) [function, total, hook(IO.remove), impure] +
+

Logging

+

You can log information to disk using the #logToFile operator. Semantically, +this operator returns .K. However, it has a side effect that is not reasoned +about which is that value will be written to a uniquely-identified file +containing name in its name. The file is only flushed to disk when rewriting +finishes.

+
k
syntax K ::= #logToFile(name: String, value: String) [function, total, hook(IO.log), impure, returnsUnit, klabel(#logToFile), symbol] +
+

Strings can also be logged via the logging mechanisms available to the backend. +On the LLVM backend, this just means logging the text to standard error. On the +Haskell backend, a log message of type InfoUserLog is created with the +specified text.

+
k
syntax K ::= #log(value: String) [function, total, hook(IO.logString), impure, returnsUnit, klabel(#log), symbol] +
+

Terms can also be logged to standard error in surface syntax, rather than as +KORE using #trace. This operator has similar semantics to #logToFile (i.e. +it returns .K, but prints as an impure side effect). Note that calling +#trace is equivalent to invoking the kprint tool for the first term that is +logged, which requires re-parsing the underlying K definition. Subsequent calls +do not incur this overhead again; the definition is cached.

+
k
syntax K ::= #trace(value: KItem) [function, total, hook(IO.traceTerm), impure, returnsUnit, klabel(#trace), symbol] + | #traceK(value: K) [function, total, hook(IO.traceTerm), impure, returnsUnit, klabel(#traceK), symbol] +
+

Implementation of high-level I/O streams in K

+

Below is an implementation of the stream="stdin" and stream="stdout" +cell attributes in K. You should not refer to these symbols or modules directly +in your definition. It is provided only so that the K compiler can make use of +it. For more information on how to use this feature, refer to IMP++ in the K +tutorial.

+
k
syntax Stream ::= #buffer(K) + | #istream(Int) + | #parseInput(String, String) + | #ostream(Int) + +endmodule + +// NOTE: DO NOT DIRECTLY IMPORT *-STREAM MODULES +// These stream modules will be automatically instantiated and implicitly imported +// into the main module when `stream` attributes appear in configuration cells. +// Only `Stream` productions and `[stream]` rules will be imported. +// The cell name will be replaced with the one of the main configuration. + +module STDIN-STREAM + imports K-IO + imports K-REFLECTION + imports LIST + imports INT + imports BOOL + + configuration <stdin> ListItem(#buffer($STDIN:String)) ListItem($IO:String) ListItem(#istream(#stdin)) </stdin> + + // read one character at a time until we read whitespace + rule [stdinGetc]: + <stdin> + ListItem(#parseInput(_:String, Delimiters:String)) + ListItem(#buffer(S:String => S +String chrChar({#getc(N)}:>Int))) + ListItem("on") + ListItem(#istream(N:Int)) + </stdin> + requires findChar(S, Delimiters, 0) ==Int -1 // [stdin] + [stream, priority(200)] + + // when we reach whitespace, if it parses create a ListItem + rule [stdinParseString]: + <stdin> + (ListItem(#parseInput("String", Delimiters:String)) => ListItem(S)) + ListItem(#buffer(S:String => "")) + _:List + </stdin> + requires findChar(S, Delimiters, 0) =/=Int -1 // [stdin] + [stream] + + // a hack: handle the case when we read integers without the help of the IO server + rule [stdinParseInt]: + <stdin> + (ListItem(#parseInput("Int", Delimiters:String)) + => ListItem(String2Int(substrString(S, 0, findChar(S, Delimiters, 0))))) + ListItem(#buffer(S:String => substrString(S,findChar(S, Delimiters, 0) +Int 1, lengthString(S)))) + _:List + </stdin> + requires findChar(S, Delimiters, 0) =/=Int -1 + andBool lengthString(S) >Int 1 // [stdin] + [stream] + + rule [stdinTrim]: + <stdin> + ListItem(#parseInput(Sort:String, Delimiters:String)) + ListItem(#buffer(S:String => substrString(S, 1, lengthString(S)))) + _:List + </stdin> + requires findChar(S, Delimiters, 0) =/=Int -1 + andBool Sort =/=String "String" + andBool lengthString(S) <=Int 1 // [stdin] + [stream] + + // NOTE: This unblocking rule will be instantiated and inserted carefully + // when necessary according to user-defined rules, since otherwise it will + // lead to a diverging (i.e., non-terminating) transition system definition. + // Currently, it supports only a simple pattern matching on the top of the + // input stream cell, e.g., + // rule <k> read() => V ... </k> <in> ListItem(V:Int) => .List ... </in> + // Non-supported rules that refer to the input stream cell in a sophisticated + // way will get stuck in concrete execution mode with real IO enabled (i.e., + // under `--io on` option), while they will still work in symbolic execution + // mode or concrete execution mode with real IO disabled (i.e., under `--io + // off`, `--search`, or `--debug` options). + // + // TODO: More patterns need to be supported as well. In that case, we need to + // have a way to specify such patterns. + rule [stdinUnblock]: + <stdin> + (.List => ListItem(#parseInput(?Sort:String, ?Delimiters:String))) + ListItem(#buffer(_:String)) + ... + </stdin> + + /* + syntax Stream ::= "#noIO" + + rule ListItem(#buffer(_)) + (ListItem(#noIO) ListItem(#istream(_:Int)) => .List) [stdin] + */ + +endmodule + +module STDOUT-STREAM + imports K-IO + imports LIST + imports STRING + + configuration <stdout> ListItem(#ostream(#stdout)) ListItem($IO:String) ListItem(#buffer("")) </stdout> +//configuration <stderr> ListItem(#ostream(#stderr)) ListItem($IO:String) ListItem(#buffer("")) </stderr> + + rule [stdoutBufferFloat]: + <stdout> + ListItem(#ostream(_)) + ListItem(_) + ListItem(#buffer(Buffer:String => Buffer +String Float2String(F))) + (ListItem(F:Float) => .List) + _:List + </stdout> + // [stdout, stderr] + [stream, priority(25)] + rule [stdoutBufferInt]: + <stdout> + ListItem(#ostream(_)) + ListItem(_) + ListItem(#buffer(Buffer:String => Buffer +String Int2String(I))) + (ListItem(I:Int) => .List) + _:List + </stdout> + // [stdout, stderr] + [stream, priority(25)] + rule [stdoutBufferString]: + <stdout> + ListItem(#ostream(_)) + ListItem(_) + ListItem(#buffer(Buffer:String => Buffer +String S)) + (ListItem(S:String) => .List) + _:List + </stdout> + // [stdout, stderr] + [stream, priority(25)] + + // Send first char from the buffer to the server + rule [stdoutWrite]: + <stdout> + ListItem(#ostream(N:Int => {#write(N, S) ~> N:Int}:>Int)) + ListItem("on") + ListItem(#buffer(S:String => "")) + _:List + </stdout> + requires S =/=String "" // [stdout, stderr] + [stream, priority(30)] + + /* + syntax Stream ::= "#noIO" + + rule ListItem(#buffer(Buffer:String => Buffer +String Float2String(F))) + (ListItem(F:Float) => .List) + _:List [stdout, stderr] + rule ListItem(#buffer(Buffer:String => Buffer +String Int2String(I))) + (ListItem(I:Int) => .List) + _:List [stdout, stderr] + rule ListItem(#buffer(Buffer:String => Buffer +String S)) + (ListItem(S:String) => .List) + _:List [stdout, stderr] + + rule (ListItem(#ostream(_:Int)) ListItem(#noIO) => .List) + ListItem(#buffer(_)) + _:List [stdout, stderr] + */ + +endmodule +
+

Machine Integers

+

Provided here is an implementation of arbitrarily large fixed-precision binary +integers in K. This type is hooked to an implementation of integers provided +by the backend, and in particular makes use of native machine integers for +certain sizes of integer. For arbitrary-precision integers, see the INT +module above.

+

The syntax of machine integers in K is the same as arbitrary-precision integers +(i.e., an optional sign followed by a sequence of digits) except that machine +integers always end in a suffix pN where N is an integer indicating the +width in bits of the integer. The MInt sort is parametric, and this is +reflected in the literals. For example, the sort of 0p8 is MInt{8}.

+
k
module MINT-SYNTAX + /*@\section{Description} The MInt implements machine integers of arbitrary + * bit width represented in 2's complement. */ + syntax {Width} MInt{Width} [hook(MINT.MInt)] + + /*@ Machine integer of bit width and value. */ + syntax {Width} MInt{Width} ::= r"[\\+\\-]?[0-9]+[pP][0-9]+" [token, prec(2), hook(MINT.literal)] +endmodule + +module MINT + imports MINT-SYNTAX + imports private INT + imports private BOOL +
+

Bitwidth of MInt

+

You can get the number of bits of width in an MInt using bitwidthMInt.

+
k
syntax {Width} Int ::= bitwidthMInt(MInt{Width}) [function, total, hook(MINT.bitwidth)] +
+

Int and MInt conversions

+

You can convert from an MInt to an Int using the MInt2Signed and +MInt2Unsigned functions. an MInt does not have a sign; its sign is instead +reflected in how operators interpret its value either as a signed integer or as +an unsigned integer. Thus, you can interpret a MInt as a signed integer witth +MInt2Signed, or as an unsigned integer respectively using MInt2Unsigned.

+

You can also convert from an Int to an MInt using Int2MInt. Care must +be given to ensure that the sort context where the Int2MInt operator appears +has the correct bitwidth, as this will influence the width of the resulting +MInt.

+
k
syntax {Width} Int ::= MInt2Signed(MInt{Width}) [function, total, hook(MINT.svalue)] + | MInt2Unsigned(MInt{Width}) [function, total, hook(MINT.uvalue), smt-hook(bv2int)] + + syntax {Width} MInt{Width} ::= Int2MInt(Int) [function, total, hook(MINT.integer), smt-hook(int2bv)] +
+

MInt min and max values

+

You can get the minimum and maximum values of a signed or unsigned MInt +with az specified bit width using sminMInt, smaxMInt, uminMInt, and +umaxMInt.

+
k
syntax Int ::= sminMInt(Int) [function] + | smaxMInt(Int) [function] + | uminMInt(Int) [function] + | umaxMInt(Int) [function] + rule sminMInt(N:Int) => 0 -Int (1 <<Int (N -Int 1)) + rule smaxMInt(N:Int) => (1 <<Int (N -Int 1)) -Int 1 + rule uminMInt(_:Int) => 0 + rule umaxMInt(N:Int) => (1 <<Int N) -Int 1 +
+

MInt bounds checking

+

You can check whether a specified Int will be represented in an MInt +with a specified width without any loss of precision when interpreted as +a signed or unsigned integer using soverflowMInt and uoverflowMInt.

+
k
syntax Bool ::= soverflowMInt(width: Int, Int) [function] + | uoverflowMInt(width: Int, Int) [function] + rule + soverflowMInt(N:Int, I:Int) + => + I <Int sminMInt(N) orBool I >Int smaxMInt(N) + rule + uoverflowMInt(N:Int, I:Int) + => + I <Int uminMInt(N) orBool I >Int umaxMInt(N) +
+

MInt arithmetic

+

You can:

+
    +
  • Compute the bitwise complement ~MInt of an MInt.
  • +
  • Compute the unary negation --MInt of an MInt.
  • +
  • Compute the product *MInt of two MInts.
  • +
  • Compute the quotient /sMInt of two MInts interpreted as signed integers.
  • +
  • Compute the modulus %sMInt of two MInts interpreted as signed integers.
  • +
  • Compute the quotient /uMInt of two MInts interpreted as unsigned +integers.
  • +
  • Compute the modulus %uMInt of two MInts interpreted as unsigned integers.
  • +
  • Compute the sum +MInt of two MInts.
  • +
  • Compute the difference -MInt of two MInts.
  • +
  • Compute the left shift <<MInt of two MInts. The second MInt is always +interpreted as positive.
  • +
  • Compute the arithmetic right shift >>aMInt of two MInts. The second +MInt is always interpreted as positve.
  • +
  • Compute the logical right shift >>lMInt of two MInts. The second MInt +is always interpreted as positive.
  • +
  • Compute the bitwise and &MInt of two MInts.
  • +
  • Compute the bitwise xor xorMInt of two MInts.
  • +
  • Compute the bitwise inclusive or |MInt of two MInts.
  • +
+
k
syntax {Width} MInt{Width} ::= "~MInt" MInt{Width} [function, total, hook(MINT.not), smt-hook(bvnot)] + | "--MInt" MInt{Width} [function, total, hook(MINT.neg), smt-hook(bvuminus)] + > left: + MInt{Width} "*MInt" MInt{Width} [function, total, hook(MINT.mul), smt-hook(bvmul)] + | MInt{Width} "/sMInt" MInt{Width} [function, hook(MINT.sdiv), smt-hook(bvsdiv)] + | MInt{Width} "%sMInt" MInt{Width} [function, hook(MINT.srem), smt-hook(bvsrem)] + | MInt{Width} "/uMInt" MInt{Width} [function, hook(MINT.udiv), smt-hook(bvudiv)] + | MInt{Width} "%uMInt" MInt{Width} [function, hook(MINT.urem), smt-hook(bvurem)] + > left: + MInt{Width} "+MInt" MInt{Width} [function, total, hook(MINT.add), smt-hook(bvadd)] + | MInt{Width} "-MInt" MInt{Width} [function, total, hook(MINT.sub), smt-hook(bvsub)] + > left: + MInt{Width} "<<MInt" MInt{Width} [function, hook(MINT.shl), smt-hook(bvshl)] + | MInt{Width} ">>aMInt" MInt{Width} [function, hook(MINT.ashr), smt-hook(bvashr)] + | MInt{Width} ">>lMInt" MInt{Width} [function, hook(MINT.lshr), smt-hook(bvlshr)] + > left: + MInt{Width} "&MInt" MInt{Width} [function, total, hook(MINT.and), smt-hook(bvand)] + > left: + MInt{Width} "xorMInt" MInt{Width} [function, total, hook(MINT.xor), smt-hook(bvxor)] + > left: + MInt{Width} "|MInt" MInt{Width} [function, total, hook(MINT.or), smt-hook(bvor)] +
+

MInt comparison

+

You can compute whether one MInt is less than, less than or equal to, greater +than, or greater than or equal to another MInt when interpreted as signed +or unsigned integers. You can also compute whether one MInt is equal to or +unequal to another MInt.

+
k
syntax {Width} Bool ::= MInt{Width} "<sMInt" MInt{Width} [function, total, hook(MINT.slt), smt-hook(bvslt)] + | MInt{Width} "<uMInt" MInt{Width} [function, total, hook(MINT.ult), smt-hook(bvult)] + | MInt{Width} "<=sMInt" MInt{Width} [function, total, hook(MINT.sle), smt-hook(bvsle)] + | MInt{Width} "<=uMInt" MInt{Width} [function, total, hook(MINT.ule), smt-hook(bvule)] + | MInt{Width} ">sMInt" MInt{Width} [function, total, hook(MINT.sgt), smt-hook(bvsgt)] + | MInt{Width} ">uMInt" MInt{Width} [function, total, hook(MINT.ugt), smt-hook(bvugt)] + | MInt{Width} ">=sMInt" MInt{Width} [function, total, hook(MINT.sge), smt-hook(bvsge)] + | MInt{Width} ">=uMInt" MInt{Width} [function, total, hook(MINT.uge), smt-hook(bvuge)] + | MInt{Width} "==MInt" MInt{Width} [function, total, hook(MINT.eq), smt-hook(=)] + | MInt{Width} "=/=MInt" MInt{Width} [function, total, hook(MINT.ne), smt-hook(distinct)] +
+

MInt min/max

+

You can compute the signed minimum sMinMInt, the signed maximum sMaxMInt, +the unsigned minimum uMinMInt, and the unsigned maximum uMaxMInt of two +MInts.

+
k
syntax {Width} MInt{Width} ::= sMaxMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.smax), smt-hook((ite (bvslt #1 #2) #2 #1))] + | sMinMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.smin), smt-hook((ite (bvslt #1 #2) #1 #2))] + | uMaxMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.umax), smt-hook((ite (bvult #1 #2) #2 #1))] + | uMinMInt(MInt{Width}, MInt{Width}) [function, total, hook(MINT.umin), smt-hook((ite (bvult #1 #2) #1 #2))] +
+

MInt to MInt conversion

+

You can convert an MInt of one width to another width with roundMInt. +The resulting MInt will be truncated starting from the most significant bit +if the resulting width is smaller than the input. The resulting MInt will be +zero-extended with the same low-order bits if the resulting width is larger +than the input.

+
k
syntax {Width1, Width2} MInt{Width1} ::= roundMInt(MInt{Width2}) [function, total, hook(MINT.round)] +
+
k
endmodule +
+
+
+ + +
+ +
+
+ + Basic Builtin Types in K + +
+
+ + Arrays + + +
+
+ + Maps + + +
+
+ + Range Maps + + +
+
+ + Sets + + +
+
+ + Lists + + +
+
+ + Booleans + + +
+
+ + Integers + + +
+
+ + IEEE 754 Floating-point Numbers + + +
+
+ + Strings + + +
+
+ + Byte Arrays + + +
+
+ + I/O in K + + +
+
+ + Machine Integers + + +
+ +
+
+ +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/ffi/index.html b/k-distribution/include/kframework/builtin/ffi/index.html new file mode 100644 index 00000000000..8307bd615d8 --- /dev/null +++ b/k-distribution/include/kframework/builtin/ffi/index.html @@ -0,0 +1,620 @@ + + + + + + + + + + + + + + +K Foreign Function Interface | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Foreign Function Interface

+

The K Foreign Function Interface (FFI) module provides a way to call native +functions directly from a K semantics using the C ABI. It also provides +utilities for allocating and deallocating byte buffers with static addresses +that are suitable for being passed to native code.

+

It is built off of the underlying libffi library +(https://sourceware.org/libffi/) and is subject to some of the same +limitations as that library. Bear in mind, because this library exposes +a number of unsafe C APIs directly, misuse of the library is likely to lead +to memory corruption in your interpreter and can cause segmentation faults or +corrupted term representations that lead to undefined behavior at runtime.

+
k
requires "domains.md" + +module FFI-SYNTAX + imports private LIST +
+

The FFIType sort is used to declare the native C ABI types of operands passed +to the #ffiCall function. These types roughly correspond to the types +declared in ffi.h by libffi.

+
k
syntax FFIType ::= "#void" [klabel(#ffi_void), symbol] + | "#uint8" [klabel(#ffi_uint8), symbol] + | "#sint8" [klabel(#ffi_sint8), symbol] + | "#uint16" [klabel(#ffi_uint16), symbol] + | "#sint16" [klabel(#ffi_sint16), symbol] + | "#uint32" [klabel(#ffi_uint32), symbol] + | "#sint32" [klabel(#ffi_sint32), symbol] + | "#uint64" [klabel(#ffi_uint64), symbol] + | "#sint64" [klabel(#ffi_sint64), symbol] + | "#float" [klabel(#ffi_float), symbol] + | "#double" [klabel(#ffi_double), symbol] + | "#uchar" [klabel(#ffi_uchar), symbol] + | "#schar" [klabel(#ffi_schar), symbol] + | "#ushort" [klabel(#ffi_ushort), symbol] + | "#sshort" [klabel(#ffi_sshort), symbol] + | "#uint" [klabel(#ffi_uint), symbol] + | "#sint" [klabel(#ffi_sint), symbol] + | "#ulong" [klabel(#ffi_ulong), symbol] + | "#slong" [klabel(#ffi_slong), symbol] + | "#longdouble" [klabel(#ffi_longdouble), symbol] + | "#pointer" [klabel(#ffi_pointer), symbol] + | "#complexfloat" [klabel(#ffi_complexfloat), symbol] + | "#complexdouble" [klabel(#ffi_complexdouble), symbol] + | "#complexlongdouble" [klabel(#ffi_complexlongdouble), symbol] + | "#struct" "(" List ")" [klabel(#ffi_struct), symbol] +endmodule + +module FFI + imports FFI-SYNTAX + imports private BYTES + imports private STRING + imports private BOOL + imports private LIST + imports private INT + +
+

FFI Calls

+

The #ffiCall functions are designed to call a native C ABI function and +return a native result. They come in three variants:

+

Non-variadic

+

In the first variant, #ffiCall(Address, Args, ArgTypes, ReturnType) takes +an integer address of a function (which can be obtained from +#functionAddress), a List of Bytes containing the arguments of the +function, a List of FFITypes containing the types of the parameters of the +function, and an FFIType containing the return type of the function, and +returns the return value of the function as a Bytes.

+
k
syntax Bytes ::= "#ffiCall" "(" Int "," List "," List "," FFIType ")" [function, hook(FFI.call)] +
+

Variadic

+

In the second variant, +#ffiCall(Address, Args, FixedTypes, VariadicTypes, ReturnType takes an +integer address of a function, a List of Bytes containing the arguments +of the call, a List of FFITypes containing the types of the fixed +parameters of the function, a List of FFITypes containing the types of the +variadic parameters of the function, and an FFIType containing the return +type of the function, and returns the return value of the function as a +Bytes.

+
k
syntax Bytes ::= "#ffiCall" "(" Int "," List "," List "," List "," FFIType ")" [function, hook(FFI.call_variadic)] +
+

Generic

+

In the third variant, +#ffiCall(IsVariadic, Address, Args, ArgTypes, NFixed, ReturnType takes +a boolean indicating whether the function is variadic or not, an integer +address of a function, a List of Bytes containing the arguments of the +call, a List of FFITypes containing the parameter typess of the call +followed by the types of the variadic arguments of the call, if any, an Int +containing how many of the arguments of the call are fixed or not, and an +FFIType containing the return type of the function, and returns the return +value of the function as a Bytes.

+
k
syntax Bytes ::= "#ffiCall" "(" Bool "," Int "," List "," List "," Int "," FFIType ")" [function] + + rule #ffiCall(false, Addr::Int, Args::List, Types::List, _, Ret::FFIType) => #ffiCall(Addr, Args, Types, Ret) + rule #ffiCall(true, Addr::Int, Args::List, Types::List, NFixed::Int, Ret::FFIType) => #ffiCall(Addr, Args, range(Types, 0, size(Types) -Int NFixed), range(Types, NFixed, 0), Ret) +
+

Symbol Lookup

+

The FFI module provides a mechanism to look up any function symbol and return +that function's address.

+
k
syntax Int ::= "#functionAddress" "(" String ")" [function, hook(FFI.address)] +
+

Direct Memory Management

+

Most memory used by the LLVM backend to represent terms is managed +automatically via garbage collection. However, a consequence of this is that +a particular term does not have a fixed address across its entire lifetime +in most cases. Sometimes this is undesirable, especially if you intend for +the address of the memory to be taken by the semantics or if you intend +to pass this memory directly to native code. As a result, the FFI module +exposes the following unsafe APIs for memory management. Note that use of +these APIs leaves the burden of memory management completely on the user, +and thus misuse of these functions can lead to things like use-after-free +and other memory corruption bugs.

+

Allocation

+

#alloc(Key, Size, Align) will allocate Size bytes with an alignment +requirement of Align (which must be a power of two), and return it as a +Bytes term. The memory is uniquely identified by its key and that key will +be used later to free the memory. The memory is not implicitly freed by garbage +collection; failure to call #free on the memory at a later date can lead to +memory leaks.

+
k
syntax Bytes ::= "#alloc" "(" KItem "," Int "," Int ")" [function, hook(FFI.alloc)] +
+

Addressing

+

#addess(B) will return an Int representing the address of the first byte of +B, which must be a Bytes. Unless the Bytes term was allocated by #alloc, +the return value is unspecified and may not be the same across multipl +invocations on the same byte buffer. However, it is guaranteed that memory +allocated by #alloc will have the same address throughout its lifetime.

+
k
syntax Int ::= "#address" "(" Bytes ")" [function, hook(FFI.bytes_address)] +
+

Deallocation

+

#free(Key) will free the memory of the Bytes object that was allocated +by a previous call to #alloc. If Key was not used in a previous call to +#alloc, or the memory was already freed, no action is taken. It will generate +undefined behavior if the Bytes term returned by the previous call to +#alloc is still referenced by any other term in the configuration or a +currently evaluating rule. The function returns .K.

+
k
syntax K ::= "#free" "(" KItem ")" [function, hook(FFI.free)] +
+

Reading

+

#nativeRead(Addr, Mem) will read native memory at address Addr into Mem, +reading exactly lengthBytes(Mem) bytes. This will generate undefined behavior +if Addr does not point to a readable segment of memory at least +lengthBytes(Mem) bytes long.

+
k
syntax K ::= "#nativeRead" "(" Int "," Bytes ")" [function, hook(FFI.read)] +
+

Writing

+

#nativeWrite(Addr, Mem) will write the contents of Mem to native memory at +address Addr. The memory will be read prior to being written, and a write +will only happen if the memory has a different value than the current value of +Mem. This will generate undefined behavior if Addr does not point to a +readable segment of memory at least lengthBytes(Mem) bytes long, or if the +memory at address Addr has a different value than currently contained in +Mem, and the memory in question is not writeable.

+
k
syntax K ::= "#nativeWrite" "(" Int "," Bytes ")" [function, hook(FFI.write)] +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/json/index.html b/k-distribution/include/kframework/builtin/json/index.html new file mode 100644 index 00000000000..2ac1caa3f47 --- /dev/null +++ b/k-distribution/include/kframework/builtin/json/index.html @@ -0,0 +1,429 @@ + + + + + + + + + + + + + + +Syntax of JSON | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Syntax of JSON

+

K provides builtin support for reading/writing to JSON. While the JSON-SYNTAX +module is not precisely the syntax of JSON (utilizing K's syntax for strings, +integers, and floating point numbers rather than the syntax used by JSON), +you can still convert directly to/from the actual syntax of JSON using +the JSON2String and String2JSON hooks.

+
k
module JSON-SYNTAX + imports INT-SYNTAX + imports STRING-SYNTAX + imports BOOL-SYNTAX + imports FLOAT-SYNTAX + + syntax JSONs ::= List{JSON,","} [symbol(JSONs)] + syntax JSONKey ::= String + syntax JSON ::= "null" [klabel(JSONnull) , symbol] + | String | Int | Float | Bool + | JSONKey ":" JSON [klabel(JSONEntry) , symbol] + | "{" JSONs "}" [klabel(JSONObject) , symbol] + | "[" JSONs "]" [klabel(JSONList) , symbol] +endmodule +
+

Conversion between JSON and String

+

Given a string written in valid JSON, you can convert it to the JSON +sort with the String2JSON function. Assuming the user has not extended +the syntax of the JSON sort with their own constructors, any term of sort +JSON can also be converted to a String using the JSON2String function.

+
k
module JSON + imports JSON-SYNTAX + + syntax String ::= JSON2String(JSON) [function, symbol(JSON2String), hook(JSON.json2string)] + + syntax JSON ::= String2JSON(String) [function, symbol(String2JSON), hook(JSON.string2json)] +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/kast/index.html b/k-distribution/include/kframework/builtin/kast/index.html new file mode 100644 index 00000000000..2ec99ed8af7 --- /dev/null +++ b/k-distribution/include/kframework/builtin/kast/index.html @@ -0,0 +1,959 @@ + + + + + + + + + + + + + + +K Language Features | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Language Features

+

Defined below is a series of modules used to parse inner syntax in K (ie, the +contents of rules, configuration declarations, and contexts).

+

Much of this file exists in tight correspondence with the K implementation, and +K will not work correctly if it is altered without corresponding changes to the +source code of the K tools.

+

Users should only import a few modules from this file. In particular, this +includes SORT-K, BASIC-K, ML-SYNTAX, DEFAULT-LAYOUT, +DEFAULT-CONFIGURATION, and K-AMBIGUITIES. The remaining modules should not +be imported by the user; they are used implicitly by the implementation of K.

+

Basic K Sorts

+

The SORT-K module declares the K sort, and nothing else.

+
k
module SORT-K + syntax K [hook(K.K)] +endmodule +
+

The BASIC-K module declares the K, KItem, and KConfigVar sorts, and +imports the syntax of matching logic.

+
k
module BASIC-K + imports ML-SYNTAX + imports SORT-BOOL + syntax KItem [hook(K.KItem)] + syntax K ::= KItem + syntax KConfigVar [token] + syntax KItem ::= KConfigVar +endmodule +
+

KAST Abstract Syntax

+

Below is defined the abstract syntax of concrete terms in K, the KAST syntax. +Users should rarely if ever have to refer to this syntax; in general, it +suffices to use concrete syntax in rules, configuration declarations, contexts, +etc.

+

This syntax is used directly by the K implementation, and exists here as a +reference for the syntax of KAST, but it should not be imported directly by +the user.

+
k
module KSTRING + syntax KString ::= r"[\\\"](([^\\\"\\n\\r\\\\])|([\\\\][nrtf\\\"\\\\])|([\\\\][x][0-9a-fA-F]{2})|([\\\\][u][0-9a-fA-F]{4})|([\\\\][U][0-9a-fA-F]{8}))*[\\\"]" [token] + // optionally qualified strings, like in Scala "abc", i"abc", r"a*bc", etc. +endmodule + +module BUILTIN-ID-TOKENS + syntax #LowerId ::= r"[a-z][a-zA-Z0-9]*" [prec(2), token] + syntax #UpperId ::= r"[A-Z][a-zA-Z0-9]*" [prec(2), token] +endmodule + +module SORT-KBOTT + imports SORT-K + syntax KBott +endmodule + +module KAST + imports BASIC-K + imports SORT-KBOTT + imports KSTRING + imports BUILTIN-ID-TOKENS + + syntax KBott ::= "#token" "(" KString "," KString ")" [klabel(#KToken), symbol] + | "#klabel" "(" KLabel ")" [klabel(#WrappedKLabel), symbol] + | KLabel "(" KList ")" [klabel(#KApply), symbol] + syntax KItem ::= KBott + + syntax KLabel ::= r"`(\\\\`|\\\\\\\\|[^`\\\\\\n\\r])+`" [token] + | #LowerId [token] + | r"[#a-z][a-zA-Z0-9]*" [token, prec(1)] + + syntax KList ::= K + | ".KList" [klabel(#EmptyKList), symbol] + | KList "," KList [klabel(#KList), left, assoc, unit(#EmptyKList), symbol, prefer] +endmodule + + +// To be used when parsing/pretty-printing ground configurations +module KSEQ + imports KAST + imports K-TOP-SORT + syntax K ::= ".K" [klabel(#EmptyK), symbol] + | "." [klabel(#EmptyK), symbol, deprecated, unparseAvoid] + syntax K ::= K "~>" K [klabel(#KSequence), left, assoc, unit(#EmptyK), symbol] + syntax left #KSequence + syntax {Sort} Sort ::= "(" Sort ")" [bracket, group(defaultBracket), applyPriority(1)] +endmodule +
+

Syntax of Matching Logic

+

K provides direct access to the symbols of Matching Logic, while giving them +their own concrete syntax distinct from the syntax of the KORE intermediate +representation. These symbols are primarily used during symbolic execution. +The LLVM Backend has relatively little understanding of Matching Logic directly +and use of these symbols directly in rules is likely to cause it to crash. +However, these symbols are necessary when providing lemmas and other types of +logical assistance to proofs and symbolic execution in the Haskell Backend.

+

The correspondance between K symbols and KORE symbols is as follows:

+
    +
  • #Top - \top
  • +
  • #Bottom - \bottom
  • +
  • #Not - \not
  • +
  • #Ceil - \ceil
  • +
  • #Floor - \floor
  • +
  • #Equals - \equals
  • +
  • #And - \and
  • +
  • #Or - \or
  • +
  • #Implies - \implies
  • +
  • #Exists - \exists
  • +
  • #Forall - \forall
  • +
  • #AG - allPathGlobally
  • +
  • #wEF - weakExistsFinally
  • +
  • #wAF - weakAlwaysFinally
  • +
+
k
module ML-SYNTAX [not-lr1] + imports SORT-K + + syntax {Sort} Sort ::= "#Top" [klabel(#Top), symbol, group(mlUnary)] + | "#Bottom" [klabel(#Bottom), symbol, group(mlUnary)] + | "#Not" "(" Sort ")" [klabel(#Not), symbol, mlOp, group(mlUnary, mlOp)] + + syntax {Sort1, Sort2} Sort2 ::= "#Ceil" "(" Sort1 ")" [klabel(#Ceil), symbol, mlOp, group(mlUnary, mlOp)] + | "#Floor" "(" Sort1 ")" [klabel(#Floor), symbol, mlOp, group(mlUnary, mlOp)] + | "{" Sort1 "#Equals" Sort1 "}" [klabel(#Equals), symbol, mlOp, group(mlEquals, mlOp), comm, format(%1%i%n%2%d%n%3%i%n%4%d%n%5)] + + syntax priority mlUnary > mlEquals > mlAnd + + syntax {Sort} Sort ::= Sort "#And" Sort [klabel(#And), symbol, assoc, left, comm, unit(#Top), mlOp, group(mlAnd, mlOp), format(%i%1%d%n%2%n%i%3%d)] + > Sort "#Or" Sort [klabel(#Or), symbol, assoc, left, comm, unit(#Bottom), mlOp, group(mlOp), format(%i%1%d%n%2%n%i%3%d)] + > Sort "#Implies" Sort [klabel(#Implies), symbol, mlOp, group(mlImplies, mlOp), format(%i%1%d%n%2%n%i%3%d)] + + syntax priority mlImplies > mlQuantifier + + syntax {Sort1, Sort2} Sort2 ::= "#Exists" Sort1 "." Sort2 [klabel(#Exists), symbol, mlOp, mlBinder, group(mlQuantifier, mlOp)] + | "#Forall" Sort1 "." Sort2 [klabel(#Forall), symbol, mlOp, mlBinder, group(mlQuantifier, mlOp)] + + syntax {Sort} Sort ::= "#AG" "(" Sort ")" [klabel(#AG), symbol, mlOp, group(mlOp)] + | "#wEF" "(" Sort ")" [klabel(weakExistsFinally), symbol, mlOp, group(mlOp)] + | "#wAF" "(" Sort ")" [klabel(weakAlwaysFinally), symbol, mlOp, group(mlOp)] +endmodule +
+

Variables in K

+

Provided below is the syntax of variables in K. There are four types of +variables in K:

+
    +
  1. Regular variables. These are denoted by variables that begin with an +underscore or a capital letter. These variables match exactly one value +and can be used to refer to it on the right-hand-side.
  2. +
  3. Fresh constants. These are denoted by variables that begin with an !. This +is a convenience syntax which can be used on the right-hand-side only, and +refer to a unique value of the specified sort which is distinct from any +other value that has been generated or will be generated by the !X syntax. +Note that this may not be distinct from values produced via other means.
  4. +
  5. Existential variables. This refers to variables that are existentially +quantified and begin with a ?. They are not required to appear on the +left-hand-side prior to appearing on the right-hand-side, and generally +refer to symbolic quantities that are introduced during rewriting. Refer to +K's documentation for more details.
  6. +
  7. Set variables. These are denoted by variables that begin with a @. +These variables refer to a set of values and are generally used when writing +simplification rules in the Haskell Backend. For more information, refer to +K's documentation.
  8. +
+

There is also a fifth type of "variable", although it is not technically a +variable. This refers to configuration variables, which are used to insert +values into the initial configuration that come from outside the semantics. +The most common of these is the $PGM variable, which conventionally contains +the program being executed and is placed in the <k> cell in the configuration +declaration. These "variables" begin with a $ and their values are populated +by the frontend prior to symbolic or concrete execution of a program.

+
k
module KVARIABLE-SYNTAX + syntax #KVariable +endmodule + +// To be used when parsing/pretty-printing symbolic configurations +module KSEQ-SYMBOLIC + imports KSEQ + imports ML-SYNTAX + imports KVARIABLE-SYNTAX + + syntax #KVariable ::= r"(\\!|\\?|@)?([A-Z][A-Za-z0-9'_]*|_|_[A-Z][A-Za-z0-9'_]*)" [token, prec(1)] + | #UpperId [token] + syntax KConfigVar ::= r"(\\$)([A-Z][A-Za-z0-9'_]*)" [token] + syntax KBott ::= #KVariable + syntax KBott ::= KConfigVar +endmodule +
+

Syntax of Cells

+

While the backend treats cells as regular productions like any other, the +frontend provides a significant amount of convenience notation for dealing with +groups of cells, in order to make writing modular definitions easier. As a +result, we need a syntax for groups of cells and for referring to cells within +rules, configuration declarations, and functions.

+

For historical reasons, the Bag sort is used to refer to groups of cells. +This may change in a future release. Users can combine cells in any order +by concatenating them together, and can refer to the absence of any cells with +the .Bag symbol. You can also refer to cells within a function by placing +the cell context symbol, [[ K ]] at the top of a rule, placing a function +symbol inside, and referring to cells afterwards. This implicitly inserts +a reference to the configuration at the time prior to the currently-applied +rule being applied which can be matched on within the function. Functions with +such context cannot be referred to in the initial configuration, because the +prior configuration does not yet exist.

+
k
module KCELLS + imports KAST + + syntax Cell + syntax Bag ::= Bag Bag [left, assoc, klabel(#cells), symbol, unit(#cells)] + | ".Bag" [klabel(#cells), symbol] + | ".::Bag" [klabel(#cells), symbol] + | Cell + syntax Bag ::= "(" Bag ")" [bracket] + syntax KItem ::= Bag + syntax #RuleBody ::= "[" "[" K "]" "]" Bag [klabel(#withConfig), symbol, avoid] + syntax non-assoc #withConfig + syntax Bag ::= KBott +endmodule +
+

Users can also refer to cells in rules. When doing so, an optional ... can +be placed immediately after the start of the cell or immediately before the +end. In a cell whose contents are commutative, these are equivalent to one +another and are also equivalent to placing ... in both places. This means +that what is placed in the cell will be combined with the cell contents' +concatenation operator with an unnamed variable. In other words, you match on +some number of elements in the collection and do not care about the rest of +the collection.

+

In a cell whose contents are not commutative, the ... operators correspond +to a variable on the respective side of the contents of the cell that the +... appears. For example, <foo>... L </foo>, if L is a list, means +some number of elements followed by L. Note that not all combinations are +supported. Cells whose contents are sort K can only have ... appear at the +tail of the cell, and cells whose contents are sort List can only have ... +appear on at most one side in a single rule.

+
k
module RULE-CELLS + imports KCELLS + imports RULE-LISTS + // if this module is imported, the parser automatically + // generates, for all productions that have the attribute 'cell' or 'maincell', + // a production like below: + //syntax Cell ::= "<top>" #OptionalDots K #OptionalDots "</top>" [klabel(<top>)] + + syntax #OptionalDots ::= "..." [klabel(#dots), symbol] + | "" [klabel(#noDots), symbol] + + syntax Int + // this production will be added by the compiler to help handle bang variables, + // however, it is valuable to put it here because without this production, it + // will not exist at the point in time when rules and claims are parsed, and + // as a result it makes it very difficult to write proof claims over fragments + // of code that exercise rules containing bang variables. We put it here because + // this production will "vanish" after parsing finishes and not be picked up + // by the compiler, which is the behavior we want in this case since an actual + // production will be generated by the compiler later on. + syntax GeneratedCounterCell ::= "<generatedCounter>" Int "</generatedCounter>" [cell, klabel(<generatedCounter>), symbol, internal] +endmodule +
+

Users can also declare cells in a configuration declaration. This generates a +specific set of productions that is used internally to implement the cell. The +most important of these is the cell itself, and attributes on this production +can be specified in an xml-attribute-like syntax.

+

You can also use an xml-short-tag-like syntax to compose configuration cells +together which were defined in different modules. However, it is a requirement +that any K definition have at most one fully-composed configuration; thus, all +other configuration declarations must appear composed within another +configuration declaration.

+
k
module CONFIG-CELLS + imports KCELLS + imports RULE-LISTS + syntax #CellName ::= r"[a-zA-Z][a-zA-Z0-9\\-]*" [token, prec(1)] + | #LowerId [token] + | #UpperId [token] + + syntax Cell ::= "<" #CellName #CellProperties ">" K "</" #CellName ">" [klabel(#configCell), symbol] + syntax Cell ::= "<" #CellName "/>" [klabel(#externalCell), symbol] + + syntax #CellProperties ::= #CellProperty #CellProperties [klabel(#cellPropertyList), symbol] + | "" [klabel(#cellPropertyListTerminator), symbol] + syntax #CellProperty ::= #CellName "=" KString [klabel(#cellProperty), symbol] +endmodule +
+

Syntax of Rules

+

Rules can have an optional requires clause or an ensures clause. For backwards- +compatibility, you can refer to the requires clause with both the requires +and when keywords; The latter, however, is deprecated and may be removed in +a future release.

+

The requires clause specifies the preconditions that must be true in order +for the rule to apply. The ensures clause specifies the information which +becomes true after the rule has applied. It is a requirement that information +present in the ensures clause refer to existential variables only.

+

When doing concrete execution, you can think of the requires clause as a +side-condition. In other words, even if the rule matches, it will not apply +unless the requires clause, which must be of sort Bool, evaluates to +true.

+
k
module REQUIRES-ENSURES + imports BASIC-K + + syntax #RuleBody ::= K + + syntax #RuleContent ::= #RuleBody [klabel("#ruleNoConditions"), symbol] + | #RuleBody "requires" Bool [klabel("#ruleRequires"), symbol] + | #RuleBody "ensures" Bool [klabel("#ruleEnsures"), symbol] + | #RuleBody "requires" Bool "ensures" Bool [klabel("#ruleRequiresEnsures"), symbol] +endmodule +
+

Miscellaneous modules

+

The below modules are used in various ways as indicators to the implementation +that certain automatically generated syntax should be created by the parser. +These modules should not be imported directly by the user.

+
k
module K-TOP-SORT + imports SORT-KBOTT + syntax KItem ::= KBott + syntax {Sort} KItem ::= Sort +endmodule + +module K-BOTTOM-SORT + imports SORT-KBOTT + syntax KItem ::= KBott + syntax {Sort} Sort ::= KBott +endmodule + +module K-SORT-LATTICE + imports K-TOP-SORT + imports K-BOTTOM-SORT +endmodule + +module AUTO-CASTS + // if this module is imported, the parser automatically + // generates, for all sorts, productions of the form: + // Sort ::= Sort ":Sort" // semantic cast - force the inner term to be `Sort` or a subsort + // Sort ::= Sort "::Sort" // strict cast - force the inner term to be exactly `Sort`. Useful for disambiguation + // Sort ::= "{" Sort "}" "::Sort" // synonym for strict cast + // Sort ::= "{" K "}" ":>Sort" // projection cast. Allows any term to be placed in a context that expects `Sort` + // this is part of the mechanism that allows concrete user syntax in K +endmodule + +module AUTO-FOLLOW + // if this module is imported, the parser automatically + // generates a follow restriction for every terminal which is a prefix + // of another terminal. This is useful to prevent ambiguities such as: + // syntax K ::= "a" + // syntax K ::= "b" + // syntax K ::= "ab" + // syntax K ::= K K + // #parse("ab", "K") + // In the above example, the terminal "a" is not allowed to be followed by a "b" + // because it would turn the terminal into the terminal "ab". +endmodule + +module PROGRAM-LISTS + imports SORT-K + // if this module is imported, the parser automatically + // replaces the default productions for lists: + // Es ::= E "," Es [userList("*"), klabel('_,_)] + // | ".Es" [userList("*"), klabel('.Es)] + // into a series of productions more suitable for programs: + // Es#Terminator ::= "" [klabel('.Es)] + // Ne#Es ::= E "," Ne#Es [klabel('_,_)] + // | E Es#Terminator [klabel('_,_)] + // Es ::= Ne#Es + // | Es#Terminator // if the list is * +endmodule + +module RULE-LISTS + // if this module is imported, the parser automatically + // adds the subsort production to the parsing module only: + // Es ::= E [userList("*")] + +endmodule + +module RECORD-PRODUCTIONS + // if this module is imported, prefix productions of the form + // syntax Sort ::= name(Args) + // will be able to be parsed with don't-care variables according + // to their nonterminal's names +endmodule + +module SORT-PREDICATES + // if this module is imported, the Bool sort will be annotated with + // syntax Bool ::= isSort(K) [function] + // and all sorts will be annotated with + // syntax Sort ::= project:Sort(K) [function] +endmodule +
+

Additional Syntax for K Terms in Rules

+

Certain additional features are available when parsing the contents of rules +and contexts. For more information on each of these, refer to K's +documentation.

+
k
module KREWRITE + syntax {Sort} Sort ::= Sort "=>" Sort [klabel(#KRewrite), symbol] + syntax non-assoc #KRewrite + syntax priority #KRewrite > #withConfig +endmodule + +// To be used to parse semantic rules +module K + imports KSEQ-SYMBOLIC + imports REQUIRES-ENSURES + imports RECORD-PRODUCTIONS + imports SORT-PREDICATES + imports K-SORT-LATTICE + imports AUTO-CASTS + imports AUTO-FOLLOW + imports KREWRITE + + syntax {Sort} Sort ::= Sort "#as" Sort [klabel(#KAs), symbol] + // functions that preserve sorts and can therefore have inner rewrites + syntax {Sort} Sort ::= "#fun" "(" Sort ")" "(" Sort ")" [klabel(#fun2), symbol, prefer] + // functions that do not preserve sort and therefore cannot have inner rewrites + syntax {Sort1, Sort2} Sort1 ::= "#fun" "(" Sort2 "=>" Sort1 ")" "(" Sort2 ")" [klabel(#fun3), symbol] + + syntax {Sort1, Sort2} Sort1 ::= "#let" Sort2 "=" Sort2 "#in" Sort1 [klabel(#let), symbol] + + /*@ Set membership over terms. In addition to equality over + concrete patterns, K also supports computing equality + between a concrete pattern and a symbolic pattern. + This is compiled efficiently down to pattern matching, + and can be used by putting a term with unbound variables + in the left child of :=K or =/=K. Note that this does not + bind variables used on the lhs however (although this may + change in the future).*/ + + syntax Bool ::= left: + K ":=K" K [function, total, klabel(_:=K_), symbol, group(equalEqualK)] + | K ":/=K" K [function, total, klabel(_:/=K_), symbol, group(notEqualEqualK)] +endmodule + +// To be used to parse terms in full K +module K-TERM + imports KSEQ-SYMBOLIC + imports RECORD-PRODUCTIONS + imports SORT-PREDICATES + imports K-SORT-LATTICE + imports AUTO-CASTS + imports AUTO-FOLLOW + imports KREWRITE +endmodule +
+

Layout Information

+

When constructing a scanner for use during parsing, often you wish to ignore +certain types of text, such as whitespace and comments. However, the specific +syntax which each language must ignore is a little different from language +to language, and thus you wish to specify it manually. You can do this by +defining productions of the #Layout sort. For more information, refer to +K's documentation. However, this module will be implicitly imported if no +productions are declared of sort #Layout. This module will also be used +for the purposes of parsing K rules. If you wish to declare a language with +no layout productions, simply create a sort declaration for the #Layout sort +in your code (e.g. syntax #Layout).

+
k
module DEFAULT-LAYOUT + syntax #Layout ::= r"(\\/\\*([^\\*]|(\\*+([^\\*\\/])))*\\*+\\/)" // C-style multi-line comments + | r"(\\/\\/[^\\n\\r]*)" // C-style single-line comments + | r"([\\ \\n\\r\\t])" // Whitespace +endmodule +
+

Default Configuration

+

If the user has no configuration declaration in their seamantics, the below +configuration declaration will be implicitly imported.

+
k
module DEFAULT-CONFIGURATION + imports BASIC-K + + configuration <k> $PGM:K </k> +endmodule +
+

Parsing Ambiguous Languages

+

On occasion, it may be desirable to parse a language with an ambiguous grammar +when parsing a program, and perform additional semantic analysis at a later +time in order to resolve the ambiguities. A good example of this is as a +substitute for the lexer hack in parsers of the C programming language.

+

The following module contains a declaration for ambiguities in K. Usually, +an ambiguous parse is an error. However, when you use the --gen-glr-parser +flag to kast, or the --gen-glr-bison-parser flag to kompile, ambiguities +instead become instances of the below parametric production, which you can use +regular K rules to disambiguate as necessary.

+
k
module K-AMBIGUITIES + + syntax {Sort} Sort ::= amb(Sort, Sort) [klabel(amb), symbol] + +endmodule +
+

Annotating Parses with Locations

+

Another feature of K's Bison parser is the ability to annotate terms parsed +with location information about the file and line where they occurred. For +more information about how to use this, refer to K's documentation. However, +the below module exists to provide a user syntax for the annotations that +are generated by the parser.

+
k
module K-LOCATIONS + imports STRING-SYNTAX + imports INT-SYNTAX + + // filename, startLine, startCol, endLine, endCol + syntax {Sort} Sort ::= #location(Sort, String, Int, Int, Int, Int) [klabel(#location), symbol, format(%3)] + +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/prelude/index.html b/k-distribution/include/kframework/builtin/prelude/index.html new file mode 100644 index 00000000000..9c2d678d29e --- /dev/null +++ b/k-distribution/include/kframework/builtin/prelude/index.html @@ -0,0 +1,400 @@ + + + + + + + + + + + + + + +K Prelude | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Prelude

+

The following files, integral to defining semantics in K, are automatically +required by every definition via this file. This behavior can be disabled +via kompile --no-prelude, however, semantics will likely break unless +they provide their own versions of these files, which are assumed to exist +by the compiler. There are, however, circumstances where passing this flag is +appropriate, such as if you are manually requiring these files in your +definition, if your definition was automatically condensed into a single file +with kompile -E, or if you wish to modify the inner syntax of K by providing +your own version of these files with different syntax.

+
k
requires "kast.md" +requires "domains.md" +
+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/rat/index.html b/k-distribution/include/kframework/builtin/rat/index.html new file mode 100644 index 00000000000..047b8a063aa --- /dev/null +++ b/k-distribution/include/kframework/builtin/rat/index.html @@ -0,0 +1,621 @@ + + + + + + + + + + + + + + +Rational Numbers in K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Rational Numbers in K

+

K provides support for arbitrary-precision rational numbers represented as a +quotient between two integers. The sort representing these values is Rat. +Int is a subsort of Rat, and it is guaranteed that any integer will be +represented as an Int and can be matched as such on the left hand side +of rules. K also supports the usual arithmetic operators over rational numbers.

+
k
module RAT-SYNTAX + imports INT-SYNTAX + imports private BOOL + + syntax Rat + + syntax Rat ::= Int +
+

Arithmetic

+

You can:

+
    +
  • Raise a rational number to any negative or nonnegative integer.
  • +
  • Multiply or divide two rational numbers to obtain a product or quotient.
  • +
  • Add or subtract two rational numbers to obtain a sum or difference.
  • +
+
k
syntax Rat ::= left: + Rat "^Rat" Int [function, total, klabel(_^Rat_), symbol, smtlib(ratpow), hook(RAT.pow)] + > left: + Rat "*Rat" Rat [function, total, klabel(_*Rat_), symbol, left, smtlib(ratmul), hook(RAT.mul)] + | Rat "/Rat" Rat [function, klabel(_/Rat_), symbol, left, smtlib(ratdiv), hook(RAT.div)] + > left: + Rat "+Rat" Rat [function, total, klabel(_+Rat_), symbol, left, smtlib(ratadd), hook(RAT.add)] + | Rat "-Rat" Rat [function, total, klabel(_-Rat_), symbol, left, smtlib(ratsub), hook(RAT.sub)] +
+

Comparison

+

You can determine whether two rational numbers are equal, unequal, or compare +one of less than, less than or equalto, greater than, or greater than or equal +to the other:

+
k
syntax Bool ::= Rat "==Rat" Rat [function, total, klabel(_==Rat_), symbol, smtlib(rateq), hook(RAT.eq)] + | Rat "=/=Rat" Rat [function, total, klabel(_=/=Rat_), symbol, smtlib(ratne), hook(RAT.ne)] + | Rat ">Rat" Rat [function, total, klabel(_>Rat_), symbol, smtlib(ratgt), hook(RAT.gt)] + | Rat ">=Rat" Rat [function, total, klabel(_>=Rat_), symbol, smtlib(ratge), hook(RAT.ge)] + | Rat "<Rat" Rat [function, total, klabel(_<Rat_), symbol, smtlib(ratlt), hook(RAT.lt)] + | Rat "<=Rat" Rat [function, total, klabel(_<=Rat_), symbol, smtlib(ratle), hook(RAT.le)] +
+

Min/Max

+

You can compute the minimum and maximum of two rational numbers:

+
k
syntax Rat ::= minRat(Rat, Rat) [function, total, klabel(minRat), symbol, smtlib(ratmin), hook(RAT.min)] + | maxRat(Rat, Rat) [function, total, klabel(maxRat), symbol, smtlib(ratmax), hook(RAT.max)] +
+

Conversion to Floating Point

+

You can convert a rational number to the nearest floating point number that +is representable in a Float of a specified number of precision and exponent +bits:

+
k
syntax Float ::= Rat2Float(Rat, precision: Int, exponentBits: Int) [function] +endmodule +
+

Implementation of Rational Numbers

+

The remainder of this file consists of an implementation in K of the +operations listed above. Users of the RAT module should not use any of the +syntax defined in any of these modules.

+

As a point of reference for users, it is worth noting that rational numbers +are normalized to a canonical form by this module,. with the canonical form +bearing the property that it is either an Int, or a pair of integers +I /Rat J such that +I =/=Int 0 andBool J >=Int 2 andBool gcdInt(I, J) ==Int 1 is always true.

+
k
module RAT-COMMON + imports RAT-SYNTAX + + // invariant of < I , J >Rat : I =/= 0, J >= 2, and I and J are coprime + syntax Rat ::= "<" Int "," Int ">Rat" [format(%2 /Rat %4)] +endmodule + +module RAT-SYMBOLIC [symbolic] + imports private RAT-COMMON + imports ML-SYNTAX + imports private BOOL + + rule + #Ceil(@R1:Rat /Rat @R2:Rat) + => + {(@R2 =/=Rat 0) #Equals true} #And #Ceil(@R1) #And #Ceil(@R2) + [simplification] +endmodule + +module RAT-KORE + imports private RAT-COMMON + imports private K-EQUAL + + /* + * equalities + */ + + // NOTE: the two rules below may not work correctly in non-kore backends + + rule R ==Rat S => R ==K S + + rule R =/=Rat S => R =/=K S +endmodule + +module RAT [private] + imports private RAT-COMMON + imports public RAT-SYMBOLIC + imports public RAT-KORE + imports public RAT-SYNTAX + imports private INT + imports private BOOL + + /* + * arithmetic + */ + + rule < I , I' >Rat +Rat < J , J' >Rat => ((I *Int J') +Int (I' *Int J)) /Rat (I' *Int J') + rule I:Int +Rat < J , J' >Rat => ((I *Int J') +Int J) /Rat J' + rule < J , J' >Rat +Rat I:Int => I +Rat < J , J' >Rat + rule I:Int +Rat J:Int => I +Int J + + rule < I , I' >Rat *Rat < J , J' >Rat => (I *Int J) /Rat (I' *Int J') + rule I:Int *Rat < J , J' >Rat => (I *Int J) /Rat J' + rule < J , J' >Rat *Rat I:Int => I *Rat < J , J' >Rat + rule I:Int *Rat J:Int => I *Int J + + rule < I , I' >Rat /Rat < J , J' >Rat => (I *Int J') /Rat (I' *Int J) + rule I:Int /Rat < J , J' >Rat => (I *Int J') /Rat J + rule < I , I' >Rat /Rat J:Int => I /Rat (I' *Int J) requires J =/=Int 0 + rule I:Int /Rat J:Int => makeRat(I, J) requires J =/=Int 0 + + // derived + + rule R -Rat S => R +Rat (-1 *Rat S) + + // normalize + + syntax Rat ::= makeRat(Int, Int) [function] + | makeRat(Int, Int, Int) [function] + + rule makeRat(0, J) => 0 requires J =/=Int 0 + + rule makeRat(I, J) => makeRat(I, J, gcdInt(I,J)) requires I =/=Int 0 andBool J =/=Int 0 + + // makeRat(I, J, D) is defined when I =/= 0, J =/= 0, D > 0, and D = gcd(I,J) + rule makeRat(I, J, D) => I /Int D requires J ==Int D // implies J > 0 since D > 0 + rule makeRat(I, J, D) => < I /Int D , J /Int D >Rat requires J >Int 0 andBool J =/=Int D + rule makeRat(I, J, D) => makeRat(0 -Int I, 0 -Int J, D) requires J <Int 0 + + // gcdInt(a,b) computes the gcd of |a| and |b|, which is positive. + syntax Int ::= gcdInt(Int, Int) [function, public] + + rule gcdInt(A, 0) => A requires A >Int 0 + rule gcdInt(A, 0) => 0 -Int A requires A <Int 0 + rule gcdInt(A, B) => gcdInt(B, A %Int B) requires B =/=Int 0 // since |A %Int B| = |A| %Int |B| + + /* + * exponentiation + */ + + rule _ ^Rat 0 => 1 + rule 0 ^Rat N => 0 requires N =/=Int 0 + + rule < I , J >Rat ^Rat N => powRat(< I , J >Rat, N) requires N >Int 0 + rule X:Int ^Rat N => X ^Int N requires N >Int 0 + + rule X ^Rat N => (1 /Rat X) ^Rat (0 -Int N) requires X =/=Rat 0 andBool N <Int 0 + + // exponentiation by squaring + + syntax Rat ::= powRat(Rat, Int) [function] + + // powRat(X, N) is defined when X =/= 0 and N > 0 + rule powRat(X, 1) => X + rule powRat(X, N) => powRat(X *Rat X, N /Int 2) requires N >Int 1 andBool N %Int 2 ==Int 0 + rule powRat(X, N) => powRat(X, N -Int 1) *Rat X requires N >Int 1 andBool N %Int 2 =/=Int 0 + + /* + * inequalities + */ + + rule R >Rat S => R -Rat S >Rat 0 requires S =/=Rat 0 + + rule < I , _ >Rat >Rat 0 => I >Int 0 + rule I:Int >Rat 0 => I >Int 0 + + // derived + + rule R >=Rat S => notBool R <Rat S + + rule R <Rat S => S >Rat R + + rule R <=Rat S => S >=Rat R + + rule minRat(R, S) => R requires R <=Rat S + rule minRat(R, S) => S requires S <=Rat R + + rule maxRat(R, S) => R requires R >=Rat S + rule maxRat(R, S) => S requires S >=Rat R + + syntax Float ::= #Rat2Float(Int, Int, Int, Int) [function, hook(FLOAT.rat2float)] + rule Rat2Float(Num:Int, Prec:Int, Exp:Int) => #Rat2Float(Num, 1, Prec, Exp) + rule Rat2Float(< Num, Dem >Rat, Prec, Exp) => #Rat2Float(Num, Dem, Prec, Exp) + +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/builtin/substitution/index.html b/k-distribution/include/kframework/builtin/substitution/index.html new file mode 100644 index 00000000000..9aecf8d2fc1 --- /dev/null +++ b/k-distribution/include/kframework/builtin/substitution/index.html @@ -0,0 +1,485 @@ + + + + + + + + + + + + + + +Capture-Aware Substitution in K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Capture-Aware Substitution in K

+

One of the traditional ways in which functional languages are given operational +semantics is via substitution. In particular, you can view a function as +declaring a particular bound variable, the parameter of the function, as well +as the body of the function, within which both bound and free variables can +occur, and implement the process of beta-reduction (one of the axioms of the +lambda calculus) by means of a substitution operator which is aware of the +difference between free variables and bound variables and prevents variable +capture.

+

In K this is implemented using two mechanisms: The KVar sort, and the +binder attribute.

+

The KVar Sort

+

K introduces a new hooked sort, KVar, which the substitution operator +(defined below) understands in a particular way. The syntax of KVar is the +same as for sort Id in DOMAINS, but with a different sort name. Similarly, +some of the same operators are defined over KVar which are defined for Id, +such as conversion from String to KVar and support for the !Var:KVar +syntax.

+

A KVar is simply an identifier with special meaning during substitution. +KVars must begin with a letter or underscore, +and can be followed by zero or more letters, numbers, or underscores.

+
k
module KVAR-SYNTAX-PROGRAM-PARSING + imports BUILTIN-ID-TOKENS + + syntax KVar ::= r"[A-Za-z\\_][A-Za-z0-9\\_]*" [prec(1), token] + | #LowerId [token] + | #UpperId [token] +endmodule + +module KVAR-SYNTAX + syntax KVar [token, hook(KVAR.KVar)] +endmodule + +module KVAR-COMMON + imports KVAR-SYNTAX + imports private STRING + + syntax KVar ::= String2KVar (String) [function, total, hook(STRING.string2token)] + syntax KVar ::= freshKVar(Int) [freshGenerator, function, total, private] + + rule freshKVar(I:Int) => String2KVar("_" +String Int2String(I)) +endmodule + +module KVAR + imports KVAR-COMMON +endmodule +
+

The binder Attribute

+

A production can be given the attribute binder. Such a production must have +at least two nonterminals. The first nonterminal from left to right must be of +sort KVar, and contains the bound variable. The last nonterminal from left +to right contains the term that is bound. For example, I could describe lambdas +in the lambda calculus with the production +syntax Val ::= "lambda" KVar "." Exp [binder].

+

Substitution

+

K provides a hooked implementation of substitution, currently only implemented +on the Java and LLVM backends. Two variants exist: the first substitutes +a single KVar for a single KItem. The second takes a Map with KVar +keys and KItem values, and substitutes each element in the map atomically.

+

Internally, this is implemented in the LLVM backend by a combination of +de Bruijn indices for bound variables and names for free variables. Free +variables are also sometimes given a unique numeric identifier in order to +prevent capture, and the rewriter will automatically assign unique names to +such identifiers when rewriting finishes. The names assigned will always begin +with the original name of the variable and be followed by a unique integer +suffix. However, the names assigned after rewriting finishes might be different +from the names that would be assigned if rewriting were to halt prematurely, +for example due to krun --depth.

+
k
module SUBSTITUTION + imports private MAP + imports KVAR + + syntax {Sort} Sort ::= Sort "[" KItem "/" KItem "]" [function, hook(SUBSTITUTION.substOne), impure] + syntax {Sort} Sort ::= Sort "[" Map "]" [function, hook(SUBSTITUTION.substMany), impure] +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/include/kframework/index.html b/k-distribution/include/kframework/index.html new file mode 100644 index 00000000000..0660139da4c --- /dev/null +++ b/k-distribution/include/kframework/index.html @@ -0,0 +1,406 @@ + + + + + + + + + + + + + + +K Builtins | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Builtins

+

The K Builtins (also referred to as the K Prelude or the K Standard Library) +consists of several files which contain definitions that make working with K +simpler. These files can be found under include/kframework/builtin in your K +installation directory, and can be imported with requires "FILENAME" (without +the path prefix).

+
    +
  • domains: Basic datatypes which are universally useful.
  • +
  • kast: Representation of K internal data-structures (not to be +included in normal definitions).
  • +
  • prelude: Automatically included into every K definition.
  • +
  • ffi: FFI interface for calling out to native C code from K.
  • +
  • json: JSON datatype and parsers/unparsers for JSON strings.
  • +
  • rat: Rational number representation.
  • +
  • substitution: Hooked implementation of capture-aware +sustitution for K definitions.
  • +
  • unification: Hooked implementation of unification +exposed directly to K definitions.
  • +
+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/01_installing/index.html b/k-distribution/k-tutorial/1_basic/01_installing/index.html new file mode 100644 index 00000000000..4838d0e700e --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/01_installing/index.html @@ -0,0 +1,474 @@ + + + + + + + + + + + + + + +Lesson 1.1: Setting up a K Environment | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.1: Setting up a K Environment

+

The first step to learning K is to install K on your system, and configure your +editor for K development.

+

Installing K

+

You have two options for how to install K, depending on how you intend to +interact with the K codebase. If you are solely a user of K, and have no +interest in developing or making changes to K, you most likely will want to +install one of our binary releases of K. However, if you are going to be a K +developer, or simply want to build K from source, you should follow the +instructions for a source build of K.

+

Installing K from a binary release

+

K is developed as a rolling release, with each change to K that passes our +CI infrastructure being deployed on GitHub for download. The latest release of +K can be downloaded here. +This page also contains information on how to install K. It is recommended +that you fully uninstall the old version of K prior to installing the new one, +as K does not maintain entries in package manager databases, with the exception +of Homebrew on MacOS.

+

Installing K from source

+

You can clone K from GitHub with the following Git command:

+
git clone https://github.com/runtimeverification/k --recursive
+
+

Instructions on how to build K from source can be found +here.

+

Configuring your editor

+

K maintains a set of scripts for a variety of text editors, including vim and +emacs, in various states of maintenance. You can download these scripts with +the following Git command:

+
git clone https://github.com/kframework/k-editor-support
+
+

Because K allows users to define their own grammars for parsing K itself, +not all features of K can be effectively highlighted. However, at the cost of +occasionally highlighting things incorrectly, you can get some pretty good +results in many cases. With that being said, some of the editor scripts in the +above repository are pretty out of date. If you manage to improve them, we +welcome pull requests into the repository.

+

Troubleshooting

+

If you have problems installing K, we encourage you to reach out to us. If you +follow the above install instructions and run into a problem, you can +Create a bug report on GitHub

+

Next lesson

+

Once you have set up K on your system to your satisfaction, you can continue to +Lesson 1.2: Basics of Functional K.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/02_basics/index.html b/k-distribution/k-tutorial/1_basic/02_basics/index.html new file mode 100644 index 00000000000..d10894fa831 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/02_basics/index.html @@ -0,0 +1,613 @@ + + + + + + + + + + + + + + +Lesson 1.2: Basics of Functional K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.2: Basics of Functional K

+

The purpose of this lesson is to explain the basics of productions and +rules in K. These are two types of K sentences. A K file consists of +one or more requires or modules in K. Each module consists of one or +more imports or sentences. For more information on requires, modules, and +sentences, refer to Lesson 1.5. However, for the time +being, just think of a module as a container for sentences, and don't worry +about requires or imports just yet.

+

Our first K program

+

To start with, input the following program into your editor as file +lesson-02-a.k:

+
k
module LESSON-02-A + + syntax Color ::= Yellow() | Blue() + syntax Fruit ::= Banana() | Blueberry() + syntax Color ::= colorOf(Fruit) [function] + + rule colorOf(Banana()) => Yellow() + rule colorOf(Blueberry()) => Blue() + +endmodule +
+

Save this file and then run:

+
kompile lesson-02-a.k
+
+

kompile is K's compiler. By default, it takes a program or specification +written in K and compiles it into an interpreter for that input. Right now we +are compiling a single file. A set of K files that are compiled together are +called a K definition. We will cover multiple file K definitions later on. +kompile will output a directory containing everything needed to execute +programs and perform proofs using that definition. In this case, kompile will +(by default) create the directory lesson-02-a-kompiled under the current +directory.

+

Now, save the following input file in your editor as banana.color in the same +directory as lesson-02-a.k:

+
colorOf(Banana())
+
+

We can now evaluate this K term by running (from the same directory):

+
krun banana.color
+
+

krun will use the interpreter generated by the first call to kompile to +execute this program.

+

You will get the following output:

+
<k>
+  Yellow ( ) ~> .
+</k>
+
+

For now, don't worry about the <k>, </k>, or ~> . portions of this +output file.

+

You can also execute small programs directly by specifying them on the command +line instead of putting them in a file. For example, the same program above +could also have been executed by running the following command:

+
krun -cPGM='colorOf(Banana())'
+
+

Now, let's look at what this definition and program did.

+

Productions, Constructors, and Functions

+

The first thing to realize is that this K definition contains 5 productions. +Productions are introduced with the syntax keyword, followed by a sort, +followed by the operator ::= followed by the definition of one or more +productions themselves, separated by the | operator. There are different +types of productions, but for now we only care about constructors and +functions. Each declaration separated by the | operator is individually +a single production, and the | symbol simply groups together productions that +have the same sort. For example, we could equally have written an identical K +definition lesson-02-b.k like so:

+
k
module LESSON-02-B + + syntax Color ::= Yellow() + syntax Color ::= Blue() + syntax Fruit ::= Banana() + syntax Fruit ::= Blueberry() + syntax Color ::= colorOf(Fruit) [function] + + rule colorOf(Banana()) => Yellow() + rule colorOf(Blueberry()) => Blue() + +endmodule +
+

You can try compiling and running lesson-02-b.k to see that it produces the same output as lesson-02-a.k:

+
kompile lesson-02-b.k
+krun -cPGM='colorOf(Banana())' --definition 'lesson-02-b-kompiled'
+
+

where the --definition attribute points to the directory containing a compiled version of LESSON-02-B. +Even the following definition is equivalent:

+
k
module LESSON-02-C + + syntax Color ::= Yellow() + | Blue() + | colorOf(Fruit) [function] + syntax Fruit ::= Banana() + | Blueberry() + + rule colorOf(Banana()) => Yellow() + rule colorOf(Blueberry()) => Blue() + +endmodule +
+

Each of these types of productions named above has the same underlying syntax, +but context and attributes are used to distinguish between the different +types. Tokens, brackets, lists, macros, aliases, and anywhere productions will +be covered in a later lesson, but this lesson does introduce us to constructors +and functions. Yellow(), Blue(), Banana(), and Blueberry() are +constructors. You can think of a constructor like a constructor for an +algebraic data type, if you're familiar with a functional language. The data +type itself is the sort that appears on the left of the ::= operator. Sorts +in K consist of uppercase identifiers.

+

Constructors can have arguments, but these ones do not. We will cover the +syntax of productions in detail in the next lesson, but for now, you can write +a production with no arguments as an uppercase or lowercase identifier followed +by the () operator.

+

A function is distinguished from a constructor by the presence of the +function attribute. Attributes appear in a comma separated list between +square brackets after any sentence, including both productions and rules. +Various attributes with built-in meanings exist in K and will be discussed +throughout the tutorial.

+

Exercise

+

Use krun to compute the return value of the colorOf function on a +Blueberry().

+

Rules, Matching, and Variables

+

Functions in K are given definitions using rules. A rule begins with the rule +keyword and contains at least one rewrite operator. The rewrite operator +is represented by the syntax =>. The rewrite operator is one of the built-in +productions in K, and we will discuss in more detail how it can be used in +future lessons, but for now, you can think of a rule as consisting of a +left-hand side and a right-hand side, separated by the rewrite +operator. On the left-hand side is the name of the function and zero or more +patterns corresponding to the parameters of the function. On the right-hand +side is another pattern. The meaning of the rule is relatively simple, having +defined these components. If the function is called with arguments that +match the patterns on the left-hand side, then the return value of the +function is the pattern on the right-hand side.

+

For example, in the above example, if the argument of the colorOf function +is Banana(), then the return value of the function is Yellow().

+

So far we have introduced that a constructor is a type of pattern in K. We +will introduce more complex patterns in later lessons, but there is one other +type of basic pattern: the variable. A variable, syntactically, consists +of an uppercase identifier. However, unlike a constructor, a variable will +match any pattern with one exception: Two variables with the same name +must match the same pattern.

+

Here is a more complex example (lesson-02-d.k):

+
k
module LESSON-02-D + + syntax Container ::= Jar(Fruit) + syntax Fruit ::= Apple() | Pear() + + syntax Fruit ::= contentsOfJar(Container) [function] + + rule contentsOfJar(Jar(F)) => F + +endmodule +
+

Here we see that Jar is a constructor with a single argument. You can write a +production with multiple arguments by putting the sorts of the arguments in a +comma-separated list inside the parentheses.

+

In this example, F is a variable. It will match either Apple() or Pear(). +The return value of the function is created by substituting the matched +values of all of the variables into the variables on the right-hand side of +the rule.

+

To demonstrate, compile this definition and execute the following program with +krun:

+
contentsOfJar(Jar(Apple()))
+
+

You will see when you run it that the program returns Apple(), because that +is the pattern that was matched by F.

+

Exercises

+
    +
  1. Extend the definition in lesson-02-a.k with the addition of blackberries +and kiwis. For simplicity, blackberries are black and kiwis are green. Then +compile your definition and test that your additional fruits are correctly +handled by the colorOf function.
  2. +
  3. Create a new definition which defines an outfit as a multi-argument +constructor consisting of a hat, shirt, pants, and shoes. Define a new sort, +Boolean, with two constructors, true and false. Each of hat, shirt, pants, +and shoes will have a single argument (a color), either black or +white. Then define an outfitMatching function that will return true if all +the pieces of the outfit are the same color. You do not need to define the +case that returns false. Write some tests that your function behaves the way +you expect.
  4. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.3: BNF Syntax and Parser Generation.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/03_parsing/index.html b/k-distribution/k-tutorial/1_basic/03_parsing/index.html new file mode 100644 index 00000000000..5da01733374 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/03_parsing/index.html @@ -0,0 +1,781 @@ + + + + + + + + + + + + + + +Lesson 1.3: BNF Syntax and Parser Generation | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.3: BNF Syntax and Parser Generation

+

The purpose of this lesson is to explain the full syntax and semantics of +productions in K as well as how productions and other syntactic +sentences can be used to define grammars for use parsing both rules as well +as programs.

+

K's approach to parsing

+

K's grammar is divided into two components: the outer syntax of K and the +inner syntax of K. Outer syntax refers to the parsing of requires, +modules, imports, and sentences in a K definition. Inner syntax +refers to the parsing of rules and programs. Unlike the outer syntax of +K, which is predetermined, much of the inner syntax of K is defined by you, the +developer. When rules or programs are parsed, they are parsed within the +context of a module. Rules are parsed in the context of the module in which +they exist, whereas programs are parsed in the context of the +main syntax module of a K definition. The productions and other syntactic +sentences in a module are used to construct the grammar of the module, which +is then used to perform parsing.

+

Basic BNF productions

+

To illustrate how this works, we will consider a simple K definition which +defines a relatively basic calculator capable of evaluating Boolean expressions +containing and, or, not, and xor.

+

Input the following program into your editor as file lesson-03-a.k:

+
k
module LESSON-03-A + + syntax Boolean ::= "true" | "false" + | "!" Boolean [function] + | Boolean "&&" Boolean [function] + | Boolean "^" Boolean [function] + | Boolean "||" Boolean [function] + +endmodule +
+

You will notice that the productions in this file look a little different than +the ones from the previous lesson. In point of fact, K has two different +mechanisms for defining productions. We have previously been focused +exclusively on the first mechanism, where the ::= symbol is followed by an +alphanumeric identifier followed by a comma-separated list of sorts in +parentheses. However, this is merely a special case of a more generic mechanism +for defining the syntax of productions using a variant of +BNF Form.

+

For example, in the previous lesson, we had the following set of productions:

+
k
module LESSON-03-B + syntax Color ::= Yellow() | Blue() + syntax Fruit ::= Banana() | Blueberry() + syntax Color ::= colorOf(Fruit) [function] +endmodule +
+

It turns out that this is equivalent to the following definition which defines +the same grammar, but using BNF notation:

+
k
module LESSON-03-C + syntax Color ::= "Yellow" "(" ")" | "Blue" "(" ")" + syntax Fruit ::= "Banana" "(" ")" | "Blueberrry" "(" ")" + syntax Color ::= "colorOf" "(" Fruit ")" [function] +endmodule +
+

In this example, the sorts of the argument to the function are unchanged, but +everything else has been wrapped in double quotation marks. This is because +in BNF notation, we distinguish between two types of production items: +terminals and non-terminals. A terminal represents simply a literal +string of characters that is verbatim part of the syntax of that production. +A non-terminal, conversely, represents a sort name, where the syntax of that +production accepts any valid term of that sort at that position.

+

This is why, when we wrote the program colorOf(Banana()), krun was able to +execute that program: because it represented a term of sort Color that was +parsed and interpreted by K's interpreter. In other words, krun parses and +interprets terms according to the grammar defined by the developer. It is +automatically converted into an AST of that term, and then the colorOf +function is evaluated using the function rules provided in the definition.

+

You can ask yourself: How does K match the strings between the double quotes? +The answer is that K uses Flex to generate a scanner for the grammar. Flex looks +for the longest possible match of a regular expression in the input. If there +are ambiguities between 2 or more regular expressions, it will pick the one with +the highest prec attribute. You can learn more about how Flex matching works +here.

+

Bringing us back to the file lesson-03-a.k, we can see that this grammar +has given a simple BNF grammar for expressions over Booleans. We have defined +constructors corresponding to the Boolean values true and false, and functions +corresponding to the Boolean operators for and, or, not, and xor. We have also +given a syntax for each of these functions based on their syntax in the C +programming language. As such, we can now write programs in the simple language +we have defined.

+

Input the following program into your editor as and.bool in the same +directory:

+
true && false
+
+

We cannot interpret this program yet, because we have not given rules defining +the meaning of the && function yet, but we can parse it. To do this, you can +run (from the same directory):

+
kast --output kore and.bool
+
+

kast is K's just-in-time parser. It will generate a grammar from your K +definition on the fly and use it to parse the program passed on the command +line. The --output flag controls how the resulting AST is represented; don't +worry about the possible values yet, just use kore.

+

You ought to get the following AST printed on standard output, minus the +formatting:

+
inj{SortBoolean{}, SortKItem{}}(
+  Lbl'UndsAnd-And-UndsUnds'LESSON-03-A'Unds'Boolean'Unds'Boolean'Unds'Boolean{}(
+    Lbltrue'Unds'LESSON-03-A'Unds'Boolean{}(),
+    Lblfalse'Unds'LESSON-03-A'Unds'Boolean{}()
+  )
+)
+
+

Don't worry about what exactly this means yet, just understand that it +represents the AST of the program that you just parsed. You ought to be able +to recognize the basic shape of it by seeing the words true, false, and +And in there. This is Kore, the intermediate representation of K, and we +will cover it in detail later.

+

Note that you can also tell kast to print the AST in other formats. For a +more direct representation of the original K, while still maintaining the +structure of an AST, you can say kast --output kast and.bool. This will +yield the following output:

+
`_&&__LESSON-03-A_Boolean_Boolean_Boolean`(
+  `true_LESSON-03-A_Boolean`(.KList),
+  `false_LESSON-03-A_Boolean`(.KList)
+)
+
+

Note how the first output is largely a name-mangled version of the second +output. The one difference is the presence of the inj symbol in the KORE +output. We will talk more about this in later lessons.

+

Exercise

+

Parse the expression false || true with --output kast. See if you can +predict approximately what the corresponding output would be with +--output kore, then run the command yourself and compare it to your +prediction.

+

Ambiguities

+

Now let's try a slightly more advanced example. Input the following program +into your editor as and-or.bool:

+
true && false || false
+
+

When you try and parse this program, you ought to see the following error:

+
[Error] Inner Parser: Parsing ambiguity.
+1: syntax Boolean ::= Boolean "||" Boolean [function]
+
+`_||__LESSON-03-A_Boolean_Boolean_Boolean`(`_&&__LESSON-03-A_Boolean_Boolean_Boolean`(`true_LESSON-03-A_Boolean`(.KList),`false_LESSON-03-A_Boolean`(.KList)),`false_LESSON-03-A_Boolean`(.KList))
+2: syntax Boolean ::= Boolean "&&" Boolean [function]
+
+`_&&__LESSON-03-A_Boolean_Boolean_Boolean`(`true_LESSON-03-A_Boolean`(.KList),`_||__LESSON-03-A_Boolean_Boolean_Boolean`(`false_LESSON-03-A_Boolean`(.KList),`false_LESSON-03-A_Boolean`(.KList)))
+        Source(./and-or.bool)
+        Location(1,1,1,23)
+
+

This error is saying that kast was unable to parse this program because it is +ambiguous. K's just-in-time parser is a GLL parser, which means it can handle +the full generality of context-free grammars, including those grammars which +are ambiguous. An ambiguous grammar is one where the same string can be parsed +as multiple distinct ASTs. In this example, it can't decide whether it should +be parsed as (true && false) || false or as true && (false || false). As a +result, it reports the error to the user.

+

Brackets

+

Currently there is no way of resolving this ambiguity, making it impossible +to write complex expressions in this language. This is obviously a problem. +The standard solution in most programming languages to this problem is to +use parentheses to indicate the appropriate grouping. K generalizes this notion +into a type of production called a bracket. A bracket production in K +is any production with the bracket attribute. It is required that such a +production only have a single non-terminal, and the sort of the production +must equal the sort of that non-terminal. However, K does not otherwise +impose restrictions on the grammar the user provides for a bracket. With that +being said, the most common type of bracket is one in which a non-terminal +is surrounded by terminals representing some type of bracket such as +(), [], {}, <>, etc. For example, we can define the most common +type of bracket, the type used by the vast majority of programming languages, +quite simply.

+

Consider the following modified definition, which we will save to +lesson-03-d.k:

+
k
module LESSON-03-D + + syntax Boolean ::= "true" | "false" + | "(" Boolean ")" [bracket] + | "!" Boolean [function] + | Boolean "&&" Boolean [function] + | Boolean "^" Boolean [function] + | Boolean "||" Boolean [function] + +endmodule +
+

In this definition, if the user does not explicitly define parentheses, the +grammar remains ambiguous and K's just-in-time parser will report an error. +However, you are now able to parse more complex programs by means of explicitly +grouping subterms with the bracket we have just defined.

+

Consider and-or-left.bool:

+
(true && false) || false
+
+

Now consider and-or-right.bool:

+
true && (false || false)
+
+

If you parse these programs with kast, you will once again get a single +unique AST with no error. If you look, you might notice that the bracket itself +does not appear in the AST. In fact, this is a property unique to brackets: +productions with the bracket attribute are not represented in the parsed AST +of a term, and the child of the bracket is folded immediately into the parent +term. This is the reason for the requirement that a bracket production have +a single non-terminal of the same sort as the production itself.

+

Exercise

+

Write out what you expect the AST to be arising from parsing these two programs +above with --output kast, then parse them yourself and compare them to the +AST you expected. Confirm for yourself that the bracket production does not +appear in the AST.

+

Tokens

+

So far we have seen how we can define the grammar of a language. However, +the grammar is not the only relevant part of parsing a language. Also relevant +is the lexical syntax of the language. Thus far, we have implicitly been using +K's automatic lexer generation to generate a token in the scanner for each +terminal in our grammar. However, sometimes we wish to define more complex +lexical syntax. For example, consider the case of integers in C: an integer +consists of a decimal, octal, or hexadecimal number followed by an optional +suffix indicating the type of the literal.

+

In theory it would be possible to define this syntax via a grammar, but not +only would it be cumbersome and tedious, you would also then have to deal with +an AST generated for the literal which is not convenient to work with.

+

Instead of doing this, K allows you to define token productions, where +a production consists of a regular expression followed by the token +attribute, and the resulting AST consists of a typed string containing the +value recognized by the regular expression.

+

For example, the builtin integers in K are defined using the following +production:

+
.k .exclude
syntax Int ::= r"[\\+\\-]?[0-9]+" [token] +
+

Here we can see that we have defined that an integer is an optional sign +followed by a nonzero sequence of digits. The r preceding the terminal +indicates that what appears inside the double quotes is a regular expression, +and the token attribute indicates that terms which parse as this production +should be converted into a token by the parser.

+

It is also possible to define tokens that do not use regular expressions. This +can be useful when you wish to declare particular identifiers for use in your +semantics later. For example:

+
.k .exclude
syntax Id ::= "main" [token] +
+

Here, we declare that main is a token of sort Id. Instead of being parsed +as a symbol, it gets parsed as a token, generating a typed string in the AST. +This is useful in a semantics of C because the parser generally does not treat +the main function in C specially; only the semantics treats it specially.

+

Of course, languages can have more complex lexical syntax. For example, if we +wish to define the syntax of integers in C, we could use the following +production:

+
.k .exclude
syntax IntConstant ::= r"(([1-9][0-9]*)|(0[0-7]*)|(0[xX][0-9a-fA-F]+))(([uU][lL]?)|([uU]((ll)|(LL)))|([lL][uU]?)|(((ll)|(LL))[uU]?))?" [token] +
+

As you may have noted above, long and complex regular expressions +can be hard to read. They also suffer from the problem that unlike a grammar, +they are not particularly modular.

+

We can get around this restriction by declaring explicit regular expressions, +giving them a name, and then referring to them in productions.

+

Consider the following (equivalent) way to define the lexical syntax of +integers in C:

+
.k .exclude
syntax IntConstant ::= r"({DecConstant}|{OctConstant}|{HexConstant})({IntSuffix}?)" [token] +syntax lexical DecConstant = r"{NonzeroDigit}({Digit}*)" +syntax lexical OctConstant = r"0({OctDigit}*)" +syntax lexical HexConstant = r"{HexPrefix}({HexDigit}+)" +syntax lexical HexPrefix = r"0x|0X" +syntax lexical NonzeroDigit = r"[1-9]" +syntax lexical Digit = r"[0-9]" +syntax lexical OctDigit = r"[0-7]" +syntax lexical HexDigit = r"[0-9a-fA-F]" +syntax lexical IntSuffix = r"{UnsignedSuffix}({LongSuffix}?)|{UnsignedSuffix}{LongLongSuffix}|{LongSuffix}({UnsignedSuffix}?)|{LongLongSuffix}({UnsignedSuffix}?)" +syntax lexical UnsignedSuffix = r"[uU]" +syntax lexical LongSuffix = r"[lL]" +syntax lexical LongLongSuffix = r"ll|LL" +
+

As you can see, this is rather more verbose, but it has the benefit of both +being much easier to read and understand, and also increased modularity. +Note that we refer to a named regular expression by putting the name in curly +brackets. Note also that only the first sentence actually declares a new piece +of syntax in the language. When the user writes syntax lexical, they are only +declaring a regular expression. To declare an actual piece of syntax in the +grammar, you still must actually declare an explicit token production.

+

One final note: K uses Flex to implement +its lexical analysis. As a result, you can refer to the +Flex Manual +for a detailed description of the regular expression syntax supported. Note +that for performance reasons, Flex's regular expressions are actually a regular +language, and thus lack some of the syntactic convenience of modern +"regular expression" libraries. If you need features that are not part of the +syntax of Flex regular expressions, you are encouraged to express them via +a grammar instead.

+

Ahead-of-time parser generation

+

So far we have been entirely focused on K's support for just-in-time parsing, +where the parser is generated on the fly prior to being used. This benefits +from being faster to generate the parser, but it suffers in performance if you +have to repeatedly parse strings with the same parser. For this reason, it is +generally encouraged that when parsing programs, you use K's ahead-of-time +parser generation. K makes use of +GNU Bison to generate parsers.

+

By default, you can enable ahead-of-time parsing via the --gen-bison-parser +flag to kompile. This will make use of Bison's LR(1) parser generator. As +such, if your grammar is not LR(1), it may not parse exactly the same as if +you were to use the just-in-time parser, because Bison will automatically pick +one of the possible branches whenever it encounters a shift-reduce or +reduce-reduce conflict. In this case, you can either modify your grammar to be +LR(1), or you can enable use of Bison's GLR support by instead passing +--gen-glr-bison-parser to kompile. Note that if your grammar is ambiguous, +the ahead-of-time parser will not provide you with particularly readable error +messages at this time.

+

If you have a K definition named foo.k, and it generates a directory when +you run kompile called foo-kompiled, you can invoke the ahead-of-time +parser you generated by running foo-kompiled/parser_PGM <file> on a file.

+

Exercises

+
    +
  1. +

    Compile lesson-03-d.k with ahead-of-time parsing enabled. Then compare +how long it takes to run kast --output kore and-or-left.bool with how long it +takes to run lesson-03-d-kompiled/parser_PGM and-or-left.bool. Confirm for +yourself that both produce the same result, but that the latter is faster.

    +
  2. +
  3. +

    Define a simple grammar consisting of integers, brackets, addition, +subtraction, multiplication, division, and unary negation. Integers should be +in decimal form and lexically without a sign, whereas negative numbers can be +represented via unary negation. Ensure that you are able to parse some basic +arithmetic expressions using a generated ahead-of-time parser. Do not worry +about disambiguating the grammar or about writing rules to implement the +operations in this definition.

    +
  4. +
  5. +

    Write a program where the meaning of the arithmetic expression based on +the grammar you defined above is ambiguous, and then write programs that +express each individual intended meaning using brackets.

    +
  6. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.4: Disambiguating Parses.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/04_disambiguation/index.html b/k-distribution/k-tutorial/1_basic/04_disambiguation/index.html new file mode 100644 index 00000000000..ff2f42405f0 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/04_disambiguation/index.html @@ -0,0 +1,730 @@ + + + + + + + + + + + + + + +Lesson 1.4: Disambiguating Parses | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.4: Disambiguating Parses

+

The purpose of this lesson is to teach how to use K's builtin features for +disambiguation to transform an ambiguous grammar into an unambiguous one that +expresses the intended ASTs.

+

Priority blocks

+

In practice, very few formal languages outside the domain of natural language +processing are ambiguous. The main reason for this is that parsing unambiguous +languages is asymptotically faster than parsing ambiguous languages. +Programming language designers instead usually use the notions of operator +precedence and associativity to make expression grammars unambiguous. These +mechanisms work by instructing the parser to reject certain ASTs in favor of +others in case of ambiguities; it is often possible to remove all ambiguities +in a grammar with these techniques.

+

While it is sometimes possible to explicitly rewrite the grammar to remove +these parses, because K's grammar specification and AST generation are +inextricably linked, this is generally discouraged. Instead, we use the +approach of explicitly expressing the relative precedence of different +operators in different situations in order to resolve the ambiguity.

+

For example, in C, && binds tighter in precedence than ||, meaning that +the expression true && false || false has only one valid AST: +(true && false) || false.

+

Consider, then, the third iteration on the grammar of this definition +(lesson-04-a.k):

+
k
module LESSON-04-A + + syntax Boolean ::= "true" | "false" + | "(" Boolean ")" [bracket] + > "!" Boolean [function] + > Boolean "&&" Boolean [function] + > Boolean "^" Boolean [function] + > Boolean "||" Boolean [function] + +endmodule +
+

In this example, some of the | symbols separating productions in a single +block have been replaced with >. This serves to describe the +priority groups associated with this block of productions. +The first priority group consists of the atoms of the +language: true, false, and the bracket operator. In general, a priority +group starts either at the ::= or > operator and extends until either the +next > operator or the end of the production block. Thus, we can see that the +second, third, fourth, and fifth priority groups in this grammar all consist +of a single production.

+

The meaning of these priority groups becomes apparent when parsing programs: +A symbol with a lesser priority, (i.e., one that binds looser), cannot +appear as the direct child of a symbol with a greater priority (i.e., +one that binds tighter. In this case, the > operator can be seen as a +greater-than operator describing a transitive partial ordering on the +productions in the production block, expressing their relative priority.

+

To see this more concretely, let's look again at the program +true && false || false. As noted before, previously this program was +ambiguous because the parser could either choose that && was the child of || +or vice versa. However, because a symbol with lesser priority (i.e., ||) +cannot appear as the direct child of a symbol with greater priority +(i.e., &&), the parser will reject the parse where || is under the +&& operator. As a result, we are left with the unambiguous parse +(true && false) || false. Similarly, true || false && false parses +unambiguously as true || (false && false). Conversely, if the user explicitly +wants the other parse, they can express this using brackets by explicitly +writing true && (false || false). This still parses successfully because the +|| operator is no longer the direct child of the && operator, but is +instead the direct child of the () operator, and the && operator is an +indirect parent, which is not subject to the priority restriction.

+

Astute readers, however, will already have noticed what seems to be a +contradiction: we have defined () as also having greater priority than ||. +One would think that this should mean that || cannot appear as a direct +child of (). This is a problem because priority groups are applied to every +possible parse separately. That is to say, even if the term is unambiguous +prior to this disambiguation rule, we still reject that parse if it violates +the rule of priority.

+

In fact, however, we do not reject this program as a parse error. Why is that? +Well, the rule for priority is slightly more complex than previously described. +In actual fact, it applies only conditionally. Specifically, it applies in +cases where the child is either the first or last production item in the +parent's production. For example, in the production Bool "&&" Bool, the +first Bool non-terminal is not preceded by any terminals, and the last Bool +non-terminal is not followed by any terminals. As a result of this, we apply +the priority rule to both children of &&. However, in the () operator, +the sole non-terminal is both preceded by and followed by terminals. As a +result, the priority rule is not applied when () is the parent. Because of +this, the program we mentioned above successfully parses.

+

Exercise

+

Parse the program true && false || false using kast, and confirm that the AST +places || as the top level symbol. Then modify the definition so that you +will get the alternative parse.

+

Associativity

+

Even having broken the expression grammar into priority blocks, the resulting +grammar is still ambiguous. We can see this if we try to parse the following +program (assoc.bool):

+
true && false && false
+
+

Priority blocks will not help us here: the problem comes between two parses +where both possible parses have a direct parent and child which is within a +single priority block (in this case, && is in the same block as itself).

+

This is where the notion of associativity comes into play. Associativity +applies the following additional rules to parses:

+
    +
  • a left-associative symbol cannot appear as a direct rightmost child of a +symbol with equal priority;
  • +
  • a right-associative symbol cannot appear as a direct leftmost child of a +symbol with equal priority; and
  • +
  • a non-associative symbol cannot appear as a direct leftmost or rightmost +child of a symbol with equal priority.
  • +
+

In C, binary operators are all left-associative, meaning that the expression +true && false && false parses unambiguously as (true && false) && false, +because && cannot appear as the rightmost child of itself.

+

Consider, then, the fourth iteration on the grammar of this definition +(lesson-04-b.k):

+
k
module LESSON-04-B + + syntax Boolean ::= "true" | "false" + | "(" Boolean ")" [bracket] + > "!" Boolean [function] + > left: Boolean "&&" Boolean [function] + > left: Boolean "^" Boolean [function] + > left: Boolean "||" Boolean [function] + +endmodule +
+

Here each priority group, immediately after the ::= or > operator, can +be followed by a symbol representing the associativity of that priority group: +either left: for left associativity, right: for right associativity, or +non-assoc: for non-associativity. In this example, each priority group we +apply associativity to has only a single production, but we could equally well +write a priority block with multiple productions and an associativity.

+

For example, consider the following, different grammar (lesson-04-c.k):

+
k
module LESSON-04-C + + syntax Boolean ::= "true" | "false" + | "(" Boolean ")" [bracket] + > "!" Boolean [function] + > left: + Boolean "&&" Boolean [function] + | Boolean "^" Boolean [function] + | Boolean "||" Boolean [function] + +endmodule +
+

In this example, unlike the one above, &&, ^, and || have the same +priority. However, viewed as a group, the entire group is left associative. +This means that none of &&, ^, and || can appear as the right child of +any of &&, ^, or ||. As a result of this, this grammar is also not +ambiguous. However, it expresses a different grammar, and you are encouraged +to think about what the differences are in practice.

+

Exercise

+

Parse the program true && false && false yourself, and confirm that the AST +places the rightmost && at the top of the expression. Then modify the +definition to generate the alternative parse.

+

Explicit priority and associativity declarations

+

Previously we have only considered the case where all of the productions +which you wish to express a priority or associativity relation over are +co-located in the same block of productions. However, in practice this is not +always feasible or desirable, especially as a definition grows in size across +multiple modules.

+

As a result of this, K provides a second way of declaring priority and +associativity relations.

+

Consider the following grammar, which we will name lesson-04-d.k and which +will express the exact same grammar as lesson-04-b.k

+
k
module LESSON-04-D + + syntax Boolean ::= "true" [group(literal)] | "false" [group(literal)] + | "(" Boolean ")" [group(atom), bracket] + | "!" Boolean [group(not), function] + | Boolean "&&" Boolean [group(and), function] + | Boolean "^" Boolean [group(xor), function] + | Boolean "||" Boolean [group(or), function] + + syntax priority literal atom > not > and > xor > or + syntax left and + syntax left xor + syntax left or +endmodule +
+

This introduces a couple of new features of K. First, the group(_) attribute +is used to conceptually group together sets of sentences under a common +user-defined name. For example, literal in the syntax priority sentence is +used to refer to all the productions marked with the group(literal) attribute, +i.e., true and false. A production can belong to multiple groups using +syntax such as group(myGrp1,myGrp2).

+

Once we understand this, it becomes relatively straightforward to understand +the meaning of this grammar. Each syntax priority sentence defines a +priority relation where > separates different priority groups. Each priority +group is defined by a list of one or more group names, and consists of all +productions which are members of at least one of those named groups.

+

In the same way, a syntax left, syntax right, or syntax non-assoc sentence +defines an associativity relation among left-, right-, or non-associative +groups. Specifically, this means that:

+
syntax left a b
+
+

is different to:

+
syntax left a
+syntax left b
+
+

As a consequence of this, syntax [left|right|non-assoc] should not be used to +group together labels with different priority.

+

Prefer/avoid

+

Sometimes priority and associativity prove insufficient to disambiguate a +grammar. In particular, sometimes it is desirable to be able to choose between +two ambiguous parses directly while still not rejecting any parses if the term +parsed is unambiguous. A good example of this is the famous "dangling else" +problem in imperative C-like languages.

+

Consider the following definition (lesson-04-E.k):

+
k
module LESSON-04-E + + syntax Exp ::= "true" | "false" + syntax Stmt ::= "if" "(" Exp ")" Stmt + | "if" "(" Exp ")" Stmt "else" Stmt + | "{" "}" +endmodule +
+

We can write the following program (dangling-else.if):

+
if (true) if (false) {} else {}
+
+

This is ambiguous because it is unclear whether the else clause is part of +the outer if or the inner if. At first we might try to resolve this with +priorities, saying that the if without an else cannot appear as a child of +the if with an else. However, because the non-terminal in the parent symbol +is both preceded and followed by a terminal, this will not work.

+

Instead, we can resolve the ambiguity directly by telling the parser to +"prefer" or "avoid" certain productions when ambiguities arise. For example, +when we parse this program, we see the following ambiguity as an error message:

+
[Error] Inner Parser: Parsing ambiguity.
+1: syntax Stmt ::= "if" "(" Exp ")" Stmt
+
+`if(_)__LESSON-04-E_Stmt_Exp_Stmt`(`true_LESSON-04-E_Exp`(.KList),`if(_)_else__LESSON-04-E_Stmt_Exp_Stmt_Stmt`(`false_LESSON-04-E_Exp`(.KList),`;_LESSON-04-E_Stmt`(.KList),`;_LESSON-04-E_Stmt`(.KList)))
+2: syntax Stmt ::= "if" "(" Exp ")" Stmt "else" Stmt
+
+`if(_)_else__LESSON-04-E_Stmt_Exp_Stmt_Stmt`(`true_LESSON-04-E_Exp`(.KList),`if(_)__LESSON-04-E_Stmt_Exp_Stmt`(`false_LESSON-04-E_Exp`(.KList),`;_LESSON-04-E_Stmt`(.KList)),`;_LESSON-04-E_Stmt`(.KList))
+        Source(./dangling-else.if)
+        Location(1,1,1,30)
+
+

Roughly, we see that the ambiguity is between an if with an else or an if +without an else. Since we want to pick the first parse, we can tell K to +"avoid" the second parse with the avoid attribute. Consider the following +modified definition (lesson-04-f.k):

+
k
module LESSON-04-F + + syntax Exp ::= "true" | "false" + syntax Stmt ::= "if" "(" Exp ")" Stmt + | "if" "(" Exp ")" Stmt "else" Stmt [avoid] + | "{" "}" +endmodule +
+

Here we have added the avoid attribute to the else production. As a result, +when an ambiguity occurs and one or more of the possible parses has that symbol +at the top of the ambiguous part of the parse, we remove those parses from +consideration and consider only those remaining. The prefer attribute behaves +similarly, but instead removes all parses which do not have that attribute. +In both cases, no action is taken if the parse is not ambiguous.

+

Exercises

+
    +
  1. +

    Parse the program if (true) if (false) {} else {} using lesson-04-f.k +and confirm that else clause is part of the innermost if statement. Then +modify the definition so that you will get the alternative parse.

    +
  2. +
  3. +

    Modify your solution from Lesson 1.3, Exercise 2 so that unary negation should +bind tighter than multiplication and division, which should bind tighter than +addition and subtraction, and each binary operator should be left associative. +Write these priority and associativity declarations explicitly, and then +try to write them inline.

    +
  4. +
  5. +

    Write a simple grammar containing at least one ambiguity that cannot be +resolved via priority or associativity, and then use the prefer attribute to +resolve that ambiguity.

    +
  6. +
  7. +

    Explain why the following grammar is not labeled ambiguous by the K parser when parsing abb, then make the parser realize the ambiguity.

    +
  8. +
+
k
module EXERCISE4 + +syntax Expr ::= "a" Expr "b" + | "abb" + | "b" + +endmodule +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.5: Modules, Imports, and Requires.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/05_modules/index.html b/k-distribution/k-tutorial/1_basic/05_modules/index.html new file mode 100644 index 00000000000..daf791fd667 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/05_modules/index.html @@ -0,0 +1,671 @@ + + + + + + + + + + + + + + +Lesson 1.5: Modules, Imports, and Requires | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.5: Modules, Imports, and Requires

+

The purpose of this lesson is to explain how K definitions can be broken into +separate modules and files and how these distinct components combine into a +complete K definition.

+

K's outer syntax

+

Recall from Lesson 1.3 that K's grammar is broken +into two components: the outer syntax of K and the inner syntax of K. +Outer syntax, as previously mentioned, consists of requires, modules, +imports, and sentences. A K semantics is expressed by the set of +sentences contained in the definition. The scope of what is considered +contained in that definition is determined both by the main semantics +module of a K definition, as well as the requires and imports present +in the file that contains that module.

+

Basic module syntax

+

The basic unit of grouping sentences in K is the module. A module consists +of a module name, an optional list of attributes, a list of +imports, and a list of sentences.

+

A module name consists of one or more groups of letters, numbers, or +underscores, separated by a hyphen. Here are some valid module names: FOO, +FOO-BAR, foo0, foo0_bar-Baz9. Here are some invalid module names: -, +-FOO, BAR-, FOO--BAR. Stylistically, modules names are usually all +uppercase with hyphens separating words, but this is not strictly enforced.

+

Some example modules include an empty module:

+
k
module LESSON-05-A + +endmodule +
+

A module with some attributes:

+
k
module LESSON-05-B [group(attr1,attr2), private] + +endmodule +
+

A module with some sentences:

+
k
module LESSON-05-C + syntax Boolean ::= "true" | "false" + syntax Boolean ::= "not" Boolean [function] + rule not true => false + rule not false => true +endmodule +
+

Imports

+

Thus far we have only discussed definitions containing a single module. +Definitions can also contain multiple modules, in which one module imports +others.

+

An import in K appears at the top of a module, prior to any sentences. It can +be specified with the imports keyword, followed by a module name.

+

For example, here is a simple definition with two modules (lesson-05-d.k):

+
k
module LESSON-05-D-1 + syntax Boolean ::= "true" | "false" + syntax Boolean ::= "not" Boolean [function] +endmodule + +module LESSON-05-D + imports LESSON-05-D-1 + + rule not true => false + rule not false => true +endmodule +
+

This K definition is equivalent to the definition expressed by the single module +LESSON-05-C. Essentially, by importing a module, we include all of the +sentences in the module being imported into the module that we import from. +There are a few minor differences between importing a module and simply +including its sentences in another module directly, but we will cover these +differences later. Essentially, you can think of modules as a way of +conceptually grouping sentences in a larger K definition.

+

Exercise

+

Modify lesson-05-d.k to include four modules: one containing the syntax, two +with one rule each that imports the first module, and a final module +LESSON-05-D containing no sentences that imports the second and third module. +Check to make sure the definition still compiles and that you can still evaluate +the not function.

+

Parsing in the presence of multiple modules

+

As you may have noticed, each module in a definition can express a distinct set +of syntax. When parsing the sentences in a module, we use the syntax +of that module, enriched with the basic syntax of K, in order to parse +rules in that module. For example, the following definition is a parser error +(lesson-05-e.k):

+
.k .error
module LESSON-05-E-1 + rule not true => false + rule not false => true +endmodule + +module LESSON-05-E-2 + syntax Boolean ::= "true" | "false" + syntax Boolean ::= "not" Boolean [function] +endmodule +
+

This is because the syntax referenced in module LESSON-05-E-1, namely, not, +true, and false, is not imported by that module. You can solve this problem +by simply importing the modules containing the syntax you want to use in your +sentences.

+

Main syntax and semantics modules

+

When we are compiling a K definition, we need to know where to start. We +designate two specific entry point modules: the main syntax module +and the main semantics module. The main syntax module, as well as all the +modules it imports recursively, are used to create the parser for programs that +you use to parse programs that you execute with krun. The main semantics +module, as well as all the modules it imports recursively, are used to +determine the rules that can be applied at runtime in order to execute a +program. For example, in the above example, if the main semantics module is +module LESSON-05-D-1, then not is an uninterpreted function (i.e., has no +rules associated with it), and the rules in module LESSON-05-D are not +included.

+

While you can specify the entry point modules explicitly by passing the +--main-module and --syntax-module flags to kompile, by default, if you +type kompile foo.k, then the main semantics module will be FOO and the +main syntax module will be FOO-SYNTAX.

+

Splitting a definition into multiple files

+

So far, while we have discussed ways to break definitions into separate +conceptual components (modules), K also provides a mechanism for combining +multiple files into a single K definition, namely, the requires directive.

+

In K, the requires keyword has two meanings. The first, the requires +statement, appears at the top of a K file, prior to any module declarations. It +consists of the keyword requires followed by a double-quoted string. The +second meaning of the requires keyword will be covered in a later lesson, +but it is distinguished because the second case occurs only inside modules.

+

The string passed to the requires statement contains a filename. When you run +kompile on a file, it will look at all of the requires statements in that +file, look up those files on disk, parse them, and then recursively process all +the requires statements in those files. It then combines all the modules in all +of those files together, and uses them collectively as the set of modules to +which imports statements can refer.

+

Putting it all together

+

Putting it all together, here is one possible way in which we could break the +definition lesson-02-c.k from Lesson 1.2 into +multiple files and modules:

+

colors.k:

+
k
module COLORS + syntax Color ::= Yellow() + | Blue() +endmodule +
+

fruits.k:

+
k
module FRUITS + syntax Fruit ::= Banana() + | Blueberry() +endmodule +
+

colorOf.k:

+
.k .exclude
requires "fruits.k" +requires "colors.k" + +module COLOROF-SYNTAX + imports COLORS + imports FRUITS + + syntax Color ::= colorOf(Fruit) [function] +endmodule + +module COLOROF + imports COLOROF-SYNTAX + + rule colorOf(Banana()) => Yellow() + rule colorOf(Blueberry()) => Blue() +endmodule +
+

You would then compile this definition with kompile colorOf.k and use it the +same way as the original, single-module definition.

+

Exercise

+

Modify the name of the COLOROF module, and then recompile the definition. +Try to understand why you now get a compiler error. Then, resolve this compiler +error by passing the --main-module and --syntax-module flags to kompile.

+

Include path

+

One note can be made about how paths are resolved in requires statements.

+

By default, the path you specify is allowed to be an absolute or a relative +path. If the path is absolute, that exact file is imported. If the path is +relative, a matching file is looked for within all of the +include directories specified to the compiler. By default, the include +directories include the current working directory, followed by the +include/kframework/builtin directory within your installation of K. You can +also pass one or more directories to kompile via the -I command line flag, +in which case these directories are prepended to the beginning of the list.

+

Exercises

+
    +
  1. +

    Take the solution to Lesson 1.4, Exercise 2 which included the explicit +priority and associativity declarations, and modify the definition so that +the syntax of integers and brackets is in one module, the syntax of addition, +subtraction, and unary negation is in another module, and the syntax of +multiplication and division is in a third module. Make sure you can still parse +the same set of expressions as before. Place priority declarations in the main +module.

    +
  2. +
  3. +

    Modify lesson-02-d.k from Lesson 1.2 so that the rules and syntax are in +separate modules in separate files.

    +
  4. +
  5. +

    Place the file containing the syntax from Exercise 2 in another directory, +then recompile the definition. Observe why a compilation error occurs. Then +fix the compiler error by passing -I to kompile.

    +
  6. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.6: Integers and Booleans.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/06_ints_and_bools/index.html b/k-distribution/k-tutorial/1_basic/06_ints_and_bools/index.html new file mode 100644 index 00000000000..fe5bae73cbb --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/06_ints_and_bools/index.html @@ -0,0 +1,609 @@ + + + + + + + + + + + + + + +Lesson 1.6: Integers and Booleans | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.6: Integers and Booleans

+

The purpose of this lesson is to explain the two most basic types of builtin +sorts in K, the Int sort and the Bool sort, representing +arbitrary-precision integers and Boolean algebra.

+

Builtin sorts in K

+

K provides definitions of some useful sorts in +domains.md, found in the +include/kframework/builtin directory of the K installation. This file is +defined via a +Literate programming +style that we will discuss in a future lesson. We will not cover all of the +sorts found there immediately, however, this lesson discusses some of the +details surrounding integers and Booleans, as well as providing information +about how to look up more detailed knowledge about builtin functions in K's +documentation.

+

Booleans in K

+

The most basic builtin sort K provides is the Bool sort, representing +Boolean values (i.e., true and false). You have already seen how we were +able to create this type ourselves using K's parsing and disambiguation +features. However, in the vast majority of cases, we prefer instead to import +the version of Boolean algebra defined by K itself. Most simply, you can do +this by importing the module BOOL in your definition. For example +(lesson-06-a.k):

+
k
module LESSON-06-A + imports BOOL + + syntax Fruit ::= Blueberry() | Banana() + syntax Bool ::= isBlue(Fruit) [function] + + rule isBlue(Blueberry()) => true + rule isBlue(Banana()) => false +endmodule +
+

Here we have defined a simple predicate, i.e., a function returning a +Boolean value. We are now able to perform the usual Boolean operations of +and, or, and not over these values. For example (lesson-06-b.k):"

+
k
module LESSON-06-B + imports BOOL + + syntax Fruit ::= Blueberry() | Banana() + syntax Bool ::= isBlue(Fruit) [function] + + rule isBlue(Blueberry()) => true + rule isBlue(Banana()) => false + + syntax Bool ::= isYellow(Fruit) [function] + | isBlueOrYellow(Fruit) [function] + + rule isYellow(Banana()) => true + rule isYellow(Blueberry()) => false + + rule isBlueOrYellow(F) => isBlue(F) orBool isYellow(F) +endmodule +
+

In the above example, Boolean inclusive or is performed via the orBool +function, which is defined in the BOOL module. As a matter of convention, +many functions over builtin sorts in K are suffixed with the name of the +primary sort over which those functions are defined. This happens so that the +syntax of K does not (generally) conflict with the syntax of any other +programming language, which would make it harder to define that programming +language in K.

+

Exercise

+

Write a function isBlueAndNotYellow which computes the appropriate Boolean +expression. If you are unsure what the appropriate syntax is to use, you +can refer to the BOOL module in +domains.md. Add a term of +sort Fruit for which isBlue and isYellow both return true, and test that +the isBlueAndNotYellow function behaves as expected on all three Fruits.

+

Syntax Modules

+

For most sorts in domains.md, K defines more than one module that can be +imported by users. For example, for the Bool sort, K defines the BOOL +module that has previously already been discussed, but also provides the +BOOL-SYNTAX module. This module, unlike the BOOL module, only declares the +values true and false, but not any of the functions that operate over the +Bool sort. The rationale is that you may want to import this module into the +main syntax module of your definition in some cases, whereas you generally do +not want to do this with the version of the module that includes all the +functions over the Bool sort. For example, if you were defining the semantics +of C++, you might import BOOL-SYNTAX into the syntax module of your +definition, because true and false are part of the grammar of C++, but +you would only import the BOOL module into the main semantics module, because +C++ defines its own syntax for and, or, and not that is different from the +syntax defined in the BOOL module.

+

Here, for example, is how we might redefine our Boolean expression calculator +to use the Bool sort while maintaining an idiomatic structure of modules +and imports, for the first time including the rules to calculate the values of +expressions themselves (lesson-06-c.k):

+
k
module LESSON-06-C-SYNTAX + imports BOOL-SYNTAX + + syntax Bool ::= "(" Bool ")" [bracket] + > "!" Bool [function] + > left: + Bool "&&" Bool [function] + | Bool "^" Bool [function] + | Bool "||" Bool [function] +endmodule + +module LESSON-06-C + imports LESSON-06-C-SYNTAX + imports BOOL + + rule ! B => notBool B + rule A && B => A andBool B + rule A ^ B => A xorBool B + rule A || B => A orBool B +endmodule +
+

Note the encapsulation of syntax: the LESSON-06-C-SYNTAX module contains +exactly the syntax of our Boolean expressions, and no more, whereas any other +syntax needed to implement those functions is in the LESSON-06-C module +instead.

+

Exercise

+

Add an "implies" function to the above Boolean expression calculator, using the +-> symbol to represent implication. You can look up K's builtin "implies" +function in the BOOL module in domains.md.

+

Integers in K

+

Unlike most programming languages, where the most basic integer type is a +fixed-precision integer type, the most commonly used integer sort in K is +the Int sort, which represents the mathematical integers, ie, +arbitrary-precision integers.

+

K provides three main modules for import when using the Int sort. The first, +containing all the syntax of integers as well as all of the functions over +integers, is the INT module. The second, which provides just the syntax +of integer literals themselves, is the INT-SYNTAX module. However, unlike +most builtin sorts in K, K also provides a third module for the Int sort: +the UNSIGNED-INT-SYNTAX module. This module provides only the syntax of +non-negative integers, i.e., natural numbers. The reasons for this involve +lexical ambiguity. Generally speaking, in most programming languages, -1 is +not a literal, but instead a literal to which the unary negation operator is +applied. K thus provides this module to ease in specifying the syntax of such +languages.

+

For detailed information about the functions available over the Int sort, +refer to domains.md. Note again how we append Int to the end of most of the +integer operations to ensure they do not collide with the syntax of other +programming languages.

+

Exercises

+
    +
  1. +

    Extend your solution from Lesson 1.4, Exercise 2 to implement the rules +that define the behavior of addition, subtraction, multiplication, and +division. Do not worry about the case when the user tries to divide by zero +at this time. Use /Int to implement division. Test your new calculator +implementation by executing the arithmetic expressions you wrote as part of +Lesson 1.3, Exercise 2. Check to make sure each computes the value you expected.

    +
  2. +
  3. +

    Combine the Boolean expression calculator from this lesson with your +solution to Exercise 1, and then extend the combined calculator with the <, +<=, >, >=, ==, and != expressions. Write some Boolean expressions +that combine integer and Boolean operations, and test to ensure that these +expressions return the expected truth value.

    +
  4. +
  5. +

    Compute the following expressions using your solution from Exercise 2: +7 / 3, 7 / -3, -7 / 3, -7 / -3. Then replace the /Int function in +your definition with divInt instead, and observe how the value of the above +expressions changes. Why does this occur?

    +
  6. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.7: Side Conditions and Rule Priority.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/07_side_conditions/index.html b/k-distribution/k-tutorial/1_basic/07_side_conditions/index.html new file mode 100644 index 00000000000..2e2763f9b50 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/07_side_conditions/index.html @@ -0,0 +1,622 @@ + + + + + + + + + + + + + + +Lesson 1.7: Side Conditions and Rule Priority | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.7: Side Conditions and Rule Priority

+

The purpose of this lesson is to explain how to write conditional rules in K, +and to explain how to control the order in which rules are tried.

+

Side Conditions

+

So far, all of the rules we have discussed have been unconditional rules. +If the left-hand side of the rule matches the arguments to the function, the +rule applies. However, there is another type of rule, a conditional rule. +A conditional rule consists of a rule body containing the patterns to +match, and a side condition representing a Boolean expression that must +evaluate to true in order for the rule to apply.

+

Side conditions in K are introduced via the requires keyword immediately +following the rule body. For example, here is a rule with a side condition +(lesson-07-a.k):

+
k
module LESSON-07-A + imports BOOL + imports INT + + syntax Grade ::= "letter-A" + | "letter-B" + | "letter-C" + | "letter-D" + | "letter-F" + | gradeFromPercentile(Int) [function] + + rule gradeFromPercentile(I) => letter-A requires I >=Int 90 +endmodule +
+

In this case, the gradeFromPercentile function takes a single integer +argument. The function evaluates to letter-A if the argument passed is +greater than 90. Note that the side condition is allowed to refer to variables +that appear on the left-hand side of the rule. In the same manner as variables +appearing on the right-hand side, variables that appear in the side condition +evaluate to the value that was matched on the left-hand side. Then the +functions in the side condition are evaluated, which returns a term of sort +Bool. If the term is equal to true, then the rule applies. Bear in mind +that the side condition is only evaluated at all if the patterns on the +left-hand side of the rule match the term being evaluated.

+

Exercise

+

Write a rule that evaluates gradeFromPercentile to letter-B if the argument +to the function is in the range [80,90). Test that the function correctly +evaluates various numbers between 80 and 100.

+

owise Rules

+

So far, all the rules we have introduced have had the same priority. What +this means is that K does not necessarily enforce an order in which the rules +are tried. We have only discussed functions so far in K, so it is not +immediately clear why this choice was made, given that a function is not +considered well-defined if multiple rules for evaluating it are capable of +evaluating the same arguments to different results. However, in future lessons +we will discuss other types of rules in K, some of which can be +non-deterministic. What this means is that if more than one rule is capable +of matching, then K will explore both possible rules in parallel, and consider +each of their respective results when executing your program. Don't worry too +much about this right now, but just understand that because of the potential +later for nondeterminism, we don't enforce a total ordering on the order in +which rules are attempted to be applied.

+

However, sometimes this is not practical; It can be very convenient to express +that a particular rule applies if no other rules for that function are +applicable. This can be expressed by adding the owise attribute to a rule. +What this means, in practice, is that this rule has lower priority than other +rules, and will only be tried to be applied after all the other, +higher-priority rules have been tried and they have failed.

+

For example, in the above exercise, we had to add a side condition containing +two Boolean comparisons to the rule we wrote to handle letter-B grades. +However, in practice this meant that we compare the percentile to 90 twice. We +can more efficiently and more idiomatically write the letter-B case for the +gradeFromPercentile rule using the owise attribute (lesson-07-b.k):

+
k
module LESSON-07-B + imports BOOL + imports INT + + syntax Grade ::= "letter-A" + | "letter-B" + | "letter-C" + | "letter-D" + | "letter-F" + | gradeFromPercentile(Int) [function] + + rule gradeFromPercentile(I) => letter-A requires I >=Int 90 + rule gradeFromPercentile(I) => letter-B requires I >=Int 80 [owise] +endmodule +
+

This rule is saying, "if all the other rules do not apply, then the grade is a +B if the percentile is greater than or equal to 80." Note here that we use both +a side condition and an owise attribute on the same rule. This is not +required (as we will see later), but it is allowed. What this means is that the +side condition is only tried if the other rules did not apply and the +left-hand side of the rule matched. You can even use more complex matching on +the left-hand side than simply a variable. More generally, you can also have +multiple higher-priority rules, or multiple owise rules. What this means in +practice is that all of the non-owise rules are tried first, in any order, +followed by all the owise rules, in any order.

+

Exercise

+

The grades D and F correspond to the percentile ranges [60, 70) and [0, 60) +respectively. Write another implementation of gradeFromPercentile which +handles only these cases, and uses the owise attribute to avoid redundant +Boolean comparisons. Test that various percentiles in the range [0, 70) are +evaluated correctly.

+

Rule Priority

+

As it happens, the owise attribute is a specific case of a more general +concept we call rule priority. In essence, each rule is assigned an integer +priority. Rules are tried in increasing order of priority, starting with a +rule with priority zero, and trying each increasing numerical value +successively.

+

By default, a rule is assigned a priority of 50. If the rule has the owise +attribute, it is instead given the priority 200. You can see why this will +cause owise rules to be tried after regular rules.

+

However, it is also possible to directly assign a numerical priority to a rule +via the priority attribute. For example, here is an alternative way +we could express the same two rules in the gradeFromPercentile function +(lesson-07-c.k):

+
k
module LESSON-07-C + imports BOOL + imports INT + + syntax Grade ::= "letter-A" + | "letter-B" + | "letter-C" + | "letter-D" + | "letter-F" + | gradeFromPercentile(Int) [function] + + rule gradeFromPercentile(I) => letter-A requires I >=Int 90 [priority(50)] + rule gradeFromPercentile(I) => letter-B requires I >=Int 80 [priority(200)] +endmodule +
+

We can, of course, assign a priority equal to any non-negative integer. For +example, here is a more complex example that handles the remaining grades +(lesson-07-d.k):

+
k
module LESSON-07-D + imports BOOL + imports INT + + syntax Grade ::= "letter-A" + | "letter-B" + | "letter-C" + | "letter-D" + | "letter-F" + | gradeFromPercentile(Int) [function] + + rule gradeFromPercentile(I) => letter-A requires I >=Int 90 [priority(50)] + rule gradeFromPercentile(I) => letter-B requires I >=Int 80 [priority(51)] + rule gradeFromPercentile(I) => letter-C requires I >=Int 70 [priority(52)] + rule gradeFromPercentile(I) => letter-D requires I >=Int 60 [priority(53)] + rule gradeFromPercentile(_) => letter-F [priority(54)] +endmodule +
+

Note that we have introduced a new piece of syntax here: _. This is actually +just a variable. However, as a special case, when a variable is named _, it +does not bind a value that can be used on the right-hand side of the rule, or +in a side condition. Effectively, _ is a placeholder variable that means "I +don't care about this term."

+

In this example, we have explicitly expressed the order in which the rules of +this function are tried. Since rules are tried in increasing numerical +priority, we first try the rule with priority 50, then 51, then 52, 53, and +finally 54.

+

As a final note, remember that if you assign a rule a priority higher than 200, +it will be tried after a rule with the owise attribute, and if you assign +a rule a priority less than 50, it will be tried before a rule with no +explicit priority.

+

Exercises

+
    +
  1. +

    Write a function isEven that returns whether an integer is an even number. +Use two rules and one side condition. The right-hand side of the rules should +be Boolean literals. Refer back to +domains.md for the relevant +integer operations.

    +
  2. +
  3. +

    Modify the calculator application from Lesson 1.6, Exercise 2, so that division +by zero will no longer make krun crash with a "Divison by zero" exception. +Instead, the / function should not match any of its rules if the denominator +is zero.

    +
  4. +
  5. +

    Write your own implementation of ==, <, <=, >, >= for integers and modify your solution from Exercise 2 to use it. +You can use any arithmetic operations in the INT module, but do not use any built-in boolean functions for comparing integers.

    +

    Hint: Use pattern matching and recursive definitions with rule priorities.

    +
  6. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.8: Literate Programming with Markdown.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/08_literate_programming/index.html b/k-distribution/k-tutorial/1_basic/08_literate_programming/index.html new file mode 100644 index 00000000000..8adea10520c --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/08_literate_programming/index.html @@ -0,0 +1,572 @@ + + + + + + + + + + + + + + +Lesson 1.8: Literate Programming with Markdown | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.8: Literate Programming with Markdown

+

The purpose of this lesson is to teach a paradigm for performing literate +programming in K, and explain how this can be used to create K definitions +that are also documentation.

+

Markdown and K

+

The K tutorial so far has been written in +Markdown. Markdown, +for those not already familiar, is a lightweight plain-text format for styling +text. From this point onward, we assume you are familiar with Markdown and how +to write Markdown code. You can refer to the above link for a tutorial if you +are not already familiar.

+

What you may not necessarily realize, however, is that the K tutorial is also +a sequence of K definitions written in the manner of +Literate Programming. +For detailed information about Literate Programming, you can read the linked +Wikipedia article, but the short summary is that literate programming is a way +of intertwining documentation and code together in a manner that allows +executable code to also be, simultaneously, a documented description of that +code.

+

K is provided with built-in support for literate programming using Markdown. +By default, if you pass a file with the .md file extension to kompile, it +will look for any code blocks containing k code in that file, extract out +that K code into pure K, and then compile it as if it were a .k file.

+

A K code block begins with a line of text containing the keyword ```k, +and ends when it encounters another ``` keyword.

+

For example, if you view the markdown source of this document, this is a K +code block:

+
k
module LESSON-08 + imports INT +
+

Only the code inside K code blocks will actually be sent to the compiler. The +rest, while it may appear in the document when rendered by a markdown viewer, +is essentially a form of code comment.

+

When you have multiple K code blocks in a document, K will append each one +together into a single file before passing it off to the outer parser.

+

For example, the following code block contains sentences that are part of the +LESSON-08 module that we declared the beginning of above:

+
k
syntax Int ::= Int "+" Int [function] + rule I1 + I2 => I1 +Int I2 +
+

Exercise

+

Compile this file with kompile README.md --main-module LESSON-08. Confirm +that you can use the resulting compiled definition to evaluate the + +function.

+

Markdown Selectors

+

On occasion, you may want to generate multiple K definitions from a single +Markdown file. You may also wish to include a block of syntax-highlighted K +code that nonetheless does not appear as part of your K definition. It is +possible to accomplish this by means of the built-in support for syntax +highlighting in Markdown. Markdown allows a code block that was begun with +``` to be immediately followed by a string which is used to signify what +programming language the following code is written in. However, this feature +actually allows arbitrary text to appear describing that code block. Markdown +parsers are able to parse this text and render the code block differently +depending on what text appears after the backticks.

+

In K, you can use this functionality to specify one or more +Markdown selectors which are used to describe the code block. A Markdown +selector consists of a sequence of characters containing letters, numbers, and +underscores. A code block can be designated with a single selector by appending +the selector immediately following the backticks that open the code block.

+

For example, here is a code block with the foo selector:

+
foo
foo bar +
+

Note that this is not K code. By convention, K code should have the k +selector on it. You can express multiple selectors on a code block by putting +them between curly braces and prepending each with the . character. For +example, here is a code block with the foo and k selectors:

+
.k .foo
syntax Int ::= foo(Int) [function] + rule foo(0) => 0 +
+

Because this code block contains the k Markdown selector, by default it is +included as part of the K definition being compiled.

+

Exercise

+

Confirm this fact by using krun to evaluate foo(0).

+

Markdown Selector Expressions

+

By default, as previously stated, K includes in the definition any code block +with the k selector. However, this is merely a specific instance of a general +principle, namely, that K allows you to control which selectors get included +in your K definition. This is done by means of the --md-selector flag to +kompile. This flag accepts a Markdown selector expression, which you +can essentially think of as a kind of Boolean algebra over Markdown selectors. +Each selector becomes an atom, and you can combine these atoms via the &, +|, !, and () operators.

+

Here is a grammar, written in K, of the language of Markdown selector +expressions:

+
.k .selector
syntax Selector ::= r"[0-9a-zA-Z_]+" [token] + syntax SelectorExp ::= Selector + | "(" SelectorExp ")" [bracket] + > right: + "!" SelectorExp + > right: + SelectorExp "&" SelectorExp + > right: + SelectorExp "|" SelectorExp +
+

Here is a selector expression that selects all the K code blocks in this +definition except the one immediately above:

+
k & (! selector)
+
+

Addendum

+

This code block exists in order to make the above lesson a syntactically valid +K definition. Consider why it is necessary.

+
k
endmodule +
+

Exercises

+
    +
  1. +

    Compile this lesson with the selector expression k & (! foo) and confirm +that you get a parser error if you try to evaluate the foo function with the +resulting definition.

    +
  2. +
  3. +

    Compile Lesson 1.3 +as a K definition. Identify why it fails to compile. Then pass an appropriate +--md-selector to the compiler in order to make it compile.

    +
  4. +
  5. +

    Modify your calculator application from Lesson 1.7, Exercise 2, to be written +in a literate style. Consider what text might be appropriate to turn the +resulting markdown file into documentation for your calculator.

    +
  6. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.9: Unparsing and the format and color attributes.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/09_unparsing/index.html b/k-distribution/k-tutorial/1_basic/09_unparsing/index.html new file mode 100644 index 00000000000..a8222d07feb --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/09_unparsing/index.html @@ -0,0 +1,719 @@ + + + + + + + + + + + + + + +Lesson 1.9: Unparsing and the format and color attributes | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.9: Unparsing and the format and color attributes

+

The purpose of this lesson is to teach the user about how terms are +pretty-printed in K, and how the user can make adjustments to the default +settings for how to print specific terms.

+

Parsing, Execution, and Unparsing

+

When you use krun to interpret a program, the tool passes through three major +phases. In the first, parsing, the program itself is parsed using either kast +or an ahead-of-time parser generated via Bison, and the resulting AST becomes +the input to the interpreter. In the second phase, execution, K evaluates +functions and (as we will discuss in depth later) performs rewrite steps to +iteratively transform the program state. The third and final phase is called +unparsing, because it consists of taking the final state of the application +after the program has been interpreted, and converting it from an AST back into +text that (in theory, anyway) could be parsed back into the same AST that was +the output of the execution phase.

+

In practice, parsing is not always precisely reversible. It turns out +(although we are not going to cover exactly why this is here), that +constructing a sound algorithm that takes a grammar and an AST and emits text +that could be parsed via that grammar to the original AST is an +NP-hard problem. As a result, in the interests of avoiding exponential time +algorithms when users rarely care about unparsing being completely sound, we +take certain shortcuts that provide a linear-time algorithm that approximates +a sound solution to the problem while sacrificing the notion that the result +can be parsed into the exact original term in all cases.

+

This is a lot of theoretical explanation, but at root, the unparsing process +is fairly simple: it takes a K term that is the output of execution and pretty +prints it according to the syntax defined by the user in their K definition. +This is useful because the original AST is not terribly user-readable, and it +is difficult to visualize the entire term or decipher information about the +final state of the program at a quick glance. Of course, in rare cases, the +pretty-printed configuration loses information of relevance, which is why K +allows you to obtain the original AST on request.

+

As an example of all of this, consider the following K definition +(lesson-09-a.k):

+
k
module LESSON-09-A + imports BOOL + + syntax Exp ::= "(" Exp ")" [bracket] + | Bool + > "!" Exp + > left: + Exp "&&" Exp + | Exp "^" Exp + | Exp "||" Exp + + syntax Exp ::= id(Exp) [function] + rule id(E) => E +endmodule +
+

This is similar to the grammar we defined in LESSON-06-C, with the difference +that the Boolean expressions are now constructors of sort Exp and we define a +trivial function over expressions that returns its argument unchanged.

+

We can now parse a simple program in this definition and use it to unparse some +Boolean expressions. For example (exp.bool):

+
id(true&&false&&!true^(false||true))
+
+

Here is a program that is not particularly legible at first glance, because all +extraneous whitespace has been removed. However, if we run krun exp.bool, we +see that the result of the unparser will pretty-print this expression rather +nicely:

+
<k>
+  true && false && ! true ^ ( false || true ) ~> .
+</k>
+
+

Notably, not only does K insert whitespace where appropriate, it is also smart +enough to insert parentheses where necessary in order to ensure the correct +parse. For example, without those parentheses, the expression above would parse +equivalent to the following one:

+
(((true && false) && ! true) ^ false) || true
+
+

Indeed, you can confirm this by passing that exact expression to the id +function and evaluating it, then looking at the result of the unparser:

+
<k>
+  true && false && ! true ^ false || true ~> .
+</k>
+
+

Here, because the meaning of the AST is the same both with and without +parentheses, K does not insert any parentheses when unparsing.

+

Exercise

+

Modify the grammar of LESSON-09-A above so that the binary operators are +right associative. Try unparsing exp.bool again, and note how the result is +different. Explain the reason for the difference.

+

Custom unparsing of terms

+

You may have noticed that right now, the unparsing of terms is not terribly +imaginative. All it is doing is taking each child of the term, inserting it +into the non-terminal positions of the production, then printing the production +with a space between each terminal or non-terminal. It is easy to see why this +might not be desirable in some cases. Consider the following K definition +(lesson-09-b.k):

+
k
module LESSON-09-B + imports BOOL + + syntax Stmt ::= "{" Stmt "}" | "{" "}" + > right: + Stmt Stmt + | "if" "(" Bool ")" Stmt + | "if" "(" Bool ")" Stmt "else" Stmt [avoid] +endmodule +
+

This is a statement grammar, simplified to the point of meaninglessness, but +still useful as an object lesson in unparsing. Consider the following program +in this grammar (if.stmt):

+
if (true) {
+  if (true) {}
+  if (false) {}
+  if (true) {
+    if (false) {} else {}
+  } else {
+    if (false) {}
+  }
+}
+
+

This is how that term would be unparsed if it appeared in the output of krun:

+
if ( true ) { if ( true ) { } if ( false ) { } if ( true ) { if ( false ) { } else { } } else { if ( false ) { } } }
+
+

This is clearly much less legible than we started with! What are we to do? +Well, K provides an attribute, format, that can be applied to any production, +which controls how that production gets unparsed. You've seen how it gets +unparsed by default, but via this attribute, the developer has complete control +over how the term is printed. Of course, the user can trivially create ways to +print terms that would not parse back into the same term. Sometimes this is +even desirable. But in most cases, what you are interested in is controlling +the line breaking, indentation, and spacing of the production.

+

Here is an example of how you might choose to apply the format attribute +to improve how the above term is unparsed (lesson-09-c.k):

+
k
module LESSON-09-C + imports BOOL + + syntax Stmt ::= "{" Stmt "}" [format(%1%i%n%2%d%n%3)] | "{" "}" [format(%1%2)] + > right: + Stmt Stmt [format(%1%n%2)] + | "if" "(" Bool ")" Stmt [format(%1 %2%3%4 %5)] + | "if" "(" Bool ")" Stmt "else" Stmt [avoid, format(%1 %2%3%4 %5 %6 %7)] +endmodule +
+

If we compile this new definition and unparse the same term, this is the +result we get:

+
if (true) {
+  if (true) {}
+  if (false) {}
+  if (true) {
+    if (false) {} else {}
+  } else {
+    if (false) {}
+  }
+}
+
+

This is the exact same text we started with! By adding the format attributes, +we were able to indent the body of code blocks, adjust the spacing of if +statements, and put each statement on a new line.

+

How exactly was this achieved? Well, each time the unparser reaches a term, +it looks at the format attribute of that term. That format attribute is a +mix of characters and format codes. Format codes begin with the % +character. Each character in the format attribute other than a format code is +appended verbatim to the output, and each format code is handled according to +its meaning, transformed (possibly recursively) into a string of text, and +spliced into the output at the position the format code appears in the format +string.

+

Provided for reference is a table with a complete list of all valid format +codes, followed by their meaning:

+ + + + + + + + + +
Format Code Meaning
n Insert '\n' followed by the current indentation + level
i Increase the current indentation level by 1
d Decrease the current indentation level by 1
c Move to the next color in the list of colors for + this production (see next section)
r Reset color to the default foreground color for + the terminal (see next section)
an integer Print a terminal or non-terminal from the + production. The integer is treated as a 1-based + index into the terminals and non-terminals of + the production. +
+
If the offset refers to a terminal, move to the + next color in the list of colors for this + production, print the value of that terminal, + then reset the color to the default foreground + color for the terminal. +
+
If the offset refers to a regular expression + terminal, it is an error. +
+
If the offset refers to a non-terminal, unparse + the corresponding child of the current term + (starting with the current indentation level) + and print the resulting text, then set the + current color and indentation level to the color + and indentation level following unparsing that + term.
other char Print that character verbatim
+

Exercise

+

Change the format attributes for LESSON-09-C so that if.stmt will unparse +as follows:

+
if (true)
+{
+  if (true)
+  {
+  }
+  if (false)
+  {
+  }
+  if (true)
+  {
+    if (false)
+    {
+    }
+    else
+    {
+    }
+  }
+  else
+  {
+    if (false)
+    {
+    }
+  }
+}
+
+

Output coloring

+

When the output of unparsing is displayed on a terminal supporting colors, K +is capable of coloring the output, similar to what is possible with a syntax +highlighter. This is achieved via the color and colors attributes.

+

Essentially, both the color and colors attributes are used to construct a +list of colors associated with each production, and then the format attribute +is used to control how those colors are used to unparse the term. At its most +basic level, you can set the color attribute to color all the terminals in +the production a certain color, or you can use the colors attribute to +specify a comma-separated list of colors for each terminal in the production. +At a more advanced level, the %c and %r format codes control how the +formatter interacts with the list of colors specified by the colors +attribute. You can essentially think of the color attribute as a way of +specifying that you want all the colors in the list to be the same color.

+

Note that the %c and %r format codes are relatively primitive in nature. +The color and colors attributes merely maintain a list of colors, whereas +the %c and %r format codes merely control how to advance through that list +and how individual text is colored.

+

It is an error if the colors attribute does not provide all the colors needed +by the terminals and escape codes in the production. %r does not change the +position in the list of colors at all, so the next %c will advance to the +following color.

+

As a complete example, here is a variant of LESSON-09-A which colors the +various boolean operators:

+
k
module LESSON-09-D + imports BOOL + + syntax Exp ::= "(" Exp ")" [bracket] + | Bool + > "!" Exp [color(yellow)] + > left: + Exp "&&" Exp [color(red)] + | Exp "^" Exp [color(blue)] + | Exp "||" Exp [color(green)] + + syntax Exp ::= id(Exp) [function] + rule id(E) => E +endmodule +
+

For a complete list of allowed colors, see +here.

+

Exercises

+
    +
  1. +

    Use the color attribute on LESSON-09-C to color the keywords true and +false one color, the keywords if and else another color, and the operators +(, ), {, and } a third color.

    +
  2. +
  3. +

    Use the format, color, and colors attributes to tell the unparser to +style the expression grammar from Lesson 1.8, Exercise 3 according to your own +personal preferences for syntax highlighting and code formatting. You can +view the result of the unparser on a function term without evaluating that +function by means of the command kparse <file> | kore-print -.

    +
  4. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.10: Strings.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/10_strings/index.html b/k-distribution/k-tutorial/1_basic/10_strings/index.html new file mode 100644 index 00000000000..9ffb751767f --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/10_strings/index.html @@ -0,0 +1,555 @@ + + + + + + + + + + + + + + +Lesson 1.10: Strings | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.10: Strings

+

The purpose of this lesson is to explain how to use the String sort in K to +represent sequences of characters, and explain where to find additional +information about builtin functions over strings.

+

The String Sort

+

In addition to the Int and Bool sorts covered in +Lesson 1.6, K provides, among others, the +String sort to represent sequences of characters. You can import this +functionality via the STRING-SYNTAX module, which contains the syntax of +string literals in K, and the STRING module, which contains all the functions +that operate over the String type.

+

Strings in K are double-quoted. The following list of escape sequences is +supported:

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Escape SequenceMeaning
\"The literal character "
\\The literal character \
\nThe newline character (ASCII code 0x0a)
\rThe carriage return character (ASCII code 0x0d)
\tThe tab character (ASCII code 0x09)
\fThe form feed character (ASCII code 0x0c)
\x00\x followed by 2 hexadecimal digits indicates a code point between 0x00 and 0xFF
\u0000\u followed by 4 hexadecimal digits indicates a code point between 0x0000 and 0xFFFF
\U00000000\U followed by 8 hexadecimal digits indicates a code point between 0x000000 and 0x10FFFF
+

Please note that as of the current moment, K's unicode support is not fully +complete, so you may run into errors using code points greater than 0xff.

+

As an example, you can construct a string literal containing the following +block of text:

+
This is an example block of text.
+Here is a quotation: "Hello world."
+	This line is indented.
+ÁÉÍÓÚ
+
+

Like so:

+
"This is an example block of text.\nHere is a quotation: \"Hello world.\"\n\tThis line is indented.\n\xc1\xc9\xcd\xd3\xda\n"
+
+

Basic String Functions

+

The full list of functions provided for the String sort can be found in +domains.md, but here we +describe a few of the more basic ones.

+

String concatenation

+

The concatenation operator for strings is +String. For example, consider +the following K rule that constructs a string from component parts +(lesson-10.k):

+
k
module LESSON-10 + imports STRING + + syntax String ::= msg(String) [function] + rule msg(S) => "The string you provided: " +String S +String "\nHave a nice day!" +endmodule +
+

Note that this operator is O(N), so repeated concatenations are inefficient. +For information about efficient string concatenation, refer to +Lesson 2.14.

+

String length

+

The function to return the length of a string is lengthString. For example, +lengthString("foo") will return 3, and lengthString("") will return 0. +The return value is the length of the string in code points.

+

Substring computation

+

The function to compute the substring of a string is substrString. It +takes two string indices, starting from 0, and returns the substring within the +range [start..end). It is only defined if end >= start, start >= 0, and +end <= length of string. Here, for example, we return the first 5 characters +of a string:

+
substrString(S, 0, 5)
+
+

Here we return all but the first 3 characters:

+
substrString(S, 3, lengthString(S))
+
+

Exercises

+
    +
  1. Write a function that takes a paragraph of text (i.e., a sequence of +sentences, each ending in a period), and constructs a new (nonsense) sentence +composed of the first word of each sentence, followed by a period. Do not +worry about capitalization or periods within the sentence which do not end the +sentence (e.g. "Dr."). You can assume that all whitespace within the paragraph +are spaces. For more information about the functions over strings required to +implement such a function, refer to domains.md.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.11: Casting Terms.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/11_casts/index.html b/k-distribution/k-tutorial/1_basic/11_casts/index.html new file mode 100644 index 00000000000..fb9d2451772 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/11_casts/index.html @@ -0,0 +1,618 @@ + + + + + + + + + + + + + + +Lesson 1.11: Casting Terms | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.11: Casting Terms

+

The purpose of this lesson is to explain how to use cast expressions in +order to disambiguate terms using sort information. We also explain how the +variable sort inference algorithm works in K, and how to change the default +behavior by casting variables to a particular sort.

+

Casting in K

+

Sometimes the grammar you write for your rules in K can be a little bit +ambiguous on purpose. While grammars for programming languages may be +unambiguous when considered in their entirety, K allows you to write rules +involving arbitrary fragments of that grammar, and those fragments can +sometimes be ambiguous by themselves, or similar enough to other fragments +of the grammar to trigger ambiguity. As a result, in addition to the tools +covered in Lesson 1.4, K provides one +additional powerful tool for disambiguation: cast expressions.

+

K provides three main types of casts: the semantic cast, the strict cast, and +the projection cast. We will cover each of them, and their similarities and +differences, in turn.

+

Semantic casts

+

The most basic, and most common, type of cast in K is called the +semantic cast. For every sort S declared in a module, K provides the +following (implicit) production for use in sentences:

+
  syntax S ::= S ":S"
+
+

Note that S simply represents the name of the sort. For example, if we +defined a sort Exp, the actual production for that sort would be:

+
  syntax Exp ::= Exp ":Exp"
+
+

At runtime, this expression will not actually exist; it is merely an annotation +to the compiler describing the sort of the term inside the cast. It is telling +the compiler that the term inside the cast must be of sort Exp. For example, +if we had the following grammar:

+
k
module LESSON-11-A + imports INT + + syntax Exp ::= Int | Exp "+" Exp + syntax Stmt ::= "if" "(" Exp ")" Stmt | "{" "}" +endmodule +
+

Then we would be able to write 1:Exp, or (1 + 2):Exp, but not {}:Exp.

+

You can also restrict the sort that a variable in a rule will match by casting +it. For example, consider the following additional module:

+
k
module LESSON-11-B + imports LESSON-11-A + imports BOOL + + syntax Term ::= Exp | Stmt + syntax Bool ::= isExpression(Term) [function] + + rule isExpression(_E:Exp) => true + rule isExpression(_) => false [owise] +endmodule +
+

Here we have defined a very simple function that decides whether a term is +an expression or a statement. It does this by casting the variable inside the +isExpression rule to sort Exp. As a result, that variable will only match terms +of sort Exp. Thus, isExpression(1) will return true, as will isExpression(1 + 2), but +isExpression({}) will return false.

+

Exercise

+

Verify this fact for yourself by running isExpression on the above examples. Then +write an isStatement function, and test that it works as expected.

+

Strict casts

+

On occasion, a semantic cast is not strict enough. It might be that you want +to, for disambiguation purposes, say exactly what sort a term is. For +example, consider the following definition:

+
k
module LESSON-11-C + imports INT + + syntax Exp ::= Int + | "add[" Exp "," Exp "]" [group(exp)] + syntax Exp2 ::= Exp + | "add[" Exp2 "," Exp2 "]" [group(exp2)] +endmodule +
+

This grammar is a little ambiguous and contrived, but it serves to demonstrate +how a semantic cast might be insufficient to disambiguate a term. If we were +to write the term add[ I1:Int , I2:Int ]:Exp2, the term would be ambiguous, +because the cast is not sufficiently strict to determine whether you mean +to derive the "add" production defined in group exp or the one in group exp2.

+

In this situation, there is a solution: the strict cast. For every sort +S in your grammar, K also defines the following production:

+
  syntax S ::= S "::S"
+
+

This may at first glance seem the same as the previous cast. And indeed, +from the perspective of the grammar and from the perspective of rewriting, +they are in fact identical. However, the second variant has a unique meaning +in the type system of K: namely, the term inside the cast cannot be a +subsort, i.e., a term of another sort S2 such that the production +syntax S ::= S2 exists.

+

As a result, if we were to write in the above grammar the term +add[ I1:Int , I2:Int ]::Exp2, then we would know that the second derivation above +should be chosen, whereas if we want the first derivation, we could write +add[ I1:Int , I2:Int ]::Exp.

+

Care must be taken when using a strict cast with brackets. For example, consider a +similar grammar but using an infix "+":

+
k
module LESSON-11-D + imports INT + + syntax Exp ::= Int + | Exp "+" Exp [group(exp)] + syntax Exp2 ::= Exp + | Exp2 "+" Exp2 [group(exp2)] + | "(" Exp2 ")" [bracket] +endmodule +
+

The term I1:Int + I2:Int is ambiguous and could refer to either the production +in group exp or the one in group exp2. To differentiate, you might try to write +(I1:Int + I2:Int)::Exp2 similarly to the previous example.

+

Unfortunately though, this is still ambiguous. Here, the strict cast ::Exp2 applies +directly to the brackets themselves rather than the underlying term within those brackets. +As a result, it enforces that (I1:Int + I2:Int) cannot be a strict subsort of Exp2, but +it has no effect on the sort of the subterm I1:Int + I2:Int.

+

For cases like this, K provides an alternative syntax for strict casts:

+
  syntax S ::= "{" S "}::S"
+
+

The ambiguity can then be resolved with {I1:Int + I2:Int}::Exp or {I1:Int + I2:Int}::Exp2.

+

Projection casts

+

Thus far we have focused entirely on casts which exist solely to inform the +compiler about the sort of terms. However, sometimes when dealing with grammars +containing subsorts, it can be desirable to reason with the subsort production +itself, which injects one sort into another. Remember from above that such +a production looks like syntax S ::= S2. This type of production, called a +subsort production, can be thought of as a type of inheritance involving +constructors. If we have the above production in our grammar, we say that S2 +is a subsort of S, or that any S2 is also an S. K implicitly maintains a +symbol at runtime which keeps track of where such subsortings occur; this +symbol is called an injection.

+

Sometimes, when one sort is a subsort of another, it can be the case that +a function returns one sort, but you actually want to cast the result of +calling that function to another sort which is a subsort of the first sort. +This is similar to what happens with inheritance in an object-oriented +language, where you might cast a superclass to a subclass if you know for +sure the object at runtime is in fact an instance of that class.

+

K provides something similar for subsorts: the projection cast.

+

For each pair of sorts S and S2, K provides the following production:

+
  syntax S ::= "{" S2 "}" ":>S"
+
+

What this means is that you take any term of sort S2 and cast it to sort +S. If the term of sort S2 consists of an injection containing a term of sort +S, then this will return that term. Otherwise, an error occurs and rewriting +fails, returning the projection function which failed to apply. The sort is +not actually checked at compilation time; rather, it is a runtime check +inserted into the code that runs when the rule applies.

+

For example, here is a module that makes use of projection casts:

+
k
module LESSON-11-E + imports INT + imports BOOL + + syntax Exp ::= Int | Bool | Exp "+" Exp | Exp "&&" Exp + + syntax Exp ::= eval(Exp) [function] + rule eval(I:Int) => I + rule eval(B:Bool) => B + rule eval(E1 + E2) => {eval(E1)}:>Int +Int {eval(E2)}:>Int + rule eval(E1 && E2) => {eval(E1)}:>Bool andBool {eval(E2)}:>Bool +endmodule +
+

Here we have defined constructors for a simple expression language over +Booleans and integers, as well as a function eval that evaluates these +expressions to a value. Because that value could be an integer or a Boolean, +we need the casts in the last two rules in order to meet the type signature of ++Int and andBool. Of course, the user can write ill-formed expressions like +1 && true or false + true, but these will cause errors at runtime, because +the projection cast will fail.

+

Exercises

+
    +
  1. +

    Extend the eval function in LESSON-11-E to include Strings and add a . +operator which concatenates them.

    +
  2. +
  3. +

    Modify your solution from Lesson 1.9, Exercise 2 by using an Exp sort to +express the integer and Boolean expressions that it supports, in the same style +as LESSON-11-E. Then write an eval function that evaluates all terms of +sort Exp to either a Bool or an Int.

    +
  4. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.12: Syntactic Lists.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/12_syntactic_lists/index.html b/k-distribution/k-tutorial/1_basic/12_syntactic_lists/index.html new file mode 100644 index 00000000000..fcfdfd07cbd --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/12_syntactic_lists/index.html @@ -0,0 +1,578 @@ + + + + + + + + + + + + + + +Lesson 1.12: Syntactic Lists | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.12: Syntactic Lists

+

The purpose of this lesson is to explain how K provides support for syntactic +repetition through the use of the List{} and NeList{} constructs, +generally called syntactic lists.

+

The List{} construct

+

Sometimes, when defining a grammar in K, it is useful to define a syntactic +construct consisting of an arbitrary-length sequence of items. For example, +you might wish to define a function call construct, and need to express a way +of passing arguments to the function. You can in theory simply define these +productions using ordinary constructors, but it can be tricky to get the syntax +exactly right in K without a lot of tedious glue code.

+

For this reason, K provides a way of specifying that a non-terminal represents +a syntactic list (lesson-12-a.k):

+
k
module LESSON-12-A-SYNTAX + imports INT-SYNTAX + + syntax Ints ::= List{Int,","} +endmodule + +module LESSON-12-A + imports LESSON-12-A-SYNTAX +endmodule +
+

Note that instead of a sequence of terminals and non-terminals, the right hand +side of the Ints production contains the symbol List followed by two items +in curly braces. The first item is the non-terminal which is the element type +of the list, and the second item is a terminal representing the separator of +the list. As a special case, lists which are separated only by whitespace can +be specified with a separator of "".

+

This List{} construct is roughly equivalent to the following definition +(lesson-12-b.k):

+
k
module LESSON-12-B-SYNTAX + imports INT-SYNTAX + + syntax Ints ::= Int "," Ints | ".Ints" +endmodule + +module LESSON-12-B + imports LESSON-12-B-SYNTAX +endmodule +
+

As you can see, the List{} construct represents a cons-list with an element +at the head and another list at the tail. The empty list is represented by +a . followed by the sort of the list.

+

However, the List{} construct provides several key syntactic conveniences +over the above definition. First of all, when writing a list in a rule, +explicitly writing the terminator is not always required. For example, consider +the following additional module (lesson-12-c.k):

+
k
module LESSON-12-C + imports LESSON-12-A + imports INT + + syntax Int ::= sum(Ints) [function] + rule sum(I:Int) => I + rule sum(I1:Int, I2:Int, Is:Ints) => sum(I1 +Int I2, Is) +endmodule +
+

Here we see a function that sums together a non-empty list of integers. Note in +particular the first rule. We do not explicitly mention .Ints, but in fact, +the rule in question is equivalent to the following rule:

+
  rule sum(I:Int, .Ints) => I
+
+

The reason for this is that K will automatically insert a list terminator +anywhere a syntactic list is expected, but an element of that list appears +instead. This works even with lists of more than one element:

+
  rule sum(I1:Int, I2:Int) => I1 +Int I2
+
+

This rule is redundant, but here we explicitly match a list of exactly two +elements, because the .Ints is implicitly added after I2.

+

Parsing Syntactic Lists in Programs

+

An additional syntactic convenience takes place when you want to express a +syntactic list in the input to krun. In this case, K will automatically +transform the grammar in LESSON-12-B-SYNTAX into the following +(lesson-12-d.k):

+
k
module LESSON-12-D + imports INT-SYNTAX + + syntax Ints ::= #NonEmptyInts | #IntsTerminator + syntax #NonEmptyInts ::= Int "," #NonEmptyInts + | Int #IntsTerminator + syntax #IntsTerminator ::= "" +endmodule +
+

This allows you to express the usual comma-separated list of arguments where +an empty list is represented by the empty string, and you don't have to +explicitly terminate the list. Because of this, we can write the syntax +of function calls in C very easily (lesson-12-e.k):

+
k
module LESSON-12-E + syntax Id ::= r"[a-zA-Z_][a-zA-Z0-9_]*" [token] + syntax Exp ::= Id | Exp "(" Exps ")" + syntax Exps ::= List{Exp,","} +endmodule +
+

Exercise

+

Write a function concat which takes a list of String and concatenates them +all together. Do not worry if the function is O(n^2). +Test your implementation using the syntactic sugar for lists added by the parser.

+

Then write some function call expressions using identifiers in C and verify with +kast that the above grammar captures the intended syntax. Make sure to test +with function calls with zero, one, and two or more arguments.

+

The NeList{} construct

+

One limitation of the List{} construct is that it is always possible to +write a list of zero elements where a List{} is expected. While this is +desirable in a number of cases, it is sometimes not what the grammar expects.

+

For example, in C, it is not allowable for an enum definition to have zero +members. In other words, if we were to write the grammar for enumerations like +so (lesson-12-f.k):

+
k
module LESSON-12-F + syntax Id ::= r"[a-zA-Z_][a-zA-Z0-9_]*" [token] + syntax Exp ::= Id + + syntax EnumSpecifier ::= "enum" Id "{" Ids "}" + syntax Ids ::= List{Id,","} +endmodule +
+

Then we would be syntactically allowed to write enum X {}, which instead, +ought to be a syntax error.

+

For this reason, we introduce the additional NeList{} construct. The syntax +is identical to List{}, except with NeList instead of List before the +curly braces. When parsing rules, it behaves identically to the List{} +construct. However, when parsing inputs to krun, the above grammar, if we +replaced syntax Ids ::= List{Id,","} with syntax Ids ::= NeList{Id,","}, +would become equivalent to the following (lesson-12-g.k):

+
k
module LESSON-12-G + syntax Id ::= r"[a-zA-Z_][a-zA-Z0-9_]*" [token] + syntax Exp ::= Id + + syntax EnumSpecifier ::= "enum" Id "{" Ids "}" + syntax Ids ::= Id | Id "," Ids +endmodule +
+

In other words, only non-empty lists of Id would be allowed.

+

Exercises

+
    +
  1. +

    Modify the sum function in LESSON-12-C so that the Ints sort is an +NeList{}. Verify that calling sum() with no arguments is now a syntax +error.

    +
  2. +
  3. +

    Write a modified sum function with the List construct that can also sum +up an empty list of arguments. In such a case, the sum ought to be 0.

    +
  4. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.13: Basics of K Rewriting.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/13_rewrite_rules/index.html b/k-distribution/k-tutorial/1_basic/13_rewrite_rules/index.html new file mode 100644 index 00000000000..5e00f0328e8 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/13_rewrite_rules/index.html @@ -0,0 +1,697 @@ + + + + + + + + + + + + + + +Lesson 1.13: Basics of K Rewriting | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.13: Basics of K Rewriting

+

The purpose of this lesson is to explain how rewrite rules that are not the +definition of a function behave, and how, using these rules, you can construct +a semantics of programs in a programming language in K.

+

Recap: Function rules in K

+

Recall from Lesson 1.2 that we have, thus far, +introduced two types of productions in K: constructors and functions. +A function is identified by the function attribute placed on the +production. As you may recall, when we write a rule with a function on the +left-hand side of the => operator, we are defining the meaning of that +function for inputs which match the patterns on the left-hand side of the rule. +If the argument to the function match the patterns, then the function is +evaluated to the value constructed by substituting the bindings for the +variables into the right-hand side of the rule.

+

Top-level rules

+

However, function rules are not the only type of rule permissible in K, nor +even the most frequently used. K also has a concept of a +top-level rewrite rule. The simplest way to ensure that a rule is treated +as a top-level rule is for the left-hand side of the rule to mention one or +more cells. We will cover how cells work and are declared in more detail +in a later lesson, but for now, what you should know is that when we ran krun +in our very first example in Lesson 1.2 and got the following output:

+
<k>
+  Yellow ( ) ~> .
+</k>
+
+

<k> is a cell, known by convention as the K cell. This cell is available +by default in any definition without needing to be explicitly declared.

+

The K cell contains a single term of sort K. K is a predefined sort in K +with two constructors, that can be roughly represented by the following +grammar:

+
  syntax K ::= KItem "~>" K
+             | "."
+
+

As a syntactic convenience, K allows you to treat ~> like it is an +associative list (i.e., as if it were defined as syntax K ::= K "~>" K). +When a definition is compiled, it will automatically transform the rules you +write so that they treat the K sort as a cons-list. Another syntactic +convenience is that, for disambiguation purposes, you can write .K anywhere +you would otherwise write . and the meaning is identical.

+

Now, you may notice that the above grammar mentions the sort KItem. This is +another built-in sort in K. For every sort S declared in a definition (with +the exception of K and KItem), K will implicitly insert the following +production:

+
  syntax KItem ::= S
+
+

In other words, every sort is a subsort of the sort KItem, and thus a term +of any sort can be injected as an element of a term of sort K, also called +a K sequence.

+

By default, when you krun a program, the AST of the program is inserted as +the sole element of a K sequence into the <k> cell. This explains why we +saw the output we did in Lesson 1.2.

+

With these preliminaries in mind, we can now explain how top-level rewrite +rules work in K. Put simply, any rule where there is a cell (such as the K +cell) at the top on the left-hand side will be a top-level rewrite rule. Once +the initial program has been inserted into the K cell, the resulting term, +called the configuration, will be matched against all the top-level +rewrite rules in the definition. If only one rule matches, the substitution +generated by the matching will be applied to the right-hand side of the rule +and the resulting term is rewritten to be the new configuration. Rewriting +proceeds by iteratively applying rules, also called taking steps, until +no top-level rewrite rule can be applied. At this point the configuration +becomes the final configuration and is output by krun.

+

If more than one top-level rule applies, by default, K will pick just one +of those rules, apply it, and continue rewriting. However, it is +non-deterministic which rule applies. In theory, it could be any of them. +By passing the --search flag to krun, you are able to tell krun to +explore all possible non-deterministic choices, and generate a complete list of +all possible final configurations reachable by each nondeterminstic choice that +can be made. Note that the --search flag to krun only works if you pass +--enable-search to kompile first.

+

Unlike top-level rewrite rules, function rules are not associated with any +particular set of cells in the configuration (although they can contain cells +in their function arguments and return value). While top-level rewrite rules +apply to the entire term being rewritten, function rules apply anywhere a +function application for that function appears, and are immediately rewritten +to their return value in that position.

+

Another key distinction between top-level rules and function rules is that +function symbols, i.e., productions with the function attribute, are +mathematical functions rather than constructors. While a constructor is +logically distinct from any other constructor of the same sort, and can be +matched against unconditionally, a function does not necessaraily have the +same restriction unless it happens to be an injective function. Thus, two +function symbols with different arguments may still ultimately produce the +same value and thus compare equal to one another. Due to this, concrete +execution (i.e., all K definitions introduced thus far; see Lesson 1.21) +introduces the restriction that you cannot match on a function symbol on the +left-hand side of a rule, except as the top symbol on the left-hand side of +a function rule. This restriction will be later lifted when we introduce the +Haskell Backend which performs symbolic execution.

+

Exercise

+

Pass a program containing no functions to krun. You can use a term of sort +Exp from LESSON-11-E. Observe the output and try to understand why you get +the output you do. Then write two rules that rewrite that program to another. +Run krun --search on that program and observe both results. Then add a third +rule that rewrites one of those results again. Test that that rule applies as +well.

+

Using top-level rules to evaluate expressions

+

Thus far, we have focused primarily on defining functions over constructors +in K. However, now that we have a basic understanding of top-level rules, +it is possible to introduce a rewrite system to our definitions. A rewrite +system is a collection of top-level rewrite rules which performs an organized +transformation of a particular program into a result which expresses the +meaning of that program. For example, we might rewrite an expression in a +programming language into a value representing the result of evaluating that +expression.

+

Recall in Lesson 1.11, we wrote a simple grammar of Boolean and integer +expressions that looked roughly like this (lesson-13-a.k):

+
k
module LESSON-13-A + imports INT + + syntax Exp ::= Int + | Bool + | Exp "+" Exp + | Exp "&&" Exp +endmodule +
+

In that lesson, we defined a function eval which evaluated such expressions +to either an integer or Boolean.

+

However, it is more idiomatic to evaluate such expressions using top-level +rewrite rules. Here is how one might do so in K (lesson-13-b.k):

+
k
module LESSON-13-B-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + + syntax Val ::= Int | Bool + syntax Exp ::= Val + > left: Exp "+" Exp + > left: Exp "&&" Exp +endmodule + +module LESSON-13-B + imports LESSON-13-B-SYNTAX + imports INT + imports BOOL + + rule <k> I1:Int + I2:Int ~> K:K </k> => <k> I1 +Int I2 ~> K </k> + rule <k> B1:Bool && B2:Bool ~> K:K </k> => <k> B1 andBool B2 ~> K </k> + + syntax KItem ::= freezer1(Val) | freezer2(Exp) + | freezer3(Val) | freezer4(Exp) + + rule <k> E1:Val + E2:Exp ~> K:K </k> => <k> E2 ~> freezer1(E1) ~> K </k> [priority(51)] + rule <k> E1:Exp + E2:Exp ~> K:K </k> => <k> E1 ~> freezer2(E2) ~> K </k> [priority(52)] + rule <k> E1:Val && E2:Exp ~> K:K </k> => <k> E2 ~> freezer3(E1) ~> K </k> [priority(51)] + rule <k> E1:Exp && E2:Exp ~> K:K </k> => <k> E1 ~> freezer4(E2) ~> K </k> [priority(52)] + + rule <k> E2:Val ~> freezer1(E1) ~> K:K </k> => <k> E1 + E2 ~> K </k> + rule <k> E1:Val ~> freezer2(E2) ~> K:K </k> => <k> E1 + E2 ~> K </k> + rule <k> E2:Val ~> freezer3(E1) ~> K:K </k> => <k> E1 && E2 ~> K </k> + rule <k> E1:Val ~> freezer4(E2) ~> K:K </k> => <k> E1 && E2 ~> K </k> +endmodule +
+

This is of course rather cumbersome currently, but we will soon introduce +syntactic convenience which makes writing definitions of this type considerably +easier. For now, notice that there are roughly 3 types of rules here: the first +matches a K cell in which the first element of the K sequence is an Exp whose +arguments are values, and rewrites the first element of the sequence to the +result of that expression. The second also matches a K cell with an Exp in +the first element of its K sequence, but it matches when one or both arguments +of the Exp are not values, and replaces the first element of the K sequence +with two new elements: one being an argument to evaluate, and the other being +a special constructor called a freezer. Finally, the third matches a K +sequence where a Val is first, and a freezer is second, and replaces them +with a partially evaluated expression.

+

This general pattern is what is known as heating an expression, +evaluating its arguments, cooling the arguments into the expression +again, and evaluating the expression itself. By repeatedly performing +this sequence of actions, we can evaluate an entire AST containing a complex +expression down into its resulting value.

+

Exercise

+

Write an addition expression with integers. Use krun --depth 1 to see the +result of rewriting after applying a single top-level rule. Gradually increase +the value of --depth to see successive states. Observe how this combination +of rules is eventually able to evaluate the entire expression.

+

Simplifying the evaluator: Local rewrites and cell ellipses

+

As you saw above, the definition we wrote is rather cumbersome. Over the +remainder of Lessons 1.13 and 1.14, we will greatly simplify it. The first step +in doing so is to teach a bit more about the rewrite operator, =>. Thus far, +all the rules we have written look like rule LHS => RHS. However, this is not +the only way the rewrite operator can be used. It is actually possible to place +a constructor or function at the very top of the rule, and place rewrite +operators inside that term. While a rewrite operator cannot appear nested +inside another rewrite operator, by doing this, we can express that some parts +of what we are matching are not changed by the rewrite operator. For +example, consider the following rule from above:

+
  rule <k> I1:Int + I2:Int ~> K:K </k> => <k> I1 +Int I2 ~> K </k>
+
+

We can equivalently write it like following:

+
  rule <k> (I1:Int + I2:Int => I1 +Int I2) ~> _:K </k>
+
+

When you put a rewrite inside a term like this, in essence, you are telling +the rule to only rewrite part of the left-hand side to the right-hand side. +In practice, this is implemented by lifting the rewrite operator to the top of +the rule by means of duplicating the surrounding context.

+

There is a way that the above rule can be simplified further, however. K +provides a special syntax for each cell containing a term of sort K, indicating +that we want to match only on some prefix of the K sequence. For example, the +above rule can be simplified further like so:

+
  rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k>
+
+

Here we have placed the symbol ... immediately prior to the </k> which ends +the cell. What this tells the compiler is to take the contents of the cell, +treat it as the prefix of a K sequence, and insert an anonymous variable of +sort K at the end. Thus we can think of ... as a way of saying we +don't care about the part of the K sequence after the beginning, leaving +it unchanged.

+

Putting all this together, we can rewrite LESSON-13-B like so +(lesson-13-c.k):

+
k
module LESSON-13-C-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + + syntax Val ::= Int | Bool + syntax Exp ::= Val + > left: Exp "+" Exp + > left: Exp "&&" Exp +endmodule + +module LESSON-13-C + imports LESSON-13-C-SYNTAX + imports INT + imports BOOL + + rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k> + rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k> + + syntax KItem ::= freezer1(Val) | freezer2(Exp) + | freezer3(Val) | freezer4(Exp) + + rule <k> E1:Val + E2:Exp => E2 ~> freezer1(E1) ...</k> [priority(51)] + rule <k> E1:Exp + E2:Exp => E1 ~> freezer2(E2) ...</k> [priority(52)] + rule <k> E1:Val && E2:Exp => E2 ~> freezer3(E1) ...</k> [priority(51)] + rule <k> E1:Exp && E2:Exp => E1 ~> freezer4(E2) ...</k> [priority(52)] + + rule <k> E2:Val ~> freezer1(E1) => E1 + E2 ...</k> + rule <k> E1:Val ~> freezer2(E2) => E1 + E2 ...</k> + rule <k> E2:Val ~> freezer3(E1) => E1 && E2 ...</k> + rule <k> E1:Val ~> freezer4(E2) => E1 && E2 ...</k> +endmodule +
+

This is still rather cumbersome, but it is already greatly simplified. In the +next lesson, we will see how additional features of K can be used to specify +heating and cooling rules much more compactly.

+

Exercises

+
    +
  1. Modify LESSON-13-C to add rules to evaluate integer subtraction.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.14: Defining Evaluation Order.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/14_evaluation_order/index.html b/k-distribution/k-tutorial/1_basic/14_evaluation_order/index.html new file mode 100644 index 00000000000..00b677a00bc --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/14_evaluation_order/index.html @@ -0,0 +1,708 @@ + + + + + + + + + + + + + + +Lesson 1.14: Defining Evaluation Order | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.14: Defining Evaluation Order

+

The purpose of this lesson is to explain how to use the heat and cool +attributes, context and context alias sentences, and the strict and +seqstrict attributes to more compactly express heating and cooling in K, +and to express more advanced evaluation strategies in K.

+

The heat and cool attributes

+

Thus far, we have been using rule priority and casts to express when to heat +an expression and when to cool it. For example, the rules for heating have +lower priority, so they do not apply if the term could be evaluated instead, +and the rules for heating are expressly written only to apply if the argument +of the expression is a value.

+

However, K has built-in support for deciding when to heat and when to cool. +This support comes in the form of the rule attributes heat and cool as +well as the specially named function isKResult.

+

Consider the following definition, which is equivalent to LESSON-13-C +(lesson-14-a.k):

+
k
module LESSON-14-A-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + + syntax Exp ::= Int + | Bool + > left: Exp "+" Exp + > left: Exp "&&" Exp +endmodule + +module LESSON-14-A + imports LESSON-14-A-SYNTAX + imports INT + imports BOOL + + rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k> + rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k> + + syntax KItem ::= freezer1(Exp) | freezer2(Exp) + | freezer3(Exp) | freezer4(Exp) + + rule <k> E:Exp + HOLE:Exp => HOLE ~> freezer1(E) ...</k> + requires isKResult(E) [heat] + rule <k> HOLE:Exp + E:Exp => HOLE ~> freezer2(E) ...</k> [heat] + rule <k> E:Exp && HOLE:Exp => HOLE ~> freezer3(E) ...</k> + requires isKResult(E) [heat] + rule <k> HOLE:Exp && E:Exp => HOLE ~> freezer4(E) ...</k> [heat] + + rule <k> HOLE:Exp ~> freezer1(E) => E + HOLE ...</k> [cool] + rule <k> HOLE:Exp ~> freezer2(E) => HOLE + E ...</k> [cool] + rule <k> HOLE:Exp ~> freezer3(E) => E && HOLE ...</k> [cool] + rule <k> HOLE:Exp ~> freezer4(E) => HOLE && E ...</k> [cool] + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_:Bool) => true + rule isKResult(_) => false [owise] +endmodule +
+

We have introduced three major changes to this definition. First, we have +removed the Val sort. We replace it instead with a function isKResult. +The function in question must have the same signature and attributes as seen in +this example. It ought to return true whenever a term should not be heated +(because it is a value) and false when it should be heated (because it is not +a value). We thus also insert isKResult calls in the side condition of two +of the heating rules, where the Val sort was previously used.

+

Second, we have removed the rule priorities on the heating rules and the use of +the Val sort on the cooling rules, and replaced them with the heat and +cool attributes. These attributes instruct the compiler that these rules are +heating and cooling rules, and thus should implicitly apply only when certain +terms on the LHS either are or are not a KResult (i.e., isKResult returns +true versus false).

+

Third, we have renamed some of the variables in the heating and cooling rules +to the special variable HOLE. Syntactically, HOLE is just a special name +for a variable, but it is treated specially by the compiler. By naming a +variable HOLE, we have informed the compiler which term is being heated +or cooled. The compiler will automatically insert the side condition +requires isKResult(HOLE) to cooling rules and the side condition +requires notBool isKResult(HOLE) to heating rules.

+

Exercise

+

Modify LESSON-14-A to add rules to evaluate integer subtraction.

+

Simplifying further with Contexts

+

The above example is still rather cumbersome to write. We must explicitly write +both the heating and the cooling rule separately, even though they are +essentially inverses of one another. It would be nice to instead simply +indicate which terms should be heated and cooled, and what part of them to +operate on.

+

To do this, K introduces a new type of sentence, the context. Contexts +begin with the context keyword instead of the rule keyword, and usually +do not contain a rewrite operator.

+

Consider the following definition which is equivalent to LESSON-14-A +(lesson-14-b.k):

+
k
module LESSON-14-B-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + + syntax Exp ::= Int + | Bool + > left: Exp "+" Exp + > left: Exp "&&" Exp +endmodule + +module LESSON-14-B + imports LESSON-14-B-SYNTAX + imports INT + imports BOOL + + rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k> + rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k> + + context <k> E:Exp + HOLE:Exp ...</k> + requires isKResult(E) + context <k> HOLE:Exp + _:Exp ...</k> + context <k> E:Exp && HOLE:Exp ...</k> + requires isKResult(E) + context <k> HOLE:Exp && _:Exp ...</k> + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_:Bool) => true + rule isKResult(_) => false [owise] +endmodule +
+

In this example, the heat and cool rules have been removed entirely, as +have been the productions defining the freezers. Don't worry, they still exist +under the hood; the compiler is just generating them automatically. For each +context sentence like above, the compiler generates a #freezer production, +a heat rule, and a cool rule. The generated form is equivalent to the +rules we wrote manually in LESSON-14-A. However, we are now starting to +considerably simplify the definition. Instead of 3 sentences, we just have one.

+

context alias sentences and the strict and seqstrict attributes

+

Notice that the contexts we included in LESSON-14-B still seem rather +similar in form. For each expression we want to evaluate, we are declaring +one context for each operand of that expression, and they are each rather +similar to one another. We would like to be able to simplify further by +simply annotating each expression production with information about how +it is to be evaluated instead. We can do this with the seqstrict attribute.

+

Consider the following definition, once again equivalent to those above +(lesson-14-c.k):

+
.k .alias
module LESSON-14-C-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + + syntax Exp ::= Int + | Bool + > left: Exp "+" Exp [seqstrict(exp; 1, 2)] + > left: Exp "&&" Exp [seqstrict(exp; 1, 2)] +endmodule + +module LESSON-14-C + imports LESSON-14-C-SYNTAX + imports INT + imports BOOL + + rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k> + rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k> + + context alias [exp]: <k> HERE ...</k> + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_:Bool) => true + rule isKResult(_) => false [owise] +endmodule +
+

This definition has two important changes from the one above. The first is +that the individual context sentences have been removed and have been +replaced with a single context alias sentence. You may notice that this +sentence begins with an identifier in square brackets followed by a colon. This +syntax is a way of naming individual sentences in K for reference by the tool +or by other sentences. The context alias sentence also has a special variable +HERE.

+

The second is that the productions in LESSON-14-C-SYNTAX have been given a +seqstrict attribute. The value of this attribute has two parts. The first +is the name of a context alias sentence. The second is a comma-separated list +of integers. Each integer represents an index of a non-terminal in the +production, counting from 1. For each integer present, the compiler implicitly +generates a new context sentence according to the following rules:

+
    +
  1. The compiler starts by looking for the context alias sentence named. If +there is more than one, then one context sentence is created per +context alias sentence with that name.
  2. +
  3. For each context created, the variable HERE in the context alias is +substituted with an instance of the production the seqstrict attribute is +attached to. Each child of that production is a variable. The non-terminal +indicated by the integer offset of the seqstrict attribute is given the name +HOLE.
  4. +
  5. For each integer offset prior in the list to the one currently being +processed, the predicate isKResult(E) is conjuncted together and included +as a side condition, where E is the child of the production term with that +offset, starting from 1. For example, if the attribute lists 1, 2, then +the rule generated for the 2 will include isKResult(E1) where E1 is the +first child of the production.
  6. +
+

As you can see if you work through the process, the above code will ultimately +generate the same contexts present in LESSON-14-B.

+

Finally, note that there are a few minor syntactic conveniences provided by the +seqstrict attribute. First, in the special case of the context alias sentence +being <k> HERE ...</k>, you can omit both the context alias sentence +and the name from the seqstrict attribute.

+

Second, if the numbered list of offsets contains every non-terminal in the +production, it can be omitted from the attribute value.

+

Thus, we can finally produce the idiomatic K definition for this example +(lesson-14-d.k):

+
k
module LESSON-14-D-SYNTAX + imports UNSIGNED-INT-SYNTAX + imports BOOL-SYNTAX + + syntax Exp ::= Int + | Bool + > left: Exp "+" Exp [seqstrict] + > left: Exp "&&" Exp [seqstrict] +endmodule + +module LESSON-14-D + imports LESSON-14-D-SYNTAX + imports INT + imports BOOL + + rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k> + rule <k> B1:Bool && B2:Bool => B1 andBool B2 ...</k> + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_:Bool) => true + rule isKResult(_) => false [owise] +endmodule +
+

Exercise

+

Modify LESSON-14-D to add a production and rule to evaluate integer +subtraction.

+

Nondeterministic evaluation order with the strict attribute

+

Thus far, we have focused entirely on deterministic evaluation order. However, +not all languages are deterministic in the order they evaluate expressions. +For example, in C, the expression a() + b() + c() is guaranteed to parse +to (a() + b()) + c(), but it is not guaranteed that a will be called before +b before c. In fact, this evaluation order is non-deterministic.

+

We can express non-deterministic evaluation orders with the strict attribute. +Its behavior is identical to the seqstrict attribute, except that step 3 in +the above list (with the side condition automatically added) does not take +place. In other words, if we wrote syntax Exp ::= Exp "+" Exp [strict] +instead of syntax Exp ::= Exp "+" Exp [seqstrict], it would generate the +following two contexts instead of the ones found in LESSON-14-B:

+
  context <k> _:Exp + HOLE:Exp ...</k>
+  context <k> HOLE:Exp + _:Exp ...</k>
+
+

As you can see, these contexts will generate heating rules that can both +apply to the same term. As a result, the choice of which heating rule +applies first is non-deterministic, and as we saw in Lesson 1.13, we can +get all possible behaviors by passing --search to krun.

+

Exercises

+
    +
  1. +

    Add integer division to LESSON-14-D. Make division and addition strict +instead of seqstrict, and write a rule evaluating integer division with a +side condition that the denominator is non-zero. Run krun --search on the +program 1 / 0 + 2 / 1 and observe all possible outputs of the program. How +many are there total, and why?

    +
  2. +
  3. +

    Rework your solution from Lesson 1.9, Exercise 2 to evaluate expressions from left to right using the seqstrict attribute.

    +
  4. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.15: Configuration Declarations and Cell Nesting.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/15_configurations/index.html b/k-distribution/k-tutorial/1_basic/15_configurations/index.html new file mode 100644 index 00000000000..b78bfa6f323 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/15_configurations/index.html @@ -0,0 +1,664 @@ + + + + + + + + + + + + + + +Lesson 1.15: Configuration Declarations and Cell Nesting | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.15: Configuration Declarations and Cell Nesting

+

The purpose of this lesson is to explain how to store additional information +about the state of your interpreter by declaring cells using the +configuration sentence, as well as how to add additional inputs to your +definition.

+

Cells and Configuration Declarations

+

We have already covered the absolute basics of cells in K by looking at the +<k> cell. As explained in Lesson 1.13, the +<k> cell is available without being explicitly declared. It turns out this is +because, if the user does not explicitly specify a configuration sentence +anywhere in the main module of their definition, the configuration sentence +from the DEFAULT-CONFIGURATION module of +kast.md is imported +automatically. Here is what that sentence looks like:

+
  configuration <k> $PGM:K </k>
+
+

This configuration declaration declares a single cell, the <k> cell. It also +declares that at the start of rewriting, the contents of that cell should be +initialized with the value of the $PGM configuration variable. +Configuration variables function as inputs to krun. These terms are supplied +to krun in the form of ASTs parsed using a particular module. By default, the +$PGM configuration variable uses the main syntax module of the definition.

+

The cast on the configuration variable also specifies the sort that is used as +the entry point to the parser, in this case the K sort. It is often +useful to cast to other sorts there as well for better control over the accepted +language. The sort used for the $PGM variable is referred to as the start +symbol. During parsing, the default start symbol K subsumes all user-defined +sorts except for syntactic lists. These are excluded because they will always +produce an ambiguity error when parsing a single element.

+

Note that we did not explicitly specify the $PGM configuration variable when +we invoked krun on a file. This is because krun handles the $PGM variable +specially, and allows you to pass the term for that variable via a file passed +as a positional argument to krun. We did, however, specify the PGM name +explicitly when we called krun with the -cPGM command line argument in +Lesson 1.2. This is the other, explicit, way of +specifying an input to krun.

+

This explains the most basic use of configuration declarations in K. We can, +however, declare multiple cells and multiple configuration variables. We can +also specify the initial values of cells statically, rather than dynamically +via krun.

+

For example, consider the following definition (lesson-15-a.k):

+
k
module LESSON-15-A-SYNTAX + imports INT-SYNTAX + + syntax Ints ::= List{Int,","} +endmodule + +module LESSON-15-A + imports LESSON-15-A-SYNTAX + imports INT + + configuration <k> $PGM:Ints </k> + <sum> 0 </sum> + + rule <k> I:Int, Is:Ints => Is ...</k> + <sum> SUM:Int => SUM +Int I </sum> +endmodule +
+

This simple definition takes a list of integers as input and sums them +together. Here we have declared two cells: <k> and <sum>. Unlike <k>, +<sum> does not get initialized via a configuration variable, but instead +is initialized statically with the value 0.

+

Note the rule in the second module: we have explicitly specified multiple +cells in a single rule. K will expect each of these cells to match in order for +the rule to apply.

+

Here is a second example (lesson-15-b.k):

+
k
module LESSON-15-B-SYNTAX + imports INT-SYNTAX +endmodule + +module LESSON-15-B + imports LESSON-15-B-SYNTAX + imports INT + imports BOOL + + configuration <k> . </k> + <first> $FIRST:Int </first> + <second> $SECOND:Int </second> + + rule <k> . => FIRST >Int SECOND </k> + <first> FIRST </first> + <second> SECOND </second> +endmodule +
+

This definition takes two integers as command-line arguments and populates the +<k> cell with a Boolean indicating whether the first integer is greater than +the second. Notice that we have specified no $PGM configuration variable +here. As a result, we cannot invoke krun via the syntax krun $file. +Instead, we must explicitly pass values for each configuration variable via the +-cFIRST and -cSECOND command line flags. For example, if we invoke +krun -cFIRST=0 -cSECOND=1, we will get the value false in the K cell.

+

You can also specify both a $PGM configuration variable and other +configuration variables in a single configuration declaration, in which case +you would be able to initialize $PGM with either a positional argument or the +-cPGM command line flag, but the other configuration variables would need +to be explicitly initialized with -c.

+

Exercise

+

Modify your solution to Lesson 1.14, Exercise 2 to add a new cell with a +configuration variable of sort Bool. This variable should determine whether +the / operator is evaluated using /Int or divInt. Test that by specifying +different values for this variable, you can change the behavior of rounding on +division of negative numbers.

+

Cell Nesting

+

It is possible to nest cells inside one another. A cell that contains other +cells must contain only other cells, but in doing this, you are able to +create a hierarchical structure to the configuration. Consider the following +definition (lesson-15-c.k), which is equivalent to the one in LESSON-15-B:

+
k
module LESSON-15-C-SYNTAX + imports INT-SYNTAX +endmodule + +module LESSON-15-C + imports LESSON-15-C-SYNTAX + imports INT + imports BOOL + + configuration <T> + <k> . </k> + <state> + <first> $FIRST:Int </first> + <second> $SECOND:Int </second> + </state> + </T> + + rule <k> . => FIRST >Int SECOND </k> + <first> FIRST </first> + <second> SECOND </second> +endmodule +
+

Note that we have added some new cells to the configuration declaration: +the <T> cell wraps the entire configuration, and the <state> cell is +introduced around the <first> and <second> cells.

+

However, we have not changed the rule in this definition. This is because of +a concept in K called configuration abstraction. K allows you to specify +any number of cells in a rule (except zero) in any order you want, and K will +compile the rules into a form that matches the structure of the configuration +specified by the configuration declaration.

+

Here then, is how this rule would look after the configuration abstraction +has been resolved:

+
  rule <T>
+         <k> . => FIRST >Int SECOND </k>
+         <state>
+           <first> FIRST </first>
+           <second> SECOND </second>
+         </state>
+       </T>
+
+

In other words, K will complete cells to the top of the configuration by +inserting parent cells where appropriate based on the declared structure of +the configuration. This is useful because as a definition evolves, the +configuration may change, but you don't want to have to modify every single +rule each time. Thus, K follows the principle that you should only mention the +cells in a rule that are actually needed in order to accomplish its specific +goal. By following this best practice, you can significantly increase the +modularity of the definition and make it easier to maintain and modify.

+

Note that unlike top-level rewrite rules, cells that appear inside function +rules are not necessarily completed to the top of the configuration. They still +participate in cell ccompletion in the sense that you can mention cell +structure loosely inside a function rule and it will be completed into the +correct cell structure specified by the configuration declaration. However, +they do not complete all the way to the top, instead completing only up to +the top-most cell mentioned in the rule.

+

For example, if I write the following function rule in the above definition:

+
  rule doStuff(<first> FIRST </first>) => FIRST
+
+

The function will only match on the first cell, rather than the entire +configuration. However, if we had mentioned a parent cell in the rule, it still +would have completed the children of that parent cell as needed to ensure that +the resulting term is well formed.

+

Exercise

+

Modify your definition from the previous exercise in this lesson to wrap the +two cells you have declared in a top cell <T>. You should not have to change +any other rules in the definition.

+

Cell Variables

+

Sometimes it is desirable to explicitly match a variable against certain +fragments of the configuration. Because K's configuration is hierarchical, +we can grab subsets of the configuration as if they were just another term. +However, configuration abstraction applies here as well. +In particular, for each cell you specify in a configuration declaration, a +unique sort is assigned for that cell with a single constructor (the cell +itself). The sort name is taken by removing all special characters, +capitalizing the first letter and each letter after a hyphen, and adding the +word Cell at the end. For example, in the above example, the cell sorts are +TCell, KCell, StateCell, FirstCell, and SecondCell. If we had declared +a cell as <first-number>, then the cell sort name would be FirstNumberCell.

+

You can explicitly reference a variable of one of these sorts anywhere you +might instead write that cell. For example, consider the following rule:

+
  rule <k> true => S </k>
+       (S:StateCell => <state>... .Bag ...</state>)
+
+

Here we have introduced two new concepts. The first is the variable of sort +StateCell, which matches the entire <state> part of the configuration. The +second is that we have introduced the concept of ... once again. When a cell +contains other cells, it is also possible to specify ... on either the left, +right or both sides of the cell term. Each of these three syntaxes are +equivalent in this case. When they appear on the left-hand side of a rule, they +indicate that we don't care what value any cells not explicitly named might +have. For example, we might write <state>... <first> 0 </first> ...</state> on +the left-hand side of a rule in order to indicate that we want to match the +rule when the <first> cell contains a zero, regardless of what the <second> +cell contains. If we had not included this ellipsis, it would have been a +syntax error, because K would have expected you to provide a value for each of +the child cells.

+

However, if, as in the example above, the ... appeared on the right-hand side +of a rule, this instead indicates that the cells not explicitly mentioned under +the cell should be initialized with their default value from the configuration +declaration. In other words, that rule will set the value of <first> and +<second> to zero.

+

You may note the presence of the phrase .Bag here. You can think of this as +the empty set of cells. It is used as the child of a cell when you want to +indicate that no cells should be explicitly named. We will cover other uses +of this term in later lessons.

+

Exercises

+
    +
  1. Modify the definition from the previous exercise in this lesson so that the +Boolean cell you created is initialized to false. Then add a production +syntax Stmt ::= Bool ";" Exp, and a rule that uses this Stmt to set the +value of the Boolean flag. Then add another production +syntax Stmt ::= "reset" ";" Exp which sets the value of the Boolean flag back +to its default value via a ... on the right-hand side. You will need to add +an additional cell around the Boolean cell to make this work.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.16: Maps, Semantic Lists, and Sets.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/16_collections/index.html b/k-distribution/k-tutorial/1_basic/16_collections/index.html new file mode 100644 index 00000000000..1fc1dabf990 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/16_collections/index.html @@ -0,0 +1,743 @@ + + + + + + + + + + + + + + +Lesson 1.16: Maps, Semantic Lists, and Sets | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.16: Maps, Semantic Lists, and Sets

+

The purpose of this lesson is to explain how to use the data structure sorts +provided by K: maps, lists, and sets.

+

Maps

+

The most frequently used type of data structure in K is the map. The sort +provided by K for this purpose is the Map sort, and it is provided in +domains.md in the MAP +module. This type is not (currently) polymorphic. All Map terms are maps that +map terms of sort KItem to other terms of sort KItem. A KItem can contain +any sort except a K sequence. If you need to store such a term in a +map, you can always use a wrapper such as syntax KItem ::= kseq(K).

+

A Map pattern consists of zero or more map elements (as represented by the +symbol syntax Map ::= KItem "|->" KItem), mixed in any order, separated by +whitespace, with zero or one variables of sort Map. The empty map is +represented by .Map. If all of the bindings for the variables in the keys +of the map can be deterministically chosen, these patterns can be matched in +O(1) time. If they cannot, then each map element that cannot be +deterministically constructed contributes a single dimension of polynomial +time to the cost of the matching. In other words, a single such element is +linear, two are quadratic, three are cubic, etc.

+

Patterns like the above are the only type of Map pattern that can appear +on the left-hand-side of a rule. In other words, you are not allowed to write +a Map pattern on the left-hand-side with more than one variable of sort Map +in it. You are, however, allowed to write such patterns on the right-hand-side +of a rule. You can also write a function pattern in the key of a map element +so long as all the variables in the function pattern can be deterministically +chosen.

+

Note the meaning of matching on a Map pattern: a map pattern with no +variables of sort Map will match if the map being matched has exactly as +many bindings as |-> symbols in the pattern. It will then match if each +binding in the map pattern matches exactly one distinct binding in the map +being matched. A map pattern with one Map variable will also match any map +that contains such a map as a subset. The variable of sort Map will be bound +to whatever bindings are left over (.Map if there are no bindings left over).

+

Here is an example of a simple definition that implements a very basic +variable declaration semantics using a Map to store the value of variables +(lesson-16-a.k):

+
k
module LESSON-16-A-SYNTAX + imports INT-SYNTAX + imports ID-SYNTAX + + syntax Exp ::= Id | Int + syntax Decl ::= "int" Id "=" Exp ";" [strict(2)] + syntax Pgm ::= List{Decl,""} +endmodule + +module LESSON-16-A + imports LESSON-16-A-SYNTAX + imports BOOL + + configuration <T> + <k> $PGM:Pgm </k> + <state> .Map </state> + </T> + + // declaration sequence + rule <k> D:Decl P:Pgm => D ~> P ...</k> + rule <k> .Pgm => . ...</k> + + // variable declaration + rule <k> int X:Id = I:Int ; => . ...</k> + <state> STATE => STATE [ X <- I ] </state> + + // variable lookup + rule <k> X:Id => I ...</k> + <state>... X |-> I ...</state> + + syntax Bool ::= isKResult(K) [symbol, function] + rule isKResult(_:Int) => true + rule isKResult(_) => false [owise] +endmodule +
+

There are several new features in this definition. First, note we import +the module ID-SYNTAX. This module is defined in domains.md and provides a +basic syntax for identifiers. We are using the Id sort provided by this +module in this definition to implement the names of program variables. This +syntax is only imported when parsing programs, not when parsing rules. Later in +this lesson we will see how to reference specific concrete identifiers in a +rule.

+

Second, we introduce a single new function over the Map sort. This function, +which is represented by the symbol +syntax Map ::= Map "[" KItem "<-" KItem "]", represents the map update +operation. Other functions over the Map sort can be found in domains.md.

+

Finally, we have used the ... syntax on a cell containing a Map. In this +case, the meaning of <state>... Pattern ...</state>, +<state>... Pattern </state>, and <state> Pattern ...</state> are the same: +it is equivalent to writing <state> (Pattern) _:Map </state>.

+

Consider the following program (a.decl):

+
int x = 0;
+int y = 1;
+int a = x;
+
+

If we run this program with krun, we will get the following result:

+
<T>
+  <k>
+    .
+  </k>
+  <state>
+    a |-> 0
+    x |-> 0
+    y |-> 1
+  </state>
+</T>
+
+

Note that krun has automatically sorted the collection for you. This doesn't +happen at runtime, so you still get the performance of a hash map, but it will +help make the output more readable.

+

Exercise

+

Create a sort Stmt that is a subsort of Decl. Create a production of sort +Stmt for variable assignment in addition to the variable declaration +production. Feel free to use the syntax syntax Stmt ::= Id "=" Exp ";". Write +a rule that implements variable assignment using a map update function. Then +write the same rule using a map pattern. Test your implementations with some +programs to ensure they behave as expected.

+

Semantic Lists

+

In a previous lesson, we explained how to represent lists in the AST of a +program. However, this is not the only context where lists can be used. We also +frequently use lists in the configuration of an interpreter in order to +represent certain types of program state. For this purpose, it is generally +useful to have an associative-list sort, rather than the cons-list sorts +provided in Lesson 1.12.

+

The type provided by K for this purpose is the List sort, and it is also +provided in domains.md, in the LIST module. This type is also not +(currently) polymorphic. Like Map, all List terms are lists of terms of the +KItem sort.

+

A List pattern in K consists of zero or more list elements (as represented by +the ListItem symbol), followed by zero or one variables of sort List, +followed by zero or more list elements. An empty list is represented by +.List. These patterns can be matched in O(log(N)) time. This is the only +type of List pattern that can appear on the left-hand-side of a rule. In +other words, you are not allowed to write a List pattern on the +left-hand-side with more than one variable of sort List in it. You are, +however, allowed to write such patterns on the right-hand-side of a rule.

+

Note the meaning of matching on a List pattern: a list pattern with no +variables of sort List will match if the list being matched has exactly as +many elements as ListItem symbols in the pattern. It will then match if each +element in sequence matches the pattern contained in the ListItem symbol. A +list pattern with one variable of sort List operates the same way, except +that it can match any list with at least as many elements as ListItem +symbols, so long as the prefix and suffix of the list match the patterns inside +the ListItem symbols. The variable of sort List will be bound to whatever +elements are left over (.List if there are no elements left over).

+

The ... syntax is allowed on cells containing lists as well. In this case, +the meaning of <cell>... Pattern </cell> is the same as +<cell> _:List (Pattern) </cell>, the meaning of <cell> Pattern ...</cell> +is the same as <cell> (Pattern) _:List</cell>. Because list patterns with +multiple variables of sort List are not allowed, it is an error to write +<cell>... Pattern ...</cell>.

+

Here is an example of a simple definition that implements a very basic +function-call semantics using a List as a function stack (lesson-16-b.k):

+
k
module LESSON-16-B-SYNTAX + imports INT-SYNTAX + imports ID-SYNTAX + + syntax Exp ::= Id "(" ")" | Int + syntax Stmt ::= "return" Exp ";" [strict] + syntax Decl ::= "fun" Id "(" ")" "{" Stmt "}" + syntax Pgm ::= List{Decl,""} + syntax Id ::= "main" [token] +endmodule + +module LESSON-16-B + imports LESSON-16-B-SYNTAX + imports BOOL + imports LIST + + configuration <T> + <k> $PGM:Pgm ~> main () </k> + <functions> .Map </functions> + <fstack> .List </fstack> + </T> + + // declaration sequence + rule <k> D:Decl P:Pgm => D ~> P ...</k> + rule <k> .Pgm => . ...</k> + + // function definitions + rule <k> fun X:Id () { S } => . ...</k> + <functions>... .Map => X |-> S ...</functions> + + // function call + syntax KItem ::= stackFrame(K) + rule <k> X:Id () ~> K => S </k> + <functions>... X |-> S ...</functions> + <fstack> .List => ListItem(stackFrame(K)) ...</fstack> + + // return statement + rule <k> return I:Int ; ~> _ => I ~> K </k> + <fstack> ListItem(stackFrame(K)) => .List ...</fstack> + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_) => false [owise] +endmodule +
+

Notice that we have declared the production syntax Id ::= "main" [token]. +Since we use the ID-SYNTAX module, this declaration is necessary in order to +be able to refer to the main identifier directly in the configuration +declaration. Our <k> cell now contains a K sequence initially: first we +process all the declarations in the program, then we call the main function.

+

Consider the following program (foo.func):

+
fun foo() { return 5; }
+fun main() { return foo(); }
+
+

When we krun this program, we should get the following output:

+
<T>
+  <k>
+    5 ~> .
+  </k>
+  <functions>
+    foo |-> return 5 ;
+    main |-> return foo ( ) ;
+  </functions>
+  <fstack>
+    .List
+  </fstack>
+</T>
+
+

Note that we have successfully put on the <k> cell the value returned by the +main function.

+

Exercise

+

Add a term of sort Id to the stackFrame operator to keep track of the +name of the function in that stack frame. Then write a function +syntax String ::= printStackTrace(List) that takes the contents of the +<fstack> cell and pretty prints the current stack trace. You can concatenate +strings with +String in the STRING module in domains.md, and you can +convert an Id to a String with the Id2String function in the ID module. +Test this function by creating a new expression that returns the current stack +trace as a string. Make sure to update isKResult and the Exp sort as +appropriate to allow strings as values.

+

Sets

+

The final primary data structure sort in K is a set, i.e., an idempotent +unordered collection where elements are deduplicated. The sort provided by K +for this purpose is the Set sort and it is provided in domains.md in the +SET module. Like maps and lists, this type is not (currently) polymorphic. +Like Map and List, all Set terms are sets of terms of the KItem sort.

+

A Set pattern has the exact same restrictions as a Map pattern, except that +its elements are treated like keys, and there are no values. It has the same +performance characteristics as well. However, syntactically it is more similar +to the List sort: An empty Set is represented by .Set, but a set element +is represented by the SetItem symbol.

+

Matching behaves similarly to the Map sort: a set pattern with no variables +of sort Set will match if the set has exactly as many bindings as SetItem +symbols, and if each element pattern matches one distinct element in the set. +A set with a variable of sort Set also matches any superset of such a set. +As with map, the elements left over will be bound to the Set variable (or +.Set if no elements are left over).

+

Like Map, the ... syntax on a set is syntactic sugar for an anonymous +variable of sort Set.

+

Here is an example of a simple modification to LESSON-16-A which uses a Set +to ensure that variables are never declared more than once. In practice, you +would likely just use the in_keys symbol over maps to test for this, but +it's still useful as an example of sets in practice:

+
k
module LESSON-16-C-SYNTAX + imports LESSON-16-A-SYNTAX +endmodule + +module LESSON-16-C + imports LESSON-16-C-SYNTAX + imports BOOL + imports SET + + configuration <T> + <k> $PGM:Pgm </k> + <state> .Map </state> + <declared> .Set </declared> + </T> + + // declaration sequence + rule <k> D:Decl P:Pgm => D ~> P ...</k> + rule <k> .Pgm => . ...</k> + + // variable declaration + rule <k> int X:Id = I:Int ; => . ...</k> + <state> STATE => STATE [ X <- I ] </state> + <declared> D => D SetItem(X) </declared> + requires notBool X in D + + // variable lookup + rule <k> X:Id => I ...</k> + <state>... X |-> I ...</state> + <declared>... SetItem(X) ...</declared> + + syntax Bool ::= isKResult(K) [symbol, function] + rule isKResult(_:Int) => true + rule isKResult(_) => false [owise] +endmodule +
+

Now if we krun a program containing duplicate declarations, it will get +stuck on the declaration.

+

Exercises

+
    +
  1. Modify your solution to Lesson 1.14, Exercise 2 and introduce the sorts +Decls, Decl, and Stmt which include variable and function declaration +(without function parameters), and return and assignment statements, as well +as call expressions. Use List and Map to implement these operators, making +sure to consider the interactions between components, such as saving and +restoring the environment of variables at each call site. Don't worry about +local function definitions or global variables for now. Make sure to test the +resulting interpreter.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.17: Cell Multiplicity and Cell Collections.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/17_cell_multiplicity/index.html b/k-distribution/k-tutorial/1_basic/17_cell_multiplicity/index.html new file mode 100644 index 00000000000..6ea7fad8c9f --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/17_cell_multiplicity/index.html @@ -0,0 +1,578 @@ + + + + + + + + + + + + + + +Lesson 1.17: Cell Multiplicity and Cell Collections | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.17: Cell Multiplicity and Cell Collections

+

The purpose of this lesson is to explain how you can create optional cells +and cells that repeat multiple times in a configuration using a feature called +cell multiplicity.

+

Cell Multiplicity

+

K allows you to specify attributes for cell productions as part of the syntax +of configuration declarations. Unlike regular productions, which use the [] +syntax for attributes, configuration cells use an XML-like attribute syntax:

+
configuration <k color="red"> $PGM:K </k>
+
+

This configuration declaration gives the <k> cell the color red during +unparsing using the color attribute as discussed in +Lesson 1.9.

+

However, in addition to the usual attributes for productions, there are some +other attributes that can be applied to cells with special meaning. One such +attribute is the multiplicity attribute. By default, each cell that is +declared occurs exactly once in every configuration term. However, using the +multiplicity attribute, this default behavior can be changed. There are two +values that this attribute can have: ? and *.

+

Optional cells

+

The first cell multiplicity we will discuss is ?. Similar to a regular +expression language, this attribute tells the compiler that this cell can +appear 0 or 1 times in the configuration. In other words, it is an +optional cell. By default, K does not create optional cells in the initial +configuration, unless that optional cell has a configuration variable inside +it. However, it is possible to override the default behavior and create that +cell initially by adding the additional cell attribute initial="".

+

K uses the .Bag symbol to represent the absence of any cells in a particular +rule. Consider the following module:

+
k
module LESSON-17-A + imports INT + + configuration <k> $PGM:K </k> + <optional multiplicity="?"> 0 </optional> + + syntax KItem ::= "init" | "destroy" + + rule <k> init => . ...</k> + (.Bag => <optional> 0 </optional>) + rule <k> destroy => . ...</k> + (<optional> _ </optional> => .Bag) + +endmodule +
+

In this definition, when the init symbol is executed, the <optional> cell +is added to the configuration, and when the destroy symbol is executed, it +is removed. Any rule that matches on that cell will only match if that cell is +present in the configuration.

+

Exercise

+

Create a simple definition with a Stmts sort that is a List{Stmt,""} and +a Stmt sort with the constructors +syntax Stmt ::= "enable" | "increment" | "decrement" | "disable". The +configuration should have an optional cell that contains an integer that +is created with the enable command, destroyed with the disable command, +and its value is incremented or decremented by the increment and decrement +command.

+

Cell collections

+

The second type of cell multiplicity we will discuss is *. Simlar to a +regular expression language, this attribute tells the compiler that this cell +can appear 0 or more times in the configuration. In other words, it is a +cell collection. Cells with multiplicity * must be the only child of +their parent cell. As a convention, the inner cell is usually named with the +singular form of what it contains, and the outer cell with the plural form, for +example, "thread" and "threads".

+

All cell collections are required to have the type attribute set to either +Set or Map. A Set cell collection is represented as a set and behaves +internally the same as the Set sort, although it actually declares a new +sort. A Map cell collection is represented as a Map in which the first +subcell of the cell collection is the key and the remaining cells are the +value.

+

For example, consider the following module:

+
k
module LESSON-17-B + imports INT + imports BOOL + imports ID-SYNTAX + + syntax Stmt ::= Id "=" Exp ";" [strict(2)] + | "return" Exp ";" [strict] + syntax Stmts ::= List{Stmt,""} + syntax Exp ::= Id + | Int + | Exp "+" Exp [seqstrict] + | "spawn" "{" Stmts "}" + | "join" Exp ";" [strict] + + configuration <threads> + <thread multiplicity="*" type="Map"> + <id> 0 </id> + <k> $PGM:K </k> + </thread> + </threads> + <state> .Map </state> + <next-id> 1 </next-id> + + rule <k> X:Id => I:Int ...</k> + <state>... X |-> I ...</state> + rule <k> X:Id = I:Int ; => . ...</k> + <state> STATE => STATE [ X <- I ] </state> + rule <k> S:Stmt Ss:Stmts => S ~> Ss ...</k> + rule <k> I1:Int + I2:Int => I1 +Int I2 ...</k> + + rule <thread>... + <k> spawn { Ss } => NEXTID ...</k> + ...</thread> + <next-id> NEXTID => NEXTID +Int 1 </next-id> + (.Bag => + <thread> + <id> NEXTID </id> + <k> Ss </k> + </thread>) + + rule <thread>... + <k> join ID:Int ; => I ...</k> + ...</thread> + (<thread> + <id> ID </id> + <k> return I:Int ; ...</k> + </thread> => .Bag) + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_) => false [owise] +endmodule +
+

This module implements a very basic fork/join semantics. The spawn expression +spawns a new thread to execute a sequence of statements and returns a thread +id, and the join statement waits until a thread executes return and then +returns the return value of the thread.

+

Note something quite novel here: the <k> cell is inside a cell of +multiplicity *. Since the <k> cell is just a regular cell (mostly), this +is perfectly allowable. Rules that don't mention a specific thread are +automatically completed to match any thread.

+

When you execute programs in this language, the cells in the cell collection +get sorted and printed like any other collection, but they still display like +cells. Rules in this language also benefit from all the structural power of +cells, allowing you to omit cells you don't care about or complete the +configuration automatically. This allows you to have the power of cells while +still being a collection under the hood.

+

Exercises

+
    +
  1. Modify the solution from Lesson 1.16, Exercise 1 so that the cell you use to +keep track of functions in a Map is now a cell collection. Run some programs +and compare how they get unparsed before and after this change.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.18: Term Equality and the Ternary Operator.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/18_equality_and_conditionals/index.html b/k-distribution/k-tutorial/1_basic/18_equality_and_conditionals/index.html new file mode 100644 index 00000000000..62cbb03ae85 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/18_equality_and_conditionals/index.html @@ -0,0 +1,484 @@ + + + + + + + + + + + + + + +Lesson 1.18: Term Equality and the Ternary Operator | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.18: Term Equality and the Ternary Operator

+

The purpose of this lesson is to introduce how to compare equality of terms in +K, and how to put conditional expressions directly into the right-hand side of +rules.

+

Term Equality

+

One major way you can compare whether two terms are equal in K is to simply +match both terms with a variable with the same name. This will only succeed +in matching if the two terms are equal structurally. However, sometimes this +is impractical, and it is useful to have access to a way to actually compare +whether two terms in K are equal. The operator for this is found in +domains.md in the K-EQUAL +module. The operator is ==K and takes two terms of sort K and returns a +Bool. It returns true if they are equal. This includes equality over builtin +types such as Map and Set where equality is not purely structural in +nature. However, it does not include any notion of semantic equality over +user-defined syntax. The inverse symbol for inequality is =/=K.

+

Ternary Operator

+

One way to introduce conditional logic in K is to have two separate rules, +each with a side condition (or one rule with a side condition and another with +the owise attribute). However, sometimes it is useful to explicitly write +a conditional expression directly in the right-hand side of a rule. For this +purpose, K defines one more operator in the K-EQUAL module, which corresponds +to the usual ternary operator found in many languages. Here is an example of its +usage (lesson-18.k):

+
k
module LESSON-18 + imports INT + imports BOOL + imports K-EQUAL + + syntax Exp ::= Int | Bool | "if" "(" Exp ")" Exp "else" Exp [strict(1)] + + syntax Bool ::= isKResult(K) [function, symbol] + rule isKResult(_:Int) => true + rule isKResult(_:Bool) => true + + rule if (B:Bool) E1:Exp else E2:Exp => #if B #then E1 #else E2 #fi +endmodule +
+

Note the symbol on the right-hand side of the final rule. This symbol is +polymorphic: B must be of sort Bool, but E1 and E2 could have been +any sort so long as both were of the same sort, and the sort of the entire +expression becomes equal to that sort. K supports polymorphic built-in +operators, but does not yet allow users to write their own polymorphic +productions.

+

The behavior of this function is to evaluate the Boolean expression to a +Boolean, then pick one of the two children and return it based on whether the +Boolean is true or false. Please note that it is not a good idea to use this +symbol in cases where one or both of the children is potentially undefined +(for example, an integer expression that divides by zero). While the default +implementation is smart enough to only evaluate the branch that happens to be +picked, this will not be true when we begin to do program verification. If +you need short circuiting behavior, it is better to use a side condition.

+

Exercises

+
    +
  1. +

    Write a function in K that takes two terms of sort K and returns an +Int: the Int should be 0 if the terms are equal and 1 if the terms are +unequal.

    +
  2. +
  3. +

    Modify your solution to Lesson 1.16, Exercise 1 and introduce an if +Stmt to the syntax of the language, then implement it using the #if symbol. +Make sure to write tests for the resulting interpreter.

    +
  4. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.19: Debugging with GDB.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/19_debugging/index.html b/k-distribution/k-tutorial/1_basic/19_debugging/index.html new file mode 100644 index 00000000000..c4f2441db77 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/19_debugging/index.html @@ -0,0 +1,913 @@ + + + + + + + + + + + + + + +Lesson 1.19: Debugging with GDB or LLDB | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.19: Debugging with GDB or LLDB

+

The purpose of this lesson is to teach how to debug your K interpreter using +the K-language support provided in GDB or +LLDB.

+

Caveats

+

This lesson has been written with GDB support on Linux in mind. Unfortunately, +on macOS, GDB has limited support. To address this, we have introduced early +experimental support for debugging with LLDB on macOS. In some cases, the +features supported by LLDB are slightly different to those supported by GDB; the +tutorial text will make this clear where necessary. If you use a macOS with an +LLVM version older than 15, you may need to upgrade it to use the LLDB +correctly. If you encounter an issue on either operating system, please open an +issue against the K repository.

+

Getting started

+

On Linux, you will need GDB in order to complete this lesson. If you do not +already have GDB installed, then do so. Steps to install GDB are outlined in +this GDB Tutorial.

+

On macOS, LLDB should already have been installed with K's build dependencies +(whether you have built K from source, or installed it using kup or Homebrew).

+

The first thing neccessary in order to debug a K interpreter is to build the +interpreter with full debugging support enabled. This can be done relatively +simply. First, run kompile with the command line flag --enable-llvm-debug. +The resulting compiled K definition will be ready to support debugging.

+

Once you have a compiled K definition and a program you wish to debug, you can +start the debugger by passing the --debugger flag to krun. This will +automatically load the program you are executing into GDB and drop you into a +GDB shell ready to start executing the program.

+

As an example, consider the following K definition (lesson-19-a.k):

+
k
module LESSON-19-A + imports INT + + rule I => I +Int 1 + requires I <Int 100 +endmodule +
+

If we compile this definition with kompile lesson-19-a.k --enable-llvm-debug, +and run the program 0 in the debugger with krun -cPGM=0 --debugger, we will +see the following output (roughly, and depending on which platform you are +using):

+

GDB / Linux

+
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
+Copyright (C) 2020 Free Software Foundation, Inc.
+License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
+This is free software: you are free to change and redistribute it.
+There is NO WARRANTY, to the extent permitted by law.
+Type "show copying" and "show warranty" for details.
+This GDB was configured as "x86_64-linux-gnu".
+Type "show configuration" for configuration details.
+For bug reporting instructions, please see:
+<http://www.gnu.org/software/gdb/bugs/>.
+Find the GDB manual and other documentation resources online at:
+    <http://www.gnu.org/software/gdb/documentation/>.
+
+For help, type "help".
+Type "apropos word" to search for commands related to "word"...
+Reading symbols from ./lesson-19-a-kompiled/interpreter...
+warning: File "/home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-a-kompiled/interpreter" auto-loading has been declined by your `auto-load safe-path' set to "$debugdir:$datadir/auto-load".
+To enable execution of this file add
+        add-auto-load-safe-path /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-a-kompiled/interpreter
+line to your configuration file "/home/dwightguth/.gdbinit".
+To completely disable this security protection add
+        set auto-load safe-path /
+line to your configuration file "/home/dwightguth/.gdbinit".
+For more information about this security protection see the
+"Auto-loading safe path" section in the GDB manual.  E.g., run from the shell:
+        info "(gdb)Auto-loading safe path"
+(gdb)
+
+

To make full advantage of the GDB features of K, you should follow the first +command listed in this output message and add the corresponding +add-auto-load-safe-path command to your ~/.gdbinit file as prompted. +Please note that the path will be different on your machine than the one +listed above. Adding directories to the "load safe path" effectively tells GDB +to trust those directories. All content under a given directory will be recursively +trusted, so if you want to avoid having to add paths to the "load safe path" every +time you kompile a different K definition, then you can just trust a minimal +directory containing all your kompiled files; however, do not choose a top-level directory containing arbitrary files as this amounts to trusting arbitrary files and is a security risk. More info on the load safe path +can be found here.

+

LLDB / macOS

+
(lldb) target create "./lesson-19-a-kompiled/interpreter"
+warning: 'interpreter' contains a debug script. To run this script in this debug session:
+
+    command script import "/Users/brucecollie/code/scratch/lesson-19-a-kompiled/interpreter.dSYM/Contents/Resources/Python/interpreter.py"
+
+To run all discovered debug scripts in this session:
+
+    settings set target.load-script-from-symbol-file true
+
+Current executable set to '/Users/brucecollie/code/scratch/lesson-19-a-kompiled/interpreter' (x86_64).
+(lldb) settings set -- target.run-args  ".krun-2023-03-20-11-22-46-TcYt9ffhb2/tmp.in.RupiLwHNfn" "-1" ".krun-2023-03-20-11-22-46-TcYt9ffhb2/result.kore"
+(lldb) 
+
+

LLDB applies slightly different security policies to GDB. To load K's debugging +scripts for this session only, you can run the command script import line at +the LLDB prompt. The loaded scripts will not persist across debugging sessions +if you do this. It is also possible to configure LLDB to automatically load the +K scripts when an interpreter is started in LLDB; doing so requires a slightly +less broad permission than GDB.

+

On macOS, the .dSYM directory that contains debugging symbols for an +executable can also contain Python scripts in Contents/Resources/Python. If +there is a Python script with a name matching the name of the current executable +(here, interpreter and interpreter.py), it will be automatically loaded if +the target.load-script-from-symbol-file setting is set). You can therefore add +the settings set command to your ~/.lldbinit without enabling full arbitrary +code execution, but you should be aware of the paths from which code can be +executed if you do so.

+

Basic commands

+
+

LLDB Note: the k start and k step commands are currently not +implemented in the K LLDB scripts. To work around this limitation temporarily, +you can run process launch --stop-at-entry instead of k start. To emulate +k step, first run rbreak k_step once, then continue instead of each k step. We hope to address these limitations soon.

+
+

The most basic commands you can execute in the K GDB session are to run your +program or to step through it. The first can be accomplished using GDB's +built-in run command. This will automatically start the program and begin +executing it. It will continue until the program aborts or finishes, or the +debugger is interrupted with Ctrl-C.

+

Sometimes you want finer-grained control over how you proceed through the +program you are debugging. To step through the rule applications in your +program, you can use the k start and k step GDB commands.

+

k start is similar to the built-in start command in that it starts the +program and then immediately breaks before doing any work. However, unlike +the start command which will break immediately after the main method of +a program is executed, the K start program will initialize the rewriter, +evaluate the initial configuration, and break immediately prior to applying +any rewrite steps.

+

In the example above, here is what we see when we run the k start command:

+
Temporary breakpoint 1 at 0x239210
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-a-kompiled/interpreter .krun-2021-08-13-14-10-50-sMwBkbRicw/tmp.in.01aQt85TaA -1 .krun-2021-08-13-14-10-50-sMwBkbRicw/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Temporary breakpoint 1, 0x0000000000239210 in main ()
+0x0000000000231890 in step (subject=<k>
+  0 ~> .
+</k>)
+(gdb)
+
+

As you can see, we are stopped at the step function in the interpreter. +This function is responsible for taking top-level rewrite steps. The subject +parameter to this function is the current K configuration.

+

We can step through K rewrite steps one at a time by running the k step +command. By default, this takes a single rewrite step (including any function +rule applications that are part of that step).

+

Here is what we see when we run that command:

+
Continuing.
+
+Temporary breakpoint -22, 0x0000000000231890 in step (subject=<k>
+  1 ~> .
+</k>)
+(gdb)
+
+

As we can see, we have taken a single rewrite step. We can also pass a number +to the k step command which indicates the number of rewrite steps to take.

+

Here is what we see if we run k step 10:

+
Continuing.
+
+Temporary breakpoint -23, 0x0000000000231890 in step (subject=<k>
+  11 ~> .
+</k>)
+(gdb)
+
+

As we can see, ten rewrite steps were taken.

+

Breakpoints

+

The next important step in debugging an application in GDB is to be able to +set breakpoints. Generally speaking, there are three types of breakpoints we +are interested in a K semantics: Setting a breakpoint when a particular +function is called, setting a breakpoint when a particular rule is applied, +and setting a breakpoint when a side condition of a rule is evaluated.

+

The easiest way to do the first two things is to set a breakpoint on the +line of code containing the function or rule.

+

For example, consider the following K definition (lesson-19-b.k):

+
k
module LESSON-19-B + imports BOOL + + syntax Bool ::= isBlue(Fruit) [function] + syntax Fruit ::= Blueberry() | Banana() + rule isBlue(Blueberry()) => true + rule isBlue(Banana()) => false + + rule F:Fruit => isBlue(F) +endmodule +
+

Once this program has been compiled for debugging, we can run the program +Blueberry(). We can then set a breakpoint that stops when the isBlue +function is called with the following command in GDB:

+
break lesson-19-b.k:4
+
+

Similarly, in LLDB, run:

+
breakpoint set --file lesson-19-b.k --line 4
+
+

Here is what we see if we set this breakpoint and then run the interpreter:

+
(gdb) break lesson-19-b.k:4
+Breakpoint 1 at 0x231040: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k, line 4.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b-kompiled/interpreter .krun-2021-08-13-14-20-27-vXOQmV6lwS/tmp.in.fga98yqXlc -1 .krun-2021-08-13-14-20-27-vXOQmV6lwS/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, LblisBlue'LParUndsRParUnds'LESSON-19-B'Unds'Bool'Unds'Fruit (_1=Blueberry ( )) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k:4
+4         syntax Bool ::= isBlue(Fruit) [function]
+(gdb)
+
+
(lldb) breakpoint set --file lesson-19-b.k --line 4
+Breakpoint 1: where = interpreter`LblisBlue'LParUndsRParUnds'LESSON-19-B'Unds'Bool'Unds'Fruit + 20 at lesson-19-b.k:4:19, address = 0x0000000100003ff4
+(lldb) run
+Process 50546 launched: '/Users/brucecollie/code/scratch/lesson-19-b-kompiled/interpreter' (x86_64)
+Process 50546 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x0000000100003ff4 interpreter`LblisBlue'LParUndsRParUnds'LESSON-19-B'Unds'Bool'Unds'Fruit(_1=Blueberry ( )) at lesson-19-b.k:4:19
+   1   	module LESSON-19-B
+   2   	  imports BOOL
+   3   	
+-> 4   	  syntax Bool ::= isBlue(Fruit) [function]
+   5   	  syntax Fruit ::= Blueberry() | Banana()
+   6   	  rule isBlue(Blueberry()) => true
+   7   	  rule isBlue(Banana()) => false
+(lldb)
+
+

As we can see, we have stopped at the point where we are evaluating that +function. The value _1 that is a parameter to that function shows the +value passed to the function by the caller.

+

We can also break when the isBlue(Blueberry()) => true rule applies by simply +changing the line number to the line number of that rule:

+
(gdb) break lesson-19-b.k:6
+Breakpoint 1 at 0x2af710: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k, line 6.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b-kompiled/interpreter .krun-2021-08-13-14-32-36-7kD0ic7XwD/tmp.in.8JNH5Qtmow -1 .krun-2021-08-13-14-32-36-7kD0ic7XwD/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, apply_rule_138 () at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k:6
+6         rule isBlue(Blueberry()) => true
+(gdb)
+
+
(lldb) breakpoint set --file lesson-19-b.k --line 6
+Breakpoint 1: where = interpreter`apply_rule_140 at lesson-19-b.k:6:8, address = 0x0000000100004620
+(lldb) run
+Process 50681 launched: '/Users/brucecollie/code/scratch/lesson-19-b-kompiled/interpreter' (x86_64)
+Process 50681 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x0000000100004620 interpreter`apply_rule_140 at lesson-19-b.k:6:8
+   3   	
+   4   	  syntax Bool ::= isBlue(Fruit) [function]
+   5   	  syntax Fruit ::= Blueberry() | Banana()
+-> 6   	  rule isBlue(Blueberry()) => true
+   7   	  rule isBlue(Banana()) => false
+   8   	
+   9   	  rule F:Fruit => isBlue(F)
+(lldb) 
+
+

We can also do the same with a top-level rule:

+
(gdb) break lesson-19-b.k:9
+Breakpoint 1 at 0x2aefa0: lesson-19-b.k:9. (2 locations)
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b-kompiled/interpreter .krun-2021-08-13-14-33-13-9fC8Sz4aO3/tmp.in.jih1vtxSiQ -1 .krun-2021-08-13-14-33-13-9fC8Sz4aO3/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, apply_rule_107 (Var'Unds'DotVar0=<generatedCounter>
+  0
+</generatedCounter>, Var'Unds'DotVar1=., VarF=Blueberry ( )) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-b.k:9
+9         rule F:Fruit => isBlue(F)
+(gdb)
+
+
(lldb) breakpoint set --file lesson-19-b.k --line 9
+Breakpoint 1: 2 locations.
+(lldb) run
+Process 50798 launched: '/Users/brucecollie/code/scratch/lesson-19-b-kompiled/interpreter' (x86_64)
+Process 50798 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x0000000100003f2e interpreter`apply_rule_109(Var'Unds'DotVar0=<generatedCounter>
+  0
+</generatedCounter>, Var'Unds'DotVar1=., VarF=Blueberry ( )) at lesson-19-b.k:9:8
+   6   	  rule isBlue(Blueberry()) => true
+   7   	  rule isBlue(Banana()) => false
+   8   	
+-> 9   	  rule F:Fruit => isBlue(F)
+   10  	endmodule
+(lldb)  
+
+

Unlike the function rule above, we see several parameters to this function. +These are the substitution that was matched for the function. Variables only +appear in this substitution if they are actually used on the right-hand side +of the rule.

+

Advanced breakpoints

+

Sometimes it is inconvenient to set the breakpoint based on a line number.

+

It is also possible to set a breakpoint based on the rule label of a particular +rule. Consider the following definition (lesson-19-c.k):

+
k
module LESSON-19-C + imports INT + imports BOOL + + syntax Bool ::= isEven(Int) [function] + rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0 + rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0 + +endmodule +
+

We will run the program isEven(4). We can set a breakpoint for when a rule +applies by means of the MODULE-NAME.label.rhs syntax:

+
(gdb) break LESSON-19-C.isEven.rhs
+Breakpoint 1 at 0x2afda0: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k, line 6.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c-kompiled/interpreter .krun-2021-08-13-14-40-29-LNNT8YEZ61/tmp.in.ZG93vWCGGC -1 .krun-2021-08-13-14-40-29-LNNT8YEZ61/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, LESSON-19-C.isEven.rhs () at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:6
+6         rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+(gdb)
+
+
(lldb) breakpoint set --name LESSON-19-C.isEven.rhs
+Breakpoint 1: where = interpreter`LESSON-19-C.isEven.rhs at lesson-19-c.k:6:18, address = 0x00000001000038e0
+(lldb) run
+Process 51205 launched: '/Users/brucecollie/code/scratch/lesson-19-c-kompiled/interpreter' (x86_64)
+Process 51205 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x00000001000038e0 interpreter`LESSON-19-C.isEven.rhs at lesson-19-c.k:6:18
+   3   	  imports BOOL
+   4   	
+   5   	  syntax Bool ::= isEven(Int) [function]
+-> 6   	  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+   7   	  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+   8   	
+   9   	endmodule
+(lldb) 
+
+

We can also set a breakpoint for when a rule's side condition is evaluated +by means of the MODULE-NAME.label.sc syntax:

+
(gdb) break LESSON-19-C.isEven.sc
+Breakpoint 1 at 0x2afd70: file /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k, line 6.
+(gdb) run
+Starting program: /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c-kompiled/interpreter .krun-2021-08-13-14-41-48-1BoGfJRbYc/tmp.in.kg4F8cwfCe -1 .krun-2021-08-13-14-41-48-1BoGfJRbYc/result.kore
+[Thread debugging using libthread_db enabled]
+Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
+
+Breakpoint 1, LESSON-19-C.isEven.sc (VarI=4) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:6
+6         rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+(gdb) finish
+Run till exit from #0  LESSON-19-C.isEven.sc (VarI=4) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:6
+0x00000000002b2662 in LblisEven'LParUndsRParUnds'LESSON-19-C'Unds'Bool'Unds'Int (_1=4) at /home/dwightguth/kframework-5.0.0/k-distribution/k-tutorial/1_basic/19_debugging/lesson-19-c.k:5
+5         syntax Bool ::= isEven(Int) [function]
+Value returned is $1 = true
+(gdb)
+
+
(lldb) breakpoint set --name LESSON-19-C.isEven.sc
+Breakpoint 1: where = interpreter`LESSON-19-C.isEven.sc + 1 at lesson-19-c.k:6:18, address = 0x00000001000038c1
+(lldb) run
+Process 52530 launched: '/Users/brucecollie/code/scratch/lesson-19-c-kompiled/interpreter' (x86_64)
+Process 52530 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
+    frame #0: 0x00000001000038c1 interpreter`LESSON-19-C.isEven.sc(VarI=0x0000000101800088) at lesson-19-c.k:6:18
+   3   	  imports BOOL
+   4   	
+   5   	  syntax Bool ::= isEven(Int) [function]
+-> 6   	  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+   7   	  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+   8   	
+   9   	endmodule
+(lldb) finish
+Process 52649 stopped
+* thread #1, queue = 'com.apple.main-thread', stop reason = step out
+Return value: (bool) $0 = true
+
+    frame #0: 0x00000001000069e5 interpreter`LblisEven'LParUndsRParUnds'LESSON-19-C'Unds'Bool'Unds'Int(_1=0x0000000101800088) at lesson-19-c.k:5:19
+   2   	  imports INT
+   3   	  imports BOOL
+   4   	
+-> 5   	  syntax Bool ::= isEven(Int) [function]
+   6   	  rule [isEven]: isEven(I) => true requires I %Int 2 ==Int 0
+   7   	  rule [isOdd]: isEven(I) => false requires I %Int 2 =/=Int 0
+   8
+(lldb)
+
+

Here we have used the built-in command finish to tell us whether the side +condition returned true or not. Note that once again, we see the substitution +that was matched from the left-hand side. Like before, a variable will only +appear here if it is used in the side condition.

+

Debugging rule matching

+

Sometimes it is useful to try to determine why a particular rule did or did +not apply. K provides some basic debugging commands which make it easier +to determine this.

+

Consider the following K definition (lesson-19-d.k):

+
k
module LESSON-19-D + + syntax Foo ::= foo(Bar) + syntax Bar ::= bar(Baz) | bar2(Baz) + syntax Baz ::= baz() | baz2() + + rule [baz]: foo(bar(baz())) => .K + +endmodule +
+

Suppose we try to run the program foo(bar(baz2())). It is obvious from this +example why the rule in this definition will not apply. However, in practice, +such cases are not always obvious. You might look at a rule and not immediately +spot why it didn't apply on a particular term. For this reason, it can be +useful to get the debugger to provide a log about how it tried to match that +term. You can do this with the k match command. If you are stopped after +having run k start or k step, you can obtain this log for any rule after +any step by running the command k match MODULE.label subject for a particular +top-level rule label.

+

For example, with the baz rule above, we get the following output:

+
(gdb) k match LESSON-19-D.baz subject
+Subject:
+baz2 ( )
+does not match pattern:
+baz ( )
+
+
(lldb) k match LESSON-19-D.baz subject
+Subject:
+baz2 ( )
+does not match pattern:
+baz ( )
+
+

As we can see, it provided the exact subterm which did not match against the +rule, as well as the particular subpattern it ought to have matched against.

+

This command does not actually take any rewrite steps. In the event that +matching actually succeeds, you will still need to run the k step command +to advance to the next step.

+

Final notes

+

In addition to the functionality provided above, you have the full power of +GDB or LLDB at your disposal when debugging. Some features are not particularly +well-adapted to K code and may require more advanced knowledge of the +term representation or implementation to use effectively, but anything that +can be done in GDB or LLDB can in theory be done using this debugging functionality. +We suggest you refer to the +GDB Documentation or +LLDB Tutorial if you +want to try to do something and are unsure as to how.

+

Exercises

+
    +
  1. Compile your solution to Lesson 1.18, Exercise 2 with debugging support +enabled and step through several programs you have previously used to test. +Then set a breakpoint on the isKResult function and observe the state of the +interpreter when stopped at that breakpoint. Set a breakpoint on the rule for +addition and run a program that causes it to be stopped at that breakpoint. +Finally, step through the program until the addition symbol is at the top +of the K cell, and then use the k match command to report the reason why +the subtraction rule does not apply. You may need to modify the definition +to insert some rule labels.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.20: K Backends and the Haskell Backend.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/20_backends/index.html b/k-distribution/k-tutorial/1_basic/20_backends/index.html new file mode 100644 index 00000000000..17e1fe1e4fd --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/20_backends/index.html @@ -0,0 +1,504 @@ + + + + + + + + + + + + + + +Lesson 1.20: K Backends and the Haskell Backend | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.20: K Backends and the Haskell Backend

+

The purpose of this lesson is to teach about the multiple backends of K, +in particular the Haskell Backend which is the complement of the backend we +have been using so far.

+

K Backends

+

Thus far, we have not discussed the distinction between the K frontend and +the K backends at all. We have simply assumed that if you run kompile on a +K definition, there will be a compiler backend that will allow you to execute +the K definition you have compiled.

+

K actually has multiple different backends. The one we have been using so far +implicitly, the default backend, is called the LLVM Backend. It is +designed to support efficient, optimized concrete execution and search. It +does this by compiling your K definition to LLVM bitcode and then using LLVM +to generate machine code for it that is compiled and linked and executed. +However, K is a formal methods toolkit at the end of the day, and the primary +goal many people have when defining a programming language in K is to +ultimately be able to perform more advanced verification on programs in their +programming language.

+

It is for this purpose that K also provides the Haskell Backend, so called +because it is implemented in Haskell. While we will cover the features of the +Haskell Backend in more detail in the next two lessons, the important thing to +understand is that it is a separate backend which is optimized for more formal +reasoning about programming languages. While it is capable of performing +concrete execution, it does not do so as efficiently as the LLVM Backend. +In exchange, it provides more advanced features.

+

Choosing a backend

+

You can choose which backend to use to compile a K definition by means of the +--backend flag to kompile. By default, if you do not specify this flag, it +is equivalent to if you had specified --backend llvm. However, to use the +Haskell Backend instead, you can simply say kompile --backend haskell on a +particular K definition.

+

As an example, here is a simple K definition that we have seen before in the +previous lesson (lesson-20.k):

+
k
module LESSON-20 + imports INT + + rule I => I +Int 1 + requires I <Int 100 +endmodule +
+

Previously we compiled this definition using the LLVM Backend, but if we +instead execute the command kompile lesson-20.k --backend haskell, we +will get an interpreter for this K definition that is implemented in Haskell +instead. Unlike the default LLVM Backend, the Haskell Backend is not a +compiler per se. It does not generate new Haskell code corresponding to your +programming language and then compile and execute it. Instead, it is an +interpreter which reads the generated IR from kompile and implements in +Haskell an interpreter that is capable of interpreting any K definition.

+

Note that on arm64 macOS (Apple Silicon), there is a known issue with the Compact +library that causes crashes in the Haskell backend. Pass the additional flag +--no-haskell-binary to kompile to resolve this. +This flag is also needed when using krun.

+

Exercise

+

Try running the program 0 in this K definition on the Haskell Backend and +compare the final configuration to what you would get compiling the same +definition with the LLVM Backend.

+

Legacy backends

+

As a quick note, K does provide one other backend, which exists primarily as +legacy code which should be considered deprecated. This is the +Java Backend. The Java Backend is essentially a precursor to the Haskell +Backend. We will not cover this backend in any detail since it is deprecated, +but we still mention it here for the purposes of understanding.

+

Exercises

+
    +
  1. Compile your solution to Lesson 1.18, Exercise 2 with the Haskell Backend +and execute some programs. Compare the resulting configurations with the +output of the same program on the LLVM Backend. Note that if you are getting +different behaviors on the Haskell backend, you might have some luck debugging +by passing --search to krun when using the LLVM backend.
  2. +
+

Next lesson

+

Once you have completed the above exercises, you can continue to +Lesson 1.21: Unification and Symbolic Execution.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/21_symbolic_execution/index.html b/k-distribution/k-tutorial/1_basic/21_symbolic_execution/index.html new file mode 100644 index 00000000000..62cf791cbee --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/21_symbolic_execution/index.html @@ -0,0 +1,584 @@ + + + + + + + + + + + + + + +Lesson 1.21: Unification and Symbolic Execution | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.21: Unification and Symbolic Execution

+

The purpose of this lesson is to teach the basic concepts of symbolic execution +in order to introduce the unique capabilities of the Haskell Backend at a +conceptual level.

+

Symbolic Execution

+

Thus far, all of the programs we have run using K have been concrete +configurations. What this means is that the configuration we use to initialize +the K rewrite engine is concrete; in other words, contains no logical +variables. The LLVM Backend is a concrete execution engine, meaning that +it is only capable of rewriting concrete configurations.

+

By contrast, the Haskell Backend performs symbolic execution, which is +capable of rewriting any configuration, including those where parts of the +configuration are symbolic, ie, contain variables or uninterpreted +functions.

+

Unification

+

Previously, we have introduced the concept that K rewrite rules operate by +means of pattern matching: the current configuration being rewritten is pattern +matched against the left-hand side of the rewrite rule, and the substitution +is used in order to construct a new term from the right-hand side. In symbolic +execution, we use +unification +instead of pattern matching. To summarize, unification behaves akin to a +two-way pattern matching where both the configuration and the left-hand side +of the rule can contain variables, and the algorithm generates a +most general unifier containing substitutions for the variables in both +which will make both terms equal.

+

Feasibility

+

Unification by itself cannot completely solve the problem of symbolic +execution. One task symbolic execution must perform is to identify whether +a particular symbolic term is feasible, that is to say, that there actually +exists a concrete instantiation of that term such that all the logical +constraints on that term can actually be satisfied. The Haskell Backend +delegates this task to Z3, an +SMT solver. +This solver is used to periodically trim configurations that are determined +to be mathematically infeasible.

+

Symbolic terms

+

The final component of symbolic execution consists of the task of introducing +symbolic terms into the configuration. This can be done one of two different +ways. First, the term being passed to krun can actually be symbolic. This +is less frequently used because it requires the user to construct an AST +that contains variables, something which our current parsing capabilities are +not well-equipped to do. The second, more common, way of introducing symbolic +terms into a configuration consists of writing rules where there exists an +existentially qualified variable on the right-hand side of the rule that does +not exist on the left-hand side of the rule.

+

In order to prevent users from writing such rules by accident, K requires +that such variables begin with the ? prefix. For example, here is a rule +that rewrites a constructor foo to a symbolic integer:

+
rule <k> foo => ?X:Int ...</k>
+
+

When this rule applies, a fresh variable is introduced to the configuration, which +then is unified against the rules that might apply in order to symbolically +execute that configuration.

+

ensures clauses

+

We also introduce here a new feature of K rules that applies when a rule +has this type of variable on the right-hand side: the ensures clause. +An ensures clause is similar to a requires clause and can appear after +a rule body, or after a requires clause. The ensures clause is used to +introduce constraints that might apply to the variable that was introduced by +that rule. For example, we could write the rule above with the additional +constraint that the symbolic integer that was introduced must be less than +five, by means of the following rule:

+
rule <k> foo => ?X:Int ...</k> ensures ?X <Int 5
+
+

Putting it all together

+

Putting all these pieces together, it is possible to use the Haskell Backend +to perform symbolic reasoning about a particular K module, determining all the +possible states that can be reached by a symbolic configuration.

+

For example, consider the following K definition (lesson-21.k):

+
k
module LESSON-21 + imports INT + + rule <k> 0 => ?X:Int ... </k> ensures ?X =/=Int 0 + rule <k> X:Int => 5 ... </k> requires X >=Int 10 +endmodule +
+

When we symbolically execute the program 0, we get the following output +from the Haskell Backend:

+
    <k>
+      5 ~> .
+    </k>
+  #And
+    {
+      true
+    #Equals
+      ?X:Int >=Int 10
+    }
+  #And
+    #Not ( {
+      ?X:Int
+    #Equals
+      0
+    } )
+#Or
+    <k>
+      ?X:Int ~> .
+    </k>
+  #And
+    #Not ( {
+      true
+    #Equals
+      ?X:Int >=Int 10
+    } )
+  #And
+    #Not ( {
+      ?X:Int
+    #Equals
+      0
+    } )
+
+

Note some new symbols introduced by this configuration: #And, #Or, and +#Equals. While andBool, orBool, and ==K represent functions of sort +Bool, #And, #Or, and #Equals are matching logic connectives. We +will discuss matching logic in more detail later in the tutorial, but the basic +idea is that these symbols represent Boolean operators over the domain of +configurations and constraints, as opposed to over the Bool sort.

+

Notice that the configuration listed above is a disjunction of conjunctions. +This is the most common form of output that can be produced by the Haskell +Backend. In this case, each conjunction consists of a configuration and a set +of constraints. What this conjunction describes, essentially, is a +configuration and a set of information that was derived to be true while +rewriting that configuration.

+

Similar to how we saw --search in a previous lesson, the reason we have +multiple disjuncts is because there are multiple possible output states +for this program, depending on whether or not the second rule applied. In the +first case, we see that ?X is greater than or equal to 10, so the second rule +applied, rewriting the symbolic integer to the concrete integer 5. In the +second case, we see that the second rule did not apply because ?X is less +than 10. Moreover, because of the ensures clause on the first rule, we know +that ?X is not zero, therefore the first rule will not apply a second time. +If we had omitted this constraint, we would have ended up infinitely applying +the first rule, leading to krun not terminating.

+

In the next lesson, we will cover how symbolic execution forms the backbone +of deductive program verification in K and how we can use K to prove programs +correct against a specification.

+

Exercises

+
    +
  1. Create another rule in LESSON-21 that rewrites odd integers greater than +ten to a symbolic even integer less than 10 and greater than 0. This rule will +now apply nondeterministically along with the existing rules. Predict what the +resulting output configuration will be from rewriting 0 after adding this +rule. Then run the program and see whether your prediction is correct.
  2. +
+

Once you have completed the above exercises, you can continue to +Lesson 1.22: Basics of Deductive Program Verification using K.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/22_proofs/index.html b/k-distribution/k-tutorial/1_basic/22_proofs/index.html new file mode 100644 index 00000000000..4914ad1a2cf --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/22_proofs/index.html @@ -0,0 +1,820 @@ + + + + + + + + + + + + + + +Lesson 1.22: Basics of Deductive Program Verification using K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 1.22: Basics of Deductive Program Verification using K

+

In this lesson, you will familiarize yourself with the basics of using K for +deductive program verification.

+

1. Setup: Simple Programming Language with Function Calls

+

We base this lesson on a simple programming language with functions, +assignment, if conditionals, and while loops. Take your time to study its +formalization below (lesson-22.k):

+
module LESSON-22-SYNTAX
+    imports INT-SYNTAX
+    imports BOOL-SYNTAX
+    imports ID-SYNTAX
+
+    syntax Exp ::= IExp | BExp
+
+    syntax IExp ::= Id | Int
+
+    syntax KResult ::= Int | Bool | Ints
+
+    // Take this sort structure:
+    //
+    //     IExp
+    //    /    \
+    // Int      Id
+    //
+    // Through the List{_, ","} functor.
+    // Must add a `Bot`, for a common subsort for the empty list.
+
+    syntax Bot
+    syntax Bots ::= List{Bot, ","} [klabel(exps)]
+    syntax Ints ::= List{Int, ","} [klabel(exps)]
+                  | Bots
+    syntax Ids  ::= List{Id, ","}  [klabel(exps)]
+                  | Bots
+    syntax Exps ::= List{Exp, ","} [klabel(exps), seqstrict]
+                  | Ids | Ints
+
+    syntax IExp ::= "(" IExp ")" [bracket]
+                  | IExp "+" IExp [seqstrict]
+                  | IExp "-" IExp [seqstrict]
+                  > IExp "*" IExp [seqstrict]
+                  | IExp "/" IExp [seqstrict]
+                  > IExp "^" IExp [seqstrict]
+                  | Id "(" Exps ")" [strict(2)]
+
+    syntax BExp ::= Bool
+
+    syntax BExp ::= "(" BExp ")" [bracket]
+                  | IExp "<=" IExp [seqstrict]
+                  | IExp "<"  IExp [seqstrict]
+                  | IExp ">=" IExp [seqstrict]
+                  | IExp ">"  IExp [seqstrict]
+                  | IExp "==" IExp [seqstrict]
+                  | IExp "!=" IExp [seqstrict]
+
+    syntax BExp ::= BExp "&&" BExp
+                  | BExp "||" BExp
+
+    syntax Stmt ::=
+         Id "=" IExp ";" [strict(2)]                        // Assignment
+       | Stmt Stmt [left]                                   // Sequence
+       | Block                                              // Block
+       | "if" "(" BExp ")" Block "else" Block [strict(1)]   // If conditional
+       | "while" "(" BExp ")" Block                         // While loop
+       | "return" IExp ";"                    [seqstrict]   // Return statement
+       | "def" Id "(" Ids ")" Block                         // Function definition
+
+    syntax Block ::=
+         "{" Stmt "}"    // Block with statement
+       | "{" "}"         // Empty block
+endmodule
+
+module LESSON-22
+    imports INT
+    imports BOOL
+    imports LIST
+    imports MAP
+    imports LESSON-22-SYNTAX
+
+    configuration
+      <k> $PGM:Stmt </k>
+      <store> .Map </store>
+      <funcs> .Map </funcs>
+      <stack> .List </stack>
+
+ // -----------------------------------------------
+    rule <k> I1 + I2 => I1 +Int I2 ... </k>
+    rule <k> I1 - I2 => I1 -Int I2 ... </k>
+    rule <k> I1 * I2 => I1 *Int I2 ... </k>
+    rule <k> I1 / I2 => I1 /Int I2 ... </k>
+    rule <k> I1 ^ I2 => I1 ^Int I2 ... </k>
+
+    rule <k> I:Id => STORE[I] ... </k>
+         <store> STORE </store>
+
+ // ------------------------------------------------
+    rule <k> I1 <= I2 => I1  <=Int I2 ... </k>
+    rule <k> I1  < I2 => I1   <Int I2 ... </k>
+    rule <k> I1 >= I2 => I1  >=Int I2 ... </k>
+    rule <k> I1  > I2 => I1   >Int I2 ... </k>
+    rule <k> I1 == I2 => I1  ==Int I2 ... </k>
+    rule <k> I1 != I2 => I1 =/=Int I2 ... </k>
+
+    rule <k> B1 && B2 => B1 andBool B2 ... </k>
+    rule <k> B1 || B2 => B1  orBool B2 ... </k>
+
+    rule <k> S1:Stmt S2:Stmt => S1 ~> S2 ... </k>
+
+    rule <k> ID = I:Int ; => . ... </k>
+         <store> STORE => STORE [ ID <- I ] </store>
+
+    rule <k> { S } => S ... </k>
+    rule <k> {   } => . ... </k>
+
+    rule <k> if (true)   THEN else _ELSE => THEN ... </k>
+    rule <k> if (false) _THEN else  ELSE => ELSE ... </k>
+
+    rule <k> while ( BE ) BODY => if ( BE ) { BODY while ( BE ) BODY } else { } ... </k>
+
+    rule <k> def FNAME ( ARGS ) BODY => . ... </k>
+         <funcs> FS => FS [ FNAME <- def FNAME ( ARGS ) BODY ] </funcs>
+
+    rule <k> FNAME ( IS:Ints ) ~> CONT => #makeBindings(ARGS, IS) ~> BODY </k>
+         <funcs> ... FNAME |-> def FNAME ( ARGS ) BODY ... </funcs>
+         <store> STORE => .Map </store>
+         <stack> .List => ListItem(state(CONT, STORE)) ... </stack>
+
+    rule <k> return I:Int ; ~> _ => I ~> CONT </k>
+         <stack> ListItem(state(CONT, STORE)) => .List ... </stack>
+         <store> _ => STORE </store>
+
+    rule <k> return I:Int ; ~> . => I </k>
+         <stack> .List </stack>
+
+    syntax KItem ::= #makeBindings(Ids, Ints)
+                   | state(continuation: K, store: Map)
+ // ----------------------------------------------------
+    rule <k> #makeBindings(.Ids, .Ints) => . ... </k>
+    rule <k> #makeBindings((I:Id, IDS => IDS), (IN:Int, INTS => INTS)) ... </k>
+         <store> STORE => STORE [ I <- IN ] </store>
+endmodule
+
+

Next, compile this example using kompile lesson-22.k --backend haskell. If +your processor is an Apple Silicon processor, add the --no-haskell-binary +flag if the compilation fails.

+

2. Setup: Proof Environment

+

Next, take the following snippet of K code and save it in lesson-22-spec.k. +This is a skeleton of the proof environment, and we will complete it as the +lesson progresses.

+
requires "lesson-22.k"
+requires "domains.md"
+
+module LESSON-22-SPEC-SYNTAX
+    imports LESSON-22-SYNTAX
+
+endmodule
+
+module VERIFICATION
+    imports K-EQUAL
+    imports LESSON-22-SPEC-SYNTAX
+    imports LESSON-22
+    imports MAP-SYMBOLIC
+
+endmodule
+
+module LESSON-22-SPEC
+    imports VERIFICATION
+
+endmodule
+
+

3. Claims

+
    +
  1. The first claim we will ask K to prove is that 3 + 4, in fact, equals 7. +Claims are stated using the claim keyword, followed by the claim +statement:
  2. +
+
claim <k> 3 + 4 => 7 ... </k>
+
+

Add this claim to the LESSON-22-SPEC module and run the K prover using the +command kprove lesson-22-spec.k. You should get back the output #Top, +which denotes the Matching Logic equivalent of true and means, in this +context, that all claims have been proven correctly.

+
    +
  1. The second claim reasons about the if statement that has a concrete condition:
  2. +
+
claim <k> if ( 3 + 4 == 7 ) {
+            $a = 1 ;
+            } else {
+            $a = 2 ;
+            }
+        => . ... </k>
+        <store> STORE => STORE [ $a <- 1 ] </store>
+
+

stating that the given program terminates (=> .), and when it does, the value +of the variable $a is set to 1, meaning that the execution will have taken +the then branch. Add this claim to the LESSON-22-SPEC module, but also add

+
syntax Id ::= "$a" [token]
+
+

to the LESSON-22-SPEC-SYNTAX module in order to declare $a as a token so +that it can be used as a program variable. Re-run the K prover, which should +again return #Top.

+
    +
  1. Our third claim demonstrates how to reason about both branches of an if +statement at the same time:
  2. +
+
claim <k> $a = A:Int ; $b = B:Int ;
+          if ($a < $b) {
+            $c = $b ;
+          } else {
+            $c = $a ;
+          }
+        => . ... </k>
+        <store> STORE => STORE [ $a <- A ] [ $b <- B ] [ $c <- ?C:Int ] </store>
+    ensures (?C ==Int A) orBool (?C ==Int B)
+
+

The program in question first assigns symbolic integers A and B to program +variables $a and $b, respectively, and then executes the given if +statement, which has a symbolic condition (A < B), updating the value of the +program variable $c in both branches. The specification we give states that +the if statement terminates, with $a and $b updated, respectively, to A +and B, and $c updated to some symbolic integer value ?C. Via the +ensures clause, which is used to specify additional constraints that hold +after execution, we also state that this existentially quantified ?C equals +either A or B.

+

Add the productions declaring $b and $c as tokens to the +LESSON-22-SPEC-SYNTAX module, the claim to the LESSON-22-SPEC module, run +the K prover again, and observe the output, which should not be #Top this +time. This means that K was not able to prove the claim, and we now need to +understand why. We do so by examining the output, which should look as follows:

+
    (InfoReachability) while checking the implication:
+    The configuration's term unifies with the destination's term,
+    but the implication check between the conditions has failed.
+
+  #Not (
+    #Exists ?C . {
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- ?C:Int ]
+      #Equals
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+    }
+  #And
+    {
+      true
+    #Equals
+      ?C ==Int A orBool ?C ==Int B
+    }
+  )
+#And
+  <generatedTop>
+    <k>
+      _DotVar1
+    </k>
+    <store>
+      STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+    </store>
+    <funcs>
+      _Gen3
+    </funcs>
+    <stack>
+      _Gen5
+    </stack>
+  </generatedTop>
+#And
+  {
+    true
+  #Equals
+    A <Int B
+  }
+
+

This output starts with a message telling us at which point the proof failed, +followed by the final state, which consists of three parts: some negative +Matching Logic (ML) constraints, the final configuration (<generatedTop> ... </generatedTop>), and some positive ML constraints. Generally speaking, +these positive and the negative constraints could arise from various sources, +such as (but not limited to) branches taken by the execution +(e.g. { true #Equals A <Int B } or #Not ( { true #Equals A <Int B } ) ), +or ensures constraints.

+

First, we examine the message:

+
(InfoReachability) while checking the implication:
+The configuration's term unifies with the destination's term,
+but the implication check between the conditions has failed.
+
+

which tells us that the structure of the final configuration is as expected, +but that some of the associated constraints cannot be proven. We next look at +the final configuration, in which the relevant item is the <store> ... </store> cell, because it is the only one that we are reasoning about. By +inspecting its contents:

+
STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+
+

we see that we should be within the constraints of the ensures, since the +value of $c in the store equals B in this branch. We next examine the +negative and positive constraints of the output and, more often than not, the +goal is to instruct K how to use the information from the final configuration +and the positive constraints to falsify one of the negative constraints. This +is done through simplifications.

+

So, the positive constraint that we have is

+
{ true #Equals A <Int B }
+
+

meaning that A <Int B holds. Given the analysed program, this tells us that +we are in the then branch of the if. The negative constraint is

+
  #Not (
+    #Exists ?C . {
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- ?C:Int ]
+      #Equals
+        STORE [ $a <- A:Int ] [ $b <- B:Int ] [ $c <- B:Int ]
+    }
+  #And
+    { true #Equals ?C ==Int A orBool ?C ==Int B }
+  )
+
+

and we observe, from the first equality, that the existential ?C should be +instantiated with B. This would make both branches of the #And true, +falsifying the outside #Not. We just need to show K how to conclude that +?C ==Int B. We do so by introducing the following simplification into the +VERIFICATION module:

+
rule { M:Map [ K <- V ] #Equals M [ K <- V' ] } => { V #Equals V' } [simplification]
+
+

which formalizes our internal understanding of ?C ==Int B. The rule states +that when we update the same key in the same map with two values, and the +resulting maps are equal, then the two values must be equal as well. The +[simplification] attribute indicates to K to use this rule to simplify the +state when trying to prove claims. Like function rules, simplification rules +do not complete to the top of the configuration, but instead apply anywhere +their left-hand-side matches. Re-run the K prover, which should now return +#Top, indicating that K was able to use the simplification and prove the +required claims.

+
    +
  1. Next, we show how to state and prove properties of while loops. In +particular, we consider the following loop
  2. +
+
claim
+    <k>
+        while ( 0 < $n ) {
+            $s = $s + $n;
+            $n = $n - 1;
+            } => . ...
+    </k>
+    <store>
+        $s |-> (S:Int => S +Int ((N +Int 1) *Int N /Int 2))
+        $n |-> (N:Int => 0)
+    </store>
+    requires N >=Int 0
+
+

which adds the sum of the first $n integers to $s, assuming the value of $n +is non-negative to begin with. This is reflected in the store by stating that, +after the execution of the loop, the original value of $s (which is set to +equal some symbolic integer S) is incremented by ((N +Int 1) *Int N /Int 2), and the value of $n always equals 0. Add $n and $s as tokens in +the LESSON-22-SPEC-SYNTAX module, the above claim to the LESSON-22-SPEC +module, and run the K prover, which should return #Top.

+
    +
  1. Finally, our last claim is about a program that uses function calls:
  2. +
+
claim
+    <k>
+        def $sum($n, .Ids) {
+            $s = 0 ;
+            while (0 < $n) {
+                $s = $s + $n;
+                $n = $n - 1;
+            }
+            return $s;
+        }
+
+        $s = $sum(N:Int, .Ints);
+    => . ... </k>
+    <funcs> .Map => ?_ </funcs>
+    <store> $s |-> (_ => ((N +Int 1) *Int N /Int 2)) </store>
+    <stack> .List </stack>
+    requires N >=Int 0
+
+

Essentially, we have wrapped the while loop from claim 3.4 into a function +$sum, and then called that function with a symbolic integer N, storing the +return value in the variable $s. The specification states that this program +ends up storing the sum of the first N integers in the variable $n. Add $sum +to the LESSON-22-SPEC-SYNTAX module, the above claim to the +LESSON-22-SPEC module, and run the K prover, which should again return +#Top.

+

Exercises

+
    +
  1. +

    Change the condition of the if statement in part 3.2 to take the else +branch and adjust the claim so that the proof passes.

    +
  2. +
  3. +

    The post-condition of the specification in part 3.3 loses some information. +In particular, the value of ?C is in fact the maximum of A and B. +Prove the same claim as in 3.2, but with the post-condition ensures (?C ==Int maxInt(A, B)). For this, you will need to extend the VERIFICATION +module with two simplifications that capture the meaning of maxInt(A:Int, B:Int). Keep in mind that any rewriting rule can be used as a +simplification; in particular, that simplifications can have requires +clauses.

    +
  4. +
  5. +

    Following the pattern shown in part 3.4, assuming a non-negative initial +value of $b, specify and verify the following while loop:

    +
  6. +
+
while ( 0 < $b ) {
+    $a = $a + $c;
+    $b = $b - 1;
+    $c = $c - 1;
+}
+
+

Hint: You will not need additional simplifications---once you've got the +specification right, the proof will go through.

+
    +
  1. Write an arbitrary yet not-too-complex function (or several functions +interacting with each other), and try to specify and verify it (them) in K.
  2. +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/1_basic/index.html b/k-distribution/k-tutorial/1_basic/index.html new file mode 100644 index 00000000000..00c0ddfb480 --- /dev/null +++ b/k-distribution/k-tutorial/1_basic/index.html @@ -0,0 +1,402 @@ + + + + + + + + + + + + + + +Section 1: Basic K Concepts | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Section 1: Basic K Concepts

+

The goal of this first section of the K tutorial is to teach the basic +principles of K to someone with no prior experience with K as a programming +language. However, this is not written with the intended audience of someone +who is a complete beginner to programming. We are assuming that the reader +has a firm grounding in computer science broadly, as well as that they have +experience writing code in functional programming languages before.

+

By the end of this section, the reader ought to be able to write specifications +of simple languages in K, use these specifications to generate a fast +interpreter for their programming language, as well as write basic deductive +program verification proofs over programs in their language. This should give +them the theoretical grounding they need to begin expanding their knowledge +of K in Section 2: Intermediate K Concepts.

+

To begin this section, refer to +Lesson 1.1: Setting up a K Environment.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/01_macros/index.html b/k-distribution/k-tutorial/2_intermediate/01_macros/index.html new file mode 100644 index 00000000000..b74f36b7ee3 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/01_macros/index.html @@ -0,0 +1,568 @@ + + + + + + + + + + + + + + +Lesson 2.1: Macros, Aliases, and Anywhere Rules | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.1: Macros, Aliases, and Anywhere Rules

+

The purpose of this lesson is to explain the behavior of the macro, +macro-rec, alias, and alias-rec production attributes, as well as the +anywhere rule attribute. These attributes control the meaning of how rules +associated with them are applied.

+

Macros

+

Thus far in the K tutorial, we have described three different types of rules:

+
    +
  1. Top-level rewrite rules, which rewrite a configuration composed of cells to +another configuration;
  2. +
  3. Function rules, which define the behavior of a function written over +arbitrary input and output types; and
  4. +
  5. Simplification rules, which describe ways in which the symbolic execution +engine ought to simplify terms containing symbolic values.
  6. +
+

This lesson introduces three more types of rules, the first of which are +macros. A production is a macro if it has the macro attribute, and all +rules whose top symbol on the left hand side is a macro are macro rules +which define the behavior of the macro. Like function rules and simplification +rules, macro rules do not participate in cell completion. However, unlike +function rules and simplification rules, macro rules are applied statically +before rewriting begins, and the macro symbol is expected to no longer appear +in the initial configuration for rewriting once all macros in that +configuration are rewritten.

+

The rationale behind macros is they allow you to define one piece of syntax +in terms of another piece of syntax without any runtime overhead associated +with the cost of rewriting one to the other. This process is a common one in +programming language design and specification and is referred to as +desugaring; The syntax that is transformed is typically also referred to as +syntactic sugar for another type of syntax. For example, in a language with +if statements and curly braces, you could write the following fragment +(lesson-01.k):

+
k
module LESSON-01 + imports BOOL + + syntax Stmt ::= "if" "(" Exp ")" Stmt [macro] + | "if" "(" Exp ")" Stmt "else" Stmt + | "{" Stmts "}" + syntax Stmts ::= List{Stmt,""} + syntax Exp ::= Bool + + rule if ( E ) S => if ( E ) S else { .Stmts } +endmodule +
+

In this example, we see that an if statement without an else clause is +defined in terms of one with an else clause. As a result, we would only +need to give a single rule for how to rewrite if statements, rather than +two separate rules for two types of if statements. This is a common pattern +for dealing with program syntax that contains an optional component to it.

+

It is worth noting that by default, macros are not applied recursively. To be +more precise, by default a macro that arises as a result of the expansion of +the same macro is not rewritten further. This is primarily to simplify the +macro expansion process and reduce the risk that improperly defined macros will +lead to non-terminating behavior.

+

It is possible, however, to tell K to expand a macro recursively. To do this, +simply replace the macro attribute with the macro-rec attribute. Note that +K does not do any kind of checking to ensure termination here, so it is +important that rules be defined correctly to always terminate, otherwise the +macro expansion phase will run forever. Fortunately, in practice it is very +simple to ensure this property for most of the types of macros that are +typically used in real-world semantics.

+

Exercise

+

Using a Nat sort containing the constructors 0 and S (i.e., a +Peano-style axiomatization of the +natural numbers where S(N) = N + 1, S(S(N)) = N + 2, etc), write a macro +that will compute the sum of two numbers.

+

Aliases

+

NOTE: This lesson introduces the concept of "aliases", which are a variant +of macros. While similar, this is different from the concept of "aliases" in +matching logic, which is introduced in Lesson 2.16.

+

Macros can be very useful in helping you define a programming language. +However, they can be disruptive while pretty printing a configuration. For +example, you might write a set of macros that transforms the code the user +wrote into equivalent code that is slightly harder to read. This can make it +more difficult to understand the code when it is pretty printed as part of the +output of rewriting.

+

K defines a relatively straightforward but novel solution to this problem, +which is known as a K alias. An alias in K is very similar to a macro, +with the exception that the rewrite rule will also be applied backwards +during the pretty-printing process.

+

It is very simple to make a production be an alias instead of a macro: simply +use the alias or alias-rec attributes instead of the macro or macro-rec +attributes. For example, if the example involving if statements above was +declared using an alias instead of a macro, the Stmt term if (E) {} else {} +would be pretty-printed as if (E) {}. This is because during pretty-printing, +the term participates in another macro-expansion pass. However, this macro +expansion step will only apply rules with the alias or alias-rec attribute, +and, critically, it will reverse the rule by treating the left-hand side as if +it were the right-hand side, and vice versa.

+

This can be very useful to allow you to define one construct in terms of +another while still being able to pretty-print the result as if it were +the original term in question. This can be especially useful for applications +of K where we are taking the output of rewriting and attempting to use it as +a code fragment that we then execute, such as with test generation.

+

Exercise

+

Modify LESSON-01 above to use an alias instead of a macro and experiment +with how various terms are pretty-printed by invoking krun on them.

+

anywhere rules

+

The last type of rule introduced in this lesson is the anywhere rule. An +anywhere rule is specified by adding the anywhere attribute to a rule. Such a +rule is similar to a function rule in that it does not participate in cell +completion, and will apply anywhere that the left-hand-side matches in the +configuration, but distinct in that the symbol in question can still be matched +against in the left-hand side of other rules, even during concrete rewriting. +The reasoning behind this is that instead of the symbol in question being a +constructor, it is a constructor modulo the axioms defined with the +anywhere attribute. Essentially, the rules with the anywhere attribute will +apply as soon as they appear in the right-hand side of a rule being applied, +but the symbol in question will still be treated as a symbol that can be +matched on if it is not completely removed by those rules.

+

This can be useful in certain cases to allow you to define transformations over +particular pieces of syntax while still generally giving those pieces of syntax +another meaning when the anywhere rule does not apply. For example, the ISO C +standard defines the semantics of *&x as exactly equal to x, with no +reading or writing of memory taking place, and the K semantics of C implements +this functionality using an anywhere rule that is applied at compilation time.

+

NOTE: the anywhere attribute is only implemented on the LLVM backend +currently. Attempting to use it in a semantics that is compiled with the +Haskell backend will result in an error being reported by the compiler. This +should be remembered when using this attribute, as it may not be suitable for +a segment of a semantics which is intended to be symbolically executed.

+

Exercises

+
    +
  1. Write a version of the calculator from Lesson 1.14 Exercise 1, which uses +the same syntax for evaluating expressions, but defines its arithmetic logic +using anywhere rules rather than top-level rewrite rules.
  2. +
+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/02_fresh_constants/index.html b/k-distribution/k-tutorial/2_intermediate/02_fresh_constants/index.html new file mode 100644 index 00000000000..9720d9d7de4 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/02_fresh_constants/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.2: Fresh Constants | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.2: Fresh Constants

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/03_klabels/index.html b/k-distribution/k-tutorial/2_intermediate/03_klabels/index.html new file mode 100644 index 00000000000..d9b290943f9 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/03_klabels/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.3: KLabels and Abstract Syntax | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.3: KLabels and Abstract Syntax

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/04_overloading/index.html b/k-distribution/k-tutorial/2_intermediate/04_overloading/index.html new file mode 100644 index 00000000000..5587b3e8dbc --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/04_overloading/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.4: Overloaded Symbols | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.4: Overloaded Symbols

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/05_matching_logic/index.html b/k-distribution/k-tutorial/2_intermediate/05_matching_logic/index.html new file mode 100644 index 00000000000..6d2ea359fd4 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/05_matching_logic/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.5: Matching Logic Connectives and #Or Patterns | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.5: Matching Logic Connectives and #Or Patterns

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/06_function_context/index.html b/k-distribution/k-tutorial/2_intermediate/06_function_context/index.html new file mode 100644 index 00000000000..69eff936538 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/06_function_context/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.6: Function Context | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.6: Function Context

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/07_record_productions/index.html b/k-distribution/k-tutorial/2_intermediate/07_record_productions/index.html new file mode 100644 index 00000000000..f492af51ef2 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/07_record_productions/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.7: Record Productions and Named Nonterminals | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.7: Record Productions and Named Nonterminals

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/08_fun_and_let/index.html b/k-distribution/k-tutorial/2_intermediate/08_fun_and_let/index.html new file mode 100644 index 00000000000..94aec506f7e --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/08_fun_and_let/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.8: #fun and #let | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.8: #fun and #let

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/09_as/index.html b/k-distribution/k-tutorial/2_intermediate/09_as/index.html new file mode 100644 index 00000000000..4f0f08b8c12 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/09_as/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.9: #as Patterns | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.9: #as Patterns

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/10_matching_operator/index.html b/k-distribution/k-tutorial/2_intermediate/10_matching_operator/index.html new file mode 100644 index 00000000000..834bebf630a --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/10_matching_operator/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.10: The Matching Operators, :=K and :/=K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.10: The Matching Operators, :=K and :/=K

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/11_evaluation_order/index.html b/k-distribution/k-tutorial/2_intermediate/11_evaluation_order/index.html new file mode 100644 index 00000000000..655c6030aa2 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/11_evaluation_order/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.11: Uncommon Evaluation Order Concepts | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.11: Uncommon Evaluation Order Concepts

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/12_floats_and_machine_ints/index.html b/k-distribution/k-tutorial/2_intermediate/12_floats_and_machine_ints/index.html new file mode 100644 index 00000000000..0ea0d6c7ca0 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/12_floats_and_machine_ints/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.12: IEEE 754 Floating Point and Fixed Width Integers | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.12: IEEE 754 Floating Point and Fixed Width Integers

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/13_substitution/index.html b/k-distribution/k-tutorial/2_intermediate/13_substitution/index.html new file mode 100644 index 00000000000..c1243f71f4d --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/13_substitution/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.13: Alpha-renaming-aware Substitution | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.13: Alpha-renaming-aware Substitution

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/14_io/index.html b/k-distribution/k-tutorial/2_intermediate/14_io/index.html new file mode 100644 index 00000000000..9a75ce7b347 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/14_io/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.14: File I/O | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.14: File I/O

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/15_string_buffers_and_bytes/index.html b/k-distribution/k-tutorial/2_intermediate/15_string_buffers_and_bytes/index.html new file mode 100644 index 00000000000..20099cb8bd5 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/15_string_buffers_and_bytes/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.15: String Buffers and Byte Sequences | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.15: String Buffers and Byte Sequences

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/16_kore/index.html b/k-distribution/k-tutorial/2_intermediate/16_kore/index.html new file mode 100644 index 00000000000..74d2e928f3b --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/16_kore/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.16: The Intermediate Language of K, KORE | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.16: The Intermediate Language of K, KORE

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/17_debugging_proofs/index.html b/k-distribution/k-tutorial/2_intermediate/17_debugging_proofs/index.html new file mode 100644 index 00000000000..8af6a52084d --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/17_debugging_proofs/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Lesson 2.17: Debugging Proofs using the Haskell Backend REPL | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 2.17: Debugging Proofs using the Haskell Backend REPL

+

Return to Top

+

Click here to return to the Table of Contents for Section 2.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/2_intermediate/index.html b/k-distribution/k-tutorial/2_intermediate/index.html new file mode 100644 index 00000000000..9e2120cec61 --- /dev/null +++ b/k-distribution/k-tutorial/2_intermediate/index.html @@ -0,0 +1,431 @@ + + + + + + + + + + + + + + +Section 2: Intermediate K Concepts | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Section 2: Intermediate K Concepts

+

The goal of this second section is to supplement a beginning developer's +knowledge of K after they have gained a basic understanding of K. Each lesson +in this section can be completed independently in order to learn about a +particular facet of the K language. The lessons are written to provide basic +understanding of less commonly-used features of K to someone who is still +learning K. For more complete references of these features, the reader ought to +consult the User Manual.

+

The reader ought to be able to complete lessons in this section as needed in +order to learn about specific features of interest, but if desired, can also +complete the entire section in one go. Someone who has completed this entire +section ought to be able to read and understand most K specifications, as well +as write their own specifications of some complexity, and use them to perform +most common K-related tasks. They can then read about specific lessons in +Section 3: Advanced K Concepts if they want to +learn more.

+

Table of Contents

+
    +
  1. Macros, Aliases, and Anywhere Rules
  2. +
  3. Fresh Constants
  4. +
  5. KLabels and Abstract Syntax
  6. +
  7. Overloaded Symbols
  8. +
  9. Matching Logic Connectives and #Or Patterns
  10. +
  11. Function Context
  12. +
  13. Record Productions and Named Nonterminals
  14. +
  15. #fun and #let
  16. +
  17. #as patterns
  18. +
  19. The Matching Operators, :=K and :/=K
  20. +
  21. Uncommon Evaluation Order Concepts
  22. +
  23. IEEE 754 Floating Point and Fixed Width Integers
  24. +
  25. Alpha-renaming-aware Substitution
  26. +
  27. File I/O
  28. +
  29. String Buffers and Byte Sequences
  30. +
  31. The Intermediate Language of K, KORE
  32. +
  33. Debugging Proofs using the Haskell Backend REPL
  34. +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/1_parsing/1_layout/index.html b/k-distribution/k-tutorial/3_advanced/1_parsing/1_layout/index.html new file mode 100644 index 00000000000..923ed3ad105 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/1_parsing/1_layout/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.1.1: Using #Layout to define the syntax of comments and whitespace | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.1.1: Using #Layout to define the syntax of comments and whitespace

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/1_parsing/2_ambiguities/index.html b/k-distribution/k-tutorial/3_advanced/1_parsing/2_ambiguities/index.html new file mode 100644 index 00000000000..c3f9d00a130 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/1_parsing/2_ambiguities/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.1.2: Using amb for parsing context-sensitive languages | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.1.2: Using amb for parsing context-sensitive languages

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/1_parsing/3_locations/index.html b/k-distribution/k-tutorial/3_advanced/1_parsing/3_locations/index.html new file mode 100644 index 00000000000..f389a2c2ea3 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/1_parsing/3_locations/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.1.3: Using #location to annotate terms with file, line, and column information | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.1.3: Using #location to annotate terms with file, line, and column information

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/2_libraries/1_json/index.html b/k-distribution/k-tutorial/3_advanced/2_libraries/1_json/index.html new file mode 100644 index 00000000000..86732bf2896 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/2_libraries/1_json/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.2.1: The JSON Module | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.2.1: The JSON Module

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/2_libraries/2_rat/index.html b/k-distribution/k-tutorial/3_advanced/2_libraries/2_rat/index.html new file mode 100644 index 00000000000..2b10c26d953 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/2_libraries/2_rat/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.2.2: The RAT Module | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.2.2: The RAT Module

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/2_libraries/3_ffi/index.html b/k-distribution/k-tutorial/3_advanced/2_libraries/3_ffi/index.html new file mode 100644 index 00000000000..a04b06c7cb7 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/2_libraries/3_ffi/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.2.3: The FFI Module | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.2.3: The FFI Module

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/3_extending_k/1_custom_hooks/index.html b/k-distribution/k-tutorial/3_advanced/3_extending_k/1_custom_hooks/index.html new file mode 100644 index 00000000000..8abf5cce875 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/3_extending_k/1_custom_hooks/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lesson 3.3.1: Extending K by adding new builtin functions | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lesson 3.3.1: Extending K by adding new builtin functions

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/3_extending_k/2_scripting_k/index.html b/k-distribution/k-tutorial/3_advanced/3_extending_k/2_scripting_k/index.html new file mode 100644 index 00000000000..b88e8dce27f --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/3_extending_k/2_scripting_k/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Lessonm 3.3.2: Scripting K to provide language-specific tooling | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Lessonm 3.3.2: Scripting K to provide language-specific tooling

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/3_advanced/index.html b/k-distribution/k-tutorial/3_advanced/index.html new file mode 100644 index 00000000000..bfd40abd5d1 --- /dev/null +++ b/k-distribution/k-tutorial/3_advanced/index.html @@ -0,0 +1,388 @@ + + + + + + + + + + + + + + +Section 3: Advanced K Concepts | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Section 3: Advanced K Concepts

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/k-tutorial/index.html b/k-distribution/k-tutorial/index.html new file mode 100644 index 00000000000..d08078c91bc --- /dev/null +++ b/k-distribution/k-tutorial/index.html @@ -0,0 +1,399 @@ + + + + + + + + + + + + + + +K Tutorial | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Tutorial

+

The purpose of this series of lessons is to teach developers how to program in +K. While the primary use of K is in the specification of operational semantics +of programming languages, this tutorial is agnostic on how the knowledge of K +is used. For a more detailed tutorial explaining the basic principles of +programming language design, refer to the +K PL Tutorial. Note that that tutorial is somewhat +out of date presently.

+

This K tutorial is a work in progress. Many lessons are currently simply +placeholders for future content.

+

To start the K tutorial, begin with +Section 1: Basic Programming in K.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/index.html new file mode 100644 index 00000000000..d53e4d0d1f4 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/index.html @@ -0,0 +1,405 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Part 1: Defining LAMBDA

+

Here you will learn how to define a very simple language in K and the basics +of how to use the K tool. The language is a variant of call-by-value lambda +calculus and its definition is based on substitution. Specifically, you will +learn the following:

+
    +
  • How to define a module.
  • +
  • How to define a language syntax.
  • +
  • How to use the defined syntax to parse programs.
  • +
  • How to import predefined modules.
  • +
  • How to define evaluation strategies using strictness attributes.
  • +
  • How to define semantic rules.
  • +
  • How the predefined generic substitution works.
  • +
  • How to generate PDF and HTML documentation from ASCII definitions.
  • +
  • How to include builtins (integers and Booleans) into your language.
  • +
  • How to define derived language constructs.
  • +
+

This folder contains several lessons, each adding new features to LAMBDA.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/NOTES/index.html new file mode 100644 index 00000000000..8f341330c19 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/NOTES/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

We now support the following line to the syntax module:

+
syntax priority lambda_._ > __  // exact syntax subject to change
+
+

This will allow for fewer parentheses in programs.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/index.html new file mode 100644 index 00000000000..94669f53642 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/index.html @@ -0,0 +1,472 @@ + + + + + + + + + + + + + + +Syntax Modules and Basic K Commands | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Syntax Modules and Basic K Commands

+

Here we define our first K module, which contains the initial syntax of the +LAMBDA language, and learn how to use the basic K commands.

+

Let us create an empty working folder, and open a terminal window +(to the left) and an editor window (to the right). We will edit our K +definition in the right window in a file called lambda.k, and will call +the K tool commands in the left window.

+

Let us start by defining a K module, containing the syntax of LAMBDA.

+

K modules are introduced with the keywords module ... endmodule.

+

The keyword syntax adds new productions to the syntax grammar, using a +BNF-like notation.

+

Terminals are enclosed in double-quotes, like strings.

+

You can define multiple productions for the same non-terminal in the same +syntax declaration using the | separator.

+

Productions can have attributes, which are enclosed in square brackets.

+

The attribute left tells the parser that we want the lambda application to be +left associative. For example, a b c d will then parse as (((a b) c) d).

+

The attribute bracket tells the parser to not generate a node for the +parenthesis production in the abstract syntax trees associated to programs. +In other words, we want to allow parentheses to be used for grouping, but we +do not want to bother to give them their obvious (ignore) semantics.

+

In our variant of lambda calculus defined here, identifiers and lambda +abstractions are meant to be irreducible, that is, are meant to be values. +However, so far Val is just another non-terminal, just like Exp, +without any semantic meaning. It will get a semantic meaning later.

+

After we are done typing our definition in the file lambda.k, we can kompile +it with the command:

+
kompile lambda.k
+
+

If we get no errors then a parser has been generated. This parser will be +called from now on by default by the krun tool. To see whether and how the +parser works, we are going to write some LAMBDA programs and store them in +files with the extension .lambda.

+

Let us create a file identity.lambda, which contains the identity lambda +abstraction:

+
lambda x . x
+
+

Now let us call krun on identity.lambda:

+
krun identity.lambda
+
+

Make sure you call the krun command from the folder containing your language +definition (otherwise type krun --help to learn how to pass a language +definition as a parameter to krun). The krun command produces the output:

+
<k>
+  lambda x . x
+</k>
+
+

If you see such an output it means that your program has been parsed (and then +pretty printed) correctly. If you want to see the internal abstract syntax +tree (AST) representation of the parsed program, which we call the K AST, then +type kast in the command instead of krun:

+
kast identity.lambda
+
+

You should normally never need to see this internal representation in your +K definitions, so do not get scared (yes, it is ugly for humans, but it is +very convenient for tools).

+

Note that krun placed the program in a <k> ... </k> cell. In K, computations +happen only in cells. If you do not define a configuration in your definition, +like we did here, then a configuration will be created automatically for you +which contains only one cell, the default k cell, which holds the program.

+

Next, let us create a file free-variable-capture.lambda, which contains an +expression which, in order to execute correctly in a substitution-based +semantics of LAMBDA, the substitution operation needs to avoid +variable-capture:

+
a (((lambda x.lambda y.x) y) z)
+
+

Next, file closed-variable-capture.lambda shows an expression which also +requires a capture-free substitution, but this expression is closed (that is, +it has no free variables) and all its bound variables are distinct (I believe +this is the smallest such expression):

+
(lambda z.(z z)) (lambda x.lambda y.(x y))
+
+

Finally, the file omega.lambda contains the classic omega combinator +(or closed expression), which is the smallest expression which loops forever +(not now, but after we define the semantics of LAMBDA):

+
(lambda x.(x x)) (lambda x.(x x))
+
+

Feel free to define and parse several other LAMBDA programs to get a feel for +how the parser works. Parse also some incorrect programs, to see how the +parser generates error messages.

+

In the next lesson we will see how to define semantic rules that iteratively +rewrite expressions over the defined syntax until they evaluate to a result. +This way, we obtain our first programming language defined using K.

+

Go to Lesson 2, LAMBDA: Module Importing, Rules, Variables

+

MOVIE (out of date) [4'07"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2.5/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2.5/NOTES/index.html new file mode 100644 index 00000000000..ebe521a757e --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2.5/NOTES/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

This folder has been added after the original tutorial was made +and after the videos were recorded. Eventually we will renumber +the lessons and redo the videos. A README.md file is also needed +here.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/NOTES/index.html new file mode 100644 index 00000000000..2007a76405b --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/NOTES/index.html @@ -0,0 +1,386 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Substitution has been reimplemented in the meanwhile, where the fresh +variables are resolved locally. So there is no global counter for +fresh variables anymore as shown in the video, and fewer variable +renamings take place.

+

When calling krun on the programs in lesson_1, a different path is +shown than in the README.md.

+

Marking the beta-reduction rule with [anywhere] will give us the +conventional lambda-calculus. A new lesson has been added, 2.5, +showing that. The README.md file should be changed at the end to +point to lesson 2.5.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/index.html new file mode 100644 index 00000000000..ffff7d7bb73 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/index.html @@ -0,0 +1,454 @@ + + + + + + + + + + + + + + +Module Importing, Rules, Variables | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Module Importing, Rules, Variables

+

We here learn how to include a predefined module (SUBSTITUTION), how to +use it to define a K rule (the characteristic rule of lambda calculus), +and how to make proper use of variables in rules.

+

Let us continue our lambda.k definition started in the previous lesson.

+

The requires keyword takes a .k file containing language features that +are needed for the current definition, which can be found in the +k-distribution/include/kframework/builtin folder. Thus, the command

+
requires "substitution.k"
+
+

says that the subsequent definition of LAMBDA needs the generic substitution, +which is predefined in file substitution.k under the folder +k-distribution/include/kframework/builtin. Note that substitution can be defined itself in K, +although it uses advanced features that we have not discussed yet in this +tutorial, so it may not be easy to understand now.

+

Using the imports keyword, we can now modify LAMBDA to import the module +SUBSTITUTION, which is defined in the required substitution.k file.

+

Now we have all the substitution machinery available for our definition. +However, since our substitution is generic, it cannot know which language +constructs bind variables, and what counts as a variable; however, this +information is critical in order to correctly solve the variable capture +problem. Thus, you have to tell the substitution that your lambda construct +is meant to be a binder, and that your Id terms should be treated as variables +for substitution. The former is done using the attribute binder. +By default, binder binds all the variables occurring anywhere in the first +argument of the corresponding syntactic construct within its other arguments; +you can configure which arguments are bound where, but that will be discussed +in subsequent lectures. To tell K which terms are meant to act as variables +for binding and substitution, we have to explicitly subsort the desired syntactic +categories to the builtin KVariable sort.

+

Now we are ready to define our first K rule. Rules are introduced with the +keyword rule and make use of the rewrite symbol, =>. In our case, +the rule defines the so-called lambda calculus beta-reduction, which +makes use of substitution in its right-hand side, as shown in lambda.k.

+

By convention, variables that appear in rules start with a capital letter +(the current implementation of the K tool may even enforce that).

+

Variables may be explicitly tagged with their syntactic category (also called +sort). If tagged, the matching term will be checked at run-time for +membership to the claimed sort. If not tagged, then no check will be made. +The former is safer, but involves the generation of a side condition to the +rule, so the resulting definition may execute slightly slower overall.

+

In our rule in lambda.k we tagged all variables with their sorts, so we chose +the safest path. Only the V variable really needs to be tagged there, +because we can prove (using other means, not the K tool, as the K tool is not +yet concerned with proving) that the first two variables will always have the +claimed sorts whenever we execute any expression that parses within our +original grammar.

+

Let us compile the definition and then run some programs. For example,

+
krun closed-variable-capture.lambda
+
+

yields the output

+
<k>
+  lambda y . ((lambda x . (lambda y . (x  y))) y)
+</k> 
+
+

Notice that only certain programs reduce (some even yield non-termination, +such as omega.lambda), while others do not. For example, +free-variable-capture.lambda does not reduce its second argument expression +to y, as we would expect. This is because the K rewrite rules between syntactic +terms do not apply anywhere they match. They only apply where they have been +given permission to apply by means of appropriate evaluation strategies of language +constructs, which is done using strictness attributes, evaluation contexts, +heating/cooling rules, etc., as discussed in the next lessons.

+

The next lesson will show how to add LAMBDA the desired evaluation strategies +using strictness attributes.

+

Go to Lesson 3, LAMBDA: Evaluation Strategies using Strictness

+

MOVIE (out of date) [4'03"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/NOTES/index.html new file mode 100644 index 00000000000..eb296c75e11 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/NOTES/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

When we say "previous lesson" we refer to lesson 2. This will need to change +when we incorporate lesson 2.5 properly.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/index.html new file mode 100644 index 00000000000..91c8e45bc23 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/index.html @@ -0,0 +1,419 @@ + + + + + + + + + + + + + + +Evaluation Strategies using Strictness | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Evaluation Strategies using Strictness

+

Here we learn how to use the K strict attribute to define desired evaluation +strategies. We will also learn how to tell K which terms are already +evaluated, so it does not attempt to evaluate them anymore and treats them +internally as results of computations.

+

Recall from the previous lecture that the LAMBDA program +free-variable-capture.lambda was stuck, because K was not given permission +to evaluate the arguments of the lambda application construct.

+

You can use the attribute strict to tell K that the corresponding construct +has a strict evaluation strategy, that is, that its arguments need to be +evaluated before the semantics of the construct applies. The order of +argument evaluation is purposely unspecified when using strict, and indeed +the K tool allows us to detect all possible non-deterministic behaviors that +result from such intended underspecification of evaluation strategies. We will +learn how to do that when we define the IMP language later in this tutorial; +we will also learn how to enforce a particular order of evaluation.

+

In order for the above strictness declaration to work effectively and +efficiently, we need to tell the K tool which expressions are meant to be +results of computations, so that it will not attempt to evaluate them anymore. +One way to do it is to make Val a syntactic subcategory of the builtin +KResult syntactic category. Since we use the same K parser to also parse +the semantics, we use the same syntax keyword to define additional syntax +needed exclusively for the semantics (like KResults). See lambda.k.

+

Compile again and then run some programs. They should all work as expected. +In particular, free-variable-capture.lambda now evaluates to a y.

+

We now got a complete and working semantic definition of call-by-value +lambda-calculus. While theoretically correct, our definition is not +easy to use and disseminate. In the next lessons we will learn how to +generate formatted documentation for LAMBDA and how to extend LAMBDA +in order to write human readable and interesting programs.

+

Go to Lesson 4, LAMBDA: Generating Documentation; Latex Attributes.

+

MOVIE (out of date) [2'20"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/NOTES/index.html new file mode 100644 index 00000000000..d18447b49e6 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/NOTES/index.html @@ -0,0 +1,377 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

README.md refers to Lesson 9. This will need to be updated.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/index.html new file mode 100644 index 00000000000..1e7d196b1ac --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/index.html @@ -0,0 +1,413 @@ + + + + + + + + + + + + + + +Generating Documentation; Latex Attributes | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Generating Documentation; Latex Attributes

+

In this lesson we learn how to generate formatted documentation from K +language definitions. We also learn how to use Latex attributes to control +the formatting of language constructs, particularly of ones which have a +mathematical flavor and we want to display accordingly.

+

To enhance readability, we may want to replace the keyword lambda by the +mathematical lambda symbol in the generated documentation. We can control +the way we display language constructs in the generated documentation +by associating them Latex attributes.

+

This is actually quite easy. All we have to do is to associate a latex +attribute to the production defining the construct in question, following +the Latex syntax for defining new commands (or macros).

+

In our case, we associate the attribute latex(\lambda{#1}.{#2}) to the +production declaring the lambda abstraction (recall that in Latex, #n refers +to the n-th argument of the defined new command).

+

We will later see, in Lesson 9, that we can add arbitrarily complex Latex +comments and headers to our language definitions, which give us maximum +flexibility in formatting our language definitions.

+

Now we have a simple programming language, with a nice documentation. However, +it is not easy to write interesting programs in this language. Almost all +programming languages build upon existing data-types and libraries. The K +tool provides a few of these (and you can add more).

+

In the next lesson we show how we can add builtin integers and Booleans to +LAMBDA, so we can start to evaluate meaningful expressions.

+

Go to Lesson 5, LAMBDA: Adding Builtins; Side Conditions.

+

MOVIE (out of date) [3'13"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/NOTES/index.html new file mode 100644 index 00000000000..5df30623d13 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/NOTES/index.html @@ -0,0 +1,382 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The builtins have changed, they are now generic for all backends.

+

Talk about sort inference for variables, for example from I1 +Int I2 +we infer the sort of I1 and I2 is Int.

+

Check the entire tutorial for instances where we give the sort of a +variable but we don't have to. Many of those are artifacts since we were +not able to infer sorts that well.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/index.html new file mode 100644 index 00000000000..ecd11fdaebd --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/index.html @@ -0,0 +1,466 @@ + + + + + + + + + + + + + + +Adding Builtins; Side Conditions | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Adding Builtins; Side Conditions

+

We have already added the builtin identifiers (sort Id) to LAMBDA expressions, +but those had no operations on them. In this lesson we add integers and +Booleans to LAMBDA, and extend the builtin operations on them into +corresponding operations on LAMBDA expressions. We will also learn how to add +side conditions to rules, to limit the number of instances where they can +apply.

+

The K tool provides several builtins, which are automatically included in all +definitions. These can be used in the languages that we define, typically by +including them in the desired syntactic categories. You can also define your +own builtins in case the provided ones are not suitable for your language +(e.g., the provided builtin integers and operations on them are arbitrary +precision).

+

For example, to add integers and Booleans as values to our LAMBDA, we have to +add the productions

+
syntax Val ::= Int | Bool
+
+

Int and Bool are the nonterminals that correspond to these builtins.

+

To make use of these builtins, we have to add some arithmetic operation +constructs to our language. We prefer to use the conventional infix notation +for these, and the usual precedences (i.e., multiplication and division bind +tighter than addition, which binds tighter than relational operators). +Inspired from SDF, we use > instead of +| to state that all the previous constructs bind tighter than all the +subsequent ones. See lambda.k.

+

The only thing left is to link the LAMBDA arithmetic operations to the +corresponding builtin operations, when their arguments are evaluated. +This can be easily done using trivial rewrite rules, as shown in lambda.k. +In general, the K tool attempts to uniformly add the corresponding builtin +name as a suffix to all the operations over builtins. For example, the +addition over integers is an infix operation named +Int.

+

Compile the new lambda.k definition and evaluate some simple arithmetic +expressions. For example, if arithmetic.lambda is (1+2*3)/4 <= 1, then

+
krun arithmetic.lambda
+
+

yields, as expected, true. Note that the parser took the desired operation +precedence into account.

+

Let us now try to evaluate an expression which performs a wrong computation, +namely a division by zero. Consider the expression arithmetic-div-zero.lambda +which is 1/(2/3). Since division is strict and 2/3 evaluates to 0, this +expression reduces to 1/0, which further reduces to 1 /Int 0 by the rule for +division, which is now stuck (with the current back-end to the K tool).

+

In fact, depending upon the back-end that we use to execute K definitions and +in particular to evaluate expressions over builtins, 1 /Int 0 can evaluate to +anything. It just happens that the current back-end keeps it as an +irreducible term. Other K back-ends may reduce it to an explicit error +element, or issue a segmentation fault followed by a core dump, or throw an +exception, etc.

+

To avoid requesting the back-end to perform an illegal operation, we may use a +side condition in the rule of division, to make sure it only applies when the +denominator is non-zero.

+

Like in other operational formalisms, the role of the K side +conditions is to filter the number of instances of the rule. The notion +of a side condition comes from logics, where a sharp distinction is made +between a side condition (cheap) and a premise (expensive). Premises are +usually resolved using further (expensive) logical derivations, while side +conditions are simple (cheap) conditions over the rule meta-variables within +the underlying mathematical domains (which in K can be extended by the user, +as we will see in future lessons). Regarded as a logic, K derives rewrite +rules from other rewrite rules; therefore, the K side conditions cannot +contain other rewrites in them (using =>). This contrasts other rewrite +engines, for example Maude, which +allow conditional rules with rewrites in conditions. +The rationale behind this deliberate restriction in K is twofold:

+
    +
  • On the one hand, general conditional rules require a complex, and thus slower +rewrite engine, which starts recursive (sometimes exhaustive) rewrite sessions +to resolve the rewrites in conditions. In contrast, the side conditions in K +can be evaluated efficiently by back-ends, for example by evaluating builtin +expressions and/or by calling builtin functions.
  • +
  • On the other hand, the semantic definitional philosophy of K is that rule +premises are unnecessary, so there is no need to provide support for them.
  • +
+

Having builtin arithmetic is useful, but writing programs with just lambda +and arithmetic constructs is still a pain. In the next two lessons we will +add conditional (if_then_else) and binding (let and letrec) constructs, +which will allow us to write nicer programs.

+

Go to Lesson 6, LAMBDA: Selective Strictness; Anonymous Variables.

+

MOVIE (out of date) [4'52"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_6/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_6/index.html new file mode 100644 index 00000000000..ba047e86504 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_6/index.html @@ -0,0 +1,422 @@ + + + + + + + + + + + + + + +Selective Strictness; Anonymous Variables | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Selective Strictness; Anonymous Variables

+

We here show how to define selective strictness of language constructs, +that is, how to state that certain language constructs are strict only +in some arguments. We also show how to use anonymous variables.

+

We next define a conditional if construct, which takes three arguments, +evaluates only the first one, and then reduces to either the second or the +third, depending on whether the first one evaluated to true or to false.

+

K allows to define selective strictness using the same strict attribute, +but passing it a list of numbers. The numbers correspond to the arguments +in which we want the defined construct to be strict. In our case,

+
syntax Exp ::= "if" Exp "then" Exp "else" Exp   [strict(1)]
+
+

states that the conditional construct is strict in the first argument.

+

We can now assume that its first argument will eventually reduce to a value, so +we only write the following two semantic rules:

+
rule if true  then E else _ => E
+rule if false then _ else E => E
+
+

Thus, we assume that the first argument evaluates to either true or false.

+

Note the use of the anonymous variable _. We use such variables purely for +structural reasons, to state that something is there but we don't care what. +An anonymous variable is therefore completely equivalent to a normal variable +which is unsorted and different from all the other variables in the rule. If +you use _ multiple times in a rule, they will all be considered distinct.

+

Compile lambda.k and write and execute some interesting expressions making +use of the conditional construct. For example, the expression

+
if 2<=1 then 3/0 else 10
+
+

evaluates to 10 and will never evaluate 3/0, thus avoiding an unwanted +division-by-zero.

+

In the next lesson we will introduce two new language constructs, called +let and letrec and conventionally found in functional programming +languages, which will allow us to already write interesting LAMBDA programs.

+

Go to Lesson 7, LAMBDA: Derived Constructs; Extending Predefined Syntax.

+

MOVIE (out of date) [2'14"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/NOTES/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/NOTES/index.html new file mode 100644 index 00000000000..b64af124b2e --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/NOTES/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

In more recent definitions, we prefer to make some [macro] rules. +Macros apply statically, before the program is executed, thus +increasing the execution performance. The let and letrec constructs +here could be made into [macro].

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/index.html new file mode 100644 index 00000000000..39b913d1fe9 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/index.html @@ -0,0 +1,460 @@ + + + + + + + + + + + + + + +Derived Constructs, Extending Predefined Syntax | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Derived Constructs, Extending Predefined Syntax

+

In this lesson we will learn how to define derived language constructs, that +is, ones whose semantics is defined completely in terms of other language +constructs. We will also learn how to add new constructs to predefined +syntactic categories.

+

When defining a language, we often want certain language constructs to be +defined in terms of other constructs. For example, a let-binding construct +of the form

+
let x = e in e'
+
+

is nothing but syntactic sugar for

+
(lambda x . e') e
+
+

This can be easily achieved with a rule, as shown in lambda.k.

+

Compile lambda.k and write some programs using let binders.

+

For example, consider a lets.lambda program which takes arithmetic.lambda +and replaces each integer by a let-bound variable. It should evaluate to +true, just like the original arithmetic.lambda.

+

Let us now consider a more interesting program, namely one that calculates the +factorial of 10:

+
let f = lambda x . (
+        (lambda t . lambda x . (t t x))
+        (lambda f . lambda x . (if x <= 1 then 1 else (x * (f f (x + -1)))))
+        x
+      )
+in (f 10)
+
+

This program follows a common technique to define fixed points in untyped +lambda calculus, based on passing a function to itself.

+

We may not like to define fixed-points following the approach above, because +it requires global changes in the body of the function meant to be recursive, +basically to pass it to itself (f f in our case above). The approach below +isolates the fixed-point aspect of the function in a so-called fixed-point +combinator, which we call fix below, and then apply it to the function +defining the body of the factorial, without any changes to it:

+
let fix = lambda f . (
+          (lambda x . (f (lambda y . (x x y))))
+          (lambda x . (f (lambda y . (x x y))))
+        )
+in let f = fix (lambda f . lambda x .
+                (if x <= 1 then 1 else (x * (f (x + -1)))))
+   in (f 10)
+
+

Although the above techniques are interesting and powerful (indeed, untyped +lambda calculus is in fact Turing complete), programmers will probably not +like to write programs this way.

+

We can easily define a more complex derived construct, called letrec and +conventionally encountered in functional programming languages, whose semantics +captures the fixed-point idea above. In order to keep its definition simple +and intuitive, we define a simplified variant of letrec, namely one which only +allows to define one recursive one-argument function. See lambda.k.

+

There are two interesting observations here.

+

First, note that we have already in-lined the definition of the fix +combinator in the definition of the factorial, to save one application of the +beta reduction rule (and the involved substitution steps). We could have +in-lined the definition of the remaining let, too, but we believe that the +current definition is easier to read.

+

Second, note that we extended the predefined Id syntactic category with two +new constants, $x and $y. The predefined identifiers cannot start with +$, so programs that will be executed with this semantics cannot possibly +contain the identifiers xandx andy. In other words, by adding them to Id they +become indirectly reserved for the semantics. This is indeed desirable, +because any possible uses of xinthebodyofthefunctiondefinedusingletrecwouldbecapturedbythelambdax in the body of the function defined +using `letrec` would be captured by the `lambdaxdeclaration in the definition ofletrec`.

+

Using letrec, we can now write the factorial program as elegantly as it can +be written in a functional language:

+
letrec f x = if x <= 1 then 1 else (x * (f (x + -1)))
+in (f 10)
+
+

In the next lesson we will discuss an alternative definition of letrec, based +on another binder, mu, specifically designed to define fixed points.

+

Go to Lesson 8, LAMBDA: Multiple Binding Constructs.

+

MOVIE (out of date) [5'10"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/exercises/SK-combinators/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/exercises/SK-combinators/index.html new file mode 100644 index 00000000000..b3e5453b72e --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/exercises/SK-combinators/index.html @@ -0,0 +1,416 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Define LAMBDA using the S/K combinators instead of substitution. +You new definition will not require the substitution.k module anymore, +and will not use environments (discussed in future lectures), either.

+

Recall that the S and K combinators are defined as follows:

+
K E1 E2 = E1
+S E1 E2 E3 = E1 E3 (E2 E3)
+
+

where the application is that of LAMBDA (left associative binary operation), +and that the lambda construct can be desugared to combinators using the +following simple rules:

+
lambda X . X = S K K
+lambda X . Y = K Y    when Y is a name different from X
+lambda X . (E1 E2) = S (lambda X . E1) (lambda X . E2)
+lambda X . B = K B    when B is any constant, including S or K
+
+

To distinguish the S and K combinators from K variables and make them +more visible, we prefer to write them as SS and KK instead of S and K.

+

If defined correctly and completely, all the tests should pass when you call +ktest on the provided config.xml file. The tests include all the programs +previously executed using LAMBDA (lesson_8), plus the additional program of +the mu-derived exercise, plus a few more simple programs given with this +exercise to help you better test your definition and nail down the notation.

+

The syntax of the new LAMBDA should be the same as before, although +mu needs to be desugared as in the mu-desugared exercise (using a macro). +The tricky part is how to deal with the builtin operations. For example, +lambda x . if x then y else z cannot be transformed into combinators as is, +but it can if we assume a builtin conditional function constant, say cond, +and desugar if_then_else_ to it. Then this expression becomes +lambda x . (((cond x) y) z), which we know how to transform. The drawback +of this cond constant approach is that it may induce non-termination +in recursive programs, but that appears to not be a problem in our examples.

+

You will have to do the same for all builtin functions, and you will have +to make sure that you define your values correctly! In our previous +definition we were able to say that lambda x . e was a value, but now that +is not possible anymore, because the lambda construct will be eliminated. +Instead, you will have to explicitly say it using the isVal membership +predicate that all the expressions that involve builtin functions and +yield functions are values; for example, isVal(cond V:Val) => true and +isVal(cond V1:Val V2:Val) => true need to be added, but obviously not +isVal(cond V1:Val V2:Val V3:Val) => true.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/exercises/mu-derived/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/exercises/mu-derived/index.html new file mode 100644 index 00000000000..e122563bd0c --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/exercises/mu-derived/index.html @@ -0,0 +1,381 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The current K LAMBDA semantics of mu (in Lesson 8) is based on +substitution, and then letrec is defined as a derived operation using +mu. Give mu a different semantics, as a derived construct by +translation into other LAMBDA constructs, like we defined letrec in +Lesson 7.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/index.html new file mode 100644 index 00000000000..1a6831082b0 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/index.html @@ -0,0 +1,433 @@ + + + + + + + + + + + + + + +Multiple Binding Constructs | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Multiple Binding Constructs

+

Here we learn how multiple language constructs that bind variables can +coexist. We will also learn about or recall another famous binder besides +lambda, namely mu, which can be used to elegantly define all kinds of +interesting fixed-point constructs.

+

The mu binder has the same syntax as lambda, except that it replaces +lambda with mu.

+

Since mu is a binder, in order for substitution to know how to deal with +variable capture in the presence of mu, we have to tell it that mu is a +binding construct, same like lambda. We take advantage of being there and +also add mu its desired latex attribute.

+

The intuition for

+
mu x . e
+
+

is that it reduces to e, but each free occurrence of x in e behaves +like a pointer that points back to mu x . e.

+

With that in mind, let us postpone the definition of mu and instead redefine +letrec F X = E in E' as a derived construct, assuming mu available. The +idea is to simply regard F as a fixed-point of the function

+
lambda X . E
+
+

that is, to first calculate

+
mu F . lambda X . E
+
+

and then to evaluate E' where F is bound to this fixed-point:

+
let F = mu F . lambda X . E in E'
+
+

This new definition of letrec may still look a bit tricky, particularly +because F is bound twice, but it is much simpler and cleaner than our +previous definition. Moreover, now it is done in a type-safe manner +(this aspect goes beyond our objective in this tutorial).

+

Let us now define the semantic rule of mu.

+

The semantics of mu is actually disarmingly simple. We just have to +substitute mu X . E for each free occurrence of X in E:

+
mu X . E => E[(mu X . E) / X]
+
+

Compile lambda.k and execute some recursive programs. They should be now +several times faster. Write a few more recursive programs, for example ones +for calculating the Ackermann function, for calculating the number of moves +needed to solve the Hanoi tower problem, etc.

+

We have defined our first programming language in K, which allows us to +write interesting functional programs. In the next lesson we will learn how +to fully document our language definition, in order to disseminate it, to ship +it to colleagues or friends, to publish it, to teach it, and so on.

+

Go to Lesson 9, LAMBDA: A Complete and Commented Definition.

+

MOVIE (out of date) [2'40"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/index.html new file mode 100644 index 00000000000..ab3c8bee401 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/index.html @@ -0,0 +1,446 @@ + + + + + + + + + + + + + + +A Complete and Documented K Definition | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

A Complete and Documented K Definition

+

In this lesson you will learn how to add formal comments to your K definition, +in order to nicely document it. The generated document can be then used for +various purposes: to ease understanding the K definition, to publish it, +to send it to others, etc.

+

The K tool allows a literate programming style, where the executable +language definition can be documented by means of annotations. One such +annotation is the latex(_) annotation, where you can specify how to format +the given production when producing Latex output via the --output latex +option to krun, kast, and kprove.

+

There are three types of comments, which we discuss next.

+

Ordinary comments

+

These use // or /* ... */, like in various programming languages. These +comments are completely ignored.

+

Document annotations

+

Use the @ symbol right after // or /* in order for the comment to be +considered an annotation and thus be processed by the K tool when it +generates documentation.

+

As an example, we can go ahead and add such an annotation at the beginning +of the LAMBDA module, explaining how we define the syntax of this language.

+

Header annotations

+

Use the ! symbol right after // or /* if you want the comment to be +considered a header annotation, that is, one which goes before +\begin{document} in the generated Latex. You typically need header +annotations to include macros, or to define a title, etc.

+

As an example, let us set a Latex length and then add a title and an +author to this K definition.

+

Compile the documentation and take a look at the results. Notice the title.

+

Feel free to now add lots of annotations to lambda.k.

+

Then compile and check the result. Depending on your PDF viewer, you +may also see a nice click-able table of contents, with all the sections +of your document. This could be quite convenient when you define large +languages, because it helps you jump to any part of the semantics.

+

Tutorial 1 is now complete. The next tutorial will take us through the +definition of a simple imperative language and will expose us to more +feature of the K framework and the K tool.

+

MOVIE (out of date) [6'07"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/lambda/index.html b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/lambda/index.html new file mode 100644 index 00000000000..12d49f696b4 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/lambda/index.html @@ -0,0 +1,541 @@ + + + + + + + + + + + + + + +Tutorial 1 --- LAMBDA | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K code can be nested inside Markdown using annotated code blocks. +Use the tag k to tell the compiler which blocks to select.

+

Inside .k files, C/Java-like comments are available.

+
k
// Single line comment +/* Multiline +comments */ +
+

Tutorial 1 --- LAMBDA

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Abstract

+

This file defines a simple functional language in K, called LAMBDA, +using a substitution style. The explicit objective here is to teach some +K concepts and how they work in the K tool, and not to teach +λ-calculus or to argue for one definitional style against another +(e.g., some may prefer environment/closure-based definitions of such +languages).

+

Note that the subsequent definition is so simple, that it hardly shows any +of the strengths of K. Perhaps the most interesting K aspect it shows is +that substitution can be defined fully generically, and then used to give +semantics to various constructs in various languages.

+

Note: +K follows the +literate programming +approach. The various semantic features defined in a K +module can be reordered at will and can be commented using normal +comments like in C/C++/Java. +While comments are useful in general, they can annoy the expert user +of K. To turn them off, you can do one of the following (unless you +want to remove them manually):
+(1) Use an editor which can +hide or highlight Markdown and conventional C-like comments; or
+(2) Run kompile --debug <def>. Inside ./.kompiled-xxx/.md2.k/ you will find +all the K code extracted from the markdown files as used for compilation.

+

Substitution

+

We need the predefined substitution module, so we require it with the command +below. Then we should make sure we import its module called SUBSTITUTION +in our LAMBDA module below.

+
k
module LAMBDA-SYNTAX + imports DOMAINS-SYNTAX + imports ID-SYNTAX +
+

Basic Call-by-value λ-Calculus Syntax

+

We first define the syntax of conventional call-by-value λ-calculus, making +sure we declare the lambda abstraction construct to be a binder, the +lambda application to be strict, and the parentheses used for grouping as +a bracket.

+

Note: +Syntax in K is defined using the familiar BNF notation, with +terminals enclosed in quotes and nonterminals starting with capital +letters. K actually extends BNF with several attributes, which will be +described in this tutorial.

+

Note: +The strict constructs can evaluate their arguments in any (fully +interleaved) order.

+

The initial syntax of our λ-calculus:

+
k
syntax Val ::= Id + | "lambda" Id "." Exp + syntax Exp ::= Val + | Exp Exp [left, strict] + | "(" Exp ")" [bracket] +
+

Integer and Boolean Builtins Syntax

+

The LAMBDA arithmetic and Boolean expression constructs are simply rewritten +to their builtin counterparts once their arguments are evaluated. +The annotated operators in the right-hand side of the rules below are +builtin and come with the corresponding builtin sort. Note that the +variables appearing in these rules have integer sort. That means that these +rules will only be applied after the arguments of the arithmetic constructs +are fully evaluated to K results; this will happen thanks to their strictness +attributes declared as annotations to their syntax declarations (below).

+
k
syntax Val ::= Int | Bool + syntax Exp ::= "-" Int + > Exp "*" Exp [strict, left] + | Exp "/" Exp [strict] + > Exp "+" Exp [strict, left] + > Exp "<=" Exp [strict] +
+

Conditional Syntax

+

Note that the if construct is strict only in its first argument.

+
k
syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)] +
+

Let Binder

+

The let binder is a derived construct, because it can be defined using λ.

+
k
syntax Exp ::= "let" Id "=" Exp "in" Exp [macro] + rule let X = E in E':Exp => (lambda X . E') E +
+

Letrec Binder

+

We prefer a definition based on the μ construct. Note that μ is not +really necessary, but it makes the definition of letrec easier to understand +and faster to execute.

+
k
syntax Exp ::= "letrec" Id Id "=" Exp "in" Exp [macro] + | "mu" Id "." Exp + rule letrec F:Id X:Id = E in E' => let F = mu F . lambda X . E in E' +endmodule +
+

LAMBDA module

+
k
module LAMBDA + imports LAMBDA-SYNTAX + imports DOMAINS + + syntax KResult ::= Val +
+

β-reduction

+
k
syntax Set ::= freeVars( Exp ) [function] + rule freeVars( _ ) => .Set [owise] + rule freeVars( V:Id ) => SetItem(V) + rule freeVars( lambda X . E ) => freeVars( E ) -Set SetItem(X) + rule freeVars( E1 E2 ) => freeVars(E1) freeVars(E2) + rule freeVars( E1 * E2 ) => freeVars(E1) freeVars(E2) + rule freeVars( E1 / E2 ) => freeVars(E1) freeVars(E2) + rule freeVars( E1 + E2 ) => freeVars(E1) freeVars(E2) + rule freeVars( E1 <= E2 ) => freeVars(E1) freeVars(E2) + rule freeVars( if B then E1 else E2) => freeVars(B) freeVars(E1) freeVars(E2) + + syntax Id ::= freshVar(Id, Int, Set) [function] + rule freshVar(V, I, S) => #let X = String2Id(Id2String(V) +String Int2String(I)) #in #if X in S #then freshVar(V, I +Int 1, S) #else X #fi + + syntax Exp ::= Exp "[" Exp "/" Id "]" [function] + + rule X:Exp [_ / _] => X [owise] + rule X [V / X] => V + + rule (lambda Y . E) [_ / Y] => lambda Y . E + rule (lambda Y . E) [V / X] => lambda Y . (E[V / X]) requires Y =/=K X andBool notBool (Y in freeVars(V)) + rule (lambda Y . E) [V / X] => #let Z = freshVar(Y, 0, freeVars(E) freeVars(V)) #in lambda Z . (E[Z / Y] [V / X]) + requires Y =/=K X andBool Y in freeVars(V) + + rule (E1:Exp E2:Exp) [V / X] => E1[V / X] (E2[V / X]) + + rule (E1:Exp * E2:Exp) [V / X] => E1[V / X] * (E2[V / X]) + rule (E1:Exp / E2:Exp) [V / X] => E1[V / X] / (E2[V / X]) + rule (E1:Exp + E2:Exp) [V / X] => E1[V / X] + (E2[V / X]) + rule (E1:Exp <= E2:Exp) [V / X] => E1[V / X] <= (E2[V / X]) + + rule (if C then E1 else E2) [V / X] => if C[V / X] then E1[V / X] else (E2[V / X]) + + rule (lambda X:Id . E:Exp) V:Val => E[V / X] +
+

Integer Builtins

+
k
rule - I => 0 -Int I + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0 + rule I1 + I2 => I1 +Int I2 + rule I1 <= I2 => I1 <=Int I2 +
+

Conditional

+
k
rule if true then E else _ => E + rule if false then _ else E => E +
+

Mu

+
k
rule mu X . E => E[(mu X . E) / X] +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/NOTES/index.html b/k-distribution/pl-tutorial/1_k/2_imp/NOTES/index.html new file mode 100644 index 00000000000..92e0b371f06 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/NOTES/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+
    +
  • Revise the change of S1 S2 into S1:Stmt S2:Stmt, if needed; only S2 +really needs to be sorted.
  • +
+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/index.html b/k-distribution/pl-tutorial/1_k/2_imp/index.html new file mode 100644 index 00000000000..d8df26345cd --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/index.html @@ -0,0 +1,404 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Part 2: Defining IMP

+

Here you will learn how to define a very simple imperative language in K +and the basics of how to work with configurations, cells, and computations. +Specifically, you will learn the following:

+
    +
  • How to define languages using multiple modules.
  • +
  • How to define sequentially strict syntactic constructs.
  • +
  • How to use K's syntactic lists.
  • +
  • How to define, initialize and configure configurations.
  • +
  • How the language syntax is swallowed by the builtin K syntactic category.
  • +
  • The additional syntax of the K syntactic category.
  • +
  • How the strictness annotations are automatically desugared into rules.
  • +
  • The first steps of the configuration abstraction mechanism.
  • +
+

Like in the previous tutorial, this folder contains several lessons, each +adding new features to IMP. Do them in order. Also, make sure you completed +and understood the previous tutorial.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_1/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_1/index.html new file mode 100644 index 00000000000..3ed844648b6 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_1/index.html @@ -0,0 +1,542 @@ + + + + + + + + + + + + + + +Defining a More Complex Syntax | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Defining a More Complex Syntax

+

Here we learn how to define a more complex language syntax than LAMBDA's, +namely the C-like syntax of IMP. Also, we will learn how to define languages +using multiple modules, because we are going to separate IMP's syntax from +its semantics using modules. Finally, we will also learn how to use K's +builtin support for syntactic lists.

+

The K tool provides modules for grouping language features. In general, we +can organize our languages in arbitrarily complex module structures. +While there are no rigid requirements or even guidelines for how to group +language features in modules, we often separate the language syntax from the +language semantics in different modules.

+

In our case here, we start by defining two modules, IMP-SYNTAX and IMP, and +import the first in the second, using the keyword imports. As their names +suggest, we will place all IMP's syntax definition in IMP-SYNTAX and all its +semantics in IMP.

+

Note, however, that K does no more than simply includes all the +contents of the imported module in the one which imports it (making sure +that everything is only kept once, even if you import it multiple times). +In other words, there is currently nothing fancy in K tool's module system.

+

IMP has six syntactic categories, as shown in imp.k: AExp for arithmetic +expressions, BExp for Boolean expressions, Block for blocks, Stmt for +statements, Pgm for programs and Ids for comma-separated lists of +identifiers. Blocks are special statements, whose role is to syntactically +constrain the conditional statement and the while loop statement to only +take blocks as branches and body, respectively.

+

There is nothing special about arithmetic and Boolean expressions. They +are given the expected strictness attributes, except for <= and &&, +for demonstration purposes.

+

The <= is defined to be seqstrict, which means that it evaluates its +arguments in order, from left-to-right (recall that the strict operators +can evaluate their arguments in any, fully interleaved, orders). Like +strict, the seqstrict annotation can also be configured; for example, one +can specify in which arguments and in what order. By default, seqstrict +refers to all the arguments, in their left-to-right order. In our case here, +it is equivalent with seqstrict(1 2).

+

The && is only strict in its first argument, because we will give it a +short-circuited semantics (its second argument will only be evaluated when +the first evaluates to true). Recall the K tool also allows us to associate +LaTex attributes to constructs, telling the document generator how to display +them. For example, we associate <= the attribute latex({#1}\leq{#2}), +which makes it be displayed \leq everywhere in the generated LaTex +documentation.

+

In this tutorial we take the freedom to associate the various constructs +parsing precedences that we have already tested and we know work well, so that +we can focus on the semantics here instead of syntax. In practice, though, +you typically need to experiment with precedences until you obtain the desired +parser.

+

Blocks are defined using curly brackets, and they can either be empty or +hold a statement.

+

Nothing special about the IMP statements. Note that ; is an assignment +statement terminator, not a statement separator. Note also that blocks are +special statements.

+

An IMP program declares a comma-separated list of variables using the keyword +int like in C, followed by a semicolon ;, followed by a statement. +Syntactically, the idea here is that we can wrap any IMP program within a +main(){...} function and get a valid C program. IMP does not allow variable +declarations anywhere else except through this construct, at the top-level of +the program. Other languages provided with the K distribution (see, e.g., the +IMP++ language also discussed in this tutorial) remove this top-level program +construct of IMP and add instead variable declaration as a statement construct, +which can be used anywhere in the program, not only at the top level.

+

Note how we defined the comma-separated list of identifiers using +List{Id,","}. The K tool provides builtin support for generic syntactic +lists. In general,

+
syntax B ::= List{A,T}
+
+

declares a new non-terminal, B, corresponding to T-separated sequences of +elements of A, where A is a non-terminal and T is a terminal. These +lists can also be empty, that is, IMP programs declaring no variable are also +allowed (e.g., int; {} is a valid IMP program). To instantiate and use +the K builtin lists, you should alias each instance with a (typically fresh) +non-terminal in your syntax, like we do with the Ids nonterminal.

+

Like with other K features, there are ways to configure the syntactic lists, +but we do not discuss them here.

+

Recall from Tutorial 1 (LAMBDA) that in order for strictness to work well +we also need to tell K which computations are meant to be results. We do +this as well now, in the module IMP: integers and Booleans are K results.

+

Kompile imp.k and test the generated parser by running some programs. +Since IMP is a fragment of C, you may want to select the C mode in your +editor when writing these programs. This will also give your the feel that +you are writing programs in a real programming language.

+

For example, here is sum.imp, which sums in sum all numbers up to n:

+
int n, sum;
+n = 100;
+sum=0;
+while (!(n <= 0)) {
+  sum = sum + n;
+  n = n + -1;
+}
+
+

Now krun it and see how it looks parsed in the default k cell.

+

The program collatz.imp tests the Collatz conjecture for all numbers up to +m and accumulates the total number of steps in s:

+
int m, n, q, r, s;
+m = 10;
+while (!(m<=2)) {
+  n = m;
+  m = m + -1;
+  while (!(n<=1)) {
+    s = s+1;
+    q = n/2;
+    r = q+q+1;
+    if (r<=n) {
+      n = n+n+n+1;         // n becomes 3*n+1 if odd
+    } else {n=q;}          //        of   n/2 if even
+  }
+}
+
+

Finally, program primes.imp counts in s all the prime numbers up to m:

+
int i, m, n, q, r, s, t, x, y, z;
+m = 10;  n = 2;
+while (n <= m) {
+  // checking primality of n and writing t to 1 or 0
+  i = 2;  q = n/i;  t = 1;
+  while (i<=q && 1<=t) {
+    x = i;
+    y = q;
+    // fast multiplication (base 2) algorithm
+    z = 0;
+    while (!(x <= 0)) {
+      q = x/2;
+      r = q+q+1;
+      if (r <= x) { z = z+y; } else {}
+      x = q;
+      y = y+y;
+    } // end fast multiplication
+    if (n <= z) { t = 0; } else { i = i+1;  q = n/i; }
+  } // end checking primality
+  if (1 <= t) { s = s+1; } else {}
+  n = n+1;
+}
+
+

All the programs above will run once we define the semantics of IMP. If you +want to execute them now, wrap them in a main(){...} function and compile +them and run them with your favorite C compiler.

+

Before we move to the K semantics of IMP, we would like to make some +clarifications regarding the K builtin parser, kast. Although it is quite +powerful, you should not expect magic from it! While the K parser can parse +many non-trivial languages (see, for example, the KOOL language in +pl-tutorial/2_languages) in the K distribution), it was +never meant to be a substitute for real parsers. We often call the syntax +defined in K the syntax of the semantics, to highlight the fact that its +role is to serve as a convenient notation when writing the semantics, not +necessarily as a means to define concrete syntax of arbitrarily complex +programming languages. See the KERNELC language for an example on how to connect an external parser for concrete syntax to +the K tool.

+

The above being said, we strongly encourage you to strive to make the +builtin parser work with your desired language syntax! Do not give up +simply because you don't want to deal with syntactic problems. On the +contrary, fight for your syntax! If you really cannot define your desired +syntax because of tool limitations, we would like to know. Please tell us.

+

Until now we have only seen default configurations. In the next lesson we +will learn how to define a K custom configuration.

+

Go to Lesson 2, IMP: Defining a Configuration.

+

MOVIE (out of date) [09'15"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_2/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_2/index.html new file mode 100644 index 00000000000..66d6cc78e37 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_2/index.html @@ -0,0 +1,454 @@ + + + + + + + + + + + + + + +Defining a Configuration | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Defining a Configuration

+

Here we learn how to define a configuration in K. We also learn how to +initialize and how to display it.

+

As explained in the overview presentation on K, configurations are quite +important, because all semantic rules match and apply on them. +Moreover, they are the backbone of configuration abstraction, which allows +you to only mention the relevant cells in each semantic rule, the rest of +the configuration context being inferred automatically. The importance of +configuration abstraction will become clear when we define more complex +languages (even in IMP++). IMP does not really need it. K configurations +are constructed making use of cells, which are labeled and can be arbitrarily +nested.

+

Configurations are defined with the keyword configuration. Cells are +defined using an XML-ish notation stating clearly where the cell starts +and where it ends.

+

While not enforced by the tool, we typically like to put the entire +configuration in a top-level cell, called T. So let's define it:

+
configuration <T>...</T>
+
+

Cells can have other cells inside. In our case of IMP, we need a cell to +hold the remaining program, cell which we typically call k, and a cell to +hold the program state. Let us add them:

+
configuration <T> <k>...</k> <state>...</state> </T>
+
+

K allows us to also specify how to initialize a configuration at the same +time with declaring the configuration. All we have to do is to fill in +the contents of the cells with some terms. The syntactic categories of +those terms will also indirectly define the types of the corresponding +cells.

+

For example, we want the k cell to initially hold the program that is passed +to krun. K provides a builtin configuration variable, called $PGM, which +is specifically designed for this purpose: krun will place its program there +(after it parses it, or course). The K tool allows users to define their own +configuration variables, too, which can be used to develop custom +initializations of program configurations with the help of krun; this can be +quite useful when defining complex languages, but we do not discuss it in +this tutorial.

+
configuration <T> <k> $PGM </k> <state>...</state>  </T>
+
+

Moreover, we want the program to be a proper Pgm term (because we do not +want to allow krun to take fragments of programs, for example, statements). +Therefore, we tag $PGM with the desired syntactic category, Pgm:

+
configuration <T> <k> $PGM:Pgm </k> <state>...</state>  </T>
+
+

Like for other variable tags in K, a run-time check will be performed and the +semantics will get stuck if the passed term is not a well-formed program.

+

We next tell K that the state cell should be initialized with the empty map:

+
configuration <T> <k> $PGM:Pgm </k> <state> .Map </state>  </T>
+
+

Recall that in K . stands for nothing. However, since there are various +types of nothing, to avoid confusion we can suffix the . with its desired +type. K has several builtin data-types, including lists, sets, bags, and +maps. .Map is the empty map.

+

Kompile imp.k and run several programs to see how the configuration is +initialized as desired.

+

When configurations get large, and they do when defining large programming +languages, you may want to color the cells in order to more easily distinguish +them. This can be easily achieved using the color cell attribute, following +again an XML-ish style:

+
configuration <T color="yellow">
+                <k color="green"> $PGM:Pgm </k>
+                <state color="red"> .Map </state>
+              </T>
+
+

In the next lesson we will learn how to write rules that involve cells.

+

Go to Lesson 3, IMP: Computations, Results, Strictness; Rules Involving Cells.

+

MOVIE (out of date) [04'21"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_3/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_3/index.html new file mode 100644 index 00000000000..69495126af3 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_3/index.html @@ -0,0 +1,592 @@ + + + + + + + + + + + + + + +Computations, Results, Strictness; Rules Involving Cells | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Computations, Results, Strictness; Rules Involving Cells

+

In this lesson we will learn about the syntactic category K of computations, +about how strictness attributes are in fact syntactic sugar for rewrite rules +over computations, and why it is important to tell the tool which +computations are results. We will also see a K rule that involves cells.

+

K Computations

+

Computation structures, or more simply computations, extend the abstract +syntax of your language with a list structure using ~> (read followed +by or and then, and written \curvearrowright in Latex) as a separator. +K provides a distinguished sort, K, for computations. The extension of the +abstract syntax of your language into computations is done automatically by +the K tool when you declare constructs using the syntax keyword, so the K +semantic rules can uniformly operate only on terms of sort K. The intuition +for computation structures of the form

+
t1 ~> t2 ~> ... ~> tn
+
+

is that the listed tasks are to be processed in order. The initial +computation typically contains the original program as its sole task, but +rules can then modify it into task sequences, as seen shortly.

+

Strictness in Theory

+

The strictness attributes, used as annotations to language constructs, +actually correspond to rules over computations. For example, the +strict(2) attribute of the assignment statement corresponds to the +following two opposite rules (X ranges over Id and A over AExp):

+
X=A; => A ~> X=[];
+A ~> X=[]; => X=A;
+
+

The first rule pulls A from the syntactic context X=A; and schedules it +for processing. The second rule plugs A back into its context. +Inspired from the chemical abstract machine, we call rules of the first +type above heating rules and rules of the second type cooling rules. +Similar rules are generated for other arguments in which operations are +strict. Iterative applications of heating rules eventually bring to the +top of the computation atomic tasks, such as a variable lookup, or a +builtin operation, which then make computational progress by means of other +rules. Once progress is made, cooling rules can iteratively plug the result +back into context, so that heating rules can pick another candidate for +reduction, and so on and so forth.

+

When operations are strict only in some of their arguments, the corresponding +positions of the arguments in which they are strict are explicitly enumerated +in the argument of the strict attribute, e.g., strict(2) like above, or +strict(2 3) for an operation strict in its second and third arguments, etc. +If an operation is simply declared strict then it means that it is strict +in all its arguments. For example, the strictness of addition yields:

+
A1+A2 => A1 ~> []+A2
+A1 ~> []+A2 => A1+A2
+A1+A2 => A2 ~> A1+[]
+A2 ~> A1+[] => A1+A2
+
+

It can be seen that such heating/cooling rules can easily lead to +non-determinism, since the same term may be heated many different ways; +these different evaluation orders may lead to different behaviors in some +languages (not in IMP, because its expressions do not have side effects, +but we will experiment with non-determinism in its successor, IMP++).

+

A similar desugaring applies to sequential strictness, declared with the +keyword seqstrict. While the order of arguments of strict is irrelevant, +it matters in the case of seqstrict: they are to be evaluated in the +specified order; if no arguments are given, then they are assumed by default +to be evaluated from left-to-right. For example, the default heating/cooling +rules associated to the sequentially strict <= construct above are +(A1, A2 range over AExp and I1 over Int):

+
A1<=A2 => A1 ~> []<=A2
+A1 ~> []<=A2 => A1<=A2
+I1<=A2 => A2 ~> I1<=[]
+A2 ~> I1<=[] => I1<=A2
+
+

In other words, A2 is only heated/cooled after A1 is already evaluated.

+

While the heating/cooling rules give us a nice and uniform means to define +all the various allowable ways in which a program can evaluate, all based +on rewriting, the fact that they are reversible comes with a serious practical +problem: they make the K definitions unexecutable, because they lead to +non-termination.

+

Strictness in Practice; K Results

+

To break the reversibility of the theoretical heating/cooling rules, and, +moreover, to efficiently execute K definitions, the current implementation of +the K tool relies on users giving explicit definitions of their languages' +results.

+

The K tool provides a predicate isKResult, which is automatically defined +as we add syntactic constructs to KResult (in fact the K tool defines such +predicates for all syntactic categories, which are used, for example, as +rule side conditions to check user-declared variable memberships, such as +V:Val stating that V belongs to Val).

+

The kompile tool, depending upon what it is requested to do, changes the +reversible heating/cooling rules corresponding to evaluation strategy +definitions (e.g., those corresponding to strictness attributes) to avoid +non-termination. For example, when one is interested in obtaining an +executable model of the language (which is the default compilation mode of +kompile), then heating is performed only when the to-be-pulled syntactic +fragment is not a result, and the corresponding cooling only when the +to-be-plugged fragment is a result. In this case, e.g., the heating/cooling +rules for assignment are modified as follows:

+
X=A; => A ~> X=[];  requires notBool isKResult(A)
+A ~> X=[]; => X=A;  requires isKResult(A)
+
+

Note that non-termination of heating/cooling is avoided now. The only thing +lost is the number of possible behaviors that a program can manifest, but +this is irrelevant when all we want is one behavior.

+

As will be discussed in the IMP++ tutorial, the heating/cooling rules are +modified differently by kompile when we are interested in other aspects +of the language definition, such us, for example, in a search-able model that +comprises all program behaviors. This latter model is obviously more general +from a theoretical perspective, but, in practice, it is also slower to execute. +The kompile tool strives to give you the best model of the language for the +task you are interested in.

+

Can't Results be Inferred Automatically?

+

This is a long story, but the short answer is: No!. Maybe in some cases +it is possible, but we prefer to not attempt it in the K tool. For example, +you most likely do not want any stuck computation to count as a result, +since some of them can happen simply because you forgot a semantic rule that +could have further reduce it! Besides, in our experience with defining large +languages, it is quite useful to take your time and think of what the results +of your language's computations are. This fact in itself may help you improve +your overall language design. We typically do it at the same time with +defining the evaluation strategies of our languages. Although in theory K +could infer the results of your language as the stuck computations, based on +the above we have deliberately decided to not provide this feature, in spite +of requests from some users. So you currently do have to explicitly define +your K results if you want to effectively use the K tool. Note, however, that +theoretical definitions, not meant to be executed, need not worry about +defining results (that's because in theory semantic rules apply modulo the +reversible heating/cooling rules, so results are not necessary).

+

A K Rule Involving Cells

+

All our K rules so far in the tutorial were of the form

+
rule left => right requires condition
+
+

where left and right were syntactic, or more generally computation, terms.

+

Here is our first K rule explicitly involving cells:

+
rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>
+
+

Recall that the k cell holds computations, which are sequences of tasks +separated by ~>. Also, the state cell holds a map, which is a set of +bindings, each binding being a pair of computations (currently, the +K builtin data-structures, like maps, are untyped; or, said differently, +they are all over the type of computations, K).

+

Therefore, the two cells mentioned in the rule above hold collections +of things, ordered or not. The ...s, which we also call cell frames, +stand for more stuff there, which we do not care about.

+

The rewrite relation => is allowed in K to appear anywhere in a term, its +meaning being that the corresponding subterm is rewritten as indicated in the +shown context. We say that K's rewriting is local.

+

The rule above says that if the identifier X is the first task in the k +cell, and if X is bound to I somewhere in the state, then X rewrites +to I locally in the k cell. Therefore, IMP variables need to be already +declared when looked up.

+

Of course, the K rule above can be translated into an ordinary rewrite rule +of the form

+
rule <k> X ~> Rest </k> <state> Before (X |-> I) After </state>
+  => <k> I ~> Rest </k> <state> Before (X |-> I) After </state>
+
+

Besides being more verbose and thus tedious to write, this ordinary rule +is also more error-prone; for example, we may forget the Rest variable +in the right-hand-side, etc. Moreover, the concurrent semantics of K +allows for its rules to be interpreted as concurrent transactions, where +the context is the read-only component of the transaction, while the +subterms which are rewritten are read/write component of the transaction; +thus, K rule instances can apply concurrently if they only overlap +on read-only parts, while they cannot if regarded as ordinary rewrite logic +rules. Note: our current implementation of the K tool is not concurrent, +so K rules are in fact desugared as normal rewrite rules in the K tool.

+

Kompile imp.k using a documentation option and check out how the K rule +looks in the generated document. The ... frames are displayed as cell +tears, metaphorically implying that those parts of the cells that we +do not care about are torn away. The rewrite relation is replaced by a +horizontal line: specifically, the subterm which rewrites, X, is +underlined, and its replacement is written underneath the line.

+

In the next lesson we define the complete K semantics of IMP and +run the programs we parsed in the first lesson.

+

Go to Lesson 4, IMP: Configuration Abstraction, Part 1; Types of Rules.

+

MOVIE (out of date) [10'30"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/exercises/purely-syntactic/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/exercises/purely-syntactic/index.html new file mode 100644 index 00000000000..93868d1ca53 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/exercises/purely-syntactic/index.html @@ -0,0 +1,383 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Modify IMP so that the K followed by arrow, ~>, does not explicitly +occur in the definition (it currently occurs in the semantics of +sequential composition).

+

Hint: make sequential composition strict(1) or seqstrict, and have +statements reduce to {} instead of .; and don't forget to make +{} a KResult (you may need a new syntactic category for that, which +only includes {} and is included in KResult).

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/exercises/uninitialized-variables/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/exercises/uninitialized-variables/index.html new file mode 100644 index 00000000000..4afab6ff5e5 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/exercises/uninitialized-variables/index.html @@ -0,0 +1,382 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Modify the K definition of IMP to not automatically initialize +variables to 0. Instead, declared variables should stay uninitialized +until assigned a value, and the execution should get stuck when an +uninitialized variable is looked up. Specifically, you should add a +new undefined construct of sort K, and initialize all the declared +variables with it.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/index.html new file mode 100644 index 00000000000..c84e010bbe9 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/index.html @@ -0,0 +1,498 @@ + + + + + + + + + + + + + + +Configuration Abstraction, Part 1; Types of Rules | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Configuration Abstraction, Part 1; Types of Rules

+

Here we will complete the K definition of IMP and, while doing so, we will +learn the very first step of what we call configuration abstraction.

+

The IMP Semantic Rules

+

Let us add the remaining rules, in the order in which the language constructs +were defined in IMP-SYNTAX.

+

The rules for the arithmetic and Boolean constructs are self-explanatory. +Note, however, that K will infer the correct sorts of all the variables in +these rules, because they appear as arguments of the builtin operations +(_+Int_, etc.). Moreover, the inferred sorts will be enforced dynamically. +Indeed, we do not want to apply the rule for addition, for example, when the +two arguments are not integers. In the rules for &&, although we prefer to +not do it here for simplicity, we could have eliminated the dynamic check by +replacing B (and similarly for _) with B:K. Indeed, it can be shown +that whenever any of these rules apply, B (or _) is a BExp anyway. +That's because there is no rule that can touch such a B (or _); this +will become clearer shortly, when we discuss the first step of configuration +abstraction. Therefore, since we know that B will be a BExp anyway, we +could save the time it takes to check its sort; such times may look minor, +but they accumulate, so some designers may prefer to avoid run-time checks +whenever possible.

+

The block rules are trivial. However, the rule for non-empty blocks is +semantically correct only because we do not have local variable declarations +in IMP. We will have to change this rule in IMP++.

+

The assignment rule has two =>: one in the k cell dissolving the +assignment statement, and the other in the state cell updating the value of +the assigned variable. Note that the one in the state is surrounded by +parentheses: (_ => I). That is because => is greedy: it matches as much +as it can to the left and to the right, until it reaches the cell boundaries +(closed or open). If you want to limit its scope, or for clarity, you can use +parentheses like here.

+

The rule for sequential composition simply desugars S1 S2 into S1 ~> S2. +Indeed, the two have exactly the same semantics. Note that statements +evaluate to nothing (.), so once S1 is processed in S1 ~> S2, then the +next task is automatically S2, without wasting any step for the transition.

+

The rules for the conditional and while statements are clear. One thing to +keep in mind now is that the while unrolling rule will not apply +indefinitely in the positive branch of the resulting conditional, because +of K's configuration abstraction, which will be discussed shortly.

+

An IMP program declares a set of variables and then executes a +statement in the state obtained after initializing all those variables +to 0. The rules for programs initialize the declared variables one by one, +checking also that there are no duplicates. We check for duplicates only for +demonstration purposes, to illustrate the keys predefined operation that +returns the set of keys of a map, and the set membership operation in. +In practice, we typically define a static type checker for our language, +which we execute before the semantics and reject inappropriate programs.

+

The use of the .Ids in the second rule is not necessary. We could have +written int; S instead of int .Ids; S and the K tool would parse it and +kompile the definition correctly, because it uses the same parser used for +parsing programs also to parse the semantics. However, we typically prefer to +explicitly write the nothing values in the semantics, for clarity; +the parser has been extended to accept these. Note that the first rule +matches the entire k cell, because int_;_ is the top-level program +construct in IMP, so there is nothing following it in the computation cell. +The anonymous variable stands for the second argument of this top-level program +construct, not for the rest of the computation. The second rule could have +also been put in a complete k cell, but we preferred not to, for simplicity.

+

Our IMP semantics is now complete, but there are a few more things that we +need to understand and do.

+

Configuration Abstraction, Part 1

+

First, let us briefly discuss the very first step of configuration abstraction. +In K, all semantic rules are in fact rules between configurations. As soon +explained in the IMP++ tutorial, the declared configuration cell structure is +used to automatically complete the missing configuration parts in rules. +However, many rules do not involve any cells, being rules between syntactic +terms (of sort K); for example, we had only three rules involving cells in our +IMP semantics. In this case, the k cell will be added automatically and the +actual rewrite will happen on top of the enclosed computation. For example, +the rule for the while loop is automatically translated into the following:

+
rule <k> while (B) S => if (B) {S while (B) S} else {} ...</k>
+
+

Since the first task in computations is what needs to be done next, the +intuition for this rule completion is that the syntactic transition +only happens when the term to rewrite is ready for processing. This explains, +for example, why the while loop unrolling does not indefinitely apply in the +positive branch of the conditional: the inner while loop is not ready for +evaluation yet. We call this rule completion process, as well as other +similar ones, configuration abstraction. That is because the incomplete +rule abstracts away the configuration structure, thus being easier to read. +As seen soon when we define IMP++, configuration abstraction is not only a +user convenience; it actually significantly increases the modularity of our +definitions. The k-cell-completion is only the very first step, though.

+

If you really want certain rewrites over syntactic terms to apply +anywhere they match, then you should tag the rule with the attribute +anywhere, which was discussed in Tutorial 1, Lesson 2.5.

+

Kompile and then krun the programs that you only parsed in Lesson 1. They +should all execute as expected. The state cell shows the final state +of the program. The k cell shows the final code contents, which should be +empty whenever the IMP program executes correctly.

+

Kompile also with the documentation option and take a look at the generated +documentation. The assignment rule should particularly be of interest, +because it contains two local rewrites.

+

In the next lesson we comment the IMP definition and conclude this tutorial.

+

Go to Lesson 5, IMP: Completing and Documenting IMP.

+

MOVIE (out of date) [09'16"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/imp/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/imp/index.html new file mode 100644 index 00000000000..306d7f14a1c --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/imp/index.html @@ -0,0 +1,548 @@ + + + + + + + + + + + + + + +IMP | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

IMP

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Abstract

+

This is the K semantic definition of the classic IMP language. +IMP is considered a folklore language, without an official inventor, +and has been used in many textbooks and papers, often with slight +syntactic variations and often without being called IMP. It includes +the most basic imperative language constructs, namely basic constructs +for arithmetic and Boolean expressions, and variable assignment, +conditional, while loop and sequential composition constructs for statements.

+
k
module IMP-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

This module defines the syntax of IMP. +Note that <= is sequentially strict, and && is strict only in its first +argument, because we want to give it a short-circuit semantics.

+
k
syntax AExp ::= Int | Id + | "-" Int [format(%1%2)] + | AExp "/" AExp [left, strict, color(pink)] + | "(" AExp ")" [bracket] + > AExp "+" AExp [left, strict, color(pink)] + syntax BExp ::= Bool + | AExp "<=" AExp [seqstrict] + | "!" BExp [strict, color(pink)] + | "(" BExp ")" [bracket] + > BExp "&&" BExp [left, strict(1), color(pink)] + syntax Block ::= "{" "}" + | "{" Stmt "}" [format(%1%i%n%2%d%n%3)] + syntax Stmt ::= Block + | Id "=" AExp ";" [strict(2), color(pink), format(%1 %2 %3%4)] + | "if" "(" BExp ")" + Block "else" Block [strict(1), colors(yellow, white, white, yellow), format(%1 %2%3%4 %5 %6 %7)] + | "while" "(" BExp ")" Block [colors(yellow,white,white), format(%1 %2%3%4 %5)] + > Stmt Stmt [left, format(%1%n%2)] +
+

An IMP program declares a set of variables and then executes a +statement in the state obtained after initializing all those variables +to 0. K provides builtin support for generic syntactic lists: +List{Nonterminal,terminal} stands for terminal-separated lists of Nonterminal elements.

+
k
syntax Pgm ::= "int" Ids ";" Stmt [format(%1 %2%3%n%4), colors(yellow,pink)] + syntax Ids ::= List{Id,","} [format(%1%2 %3)] +endmodule +
+

We are done with the definition of IMP's syntax. Make sure +that you write and parse several interesting programs before you move to the +semantics.

+
k
module IMP + imports IMP-SYNTAX + imports DOMAINS +
+

Semantics

+

This module defines the semantics of IMP. +Before you start adding semantic rules to a K definition, you need to +define the basic semantic infrastructure consisting of definitions for +results and the configuration.

+

Values and results

+

IMP only has two types of values, or results of computations: integers +and Booleans. We here use the K builtin variants for both of them.

+
k
syntax KResult ::= Int | Bool +
+

Configuration

+

The configuration of IMP is trivial: it only contains two cells, one +for the computation and another for the state. For good encapsulation +and clarity, we place the two cells inside another cell, the top cell +which is labeled T.

+
k
configuration <T color="yellow"> + <k color="green"> $PGM:Pgm </k> + <state color="red"> .Map </state> + </T> +
+

The configuration variable PGM tells the K tool where to +place the program. More precisely, the command +krun program parses the program and places the resulting +K abstract syntax tree in the k cell before invoking the +semantic rules described in the sequel. The . in the +state cell, written .Map in ASCII in the +imp.md file, is K's way to say nothing. Technically, it +is a constant which is the unit, or identity, of all maps in K +(similar dot units exist for other K structures, such as lists, sets, +multi-sets, etc.).

+

Arithmetic expressions

+

The K semantics of each arithmetic construct is defined below.

+

Variable lookup

+

A program variable X is looked up in the state by matching a binding +of the form X |-> I in the state cell. If such a binding does not +exist, then the rewriting process will get stuck. Thus our semantics of +IMP disallows uses of uninitialized variables. Note that the variable +to be looked up is the first task in the k cell (the cell is +closed to the left and torn to the right), while the binding can be +anywhere in the state cell (the cell is torn at both sides).

+
k
rule <k> X:Id => I ...</k> <state>... X |-> I ...</state> +
+

Arithmetic operators

+

There is nothing special about these, but recall that K's configuration +abstraction mechanism is at work here! That means that the rewrites in the +rules below all happen at the beginning of the k cell.

+
k
rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0 + rule I1 + I2 => I1 +Int I2 + rule - I1 => 0 -Int I1 +
+

Boolean expressions

+

The rules below are straightforward. Note the short-circuited semantics +of &&; this is the reason we annotated the syntax of +&& with the K attribute strict(1) instead of strict.

+
k
rule I1 <= I2 => I1 <=Int I2 + rule ! T => notBool T + rule true && B => B + rule false && _ => false +
+

Blocks and Statements

+

There is one rule per statement construct except for the conditional, +which needs two rules.

+

Blocks

+

The empty block {} is simply dissolved. The . below is the +unit of the computation list structure K, that is, the empty task. +Similarly, the non-empty blocks are dissolved and replaced by their statement +contents, thus effectively giving them a bracket semantics; we can afford to +do this only because we have no block-local variable declarations yet in IMP.

+
k
rule {} => .K + rule {S} => S +
+

Assignment

+

The assigned variable is updated in the state. The variable is expected +to be declared, otherwise the semantics will get stuck. At the same time, +the assignment is dissolved.

+
k
rule <k> X = I:Int; => .K ...</k> <state>... X |-> (_ => I) ...</state> +
+

Sequential composition

+

Sequential composition is simply structurally translated into K's +builtin task sequentialization operation.

+
k
rule S1:Stmt S2:Stmt => S1 ~> S2 +
+

Conditional

+

The conditional statement has two semantic cases, corresponding to +when its condition evaluates to true or to false. +Recall that the conditional was annotated with the attribute +strict(1) in the syntax module above, so only its first +argument is allowed to be evaluated.

+
k
rule if (true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+

We give the semantics of the while loop by unrolling.

+
k
rule while (B) S => if (B) {S while (B) S} else {} +
+

Programs

+

The semantics of an IMP program is that its body statement is executed +in a state initializing all its global variables to 0. Since K's +syntactic lists are internally interpreted as cons-lists (i.e., lists +constructed with a head element followed by a tail list), we need to +distinguish two cases, one when the list has at least one element and +another when the list is empty. In the first case we initialize the +variable to 0 in the state, but only when the variable is not already +declared (all variables are global and distinct in IMP).

+
k
rule <k> int (X,Xs => Xs);_ </k> <state> Rho:Map (.Map => X|->0) </state> + requires notBool (X in keys(Rho)) + rule int .Ids; S => S +endmodule +
+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/index.html b/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/index.html new file mode 100644 index 00000000000..6c6b8dba67f --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/index.html @@ -0,0 +1,401 @@ + + + + + + + + + + + + + + +Completing and Documenting IMP | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Completing and Documenting IMP

+

We here learn no new concepts, but it is a good moment to take a break +and contemplate what we learned so far.

+

Let us add lots of formal annotations to imp.k.

+

Once we are done with the annotations, we kompile with the documentation +option and then take a look at the produced document. We often call these +documents language posters. Depending on how much information you add to +these language posters, they can serve as standalone, formal presentations +of your languages. For example, you can print them as large posters and +post them on the wall, or in poster sessions at conferences.

+

This completes our second tutorial. The next tutorials will teach us more +features of the K framework, such as how to define languages with complex +control constructs (like callcc), languages which are concurrent, and so on.

+

MOVIE (out of date) [03'45"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/index.html new file mode 100644 index 00000000000..29a2f63e1ba --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/index.html @@ -0,0 +1,400 @@ + + + + + + + + + + + + + + +Part 3: Defining LAMBDA++ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Part 3: Defining LAMBDA++

+

Here you will learn how to define language constructs which abruptly change +the execution control flow, and how to define language semantics following +and environment/store style. Specifically, you will learn the following:

+
    +
  • How to define constructs like callcc, which allow you to take snapshots of +program executions and to go back in time at any moment.
  • +
  • How to define languages in an environment/store style.
  • +
  • Some basic notions about the use of closures and closure-like semantic +structures to save and restore execution environments.
  • +
  • Some basic intuitions about reusing existing semantics in new languages, +as well as some of the pitfalls in doing so.
  • +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/NOTES/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/NOTES/index.html new file mode 100644 index 00000000000..768c0fbf221 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/NOTES/index.html @@ -0,0 +1,379 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Maybe we should change the name of calCC, as it is not a good idea to have +two constructs with different semantics but names which cannot be distinguished +easily.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/callCC/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/callCC/index.html new file mode 100644 index 00000000000..7b0d420747d --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/callCC/index.html @@ -0,0 +1,379 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Define a variant of callcc, say callCC, which never returns to the +current context unless a value is specifically passed to its argument +continuation. Follow a substitution-based style.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/from-call-CC-to-callcc/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/from-call-CC-to-callcc/index.html new file mode 100644 index 00000000000..68e519c1c1c --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/from-call-CC-to-callcc/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Define callcc in terms of callCC, where callCC is explained in the +callCC exercise under LAMBDA++, Lesson 1. Follow a substitution-based style.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/from-callcc-to-call-CC/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/from-callcc-to-call-CC/index.html new file mode 100644 index 00000000000..56784b1f215 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/exercises/from-callcc-to-call-CC/index.html @@ -0,0 +1,382 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Define callCC in terms of callcc, where callCC is explained in the +callCC exercise under LAMBDA++, Lesson 1. Follow a substitution-based style.

+

To facilitate testing, call the main module CALLCC (see tests/config.xml). +For example, you can define a module CALLCC which imports the previous +definition of callcc and adds the definition of callCC in terms of +callcc.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/index.html new file mode 100644 index 00000000000..a65c37e4d2a --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/index.html @@ -0,0 +1,487 @@ + + + + + + + + + + + + + + +Abrupt Changes of Control | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Abrupt Changes of Control

+

Here we add call-with-current-continuation (callcc) to the definition of +LAMBDA completed in Tutorial 1, and call the resulting language LAMBDA++. +While doing so, we will learn how to define language constructs that +abruptly change the execution control flow.

+

Take over the lambda.k definition from Lesson 8 in Part 1 of this Tutorial, +which is the complete definition of the LAMBDA language, but without the +comments.

+

callcc is a good example for studying the capabilities of a framework to +support abrupt changes of control, because it is one of the most +control-intensive language constructs known. Scheme is probably the first +programming language that incorporated the callcc construct, although +similar constructs have been recently included in many other languages in +one form or another.

+

Here is a quick description: callcc e passes the remaining computation +context, packaged as a function k, to e (which is expected to be a function); +if during its evaluation e passes any value to k, then the current +execution context is discarded and replaced by the one encoded by k and +the value is passed to it; if e evaluates normally to some value v and +passes nothing to k in the process, then v is returned as a result of +callcc e and the execution continues normally. For example, we want the +program callcc-jump.lambda:

+
(callcc (lambda k . ((k 5) + 2))) + 10
+
+

to evaluate to 15, not 17! Indeed, the computation context [] + 10 is +passed to callcc's argument, which then sends it a 5, so the computation +resumes to 5 + 10. On the other hand, the program callcc-not-jump.lambda

+
(callcc (lambda k . (5 + 2))) + 10
+
+

evaluates to 17.

+

If you like playing games, you can metaphorically think of callcc e as +saving your game state in a file and passing it to your friend e. +Then e can decide at some moment to drop everything she was doing, load +your game and continue to play it from where you were.

+

The behavior of many popular control-changing constructs can be obtained +using callcc. The program callcc-return.lambda shows, for example, how to +obtain the behavior of a return statement, which exits the current execution +context inside a function and returns a value to the caller's context:

+
letrec f x = callcc (lambda return . (
+  f (if (x <= 0) then ((return 1) / 0) else 2)
+))
+in (f -3)
+
+

This should evaluate to 1, in spite of the recursive call to f +and of the division by zero! Note that return is nothing but a variable +name, but one which is bound to the current continuation at the beginning of +the function execution. As soon as 1 is passed to return, the computation +jumps back in time to where callcc was defined! Change -3 to 3 and the +program will loop forever.

+

callcc is quite a powerful and beautiful language construct, although one +which is admittedly hard to give semantics to in some frameworks. +But not in K :) Here is the entire K syntax and semantics of callcc:

+
syntax Exp ::= "callcc" Exp  [strict]
+syntax Val ::= cc(K)
+rule <k> (callcc V:Val => V cc(K)) ~> K </k>
+rule <k> cc(K) V ~> _ =>  V ~> K </k>
+
+

Let us first discuss the annotated syntax. We declared callcc strict, +because its argument may not necessarily be a function yet, so it may need +to be evaluated. As explained above, we need to encode the remaining +computation somehow and pass it to callcc's argument. More specifically, +since LAMBDA is call-by-value, we have to encode the remaining computation as +a value. We do not want to simply subsort computations to Val, because there +are computations which we do not want to be values. A simple solution to +achieve our goal here is to introduce a new value construct, say cc (from +current-continuation), which holds any computation.

+

Note that, inspired from SDF, +K allows you to define the syntax of helping semantic operations, like cc, +more compactly. Typically, we do not need a fancy syntax for such operators; +all we need is a name, followed by open parenthesis, followed by a +comma-separated list of arguments, followed by closed parenthesis. If this +is the syntax that you want for a particular construct, then K allows you to +drop all the quotes surrounding the terminals, as we did above for cc.

+

The semantic rules do exactly what the English semantics of callcc says. +Note that here, unlike in our definition of LAMBDA in Tutorial 1, we had +to mention the cell <k/> in our rules. This is because we need to make sure +that we match the entire remaining computation, not only a fragment of it! +For example, if we replace the two rules above with

+
rule (callcc V:Val => V cc(K)) ~> K
+rule cc(K) V ~> _ =>  V ~> K
+
+

then we get a callcc which is allowed to non-deterministically pick a +prefix of the remaining computation and pass it to its argument, and then +when invoked within its argument, a non-deterministic prefix of the new +computation is discarded and replaced by the saved one. Wow, that would +be quite a language! Would you like to write programs in it? :)

+

Consequently, in K we can abruptly change the execution control flow of a +program by simply changing the contents of the <k/> cell. This is one of +the advantages of having an explicit representation of the execution context, +like in K or in reduction semantics with evaluation contexts. Constructs like +callcc are very hard and non-elegant to define in frameworks such as SOS, +because those implicitly represent the execution context as proof context, +and the latter cannot be easily changed.

+

Now that we know how to handle cells in configurations and use them in rules, +in the next lesson we take a fresh look at LAMBDA and define it using +an environment-based style, which avoids the complexity of substitution +(e.g., having to deal with variable capture) and is closer in spirit to how +functional languages are implemented.

+

Go to Lesson 2, LAMBDA++: Semantic (Non-Syntactic) Computation Items.

+

MOVIE (out of date) [6'28"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_2/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_2/index.html new file mode 100644 index 00000000000..04190ae7016 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_2/index.html @@ -0,0 +1,536 @@ + + + + + + + + + + + + + + +Semantic (Non-Syntactic) Computation Items | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Semantic (Non-Syntactic) Computation Items

+

In this lesson we start another semantic definition of LAMBDA++, which +follows a style based on environments instead of substitution. In terms of +K, we will learn how easy it is to add new items to the syntactic category +of computations K, even ones which do not have a syntactic nature.

+

An environment binds variable names of interest to locations where their +values are stored. The idea of environment-based definitions is to maintain +a global store mapping locations to values, and then have environments +available when we evaluate expressions telling where the variables are +located in the store. Since LAMBDA++ is a relatively simple language, we +only need to maintain one global environment. Following a similar style +like in IMP, we place all cells into a top cell T:

+
configuration <T>
+                <k> $PGM:Exp </k>
+                <env> .Map </env>
+                <store> .Map </store>
+              </T>
+
+

Recall that $PGM is where the program is placed by krun after parsing. So +the program execution starts with an empty environment and an empty store.

+

In environment-based definitions of lambda-calculi, lambda abstractions +evaluate to so-called closures:

+
rule <k> lambda X:Id . E => closure(Rho,X,E) ...</k>
+     <env> Rho </env>
+
+

A closure is like a lambda abstraction, but it also holds the environment +in which it was declared. This way, when invoked, a closure knows where to +find in the store the values of all the variables that its body expression +refers to. We will define the lookup rule shortly.

+

Therefore, unlike in the substitution-based definitions of LAMBDA and +LAMBDA++, neither the lambda abstractions nor the identifiers are values +anymore here, because they both evaluate further: lambda abstractions to +closures and identifiers to their values in the store. In fact, the only +values at this moment are the closures, and they are purely semantic entities, +which cannot be used explicitly in programs. That's why we modified the +original syntax of the language to include no Val syntactic category +anymore, and that's why we need to add closures as values now; same like +before, we add a Val syntactic category which is subsorted +to KResult. In general, whenever you have any strictness attributes, +your should also define some K results.

+

Invoking a closure is a bit more involved than the substitution-based +beta-reduction: we need to switch to the closure's environment, then create a +new, or fresh, binding for the closure's parameter to the value passed to the +closure, then evaluate the closure's body, and then switch back to the +caller's environment, which needs to be stored somewhere in the meanwhile. +We can do all these with one rule:

+
rule <k> closure(Rho,X,E) V:Val => E ~> Rho' ...</k>
+     <env> Rho' => Rho[X <- !N] </env>
+     <store>... .Map => (!N:Int |-> V) ...</store>
+
+

Therefore, we atomically do all the following:

+
    +
  • switch the computation to the closure's body, E, followed by a +caller-environment-recovery task Rho' (note that Rho' is the +current environment),
  • +
  • generate a fresh location !N (the ! is important, we discuss it below), +bind X to !N in closure's environment and switch the current environment +Rho' to that one,
  • +
  • write the value passed to the closure, V, at location !N.
  • +
+

This was the most complex K rule we've seen so far in the tutorial. Note, +however, that this one rule achieves a lot. It is, in fact, quite compact +considering how much it does. Note also that everything that this K rule +mentions is needed also conceptually in order to achieve this task, so it +is minimal from that point of view. That would not be the case if we +used, instead, a conventional rewrite rule, because we would have had to +mention the remaining store, say Sigma, in both sides of the rule, to say +it stays unchanged. Here we just use ....

+

The declaration of the fresh variable above, !N, is new and needs +some explanation. First, note that !N appears only in the right-hand-side +terms in the rule, that is, it is not matched when the rule is applied. +Instead, a fresh Nat element is generated each time the rule is applied. +In K, we can define syntactic categories which have the capability to +generate fresh elements like above, using unbound variables whose name starts +with a !. The details of how to do that are beyond the scope of this +tutorial (see Tutorial 6). All we need to know here is that an arbitrary +fresh element of that syntactic category is generated each time the rule +is applied. We cannot rely on the particular name or value of the generated +element, because that can change with the next version of the K tool, or +even from execution to execution with the same version. All you can rely +on is that each newly generated element is distinct from the previously +generated elements for the same syntactic category.

+

Unlike in the substitution-based definition, we now also need a lookup rule:

+
rule <k> X => V ...</k>
+     <env>... X |-> N ...</env>
+     <store>... N |-> V ...</store>
+
+

This rule speaks for itself: replace X by the value V located in the store +at X's location N in the current environment.

+

The only thing left to define is the auxiliary environment-recovery operation:

+

rule _:Val ~> (Rho => .) ... _ => Rho

+

When the item preceding the environment recovery task Rho in the +computation becomes a value, replace the current environment with Rho +and dissolve Rho from the computation.

+

Let us kompile and ... fail:

+
kompile lambda
+
+

gives a parsing error saying that V:Val does not fit there in the closure +invocation rule. That's because Val and Exp are currently completely +disconnected, so K rightfully complains that we want to apply a value to +another one, because application was defined to work with expressions, not +values. What we forgot here was to state that Exp includes Val:

+
syntax Exp ::= Val
+
+

Now everything works, but it is a good time to reflect a bit.

+

So we added closures, which are inherently semantic entities, to the syntax +of expressions. Does that mean that we can now write LAMBDA programs with +closures in them? Interestingly, with our current definition of LAMBDA, +which purposely did not follow the nice organization of IMP into syntax and +semantic modules, and with K's default parser, kast, you can. But you are +not supposed to speculate this! In fact, if you use an external parser, that +parser will reject programs with explicit closures. Also, if we split the +LAMBDA definition into two modules, one called LAMBDA-SYNTAX containing +exclusively the desired program syntax and one called LAMBDA importing the +former and defining the syntax of the auxiliary operations and the semantics, +then even K's default parser will reject programs using auxiliary syntactic +constructs.

+

Indeed, when you kompile a language, say lang.k, the tool will by default +attempt to find a module LANG-SYNTAX and generate the program parser from +that. If it cannot find it, then it will use the module LANG instead. There +are also ways to tell kompile precisely which syntax module you want to use +for the program parser if you don't like the default convention. +See kompile --help.

+

Another insightful thought to reflect upon, is the relationship between your +language's values and other syntactic categories. It is often the case that +values form a subset of the original language syntax, like in IMP (Part 2 of +the tutorial), but sometimes that is not true, like in our case here. When +that happens, in order for the semantics to be given smoothly and uniformly +using the original syntax, you need to extend your language's original +syntactic categories with the new values. The same holds true in other +semantic approaches, not only in K, even in ones which are considered purely +syntactic. As it should be clear by now, K does not enforce you to use a +purely syntactic style in your definitions; nevertheless, K does allow you to +develop purely syntactic definitions, like LAMBDA in Part 1 of the tutorial, +if you prefer those.

+

krun some programs, such as those provided in Lesson 1 of the LAMBDA +tutorial (Part 1). Note the closures, both as results in the <k/> cell, +and as values in the store. Also, since variables are not values anymore, +expressions that contain free variables may get stuck with one of those on +top of their computation. See, for example, free-variable-capture.lambda, +which gets stuck on z, because z is free, so it cannot evaluate it. +If you want, you can go ahead and manually provide a configuration with +z mapped to some location in the environment and that location mapped to +some value in the store, and then you can also execute this program. The +program omega.lambda should still loop.

+

Although we completely changed the definitional style of LAMBDA, the semantics +of the other constructs do not need to change, as seen in the next lesson.

+

Go to Lesson 3, LAMBDA++: Reusing Existing Semantics.

+

MOVIE (out of date) [8'02"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/NOTES/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/NOTES/index.html new file mode 100644 index 00000000000..e653f28e3bb --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/NOTES/index.html @@ -0,0 +1,394 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+
    +
  • Cut-and-paste is a poor-man's approach to reuse.
  • +
+

Indeed, it is. A better way to reuse, which requires a bit of planning ahead, +is to put each feature in its own module. Then you can simply include the +modules containing the features you want to reuse. Our point in this lesson +was that such reuse is possible, not to teach the best way to do it in +practice. Good methodologies on how to use a technology are equally important.

+
    +
  • Do we need an env/store split? Couldn't we just work with a state?
  • +
+

Since in our language so far we never change the value of a variable, it +happens to be OK to only keep a state. That is, to collapse env/store into +state, then embed the state in closures and restore the state instead of the +environment. However, this simplistic approach breaks as soon as we add +references to our language, because functions can then modify the environment +in which they were declared, so we would have to carry over those changes when +returning from function invocations, which would be quite difficult.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/index.html new file mode 100644 index 00000000000..687a3caf199 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/index.html @@ -0,0 +1,409 @@ + + + + + + + + + + + + + + +Reusing Existing Semantics | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Reusing Existing Semantics

+

In this lesson we will learn that, in some cases, we can reuse existing +semantics of language features without having to make any change!

+

Although the definitional style of the basic LAMBDA language changed quite +radically in our previous lesson, compared to its original definition in +Part 1 of the tutorial, we fortunately can reuse a large portion of the +previous definition. For example, let us just cut-and-paste the rest of the +definition from Lesson 7 in Part 1 of the tutorial.

+

Let us kompile and krun all the remaining programs from Part 1 of the +tutorial. Everything should work fine, although the store contains lots of +garbage. Garbage collection is an interesting topic, but we do not do it +here. Nevertheless, much of this garbage is caused by the intricate use of +the fixed-point combinator to define recursion. In a future lesson in this +tutorial we will see that a different, environment-based definition of +fixed-points will allocate much less memory.

+

One interesting question at this stage is: how do we know when we can reuse +an existing semantics of a language feature? Well, I'm afraid the answer is: +we don't. In the next lesson we will learn how reuse can fail for quite subtle +reasons, which are impossible to detect statically (and some non-experts may +fail to even detect them at all).

+

Go to Lesson 4, LAMBDA++: Do Not Reuse Blindly!.

+

MOVIE (out of date) [3'21"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/NOTES/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/NOTES/index.html new file mode 100644 index 00000000000..dab03f1e8b9 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/NOTES/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

With the current version of the tool (as of Sept 12, 2013), the +callcc-env1.lambda program actually evaluates to 4, as expected. +But the comments in the README are still valid, because it could just as +well evaluate to 3. For example, just replace ...+x with x+..., and it +should evaluate to 3 now.

+

Also, the first "fix" suggested in the READMEm to make "+" seqstrict, only +works for that particular program. It does not fix the problem if we change +the program as indicated above. In that case "+" it would need to be +seqstrict(2,1).

+

Also, callcc-env2.lambda evaluates to 3 instead of 4, because of the +particular order in which the strictness of the application operation is +applied. If you make application seqstrict(2,1) then you get 4.

+

Dec 06, 2014: Looks like we should discuss the --search and --transition +options before this lesson, and then kompile the definition with option +--transition = computational and krun it with --search.

+

The README.md says "One is to make + seqstrict in the semantics, to +enforce its evaluation from left-to-right. Do it and then run the program +above again;". Then it continues and says "The problem is now the +non-deterministic evaluation strategy of the function application construct". +Grigore will add this as an exercise, asking reader to fix this +non-determinism. Then ask them to propose another example where you still get +non-determinism; can they?

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/index.html new file mode 100644 index 00000000000..8d9dab762a3 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/index.html @@ -0,0 +1,470 @@ + + + + + + + + + + + + + + +Do Not Reuse Blindly! | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Do Not Reuse Blindly!

+

It may be tempting to base your decision to reuse an existing semantics of +a language feature solely on syntactic considerations; for example, to reuse +whenever the parser does not complain. As seen in this lesson, this could +be quite risky.

+

Let's try (and fail) to reuse the definition of callcc from Lesson 1:

+
syntax Exp ::= "callcc" Exp  [strict]
+syntax Val ::= cc(K)
+rule <k> (callcc V:Val => V cc(K)) ~> K </k>
+rule <k> cc(K) V ~> _ =>  V ~> K </k>
+
+

The callcc examples that we tried in Lesson 1 work, so it may look it works.

+

However, the problem is that cc(K) should also include an environment, +and that environment should also be restored when cc(K) is invoked. +Let's try to illustrate this bug with callcc-env1.lambda

+
let x = 1 in
+  ((callcc lambda k . (let x = 2 in (k x))) + x)
+
+

where the second argument of +, x, should be bound to the top x, which +is 1. However, since callcc does not restore the environment, that x +should be looked up in the wrong, callcc-inner environment, so we should see +the overall result 4.

+

Hm, we get the right result, 3 ... (Note: you may get 4, depending on +your version of K and platform; but both 3 and 4 are possible results, as +explained below and seen in the tests). How can we get 3? Well, recall that ++ is strict, which means that it can evaluate its arguments in any order. +It just happened that in the execution that took place above its second +argument was evaluated first, to 1, and then the callcc was evaluated, but +its cc value K had already included the 1 instead of x ... In Part 4 of +the tutorial we will see how to explore all the non-deterministic behaviors of +a program; we could use that feature of K to debug semantics, too. +For example, in this case, we could search for all behaviors of this program +and we would indeed get two possible value results: 3 and 4.

+

One may think that the problem is the non-deterministic evaluation order +of +, and thus that all we need to do is to enforce a deterministic order +in which the arguments of + are evaluated. Let us follow this path to +see what happens. There are two simple ways to make the evaluation order +of +'s arguments deterministic. One is to make + seqstrict in the +semantics, to enforce its evaluation from left-to-right. Do it and then +run the program above again; you should get only one behavior for the +program above, 4, which therefore shows that copying-and-pasting our old +definition of callcc was incorrect. However, as seen shortly, that only +fixed the problem for the particular example above, but not in general. +Another conventional approach to enforce the desired evaluation order is to +modify the program to enforce the left-to-right evaluation order using let +binders, as we do in callcc-env2.lambda:

+
let x = 1 in
+  let a = callcc lambda k . (let x = 2 in (k x)) in
+    let b = x in
+      (a + b)
+
+

With your installation of K you may get the "expected" result 4 when you +execute this program, so it may look like our non-deterministic problem is +fixed. Unfortunately, it is not. Using the K tool to search for all the +behaviors in the program above reveals that the final result 3 is still +possible. Moreover, both the 3 and the 4 behaviors are possible regardless +of whether + is declared to be seqstrict or just strict. How is that +possible? The problem is now the non-deterministic evaluation strategy of +the function application construct. Indeed, recall that the semantics of +the let-in construct is defined by desugaring to lambda application:

+
rule let X = E in E' => (lambda X . E') E
+
+

With this, the program above eventually reduces to

+
(lambda a . ((lambda b . a + b) x))
+(callcc lambda k . (let x = 2 in (k x)))
+
+

in an environment where x is 1. If the first expression evaluates first, +then it does so to a closure in which x is bound to a location holding 1, +so when applied later on to the x inside the argument of callcc (which is +2), it will correctly lookup x in its enclosed environment and thus the +program will evaluate to 3. On the other hand, if the second expression +evaluates first, then the cc value will freeze the first expression as is, +breaking the relationship between its x and the current environment in which +it is bound to 1, being inadvertently captured by the environment of the +let-in construct inside the callcc and thus making the entire expression +evaluate to 4.

+

So the morale is: Do not reuse blindly. Think!

+

In the next lesson we fix the environment-based semantics of callcc by having +cc also wrap an environment, besides a computation. We will also give a more +direct semantics to recursion, based on environments instead of fixed-point +combinators.

+

Go to Lesson 5, LAMBDA++: More Semantic Computation Items.

+

MOVIE (out of date) [3'37"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_5/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_5/index.html new file mode 100644 index 00000000000..44f2f26e626 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_5/index.html @@ -0,0 +1,445 @@ + + + + + + + + + + + + + + +More Semantic Computation Items | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

More Semantic Computation Items

+

In this lesson we see more examples of semantic (i.e., non-syntactic) +computational items, and how useful they can be. Specifically, we fix the +environment-based definition of callcc and give an environment-based +definition of the mu construct for recursion.

+

Let us first fix callcc. As discussed in Lesson 4, the problem that we +noticed there was that we only recovered the computation, but not the +environment, when a value was passed to the current continuation. This is +quite easy to fix: we modify cc to take both an environment and a +computation, and its rules to take a snapshot of the current environment with +it, and to recover it at invocation time:

+
syntax Val ::= cc(Map,K)
+rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k> <env> Rho </env>
+rule <k> cc(Rho,K) V:Val ~> _ =>  V ~> K </k> <env> _ => Rho </env>
+
+

Let us kompile and make sure it works with the callcc-env2.lambda program, +which should evaluate to 3, not to 4.

+

Note that the cc value, which can be used as a computation item in the <k/> +cell, is now quite semantic in nature, pretty much the same as the closures.

+

Let us next add one more closure-like semantic computational item, for mu. +But before that, let us reuse the semantics of letrec in terms of mu that +was defined in Lesson 8 of Part 1 of the tutorial on LAMBDA:

+
syntax Exp ::= "letrec" Id Id "=" Exp "in" Exp [macro]
+             | "mu" Id "." Exp                 [latex(\mu{#1}.{#2})]
+rule letrec F:Id X = E in E' => let F = mu F . lambda X . E in E'
+
+

We removed the binder annotation of mu, because it is not necessary +anymore (since we do not work with substitutions anymore).

+

To save the number of locations needed to evaluate mu X . E, let us replace +it with a special closure which already binds X to a fresh location holding +the closure itself:

+
syntax Exp ::= muclosure(Map,Exp)
+
+rule <k> mu X . E => muclosure(Rho[X <- !N], E) ...</k>
+     <env> Rho </env>
+     <store>... .Map => (!N:Int |-> muclosure(Rho[X <- !N], E)) ...</store>
+
+

Since each time mu X . E is encountered during the evaluation it needs to +evaluate E, we conclude that muclosure cannot be a value. We can declare +it as either an expression or as a computation. Let's go with the former.

+

Finally, here is the rule unrolling the muclosure:

+

rule muclosure(Rho,E) => E ~> Rho' ... + Rho' => Rho

+

Note that the current environment Rho' needs to be saved before and +restored after E is executed, because the fixed point may be invoked +from a context with a completely different environment from the one +in which mu X . E was declared.

+

We are done. Let us now kompile and krun factorial-letrec.lambda from +Lesson 7 in Part 1 of the tutorial on LAMBDA. Recall that in the previous +lesson this program generated a lot of garbage into the store, due to the +need to allocate space for the arguments of all those lambda abstractions +needed to run the fixed-point combinator. Now we need much fewer locations, +essentially only locations for the argument of the factorial function, one at +each recursive call. Anyway, much better than before.

+

In the next lesson we wrap up the environment definition of LAMBDA++ and +generate its documentation.

+

Go to Lesson 6, LAMBDA++: Wrapping Up and Documenting LAMBDA++.

+

MOVIE (out of date) [5'19"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/NOTES/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/NOTES/index.html new file mode 100644 index 00000000000..3aa5e9c6f52 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/NOTES/index.html @@ -0,0 +1,379 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Maybe we should change the name of calCC, as it is not a good idea to have +two constructs with different semantics but names which cannot be distinguished +easily.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/callCC/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/callCC/index.html new file mode 100644 index 00000000000..0e80d43d6d3 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/callCC/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

(see similar exercise in Lesson 1, with substitution instead of environments)

+

Define a variant of callcc, say callCC, which never returns to the +current context unless a value is specifically passed to its argument +continuation. Follow an environment-based style.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/from-call-CC-to-callcc/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/from-call-CC-to-callcc/index.html new file mode 100644 index 00000000000..152de200599 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/from-call-CC-to-callcc/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Define callcc in terms of callCC, where callCC is explained in the +callCC exercise under LAMBDA++, Lesson 1. Follow an environment-based style.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/from-callcc-to-call-CC/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/from-callcc-to-call-CC/index.html new file mode 100644 index 00000000000..9eaeaf7cbaf --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/exercises/from-callcc-to-call-CC/index.html @@ -0,0 +1,379 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Define callCC in terms of callcc, where callCC is explained in the +callCC exercise under LAMBDA++, Lesson 1. Follow an environment-based +style.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/index.html new file mode 100644 index 00000000000..e58f4c07b5a --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/index.html @@ -0,0 +1,395 @@ + + + + + + + + + + + + + + +Wrapping Up and Documenting LAMBDA++ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Wrapping Up and Documenting LAMBDA++

+

In this lesson we wrap up and nicely document LAMBDA++. In doing so, we also +take the freedom to reorganize the semantics a bit, to make it look better.

+

See the lambda.k file, which is self-explanatory.

+

Part 3 of the tutorial is now complete. Part 4 will teach you more features +of the K framework, in particular how to exhaustively explore the behaviors +of non-deterministic or concurrent programs.

+

MOVIE (out of date) [6'23"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/lambda/index.html b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/lambda/index.html new file mode 100644 index 00000000000..0696b9c0989 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/lambda/index.html @@ -0,0 +1,540 @@ + + + + + + + + + + + + + + +Tutorial 3--- LAMBDA++ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Tutorial 3--- LAMBDA++

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Abstract

+

This file contains an environment-based K semantic definition of LAMBDA++, an +extension of the LAMBDA language (defined in Tutorial 1) with a callcc +construct. The objective here is to further disseminate some of the features +of the K framework, in particular to illustrate how popular environment-based +and closure-based semantics can be defined in K.

+

For notational/kompilation/krun simplicity and to avoid OS errors, we continue +to write LAMBDA and lambda as names for modules and program extensions, +respectively, in the sequel.

+

To restrict the default program parser invoked by krun, namely kast, +to only parse proper LAMBDA++ programs no matter what other syntactic +constructs we add to Exp later on in the semantics, we put the actual program +syntax in a module with the suffix -SYNTAX. This issue was discussed in more +detail in Lesson 2 of this tutorial. In short, the parser generated by kompile +to be used by kast will be by default built only based on the syntax in this +module. Type kompile --help to see how to tell the parser which syntax to use.

+
k
module LAMBDA-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

We move all the LAMBDA++ syntax here.

+
k
syntax Val ::= Int | Bool + syntax Exp ::= Val +// Basic lambda-calculus syntax + | Id + | "lambda" Id "." Exp + | Exp Exp [strict, left] + | "(" Exp ")" [bracket] +// Arithmetic + > "-" Int + | Exp "*" Exp [strict, left] + | Exp "/" Exp [strict] + > Exp "+" Exp [strict, left] + > Exp "<=" Exp [strict] +// Other functional constructs + syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)] // Conditional + | "let" Id "=" Exp "in" Exp [macro] // Let binder + | "letrec" Id Id "=" Exp "in" Exp [macro] // Letrec + | "mu" Id "." Exp // Mu + | "callcc" Exp [strict] // Callcc +
+

One thing you may want to do, now that the entire syntax is in one +place, is to play with precedences. This way, you can make kompile +generate the parser you want for your programs, so that you won't have to +put lots of parentheses in your programs.

+
k
endmodule + + +module LAMBDA + imports LAMBDA-SYNTAX + imports DOMAINS +
+

Semantics

+

The next module contains the semantics of all the LAMBDA++ constructs, +in the order in which their syntax was declared above.

+

The K Results

+

We should not forget to define the results of our computations. +Here is a rule of thumb: whenever you have any strictness attributes, your +should also define some K results. Or even simpler: always define your +results! (unless you define a theoretical semantics, for analysis but not +for execution purposes, you will need to define your results)

+
k
syntax KResult ::= Val +
+

Configuration

+

Since LAMBDA++ is such a simple language, its configuration is minimal +for an environment-based semantics: it only contains the k cell, +an environment cell, and a store cell. An environment binds variable names +to locations, and a store binds locations to values.

+
k
configuration <T color="yellow"> + <k color="green"> $PGM:Exp </k> + <env color="blue"> .Map </env> + <store color="red"> .Map </store> + </T> +
+

Recall that $PGM is where the program is placed by krun after parsing.

+

Closures

+

In environment-based definitions of lambda-calculi, λ-abstractions +evaluate to closures. A closure is like a λ-abstraction, +but it also holds the environment in which it was declared. This way, when +invoked, a closure knows where to find in the store the values of all the +variables that its body expression refers to. +To invoke a closure, we need to switch to closure's environment, then create +a new binding for closure's parameter, then evaluate the closure's body, and +then switch back to caller's environment.

+
k
syntax Val ::= closure(Map,Id,Exp) + + rule <k> lambda X:Id . E => closure(Rho,X,E) ...</k> + <env> Rho </env> + rule <k> closure(Rho,X,E) V:Val => E ~> Rho' ...</k> + <env> Rho' => Rho[X <- !N] </env> + <store>... .Map => (!N:Int |-> V) ...</store> + rule <k> X => V ...</k> + <env>... X |-> N ...</env> + <store>... N |-> V ...</store> +
+

Environment Recovery

+

The environment-recovery computation item defined below is useful in many +semantics, like it was above. It is so useful, that there are discussions +in the K team to add it to the set of pre-defined K features.

+
k
rule <k> _:Val ~> (Rho => .K) ...</k> <env> _ => Rho </env> +
+

Arithmetic Constructs

+

Not much to say here. They have exactly the same semantics as in LAMBDA and +IMP. Note that we let it in programmer's hands to check that the denominator +of a division is different from zero. If a division-by-zero is issued, then +completely non-deterministic result can happen depending upon what back-end +one uses for the K tool. Currently, Maude is used and Maude gets stuck +with a term of the form I /Int 0, but one should not rely on that. +If you want to catch division-by-zero in the semantics, instead of letting +the back-end do whatever it wants, you should add a side condition to the +division rule.

+
k
rule - I => 0 -Int I + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 + rule I1 + I2 => I1 +Int I2 + rule I1 <= I2 => I1 <=Int I2 +
+

Conditional

+
k
rule if true then E else _ => E + rule if false then _ else E => E +
+

Let Binder

+
k
rule let X = E in E':Exp => (lambda X . E') E +
+

Letrec Binder

+

We define letrec in term of mu, whose semantics is below.

+
k
rule letrec F:Id X = E in E' => let F = mu F . lambda X . E in E' +
+

Mu

+

To save the number of locations needed to evaluate μ X . E, we replace it +with a special closure which binds X to a fresh location holding the closure +itself. This has the same effect as binding X to a reference that points +back to the fixed-point.

+
k
syntax Exp ::= muclosure(Map,Exp) + rule <k> mu X . E => muclosure(Rho[X <- !N], E) ...</k> + <env> Rho </env> + <store>... .Map => (!N:Int |-> muclosure(Rho[X <- !N], E)) ...</store> + rule <k> muclosure(Rho,E) => E ~> Rho' ...</k> + <env> Rho' => Rho </env> +
+

Callcc

+

For callcc, we need to create a new closure-like value which +wraps both the remaining computation, and the environment in which it is +supposed to be executed. Forget the environment, and you get a wrong +callcc.

+
k
syntax Val ::= cc(Map,K) + rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k> <env> Rho </env> + rule <k> cc(Rho,K) V:Val ~> _ => V ~> K </k> <env> _ => Rho </env> +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/index.html new file mode 100644 index 00000000000..f28e135d5a5 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/index.html @@ -0,0 +1,409 @@ + + + + + + + + + + + + + + +Part 4: Defining IMP++ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Part 4: Defining IMP++

+

IMP++ extends IMP, which was discussed in Part 2 of this tutorial, with several +new syntactic constructs. Also, some existing syntax is generalized, which +requires non-modular changes of the existing IMP semantics. For example, +global variable declarations become local declarations and can occur +anywhere a statement can occur. In this tutorial we will learn the following:

+
    +
  • That (and how) existing syntax/semantics may change as a language evolves.
  • +
  • How to refine configurations as a language evolves.
  • +
  • How to define and use fresh elements of desired sorts.
  • +
  • How to tag syntactic constructs and rules, and how to use such tags +with the superheat/supercool options of kompile.
  • +
  • How the search option of krun works.
  • +
  • How to stream cells holding semantic lists to the standard input/output, +and thus obtain interactive interpreters for the defined languages.
  • +
  • How to delete, save and restore cell contents.
  • +
  • How to add/delete cells dynamically.
  • +
  • More details on how the configuration abstraction mechanism works.
  • +
+

Like in the previous tutorials, this folder contains several lessons, each +adding new features to IMP++. Do them in order and make sure you completed +and understood the previous tutorials.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/NOTES/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/NOTES/index.html new file mode 100644 index 00000000000..516a03ef553 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/NOTES/index.html @@ -0,0 +1,382 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Add an exercise somewhere with a print which first evaluates all its arguments +and THEN prints them. The idea is to define print to be strict and to +make the AExps list construct seqstrict, so lists of arithmetic +expressions get evaluated from left-to-right whenever they reach the top of +the <k/> cell (replace seqstrict with strict if you want expressions in +a list to evaluate non-deterministically and interleaved).

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/index.html new file mode 100644 index 00000000000..bf616c63e5e --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/index.html @@ -0,0 +1,466 @@ + + + + + + + + + + + + + + +Extending/Changing an Existing Language Syntax | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Extending/Changing an Existing Language Syntax

+

Here we learn how to extend the syntax of an existing language, both with +new syntactic constructs and with more general uses of existing constructs. +The latter, in particular, requires changes of the existing semantics.

+

Consider the IMP language, as defined in Lesson 4 of Part 2 of the tutorial.

+

Let us first add the new syntactic constructs, with their precedences:

+
    +
  • variable increment, ++, which increments an integer variable and +evaluates to the new value;
  • +
  • read, which reads and evaluates to a new integer from the input buffer;
  • +
  • print, which takes a comma-separated list of arithmetic expressions and +evaluates and prints each of them in order, from left to right, to the +output buffer; we therefore define a new list syntactic category, AExps, +which we pass as an argument to print; note we do not want to declare +print to be strict, because we do not want to first evaluate the +arguments and then print them (for example, if the second argument performs +an illegal operation, say division by zero, we still want to print the first +argument); we also go ahead and add strings as arithmetic expressions, +because we intend print to also take strings, in order to print nice +messages to the user;
  • +
  • halt, which abruptly terminates the program; and
  • +
  • spawn, which takes a statement and creates a new concurrent thread +executing it and sharing its environment with the parent thread.
  • +
+

Also, we want to allow local variable declarations, which can appear anywhere +a statement can appear. Their scope ranges from the place they are defined +until the end of the current block, and they can shadow previous declarations, +both inside and outside the current block. The simplest way to define the +syntax of the new variable declarations is as ordinary statements, at the same +time removing the previous Pgm syntactic category and its construct. +Programs are now just statements.

+

We are now done with adding the new syntax and modifying the old one. +Note that the old syntax was modified in a way which makes the previous IMP +programs still parse, but this time as statements. Let us then modify +the configuration variable $PGM to have the sort Stmt instead of Pgm, +and let us try to run the old IMP programs, for example sum.imp.

+

Note that they actually get stuck with the global declaration on the top +of their computations. This is because variable declarations are now treated +like any statements, in particular, the sequential composition rule applies. +This makes the old IMP rule for global variable declarations not match anymore. +We can easily fix it by replacing the anonymous variable _, which matched +the program's statement that now turned into the remaining computation in +the <k/> cell, with the cell frame variable ..., which matches the +remaining computation. Similarly, we have to change the rule for the case +where there are no variables left to declare into one that dissolves itself.

+

We can now run all the previous IMP programs, in spite of the fact that +our IMP++ semantics is incomplete and, more interestingly, in spite of the +fact that our current semantics of blocks is incorrect in what regards the +semantics of local variable declarations (note that the old IMP programs do +not declare block-local variables, which is why they still run correctly).

+

Let us also write some proper IMP++ programs, which we would like to execute +once we give semantics to the new constructs.

+

div.imp is a program manifesting non-deterministic behaviors due to the +desired non-deterministic evaluation strategy of division and the fact that +expressions will have side effects once we add variable increment. We will +be able to see all the different behaviors of this program. Challenge: can +you identify the behavior where the program performs a division-by-zero?

+

If we run div.imp now, it will get stuck with the variable increment +construct on top of the computation cell. Once we give it a semantics, +div.imp will execute completely (all the other constructs in div.imp +already have their semantics defined as part of IMP).

+

Note that some people prefer to define all their semantics in a by need +style, that is, they first write and parse lots of programs, and then they +add semantics to each language construct on which any of the programs gets +stuck, and so on and so forth until they can run all the programs.

+

io.imp is a program which exercises the input/output capabilities of the +language: reads two integers and prints three strings and an integer. +Note that the variable declaration is not the first statement anymore.

+

sum-io.imp is an interactive variant of the sum program.

+

spawn.imp is a program which dynamically creates two threads that interact +with the main thread via the shared variable x. Lots of behaviors will be +seen here once we give spawn the right semantics.

+

Finally, locals.imp tests whether variable shadowing/unshadowing works well.

+

In the next lesson we will prepare the configuration for the new constructs, +and will see what it takes to adapt the semantics to the new configuration. +Specifically, we will split the state cell into an environment cell and a +store cell, like in LAMBDA++ in Part 3 of the tutorial.

+

Go to Lesson 2, IMP++: Configuration Refinement; Freshness.

+

MOVIE (out of date) [07'47"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/NOTES/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/NOTES/index.html new file mode 100644 index 00000000000..c0fac2a81e5 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/NOTES/index.html @@ -0,0 +1,377 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

update discussion on fresh; it has already been explained in lambda++

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/index.html new file mode 100644 index 00000000000..bdab3e91c05 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/index.html @@ -0,0 +1,448 @@ + + + + + + + + + + + + + + +Configuration Refinement; Freshness | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Configuration Refinement; Freshness

+

To prepare for the semantics of threads and local variables, in this lesson we +split the state cell into an environment and a store. The environment and +the store will be similar to those in the definition of LAMBDA++ in Part +3 of the Tutorial. This configuration refinement will require us to change +some of IMP's rules, namely those that used the state.

+

To split the state map, which binds program variables to values, into an +environment mapping program variables to locations and a store mapping +locations to values, we replace in the configuration declaration the cell

+
<state color="red"> .Map </state>
+
+

with two cells

+
<env color="LightSkyBlue"> .Map </env>
+<store color="red"> .Map </store>
+
+

Structurally speaking, this split of a cell into other cells is a major +semantic change, which, unfortunately, requires us to revisit the existing +rules that used the state cell. One could, of course, argue that we could +have avoided this problem if we had followed from the very beginning the +good-practice style to work with an environment and a store, instead of a +monolithic state. While that is a valid argument, highlighting the fact that +modularity is not only a feature of the framework alone, but one should also +follow good practices to achieve it, it is also true that if all we wanted +in Part 2 of the tutorial was to define IMP as is, then the split of the state +in an environment and a store is unnecessary and not really justified.

+

The first rule which used a state cell is the lookup rule:

+
rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>
+
+

We modify it as follows:

+
rule <k> X:Id => I ...</k>
+     <env>... X |-> N ...</env>
+     <store>... N |-> I ...</store>
+
+

So we first match the location N of X in the environment, then the value +I at location N in the store, and finally we rewrite X to I into the +computation. This rule also shows an instance of a more complex +multiset matching, where two variables (X and N) are matched each twice.

+

The assignment rule is modified quite similarly.

+

The variable declaration rule is trickier, though, because we need to allocate +a fresh location in the store and bind the newly declared variable to it. +This is quite similar to the way we allocated space for variables in +the environment-based definition of LAMBDA++ in Part 3 of the tutorial.

+
rule <k> int (X,Xs => Xs); ...</k>
+     <env> Rho => Rho[X <- !N:Int] </env>
+     <store>... .Map => !N |-> 0 ...</store>
+
+

Note the use of the fresh (!N) variable notation above. Recall from +the LAMBDA++ tutorial that each time the rule with fresh (!) variables is +applied, fresh elements of corresponding sorts are generated for the fresh +variables, distinct from all the previously generated elements; also, we +cannot and should not assume anything about the particular element that is +being generated, except that it is different from the previous ones.

+

kompile and krun sum.imp to see how the fresh locations have been +generated and used. There were two fresh locations needed, for the two +variables. Note also that a cell holding the counter has been added to the +configuration.

+

In the next lesson we will add the semantics of variable increment, and see +how that yields non-deterministic behaviors in programs and how to explore +those behaviors using the K tool.

+

Go to Lesson 3, IMP++: Tagging; Superheat/Supercool Kompilation Options.

+

MOVIE (out of date) [04'06"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/NOTES/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/NOTES/index.html new file mode 100644 index 00000000000..004c8011542 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/NOTES/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

We eliminated the superheat/supercool optimization. Now we only need to use +the transition option. So the video is out of synch now.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/index.html new file mode 100644 index 00000000000..4ba0a5caba4 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/index.html @@ -0,0 +1,414 @@ + + + + + + + + + + + + + + +Variable increment; Search | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Variable increment; Search

+

In this lesson we add the semantics of variable increment. We also learn +how to instruct the kompile tool to instrument the language model for +exhaustive analysis.

+

The variable increment rule is self-explanatory:

+
rule <k> ++X => I +Int 1 ...</k>
+     <env>... X |-> N ...</env>
+     <store>... N |-> (I => I +Int 1) ...</store>
+
+

We can now run programs like our div.imp program introduced in Lesson 1. +Do it.

+

The addition of increment makes the evaluation of expressions have side +effects. That, in combination with the non-determinism allowed by the +strictness attributes in how expression constructs evaluate their +arguments, makes expressions in particular and programs in general have +non-deterministic behaviors. One possible execution of the div.imp program +assigns 1 to y's location, for example, but this program manifests several +other behaviors, too.

+

To see all the (final-state) behaviors that a program can have, you can kompile +the semantics with --enable-search and call the krun tool with the option +--search. For example:

+
krun div.imp --search
+
+

In the next lesson we add input/output to our language and learn how to +generate a model of it which behaves like an interactive interpreter!

+

Go to Lesson 4, IMP++: Semantic Lists; Input/Output Streaming.

+

MOVIE (out of date) [06'56"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/NOTES/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/NOTES/index.html new file mode 100644 index 00000000000..748e4ff7f52 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/NOTES/index.html @@ -0,0 +1,383 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Make sure cells have the same indentation, which should use normal +spaces, not tabs. Tabs look differently in different editors.

+

The tests here include all the imp and imp++ programs, but of course +the imp ones do not display any output, so their .out files are empty. +But this way we at least make sure we test that these programs +do not fail/crash and that nothing is output, so it is better that what +we used to have in K3.6.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/index.html new file mode 100644 index 00000000000..2a3a689c624 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/index.html @@ -0,0 +1,485 @@ + + + + + + + + + + + + + + +Semantic Lists; Input/Output Streaming | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Semantic Lists; Input/Output Streaming

+

In this lesson we add semantics to the read and print IMP++ constructs. +In doing so, we also learn how to use semantic lists and how to connect +cells holding semantic lists to the standard input and standard output. +This allows us to turn the K semantics into an interactive interpreter.

+

We start by adding two new cells to the configuration,

+
<in color="magenta"> .List </in>
+<out color="Orchid"> .List </out>
+
+

each holding a semantic list, initially empty. Semantic lists are +space-separated sequences of items, each item being a term of the form +ListItem(t), where t is a term of sort K. Recall that the semantic maps, +which we use for states, environments, stores, etc., are sets of pairs +t1 |-> t2, where t1 and t2 are terms of sort K. The ListItem wrapper +is currently needed, to avoid parsing ambiguities.

+

Since we want the print statement to also print strings, we need to tell +K that strings are results. To make it more interesting, let us also overload +the + symbol on arithmetic expressions to also take strings and, as a +result, to concatenate them. Since + is already strict, we only need to add +a rule reducing the IMP addition of strings to the builtin operation +String +which concatenates two strings.

+

The semantics of read is immediate: read and consumes the first integer item +from the <in/> cell; note that our read only reads integer values (it gets +stuck if the first item in the <in/> cell is not an integer).

+

The semantics of print is a bit trickier. Recall that print takes an +arbitrary number of arithmetic expression arguments, and evaluates and outputs +each of them in order, from left to right. For example, +print("Hello", 3/0, "Bye"); outputs "Hello" and then gets stuck on the +illegal division by zero operation. In other words, we do not want it to +first evaluate all its arguments and then print them, because that would miss +outputting potentially valuable information. So the first step is to evaluate +the first argument of print. In some sense, what we'd like to say is that +print has the evaluation strategy strict(1). However, strictness +attributes only work with individual language constructs, while what we need +is an evaluation strategy that involves two constructs: print and the list +(comma) construct of AExps. If we naively associate print the strict(1) +evaluation strategy then its first and unique argument, an AExps list, will +be scheduled for evaluation and the execution will get stuck because we have +no rules for evaluating AExps terms. If we make the list construct of +AExps strict then we get the wrong semantics for print which first +evaluates all its arguments and then outputs them. The correct way to +tell K that print should evaluate only its first argument is by using a +context declaration:

+
context print(HOLE:AExp, _);
+
+

Note the HOLE of sort AExp above. Contexts allow us to define finer-grain +evaluation strategies than the strictness attributes, involving potentially +more than one language construct, like above. The HOLE indicates the +argument which is requested to be evaluated. For example, the strict +attribute of division corresponds to two contexts:

+
context HOLE / _
+context _ / HOLE
+
+

In their full generality, contexts can be any terms with precisely one +occurrence of a HOLE, and with arbitrary side conditions on any variables +occurring in the context term as well as on the HOLE. See Part 6 of the +tutorial for more examples.

+

Once evaluated, the first argument of print is expected to become either an +integer or a string. Since we want to print both integers and string values, +to avoid writing two rules, one for each type of value, we instead add a new +syntactic category, Printable, which is the union of integers and strings.

+

Let us kompile and krun the io.imp program discussed in Lesson 1. As +expected, it gets stuck with a read construct on top of the computation and +with an empty <in/> cell. To run it, we need to provide some items in the +<in/> cell, so that the rule of read can match. Let us add

+
<in> ListItem(3) ListItem(5) ListItem(7) </in>
+
+

Now, if we krun io.imp, we can see that its execution completes normally +(the <k/> cell is empty), that the first two items have been removed by the +two read constructs from the <in/> cell, and that the desired strings and +numbers have been placed into the <out/> cell.

+

Cells holding semantic lists can be connected to the standard input and +standard output buffers, and krun knows how to handle these appropriately. +Let us connect the <in/> cell to the standard input using the cell attribute +stream="stdin" and the <out/> cell to the standard output with the +attribute stream="sdtout". A cell connected to the standard input will +take its items from the standard input and block the rewriting process when +an input is needed until an item is available in the standard input buffer. +A cell connected to the standard output buffer will send all its items, in +order, to the standard output.

+

Let us kompile and krun io.imp again. It prints the message and then +waits for your input numbers. Type in two numbers, then press <Enter>. +A message with their sum is then printed, followed by the final configuration. +If you do not want to see the final configuration, and thus obtain a realistic +interpreter for our language, then call krun with the option --output none:

+
krun io.imp --output none
+
+

Let us now krun our interactive sum program, which continuously reads numbers +from the console and prints the sum of numbers up to them:

+
krun sum-io.imp
+
+

Try a few numbers, then 0. Note that the program terminated, but with junk +in the <k/> cell, essentially with a halt statement on its top. Of course, +because halt has been reached and it has no semantics yet.

+

In the next lesson we give the semantics of halt and also fix the semantics +of blocks with local variable declarations.

+

Go to Lesson 5, IMP++: Deleting, Saving and Restoring Cell Contents.

+

MOVIE (out of date) [05'21"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_5/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_5/index.html new file mode 100644 index 00000000000..6f359f4f037 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_5/index.html @@ -0,0 +1,435 @@ + + + + + + + + + + + + + + +Deleting, Saving and Restoring Cell Contents | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Deleting, Saving and Restoring Cell Contents

+

In this lesson we will see how easily we can delete, save and/or restore +contents of cells in order to achieve the desired semantics of language +constructs that involve abrupt changes of control or environments. We have +seen similar or related K features in the LAMBDA++ language in Part 3 of the +tutorial.

+

Let us start by adding semantics to the halt statement. As its name says, +what we want is to abruptly terminate the execution of the program. Moreover, +we want the program configuration to look as if the program terminated +normally, with an empty computation cell. The simplest way to achieve that is +to simply empty the computation cell when halt is encountered:

+
rule <k> halt; ~> _ => . </k>
+
+

It is important to mention the entire <k/> cell here, with both its membranes +closed, to make sure that its entire contents is discarded. Note the +anonymous variable, which matches the rest of the computation.

+

kompile and krun sum-io.imp. Note that unlike in Lesson 4, the program +terminates with an empty computation cell now.

+

As mentioned earlier, the semantics of blocks that was inherited from IMP is +wrong. Program locals.imp shows it very clearly: the environments are not +correctly restored at block exits. One way to fix the problem is to take +a snapshot of the current environment when a block is entered and save it +somewhere, and then to restore it when the block is left. There are many +ways to do this, which you can explore on your own: for example you can add +a new list cell for this task where to push/pop the environment snapshots in +a stack style; or you can use the existing environment cell for this purpose, +but then you need to change the variable access rules to search through the +stacked environments for the variable.

+

My preferred solution is to follow a style similar to how we saved/restored +LAMBDA++ environments in Part 3 of the Tutorial, namely to use the already +existing <k/> cell for such operations. More specifically, we place a +reminder item in the computation whenever we need to take a snapshot of +some cell contents; the item simply consists of the entire contents of the cell. +Then, when the reminder item is reached, we restore the contents of the cell:

+
rule <k> {S} => S ~> Rho ...</k> <env> Rho </env>
+
+

The only thing left now is to give the definition of environment restore:

+
rule <k> Rho => . ...</k> <env> _ => Rho </env>
+
+

Done. kompile and krun locals.imp. Everything should work correctly now. +Note that the rule above is different from the one we had for LAMBDA++ in +Part 3 of the tutorial, in that here there is no value preceding the environment +restoration item in the computation; that's because IMP++ statements, +unlike LAMBDA++'s expressions, evaluate to nothing (.).

+

In the next lesson we will give semantics to the spawn S construct, which +dynamically creates a concurrent shared-memory thread executing statement S.

+

Go to Lesson 6, IMP++: Adding/Deleting Cells Dynamically; Configuration Abstraction, Part 2.

+

MOVIE (out of date) [04'30"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_6/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_6/index.html new file mode 100644 index 00000000000..c7a11fe389b --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_6/index.html @@ -0,0 +1,543 @@ + + + + + + + + + + + + + + +Adding/Deleting Cells Dynamically; Configuration Abstraction, Part 2 | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Adding/Deleting Cells Dynamically; Configuration Abstraction, Part 2

+

In this lesson we add dynamic thread creation and termination to IMP, and +while doing so we learn how to define and use configurations whose structure +can evolve dynamically.

+

Recall that the intended semantics of spawn S is to spawn a new concurrent +thread that executes S. The new thread is being passed at creation time +its parent's environment, so it can share with its parent the memory +locations that its parent had access to at creation time. No other locations +can be shared, and no other memory sharing mechanism is available. +The parent and the child threads can evolve unrestricted, in particular they +can change their environments by declaring new variables or shadowing existing +ones, can create other threads, and so on.

+

The above suggests that each thread should have its own computation and its +own environment. This can be elegantly achieved if we group the <k/> and +<env/> cells in a <thread/> cell in the configuration. Since at any given +moment during the execution of a program there could be zero, one or more +instances of such a <thread/> cell in the configuration, it is a good idea +to declare the <thread/> cell with multiplicity * (i.e., zero, one or more):

+
<thread multiplicity="*" color="blue">
+  <k color="green"> $PGM:Stmt </k>
+  <env color="LightSkyBlue"> .Map </env>
+</thread>
+
+

This multiplicity declaration is not necessary, but it is a good idea to do +it for several reasons:

+
    +
  1. it may help the configuration abstraction process, +which may in turn significantly increase the compactness and modularity of +your subsequent rules;
  2. +
  3. it may help various analysis and execution tools, +for example static analyzers to give you error messages when you create cells +where you should not, or K compilers to improve performance by starting +actual concurrent hardware threads or processes corresponding to each cell +instance; and
  4. +
  5. it may help you better understand and control the dynamics +of your configuration, and thus your overall semantics.
  6. +
+

For good encapsulation, I also prefer to put all thread cells into one cell, +<threads/>. This is technically unnecessary, though; to convince yourself +that this is indeed the case, you can remove this cell once we are done with +the semantics and everything will work without having to make any changes.

+

Before we continue, let us kompile an krun some programs that used to +work, say sum-io.imp. In spite of the relatively radical configuration +reorganization, those programs execute just fine! How is that possible? +In particular, why do rules like the lookup and assignment still work, +unchanged, in spite of the fact that the <k/> and <env/> cells are not at +the same level with the <store/> cell in the configuration anymore?

+

Welcome to configuration abstraction, part 2. Recall that the role of +configuration abstraction is to allow you to only write the relevant +information in each rule, and have the compiler fill-in the obvious and boring +details. According to the configuration that we declared for our new +language, there is only one reasonable way to complete rules like the lookup, +namely to place the <k/> and </env> cells inside a <thread/> cell, +inside a <threads/> cell:

+
rule <threads>...
+       <thread>...
+         <k> X:Id => I ...</k>
+         <env>... X |-> N ...</env>
+       ...</thread>
+     ...<threads/>
+     <store>... N |-> I ...</store>  [lookup]
+
+

This is the most direct, compact and local way to complete the configuration +context of the lookup rule. If for some reason you wanted here to match the +<k/> cell of one thread and the <env/> cell of another thread, then you +would need to explicitly tell K so, by mentioning the two thread cells, +for example:

+
rule <thread>...
+         <k> X:Id => I ...</k>
+     ...</thread>
+     <thread>...
+         <env>... X |-> N ...</env>
+     ...</thread>
+     <store>... N |-> I ...</store>  [lookup]
+
+

By default, K completes rules in a greedy style. Think this way: what is the +minimal number of changes to my rule to make it fit the declared +configuration? That's what the K tool will do.

+

Configuration abstraction is technically unnecessary, but once you start +using it and get a feel for how it works, it will become your best friend. +It allows you to focus on the essentials of your semantics, and at the same +time gives you flexibility in changing the configuration later on without +having to touch the rules. For example, it allows you to remove the +<threads/> cell from the configuration, if you don't like it, without +having to touch any rule.

+

We are now ready to give the semantics of spawn:

+
rule <k> spawn S => . ...</k> <env> Rho </env>
+     (. => <thread>... <k> S </k> <env> Rho </env> ...</thread>)
+
+

Note configuration abstraction at work, again. Taking into account +the declared configuration, and in particular the multiplicity information +* in the <thread/> cell, the only reasonable way to complete the rule +above is to wrap the <k/> and <env/> cells on the first line within a +<thread/> cell, and to fill-in the ...s in the child thread with the +default contents of the other subcells in <thread/>. In this case there +are no other cells, so we can get rid of those ...s, but that would +decrease the modularity of this rule: indeed, we may later on add other +cells within <thread/> as the language evolves, for example a function +or an exception stack, etc.

+

In theory, we should be able to write the rule above even more compactly +and modularly, namely as

+
rule <k> spawn S => . ...</k> <env> Rho </env>
+     (. => <k> S </k> <env> Rho </env>)
+
+

Unfortunately, this currently does not work in the K tool, due to some +known limitations of our current configuration abstraction algorithm. +This latter rule would be more modular, because it would not even depend +on the cell name thread. For example, we may later decide to change +thread into agent, and we would not have to touch this rule. +We hope this current limitation will be eliminated soon.

+

Once a thread terminates, its computation cell becomes empty. When that +happens, we can go ahead and remove the useless thread cell:

+
rule <thread>... <k> . </k> ...</thread> => .
+
+

Let's see what we've got. kompile and krun spawn.imp. +Note the following:

+
    +
  • The <threads/> cell is empty, so all threads terminated normally;
  • +
  • The value printed is different from the value in the store; the store value +is not even the one obtained if the threads executed sequentially.
  • +
+

Therefore, interesting behaviors may happen; we would like to see them all!

+
krun spawn.imp --search
+
+

However, the above does not work.

+

spawn.imp is an interactive program, which reads a number from the +standard input. When analyzing programs exhaustively using the search option, +krun has to disable the streaming capabilities (just think about it and you +will realize why). The best you can do in terms of interactivity with search +is to pipe some input to krun: krun will flush the standard input buffer +into the cells connected to it when creating the initial configuration (will +do that no matter whether you run it with or without the --search option). +For example:

+
echo 23 | krun spawn.imp --search
+
+

puts 23 in the standard input buffer, which is then transferred in the +<in/> cell as a list item, and then the exhaustive search procedure is +invoked.

+

However, even after piping some input, the spawn.imp program outputs +an error:

+
[Error] krun: You must pass --enable-search to kompile to be able to use krun --search with the LLVM backend
+
+

As explained in Lesson 3, by default kompile optimizes the generated +language model for execution. In particular, it does not insert any +backtracking markers where transition attempts should be made, so krun +lacks the information it needs to exhaustively search the generated language +model.

+

kompile with the search feature enabled:

+
kompile imp --enable-search
+
+

Now echo 23 | krun spawn.imp --search gives us all 12 behaviors of the +spawn.imp program.

+

We currently have no mechanism for thread synchronization. In the next lesson +we add a join statement, which allows a thread to wait until another completes.

+

Go to Lesson 7, IMP++: Everything Changes: Syntax, Configuration, Semantics.

+

MOVIE (out of date) [11'40"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_7/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_7/index.html new file mode 100644 index 00000000000..39ea96825ee --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_7/index.html @@ -0,0 +1,466 @@ + + + + + + + + + + + + + + +Everything Changes: Syntax, Configuration, Semantics | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Everything Changes: Syntax, Configuration, Semantics

+

In this lesson we add thread joining, one of the simplest thread +synchronization mechanisms. In doing so, we need to add unique ids +to threads in the configuration, and to modify the syntax to allow spawn +to return the id of the newly created thread. This gives us an opportunity +to make several other small syntactic and semantics changes to the language, +which make it more powerful or more compact at a rather low cost.

+

Before we start, let us first copy and modify the previous spawn.imp program +from Lesson 1 to make use of thread joining. Recall from Lesson 6 that in some +runs of this program the main thread completed before the child threads, +printing a possibly undesired value of x. What we want now is to assign +unique ids to the two spawned threads, and then to modify the main thread to +join the two child threads before printing. To avoid adding a new type to +the language, let's assume that thread ids are integer numbers. So we declare +two integers, t1 and t2, and assign them the two spawn commands. In order +for this to parse, we will have to change the syntax of spawn to be an +arithmetic expression construct instead of a statement. Once we do that, +we have a slight syntactic annoyance: we need to put two consecutive ; +after the spawn assignment, one for the assignment statement inside the spawn, +and another for the outer assignment. To avoid the two consecutive semicolons, +we can syntactically enforce spawn to take a block as argument, instead of a +statement. Now it looks better. The new spawn.imp program is still +non-deterministic, because the two threads can execute in any order and even +continue to have a data-race on the shared variable x, but we should see fewer +behaviors when we use the join statements. If we want to fully synchronize +this program, we can have the second thread start with a join(t1) statement. +Then we should only see one behavior for this program.

+

Let us now modify the language semantics. First, we move the spawn +construct from statements to expressions, and make it take a block. +Second, we add one more sub-cell to the thread cell in the configuration, +<id/>, to hold the unique identifier of the thread. We want the main +thread to have id 0, so we initialize this cell with 0. Third, we modify +the spawn rule to generate a fresh integer identifier, which is put in the +<id/> cell of the child thread and returned as a result of spawn in the +parent thread. Fourth, let us add the join statement to the language, +both syntactically and semantically. So in order for the join(T) statement +to execute, thread T must have its computation empty. However, in order +for this to work we have to get rid of the thread termination cleanup rule. +Indeed, we need to store somewhere the information that thread T terminated; +the simplest way to do it is to not remove the terminated threads. Feel free +to experiment with other possibilities, too, here. For example, you may add +another cell, <done/>, in which you can store all the thread ids of the +terminated and garbage-collected threads.

+

Let us now kompile imp.k and convince ourselves that the new spawn.imp +with join statements indeed has fewer behaviors than its variant without +join statements. Also, let us convince ourselves that the fully synchronized +variant of it indeed has only one behavior.

+

Note that now spawn, like variable increment, makes the evaluation of +expressions to have side effects. Many programming languages in fact allow +expressions to be evaluated only for their side effects, and not for their +value. This is typically done by simply adding a ; after the expression +and thus turning it into a statement. For example, ++x;. Let as also +allow arithmetic expressions in our language to be used as statements, by +simply adding the production AExp ";" to Stmt, with evaluation strategy +strict and with the expected semantics discarding the value of the AExp.

+

Another simple change in syntax and semantics which gives our language more +power, is to remove the ; from the syntax of variable assignments and to make +them expression instead of statement constructs. This change, combined with +the previous one, will still allow us to parse all the programs that we could +parse before, but will also allow us to parse more programs. For example, we +can now do sequence assignments like in C: x = y = z = 0. The semantics +of assignment now has to return the assigned value also to the computation, +because we want the assignment expression to evaluate to the assigned value.

+

Let us also make another change, but this time one which only makes the +definition more compact. Instead of defining statement sequential +composition as a binary construct for statements, let us define a new +syntactic construct, Stmts, as whitespace-separated lists of Stmt. This +allows us to get rid of the empty blocks, because we can change the syntax of +blocks to {Stmts} and Stmts also allows the empty sequence of statements. +However, we do have to make sure that .Stmts dissolves.

+

In general, unless you are defining a well-established programming language, +it is quite likely that your definitions will suffer lots of changes like the +ones seen in this lecture. You add a new construct, which suggests changes +in the existing syntax making in fact your language parse more programs, +which then requires corresponding changes in the semantics, and so on. +Also, compact definitions are desirable in general, because they are easier +to read and easier to change if needed later.

+

In the next lesson we wrap up and document the definition of IMP++.

+

Go to Lesson 8, IMP++: Wrapping up Larger Languages.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/imp/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/imp/index.html new file mode 100644 index 00000000000..e4e3fa2039a --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/imp/index.html @@ -0,0 +1,915 @@ + + + + + + + + + + + + + + +IMP++ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

IMP++

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Abstract

+

This is the K semantic definition of the IMP++ language. +IMP++ extends the IMP language with the features listed below. We +strongly recommend you to first familiarize yourself with the IMP +language and its K definition in Tutorial 2 before proceeding.

+

Strings and concatenation of strings. Strings are useful +for the print statement, which is discussed below. For +string concatenation, we use the same + construct that we use +for addition (so we overload it).

+

Variable increment. We only add a pre-increment construct: +++x increments variable x and evaluates to the +incremented value. Variable increment makes the evaluation of +expressions have side effects, and thus makes the evaluation strategies +of the various language constructs have an influence on the set +of possible program behaviors.

+

Input and output. IMP++ adds a read() expression +construct which reads an integer number and evaluates to it, and +a variadic (i.e., it has an arbitrary number of arguments) statement +construct print(e1,e2,...,en) which evaluates its arguments +and then outputs their values. Note that the K tool allows to +connect the input and output cells to the standard input and output +buffers, this way compiling the language definition into an +interactive interpreter.

+

Abrupt termination. The halt statement simply halts +the program. The K tool shows the resulting configuration, as if the +program terminated normally. We therefore assume that an external +observer does not care whether the program terminates normally or +abruptly, same like with exit statements in conventional +programming languages like C.

+

Dynamic threads. The expression construct spawn s +starts a new concurrent thread that executes statement s, +which is expected to be a block, and evaluates immediately to a fresh +thread identifier that is also assigned to the newly created thread. +The new thread is given at creation time the environment of its +parent, so it can access all its parent's variables. This allows for +the parent thread, and the child thread to communicate; it also allows +for races and "unexpected" behaviors, so be careful. +For thread synchronization, IMP++ provides a thread join statement +construct join t;, where t evaluates to a thread +identifier, which stalls the current thread until thread t +completes its computation. For simplicity, we here assume a +sequentially consistent shared memory model. To experiment with other +memory models, see the definition of KERNELC.

+

Blocks and local variables. IMP++ allows blocks enclosed by +curly brackets. Also, IMP's global variable declaration construct is +generalized to be used anywhere as a statement, not only at the +beginning of the program. As expected, the scope of the declared +variables is from their declaration point till the end of the most +nested enclosing block.

+

What You Will Learn Here

+
    +
  • How to define a less trivial language in K, as explained above.
  • +
  • How to use the superheat and supercool +options of the K tool kompile to exhaustively explore the +non-determinism due to underspecified evaluation strategies.
  • +
  • How to use the --enable-search option of the K tool to +exhaustively explore the non-determinism due to concurrency.
  • +
  • How to connect certain cells in the configuration to the +standard input and standard output, and thus turn the krun +tool into an interactive interpreter for the defined language.
  • +
  • How to exhaustively search for the non-deterministic behaviors +of a program using the search option of krun.
  • +
+
k
module IMP-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

IMP++ adds several syntactic constructs to IMP. Also, since the +variable declaration construct is generalized to be used anywhere a +statement can be used, not only at the beginning of the program, we +need to remove the previous global variable declaration of IMP and +instead add a variable declaration statement construct

+

We do not re-discuss the constructs which are taken over from IMP, +except when their syntax has been subtly modified (such as, for +example, the syntax of the previous "statement" assignment which +is now obtained by composing the new assignment expression, and the +new expression statement constructs); go the last lesson of +Tutorial 2 if you are interested in IMP's constructs. For execution +purposes, we tag the addition and division operations as members of the +addition and division groups. These groups have no theoretical significance, +in that they do not affect the semantics of the language in any way. They only +have practical relevance, specific to our implementation of the K tool. +Specifically, we can tell the K tool (using its superheat and supercool +options) that we want to exhaustively explore all the non-deterministic +behaviors (due to strictness) of these language constructs. For performance +reasons, by default the K tool chooses an arbitrary but fixed order to +evaluate the arguments of the strict language constructs, thus possibly losing +behaviors due to missed interleavings. This aspect was irrelevant in IMP, +because its expressions had no side effects, but it becomes relevant in IMP++.

+

The syntax of the IMP++ constructs is self-explanatory. Note that assignment +is now an expression construct. Also, print is variadic, taking a +list of expressions as argument. It is also strict, which means that the +entire list of expressions, that is, each expression in the list, will be +evaluated. Note also that we have now defined sequential composition +of statements as a whitespace-separated list of statements, aliased with +the nonterminal Stmts, and block as such a (possibly empty) sequence +of statements surrounded by curly brackets.

+
k
syntax AExp ::= Int | String | Id + | "++" Id + | "read" "(" ")" + | "-" AExp [strict] + | "(" AExp ")" [bracket] + > AExp "/" AExp [left, strict] + > AExp "+" AExp [left, strict] + > "spawn" Block + > Id "=" AExp [strict(2)] + syntax BExp ::= Bool + | AExp "<=" AExp [seqstrict] + | "!" BExp [strict] + | "(" BExp ")" [bracket] + > BExp "&&" BExp [left, strict(1)] + syntax Block ::= "{" Stmts "}" + syntax Stmt ::= Block + | AExp ";" [strict] + | "if" "(" BExp ")" + Block "else" Block [strict(1)] + | "while" "(" BExp ")" Block + | "int" Ids ";" + | "print" "(" AExps ")" ";" + | "halt" ";" + > "join" AExp ";" [strict] + + syntax Ids ::= List{Id,","} [overload(exps)] + syntax AExps ::= List{AExp,","} [overload(exps)] + syntax Stmts ::= List{Stmt,""} + syntax AExps ::= Ids +endmodule + + +module IMP + imports IMP-SYNTAX + imports DOMAINS +
+

Semantics

+

We next give the semantics of IMP++. We start by first defining its +configuration.

+

Configuration

+

The original configuration of IMP has been extended to include +all the various additional cells needed for IMP++. +To facilitate the semantics of threads, more specifically +to naturally give them access to their parent's variables, we prefer a +(rather conventional) split of the program state into an +environment and a store. An environment maps +variable names into locations, while a store maps locations +into values. Stores are also sometimes called states, or +heaps, or memory, in the literature. Like values, locations +can be anything. For simplicity, here we assume they are natural +numbers. Moreover, each thread has its own environment, so it knows +where all the variables that it has access to are located in the store +(that includes its locally declared variables as well as the variables +of its parent thread), and its own unique identifier. The store is +shared by all threads. For simplicity, we assume a sequentially consistent +memory model in IMP++. Note that the thread cell has multiplicity +*, meaning that there could be zero, one, or more instances of that cell +in the configuration at any given time. This multiplicity information +is important for K's configuration abstraction process: it tells +K how to complete rules which, in order to increase the modularity of the +definition, choose to not mention the entire configuration context. +The in and out cells hold the input and the output +buffers as lists of items.

+
k
configuration <T color="yellow"> + <threads color="orange"> + <thread multiplicity="*" color="blue" type="Map"> + <id color="black"> 0 </id> + <k color="green"> $PGM:Stmts </k> + <env color="LightSkyBlue"> .Map </env> + </thread> + </threads> +// <br/> + <store color="red"> .Map </store> +// <input color="magenta"> .List </input> +// <output color="Orchid"> .List </output> + <input color="magenta" stream="stdin"> .List </input> + <output color="Orchid" stream="stdout"> .List </output> + </T> +// Replace the <input/> and <output/> cells with the next two in order to +// initialize the input buffer through krun +// <input color="magenta"> $IN:List </input> +// <output color="Orchid"> .List </output> +// Replace the <input/> and <output/> cells with the next two to connect the +// input/output buffers to stdin/stdout through krun +// <input color="magenta" stream="stdin"> .List </input> +// <output color="Orchid" stream="stdout"> .List </output> +// Replace the <input/> and <output/> cells with the next two to connect the +// input/output buffers to stdin/stdout and also allow input through krun +// <input color="magenta" stream="stdin"> $IN:List </input> +// <output color="Orchid" stream="stdout"> .List </output> +
+

We can also use configuration variables to initialize +the configuration through krun. For example, we may want to +pass a few list items in the in cell when the program makes +use of read(), so that the semantics does not get stuck. +Recall from IMP that configuration variables start with a ParseError: KaTeX parse error: Expected group after '_' at position 63: …, for example, +_̲PGM) and can be initialized with any string by +krun; or course, the string should parse to a term of the +corresponding sort, otherwise errors will be generated. +Moreover, K allows you to connect list cells to the standard input or +the standard output. For example, if you add the attribute +stream="stdin" to the in cell, then krun +will prompt the user to pass input when the in cell is empty +and any semantic rule needs at least one item to be present there in +order to match. Similarly but dually, if you add the attribute +stream="stdout" to the out cell, then any item +placed into this cell by any rule will be promptly sent to the +standard output. This way, krun can be used to obtain +interactive interpreters based directly on the K semantics of the +language. For example:

+
shell
sh$ krun sum-io.imp --output none +Add numbers up to (<= 0 to quit)? 10 +Sum = 55 +Add numbers up to (<= 0 to quit)? 1000 +Sum = 500500 +Add numbers up to (<= 0 to quit)? 0 +sh$ +
+

The option --output none instructs krun to not +display the resulting configuration after the program executes. The +input/output streaming works with or without this option, although +if you don't use the option then a configuration with empty +in and out cells will be displayed after the program +is executed. You can also initialize the configuration using +configuration variables and stream the contents of the cells to +standard input/output at the same time. For example, if you use a +configuration variable in the in cell and pass contents to it +through krun, then that contents will be first consumed and +then the user will be prompted to introduce additional input if the +program's execution encounters more read() constructs.

+

The old IMP constructs

+

The semantics of the old IMP constructs is almost identical to their +semantics in the original IMP language, except for those constructs +making use of the program state and for those whose syntax has slightly +changed. Indeed, the rules for variable lookup and assignment in IMP +accessed the state cell, but that cell is not available in IMP++ +anymore. Instead, we have to use the combination of environment and store +cells. Thanks to K's implicit configuration abstraction, we do not have +to mention the thread and threads cells: these are +automatically inferred (and added by the K tool at compile time) from the +definition of the configuration above, as there is only one correct +way to complete the configuration context of these rules in order to +match the configuration declared above. In our case here, "correct way" +means that the k and env cells will be considered as +being part of the same thread cell, as opposed to each being part +of a different thread. Configuration abstraction is crucial for modularity, +because it gives us the possibility to write our definitions in a way that +may not require us to revisit existing rules when we change the configuration. +Changes in the configuration are quite frequent in practice, typically +needed in order to accommodate new language features. For example, +imagine that we initially did not have threads in IMP++. There +would be no need for the thread and threads cells in +the configuration then, the cells k and env being simply +placed at the top level in the T cell, together with the +already existing cells. Then the rules below would be exactly the +same. Thus, configuration abstraction allows you to not have to +modify your rules when you make structural changes in your language +configuration.

+
k
syntax KResult ::= Int | Bool +
+

Variable lookup

+
k
rule <k> X:Id => I ...</k> + <env>... X |-> N ...</env> + <store>... N |-> I ...</store> +
+

Arithmetic constructs

+
k
rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0 + rule I1 + I2 => I1 +Int I2 + rule - I => 0 -Int I +
+

Boolean constructs

+
k
rule I1 <= I2 => I1 <=Int I2 + rule ! T => notBool T + rule true && B => B + rule false && _ => false +
+

Variable assignment

+

Note that the old IMP assignment statement X = I; is now composed of two +constructs: an assignment expression construct X = I, followed by a +semicolon ; turning the expression into a statement. The rationale behind +this syntactic restructuring has been explained in Lesson 7. Here is the +semantics of the two constructs:

+
k
rule _:Int; => .K + rule <k> X = I:Int => I ...</k> + <env>... X |-> N ...</env> + <store>... N |-> (_ => I) ...</store> +
+

Sequential composition

+

Sequential composition has been defined as a whitespace-separated syntactic +list of statements. Recall that syntactic lists are actually syntactic +sugar for cons-lists. Therefore, the following two rules eventually +sequentialize a syntactic list of statements s1 s2 ... sn.. into the +corresponding computation s1 ~> s2 ~> ... ~> sn.

+
k
rule .Stmts => .K + rule S:Stmt Ss:Stmts => S ~> Ss +
+

Conditional statement

+
k
rule if (true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+

The only thing to notice here is that the empty block has been replaced +with the block holding the explicit empty sequence. That's because in +the semantics all empty lists become explicit corresponding dots +(to avoid parsing ambiguities)

+
k
rule while (B) S => if (B) {S while (B) S} else {.Stmts} +
+

The new IMP++ constructs

+

We next discuss the semantics of the new IMP++ constructs.

+

Strings

+

First, we have to state that strings are also results. +Second, we give the semantics of IMP++ string concatenation (which +uses the already existing addition symbol + from IMP) by +reduction to the built-in string concatenation operation.

+
k
syntax KResult ::= String + rule Str1 + Str2 => Str1 +String Str2 +
+

Variable increment

+

Like variable lookup, this is also meant to be a supercool transition: we +want it to count both in the non-determinism due to strict operations above +it in the computation and in the non-determinism due to thread +interleavings. This rule also relies on K's configuration abstraction. +Without abstraction, you would have to also include the thread and +threads cells.

+
k
rule <k> ++X => I +Int 1 ...</k> + <env>... X |-> N ...</env> + <store>... N |-> (I => I +Int 1) ...</store> +
+

Read

+

The read() construct evaluates to the first integer in the +input buffer, which it consumes. Note that two or more threads can +"compete" on reading the next integer from the input buffer, and +different choices for the next transition can lead to different behaviors.

+
k
rule <k> read() => I ...</k> + <input> ListItem(I:Int) => .List ...</input> +
+

Print

+

The print statement is strict, so all its arguments are +eventually evaluated (recall that print is variadic). We +append each of its evaluated arguments, in order, to the output buffer, +and structurally discard the residual print statement with an +empty list of arguments. We only want to allow printing integers and +strings, so we define a Printable syntactic category including +only these and define the print statement to only print +Printable elements. Alternatively, we could have had two +similar rules, one for integers and one for strings. Recall that, +currently, K's lists are cons-lists, so we cannot simply rewrite the +head of a list (P) into a list (.). Note that different threads may +compete on the output buffer.

+
k
syntax Printable ::= Int | String + +/* currently it is necessary to subsort Printable to AExp, + but future K should be able to infer that automatically. */ + syntax AExp ::= Printable + + context print(HOLE:AExp, _AEs:AExps); + + rule <k> print(P:Printable,AEs => AEs); ...</k> + <output>... .List => ListItem(P) </output> + rule print(.AExps); => .K +
+

Halt

+

The halt statement empties the computation, so the rewriting process +simply terminates as if the program terminated normally. Interestingly, once +we add threads to the language, the halt statement as defined below +will terminate the current thread only. If you want an abrupt termination +statement that halts the entire program, then you need to discard the entire +contents of the threads cell, so the entire computation abruptly +terminates the entire program, no matter how many concurrent threads it has, +because there is nothing else to rewrite.

+
k
rule <k> halt; ~> _ => .K </k> +
+

Spawn thread

+

A spawned thread is passed its parent's environment at creation time. +The spawn expression in the parent thread is immediately replaced +by the unique identifier of the newly created thread, so the parent +thread can continue its execution. We only consider a sequentially +consistent shared memory model for IMP++, but other memory models +can also be defined in K; see, for example, the definition of +KERNELC. Note that K's configuration abstraction is at heavy work +here, in two different places. First, the parent thread's k and env +cells are wrapped within a thread cell. Second, the child thread's +k, env and id cells are also wrapped within a thread cell. Why +that way and not putting all these four cells together within the same +thread, or even create an additional threads cell at top holding a +thread cell with the new k, env and id? Because in the original +configuration we declared the multiplicity of the thread cell to be +*, which effectively tells the K tool that zero, one or more such +cells can co-exist in a configuration at any moment. The other cells have +the default multiplicity one, so they are not allowed to multiply. +Thus, the only way to complete the rule below in a way consistent with +the declared configuration is to wrap the first two cells in a thread +cell, and the latter two cells under the . also in a thread cell. Once +the rule applies, the spawning thread cell will add a new thread cell +next to it, which is consistent with the declared configuration cell +multiplicity. The unique identifier of the new thread is generated using +the fresh side condition.

+
k
rule <k> spawn S => !T:Int +Int 1 ...</k> <env> Rho </env> + (.Bag => <thread>... <k> S </k> <env> Rho </env> <id> !T +Int 1 </id> ...</thread>) +
+

Join thread

+

A thread who wants to join another thread T has to wait until +the computation of T becomes empty. When that happens, the +join statement is simply dissolved. The terminated thread is not removed, +because we want to allow possible other join statements to also dissolve.

+
k
rule <k> join(T); => .K ...</k> <thread>... <k>.K</k> <id>T</id> ...</thread> +
+

Blocks

+

The body statement of a block is executed normally, making sure +that the environment at the block entry point is saved in the computation, +in order to be recovered after the block body statement. This step is +necessary because blocks can declare new variables having the same +name as variables which already exist in the environment, and our +semantics of variable declarations is to update the environment map in +the declared variable with a fresh location. Thus, variables which +are shadowed lose their original binding, which is why we take a +snapshot of the environment at block entrance and place it after the +block body (see the semantics of environment recovery at the end of +this module). Note that any store updates through variables which are +not declared locally are kept at the end of the block, since the store +is not saved/restored. An alternative to this environment save/restore +approach is to actually maintain a stack of environments and to push a +new layer at block entrance and pop it at block exit. The variable +lookup/assign/increment operations then also need to change, so we do +not prefer that non-modular approach. Compilers solve this problem by +statically renaming all local variables into fresh ones, to completely +eliminate shadowing and thus environment saving/restoring.

+
k
rule <k> {Ss} => Ss ~> Rho ...</k> <env> Rho </env> +
+

Variable declaration

+

We allocate a fresh location for each newly declared variable and +initialize it with 0.

+
k
rule <k> int (X,Xs => Xs); ...</k> + <env> Rho => Rho[X <- !N:Int] </env> + <store>... .Map => !N |-> 0 ...</store> + rule int .Ids; => .K +
+

Auxiliary operations

+

We only have one auxiliary operation in IMP++, the environment +recovery. Its role is to discard the current environment in the +env cell and replace it with the environment that it holds.

+
k
rule <k> Rho => .K ...</k> <env> _ => Rho </env> +
+

If you want to avoid useless environment recovery steps and keep the size +of the computation structure smaller, then you can also add the rule

+
  rule (_:Map => .) ~> _:Map
+
+

This rule acts like a ``tail recursion'' optimization, but for blocks. */

+
k
// verification ids + syntax Id ::= "n" [token] + | "sum" [token] + | "a" [token] + | "b" [token] + | "c" [token] +endmodule +
+

On Kompilation Options

+

We are done with the IMP++ semantics. The next step is to kompile the +definition using the kompile tool, this way generating a language +model. Depending upon for what you want to use the generated language model, +you may need to kompile the definition using various options. We here discuss +these options.

+

To tell the K tool to exhaustively explore all the behaviors due to the +non-determinism of addition, division, and threads, we have to kompile +with the command:

+
shell
kompile imp.k --enable-search +
+

Theoretically, the heating/cooling rules in K are fully reversible and +unconstrained by side conditions as we showed in the semantics of IMP. +For example, the theoretical heating/cooling rules corresponding to the +strict attribute of division are the following:

+
E₁ / E₂ ⇒ E₁ ⤳ □ / E₂
+E₁ ⤳ □ / E₂ ⇒ E₁ / E₂
+E₁ / E₂ ⇒ E₂ ⤳ E₁ / □
+E₂ ⤳ E₁ / □ ⇒ E₁ / E₂
+
+

The other semantic rules apply modulo such structural rules. +For example, using heating rules we can bring a redex (a subterm which +can be reduced with semantic rules) to the front of the computation, +then reduce it, then use cooling rules to reconstruct a term over the +original syntax of the language, then heat again and +non-deterministically pick another redex, and so on and so forth +without losing any opportunities to apply semantic rules. +Nevertheless, these unrestricted heating/cooling rules may create an +immense, often unfeasibly large space of possibilities to analyze. +The --enable-search option implements an optimization which works +well with other implementation choices made in the current K tool. +Recall from the detailed description of the IMP language semantics that +(theoretical) reversible rules like above are restricted by default +to complementary conditional rules of the form

+
E₁ / E₂ ⇒ E₁ ⤳ □ / E₂
+   if E₁ not in KResult
+E₁ ⤳ □ / E₂ ⇒ E₁ / E₂
+   if E₁ in KResult
+E₁ / E₂ ⇒ E₂ ⤳ E₁ / □
+   if E₂ not in KResult
+E₂ ⤳ E₁ / □  ⇒ E₁ / E₂
+   if  E₂ in KResult
+
+

Therefore, our tool eagerly heats and lazily cools the computation. +In other words, heating rules apply until a redex gets placed on the +top of the computation, then some semantic rule applies and rewrites +that into a result, then a cooling rule is applied to plug the +obtained result back into its context, then another argument may be +chosen and completely heated, and so on. This leads to efficient +execution, but it may and typically does hide program behaviors. +Using the --enable-search option allows you to interfere with this +process and to obtain all possible non-deterministic behaviors as if +the theoretical heating/cooling rules were applied. Optimizations +of course happen under the hood, but you need not be aware of them. +Used carefully, this mechanism allows us to efficiently explore more of +the non-deterministic behaviors of a program, even all of them (like here). +For example, with the semantics of IMP++ given above, the krun +command with the --search option detects all five behaviors +of the following IMP++ program (x can be 0, 1, 2, 3, or undefined +due to division-by-zero):

+
  int x,y;
+  x = 1;
+  y = ++x / (++x / x);
+
+

Besides non-determinism due to underspecified argument evaluation +orders, which the current K tool addresses as explained above, there +is another important source of non-determinism in programming languages: +non-determinism due to concurrency/parallelism. For example, when two +or more threads are about to access the same location in the store and at +least one of these accesses is a write (i.e., an instance of the variable +assignment rule), there is a high chance that different choices for +the next transition lead to different program behaviors.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/index.html b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/index.html new file mode 100644 index 00000000000..de34cfa67c0 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/index.html @@ -0,0 +1,402 @@ + + + + + + + + + + + + + + +Wrapping up Larger Languages | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Wrapping up Larger Languages

+

In this lesson we wrap up IMP++'s semantics and also generate its poster. +While doing so, we also learn how to display larger configurations in order +to make them easier to read and print.

+

Note that we rearrange a bit the semantics, to group the semantics of old +IMP's constructs together, and separate it from the new IMP++'s semantics.

+

You can go even further and manually edit the generated Latex document. +You typically want to do that when you want to publish your language +definition, or parts of it, and you need to finely tune it to fit the +editing requirements. For example, you may want to insert some negative +spaces, etc.

+

Part 4 of the tutorial is now complete. At this moment you should know most +of K framework's features and how to use the K tool. You can now define or +design your own programming languages, and then execute and analyze programs.

+

MOVIE (out of date) [06'26"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/index.html b/k-distribution/pl-tutorial/1_k/5_types/index.html new file mode 100644 index 00000000000..2f73a136e29 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/index.html @@ -0,0 +1,393 @@ + + + + + + + + + + + + + + +Part 5: Defining Type Systems | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Part 5: Defining Type Systems

+

In this part of the tutorial we will show that defining type systems for +languages is essentially no different from defining semantics. The major +difference is that programs and fragments of programs now rewrite to their +types, instead of to concrete values. In terms of K, we will learn how +to use it for a certain particular but important kind of applications.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_1.9/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_1.9/NOTES/index.html new file mode 100644 index 00000000000..7eacdf14ce6 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_1.9/NOTES/index.html @@ -0,0 +1,384 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

This currently does NOT work, because of the rules

+
rule _:Int => int                            [anywhere]
+rule _:Bool => bool                          [anywhere]
+
+

which now rewrite ANY integer ANYWHERE to "int", including integers +that appear in the internal data-structures/functions of the builtins. +We will need to allow a strategy where "anywhere" means anywhere in one +or more computational cells.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_1/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_1/NOTES/index.html new file mode 100644 index 00000000000..c7b12bf1982 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_1/NOTES/index.html @@ -0,0 +1,377 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Explain the lack of tenv(...)?

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_1/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_1/index.html new file mode 100644 index 00000000000..dd76581b3ae --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_1/index.html @@ -0,0 +1,493 @@ + + + + + + + + + + + + + + +Imperative, Environment-Based Type Systems | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Imperative, Environment-Based Type Systems

+

In this lesson you learn how to define a type system for an imperative +language (the IMP++ language defined in Part 4 of the tutorial), using a style +based on type environments.

+

Let us copy the imp.k file from Part 4 of the tutorial, Lesson 7, which holds +the semantics of IMP++, and modify it into a type system. The resulting type +system, when executed, yields a type checker.

+

We start by defining the new strictness attributes of the IMP++ syntax. +While doing so, remember that programs and fragments of programs now reduce +to their types. So types will be the new results of our new (type) semantics. +We also clean up the semantics by removing the unnecessary tags, and also +use strict instead of seqstrict wherever possible, because strict gives +implementations more freedom. Interestingly, note that spawn is strict now, +because the code of the child thread should type in the current parent's type +environment. Note that this is not always the case for threads, see for example +SIMPLE in the languages tutorial, but it works here for our simpler IMP++.

+

From a typing perspective, the && construct is strict in both its arguments; +its short-circuit (concrete) semantics is irrelevant for its (static) type +system. Similarly, both the conditional and the while loop are strict +constructs when regarded through the typing lenses.

+

Finally, the sequential composition is now sequentially strict! Indeed, +statements are now going to reduce to their type, stmt, and it is critical +for sequential composition to type its argument statements left-to-right; +for example, imagine that the second argument is a variable declaration (whose +type semantics will modify the type environment).

+

We continue by defining the new results of computations, that is, the actual +types. In this simple imperative language, we only have a few constant types: +int, bool, string, block and stmt.

+

We next define the new configuration, which is actually quite simple. Besides +the <k/> cell, all we need is a type environment cell, <tenv/>, which will +hold a map from identifiers to their types. A type environment is therefore +like a state in the abstract domain of type values.

+

Let us next modify the semantic rules, turning them into a type system. In +short, the idea is to reduce the basic values to their types, and then have a +rule for each language construct reducing it to its result type whenever its +arguments have the expected types.

+

We write the rules in the order given by the syntax declarations, to make +sure we do not forget any construct.

+

Integers reduce to their type, int.

+

So do the strings.

+

Variables are now looked up in the type environment and reduced to their type +there. Since we only declare integer variables in IMP++, their type in tenv +will always be int. Nevertheless, we write the rule generically, so that we +would not have to change it later if we add other type declarations to IMP++. +Note that we reject programs which lookup undeclared variables. Rejection, +in this case, means rewriting getting stuck.

+

Variable increment types to int, provided the variable has type int.

+

Read types to int, because we only allow integer input.

+

Division is only allowed on integers, so it rewrites to int provided that its +arguments rewrite to int. Note, however, that in order to write int / int, +we have to explicitly add int to the syntax of arithmetic expressions. +Otherwise, the K parser rightfully complains, because / was declared on +arithmetic expressions, not on types. One simple and generic way to allow +types to appear anywhere, is to define Type as a syntactic subcategory of all +the other syntactic categories. Let's do it on a by-need basis, though.

+

Addition is overloaded, so we add two typing rules for it: one for integers +and another for strings.

+

As discussed, spawn types to stmt provided that its argument types to +block.

+

The assignment construct was strict(2); its typing policy is that the declared +type of X should be identical to the type of the assigned value. Like for +lookup, we define this rule more generically than needed for IMP++, for any +type, not only for int.

+

The typing rules for Boolean expression constructs are in the same spirit. +Note that we need only one rule for &&.

+

The typing of blocks is a bit trickier. First, note that we still need to +recover the environment after the block is typed, because we do not want the +block-local variables to be visible in the outer type environment. We recover +the type environment only after the block-enclosed statements type; moreover, +we also opportunistically yield a block type on the computation when we +discard the type environment recovery item. To account for the fact that the +block-enclosed statement can itself be a block (e.g., {{S}}), we would need an +additional rule. Since we do not like repetition, we instead group the types +block and stmt into one syntactic category, BlockOrStmtType, and now we +can have only one rule. We also include BlockOrStmtType in Type, as a +replacement for the two basic types.

+

The expression statement types as expected. Recall that we only allow +arithmetic expressions, which type to int, to be used as statements in IMP++.

+

The conditional was declared strict in all its arguments. Its typing policy +is that its first argument types to bool and its two branches to block. +If that is the case, then it yields a stmt type.

+

For while, its first argument should type to bool and its second to block.

+

Variable declarations add new bindings to the type environment. Recall that +we can only declare variables of integer type in IMP++.

+

The typing policy of print is that it can only print integer or string values, +and in that case it types to stmt. Like for BlockOrStmtType, to avoid +having two similar rules, one for int and another for string, we prefer to +introduce an additional syntactic category, PrintableType, which includes both +int and string types.

+

halt types to stmt; so its subsequent code is also typed.

+

join types to stmt, provided that its argument types to int.

+

Sequential composition was declared as a whitespace-separated sequentially +strict list. Its typing policy is that all the statements in the list should +type to stmt or block in order for the list to type to stmt. Since +lists are maintained internally as cons-lists, this is probably the simplest +way to do it:

+
rule .Stmts => stmt
+rule _:BlockOrStmtType Ss => Ss
+
+

Note that the first rule, which types the empty sequence of statements to stmt, +is needed anyway, to type empty blocks {} (together with the block rule).

+

kompile imp.k and krun all the programs in Part 4 of the tutorial. They +should all type to stmt.

+

In the next lesson we will define a substitution-based type system for LAMBDA.

+

Go to Lesson 2, Type Systems: Substitution-Based Higher-Order Type Systems.

+

MOVIE (out of date) [10'11"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_2/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_2/NOTES/index.html new file mode 100644 index 00000000000..921d9e24abf --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_2/NOTES/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Maybe we should define simply-typed lambda calculus in some earlier +lecture in tutorial 1, and then reuse its examples here.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_2/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_2/index.html new file mode 100644 index 00000000000..8d79df310e4 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_2/index.html @@ -0,0 +1,448 @@ + + + + + + + + + + + + + + +Substitution-Based Higher-Order Type Systems | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Substitution-Based Higher-Order Type Systems

+

In this lesson you learn how to define a substitution-based type system for +a higher-order language, namely the LAMBDA language defined in Part 1 of the +tutorial.

+

Let us copy the definition of LAMBDA from Part 1 of the tutorial, Lesson 8. +We are going to modify it into a type systems for LAMBDA.

+

Before we start, it is important to clarify an important detail, namely that +our type system will yield a type checker when executed, not a type +inferencer. In particular, we are going to change the LAMBDA syntax +to allow us to associate a type to each declared variable. The +constructs which declare variables are lambda, let, letrec and mu. +The syntax of all these will therefore change.

+

Since here we are not interested in a LAMBDA semantics anymore, we take the +freedom to eliminate the Val syntactic category, our previous results. +Our new results are going to be the types, because programs will now reduce +to their types.

+

As explained, the syntax of the lambda construct needs to change, to also +declare the type of the variable that it binds. We add the new syntactic +category Type, with the following constructs: int, bool, the function +type (which gives it its higher-order status), and parentheses as bracket. +Also, we make types our K results.

+

We are now ready to define the typing rules.

+

Let us start with the typing rule for lambda abstraction: lambda X : T . E +types to the function type T -> T', where T' is the type obtained by further +typing E[T/X]. This can be elegantly achieved by reducing the lambda +abstraction to T -> E[T/X], provided that we extend the function type construct +to take expressions, not only types, as arguments, and to be strict. +This can be easily achieved by redeclaring it as a strict expression construct +(strictness in the second argument would suffice in this example, but it is +more uniform to define it strict overall).

+

The typing rule for application is as simple as it can get: (T1->T2) T1 => T2.

+

Let us now give the typing rules of arithmetic and Boolean expression +constructs. First, let us get rid of Val. Second, rewrite each value to its +type, similarly to the type system for IMP++ in the previous lesson. Third, +replace each semantic rule by its typing rule. Fourth, make sure you +do not forget to subsort Type to Exp, so your rules above will parse.

+

The typing policy of the conditional statement is that its first argument +should type to bool and its other two arguments should type to the same type +T, which will also be the result type of the conditional. So we make the +conditional construct strict in all its three arguments and we write the +obvious rule: if bool then T:Type else T => T. We want a runtime check that +the latter arguments are actually typed, so we write T:Type.

+

There is nothing special about let, except that we have to make sure we +change its syntax to account for the type of the variable that it binds. +This rule is a macro, so the let is desugared statically.

+

Similarly, the syntax of letrec and mu needs to change to account for the +type of the variable that they bind. The typing of letrec remains based on +its desugaring to mu; we have to make sure the types are also included now.

+

The typing policy of mu is that its body should type to the same type T of +its variable, which is also the type of the entire mu expression. This can +be elegantly achieved by rewriting it to (T -> T) E[T/X]. Recall that +application is strict, so E[T/X] will be eventually reduced to its type. +Then the application types correctly only if that type is also T, and in +that case the result type will also be T.

+

kompile and krun some programs. You can, for example, take the LAMBDA +programs from the first tutorial, modify them by adding types to their +variable declarations, and then type check them using krun.

+

In the next lesson we will discuss an environment-based type system +for LAMBDA.

+

Go to Lesson 3, Type Systems: Environment-Based Higher-Order Type Systems.

+

MOVIE (out of date) [6'52"]

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_3/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_3/index.html new file mode 100644 index 00000000000..5d5e2303695 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_3/index.html @@ -0,0 +1,435 @@ + + + + + + + + + + + + + + +Environment-Based Higher-Order Type Systems | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Environment-Based Higher-Order Type Systems

+

In this lesson you learn how to define an environment-based type system for +a higher-order language, namely the LAMBDA language defined in Part 1 of the +tutorial.

+

The simplest and fastest way to proceed is to copy the substitution-based +type system of LAMBDA from the previous lesson and modify it into an +environment-based one. A large portion of the substitution-based definition +will remain unchanged. We only have to modify the rules that use +substitution.

+

We do not need the substitution anymore, so we can remove the require and +import statements. The syntax of types and expressions stays unchanged, but +we can now remove the binder tag of lambda.

+

Like in the type system of IMP++ in Lesson 1, we need a configuration that +contains, besides the <k/> cell, a <tenv/> cell that will hold the type +environment.

+

In an environment-based definition, unlike in a substitution-based one, we +need to lookup variables in the environment. So let us start with the +type lookup rule:

+
rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</k>
+
+

The type environment is populated by the semantic rule of lambda:

+
rule <k> lambda X : T . E => (T -> E) ~> Rho ...</k>
+     <tenv> Rho => Rho[X <- T] </tenv>
+
+

So X is bound to its type T in the type environment, and then T -> E +is scheduled for processing. Recall that the arrow type construct has been +extended into a strict expression construct, so E will be eventually reduced +to its type. Like in other environment-based definitions, we need to make +sure that we recover the type environment after the computation in the scope +of the declared variable terminates.

+

The typing rule of application does not change, so it stays as elegant as it +was in the substitution-based definition:

+
rule (T1 -> T2) T1 => T2
+
+

So do the rules for arithmetic and Boolean constructs, and those for the +if, and let, and letrec.

+

The mu rule needs to change, because it was previously defined using +substitution. We modify it in the same spirit as we modified the lambda +rule: bind X to its type in the environment, schedule its body for typing +in its right context, and then recover the type environment.

+

Finally, we give the semantics of environment recovery, making sure +the environment is recovered only after the preceding computation is +reduced to a type:

+

rule _:Type ~> (Rho => .) ... _ => Rho

+

The changes that we applied to the substitution-based definition were +therefore quite systematic: each substitution invocation was replaced with +an appropriate type environment update/recovery.

+

Go to Lesson 4, Type Systems: A Naive Substitution-Based Type Inferencer.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_4/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_4/NOTES/index.html new file mode 100644 index 00000000000..3d820330c3d --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_4/NOTES/index.html @@ -0,0 +1,381 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The README needs to be changed to reflect the fact that we now have a builtin +unification procedure. We may even want to merge this lecture with the +next one, and eliminate the approach where we throw equalities on the computation. +This needs some more thinking, though, especialy on how to smoothly glue it +with Lesson 6, where we also use equalities.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_4/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_4/index.html new file mode 100644 index 00000000000..b61d212062c --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_4/index.html @@ -0,0 +1,578 @@ + + + + + + + + + + + + + + +A Naive Substitution-Based Type Inferencer | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

A Naive Substitution-Based Type Inferencer

+

In this lesson you learn how to define a naive substitution-based type +inferencer for a higher-order language, namely the LAMBDA language +defined in Part 1 of the tutorial.

+

Unlike in the type checker defined in Lessons 2 and 3, where we had to +associate a type with each declared variable, a type inferencer +attempts to infer the types of all the variables from the way those +variables are used. Let us take a look at this program, say plus.lambda:

+
lambda x . lambda y . x + y
+
+

Since x and y are used in an integer addition context, we can infer +that they must have the type int and the result of the addition is +also an int, so the type of the entire expression is int -> int -> int. +Similarly, the program if.lambda

+
lambda x . lambda y . lambda z .
+  if x then y else z
+
+

can only make sense when x has type bool and y and z have the same +type, say t, in which case the type of the entire expression is +bool -> t -> t -> t. Since the type t can be anything, we say that +the type of this expression is polymorphic. That means that the code +above can be used in different contexts, where t can be an int, a +bool, a function type int -> int, and so on.

+

In the identity.lambda program

+
let f = lambda x . x
+in f 1
+
+

f has such a polymorphic type, which is then applied to an integer, +so this program is type-safe and its type is int.

+

A typical polymorphic expression is the composition

+
lambda f . lambda g . lambda x .
+  g (f x)
+
+

which has the type (t1 -> t2) -> (t2 -> t3) -> (t1 -> t3), polymorphic +in 3 types.

+

Let us now define our naive type inferencer and then we discuss more +examples. The idea is quite simple: we conceptually do the same +operations like we did within the type checker defined in Lesson 2, +with two important differences:

+
    +
  1. instead of declaring a type with each declared variable, we assume +a fresh type for that variable; and
  2. +
  3. instead of checking that the types of expressions satisfy the +type properties of the context in which they are used, we impose +those properties as type equality constraints. A general-purpose +unification-based constraint solving mechanism is then used to solve +the generated type constraints.
  4. +
+

Let us start with the syntax, which is essentially identical to that +of the type checker in Lesson 2, except that bound variables are not +declared a type anymore. Also, to keep things more compact, we put +all the Exp syntax declarations in one syntax declaration this time.

+ +

Before we modify the rules, let us first define our machinery for +adding and solving constraints. First, we require and import the +unification procedure. We do not discuss unification here, but if you +are interested you can consult the unification.k files under +k-distribution/include/kframework/builtin, which contains our current generic +definition of unification, which is written also in K. The generic unification +provides a sort, Mgu, for most-general-unifier, an operation +updateMgu(Mgu,T1,T2) which updates Mgu with additional constraints +generated by forcing the terms T1 and T2 to be equal, and an operation +applyMgu(Mgu,T) which applies Mgu to term T. For our use +of unification here, we do not even need to know how Mgu terms are +represented internally.

+

We define a K item construct, =, which takes two Type terms and +enforces them to be equal by means of updating the current Mgu. +Once the constraints are added to the Mgu, the equality dissolves +itself. With this semantics of = in mind, we can now go ahead and +modify the rules of the type checker systematically into rules +for a type inferencer. The changes are self-explanatory and +mechanical: for example, the rule

+
rule int * int => int
+
+

changes into rule

+
rule T1:Type  * T2:Type => T1 = int ~> T2 = int ~> int
+
+

generating the constraints that the two arguments of multiplication +have the type int, and the result type is int. Recall that each type +equality on the <k/> cell updates the current Mgu appropriately and +then dissolves itself; thus, the above says that after imposing the +constraints T1=int and T2=int, multiplication yields a type int.

+

As mentioned above, since types of variables are not declared anymore, +but inferred, we have to generate a fresh type for each variable at its +declaration time, and then generate appropriately constraints for it. +For example, the type semantics of lambda and mu become:

+
rule lambda X . E => T -> E[T/X]  when fresh(T:Type)
+rule mu X . E => (T -> T) E[T/X]  when fresh(T:Type)
+
+

that is, we add a condition stating that the previously declared type +is now a fresh one. This type will be further constrained by how the +variable X is being used within E.

+

Interestingly, the previous typing rule for lambda application is not +powerful enough anymore. Indeed, since types are not given anymore, +it may very well be the case that the inferred type of the first +argument of the application construct is not yet a function type +(remember, for example, the program composition.lambda above). What +we have to do is to enforce it to be a function type, by means of +fresh types and constraints. We can introduce a fresh type for the +result of the application, and then write the expected rule as +follows:

+
rule T1:Type T2:Type => T1 = (T2 -> T) ~> T  when fresh(T:Type)
+
+

The conditional requires that its first argument is a bool and its +second and third arguments have the same type, which is also the +result type.

+

The macros do not change, in particular let is desugared into lambda +application. We will next see that this is a significant restriction, +because it limits the polymorphism of our type system.

+

We are done. We have a working type inferencer for LAMBDA.

+

Let's kompile it and krun the programs above. They all work as +expected. Let us also try some additional programs, to push it to its +limits.

+

First, let us test mu by means of a letrec example:

+
letrec f x = 3
+in f
+
+

We can also try all the programs that we had in our first tutorial, on +lambda, for example the factorial.imp program:

+
letrec f x = if x <= 1 then 1 else (x * (f (x + -1)))
+in (f 10)
+
+

Those programs are simple enough that they should all work as +expected with our naive type inferencer here.

+

Let us next try to type some tricky programs, which involve more +complex and indirect type constraints.

+

tricky-1.lambda:

+
lambda f . lambda x . lambda y . (
+  (f x y) + x + (let x = y in x)
+)
+
+

tricky-2.lambda:

+
lambda x .
+  let f = lambda y . if true then y else x
+  in (lambda x . f 0)
+
+

tricky-3.lambda:

+
lambda x . let f = lambda y . if true then x 7 else x y
+           in f
+
+

tricky-4.lambda:

+
lambda x . let f = lambda x . x
+           in let d = (f x) + 1
+              in x
+
+

tricky-5.lambda:

+
lambda x . let f = lambda y . x y
+           in let z = x 0 in f
+
+

It is now time to see the limitations of this naive type inferencer. +Consider the program

+
let id = lambda x . x
+in if (id true) then (id 1) else (id 2)
+
+

Our type inferencer fails graciously with a clash in the <mgu/> cell +between int and bool. Indeed, the desugaring macro of let turns it +into a lambda and an application, which further enforce id to have a +type of the form t -> t for some fresh type t. The first use of id +in the condition of if will then constrain t to be bool, while the +other uses in the two branches will enforce t to be int. Thus the +clash in the <mgu/> cell.

+

Similarly, the program

+
let id = lambda x . x
+in id id
+
+

yields a different kind of conflict: if id has type t -> t, in order +to apply id to itself it must be the case that its argument, t, equals +t -> t. These two type terms cannot be unified because there is a +circular dependence on t, so we get a cycle in the <mgu/> cell.

+

Both limitations above will be solved when we change the semantics of +let later on, to account for the desired polymorphism.

+

Before we conclude this lesson, let us see one more interesting +example, where the lack of let-polymorphism leads not to a type error, +but to a less generic type:

+
let f1 = lambda x . x in
+  let f2 = f1 in
+    let f3 = f2 in
+      let f4 = f3 in
+        let f5 = f4 in
+          if (f5 true) then f2 else f3
+
+

Our current type inferencer will infer the type bool -> bool for the +program above. Nevertheless, since all functions f1, f2, f3, f4, f5 +are the identity function, which is polymorphic, we would expect the +entire program to type to the same polymorphic identity function type.

+

This limitation will be also addressed when we define our +let-polymorphic type inferencer.

+

Before that, in the next lesson we will show how easily we can turn +the naive substitution-based type inferencer discussed in this lesson +into a similarly naive, but environment-based type inferencer.

+

Go to Lesson 5, Type Systems: A Naive Environment-Based Type Inferencer.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_5/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_5/index.html new file mode 100644 index 00000000000..a5150ce58f6 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_5/index.html @@ -0,0 +1,434 @@ + + + + + + + + + + + + + + +A Naive Environment-Based Type Inferencer | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

A Naive Environment-Based Type Inferencer

+

In this lesson you learn how to define a naive environment-based type +inferencer for a higher-order language. Specifically, we take the +substitution-based type inferencer for LAMBDA defined in Lesson 4 and +turn it into an environment-based one.

+

Recall from Lesson 3, where we defined an environment-based type +checker for LAMBDA based on the substitution-based one in Lesson 2, +that the transition from a substitution-based definition to an +environment-based one was quite systematic and mechanical: each +substitution occurrence E[T/X] is replaced by E, but at the same time +the variable X is bound to type T in the type environment. One benefit +of using type environments instead of substitution is that we replace +a linear complexity operation (the substitution) with a constant +complexity one (the variable lookup).

+

There is not much left to say which has not been already said in +Lesson 3: we remove the unnecessary binder annotations for the +variable binding operations, then add a <tenv/> cell to the +configuration to hold the type environment, then add a new rule for +variable lookup, and finally apply the transformation of substitutions +E[T/X] into E as explained above.

+

The resulting type inferencer should now work exactly the same way as +the substitution-based one, except, of course, that the resulting +configurations will contain a <tenv/> cell now.

+

As sanity check, let us consider two more LAMBDA programs that test +the static scoping nature of the inferencer. We do that because +faulty environment-based definitions often have this problem. The +program

+
let x = 1
+in let f = lambda a . x
+   in let x = true
+      in f 3
+
+

should type to int, not to bool, and so it does. Similarly, the +program

+
let y = 0
+in letrec f x = if x <= 0
+                then y
+                else let y = true
+                     in f (x + 1)
+   in f 1
+
+

should also type to int, not bool, and so it does, too.

+

The type inferencer defined in this lesson has the same limitations, +in terms of polymorphism, as the one in Lesson 4. In the next +lesson we will see how it can be parallelized, and in further lessons +how to make it polymorphic.

+

Go to Lesson 6, Type Systems: Parallel Type Checkers/Inferencers.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_6/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_6/NOTES/index.html new file mode 100644 index 00000000000..60ab4f20fa4 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_6/NOTES/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The README needs to be changed to reflect the fact that we now have a builtin +unification procedure.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_6/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_6/index.html new file mode 100644 index 00000000000..7884b91ba62 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_6/index.html @@ -0,0 +1,488 @@ + + + + + + + + + + + + + + +Parallel Type Checkers/Inferencers | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Parallel Type Checkers/Inferencers

+

In this lesson you learn how to define parallel type checkers or +inferencers. For the sake of a choice, we will parallelize the one in +the previous lesson, but the ideas are general. We are using the same +idea to define type checkers for other languages in the K tool +distribution, such as SIMPLE and KOOL.

+

The idea is in fact quite simple. Instead of one monolithic typing +task, we generate many smaller tasks, which can be processed in +parallel. We use the same approach to define parallel semantics as we +used for threads in IMP++ in Part 4 of the tutorial, that is, we add a +cell holding all the parallel tasks, making sure we declare the cell +holding a task with multiplicity *. For the particular type +inferencer that we chose here, the one in Lesson 5, each task will +hold an expression to type together with a type environment (so it +knows where to lookup its free variables). We have the following +configuration then:

+
configuration <tasks color="yellow">
+                <task color="orange" multiplicity="*">
+                  <k color="green"> $PGM:Exp </k>
+                  <tenv color="red"> .Map </tenv>
+                </task>
+              </tasks>
+              <mgu color="blue"> .Mgu </mgu>
+
+

Now we have to take each typing rule we had before and change it to +yield parallel typing. For example, our rule for typing +multiplication was the following in Lesson 5:

+
rule T1:Type * T2:Type => T1 = int ~> T2 = int ~> int
+
+

Since * was strict, its two arguments eventually type, and once that +happens the rule above fires. Unfortunately, the strictness of +multiplication makes the typing of the two expressions sequential in +our previous definition. To avoid typing the two expressions +sequentially and instead generating two parallel tasks, we remove the +strict attribute of multiplication and replace the rule above with the +following:

+
rule <k> E1 * E2 => int ...</k> <tenv> Rho </tenv>
+     (. => <task> <k> E1 = int </k> <tenv> Rho </tenv> </task>
+           <task> <k> E2 = int </k> <tenv> Rho </tenv> </task>)
+
+

Therefore, we generate two tasks for typing E1 and E2 in the same type +environment as the current task, and let the current task continue by +simply optimistically reducing E1*E2 to its expected result type, int. +If E1 or E2 will not type to int, then either their corresponding +tasks will get stuck or the <mgu/> cell will result into a clash or cycle, +so the program will not type overall in spite of the fact that we +allowed the task containing the multiplication to continue. This is +how we get maximum of parallelism in this case.

+

Before we continue, note that the new tasks hold equalities in them, +where one of its arguments is an expression, while previously the +equality construct was declared to take types. What we want now is +for the equality construct to possibly take any expressions, and first +type them and then generate the type constraint like before. This can +be done very easily by just extending the equality construct to +expressions and declaring it strict:

+
syntax KItem ::= Exp "=" Exp  [strict]
+
+ +

Unlike before, where we only passed types to the equality construct, +we now need a runtime check that its arguments are indeed types before +we can generate the updateMgu command:

+
rule <k> T:Type = T':Type => . ...</k>
+     <mgu> Theta:Mgu => updateMgu(Theta,T,T') </mgu>
+
+

Like before, an equality will therefore update the <mgu/> cell and then +it dissolves itself, letting the <k/> cell in the corresponding task +empty. Such empty tasks are unnecessary, so they can be erased:

+
rule <task>... <k> . </k> ...</task> => .
+
+

We can now follow the same style as for multiplication to write the +parallel typing rules of the other arithmetic constructs, and even for +the conditional.

+

To parallelize the typing of lambda we generate two fresh types, one +for the variable and one for the body, and make sure that we generate +the correct type constraint and environment in the body task:

+
rule <k> lambda X . E => Tx -> Te ...</k> <tenv> TEnv </tenv>
+     (. => <task> <k> E = Te </k> <tenv> TEnv[Tx/X] </tenv> </task>)
+  when fresh(Tx:Type) andBool fresh(Te:Type)
+
+

Note that the above also allows us to not need to change and then +recover the environment of the current cell.

+

For function application we also need to generate two fresh types:

+
rule <k> E1 E2 => T ...</k> <tenv> Rho </tenv>
+     (. => <task> <k> E1 = T2 -> T </k> <tenv> Rho </tenv> </task>
+           <task> <k> E2 = T2 </k> <tenv> Rho </tenv> </task>)
+  when fresh(T2:Type) andBool fresh(T:Type)
+
+

The only rule left is that of mu X . E. In this case we only need one +fresh type, because X, E and mu X . E have all the same type:

+
rule <k> mu X . E => T ...</k>  <tenv> TEnv </tenv>
+     (. => <task> <k> E = T </k> <tenv> TEnv[T/X] </tenv> </task>)
+  when fresh(T:Type)
+
+

We do not need the type environment recovery operation, so we delete it.

+

We can now kompile and krun all the programs that we typed in Lesson 5. +Everything should work.

+

In this lesson we only aimed at parallelizing the type inferencer in +Lesson 5, not to improve its expressiveness; it still has the same +limitations in terms of polymorphism. The next lessons are dedicated +to polymorphic type inferencers.

+

Go to Lesson 7, Type Systems: A Naive Substitution-based Polymorphic Type Inferencer.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_7/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_7/NOTES/index.html new file mode 100644 index 00000000000..1a376fc10e3 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_7/NOTES/index.html @@ -0,0 +1,379 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

This approach leads to an incorrect type checker, in that programs which +lead to a runtime error will type. See tricky-5 and/or variations of it.

+

Discuss monomorphic vs. polymorphic types and type inferencers.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_7/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_7/index.html new file mode 100644 index 00000000000..49d55692270 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_7/index.html @@ -0,0 +1,493 @@ + + + + + + + + + + + + + + +A Naive Substitution-based Polymorphic Type Inferencer | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

A Naive Substitution-based Polymorphic Type Inferencer

+

In this lesson you learn how little it takes to turn a naive monomorphic +type inferencer into a naive polymorphic one, basically only changing +a few characters. In terms of the K framework, you will learn that +you can have complex combinations of substitutions in K, both over +expressions and over types.

+

Let us start directly with the change. All we have to do is to take +the LAMBDA type inferencer in Lesson 4 and only change the macro

+
rule let X = E in E' => (lambda X . E') E  [macro]
+
+

as follows:

+
rule let X = E in E' => E'[E/X]  [macro]
+
+

In other words, we are inlining the beta-reduction rule of +lambda-calculus within the original rule. In terms of typing, +the above forces the type inferencer to type E in place for each +occurrence of X in E'. Unlike in the first rule, where X had to get +one type only which satisfied the constrains of all X's occurrences in +E', we now never associate any type to X anymore.

+

Let us kompile and krun some examples. Everything that worked with +the type inferencer in Lesson 4 should still work here, although the +types of some programs can now be more general. For example, reconsider +the nested-lets.lambda program

+
let f1 = lambda x . x in
+  let f2 = f1 in
+    let f3 = f2 in
+      let f4 = f3 in
+        let f5 = f4 in
+          if (f5 true) then f2 else f3
+
+

which was previously typed to bool -> bool. With the new rule above, +the sequence of lets is iteratively eliminated and we end up with the +program

+
if (lambda x . x) true then (lambda x . x) else (lambda x . x)
+
+

which now types (with both type inferencers) to a type of the form +t -> t, for some type variable t, which is more general than the +previous bool -> bool type that the program typed to in Lesson 4.

+

We can also now type programs that were not typable before, such as

+
let id = lambda x . x
+in if (id true) then (id 1) else (id 2)
+
+

and

+
let id = lambda x . x
+in id id
+
+

Let us also test it on some trickier programs, also not typable +before, such as

+
let f = lambda x . x
+in let g = lambda y . f y
+   in g g
+
+

which gives us a type of the form t -> t for some type variable t, +and as

+
let f = let g = lambda x . x
+        in let h = lambda x . lambda x . (g g g g)
+           in h
+in f
+
+

which types to t1 -> t2 -> t3 -> t3 for some type variables t1, t2, t3.

+

Here is another program which was not typable before, which is +trickier than the others above in that a lambda-bound variable appears +free in a let-bound expression:

+
lambda x . (
+  let y = lambda z . x
+  in if (y true) then (y 1) else (y (lambda x . x))
+)
+
+

The above presents no problem now, because once lambda z . x gets +substituted for y we get a well-typed expression which yields that x +has the type bool, so the entire expression types to bool -> bool.

+

The cheap type inferencer that we obtained above therefore works as +expected. However, it has two problems which justify a more advanced +solution. First, substitution is typically considered an elegant +mathematical instrument which is not too practical in implementations, +so an implementation of this type inferencer will likely be based on +type environments anyway. Additionally, we mix two kinds of +substitutions in this definition, one where we substitute types and +another where we substitute expressions, which can only make things +harder to implement efficiently. Second, our naive substitution of E +for X in E' can yield an exponential explosion in size of the original +program. Consider, for example, the following classic example which +is known to generate a type whose size is exponential in the size of +the program (and is thus used as an argument for why let-polymorphic +type inference is exponential in the worst-case):

+
let f00 = lambda x . lambda y . x in
+  let f01 = lambda x . f00 (f00 x) in
+    let f02 = lambda x . f01 (f01 x) in
+      let f03 = lambda x . f02 (f02 x) in
+        let f04 = lambda x . f03 (f03 x) in
+          // ... you can add more nested lets here
+          f04
+
+

The particular instance of the pattern above generates a type which +has 17 type variables! The desugaring of each let doubles the size of +the program and of its resulting type. While such programs are little +likely to appear in practice, it is often the case that functions can +be quite complex and large while their type can be quite simple in the +end, so we should simply avoid retyping each function each time it is +used.

+

This is precisely what we will do next. Before we present the classic +let-polymorphic type inferencer in Lesson 9, which is based on +environments, we first quickly discuss in Lesson 8 an intermediate +step, namely a naive environment-based variant of the inferencer +defined here.

+

Go to Lesson 8, Type Systems: A Naive Environment-based Polymorphic Type Inferencer.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_8/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_8/NOTES/index.html new file mode 100644 index 00000000000..35375ca6fdf --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_8/NOTES/index.html @@ -0,0 +1,378 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

We also have to redeclare lambda and mu as binders. Program +tricky-2.lambda shows why.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_8/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_8/index.html new file mode 100644 index 00000000000..7ac22f74330 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_8/index.html @@ -0,0 +1,426 @@ + + + + + + + + + + + + + + +A Naive Environment-based Polymorphic Type Inferencer | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

A Naive Environment-based Polymorphic Type Inferencer

+

In this short lesson we discuss how to quickly turn a naive +environment-based monomorphic type inferencer into a naive let-polymorphic +one. Like in the previous lesson, we only need to change a few +characters. In terms of the K framework, you will learn how to have +both environments and substitution in the same definition.

+

Like in the previous lesson, all we have to do is to take the LAMBDA +type inferencer in Lesson 5 and only change the rule

+
rule let X = E in E' => (lambda X . E') E
+
+

as follows:

+
rule let X = E in E' => E'[E/X]
+
+

The reasons why this works have already been explained in the previous +lesson, so we do not repeat them here.

+

Since our new let rule uses substitution, we have to require the +substitution module at the top and also import SUBSTITUTION in the +current module, besides the already existing UNIFICATION.

+

Everything which worked with the type inferencer in Lesson 7 should +also work now. Let us only try the exponential type example,

+
let f00 = lambda x . lambda y . x in
+  let f01 = lambda x . f00 (f00 x) in
+    let f02 = lambda x . f01 (f01 x) in
+      let f03 = lambda x . f02 (f02 x) in
+        let f04 = lambda x . f03 (f03 x) in
+          f04
+
+

As expected, this gives us precisely the same type as in Lesson 7.

+

So the only difference between this type inferencer and the one in +Lesson 7 is that substitution is only used for LAMBDA-to-LAMBDA +transformations, but not for infusing types within LAMBDA programs. +Thus, the syntax of LAMBDA programs is preserved intact, which some +may prefer. Nevertheless, this type inferencer is still expensive and +wasteful, because the let-bound expression is typed over and over +again in each place where the let-bound variable occurs.

+

In the next lesson we will discuss a type inferencer based on the +classic Damas-Hindley-Milner type system, which maximizes the reuse of +typing work by means of parametric types.

+

Go to Lesson 9, Type Systems: Let-Polymorphic Type Inferencer (Damas-Hindley-Milner).

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_9.5/NOTES/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_9.5/NOTES/index.html new file mode 100644 index 00000000000..a43bb4282b0 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_9.5/NOTES/index.html @@ -0,0 +1,377 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

We have to test this as well; we need a test folder with a config.xml.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/5_types/lesson_9/index.html b/k-distribution/pl-tutorial/1_k/5_types/lesson_9/index.html new file mode 100644 index 00000000000..cdfa78e14b7 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/5_types/lesson_9/index.html @@ -0,0 +1,543 @@ + + + + + + + + + + + + + + +Let-Polymorphic Type Inferencer (Damas-Hindley-Milner) | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Let-Polymorphic Type Inferencer (Damas-Hindley-Milner)

+

In this lesson we discuss a type inferencer based on what we call today +the Damas-Hindley-Milner type system, which is at the core of many +modern functional programming languages. The first variant of it was +proposed by Hindley in 1969, then, interestingly, Milner rediscovered +it in 1978 in the context of the ML language. Damas formalized it as +a type system in his PhD thesis in 1985. More specifically, our type +inferencer here, like many others as well as many implementations of +it, follows more closely the syntax-driven variant proposed by Clement +in 1987.

+

In terms of K, we will see how easily we can turn one definition which +is considered naive (our previous type inferencer in Lesson 8) into a +definition which is considered advanced. All we have to do is to +change one existing rule (the rule of the let binder) and to add a new +one. We will also learn some new predefined features of K, which make +the above possible.

+

The main idea is to replace the rule

+
rule let X = E in E' => E'[E/X]
+
+

which creates potentially many copies of E within E' with a rule +which types E once and then reuses that type in each place where X +occurs free in E'. The simplest K way to type E is to declare the +let construct strict(2). Now we cannot simply bind X to the type +of E, because we would obtain a variant of the naive type inferencer +we already discussed, together with its limitations, in Lesson 5 of this +tutorial. The trick here is to parameterize the type of E in all its +unconstrained fresh types, and then create fresh copies of those +parameters in each free occurrence of X in E'.

+

Let us discuss some examples, before we go into the technical details. +Consider the first let-polymorphic example which failed to be typed +with our first naive type-inferencer:

+
let id = lambda x . x
+in if (id true) then (id 1) else (id 2)
+
+

When typing lambda x . x, we get a type of the form t -> t, for some +fresh type t. Instead of assigning this type to id as we did in the +naive type inferencers, we now first parametrize this type in its +fresh variable t, written

+
(forall t) t -> t
+
+

and then bind id to this parametric type. The intuition for the +parameter is that it can be instantiated with any other type, so this +parametric type stands, in fact, for infinitely many non-parametric +types. This is similar to what happens in formal logic proof systems, +where rule schemas stand for infinitely many concrete instances of +them. For this reason, parametric types are also called type schemas.

+

Now each time id is looked up within the let-body, we create a fresh +copy of the parameter t, which can this way be independently +constrained by each local context. Let's suppose that the three id +lookups yield the types t1 -> t1, t2 -> t2, and respectively t3 -> t3. +Then t1 will be constrained to be bool, and t2 and t3 to be int, +so we can now safely type the program above to int.

+

Therefore, a type schema comprises a summary of all the typing work +that has been done for typing the corresponding expression, and an +instantiation of its parameters with fresh copies represents an +elegant way to reuse all that typing work.

+

There are some subtleties regarding what fresh types can be made +parameters. Let us consider another example, discussed as part of +Lesson 7 on naive let-polymorphism:

+
lambda x . (
+  let y = lambda z . x
+  in if (y true) then (y 1) else (y (lambda x . x))
+)
+
+

This program should type to bool -> bool, as explained in Lesson 7. +The lambda construct will bind x to some fresh type tx. Then the +let-bound expression lambda z . x types to tz -> tx for some +additional fresh type tz. The question now is what should the +parameters of this type be when we generate the type schema? If we +naively parameterize in all fresh variables, that is in both tz and +tx obtaining the type schema (forall tz,tx) tz -> tx, then there will +be no way to infer that the type of x, tx, must be a bool! The +inferred type of this expression would then wrongly be tx -> t for +some fresh types tx and t. That's because the parameters are replaced +with fresh copies in each occurrence of y, and thus their relationship +to the original x is completely lost. This tells us that we cannot +parameterize in all fresh types that appear in the type of the +let-bound expression. In particular, we cannot parameterize in those +which some variables are already bound to in the current type +environment (like x is bound to tx in our example above). +In our example, the correct type schema is (forall tz) tz -> tx, +which now allows us to correctly infer that tx is bool.

+

Let us now discuss another example, which should fail to type:

+
lambda x .
+  let f = lambda y . x y
+  in if (f true) then (f 1) else (f 2)
+
+

This should fail to type because lambda y . x y is equivalent to x, +so the conditional imposes the conflicting constraints that x should be +a function whose argument is either a bool or an int. Let us try to +type it using our currently informal procedure. Like in the previous +example, x will be bound to a fresh type tx. Then the let-bound +expression types to ty -> tz with ty and tz fresh types, adding also +the constraint tx = ty -> tz. What should the parameters of this type +be? If we ignore the type constraint and simply make both ty and tz +parameters because no variable is bound to them in the type +environment (indeed, the only variable x in the type environment is +bound to tx), then we can wrongly type this program to tx -> tz +following a reasoning similar to the one in the example above. +In fact, in this example, none of ty and tz can be parameters, because +they are constrained by tx.

+

The examples above tell us two things: first, that we have to take the +type constraints into account when deciding the parameters of the +schema; second, that after applying the most-general-unifier solution +given by the type constraints everywhere, the remaining fresh types +appearing anywhere in the type environment are consequently constrained +and cannot be turned into parameters. Since the type environment can in +fact also hold type schemas, which already bind some types, we only need +to ensure that none of the fresh types appearing free anywhere in the +type environment are turned into parameters of type schemas.

+

Thanks to generic support offered by the K tool, we can easily achieve +all the above as follows.

+

First, add syntax for type schemas:

+
syntax TypeSchema ::= "(" "forall" Set ")" Type  [binder]
+
+

The definition below will be given in such a way that the Set argument +of a type schema will always be a set of fresh types. We also declare +this construct to be a binder, so that we can make use of the generic +free variable function provided by the K tool.

+

We now replace the old rule for let

+
rule let X = E in E' => E'[E/X]
+
+

with the following rule:

+
rule <k> let X = T:Type in E => E ~> tenv(TEnv) ...</k>
+     <mgu> Theta:Mgu </mgu>
+     <tenv> TEnv
+      => TEnv[(forall freeVariables(applyMgu(Theta, T)) -Set
+                      freeVariables(applyMgu(Theta, values TEnv))
+              ) applyMgu(Theta, T) / X]
+     </tenv>
+
+

So the type T of E is being parameterized and then bound to X in the +type environment. The current mgu Theta, which comprises all the type +constraints accumulated so far, is applied to both T and the types in +the type environment. The remaining fresh types in T which do not +appear free in the type environment are then turned into type parameters. +The function freeVariables returns, as expected, the free variables of +its argument as a Set; this is why we declared the type schema to be a +binder above.

+

Now a LAMBDA variable in the type environment can be bound to either a +type or a type schema. In the first case, the previous rule we had +for variable lookup can be reused, but we have to make sure we check +that T there is of sort Type (adding a sort membership, for example). +In the second case, as explained above, we have to create fresh copies +of the parameters. This can be easily achieved with another +predefined K function, as follows:

+
rule <k> X:Id => freshVariables(Tvs,T) ...</k>
+     <tenv>... X |-> (forall Tvs) T ...</tenv>
+
+

Indeed, freshVariables takes a set of variables and a term, and returns the +same term but with each of the given variables replaced by a fresh copy.

+

The operations freeVariables and freshVariables are useful in many K +definitions, so they are predefined in module substitution.k.

+

Our definition of this let-polymorphic type inferencer is now +complete. To test it, kompile it and then krun all the LAMBDA +programs discussed since Lesson 4. They should all work as expected.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/1_k/index.html b/k-distribution/pl-tutorial/1_k/index.html new file mode 100644 index 00000000000..61a920a3cf7 --- /dev/null +++ b/k-distribution/pl-tutorial/1_k/index.html @@ -0,0 +1,398 @@ + + + + + + + + + + + + + + +Learning K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Learning K

+

We start by introducing the basic features of K by means of a series +of very simple languages. The objective here is neither to learn those +languages nor to study their underlying paradigm, but simply to learn K.

+
    +
  • LAMBDA: Lambda calculus defined.
  • +
  • IMP: A simple imperative language.
  • +
  • LAMBDA++: LAMBDA extended with control flow.
  • +
  • IMP++: IMP extended with threads and IO.
  • +
  • TYPES: LAMBDA type system.
  • +
+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/NOTES/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/NOTES/index.html new file mode 100644 index 00000000000..5d91c2e7824 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/NOTES/index.html @@ -0,0 +1,394 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

This is not well tested now, and it was not well tested in v3.6 either. +We should add some rules as transitions, too, and then use search on all +the examples.

+

Exercises not revised yet.

+

.Bag should be . throughout this definition #1772

+

There seems to be a problem with defining auxiliary constructs of sort +KItem when we want to use them as a particular sort in rule. We had to +declare them as construct for that sort instead. May want to explain +this a bit in the Latex discussion (related to #1803):

+
    +
  • syntax Exp ::= lookup(Int)
  • +
+
    +
  • syntax KItem ::= lookup(Int)
  • +
+

We currently add Vals to KResult, but we should have a better pattern for +List{Sort} and in general for any collections, where we make them hybrid +(they become KResults when their elements become KResults)

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/index.html new file mode 100644 index 00000000000..47cca1f1c80 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/index.html @@ -0,0 +1,1702 @@ + + + + + + + + + + + + + + +SIMPLE — Untyped | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

SIMPLE — Untyped

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of the untyped SIMPLE language. +SIMPLE is intended to be a pedagogical and research language that captures +the essence of the imperative programming paradigm, extended with several +features often encountered in imperative programming languages. +A program consists of a set of global variable declarations and +function definitions. Like in C, function definitions cannot be +nested and each program must have one function called main, +which is invoked when the program is executed. To make it more +interesting and to highlight some of K's strengths, SIMPLE includes +the following features in addition to the conventional imperative +expression and statement constructs:

+
    +
  • +

    Multidimensional arrays and array references. An array evaluates +to an array reference, which is a special value holding a location (where +the elements of the array start) together with the size of the array; +the elements of the array can be array references themselves (particularly +when the array is multi-dimensional). Array references are ordinary values, +so they can be assigned to variables and passed/received by functions.

    +
  • +
  • +

    Functions and function values. Functions can have zero or +more parameters and can return abruptly using a return statement. +SIMPLE follows a call-by-value parameter passing style, with static scoping. +Function names evaluate to function abstractions, which hereby become ordinary +values in the language, same like the array references.

    +
  • +
  • +

    Blocks with locals. SIMPLE variables can be declared +anywhere, their scope being from the place where they are declared +until the end of the most nested enclosing block.

    +
  • +
  • +

    Input/Output. The expression read() evaluates to the +next value in the input buffer, and the statement write(e) +evaluates e and outputs its value to the output buffer. The +input and output buffers are lists of values.

    +
  • +
  • +

    Exceptions. SIMPLE has parametric exceptions (the value thrown as +an exception can be caught and bound).

    +
  • +
  • +

    Concurrency via dynamic thread creation/termination and +synchronization. One can spawn a thread to execute any statement. +The spawned thread shares with its parent its environment at creation time. +Threads can be synchronized via a join command which blocks the current thread +until the joined thread completes, via re-entrant locks which can be acquired +and released, as well as through rendezvous commands.

    +
  • +
+

Like in many other languages, some of SIMPLE's constructs can be +desugared into a smaller set of basic constructs. We do that at the end +of the syntax module, and then we only give semantics to the core constructs.

+

Note: This definition is commented slightly more than others, because it is +intended to be one of the first non-trivial definitions that the new +user of K sees. We recommend the beginner user to first check the +language definitions discussed in the K tutorial.

+
k
module SIMPLE-UNTYPED-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

We start by defining the SIMPLE syntax. The language constructs discussed +above have the expected syntax and evaluation strategies. Recall that in K +we annotate the syntax with appropriate strictness attributes, thus giving +each language construct the desired evaluation strategy.

+

Identifiers

+

Recall from the K tutorial that identifiers are builtin and come under the +syntactic category Id. The special identifier for the function +main belongs to all programs, and plays a special role in the semantics, +so we declare it explicitly. This would not be necessary if the identifiers +were all included automatically in semantic definitions, but that is not +possible because of parsing reasons (e.g., K variables used to match +concrete identifiers would then be ambiguously parsed as identifiers). They +are only included in the parser generated to parse programs (and used by the +kast tool). Consequently, we have to explicitly declare all the +concrete identifiers that play a special role in the semantics, like +main below.

+
k
syntax Id ::= "main" [token] +
+

Declarations

+

There are two types of declarations: for variables (including arrays) and +for functions. We are going to allow declarations of the form +var x=10, a[10,10], y=23;, which is why we allow the var +keyword to take a list of expressions. The non-terminals used in the two +productions below are defined shortly.

+
k
syntax Stmt ::= "var" Exps ";" + | "function" Id "(" Ids ")" Block +
+

Expressions

+

The expression constructs below are standard. Increment (++) takes +an expression rather than a variable because it can also increment an array +element. Recall that the syntax we define in K is what we call the syntax +of the semantics: while powerful enough to define non-trivial syntaxes +(thanks to the underlying SDF technology that we use), we typically refrain +from defining precise syntaxes, that is, ones which accept precisely the +well-formed programs (that would not be possible anyway in general). That job +is deferred to type systems, which can also be defined in K. In other words, +we are not making any effort to guarantee syntactically that only variables +or array elements are passed to the increment construct, we allow any +expression. Nevertheless, we will only give semantics to those, so expressions +of the form ++5, which parse (but which will be rejected by our type +system in the typed version of SIMPLE later), will get stuck when executed. +Arrays can be multidimensional and can hold other arrays, so their +lookup operation takes a list of expressions as argument and applies to an +expression (which can in particular be another array lookup), respectively. +The construct sizeOf gives the size of an array in number of elements +of its first dimension. Note that almost all constructs are strict. The only +constructs which are not strict are the increment (since its first argument +gets updated, so it cannot be evaluated), the input read which takes no +arguments so strictness is irrelevant for it, the logical and and or constructs +which are short-circuited, the thread spawning construct which creates a new +thread executing the argument expression and return its unique identifier to +the creating thread (so it cannot just evaluate its argument in place), and the +assignment which is only strict in its second argument (for the same reason as +the increment).

+
k
syntax Exp ::= Int | Bool | String | Id + | "(" Exp ")" [bracket] + | "++" Exp + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] +
+

We also need comma-separated lists of identifiers and of expressions. +Moreover, we want them to be strict, that is, to evaluate to lists of results +whenever requested (e.g., when they appear as strict arguments of +the constructs above).

+
k
syntax Ids ::= List{Id,","} [overload(Exps)] + syntax Exps ::= List{Exp,","} [overload(Exps), strict] // automatically hybrid now + syntax Exps ::= Ids + syntax Val + syntax Vals ::= List{Val,","} [overload(Exps)] + syntax Bottom + syntax Bottoms ::= List{Bottom,","} [overload(Exps)] + syntax Ids ::= Bottoms +
+

Statements

+

Most of the statement constructs are standard for imperative languages. +We syntactically distinguish between empty and non-empty blocks, because we +chose Stmts not to be a (;-separated) list of +Stmt. Variables can be declared anywhere inside a block, their scope +ending with the block. Expressions are allowed to be used for their side +effects only (followed by a semicolon ;). Functions are allowed +to abruptly return. The exceptions are parametric, i.e., one can throw a value +which is bound to the variable declared by catch. Threads can be +dynamically created and terminated, and can synchronize with join, +acquire, release and rendezvous. Note that the +strictness attributes obey the intended evaluation strategy of the various +constructs. In particular, the if-then-else construct is strict only in its +first argument (the if-then construct will be desugared into if-then-else), +while the loop constructs are not strict in any arguments. The print +statement construct is variadic, that is, it takes an arbitrary number of +arguments.

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" [macro] + | "print" "(" Exps ")" ";" [strict] +// NOTE: print strict allows non-deterministic evaluation of its arguments +// Either keep like this but document, or otherwise make Exps seqstrict. +// Of define and use a different expression list here, which is seqstrict. + | "try" Block "catch" "(" Id ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] +
+

The reason we allow Stmts as the first argument of for +instead of Stmt is because we want to allow more than one statement +to be executed when the loop is initialized. Also, as seens shorly, macros +may expand one statement into more statements; for example, an initialized +variable declaration statement var x=0; desugars into two statements, +namely var x; x=0;, so if we use Stmt instead of Stmts +in the production of for above then we risk that the macro expansion +of statement var x=0; happens before the macro expansion of for, +also shown below, in which case the latter would not apply anymore because +of syntactic mismatch.

+
k
syntax Stmt ::= Stmt Stmt [right] + +// I wish I were able to write the following instead, but confuses the parser. +// +// syntax Stmts ::= List{Stmt,""} +// syntax Top ::= Stmt | "function" Id "(" Ids ")" Block +// syntax Pgm ::= List{Top,""} +// +// With that, I could have also eliminated the empty block +
+

Desugared Syntax

+

This part desugars some of SIMPLE's language constructs into core ones. +We only want to give semantics to core constructs, so we get rid of the +derived ones before we start the semantics. All desugaring macros below are +straightforward.

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}} + rule for(Start Cond; Step) {} => {Start while (Cond) {Step;}} + rule var E1:Exp, E2:Exp, Es:Exps; => var E1; var E2, Es; + rule var X:Id = E; => var X; X = E; +
+

For the semantics, we can therefore assume from now on that each +conditional has both branches, that there are only while loops, and +that each variable is declared alone and without any initialization as part of +the declaration.

+
k
endmodule + + +module SIMPLE-UNTYPED + imports SIMPLE-UNTYPED-SYNTAX + imports DOMAINS +
+

Basic Semantic Infrastructure

+

Before one starts adding semantic rules to a K definition, one needs to +define the basic semantic infrastructure consisting of definitions for +values and configuration. As discussed in the definitions +in the K tutorial, the values are needed to know when to stop applying +the heating rules and when to start applying the cooling rules corresponding +to strictness or context declarations. The configuration serves as a backbone +for the process of configuration abstraction which allows users to only +mention the relevant cells in each semantic rule, the rest of the configuration +context being inferred automatically. Although in some cases the configuration +could be automatically inferred from the rules, we believe that it is very +useful for language designers/semanticists to actually think of and design +their configuration explicitly, so the current implementation of K requires +one to define it.

+

Values

+

We here define the values of the language that the various fragments of +programs evaluate to. First, integers and Booleans are values. As discussed, +arrays evaluate to special array reference values holding (1) a location from +where the array's elements are contiguously allocated in the store, and +(2) the size of the array. Functions evaluate to function values as +λ-abstractions (we do not need to evaluate functions to closures +because each function is executed in the fixed global environment and +function definitions cannot be nested). Like in IMP and other +languages, we finally tell the tool that values are K results.

+
k
syntax Val ::= Int | Bool | String + | array(Int,Int) + | lambda(Ids,Stmt) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax Vals ::= Bottoms + syntax KResult ::= Val + | Vals // TODO: should not need this +
+

The inclusion of values in expressions follows the methodology of +syntactic definitions (like, e.g., in SOS): extend the syntax of the language +to encompass all values and additional constructs needed to give semantics. +In addition to that, it allows us to write the semantic rules using the +original syntax of the language, and to parse them with the same (now extended +with additional values) parser. If writing the semantics directly on the K +AST, using the associated labels instead of the syntactic constructs, then one +would not need to include values in expressions.

+

Configuration

+

The K configuration of SIMPLE consists of a top level cell, T, +holding a threads cell, a global environment map cell genv +mapping the global variables and function names to their locations, a shared +store map cell store mapping each location to some value, a set cell +busy holding the locks which have been acquired but not yet released +by threads, a set cell terminated holding the unique identifiers of +the threads which already terminated (needed for join), input +and output list cells, and a nextLoc cell holding a natural +number indicating the next available location. Unlike in the small languages +in the K tutorial, where we used the fresh predicate to generate fresh +locations, in larger languages, like SIMPLE, we prefer to explicitly manage +memory. The location counter in nextLoc models an actual physical +location in the store; for simplicity, we assume arbitrarily large memory and +no garbage collection. The threads cell contains one thread +cell for each existing thread in the program. Note that the thread cell has +multiplicity *, which means that at any given moment there could be zero, +one or more thread cells. Each thread cell contains a +computation cell k, a control cell holding the various +control structures needed to jump to certain points of interest in the program +execution, a local environment map cell env mapping the thread local +variables to locations in the store, and finally a holds map cell +indicating what locks have been acquired by the thread and not released so far +and how many times (SIMPLE's locks are re-entrant). The control cell +currently contains only two subcells, a function stack fstack which +is a list and an exception stack xstack which is also a list. +One can add more control structures in the control cell, such as a +stack for break/continue of loops, etc., if the language is extended with more +control-changing constructs. Note that all cells except for k are +also initialized, in that they contain a ground term of their corresponding +sort. The k cell is initialized with the program that will be passed +to the K tool, as indicated by the $PGM variable, followed by the +execute task (defined shortly).

+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + + syntax ControlCell + syntax ControlCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" type="Map" color="yellow"> + <id color="pink"> -1 </id> + <k color="green"> $PGM:Stmt ~> execute </k> + //<br/> // TODO(KORE): support latex annotations #1799 + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + </control> + //<br/> // TODO(KORE): support latex annotations #1799 + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + </thread> + </threads> + //<br/> // TODO(KORE): support latex annotations #1799 + <genv color="pink"> .Map </genv> + <store color="white"> .Map </store> + <busy color="cyan"> .Set </busy> + <terminated color="red"> .Set </terminated> + //<br/> // TODO(KORE): support latex annotations #1799 + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + </T> +
+

Declarations and Initialization

+

We start by defining the semantics of declarations (for variables, +arrays and functions).

+

Variable Declaration

+

The SIMPLE syntax was desugared above so that each variable is +declared alone and its initialization is done as a separate statement. +The semantic rule below matches resulting variable declarations of the +form var X; on top of the k cell +(indeed, note that the k cell is complete, or round, to the +left, and is torn, or ruptured, to the right), allocates a fresh +location L in the store which is initialized with a special value + (indeed, the unit ., or nothing, is matched anywhere +in the map ‒note the tears at both sides‒ and replaced with the +mapping L ↦ ⊥), and binds X to L in the local +environment shadowing previous declarations of X, if any. +This possible shadowing of X requires us to therefore update the +entire environment map, which is expensive and can significantly slow +down the execution of larger programs. On the other hand, since we know +that L is not already bound in the store, we simply add the binding +L ↦ ⊥ to the store, thus avoiding a potentially complete +traversal of the the store map in order to update it. We prefer the approach +used for updating the store whenever possible, because, in addition to being +faster, it offers more true concurrency than the latter; indeed, according +to the concurrent semantics of K, the store is not frozen while +L ↦ ⊥ is added to it, while the environment is frozen during the +update operation Env[L/X]. The variable declaration command is +also removed from the top of the computation cell and the fresh location +counter is incremented. The undefined symbol added in the store +is of sort KItem, instead of Val, on purpose; this way, the +store lookup rules will get stuck when one attempts to lookup an +uninitialized location. All the above happen in one transactional step, +with the rule below. Note also how configuration abstraction allows us to +only mention the needed cells; indeed, as the configuration above states, +the k and env cells are actually located within a +thread cell within the threads cell, but one needs +not mention these: the configuration context of the rule is +automatically transformed to match the declared configuration +structure.

+
k
syntax KItem ::= "undefined" + + rule <k> var X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

Array Declaration

+

The K semantics of the uni-dimensional array declaration is somehow similar +to the above declaration of ordinary variables. First, note the +context declaration below, which requests the evaluation of the array +dimension. Once evaluated, say to a natural number N, then +N +Int 1 locations are allocated in the store for +an array of size N, the additional location (chosen to be the first +one allocated) holding the array reference value. The array reference +value array(L,N) states that the array has size N and its +elements are located contiguously in the store starting with location +L. The operation L … L' ↦ V, defined at the end of this +file in the auxiliary operation section, initializes each location in +the list L … L' to V. Note that, since the dimensions of +array declarations can be arbitrary expressions, this virtually means +that we can dynamically allocate memory in SIMPLE by means of array +declarations.

+
k
context var _:Id[HOLE]; + + rule <k> var X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(L +Int 1, N) + (L +Int 1) ... (L +Int N) |-> undefined ...</store> + <nextLoc> L => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 +
+

SIMPLE allows multi-dimensional arrays. For semantic simplicity, we +desugar them all into uni-dimensional arrays by code transformation. +This way, we only need to give semantics to uni-dimensional arrays. +First, note that the context rule above actually evaluates all the array +dimensions (that's why we defined the expression lists strict!): +Upon evaluating the array dimensions, the code generation rule below +desugars multi-dimensional array declaration to uni-dimensional declarations. +To this aim, we introduce two special unique variable identifiers, +$1 and $2. The first variable, $1, iterates +through and initializes each element of the first dimension with an array +of the remaining dimensions, declared as variable $2:

+
k
syntax Id ::= "$1" [token] | "$2" [token] + rule var X:Id[N1:Int, N2:Int, Vs:Vals]; + => var X[N1]; + { + for(var $1 = 0; $1 <= N1 - 1; ++$1) { + var $2[N2, Vs]; + X[$1] = $2; + } + } +
+

Ideally, one would like to perform syntactic desugarings like the one +above before the actual semantics. Unfortunately, that was not possible in +this case because the dimension expressions of the multi-dimensional array need +to be evaluated first. Indeed, the desugaring rule above does not work if the +dimensions of the declared array are arbitrary expressions, because they can +have side effects (e.g., a[++x,++x]) and those side effects would be +propagated each time the expression is evaluated in the desugaring code (note +that both the loop condition and the nested multi-dimensional declaration +would need to evaluate the expressions given as array dimensions).

+

Function declaration

+

Functions are evaluated to λ-abstractions and stored like any other +values in the store. A binding is added into the environment for the function +name to the location holding its body. Similarly to the C language, SIMPLE +only allows function declarations at the top level of the program. More +precisely, the subsequent semantics of SIMPLE only works well when one +respects this requirement. Indeed, the simplistic context-free parser +generated by the grammar above is more generous than we may want, in that it +allows function declarations anywhere any declaration is allowed, including +inside arbitrary blocks. However, as the rule below shows, we are not +storing the declaration environment with the λ-abstraction value as +closures do. Instead, as seen shortly, we switch to the global environment +whenever functions are invoked, which is consistent with our requirement that +functions should only be declared at the top. Thus, if one declares local +functions, then one may see unexpected behaviors (e.g., when one shadows a +global variable before declaring a local function). The type checker of +SIMPLE, also defined in K (see examples/simple/typed/static), +discards programs which do not respect this requirement.

+
k
rule <k> function F(Xs) S => .K ...</k> + <env> Env => Env[F <- L] </env> + <store>... .Map => L |-> lambda(Xs, S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

When we are done with the first pass (pre-processing), the computation +cell k contains only the token execute (see the configuration +declaration above, where the computation item execute was placed +right after the program in the k cell of the initial configuration) +and the cell genv is empty. In this case, we have to call +main() and to initialize the global environment by transferring the +contents of the local environment into it. We prefer to do it this way, as +opposed to processing all the top level declarations directly within the global +environment, because we want to avoid duplication of semantics: the syntax of +the global declarations is identical to that of their corresponding local +declarations, so the semantics of the latter suffices provided that we copy +the local environment into the global one once we are done with the +pre-processing. We want this separate pre-processing step precisely because +we want to create the global environment. All (top-level) functions end up +having their names bound in the global environment and, as seen below, they +are executed in that same global environment; all these mean, in particular, +that the functions "see" each other, allowing for mutual recursion, etc.

+
k
syntax KItem ::= "execute" + rule <k> execute => main(.Exps); </k> + <env> Env </env> + <genv> .Map => Env </genv> +
+

Expressions

+

We next define the K semantics of all the expression constructs.

+

Variable lookup

+

When a variable X is the first computational task, and X is bound to some +location L in the environment, and L is mapped to some value V in the +store, then we rewrite X into V:

+
k
rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> +
+

Note that the rule above excludes reading , because is not +a value and V is checked at runtime to be a value.

+

Variable/Array increment

+

This is tricky, because we want to allow both ++x and ++a[5]. +Therefore, we need to extract the lvalue of the expression to increment. +To do that, we state that the expression to increment should be wrapped +by the auxiliary lvalue operation and then evaluated. The semantics +of this auxiliary operation is defined at the end of this file. For now, all +we need to know is that it takes an expression and evaluates to a location +value. Location values, also defined at the end of the file, are integers +wrapped with the operation loc, to distinguish them from ordinary +integers.

+
k
context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I => I +Int 1) ...</store> +
+

Arithmetic operators

+

There is nothing special about the following rules. They rewrite the +language constructs to their library counterparts when their arguments +become values of expected sorts:

+
k
rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 +
+

The equality and inequality constructs reduce to syntactic comparison +of the two argument values (which is what the equality on K terms does).

+
k
rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 +
+

The logical negation is clear, but the logical conjunction and disjunction +are short-circuited:

+
k
rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E +
+

Array lookup

+

Untyped SIMPLE does not check array bounds (the dynamically typed version of +it, in examples/simple/typed/dynamic, does check for array out of +bounds). The first rule below desugars the multi-dimensional array access to +uni-dimensional array access; recall that the array access operation was +declared strict, so all sub-expressions involved are already values at this +stage. The second rule rewrites the array access to a lookup operation at a +precise location; we prefer to do it this way to avoid locking the store. +The semantics of the auxiliary lookup operation is straightforward, +and is defined at the end of the file.

+
k
// The [anywhere] feature is underused, because it would only be used +// at the top of the computation or inside the lvalue wrapper. So it +// may not be worth, or we may need to come up with a special notation +// allowing us to enumerate contexts for [anywhere] rules. + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + + rule array(L,_)[N:Int] => lookup(L +Int N) + [anywhere] +
+

Size of an array

+

The size of the array is stored in the array reference value, and the +sizeOf construct was declared strict, so:

+
k
rule sizeOf(array(_,N)) => N +
+

Function call

+

Function application was strict in both its arguments, so we can +assume that both the function and its arguments are evaluated to +values (the former expected to be a λ-abstraction). The first +rule below matches a well-formed function application on top of the +computation and performs the following steps atomically: it switches +to the function body followed by return; (for the case in +which the function does not use an explicit return statement); it +pushes the remaining computation, the current environment, and the +current control data onto the function stack (the remaining +computation can thus also be discarded from the computation cell, +because an unavoidable subsequent return statement ‒see +above‒ will always recover it from the stack); it switches the +current environment (which is being pushed on the function stack) to +the global environment, which is where the free variables in the +function body should be looked up; it binds the formal parameters to +fresh locations in the new environment, and stores the actual +arguments to those locations in the store (this latter step is easily +done by reducing the problem to variable declarations, whose semantics +we have already defined; the auxiliary operation mkDecls is +defined at the end of the file). The second rule pops the +computation, the environment and the control data from the function +stack when a return statement is encountered as the next +computational task, passing the returned value to the popped +computation (the popped computation was the context in which the +returning function was called). Note that the pushing/popping of the +control data is crucial. Without it, one may have a function that +contains an exception block with a return statement inside, which +would put the xstack cell in an inconsistent state (since the +exception block modifies it, but that modification should be +irrelevant once the function returns). We add an artificial +nothing value to the language, which is returned by the +nulary return; statements.

+
k
syntax KItem ::= (Map,K,ControlCellFragment) + + rule <k> lambda(Xs,S)(Vs:Vals) ~> K => mkDecls(Xs,Vs) S return; </k> + <control> + <fstack> .List => ListItem((Env,K,C)) ...</fstack> + C + </control> + <env> Env => GEnv </env> + <genv> GEnv </genv> + + rule <k> return(V:Val); ~> _ => V ~> K </k> + <control> + <fstack> ListItem((Env,K,C)) => .List ...</fstack> + (_ => C) + </control> + <env> _ => Env </env> + + syntax Val ::= "nothing" + rule return; => return nothing; +
+

Like for division-by-zero, it is left unspecified what happens +when the nothing value is used in domain calculations. For +example, from the the perspective of the language semantics, +7 +Int nothing can evaluate to anything, or +may not evaluate at all (be undefined). If one wants to make sure that +such artificial values are never misused, then one needs to define a static +checker (also using K, like our the type checker in +examples/simple/typed/static) and reject programs that do. +Note that, unlike the undefined symbol which had the sort K +instead of Val, we defined nothing to be a value. That +is because, as explained above, we do not want the program to get +stuck when nothing is returned by a function. Instead, we want the +behavior to be unspecified; in particular, if one is careful to never +use the returned value in domain computation, like it happens when we +call a function for its side effects (e.g., with a statement of the +form f(x);), then the program does not get stuck.

+

Read

+

The read() expression construct simply evaluates to the next +input value, at the same time discarding the input value from the +in cell.

+
k
rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> +
+

Assignment

+

In SIMPLE, like in C, assignments are expression constructs and not statement +constructs. To make it a statement all one needs to do is to follow it by a +semi-colon ; (see the semantics for expression statements below). +Like for the increment, we want to allow assignments not only to variables but +also to array elements, e.g., e1[e2] = e3 where e1 evaluates +to an array reference, e2 to a natural number, and e3 to any +value. Thus, we first compute the lvalue of the left-hand-side expression +that appears in an assignment, and then we do the actual assignment to the +resulting location:

+
k
context (HOLE => lvalue(HOLE)) = _ + + rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store> +
+

Statements

+

We next define the K semantics of statements.

+

Blocks

+

Empty blocks are simply discarded, as shown in the first rule below. +For non-empty blocks, we schedule the enclosed statement but we have to +make sure the environment is recovered after the enclosed statement executes. +Recall that we allow local variable declarations, whose scope is the block +enclosing them. That is the reason for which we have to recover the +environment after the block. This allows us to have a very simple semantics +for variable declarations, as we did above. One can make the two rules below +computational if one wants them to count as computational steps.

+
k
rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> +
+

The basic definition of environment recovery is straightforward and +given in the section on auxiliary constructs at the end of the file.

+

There are two common alternatives to the above semantics of blocks. +One is to keep track of the variables which are declared in the block and only +recover those at the end of the block. This way one does more work for +variable declarations but conceptually less work for environment recovery; we +say conceptually because it is not clear that it is indeed the case that +one does less work when AC matching is involved. The other alternative is to +work with a stack of environments instead of a flat environment, and push the +current environment when entering a block and pop it when exiting it. This +way, one does more work when accessing variables (since one has to search the +variable in the environment stack in a top-down manner), but on the other hand +uses smaller environments and the definition gets closer to an implementation. +Based on experience with dozens of language semantics and other K definitions, +we have found that our approach above is the best trade-off between elegance +and efficiency (especially since rewrite engines have built-in techniques to +lazily copy terms, by need, thus not creating unnecessary copies), +so it is the one that we follow in general.

+

Sequential composition

+

Sequential composition is desugared into K's builtin sequentialization +operation (recall that, like in C, the semi-colon ; is not a +statement separator in SIMPLE — it is either a statement terminator or a +construct for a statement from an expression). Note that K allows +to define the semantics of SIMPLE in such a way that statements eventually +dissolve from the top of the computation when they are completed; this is in +sharp contrast to (artificially) evaluating them to a special +skip statement value and then getting rid of that special value, as +it is the case in other semantic approaches (where everything must evaluate +to something). This means that once S₁ completes in the rule below, S₂ +becomes automatically the next computation item without any additional +(explicit or implicit) rules.

+
k
rule S1:Stmt S2:Stmt => S1 ~> S2 +
+

A subtle aspect of the rule above is that S₁ is declared to have sort +Stmts and not Stmt. That is because desugaring macros can indeed +produce left associative sequential composition of statements. For example, +the code var x=0; x=1; is desugared to +(var x; x=0;) x=1;, so although originally the first term of +the sequential composition had sort Stmt, after desugaring it became +of sort Stmts. Note that the attribute [right] associated +to the sequential compositon production is an attribute of the syntax, and not +of the semantics: e.g., it tells the parser to parse +var x; x=0; x=1; as var x; (x=0; x=1;), but it +does not tell the rewrite engine to rewrite (var x; x=0;) x=1; to +var x; (x=0; x=1;).

+

Expression statements

+

Expression statements are only used for their side effects, so their result +value is simply discarded. Common examples of expression statements are ones +of the form ++x;, x=e;, e1[e2]=e3;, etc.

+
k
rule _:Val; => .K +
+

Conditional

+

Since the conditional was declared with the strict(1) attribute, we +can assume that its first argument will eventually be evaluated. The rules +below cover the only two possibilities in which the conditional is allowed to +proceed (otherwise the rewriting process gets stuck).

+
k
rule if ( true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+

The simplest way to give the semantics of the while loop is by unrolling. +Note, however, that its unrolling is only allowed when the while loop reaches +the top of the computation (to avoid non-termination of unrolling). The +simple while loop semantics below works because our while loops in SIMPLE are +indeed very basic. If we allowed break/continue of loops then we would need +a completely different semantics, which would also involve the control cell.

+
k
rule while (E) S => if (E) {S while(E)S} +
+

Print

+

The print statement was strict, so all its arguments are now +evaluated (recall that print is variadic). We append each of +its evaluated arguments to the output buffer, and discard the residual +print statement with an empty list of arguments.

+
k
rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + rule print(.Vals); => .K +
+

Exceptions

+

SIMPLE allows parametric exceptions, in that one can throw and catch a +particular value. The statement try S₁ catch(X) S₂ +proceeds with the evaluation of S₁. If S₁ evaluates normally, i.e., +without any exception thrown, then S₂ is discarded and the execution +continues normally. If S₁ throws an exception with a statement of the +form throw E, then E is first evaluated to some value V +(throw was declared to be strict), then V is bound to X, then +S₂ is evaluated in the new environment while the reminder of S₁ is +discarded, then the environment is recovered and the execution continues +normally with the statement following the try S₁ catch(X) S₂ statement. +Exceptions can be nested and the statements in the +catch part (S₂ in our case) can throw exceptions to the +upper level. One should be careful with how one handles the control data +structures here, so that the abrupt changes of control due to exception +throwing and to function returns interact correctly with each other. +For example, we want to allow function calls inside the statement S₁ in +a try S₁ catch(X) S₂ block which can throw an exception +that is not caught by the function but instead is propagated to the +try S₁ catch(X) S₂ block that called the function. +Therefore, we have to make sure that the function stack as well as other +potential control structures are also properly modified when the exception +is thrown to correctly recover the execution context. This can be easily +achieved by pushing/popping the entire current control context onto the +exception stack. The three rules below modularly do precisely the above.

+
k
syntax KItem ::= (Id,Stmt,K,Map,ControlCellFragment) + + syntax KItem ::= "popx" + + rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem((X, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k> + <control> + <xstack> ListItem((X, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

The catch statement S₂ needs to be executed in the original environment, +but where the thrown value V is bound to the catch variable X. We here +chose to rely on two previously defined constructs when giving semantics to +the catch part of the statement: (1) the variable declaration with +initialization, for binding X to V; and (2) the block construct for +preventing X from shadowing variables in the original environment upon the +completion of S₂.

+

Threads

+

SIMPLE's threads can be created and terminated dynamically, and can +synchronize by acquiring and releasing re-entrant locks and by rendezvous. +We discuss the seven rules giving the semantics of these operations below.

+

Thread creation

+

Threads can be created by any other threads using the spawn S +construct. The spawn expression construct evaluates to the unique identifier +of the newly created thread and, at the same time, a new thread cell is added +into the configuration, initialized with the S statement and sharing the +same environment with the parent thread. Note that the newly created +thread cell is torn. That means that the remaining cells are added +and initialized automatically as described in the definition of SIMPLE's +configuration. This is part of K's configuration abstraction mechanism.

+
k
rule <thread>... + <k> spawn S => !T:Int ...</k> + <env> Env </env> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T </id> + ...</thread>) +
+

Thread termination

+

Dually to the above, when a thread terminates its assigned computation (the +contents of its k cell) is empty, so the thread can be dissolved. +However, since no discipline is imposed on how locks are acquired and released, +it can be the case that a terminating thread still holds locks. Those locks +must be released, so other threads attempting to acquire them do not deadlock. +We achieve that by removing all the locks held by the terminating thread in its +holds cell from the set of busy locks in the busy cell +(keys(H) returns the domain of the map H as a set, that is, only +the locks themselves ignoring their multiplicity). As seen below, a lock is +added to the busy cell as soon as it is acquired for the first time +by a thread. The unique identifier of the terminated thread is also collected +into the terminated cell, so the join construct knows which +threads have terminated.

+
k
rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> +
+

Thread joining

+

Thread joining is now straightforward: all we need to do is to check whether +the identifier of the thread to be joined is in the terminated cell. +If yes, then the join statement dissolves and the joining thread +continues normally; if not, then the joining thread gets stuck.

+
k
rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> +
+

Acquire lock

+

There are two cases to distinguish when a thread attempts to acquire a lock +(in SIMPLE any value can be used as a lock):
+(1) The thread does not currently have the lock, in which case it has to +take it provided that the lock is not already taken by another thread (see +the side condition of the first rule).
+(2) The thread already has the lock, in which case it just increments its +counter for the lock (the locks are re-entrant). These two cases are captured +by the two rules below:

+
k
rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy)) + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N => N +Int 1) ...</holds> +
+

Release lock

+

Similarly, there are two corresponding cases to distinguish when a thread +releases a lock:
+(1) The thread holds the lock more than once, in which case all it needs to do +is to decrement the lock counter.
+(2) The thread holds the lock only once, in which case it needs to remove it +from its holds cell and also from the the shared busy cell, +so other threads can acquire it if they need to.

+
k
rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> +
+

Rendezvous synchronization

+

In addition to synchronization through acquire and release of locks, SIMPLE +also provides a construct for rendezvous synchronization. A thread whose next +statement to execute is rendezvous(V) gets stuck until another +thread reaches an identical statement; when that happens, the two threads +drop their rendezvous statements and continue their executions. If three +threads happen to have an identical rendezvous statement as their next +statement, then precisely two of them will synchronize and the other will +remain blocked until another thread reaches a similar rendezvous statement. +The rule below is as simple as it can be. Note, however, that, again, it is +K's mechanism for configuration abstraction that makes it work as desired: +since the only cell which can multiply containing a k cell inside is +the thread cell, the only way to concretize the rule below to the +actual configuration of SIMPLE is to include each k cell in a +thread cell.

+
k
rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> +
+

Auxiliary declarations and operations

+

In this section we define all the auxiliary constructs used in the +above semantics.

+

Making declarations

+

The mkDecls auxiliary construct turns a list of identifiers +and a list of values in a sequence of corresponding variable +declarations.

+
k
syntax Stmt ::= mkDecls(Ids,Vals) [function] + rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs) + rule mkDecls(.Ids,.Vals) => {} +
+

Location lookup

+

The operation below is straightforward.

+
k
syntax Exp ::= lookup(Int) + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> +
+

Environment recovery

+

We have already discussed the environment recovery auxiliary operation in the +IMP++ tutorial:

+
k
// TODO: eliminate the env wrapper, like we did in IMP++ + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> +
+

While theoretically sufficient, the basic definition for environment +recovery alone is suboptimal. Consider a loop while (E)S, +whose semantics (see above) was given by unrolling. S +is a block. Then the semantics of blocks above, together with the +unrolling semantics of the while loop, will yield a computation +structure in the k cell that increasingly grows, adding a new +environment recovery task right in front of the already existing sequence of +similar environment recovery tasks (this phenomenon is similar to the ``tail +recursion'' problem). Of course, when we have a sequence of environment +recovery tasks, we only need to keep the last one. The elegant rule below +does precisely that, thus avoiding the unnecessary computation explosion +problem:

+
k
rule (setEnv(_) => .K) ~> setEnv(_) +
+

In fact, the above follows a common convention in K for recovery +operations of cell contents: the meaning of a computation task of the form +cell(C) that reaches the top of the computation is that the current +contents of cell cell is discarded and gets replaced with C. We +did not add support for these special computation tasks in our current +implementation of K, so we need to define them as above.

+

lvalue and loc

+

For convenience in giving the semantics of constructs like the increment and +the assignment, that we want to operate the same way on variables and on +array elements, we used an auxiliary lvalue(E) construct which was +expected to evaluate to the lvalue of the expression E. This is only +defined when E has an lvalue, that is, when E is either a variable or +evaluates to an array element. lvalue(E) evaluates to a value of +the form loc(L), where L is the location where the value of E +can be found; for clarity, we use loc to structurally distinguish +natural numbers from location values. In giving semantics to lvalue +there are two cases to consider. (1) If E is a variable, then all we need +to do is to grab its location from the environment. (2) If E is an array +element, then we first evaluate the array and its index in order to identify +the exact location of the element of concern, and then return that location; +the last rule below works because its preceding context declarations ensure +that the array and its index are evaluated, and then the rule for array lookup +(defined above) rewrites the evaluated array access construct to its +corresponding store lookup operation.

+
k
// For parsing reasons, we prefer to allow lvalue to take a K + + syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + +// Local variable + + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + +// Array element: evaluate the array and its index; +// then the array lookup rule above applies. + + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + +// Finally, return the address of the desired object member + + rule lvalue(lookup(L:Int) => loc(L)) +
+

Initializing multiple locations

+

The following operation initializes a sequence of locations with the same +value:

+
k
syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M +
+

The semantics of SIMPLE is now complete. Make sure you kompile the +definition with the right options in order to generate the desired model. +No kompile options are needed if you only only want to execute the definition +(and thus get an interpreter), but if you want to search for a different +program behaviors then you need to kompile with the --enable-search option

+
k
endmodule +
+

Go to Lesson 2, SIMPLE typed static

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/NOTES/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/NOTES/index.html new file mode 100644 index 00000000000..bfd67ca8e6e --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/NOTES/index.html @@ -0,0 +1,381 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

While we disallow global variables with the same name, and that includes +vector variables, we currently do not check that function names are distinct +from each other and from other global variables. Since we can pass functions +around through their names, this can be problematic. May want to make this +into an exercise in the future.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/exercises/functions-with-throws/tests/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/exercises/functions-with-throws/tests/index.html new file mode 100644 index 00000000000..a8fc604077a --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/exercises/functions-with-throws/tests/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The programs in this folder are typed variants of the SIMPLE untyped programs. +These programs will be executed both with the dynamic and with the static +semantics of the typed SIMPLE language. Each of the semantics contains its +own results folder showing the expected results of executing these programs.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/index.html new file mode 100644 index 00000000000..bae269692ec --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/index.html @@ -0,0 +1,1151 @@ + + + + + + + + + + + + + + +SIMPLE — Typed — Static | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

SIMPLE — Typed — Static

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K definition of the static semantics of the typed SIMPLE +language, or in other words, a type system for the typed SIMPLE +language in K. We do not re-discuss the various features of the +SIMPLE language here. The reader is referred to the untyped version of +the language for such discussions. We here only focus on the new and +interesting problems raised by the addition of type declarations, and +what it takes to devise a type system/checker for the language.

+

When designing a type system for a language, no matter in what +paradigm, we have to decide upon the intended typing policy. Note +that we can have multiple type systems for the same language, one for +each typing policy. For example, should we accept programs which +don't have a main function? Or should we allow functions that do not +return explicitly? Or should we allow functions whose type expects +them to return a value (say an int) to use a plain +return; statement, which returns no value, like in C? +And so on and so forth. Typically, there are two opposite tensions +when designing a type system. On the one hand, you want your type +system to be as permissive as possible, that is, to accept as many +programs that do not get stuck when executed with the untyped +semantics as possible; this will keep the programmers using your +language happy. On the other hand, you want your type system to have +a reasonable performance when implemented; this will keep both the +programmers and the implementers of your language happy. For example, +a type system for rejecting programs that could perform +division-by-zero is not expected to be feasible in general. A simple +guideline when designing typing policies is to imagine how the +semantics of the untyped language may get stuck and try to prevent +those situations from happening.

+

Before we give the K type system of SIMPLE formally, we discuss, +informally, the intended typing policy:

+
    +
  • +

    Each program should contain a main() function. Indeed, +the untyped SIMPLE semantics will get stuck on any program which does +not have a main function.

    +
  • +
  • +

    Each primitive value has its own type, which can be int +bool, or string. There is also a type void +for nonexistent values, for example for the result of a function meant +to return no value (but only be used for its side effects, like a +procedure).

    +
  • +
  • +

    The syntax of untyped SIMPLE is extended to allow type +declarations for all the variables, including array variables. This is +done in a C/Java-style. For example, int x; or +int x=7, y=x+3;, or int[][][] a[10,20]; +(the latter defines a 10 × 20 matrix of arrays of integers). +Recall from untyped SIMPLE that, unlike in C/Java, our multi-dimensional +arrays use comma-separated arguments, although they have the array-of-array +semantics.

    +
  • +
  • +

    Functions are also typed in a C/Java style. However, since in SIMPLE +we allow functions to be passed to and returned by other functions, we also +need function types. We will use the conventional higher-order arrow-notation +for function types, but will separate the argument types with commas. For +example, a function returning an array of bool elements and +taking as argument an array x of two-integer-argument functions +returning an integer, is declared using a syntax of the form +bool[] f(((int,int)->int)[] x) { ... } +and has the type ((int,int)->int)[] -> bool[].

    +
  • +
  • +

    We allow any variable declarations at the top level. Functions +can only be declared at the top level. Each function can only access the +other functions and variables declared at the top level, or its own locally +declared variables. SIMPLE has static scoping.

    +
  • +
  • +

    The various expression and statement constructs take only elements of +the expected types.

    +
  • +
  • +

    Increment and assignment can operate both on variables and on array +elements. For example, if f has type int->int[][] and +function g has the type int->int, then the +increment expression ++f(7)[g(2),g(3)] is valid.

    +
  • +
  • +

    Functions should only return values of their declared result +type. To give the programmers more flexibility, we allow functions to +use return; statements to terminate without returning an +actual value, or to not explicitly use any return statement, +regardless of their declared return type. This flexibility can be +handy when writing programs using certain functions only for their +side effects. Nevertheless, as the dynamic semantics shows, a return +value is automatically generated when an explicit return +statement is not encountered.

    +
  • +
  • +

    For simplicity, we here limit exceptions to only throw and catch +integer values. We let it as an exercise to the reader to extend the +semantics to allow throwing and catching arbitrary-type exceptions. +Like in programming languages like Java, one can go even further and +define a semantics where thrown exceptions are propagated through +try-catch statements until one of the corresponding type is found. +We will do this when we define the KOOL language, not here. +To keep the definition if SIMPLE simple, here we do not attempt to +reject programs which throw uncaught exceptions.

    +
  • +
+

Like in untyped SIMPLE, some constructs can be desugared into a +smaller set of basic constructs. In general, it should be clear why a +program does not type by looking at the top of the k cells in +its stuck configuration.

+
k
module SIMPLE-TYPED-STATIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of typed SIMPLE extends that of untyped SIMPLE with support +for declaring types to variables and functions.

+
k
syntax Id ::= "main" [token] +
+

Types

+

Primitive, array and function types, as well as lists (or tuples) of types. +The lists of types are useful for function arguments.

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + + syntax Types ::= List{Type,","} [overload(exps)] +
+

Declarations

+

Variable and function declarations have the expected syntax. For variables, +we basically just replaced the var keyword of untyped SIMPLE with a +type. For functions, besides replacing the function keyword with a +type, we also introduce a new syntactic category for typed variables, +Param, and lists over it.

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" + | Type Id "(" Params ")" Block +
+

Expressions

+

The syntax of expressions is identical to that in untyped SIMPLE, +except for the logical conjunction and disjunction which have +different strictness attributes, because they now have different +evaluation strategies.

+
k
syntax Exp ::= Int | Bool | String | Id + | "(" Exp ")" [bracket] + | "++" Exp + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict, left] + | Exp "||" Exp [strict, left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] +
+

Note that spawn has not been declared strict. This may +seem unexpected, because the child thread shares the same environment +with the parent thread, so from a typing perspective the spawned +statement makes the same sense in a child thread as it makes in the +parent thread. The reason for not declaring it strict is because we +want to disallow programs where the spawned thread calls the +return statement, because those programs would get stuck in +the dynamic semantics. The type semantics of spawn below will reject +such programs.

+

We still need lists of expressions, defined below, but note that we do +not need lists of identifiers anymore. They have been replaced by the lists +of parameters.

+
k
syntax Exps ::= List{Exp,","} [strict, overload(exps)] +
+

Statements

+

The statements have the same syntax as in untyped SIMPLE, except for +the exceptions, which now type their parameter. Note that, unlike in untyped +SIMPLE, all statement constructs which have arguments and are not desugared +are strict, including the conditional and the while. Indeed, from a +typing perspective, they are all strict: first type their arguments and then +type the actual construct.

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block [strict] + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" + | "print" "(" Exps ")" ";" [strict] + | "try" Block "catch" "(" Param ")" Block [strict(1)] + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] +
+

Note that the sequential composition is now sequentially strict, +because, unlike in the dynamic semantics where statements dissolved, +they now reduce to the stmt type, which is a result.

+
k
syntax Stmt ::= Stmt Stmt [seqstrict, right] +
+

Desugaring macros

+

We use the same desugaring macros like in untyped SIMPLE, but, of +course, including the types of the involved variables.

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}} + rule for(Start Cond; Step) {} => {Start while(Cond){Step;}} + rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es; [anywhere] + rule T:Type X:Id = E; => T X; X = E; [anywhere] + +endmodule + + +module SIMPLE-TYPED-STATIC + imports SIMPLE-TYPED-STATIC-SYNTAX + imports DOMAINS +
+

Static semantics

+

Here we define the type system of SIMPLE. Like concrete semantics, +type systems defined in K are also executable. However, K type +systems turn into type checkers instead of interpreters when executed.

+

The typing process is done in two (overlapping) phases. In the first +phase the global environment is built, which contains type bindings +for all the globally declared variables and functions. For functions, +the declared types will be ``trusted'' during the first phase and +simply bound to their corresponding function names and placed in the +global type environment. At the same time, type-checking tasks that +the function bodies indeed respect their claimed types are generated. +All these tasks are (concurrently) verified during the second phase. +This way, all the global variable and function declarations are +available in the global type environment and can be used in order to +type-check each function code. This is consistent with the semantics +of untyped SIMPLE, where functions can access all the global variables +and can call any other function declared in the same program. The +two phases may overlap because of the K concurrent semantics. For +example, a function task can be started while the first phase is still +running; moreover, it may even complete before the first phase does, +namely when all the global variables and functions that it needs have +already been processed and made available in the global environment by +the first phase task.

+

Extended syntax and results

+

The idea is to start with a configuration holding the program to type +in one of its cells, then apply rewrite rules on it mixing types and +language syntax, and eventually obtain a type instead of the original +program. In other words, the program reduces to its type using +the K rules giving the type system of the language. In doing so, +additional typing tasks for function bodies are generated and solved +the same way. If this rewriting process gets stuck, then we say that +the program is not well-typed. Otherwise the program is well-typed +(by definition). We did not need types for statements and for blocks +as part of the typed SIMPLE syntax, because programmers are not allowed +to use such types explicitly. However, we are going to need them in the +type system, because blocks and statements reduce to them.

+

We start by allowing types to be used inside expressions and statements in +our language. This way, types can be used together with language syntax in +subsequent K rules without any parsing errors. Like in the type system of +IMP++ in the K tutorial, we prefer to group the block and statement types +under one syntactic sub-category of types, because this allows us to more +compactly state that certain terms can be either blocks or statements. Also, +since programs and fragments of program will reduce to their types, in order +for the strictness and context declarations to be executable we state that +types are results (same like we did in the IMP++ tutorial).

+
k
syntax Exp ::= Type + syntax Exps ::= Types + syntax BlockOrStmtType ::= "block" | "stmt" + syntax Type ::= BlockOrStmtType + syntax Block ::= BlockOrStmtType + syntax KResult ::= Type + | Types //TODO: remove this, eventually +
+

Configuration

+

The configuration of our type system consists of a tasks cell +holding various typing task cells, and a global type environment. +Each task includes a k cell holding the code to type, a tenv +cell holding the local type environment, and a return cell holding +the return type of the currently checked function. The latter is needed in +order to check whether return statements return values of the expected type. +Initially, the program is placed in a k cell inside a +task cell. Since the cells with multiplicity ? are not +included in the initial configuration, the task cell holding +the original program in its k cell will contain no other +subcells.

+
k
configuration <T color="yellow"> + <tasks color="orange"> + <task multiplicity="*" color="yellow" type="Set"> + <k color="green"> $PGM:Stmt </k> + <tenv multiplicity="?" color="cyan"> .Map </tenv> + <returnType multiplicity="?" color="black"> void </returnType> + </task> + </tasks> +// <br/> + <gtenv color="blue"> .Map </gtenv> + </T> +
+

Variable declarations

+

Variable declarations type as statements, that is, they reduce to the +type stmt. There are only two cases that need to be +considered: when a simple variable is declared and when an array +variable is declared. The macros at the end of the syntax module +above take care of reducing other variable declarations, including +ones where the declared variables are initialized, to only these two +cases. The first case has two subcases: when the variable declaration +is global (i.e., the task cell contains only the k +cell), in which case it is added to the global type environment +checking at the same time that the variable has not been already +declared; and when the variable declaration is local (i.e., a +tenv cell is available), in which case it is simply added to +the local type environment, possibly shadowing previous homonymous +variables. The third case reduces to the second, incrementally moving +the array dimension into the type until the array becomes a simple +variable.

+
k
rule <task> <k> T:Type X:Id; => stmt ...</k> </task> + <gtenv> Rho (.Map => X |-> T) </gtenv> + requires notBool(X in keys(Rho)) + rule <k> T:Type X:Id; => stmt ...</k> <tenv> Rho => Rho[X <- T] </tenv> + + context _:Type _::Exp[HOLE::Exps]; +// The rule below may need to sort E to Exp in the future, if the +// parser gets stricter; without that information, it may not be able +// to complete the LHS into T E[int,Ts],.Exps; (and similarly for the RHS) + rule T:Type E:Exp[int,Ts:Types]; => T[] E[Ts]; +// I want to write the rule below as _:Type (E:Exp[.Types] => E), +// but the list completion seems to not work well with that. + rule T:Type E:Exp[.Types]; => T E; +
+

Function declarations

+

Functions are allowed to be declared only at the top level (the +task cell holds only its k subcell). Each function +declaration reduces to a variable declaration (a binding of its name +to its declared function type), but also adds a task into the +tasks cell. The task consists of a typing of the statement +declaring all the function parameters followed by the function body, +together with the expected return type of the function. The +getTypes and mkDecls functions, defined at the end of +the file in the section on auxiliary operations, extracts the list of +types and makes a sequence of variable declarations from a list of +function parameters, respectively. Note that, although in the dynamic +semantics we include a terminating return statement at the +end of the function body to eliminate from the analysis the case when +the function does not provide an explicit return, we do not need to +include such a similar return statement here. That's because +the return statements type to stmt anyway, and the +entire code of the function body needs to type anyway.

+
k
rule <task> <k> T:Type F:Id(Ps:Params) S => getTypes(Ps)->T F; ...</k> </task> + (.Bag => <task> + <k> mkDecls(Ps) S </k> <tenv> .Map </tenv> <returnType> T </returnType> + </task>) +
+

Checking if main() exists}

+

Once the entire program is processed (generating appropriate tasks +to type check its function bodies), we can dissolve the main +task cell (the one holding only a k subcell). Since +we want to enforce that programs include a main function, we also +generate a function task executing main() to ensure that it +types (remove this task creation if you do not want your type system +to reject programs without a main function).

+
k
rule <task> <k> stmt => main(.Exps); </k> (.Bag => <tenv> .Map </tenv>) </task> +
+

Collecting the terminated tasks

+

Similarly, once a non-main task (i.e., one which contains a +tenv subcells) is completed using the subsequent rules (i.e., +its k cell holds only the block or stmt +type), we can dissolve its corresponding cell. Note that it is +important to ensure that we only dissolve tasks containing a +tenv cell with the rule below, because the main task should +not dissolve this way! It should do what the above rule says. +In the end, there should be no task cell left in the configuration +when the program correctly type checks.

+
k
rule <task>... <k> _:BlockOrStmtType </k> <tenv> _ </tenv> ...</task> => .Bag +
+

Basic values

+

The first three rewrite rules below reduce the primitive values to +their types, as we typically do when we define type systems in K.

+
k
rule _:Int => int + rule _:Bool => bool + rule _:String => string +
+

Variable lookup

+

There are three cases to distinguish for variable lookup: (1) if the +variable is bound in the local type environment, then look its type up +there; (2) if a local environment exists and the variable is not bound +in it, then look its type up in the global environment; (3) finally, +if there is no local environment, meaning that we are executing the +top-level pass, then look the variable's type up in the global +environment, too.

+
k
rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</tenv> + + rule <k> X:Id => T ...</k> <tenv> Rho </tenv> <gtenv>... X |-> T ...</gtenv> + requires notBool(X in keys(Rho)) + + rule <task> <k> X:Id => T ...</k> </task> <gtenv>... X |-> T ...</gtenv> +
+

Increment

+

We want the increment operation to apply to any lvalue, including +array elements, not only to variables. For that reason, we define a +special context extracting the type of the argument of the increment +operation only if that argument is an lvalue. Otherwise the rewriting +process gets stuck. The operation ltype is defined at the +end of this file, in the auxiliary operation section. It essentially +acts as a filter, getting stuck if its argument is not an lvalue and +letting it reduce otherwise. The type of the lvalue is expected to be +an integer in order to be allowed to be incremented, as seen in the +rule ++ int => int below.

+
k
context ++(HOLE => ltype(HOLE)) + rule ++ int => int +
+

Common expression constructs

+

The rules below are straightforward and self-explanatory:

+
k
rule int + int => int + rule string + string => string + rule int - int => int + rule int * int => int + rule int / int => int + rule int % int => int + rule - int => int + rule int < int => bool + rule int <= int => bool + rule int > int => bool + rule int >= int => bool + rule T:Type == T => bool + rule T:Type != T => bool + rule bool && bool => bool + rule bool || bool => bool + rule ! bool => bool +
+

Array access and size

+

Array access requires each index to type to an integer, and the +array type to be at least as deep as the number of indexes:

+
k
// NOTE: +// We used to need parentheses in the RHS, to avoid capturing Ts as an attribute +// Let's hope that is not a problem anymore. + + rule (T[])[int, Ts:Types] => T[Ts] + rule T:Type[.Types] => T +
+

sizeOf only needs to check that its argument is an array:

+
k
rule sizeOf(_T[]) => int +
+

Input/Output

+

The read expression construct types to an integer, while print types +to a statement provided that all its arguments type to integers or +strings.

+
k
rule read() => int + + rule print(T:Type, Ts => Ts); requires T ==K int orBool T ==K string + rule print(.Types); => stmt +
+

Assignment

+

The special context and the rule for assignment below are similar +to those for increment: the LHS of the assignment must be an lvalue +and, in that case, it must have the same type as the RHS, which then +becomes the type of the assignment.

+
k
context (HOLE => ltype(HOLE)) = _ + rule T:Type = T => T +
+

Function application and return

+

Function application requires the type of the function and the +types of the passed values to be compatible. Note that a special case +is needed to handle the no-argument case:

+
k
rule (Ts:Types -> T)(Ts) => T requires Ts =/=K .Types + rule (void -> T)(.Types) => T +
+

The returned value must have the same type as the declared +function return type. If an empty return is encountered, than +we should check that we are in a function (and not a thread) +context, that is, a return cell must be available:

+
k
rule <k> return T:Type; => stmt ...</k> <returnType> T </returnType> + rule <k> return; => stmt ...</k> <returnType> _ </returnType> +
+

Blocks

+

To avoid having to recover type environments after blocks, we prefer +to start a new task for block body, making sure that the new task +is passed the same type environment and return cells. The value +returned by return statements must have the same type as +stated in the return cell. The print variadic +function is allowed to only print integers and strings. The thrown +exceptions can only have integer type.

+
k
rule {} => block + + rule <task> <k> {S} => block ...</k> <tenv> Rho </tenv> R </task> + (.Bag => <task> <k> S </k> <tenv> Rho </tenv> R </task>) +
+

Expression statement

+
k
rule _:Type; => stmt +
+

Conditional and while loop

+
k
rule if (bool) block else block => stmt + rule while (bool) block => stmt +
+

Exceptions

+

We currently force the parameters of exceptions to only be integers. +Moreover, for simplicity, we assume that integer exceptions can be +thrown from anywhere, including from functions which do not define +any try-catch block (with the currently unchecked ‒also for +simplicity‒ expectation that the caller functions would catch those +exceptions).

+
k
rule try block catch(int X:Id) {S} => {int X; S} + rule try block catch(int X:Id) {} => {int X;} + rule throw int; => stmt +
+

Concurrency

+

Nothing special about typing the concurrency constructs, except that +we do not want the spawned thread to return, so we do not include any +return cell in the new task cell for the thread statement. +Same like with the functions above, we do not check for thrown +exceptions which are not caught.

+
k
rule <k> spawn S => int ...</k> <tenv> Rho </tenv> + (.Bag => <task> <k> S </k> <tenv> Rho </tenv> </task>) + rule join int; => stmt + rule acquire _:Type; => stmt + rule release _:Type; => stmt + rule rendezvous _:Type; => stmt + + rule _:BlockOrStmtType _:BlockOrStmtType => stmt +
+

Auxiliary constructs

+

The function mkDecls turns a list of parameters into a +list of variable declarations.

+
k
syntax Stmt ::= mkDecls(Params) [function] + rule mkDecls(T:Type X:Id, Ps:Params) => T X; mkDecls(Ps) + rule mkDecls(.Params) => {} +
+

The ltype context allows only expressions which have an +lvalue to evaluate.

+
k
syntax LValue ::= Id + rule isLValue(_:Exp[_:Exps]) => true + syntax Exp ::= LValue // K should be able to infer this + // if not added, then it gets stuck with an Id on k cell + +// Instead of the second LValue production above you can use a rule: +// rule isLValue(_:Exp[_:Exps]) => true + + syntax Exp ::= ltype(Exp) +// context ltype(HOLE:LValue) +// The above context does not work due to some error, so we write instead + context ltype(HOLE) requires isLValue(HOLE) +
+

The function getTypes is the same as in SIMPLE typed dynamic.

+
k
syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types // I would like to not use .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types + +endmodule +
+

Go to Lesson 3, SIMPLE typed dynamic

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/index.html new file mode 100644 index 00000000000..aca8e5f3097 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/index.html @@ -0,0 +1,1142 @@ + + + + + + + + + + + + + + +SIMPLE — Typed — Dynamic | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

SIMPLE — Typed — Dynamic

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K dynamic semantics of the typed SIMPLE language. +It is very similar to the semantics of the untyped SIMPLE, the +difference being that we now dynamically check the typing policy +described in the static semantics of typed SIMPLE. Because of the +dynamic nature of the semantics, we can also perform some additional +checks which were not possible in the static semantics, such as +memory leaks due to accessing an array out of its bounds. We will +highlight the differences between the dynamically typed and the +untyped SIMPLE as we proceed with the semantics. We recommend the +reader to consult the typing policy and the syntax of types discussed +in the static semantics of the typed SIMPLE language.

+
k
module SIMPLE-TYPED-DYNAMIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of typed SIMPLE extends that of untyped SIMPLE with support +for declaring types to variables and functions.

+

The syntax below is identical to that of the static semantics of typed +SIMPLE. However, the K strictness attributes are like those of the untyped +SIMPLE, to capture the desired evaluation strategies of the various language +constructs.

+
k
syntax Id ::= "main" [token] +
+

Types

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + syntax Types ::= List{Type,","} [overload(exps)] +
+

Declarations

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" + | Type Id "(" Params ")" Block +
+

Expressions

+
k
syntax Exp ::= Int | Bool | String | Id + | "(" Exp ")" [bracket] + | "++" Exp + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] +
+

Like in the static semantics, there is no need for lists of identifiers +(because we now have lists of parameters).

+
k
syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Vals ::= List{Val,","} [overload(exps)] +
+

Statements

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "print" "(" Exps ")" ";" [strict] + | "return" Exp ";" [strict] + | "return" ";" + | "try" Block "catch" "(" Param ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [right] +
+

The same desugaring macros like in the statically typed SIMPLE.

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}} + rule for(Start Cond; Step) {} => {Start while(Cond){Step;}} + rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es; [anywhere] + rule T:Type X:Id = E; => T X; X = E; [anywhere] + +endmodule + + +module SIMPLE-TYPED-DYNAMIC + imports SIMPLE-TYPED-DYNAMIC-SYNTAX + imports DOMAINS +
+

Semantics

+

Values and results

+

These are similar to those of untyped SIMPLE, except that the array +references and the function abstrations now also hold their types. +These types are needed in order to easily compute the type of any +value in the language (see the auxiliary typeOf operation at +the end of this module).

+
k
syntax Val ::= Int | Bool | String + | array(Type,Int,Int) + | lambda(Type,Params,Stmt) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + | Vals // TODO: should not need this +
+

Configuration

+

The configuration is almost identical to that of untyped SIMPLE, +except for a return cell inside the control cell. +This return cell will hold, like in the static semantics of +typed SIMPLE, the expected type of the value returned by the function +being executed. The contents of this cell will be set whenever a +function is invoked and will be checked whenever the evaluation of the +function body encounters an explicit return statement.

+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + + syntax ControlCell + syntax ControlCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" color="yellow" type="Map"> + <id color="pink"> 0 </id> + <k color="green"> ($PGM:Stmt ~> execute) </k> +// <br/> + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + <returnType color="LimeGreen"> void </returnType> + </control> +// <br/> + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + </thread> + </threads> +// <br/> + <genv color="pink"> .Map </genv> + <store color="white"> .Map </store> + <busy color="cyan">.Set</busy> + <terminated color="red"> .Set </terminated> + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + </T> +
+

Declarations and Initialization

+

Variable Declaration

+

The undefined construct is now parameterized by a type. +A main difference between untyped SIMPLE and dynamically typed SIMPLE +is that the latter assigns a type to each of its locations and that +type cannot be changed during the execution of the program. We do not +do any memory management in our semantic definitions here, so +locations cannot be reclaimed, garbage collected and/or reused. Each +location corresponds precisely to an allocated variable or array +element, whose type was explicitly or implicitly declared in the +program and does not change. It is therefore safe to type each +location and then never allow that type to change. The typed +undefined values effectively assign both a type and an undefined value +to a location.

+
k
syntax KItem ::= undefined(Type) + + rule <k> T:Type X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 </nextLoc> +
+

Array Declaration

+

The dynamic semantics of typed array declarations is similar to that +in untyped SIMPLE, but we have to make sure that we associate the +right type to the allocated locations.

+
k
rule <k> T:Type X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(T, L +Int 1, N) + (L +Int 1)...(L +Int N) |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 + + context _:Type _::Exp[HOLE::Exps]; +
+

The desugaring of multi-dimensional arrays into unidimensional +ones is also similar to that in untyped SIMPLE, although we have to +make sure that all the declared variables have the right types. The +auxiliary operation T<Vs>, defined at the end of the file, +adds the length of Vs dimensions to the type T.

+
k
// TODO: Check the desugaring below to be consistent with the one for untyped simple + + syntax Id ::= "$1" [token] | "$2" [token] + rule T:Type X:Id[N1:Int, N2:Int, Vs:Vals]; + => T[]<Vs> X[N1]; + { + T[][]<Vs> $1=X; + for(int $2=0; $2 <= N1 - 1; ++$2) { + T X[N2,Vs]; + $1[$2] = X; + } + } +
+

Function declaration

+

Store all function parameters, as well as the return type, as part +of the lambda abstraction. In the spirit of dynamic typing, we will +make sure that parameters are well typed when the function is invoked.

+
k
rule <k> T:Type F:Id(Ps:Params) S => .K ...</k> + <env> Env => Env[F <- L] </env> + <store>... .Map => L |-> lambda(T, Ps, S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

Calling main()

+

When done with the first pass, call main().

+
k
syntax KItem ::= "execute" + rule <k> execute => main(.Exps); </k> + <env> Env </env> + <genv> .Map => Env </genv> +
+

Expressions

+

Variable lookup

+
k
rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> +
+

Variable/Array increment

+
k
context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I:Int => I +Int 1) ...</store> +
+

Arithmetic operators

+
k
rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E +
+

Array lookup

+

Check array bounds, as part of the dynamic typing policy.

+
k
// Same comment as for simple untyped regarding [anywhere] + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + +// Same comment as for simple untyped regarding [anywhere] + rule array(_:Type, L:Int, M:Int)[N:Int] => lookup(L +Int N) + requires N >=Int 0 andBool N <Int M [anywhere] +
+

Size of an array

+
k
rule sizeOf(array(_,_,N)) => N +
+

Function call

+

Define function call and return together, to see their relationship. +Note that the operation mkDecls now declares properly typed +instantiated variables, and that the semantics of return also +checks that that type of the returned value is expected one.

+
k
syntax KItem ::= (Type,Map,K,ControlCellFragment) + + rule <k> lambda(T,Ps,S)(Vs:Vals) ~> K => mkDecls(Ps,Vs) S return; </k> + <control> + <fstack> .List => ListItem((T',Env,K,C)) ...</fstack> + <returnType> T' => T </returnType> + C + </control> + <env> Env => GEnv </env> + <genv> GEnv </genv> + + rule <k> return V:Val; ~> _ => V ~> K </k> + <control> + <fstack> ListItem((T',Env,K,C)) => .List ...</fstack> + <returnType> T => T' </returnType> + (_ => C) + </control> + <env> _ => Env </env> + requires typeOf(V) ==K T // check the type of the returned value +
+

Like the undefined above, nothing also gets +tagged with a type now. The empty return statement is +completed to return the nothing value tagged as expected.

+
k
syntax Val ::= nothing(Type) + rule <k> return; => return nothing(T); ...</k> <returnType> T </returnType> +
+

Read

+
k
rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> +
+

Assignment

+

The assignment now checks that the type of the assigned location is +preserved:

+
k
context (HOLE => lvalue(HOLE)) = _ + + rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (V' => V) ...</store> + requires typeOf(V) ==K typeOf(V') +
+

Statements

+

Blocks

+
k
rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> +
+

Sequential composition

+
k
rule S1:Stmt S2:Stmt => S1 ~> S2 +
+

Expression statements

+
k
rule _:Val; => .K +
+

Conditional

+
k
rule if ( true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+
k
rule while (E) S => if (E) {S while(E)S} +
+

Print

+

We only allow printing integers and strings:

+
k
rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + requires typeOf(V) ==K int orBool typeOf(V) ==K string + rule print(.Vals); => .K +
+

Exceptions

+

Exception parameters are now typed, but note that the semantics below +works correctly only when the thrown exception has the same type as +the innermost try-catch paramete. To keep things simple, for the time +being we can assume that SIMPLE only throws and catches integer +values, in which case our semantics below works fine:

+
k
syntax KItem ::= (Param,Stmt,K,Map,ControlCellFragment) // Param instead of Id + + syntax KItem ::= "popx" + + rule <k> (try S1 catch(P) S2 => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem((P, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ => { T X = V; S2 } ~> K </k> + <control> + <xstack> ListItem((T:Type X:Id, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

Threads

+

Thread creation

+
k
rule <thread>... + <k> spawn S => !T:Int +Int 1 ...</k> + <env> Env </env> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T +Int 1 </id> + ...</thread>) +
+

Thread termination

+
k
rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> +
+

Thread joining

+
k
rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> +
+

Acquire lock

+
k
rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy:Set)) + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds> +
+

Release lock

+
k
rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N:Int -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> +
+

Rendezvous synchronization

+
k
rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> +
+

Auxiliary declarations and operations

+

Turns a list of parameters and a list of instance values for them +into a list of variable declarations.

+
k
syntax Stmt ::= mkDecls(Params,Vals) [function] + rule mkDecls((T:Type X:Id, Ps:Params), (V:Val, Vs:Vals)) + => T X=V; mkDecls(Ps,Vs) + rule mkDecls(.Params,.Vals) => {} +
+

Location lookup.

+
k
syntax Exp ::= lookup(Int) // see NOTES.md for why Exp instead of KItem + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> +
+

Environment recovery.

+
k
// TODO: same comment regarding setEnv(...) as for simple untyped + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> + rule (setEnv(_) => .K) ~> setEnv(_) +
+

lvalue and loc

+
k
syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + + //context lvalue(_[HOLE]) + //context lvalue(HOLE[_]) + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + + rule lvalue(lookup(L:Int) => loc(L)) +
+

Adds the corresponding depth to an array type

+
k
syntax Type ::= Type "<" Vals ">" [function] + rule T:Type<_,Vs:Vals> => T[]<Vs> + rule T:Type<.Vals> => T +
+

Sequences of locations.

+
k
syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M + +// Type of a value. + syntax Type ::= typeOf(K) [function] + rule typeOf(_:Int) => int + rule typeOf(_:Bool) => bool + rule typeOf(_:String) => string + rule typeOf(array(T,_,_)) => (T[]) // () needed! K parses [] as "no tags" + rule typeOf(lambda(T,Ps,_)) => getTypes(Ps) -> T + rule typeOf(undefined(T)) => T + rule typeOf(nothing(T)) => T +
+

List of types of a parameter.

+
k
syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types // I would like to not use .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/programs/index.html b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/programs/index.html new file mode 100644 index 00000000000..021dfb66366 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/programs/index.html @@ -0,0 +1,380 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The programs in this folder are typed variants of the SIMPLE untyped programs. +These programs will be executed both with the dynamic and with the static +semantics of the typed SIMPLE language. Each of the semantics contains its +own results folder showing the expected results of executing these programs.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/index.html b/k-distribution/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/index.html new file mode 100644 index 00000000000..d6c404ffbe9 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/index.html @@ -0,0 +1,1519 @@ + + + + + + + + + + + + + + +KOOL — Untyped | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

KOOL — Untyped

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of the untyped KOOL language. KOOL +is aimed at being a pedagogical and research language that captures +the essence of the object-oriented programming paradigm. Its untyped +variant discussed here is simpler than the typed one, ignoring several +intricate aspects of types in the presence of objects. A program +consists of a set of class declarations. Each class can extend at +most one other class (KOOL is single-inheritance). A class can +declare a set of fields and a set of methods, all public and called +the class' members. Specifically, KOOL includes the +following features:

+
    +
  • +

    Class declarations, where a class may or may not explicitly +extend another class. In case a class does not explicitly extend +another class, then it is assumed that it extends the default top-most +and empty (i.e., no members) class called Object. Each class +is required to declare precisely one homonymous method, called its +constructor. Each valid program should contain one class +named Main, whose constructor, Main(), takes no +arguments. The execution of a program consists of creating an object +instance of class Main and invoking the constructor +Main() on it, that is, of executing new Main();.

    +
  • +
  • +

    All features of SIMPLE (see examples/simple/untyped), +i.e., multidimensional arrays, function (here called "method") +abstractions with call-by-value parameter passing style and static +scoping, blocks with locals, input/output, parametric exceptions, and +concurrency via dynamic thread creation/termination and synchronization. +The only change in the syntax of SIMPLE when imported in KOOL is the +function declaration keyword, function, which is changed into +method. The exact same desugaring macros from SIMPLE are +also included in KOOL. We can think of KOOL's classes as embedding +SIMPLE programs (extended with OO constructs, as discussed next).

    +
  • +
  • +

    Object creation using the new C(e1,...,en) +expression construct. An object instance of class C is first +created and then the constructor C(e1,...,en) is implicitly +called on that object. KOOL only allows (and requires) one +constructor per class. The class constructor can be called either +implicitly during a new object creation for the class, or explicitly. +The superclass constructor is not implicitly invoked when a +class constructor is invoked; if you want to invoke the superclass +constructor from a subclass constructor then you have to do it +explicitly.

    +
  • +
  • +

    An expression construct this, which evaluates to the +current object.

    +
  • +
  • +

    An expression construct super, which is used (only) in +combination with member lookup (see next) to refer to a superclass +field or method.

    +
  • +
  • +

    A member lookup expression construct e.x, where e +is an expression (either an expression expected to evaluate to an object +or the super construct) and x is a class member name, +that is, a field or a method name.

    +
  • +
  • +

    Expression constructs e instanceOf C and +(C) e, where e is an expression expected +to evaluate to an object and C a class name. The former +tells whether the class of e is a subclass of C, +that is, whether e can be used as an instance of C, +and the latter changes the class of e to C. These +operations always succeed: the former returns a Boolean value, while +the latter changes the current class of e to C +regardless of whether it is safe to do so or not. The typed version +of KOOL will check the safety of casting by ensuring that the instance +class of the object is a subclass of C. In untyped KOOL we +do not want to perform this check because we want to allow the +programmer maximum of flexibility: if one always accesses only +available members, then the program can execute successfully despite +the potentially unsafe cast.

    +
  • +
+

There are some specific aspects of KOOL that need to be discussed.

+

First, KOOL is higher-order, allowing function abstractions to be +treated like any other values in the language. For example, if +m is a method of object e then e.m +evaluates to the corresponding function abstraction. The function +abstraction is in fact a closure, because in addition to the method +parameters and body it also encapsulates the object value (i.e., the +environment of the object together with its current class—see below) +that e evaluates to. This way, function abstractions can be +invoked anywhere and have the capability to change the state of their +object. For example, if m is a method of object e +which increments a field c of e when invoked, and if +getm is another method of e which simply returns +m when invoked, then the double application +(e.getm())() has the same effect as e.m(), that is, +increments the counter c of e. Note that the +higher-order nature of KOOL was not originally planned; it came as a +natural consequence of evaluating methods to closures and we decided +to keep it. If you do not like it then do not use it.

+

Second, since all the fields and methods are public in KOOL and since +they can be redeclared in subclasses, it is not immediately clear how +to lookup the member x when we write e.x and +e is different from super. We distinguish two cases, +depending on whether e.x occurs in a method invocation +context (i.e., e.x(...)) or in a field context. KOOL has +dynamic method dispatch, so if e.x is invoked as a method +then x will be searched for starting with the instance class of +the object value to which e evaluates. If e.x +occurs in a non-method-invocation context then x will be +treated as a field (although it may hold a method closure due to the +higher-order nature of KOOL) and thus will be searched starting with +the current class of the object value of e (which, because of +this and casting, may be different from its instance class). +In order to achieve the above, each object value will consist of a +pair holding the current class of the object and an environment stack +with one layer for each class in the object's instance class hierarchy.

+

Third, although KOOL is dynamic method dispatch, its capabilities +described above are powerful enough to allow us to mimic static +method dispatch. For example, suppose that you want to invoke method +m() statically. Then all you need to do is to declare a +local variable and bind it to m, for example var staticm = m;, and +then call staticm(). This works because +staticm is first bound to the method closure that m +evaluates to, and then looked up as any local variable when invoked. +We only enable the dynamic method dispatch when we have an object +member on an application position, e.g., m().

+

In what follows, we limit our comments to the new, KOOL-specific +aspects of the language. We refer the reader to the untyped SIMPLE +language for documentation on the the remaining features, because +those were all borrowed from SIMPLE.

+
k
module KOOL-UNTYPED-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of KOOL extends that of SIMPLE with object-oriented +constructs. We removed from the K annotated syntax of SIMPLE two +constructs, namely the one for function declarations (because we want +to call them methods now) and the one for function application +(because application is not strict in the first argument +anymore—needs to initiate dynamic method dispatch). The additional +syntax includes:

+
    +
  • First, we need a new dedicated identifier, Object, for +the default top-most class.
  • +
  • Second, we rename the function keyword of SIMPLE into method.
  • +
  • Third, we add syntax for class declarations together with a +macro making classes which extend nothing to extend Object.
  • +
  • Fourth, we change the strictness attribute of application +into strict(2).
  • +
  • Finally, we add syntax and corresponding strictness +for the KOOL object-oriented constructs.
  • +
+
k
syntax Id ::= "Object" [token] | "Main" [token] + + syntax Stmt ::= "var" Exps ";" + | "method" Id "(" Ids ")" Block // called "function" in SIMPLE + | "class" Id Block // KOOL + | "class" Id "extends" Id Block // KOOL + + syntax Exp ::= Int | Bool | String | Id + | "this" // KOOL + | "super" // KOOL + | "(" Exp ")" [bracket] + | "++" Exp + | Exp "instanceOf" Id [strict(1)] // KOOL + | "(" Id ")" Exp [strict(2)] // KOOL cast + | "new" Id "(" Exps ")" [strict(2)] // KOOL + | Exp "." Id // KOOL + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict(2)] // was strict in SIMPLE + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] + + syntax Ids ::= List{Id,","} + + syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Vals ::= List{Val,","} [overload(exps)] + + syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" [macro] + | "print" "(" Exps ")" ";" [strict] + | "try" Block "catch" "(" Id ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [right] +
+

Old desugaring rules, from SIMPLE

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}} + rule var E1::Exp, E2::Exp, Es::Exps; => var E1; var E2, Es; [anywhere] + rule var X::Id = E; => var X; X = E; [anywhere] +
+

New desugaring rule

+
k
rule class C:Id S => class C extends Object S // KOOL + +endmodule +
+

Semantics

+

We first discuss the new configuration of KOOL, which extends that of +SIMPLE. Then we include the semantics of the constructs borrowed from +SIMPLE unchanged; we refrain from discussing those, because they were +already discussed in the K definition of SIMPLE. Then we discuss +changes to SIMPLE's semantics needed for the more general meaning of +the previous SIMPLE constructs (for example for thread spawning, +assignment, etc.). Finally, we discuss in detail the +semantics of the additional KOOL constructs.

+
k
module KOOL-UNTYPED + imports KOOL-UNTYPED-SYNTAX + imports DOMAINS +
+

Configuration

+

KOOL removes one cell and adds two nested cells to the configuration +of SIMPLE. The cell which is removed is the one holding the global +environment, because a KOOL program consists of a set of classes only, +with no global declarations. In fact, since informally speaking each +KOOL class now includes a SIMPLE program, it is safe to say that the +global variables in SIMPLE became class fields in KOOL. Let us now +discuss the new cells that are added to the configuration of SIMPLE.

+
    +
  • +

    The cell crntObj holds data pertaining to the current +object, that is, the object environment in which the code in cell +k executes: crntClass holds the current class (which +can change as methods of the current object are invoked); +envStack holds the stack of environments as a list, +each layer corresponding to one class in the objects' instance class +hierarchy; location, which is optional, holds the location in +the store where the current object is or has to be located (this is +useful both for method closures and for the semantics of object +creation).

    +
  • +
  • +

    The cell classes holds all the declared classes, each +class being held in its own class cell which contains a name +(className), a parent (extends), and the actual +member declarations (declarations).

    +
  • +
+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + syntax EnvCell + syntax ControlCell + syntax EnvStackCell + syntax CrntObjCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" type="Set" color="yellow"> + <k color="green"> $PGM:Stmt ~> execute </k> + //<br/> // TODO(KORE): support latex annotations #1799 + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + //<br/> // TODO(KORE): support latex annotations #1799 + <crntObj color="Fuchsia"> // KOOL + <crntClass> Object </crntClass> + <envStack> .List </envStack> + <location multiplicity="?"> .K </location> + </crntObj> + </control> + //<br/> // TODO(KORE): support latex annotations #1799 + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + <id color="pink"> 0 </id> + </thread> + </threads> + //<br/> // TODO(KORE): support latex annotations #1799 + <store color="white"> .Map </store> + <busy color="cyan">.Set </busy> + <terminated color="red"> .Set </terminated> + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <classes color="Fuchsia"> // KOOL + <classData multiplicity="*" type="Map" color="Fuchsia"> + // the Map has as its key the first child of the cell, + // in this case the className cell. + <className color="Fuchsia"> Main </className> + <baseClass color="Fuchsia"> Object </baseClass> + <declarations color="Fuchsia"> .K </declarations> + </classData> + </classes> + </T> +
+

Unchanged Semantics from untyped SIMPLE

+

The semantics below is taken over from SIMPLE unchanged. +The semantics of function declaration and invocation, including the +use of the special lambda abstraction value, needs to change +in order to account for the fact that methods are now invoked into +their object's environment. The semantics of function return actually +stays unchanged. Also, the semantics of program initialization is +different: now we have to create an instance of the Main +class which also calls the constructor Main(), while in +SIMPLE we only had to invoke the function Main(). +Finally, the semantics of thread spawning needs to change, too: the +parent thread needs to also share its object environment with the +spawned thread (in addition to its local environment, like in SIMPLE). +This is needed in order to be able to spawn method invokations under +dynamic method dispatch; for example, spawn { run(); } +will need to look up the method run() in the newly created +thread, operation which will most likely fail unless the child thread +sees the object environment of the parent thread. Note that the +spawn statement of KOOL is more permissive than the threads +of Java. In fact, the latter can be implemented in terms of our +spawn—see the program threads.kool for a sketch.

+

Below is a subset of the values of SIMPLE, which are also values +of KOOL. We will add other values later in the semantics, such as +object and method closures.

+
k
syntax Val ::= Int | Bool | String + | array(Int,Int) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + syntax KResult ::= Vals +
+

The semantics below are taken verbatim from the untyped SIMPLE +definition.

+
k
syntax KItem ::= "undefined" + + rule <k> var X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined ...</store> + <nextLoc> L:Int => L +Int 1 </nextLoc> + + + context var _:Id[HOLE]; + + rule <k> var X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(L +Int 1, N) + (L +Int 1) ... (L +Int N) |-> undefined ...</store> + <nextLoc> L:Int => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 + + + syntax Id ::= "$1" [token] | "$2" [token] + rule var X:Id[N1:Int, N2:Int, Vs:Vals]; + => var X[N1]; + { + var $1=X; + for(var $2=0; $2 <= N1 - 1; ++$2) { + var X[N2,Vs]; + $1[$2] = X; + } + } + + + rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> + + + context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I:Int => I +Int 1) ...</store> + + + rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E + + + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + + rule array(L,_)[N:Int] => lookup(L +Int N) + [anywhere] + + + rule sizeOf(array(_,N)) => N +
+

The semantics of function application needs to change into dynamic +method dispatch invocation, which is defined shortly. However, +interestingly, the semantics of return stays unchanged.

+
k
rule <k> return(V:Val); ~> _ => V ~> K </k> + <control> + <fstack> ListItem(fstackFrame(Env,K,XS,<crntObj> CO </crntObj>)) => .List ...</fstack> + <xstack> _ => XS </xstack> + <crntObj> _ => CO </crntObj> + </control> + <env> _ => Env </env> + + syntax Val ::= "nothing" + rule return; => return nothing; + + + rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> + + + context (HOLE => lvalue(HOLE)) = _ + + rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store> + + rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> + + + rule S1::Stmt S2::Stmt => S1 ~> S2 + + rule _:Val; => .K + + rule if ( true) S else _ => S + rule if (false) _ else S => S + + rule while (E) S => if (E) {S while(E)S} + + rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + rule print(.Vals); => .K + + + syntax KItem ::= xstackFrame(Id,Stmt,K,Map,K) + // TODO(KORE): drop the additional production once parsing issue #1842 is fixed + | (Id,Stmt,K,Map,K) + + syntax KItem ::= "popx" + + rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem(xstackFrame(X, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k> + <control> + <xstack> ListItem(xstackFrame(X, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

Thread spawning needs a new semantics, because we want the child +thread to also share the object environment with its parent. The new +semantics of thread spawning will be defined shortly. However, +interestingly, the other concurrency constructs keep their semantics +from SIMPLE unchanged.

+
k
// TODO(KORE): ..Bag should be . throughout this definition #1772 + rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + /* + rule (<thread>... <k>.</k> <holds>H</holds> <id>T</id> ...</thread> => .) + */ + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> + + rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> + + rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy:Set)) + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds> + + rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N:Int -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> + + rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> +
+

Unchanged auxiliary operations from untyped SIMPLE

+
k
syntax Stmt ::= mkDecls(Ids,Vals) [function] + rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs) + rule mkDecls(.Ids,.Vals) => {} + + // TODO(KORE): clarify sort inferences #1803 + syntax Exp ::= lookup(Int) + /* + syntax KItem ::= lookup(Int) + */ + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> + rule (setEnv(_) => .K) ~> setEnv(_) + // TODO: How can we make sure that the second rule above applies before the first one? + // Probably we'll deal with this using strategies, eventually. + + syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + + rule lvalue(lookup(L:Int) => loc(L)) + + + syntax Map ::= Int "..." Int "|->" K + [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M +
+

Changes to the existing untyped SIMPLE semantics

+

When we extend a language, sometimes we need to do more than just add +new language constructs and semantics for them. Sometimes we want to +also extend the semantics of existing language constructs, in order to +get more from them.

+

Program initialization

+

In SIMPLE, once all the global declarations were processed, the +function main() was invoked. In KOOL, the global +declarations are classes, and their specific semantics is given +shortly; essentially, they are pre-processed one by one and added +into the class cell structure in the configuration. +Once all the classes are processed, the computation item +execute, which was placed right after the program in the +initial configuration, is reached. In SIMPLE, the program was +initialized by calling the method main(). In KOOL, the +program is initialized by creating an object instance of class +Main. This will also implicitly call the method +Main() (the Main class constructor). The emptiness +of the env cell below is just a sanity check, to make sure +that the user has not declared anything but classes at the top level +of the program.

+
k
syntax KItem ::= "execute" + rule <k> execute => new Main(.Exps); </k> <env> .Map </env> +
+

The semantics of new (defined below) requires the +execution of all the class' declarations (and also of its +superclasses').

+

Object and method closures

+

Before we can define the semantics of method application (previously +called function application in SIMPLE), we need to add two more values +to the language, namely object and method closures:

+
k
syntax Val ::= objectClosure(Id, List) + | methodClosure(Id,Int,Ids,Stmt) +
+

An object value consists of an objectClosure-wrapped bag +containing the current class of the object and the environment stack +of the object. The current class of an object will always be one of +the classes mapped to an environment in the environment stack of the +object. A method closure encapsulates the method's parameters and +code (last two arguments), as well as the object context in which the +method code should execute. This object context includes the current +class of the object (the first argument of methodClosure) and +the object environment stack (located in the object stored at the +location specified as the second argument of methodClosure).

+

Method application

+

KOOL has a complex mechanism to invoke methods, because it allows both +dynamic method dispatch and methods as first-class-citizen values (the +latter making it a higher-order language). The invocation mechanism +will be defined later. What is sufficient to know for now is that +the two arguments of the application construct eventually reduce to +values, the first being a method closure and the latter a list of +values. The semantics of the method closure application is then as +expected: the local environment and control are stacked, then we +switch to method closure's class and object environment and execute +the method body. The mkDecls construct is the one that came +with the unchanged semantics of SIMPLE above.

+
k
syntax KItem ::= fstackFrame(Map,K,List,K) + // TODO(KORE): drop the additional production once parsing issue #1842 is fixed + | (Map,K,K) + + rule <k> methodClosure(Class,OL,Xs,S)(Vs:Vals) ~> K + => mkDecls(Xs,Vs) S return; </k> + <env> Env => .Map </env> + <store>... OL |-> objectClosure(_, EnvStack)...</store> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> + <xstack> XS </xstack> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj' </crntObj>)) + ...</fstack> + <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EnvStack </envStack> </crntObj> + </control> +
+

Spawn

+

We want to extend the semantics of spawn to also share the +current object environment with the child thread, in addition to the +current environment. This extension will allow us to also use method +invocations in the spawned statements, which will be thus looked up as +expected, using dynamic method dispatch. This lookup operation would +fail if the child thread did not have access to its parent's object +environment.

+
k
rule <thread>... + <k> spawn S => !T:Int ...</k> + <env> Env </env> + <crntObj> Obj </crntObj> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T </id> + <crntObj> Obj </crntObj> + ...</thread>) +
+

Semantics of the new KOOL constructs

+

Class declaration

+

Initially, the classes forming the program are moved into their +corresponding cells:

+
k
rule <k> class Class1 extends Class2 { S } => .K ...</k> + <classes>... (.Bag => <classData> + <className> Class1 </className> + <baseClass> Class2 </baseClass> + <declarations> S </declarations> + </classData>) + ...</classes> +
+

Method declaration

+

Like in SIMPLE, method names are added to the environment and bound +to their code. However, unlike in SIMPLE where each function was +executed in the same environment, namely the program global +environment, a method in KOOL needs to be executed into its object's +environment. Thus, methods evaluate to closures, which encapsulate +their object's context (i.e., the current class and environment stack +of the object) in addition to method's parameters and body. This +approach to bind method names to method closures in the environment +will also allow objects to pass their methods to other objects, to +dynamically change their methods by assigning them other method +closures, and even to allow all these to be done from other objects. +This gives the KOOL programmer a lot of power; one should use this +power wisely, though, because programs can become easily hard to +understand and reason about if one overuses these features.

+
k
rule <k> method F:Id(Xs:Ids) S => .K ...</k> + <crntClass> Class:Id </crntClass> + <location> OL:Int </location> + <env> Env => Env[F <- L] </env> + <store>... .Map => L |-> methodClosure(Class,OL,Xs,S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

New

+

The semantics of new consists of two actions: memory +allocation for the new object and execution of the corresponding +constructor. Then the created object is returned as the result of the +new operation; the value returned by the constructor, if any, +is discarded. The current environment and object are stored onto the +stack and recovered after new (according to the semantics of +return borrowed from SIMPLE, when the statement +return this; in the rule below is reached and evaluated), +because the object creation part of new will destroy them. +The rule below also initializes the object creation process by +emptying the local environment and the current object, and allocating +a location in the store where the created object will be eventually +stored (this is what the storeObj task after the object +creation task in the rule below will do—its rule is defined +shortly). The location where the object will be stored is also made +available in the crntObj cell, so that method closures can +refer to it (see rule above).

+
k
syntax KItem ::= "envStackFrame" "(" Id "," Map ")" + + rule <k> new Class:Id(Vs:Vals) ~> K + => create(Class) ~> storeObj ~> Class(Vs); return this; </k> + <env> Env => .Map </env> + <nextLoc> L:Int => L +Int 1 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> <xstack> XS </xstack> + <crntObj> Obj + => <crntClass> Object </crntClass> + <envStack> ListItem(envStackFrame(Object, .Map)) </envStack> + <location> L </location> + </crntObj> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj </crntObj>)) ...</fstack> + </control> +
+

The creation of a new object (the memory allocation part only) is +a recursive process, requiring to first create an object for the +superclass. A memory object representation is a layered structure: +for each class on the path from the instance class to the root of the +hierarchy there is a layer including the memory allocated for the +members (both fields and methods) of that class.

+
k
syntax KItem ::= create(Id) + + rule <k> create(Class:Id) + => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k> + <className> Class </className> + <baseClass> Class1:Id </baseClass> + <declarations> S </declarations> + + rule <k> create(Object) => .K ...</k> +
+

The next operation sets the current class of the current object. +This is necessary to be done at each layer, because the current class +of the object is enclosed as part of the method closures (see the +semantics of method declarations above).

+
k
syntax KItem ::= setCrntClass(Id) + + rule <k> setCrntClass(C) => .K ...</k> + <crntClass> _ => C </crntClass> +
+

The next operation adds a new tagged environment layer to the +current object and gets ready for the next layer by clearing the +environment (note that create expects the environment to be +empty).

+
k
syntax KItem ::= "addEnvLayer" + + rule <k> addEnvLayer => .K ...</k> + <env> Env => .Map </env> + <crntClass> Class:Id </crntClass> + <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack> +
+

The following operation stores the created object at the location +reserved by new. Note that the location reserved by +new was temporarily stored in the crntObj cell +precisely for this purpose. Now that the newly created object is +stored at its location and that all method closures are aware of it, +the location is unnecessary and thus we delete it from the +crntObj cell.

+
k
syntax KItem ::= "storeObj" + + rule <k> storeObj => .K ...</k> + <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> (<location> L:Int </location> => .Bag) </crntObj> + <store>... .Map => L |-> objectClosure(CC, ES) ...</store> +
+

Self reference

+

The semantics of this is straightforward: evaluate to the +current object.

+
k
rule <k> this => objectClosure(CC, ES) ...</k> + <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> </crntObj> +
+

Object member access

+

We can access an object member (field or method) either explicitly, +using the construct e.x, or implicitly, using only the member +name x directly. The borrowed semantics of SIMPLE will +already lookup a sole name in the local environment. The first rule +below reduces implicit member access to explicit access when the name +cannot be found in the local environment. There are two cases to +analyze for explicit object member access, depending upon whether the +object is a proper object or it is just a redirection to the parent +class via the construct super. In the first case, we +evaluate the object expression and lookup the member starting with the +current class (static scoping). Note the use of the conditional +evaluation context. In the second case, we just lookup the member +starting with the superclass of the current class. In both cases, +the lookupMember task eventually yields a lookup(L) +task for some appropriate location L, which will be further +solved with the corresponding rule borrowed from SIMPLE. Note that the +current object is not altered by super, so future method +invocations see the entire object, as needed for dynamic method dispatch.

+
k
rule <k> X:Id => this . X ...</k> <env> Env:Map </env> + requires notBool(X in keys(Env)) + + context HOLE._::Id requires (HOLE =/=K super) + +// TODO: explain how Assoc matching has been replaced with two rules here. +// Maybe also improve it a bit. + +/* rule objectClosure(<crntClass> Class:Id </crntClass> + <envStack>... envStackFrame(Class,EnvC) EStack </envStack>) + . X:Id + => lookupMember(envStackFrame(Class,EnvC) EStack, X) */ + + rule objectClosure(Class:Id, ListItem(envStackFrame(Class,Env)) EStack) + . X:Id + => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X) + rule objectClosure(Class:Id, (ListItem(envStackFrame(Class':Id,_)) => .List) _) + . _X:Id + requires Class =/=K Class' + +/* rule <k> super . X => lookupMember(EStack, X) ...</k> + <crntClass> Class </crntClass> + <envStack>... envStackFrame(Class,EnvC) EStack </envStack> */ + rule <k> super . X => lookupMember(EStack, X) ...</k> + <crntClass> Class:Id </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> super . _X ...</k> + <crntClass> Class </crntClass> + <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack> + requires Class =/=K Class' +
+

Method invocation

+

Unlike in SIMPLE, in KOOL application was declared strict only in its +second argument. That is because we want to ensure dynamic method +dispatch when the first argument is a method access. As a +consequence, we need to consider all the cases of interest for the +first argument and to explicitly say what to do in each case. In all +cases except for method access in a proper object (i.e., not +super), we want the same behavior for the first argument as +if it was not in a method invocation position. When it is a member +access (the third rule below), we look it up starting with the +instance class of the corresponding object. This ensures dynamic +dispatch for methods; it actually dynamically dispatches field +accesses, too, which is correct in KOOL, because one can assign method +closures to fields and the field appeared in a method invocation +context. The last context declaration below says that method +applications or array accesses are also allowed as first argument to +applications; that is because methods are allowed to return methods +and arrays are allowed to hold methods in KOOL, since it is +higher-order. If that is the case, then we want to evaluate the +method call or the array access.

+
k
rule <k> (X:Id => V)(_:Exps) ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> + + rule <k> (X:Id => this . X)(_:Exps) ...</k> + <env> Env </env> + requires notBool(X in keys(Env)) + + context HOLE._::Id(_) requires HOLE =/=K super + + rule (objectClosure(_, EStack) . X + => lookupMember(EStack, X:Id))(_:Exps) + +/* rule <k> (super . X + => lookupMember(EStack,X))(_:Exps)...</k> + <crntClass> Class </crntClass> + <envStack>... envStackFrame(Class,_) EStack </envStack> */ + rule <k> (super . X + => lookupMember(EStack,X))(_:Exps)...</k> + <crntClass> Class </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> (super . _X)(_:Exps) ...</k> + <crntClass> Class </crntClass> + <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack> + requires Class =/=K Class' + + // TODO(KORE): fix getKLabel #1801 + rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C) + rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C) + rule V:Val ~> #freezerFunCall(C:Exps) => V(C) + syntax KItem ::= "#freezerFunCall" "(" K ")" + /* + context HOLE(_:Exps) + when getKLabel(HOLE) ==K #klabel(`_(_)`) orBool getKLabel(HOLE) ==K #klabel(`_[_]`) + */ +
+

Eventually, each of the rules above produces a lookup(L) +task as a replacement for the method. When that happens, we just +lookup the value at location L:

+
k
rule <k> (lookup(L) => V)(_:Exps) ...</k> <store>... L |-> V:Val ...</store> +
+

The value V looked up above is expected to be a method closure, +in which case the semantics of method application given above will +apply. Otherwise, the execution will get stuck.

+

Instance Of

+

It searches the object environment for a layer corresponding to the +desired class. It returns true iff it can find the class, +otherwise it returns false; it only gets stuck when its first +argument does not evaluate to an object.

+
k
rule objectClosure(_, ListItem(envStackFrame(C,_)) _) + instanceOf C => true + + rule objectClosure(_, (ListItem(envStackFrame(C,_)) => .List) _) + instanceOf C' requires C =/=K C' +//TODO: remove the sort cast ::Id of C above, when sort inference bug fixed + + rule objectClosure(_, .List) instanceOf _ => false +
+

Cast

+

In untyped KOOL, we prefer to not check the validity of casting. In +other words, any cast is allowed on any object, simply changing the +current class of the object to the desired class. The execution will +get stuck later if one attempts to access a field which is not +available. Moreover, the execution may complete successfully even +in the presence of invalid casts, provided that each accessed member +during the current execution is, or happens to be, available.

+
k
rule (C) objectClosure(_ , EnvStack) => objectClosure(C ,EnvStack) +
+

KOOL-specific auxiliary declarations and operations

+

Here we define all the auxiliary constructs used in the above +KOOL-specific semantics (those used in the SIMPLE fragment +have already been defined in a corresponding section above).

+

Objects as lvalues

+

The current machinery borrowed with the semantics of SIMPLE allows us +to enrich the set of lvalues, this way allowing new means to assign +values to locations. In KOOL, we want object member names to be +lvalues, so that we can assign values to them using the already +existing machinery. The first rule below ensures that the object is +always explicit, the evaluation context enforces the object to be +evaluated, and finally the second rule initiates the lookup for the +member's location based on the current class of the object.

+
k
rule <k> lvalue(X:Id => this . X) ...</k> <env> Env </env> + requires notBool(X in keys(Env)) + + context lvalue((HOLE . _)::Exp) + +/* rule lvalue(objectClosure(<crntClass> C </crntClass> + <envStack>... envStackFrame(C,EnvC) EStack </envStack>) + . X + => lookupMember(<envStack> envStackFrame(C,EnvC) EStack </envStack>, + X)) */ + rule lvalue(objectClosure(Class, ListItem(envStackFrame(Class,Env)) EStack) + . X + => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, + X)) + rule lvalue(objectClosure(Class, (ListItem(envStackFrame(Class':Id,_)) => .List) _) + . _X) + requires Class =/=K Class' +
+

Lookup member

+

It searches for the given member in the given environment stack, +starting with the most concrete class and going up in the hierarchy.

+
k
// TODO(KORE): clarify sort inferences #1803 + syntax Exp ::= lookupMember(List, Id) [function] + /* + syntax KItem ::= lookupMember(EnvStackCell,Id) [function] + */ + +// rule lookupMember(<envStack> envStackFrame(_, <env>... X|->L ...</env>) ...</envStack>, X) +// => lookup(L) + rule lookupMember(ListItem(envStackFrame(_, X|->L _)) _, X) + => lookup(L) + +// rule lookupMember(<envStack> envStackFrame(_, <env> Env </env>) => .List ...</envStack>, X) +// when notBool(X in keys(Env)) + rule lookupMember(ListItem(envStackFrame(_, Env)) Rest, X) => + lookupMember(Rest, X) + requires notBool(X in keys(Env)) +//TODO: beautify the above + +endmodule +
+

Go to Lesson 2, KOOL typed dynamic.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/index.html b/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/index.html new file mode 100644 index 00000000000..740e1a74ebb --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/index.html @@ -0,0 +1,1383 @@ + + + + + + + + + + + + + + +KOOL — Typed — Dynamic | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

KOOL — Typed — Dynamic

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K dynamic semantics of the typed KOOL language. It is +very similar to the semantics of the untyped KOOL, the difference +being that we now check the typing policy dynamically. Since we have +to now declare the types of variables and methods, we adopt a syntax +for those which is close to Java. Like in the semantics of +untyped KOOL, where we borrowed almost all the semantics of untyped +SIMPLE, we are going to also borrow much of the semantics of +dynamically typed SIMPLE here. We will highlight the differences +between the dynamically typed and the untyped KOOL as we proceed with +the semantics. In general, the type policy of the typed KOOL language +is similar to that of Java. You may find it useful to also read +the discussion in the preamble of the static semantics of typed KOOL +before proceeding.

+
k
module KOOL-TYPED-DYNAMIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

Like for the untyped KOOL language, the syntax of typed KOOL extends +that of typed SIMPLE with object-oriented constructs. +The syntax below was produced by copying and modifying/extending the +syntax of dynamically typed SIMPLE. In fact, the only change we made +to the existing syntax of dynamically typed SIMPLE was to change the +strictness of the application construct like in untyped KOOL, from +strict to strict(2) (because application is not +strict in the first argument anymore due to dynamic method dispatch). +The KOOL-specific syntactic extensions are identical to those in +untyped KOOL.

+
k
syntax Id ::= "Object" [token] | "Main" [token] +
+

Types

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Id // KOOL class + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + // TODO(KORE): drop klabel once issues #1913 are fixed + syntax Types ::= List{Type,","} [symbol(_,_::Types)] + /* + syntax Types ::= List{Type,","} + */ +
+

Declarations

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" [avoid] + | Type Id "(" Params ")" Block // stays like in typed SIMPLE + | "class" Id Block // KOOL + | "class" Id "extends" Id Block // KOOL +
+

Expressions

+
k
syntax Exp ::= Int | Bool | String | Id + | "this" // KOOL + | "super" // KOOL + | "(" Exp ")" [bracket] + | "++" Exp + | Exp "instanceOf" Id [strict(1)] // KOOL + | "(" Id ")" Exp [strict(2)] // KOOL cast + | "new" Id "(" Exps ")" [strict(2)] // KOOL + | Exp "." Id // KOOL + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict(2)] // was strict in SIMPLE + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] + + syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Vals ::= List{Val,","} [overload(exps)] +
+

Statements

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "print" "(" Exps ")" ";" [strict] + | "return" Exp ";" [strict] + | "return" ";" + | "try" Block "catch" "(" Param ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [right] +
+

Desugaring macros

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S::Stmt} => {Start while(Cond){S Step;}} + rule T::Type E1::Exp, E2::Exp, Es::Exps; => T E1; T E2, Es; [anywhere] + rule T::Type X::Id = E; => T X; X = E; [anywhere] + + rule class C:Id S => class C extends Object S // KOOL + +endmodule +
+

Semantics

+

We first discuss the new configuration, then we include the semantics of +the constructs borrowed from SIMPLE which stay unchanged, then those +whose semantics had to change, and finally the semantics of the +KOOL-specific constructs.

+
k
module KOOL-TYPED-DYNAMIC + imports KOOL-TYPED-DYNAMIC-SYNTAX + imports DOMAINS +
+

Configuration

+

The configuration of dynamically typed KOOL is almost identical to +that of its untyped variant. The only difference is the cell +return, inside the control cell, whose role is to +hold the expected return type of the invoked method. That is because +we want to dynamically check that the value that a method returns has +the expected type.

+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + syntax EnvCell + syntax ControlCellFragment + syntax EnvStackCell + syntax CrntObjCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" type="Set" color="yellow"> + <k color="green"> ($PGM:Stmt ~> execute) </k> + //<br/> // TODO(KORE): support latex annotations #1799 + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + <returnType color="LimeGreen"> void </returnType> // KOOL + //<br/> // TODO(KORE): support latex annotations #1799 + <crntObj color="Fuchsia"> // KOOL + <crntClass> Object </crntClass> + <envStack> .List </envStack> + <location multiplicity="?"> .K </location> + </crntObj> + </control> + //<br/> // TODO(KORE): support latex annotations #1799 + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + <id color="pink"> 0 </id> + </thread> + </threads> + //<br/> // TODO(KORE): support latex annotations #1799 + <store color="white"> .Map </store> + <busy color="cyan">.Set </busy> + <terminated color="red"> .Set </terminated> + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <classes color="Fuchsia"> // KOOL + <classData multiplicity="*" type="Map" color="Fuchsia"> + <className color="Fuchsia"> Main </className> + <baseClass color="Fuchsia"> Object </baseClass> + <declarations color="Fuchsia"> .K </declarations> + </classData> + </classes> + </T> +
+

Unchanged semantics from dynamically typed SIMPLE

+

The semantics below is taken over from dynamically typed SIMPLE +unchanged. Like for untyped KOOL, the semantics of function/method +declaration and invocation, and of program initialization needs to +change. Moreover, due to subtyping, the semantics of several imported +SIMPLE constructs can be made more general, such as that of the +return statement, that of the assignment, and that of the exceptions. +We removed all these from the imported semantics of SIMPLE below and +gave their modified semantics right after, together with the extended +semantics of thread spawning (which is identical to that of untyped +KOOL).

+
k
syntax Val ::= Int | Bool | String + | array(Type,Int,Int) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + syntax KResult ::= Vals + + + syntax KItem ::= undefined(Type) + + rule <k> T:Type X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 </nextLoc> + + + rule <k> T:Type X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(T, L +Int 1, N) + (L +Int 1)...(L +Int N) |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 + + context _:Type _::Exp[HOLE::Exps]; + + + syntax Id ::= "$1" [token] | "$2" [token] + rule T:Type X:Id[N1:Int, N2:Int, Vs:Vals]; + => T[]<Vs> X[N1]; + { + T[][]<Vs> $1=X; + for(int $2=0; $2 <= N1 - 1; ++$2) { + T X[N2,Vs]; + $1[$2] = X; + } + } + + + rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> + + + context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I:Int => I +Int 1) ...</store> + + + rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E + + + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + + rule array(_:Type, L:Int, M:Int)[N:Int] => lookup(L +Int N) + requires N >=Int 0 andBool N <Int M [anywhere] + + rule sizeOf(array(_,_,N)) => N + + + syntax Val ::= nothing(Type) + rule <k> return; => return nothing(T); ...</k> <returnType> T </returnType> + + + rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> + + + context (HOLE => lvalue(HOLE)) = _ + + + rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> + + + rule S1:Stmt S2:Stmt => S1 ~> S2 + + + rule _:Val; => .K + + + rule if ( true) S else _ => S + rule if (false) _ else S => S + + + rule while (E) S => if (E) {S while(E)S} + + + rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + requires typeOf(V) ==K int orBool typeOf(V) ==K string + rule print(.Vals); => .K + + + rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> + + rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> + + rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy:Set)) + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds> + + rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N:Int -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> + + rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> +
+

Unchanged auxiliary operations from dynamically typed SIMPLE

+
k
syntax Stmt ::= mkDecls(Params,Vals) [function] + rule mkDecls((T:Type X:Id, Ps:Params), (V:Val, Vs:Vals)) + => T X=V; mkDecls(Ps,Vs) + rule mkDecls(.Params,.Vals) => {} + + syntax Exp ::= lookup(Int) + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> + rule (setEnv(_) => .K) ~> setEnv(_) + + syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + + rule lvalue(lookup(L:Int) => loc(L)) + + syntax Type ::= Type "<" Vals ">" [function] + rule T:Type<_,Vs:Vals> => T[]<Vs> + rule T:Type<.Vals> => T + + syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M + + syntax Type ::= typeOf(K) [function] + rule typeOf(_:Int) => int + rule typeOf(_:Bool) => bool + rule typeOf(_:String) => string + rule typeOf(array(T,_,_)) => (T[]) + rule typeOf(undefined(T)) => T + rule typeOf(nothing(T)) => T + + syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types +
+

Changes to the existing dynamically typed SIMPLE semantics

+

We extend/change the semantics of several SIMPLE constructs in order +to take advantage of the richer KOOL semantic infrastructure and thus +get more from the existing SIMPLE constructs.

+

Program initialization

+

Like in untyped KOOL.

+
k
syntax KItem ::= "execute" + rule <k> execute => new Main(.Exps); </k> <env> .Map </env> +
+

Method application

+

The only change to untyped KOOL's values is that method closures are +now typed (their first argument holds their type):

+
k
syntax Val ::= objectClosure(Id,List) + | methodClosure(Type,Id,Int,Params,Stmt) +
+

The type held by a method clossure will be the entire type of the +method, not only its result type like the lambda-closure of typed +SIMPLE. The reason for this change comes from the the need to +dynamically upcast values when passed to contexts where values of +superclass types are expected; since we want method closures to be +first-class-citizen values in our language, we have to be able to +dynamically upcast them, and in order to do that elegantly it is +convenient to store the entire ``current type'' of the method closure +instead of just its result type. Note that this was unnecessary in +the semantics of the dynamically typed SIMPLE language.

+

Method closure application needs to also set a new return type in +the return cell, like in dynamically typed SIMPLE, in order +for the values returned by its body to be checked against the return +type of the method. To do this correctly, we also need to stack the +current status of the return cell and then pop it when the +method returns. We have to do the same with the current object +environment, so we group them together in the stack frame.

+
k
syntax KItem ::= fstackFrame(Map, K, List, Type, K) + + rule <k> methodClosure(_->T,Class,OL,Ps,S)(Vs:Vals) ~> K + => mkDecls(Ps,Vs) S return; </k> + <env> Env => .Map </env> + <store>... OL |-> objectClosure(_, EStack)...</store> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, T', <crntObj> Obj' </crntObj>)) ...</fstack> + <xstack> XS </xstack> + <returnType> T' => T </returnType> + <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EStack </envStack> </crntObj> + </control> +
+

At method return, we have to check that the type of the returned +value is a subtype of the expected return type. Moreover, if that is +the case, then we also upcast the returned value to one of the +expected type. The computation item unsafeCast(V,T) changes +the typeof V to T without any additional checks; however, it only +does it when V is an object or a method, otherwise it returns V +unchanged.

+
k
rule <k> return V:Val; ~> _ + => subtype(typeOf(V), T) ~> true? ~> unsafeCast(V, T) ~> K + </k> + <control> + <fstack> ListItem(fstackFrame(Env, K, XS, RT, <crntObj> CO </crntObj>)) => .List ...</fstack> + <xstack> _ => XS </xstack> + <returnType> T:Type => RT </returnType> + <crntObj> _ => CO </crntObj> + </control> + <env> _ => Env </env> +
+

Assignment

+

Typed KOOL allows to assign subtype instance values to supertype +lvalues. The semantics of assignment below is similar in spirit to +dynamically typed SIMPLE's, but a check is performed that the assigned +value's type is a subtype of the location's type. If that is the +case, then the assigned value is returned as a result and stored, but +it is upcast appropriately first, so the context will continue to see +a value of the expected type of the location. Note that the type of a +location is implicit in the type of its contents and it never changes +during the execution of a program; its type is assigned when the +location is allocated and initialized, and then only type-preserving +values are allowed to be stored in each location.

+
k
rule <k> loc(L) = V:Val + => subtype(typeOf(V),typeOf(V')) ~> true? + ~> unsafeCast(V, typeOf(V')) ...</k> + <store>... L |-> (V' => unsafeCast(V, typeOf(V'))) ...</store> +
+

Typed exceptions

+

Exceptions are propagated now until a catch that can handle them is +encountered.

+
k
syntax KItem ::= xstackFrame(Param, Stmt, K, Map, K) + syntax KItem ::= "popx" + + rule <k> (try S1 catch(P) S2 => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem(xstackFrame(P, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ + => if (subtype(typeOf(V),T)) { T X = V; S2 } else { throw V; } ~> K + </k> + <control> + <xstack> ListItem(xstackFrame(T:Type X:Id, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

Spawn

+

Like in untyped KOOL.

+
k
rule <thread>... + <k> spawn S => !T:Int ...</k> + <env> Env </env> + <crntObj> Obj </crntObj> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T </id> + <crntObj> Obj </crntObj> + ...</thread>) +
+

Semantics of the new KOOL constructs

+

Class declaration

+

Like in untyped KOOL.

+
k
rule <k> class Class1 extends Class2 { S } => .K ...</k> + <classes>... (.Bag => <classData> + <className> Class1 </className> + <baseClass> Class2 </baseClass> + <declarations> S </declarations> + </classData>) + ...</classes> +
+

Method declaration

+

Methods are now typed and we need to store their types in their +closures, so that their type contract can be checked at invocation +time. The rule below is conceptually similar to that of untyped KOOL; +the only difference is the addition of the types.

+
k
rule <k> T:Type F:Id(Ps:Params) S => .K ...</k> + <crntClass> C </crntClass> + <location> OL </location> + <env> Env => Env[F <- L] </env> + <store>... .Map => L|->methodClosure(getTypes(Ps)->T,C,OL,Ps,S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

New

+

The semantics of new in dynamically typed KOOL is also +similar to that in untyped KOOL, the main difference being the +management of the return types. Indeed, when a new object is created +we also have to stack the current type in the return cell in +order to be recovered after the creation of the new object. Only the +first rule below needs to be changed; the others are identical to +those in untyped KOOL.

+
k
syntax KItem ::= envStackFrame(Id, Map) + + rule <k> new Class:Id(Vs:Vals) ~> K + => create(Class) ~> (storeObj ~> ((Class(Vs)); return this;)) </k> + <env> Env => .Map </env> + <nextLoc> L:Int => L +Int 1 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> + <xstack> XS </xstack> + <crntObj> Obj + => <crntClass> Object </crntClass> + <envStack> ListItem(envStackFrame(Object, .Map)) </envStack> + <location> L </location> + </crntObj> + <returnType> T => Class </returnType> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, T, <crntObj>Obj</crntObj>)) ...</fstack> + </control> + + syntax KItem ::= create(Id) + + rule <k> create(Class:Id) + => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k> + <className> Class </className> + <baseClass> Class1:Id </baseClass> + <declarations> S </declarations> + + rule <k> create(Object) => .K ...</k> + + syntax KItem ::= setCrntClass(Id) + + rule <k> setCrntClass(C) => .K ...</k> + <crntClass> _ => C </crntClass> + + syntax KItem ::= "addEnvLayer" + + rule <k> addEnvLayer => .K ...</k> + <env> Env => .Map </env> + <crntClass> Class:Id </crntClass> + <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack> + + syntax KItem ::= "storeObj" + + rule <k> storeObj => .K ...</k> + <crntObj> + <crntClass> Class </crntClass> + <envStack> EStack </envStack> + (<location> L:Int </location> => .Bag) + </crntObj> + <store>... .Map => L |-> objectClosure(Class, EStack) ...</store> +
+

Self reference

+

Like in untyped KOOL.

+
k
rule <k> this => objectClosure(Class, EStack) ...</k> + <crntObj> + <crntClass> Class </crntClass> + <envStack> EStack </envStack> + ... + </crntObj> +
+

Object member access

+

Like in untyped KOOL.

+
k
rule <k> X:Id => this . X ...</k> <env> Env:Map </env> + requires notBool(X in keys(Env)) + + context HOLE . _::Id requires (HOLE =/=K super) + +/* rule objectClosure(<crntObj> <crntClass> Class:Id </crntClass> + <envStack>... ListItem((Class,EnvC:EnvCell)) EStack </envStack> </crntObj>) + . X:Id + => lookupMember(<envStack> ListItem((Class,EnvC)) EStack </envStack>, X) */ + rule objectClosure(Class:Id, + ListItem(envStackFrame(Class,Env)) EStack) + . X:Id + => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X) + rule objectClosure(Class:Id, + (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack) + . _X:Id + requires Class =/=K Class' + +/* rule <k> super . X => lookupMember(<envStack>EStack</envStack>, X) ...</k> + <crntClass> Class </crntClass> + <envStack>... ListItem((Class,EnvC:EnvCell)) EStack </envStack> */ + rule <k> super . X => lookupMember(EStack, X) ...</k> + <crntClass> Class:Id </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> super . _X ...</k> + <crntClass> Class:Id </crntClass> + <envStack> (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack </envStack> + requires Class =/=K Class' +
+

Method invocation

+

The method lookup is the same as in untyped KOOL.

+
k
rule <k> (X:Id => V)(_:Exps) ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> + + rule <k> (X:Id => this . X)(_:Exps) ...</k> + <env> Env </env> + requires notBool(X in keys(Env)) + + context HOLE._::Id(_) requires HOLE =/=K super + + rule (objectClosure(_, EStack) . X + => lookupMember(EStack, X:Id))(_:Exps) + +/* rule <k> (super . X + => lookupMember(<envStack>EStack</envStack>,X))(_:Exps)...</k> + <crntClass> Class </crntClass> + <envStack>... ListItem((Class,_)) EStack </envStack> */ + rule <k> (super . X + => lookupMember(EStack,X))(_:Exps)...</k> + <crntClass> Class:Id </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> (super . _X)(_:Exps)...</k> + <crntClass> Class:Id </crntClass> + <envStack> (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack </envStack> + requires Class =/=K Class' + + // TODO(KORE): fix getKLabel #1801 + rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C) + rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C) + rule V:Val ~> #freezerFunCall(C:Exps) => V(C) + syntax KItem ::= "#freezerFunCall" "(" K ")" + /* + context HOLE(_:Exps) + requires getKLabel HOLE ==KLabel '_`(_`) orBool getKLabel HOLE ==KLabel '_`[_`] + */ + + rule <k> (lookup(L) => V)(_:Exps) ...</k> <store>... L |-> V:Val ...</store> +
+

Instance of

+

Like in untyped KOOL.

+
k
rule objectClosure(_, ListItem(envStackFrame(C,_)) _) + instanceOf C => true + + rule objectClosure(_, (ListItem(envStackFrame(C::Id,_)) => .List) _) + instanceOf C' requires C =/=K C' + + rule objectClosure(_, .List) instanceOf _ => false +
+

Cast

+

Unlike in untyped KOOL, in typed KOOL we actually check that the object +can indeed be cast to the claimed type.

+
k
rule (C:Id) objectClosure(Irrelevant, EStack) + => objectClosure(Irrelevant, EStack) instanceOf C ~> true? + ~> objectClosure(C, EStack) +
+

KOOL-specific auxiliary declarations and operations

+

Objects as lvalues

+

Like in untyped KOOL.

+
k
rule <k> lvalue(X:Id => this . X) ...</k> <env> Env </env> + requires notBool(X in keys(Env)) + + context lvalue((HOLE . _)::Exp) + +/* rule lvalue(objectClosure(<crntObj> <crntClass> C </crntClass> + <envStack>... ListItem((C,EnvC:EnvCell)) EStack </envStack> </crntObj>) + . X + => lookupMember(<envStack> ListItem((C,EnvC)) EStack </envStack>, + X)) */ + rule lvalue(objectClosure(C:Id, + ListItem(envStackFrame(C,Env)) EStack) + . X + => lookupMember(ListItem(envStackFrame(C,Env)) EStack, + X)) + rule lvalue(objectClosure(C, + (ListItem(envStackFrame(C',_)) => .List) _EStack) + . _X) + requires C =/=K C' +
+

Lookup member

+

Like in untyped KOOL.

+
k
syntax Exp ::= lookupMember(List,Id) [function] + + rule lookupMember(ListItem(envStackFrame(_, X |-> L _)) _, X) => lookup(L) + + // TODO: fix rule below as shown once we support functions with deep rewrites + // rule lookupMember(<envStack> ListItem((_, <env> Env </env>)) => .List + // ...</envStack>, X) + // requires notBool(X in keys(Env)) + rule lookupMember(ListItem(envStackFrame(_, Env)) L, X) + => lookupMember(L, X) + requires notBool(X in keys(Env)) +
+

typeOf for the additional values}

+
k
rule typeOf(objectClosure(C,_)) => C + rule typeOf(methodClosure(T:Type,_,_,_Ps:Params,_)) => T +
+

Subtype checking

+

The subclass relation induces a subtyping relation.

+
k
syntax Exp ::= subtype(Types,Types) + + rule subtype(T:Type, T) => true + + rule <k> subtype(C1:Id, C:Id) => subtype(C2, C) ...</k> + <className> C1 </className> + <baseClass> C2:Id </baseClass> + requires C1 =/=K C + + rule subtype(Object,Class:Id) => false + requires Class =/=K Object + + rule subtype(Ts1->T2,Ts1'->T2') => subtype(((T2)::Type,Ts1'),((T2')::Type,Ts1)) + +// Note that the following rule would be wrong! +// rule subtype(T[],T'[]) => subtype(T,T') + + rule subtype((T:Type,Ts),(T':Type,Ts')) => subtype(T,T') && subtype(Ts,Ts') + requires Ts =/=K .Types + rule subtype(.Types,.Types) => true +
+

Unsafe Casting

+

Performs unsafe casting. One should only use it in combination with +the subtype relation above.

+
k
syntax Val ::= unsafeCast(Val,Type) [function] + + rule unsafeCast(objectClosure(_,EStack), C:Id) + => objectClosure(C,EStack) + + rule unsafeCast(methodClosure(_T',C,OL,Ps,S), T) => methodClosure(T,C,OL,Ps,S) + + rule unsafeCast(V:Val, T:Type) => V requires typeOf(V) ==K T +
+

Generic guard

+

A generic computational guard: it allows the computation to continue +only if a prefix guard evaluates to true.

+
k
syntax KItem ::= "true?" + rule true ~> true? => .K + +endmodule +
+

Go to Lesson 3, KOOL typed static.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/NOTES/index.html b/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/NOTES/index.html new file mode 100644 index 00000000000..b7acff7a58d --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/NOTES/index.html @@ -0,0 +1,381 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Why is the following happening at line 347? It should infer the sort Stmts for S:

+

rule {S} => block ... Rho R +(.Bag => S Rho R )

+

[Error] Critical: Could not infer a sort for variable 'S' to match every location.

+

Similarly at line 517.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/index.html b/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/index.html new file mode 100644 index 00000000000..b173dca4281 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/index.html @@ -0,0 +1,1425 @@ + + + + + + + + + + + + + + +KOOL — Typed — Static | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

KOOL — Typed — Static

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K static semantics of the typed KOOL language. +It extends the static semantics of typed SIMPLE with static semantics +for the object-oriented constructs. Also, the static semantics of +some of the existing SIMPLE constructs need to change, in order to +become more generous with regards to the set of accepted programs, +mostly due to subtyping. For example, the assignment construct +x = e required that both the variable x and the +expression e had the same type in SIMPLE. In KOOL, the type +of e can be a subtype of the type of x. +Specifically, we define the following typing policy for KOOL, +everything else not mentioned below borrowing its semantics from +SIMPLE:

+
    +
  • +

    Each class C yields a homonymous type, which can be +explicitly used in programs to type variables and methods, possibly in +combination with other types.

    +
  • +
  • +

    Since now we have user-defined types, we check that each type +used in a KOOL program is well-formed, that is, it is constructed only +from primitive and class types corresponding to declared classes.

    +
  • +
  • +

    Class members and their types form a class type +environment. Each class will have such a type environment. +Each member in a class is allowed to be declared only once. Since in +KOOL we allow methods to be assigned to fields, we make no distinction +between field and method members; in other words, we reject programs +declaring both a field and a method with the same name.

    +
  • +
  • +

    If an identifier is not found in the local type environment, it +will be searched for in the current class type environment. If not +there, then it will be searched for in its superclass' type +environment. And so on and so forth. If not found until the +Object class is reached, a typing error is reported.

    +
  • +
  • +

    The assignment allows variables to be assigned values of +more concrete types. The result type of the assignment expression +construct will be the (more abstract) type of the assigned variable, +and not the (more concrete) type of the expression, like in Java.

    +
  • +
  • +

    Exceptions are changed (from SIMPLE) to allow throwing and +catching only objects, like in Java. Also, unlike in SIMPLE, we do +not check whether the type of the thrown exception matches the type of +the caught variable, because exceptions can be caught by other +try/catch blocks, even by ones in other methods. To avoid +having to annotate each method with what exceptions it can throw, we +prefer to not check the type safety of exceptions (although this is an +excellent homework!). We only check that the try block +type-checks and that the catch block type-checks after we bind +the caught variable to its claimed type.

    +
  • +
  • +

    Class declarations are not allowed to have any cycles in their +extends relation. Such cycles would lead to non-termination of +new, as it actually does in the dynamic semantics of KOOL +where no such circularity checks are performed.

    +
  • +
  • +

    Methods overriding other methods should be in the right subtyping +relationship with the overridden methods: co-variant in the codomain +and contra-variant in the domain.

    +
  • +
+
k
module KOOL-TYPED-STATIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of statically typed KOOL is identical to that of +dynamically typed KOOL, they both taking as input the same programs. +What differs is the K strictness attributes. Like in statically +typed SIMPLE, almost all language constructs are strict now, since we +want each to type its arguments almost all the time. Like in the +other two KOOL definitions, we prefer to copy and then modify/extend +the syntax of statically typed SIMPLE.

+

Note: This paragraph is old, now we can do things better. We keep +it here only for historical reasons, to see how much we used to suffer :)

+

Annoying K-tool technical problem: +Currently, the K tool treats the "non-terminal" productions (i.e., +productions consisting of just one non-terminal), also called +"subsorting" production, differently from the other productions. +Specifically, it does not insert a node in the AST for them. This may +look desirable at first, but it has a big problem: it does not allow +us to treat the subsort differently in different context. For +example, since we want Id to be both a type (a class name) and a +program variable, and since we want expressions to reduce to their +types, we are in an impossible situations in which we do not know how +to treat an identifier in the semantics: as a type, i.e., a result of +computations, or as a program variable, i.e., a non-result. Ideally, +we would like to tag the identifiers at parse-time with their local +interpretation, but that, unfortunately, is not possible with the +current parsing capabilities of the K tool, because it requires to +insert additional information in the AST for the subsort productions. +This will be fixed soon. Until then, unfortunately, we have to do the +job of the parser manually. Instead of subsorting Id directly +to Type, we "wrap" it first, say with a wrapper called +class(...), exactly how the parser should have done. +The major drawback of this is that all the typed KOOL programs +in kool/typed/programs need to also be modified to always +declare class types accordingly. The modified programs can be found +in kool/typed/static/programs. So make sure you execute the +static semantics of KOOL using the modified programs. To avoid seeing +the wrapper in the generated documentation, we associate it an +"invisibility" latex attribute below.

+
k
syntax Id ::= "Object" [token] | "Main" [token] +
+

Types

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Id [klabel("class"), symbol, avoid] // see next + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + + syntax Types ::= List{Type,","} [overload(exps)] +
+

Declarations

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" [avoid] + | Type Id "(" Params ")" Block + | "class" Id Block + | "class" Id "extends" Id Block +
+

Expressions

+
k
syntax FieldReference ::= Exp "." Id [strict(1)] + syntax ArrayReference ::= Exp "[" Exps "]" [strict] + + syntax Exp ::= Int | Bool | String | Id + | "this" + | "super" + | "(" Exp ")" [bracket] + | "++" Exp + | Exp "instanceOf" Id [strict(1)] + | "(" Id ")" Exp [strict(2)] + | "new" Id "(" Exps ")" [strict(2)] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict, left] + | Exp "||" Exp [strict, left] + > "spawn" Block // not strict: to check return and exceptions + > Exp "=" Exp [strict(2), right] + + syntax Exp ::= FieldReference | ArrayReference + syntax priority _.__KOOL-TYPED-STATIC-SYNTAX > _[_]_KOOL-TYPED-STATIC-SYNTAX > _(_)_KOOL-TYPED-STATIC-SYNTAX + + syntax Exps ::= List{Exp,","} [strict, overload(exps)] +
+

Statements

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block [strict] + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" + | "print" "(" Exps ")" ";" [strict] + | "try" Block "catch" "(" Param ")" Block [strict(1)] + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [seqstrict, right] +
+

Desugaring macros

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}} + rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es; [anywhere] + rule T:Type X:Id = E; => T X; X = E; [anywhere] + + rule class C:Id S => class C extends Object S + +endmodule +
+

Static semantics

+

We first discuss the configuration, then give the static semantics +taken over unchanged from SIMPLE, then discuss the static semantics of +SIMPLE syntactic constructs that needs to change, and in the end we +discuss the static semantics and additional checks specifically +related to the KOOL proper syntax.

+
k
module KOOL-TYPED-STATIC + imports KOOL-TYPED-STATIC-SYNTAX + imports DOMAINS +
+

Configuration

+

The configuration of our type system consists of a tasks +cell with the same meaning like in statically typed SIMPLE, of an +out cell streamed to the standard output that will be used to +display typing error messages, and of a cell classes holding +data about each class in a separate class cell. The +task cells now have two additional optional subcells, namely +ctenvT and inClass. The former holds a temporary +class type environment; its contents will be transferred into the +ctenv cell of the corresponding class as soon as all the +fields and methods in the task are processed. In fact, there will be +three types of tasks in the subsequent semantics, each determined by +the subset of cells that it holds:

+
    +
  1. +

    Main task, holding only a k cell holding the +original program as a set of classes. The role of this task is to +process each class, generating a class task (see next) for each.

    +
  2. +
  3. +

    Class task, holding k, ctenvT, and +inClass subcells. The role of this task type is to process +a class' contents, generating a class type environment in the +ctenvT cell and a method task (see next) for each method in +the class. To avoid interference with object member lookup rules +below, it is important to add the class type environment to a class +atomically; this is the reason for which we use ctenvT +temporary cells within class tasks (instead of adding each member +incrementally to the class' type environment).

    +
  4. +
  5. +

    Method task, holding k, tenv and +return cells. These tasks are similar to SIMPLE's function +tasks, so we do not discuss them here any further.

    +
  6. +
+

Each class cell hods its name (in the className +cell) and the name of the class it extends (in the extends +cell), as well as its type environment (in the ctenv cell) +and the set of all its superclasses (in the extendsAll cell). +The later is useful for example for checking whether there are cycles +in the class extends relation.

+
k
configuration <T multiplicity="?" color="yellow"> + <tasks color="orange" multiplicity="?"> + <task multiplicity="*" color="yellow" type="Set"> + <k color="green"> $PGM:Stmt </k> + <tenv multiplicity="?" color="cyan"> .Map </tenv> + <ctenvT multiplicity="?" color="blue"> .Map </ctenvT> + <returnType multiplicity="?" color="black"> void </returnType> + <inClass multiplicity="?" color="Fuchsia"> .K </inClass> + </task> + </tasks> +// <br/> + <classes color="Fuchsia"> + <classData multiplicity="*" type="Map"> + <className color="Fuchsia"> Object </className> + <baseClass color="Fuchsia"> .K </baseClass> + <baseClasses color="Fuchsia"> .Set </baseClasses> + <ctenv multiplicity="?" color="blue"> .Map </ctenv> + </classData> + </classes> + </T> + <output color="brown" stream="stdout"> .List </output> +
+

Unchanged semantics from statically typed SIMPLE

+

The syntax and rules below are borrowed unchanged from statically +typed SIMPLE, so we do not discuss them much here.

+
k
syntax Exp ::= Type + syntax Exps ::= Types + syntax BlockOrStmtType ::= "block" | "stmt" + syntax Type ::= BlockOrStmtType + syntax Block ::= BlockOrStmtType + syntax KResult ::= Type + | Types // TODO: should not be needed + + + context _:Type _::Exp[HOLE::Exps]; + + rule T:Type E:Exp[int,Ts:Types]; => T[] E[Ts]; + rule T:Type E:Exp[.Types]; => T E; + + + rule <task>... <k> _:BlockOrStmtType </k> <tenv> _ </tenv> ...</task> => .Bag + + + rule _:Int => int + rule _:Bool => bool + rule _:String => string + + + rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</tenv> + + + context ++(HOLE => ltype(HOLE)) + rule ++ int => int + rule int + int => int + rule string + string => string + rule int - int => int + rule int * int => int + rule int / int => int + rule int % int => int + rule - int => int + rule int < int => bool + rule int <= int => bool + rule int > int => bool + rule int >= int => bool + rule T:Type == T => bool + rule T:Type != T => bool + rule bool && bool => bool + rule bool || bool => bool + rule ! bool => bool + + + rule (T[])[int, Ts:Types] => T[Ts] + rule T:Type[.Types] => T + + rule sizeOf(_T[]) => int + + + rule read() => int + + rule print(T:Type, Ts => Ts); requires T ==K int orBool T ==K string + rule print(.Types); => stmt + + + context (HOLE => ltype(HOLE)) = _ + + + rule <k> return; => stmt ...</k> <returnType> _ </returnType> + + + rule {} => block + + rule <task> <k> {S:Stmt} => block ...</k> <tenv> Rho </tenv> R </task> + (.Bag => <task> <k> S </k> <tenv> Rho </tenv> R </task>) + + rule _:Type; => stmt + rule if (bool) block else block => stmt + rule while (bool) block => stmt + + rule join int; => stmt + rule acquire _:Type; => stmt + rule release _:Type; => stmt + rule rendezvous _:Type; => stmt + + syntax Stmt ::= BlockOrStmtType + rule _:BlockOrStmtType _:BlockOrStmtType => stmt +
+

Unchanged auxiliary operations from dynamically typed SIMPLE

+
k
syntax Stmt ::= mkDecls(Params) [function] + rule mkDecls(T:Type X:Id, Ps:Params) => T X; mkDecls(Ps) + rule mkDecls(.Params) => {} + + syntax LValue ::= Id + | FieldReference + | ArrayReference + syntax Exp ::= LValue + + syntax Exp ::= ltype(Exp) +// We would like to say: +// context ltype(HOLE:LValue) +// but we currently cannot type the HOLE + context ltype(HOLE) requires isLValue(HOLE) + +// OLD approach: +// syntax Exp ::= ltype(Exp) [function] +// rule ltype(X:Id) => X +// rule ltype(E:Exp [Es:Exps]) => E[Es] + + syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types +
+

Changes to the existing statically typed SIMPLE semantics

+

Below we give the new static semantics for language constructs that +come from SIMPLE, but whose SIMPLE static semantics was too +restrictive or too permissive and thus had to change.

+

Local variable declaration

+

Since we can define new types in KOOL (corresponding to classes), the +variable declaration needs to now check that the claimed types exist. +The operation checkType, defined at the end of this module, +checks whether the argument type is correct (it actually works with +lists of types as well).

+
k
rule <k> T:Type X:Id; => checkType(T) ~> stmt ...</k> + <tenv> Rho => Rho[X <- T] </tenv> +
+

Class member declaration

+

In class tasks, variable declarations mean class member declarations. +Since we reduce method declarations to variable declarations (see +below), a variable declaration in a class task can mean either a field +or a method declaration. Unlike local variable declarations, which +can shadow previous homonymous local or member declarations, member +declarations are regarded as a set, so we disallow multiple +declarations for the same member (one could improve upon this, like in +Java, by treating members with different types or number of arguments +as different, etc., but we do not do it here). We also issue an error +message if one attempts to redeclare the same class member. The +framed variable declaration in the second rule below should be read +"stuck". In fact, it is nothing but a unary operation called +stuck, which takes a K-term as argument and does nothing +with it; this stuck operation is displayed as a frame in this +PDF document because of its latex attribute (see the ASCII .k file, +at the end of this module).

+
k
rule <k> T:Type X:Id; => checkType(T) ~> stmt ...</k> + <ctenvT> Rho (.Map => X |-> T) </ctenvT> + requires notBool(X in keys(Rho)) + + rule <k> T:Type X:Id; => stuck(T X;) ...</k> + <ctenvT>... X |-> _ ...</ctenvT> + <inClass> C:Id </inClass> +// <br/> + <output>... .List => ListItem("Member \"" +String Id2String(X) + +String "\" declared twice in class \"" + +String Id2String(C) +String "\"!\n") </output> +
+

Method declaration

+

A method declaration requires two conceptual checks to be performed: +first, that the method's type is consistent with the type of the +homonymous method that it overrides, if any; and second, that its body +types correctly. At the same time, it should also be added to the +type environment of its class. The first conceptual task is performed +using the checkMethod operation defined below, and the second +by generating a corresponding method task. To add it to the class +type environment, we take advantage of the fact that KOOL is higher +order and reduce the problem to a field declaration problem, which we +have already defined. The role of the ctenvT cell in the +rule below is to structurally ensure that the method declaration takes +place in a class task (we do not want to allow methods to be declared, +for example, inside other methods).

+
k
rule <k> T:Type F:Id(Ps:Params) S + => checkMethod(F, getTypes(Ps)->T, C') + ~> getTypes(Ps)->T F; ...</k> +// <br/> + <inClass> C </inClass> + <ctenvT> _ </ctenvT> // to ensure we are in a class pass + <className> C </className> + <baseClass> C' </baseClass> +// <br/> + (.Bag => <task> + <k> mkDecls(Ps) S </k> + <inClass> C </inClass> + <tenv> .Map </tenv> + <returnType> T </returnType> + </task>) +
+

Assignment

+

A more concrete value is allowed to be assigned to a more abstract +variable. The operation checkSubtype is defined at the end +of the module and it also works with pairs of lists of types.

+
k
rule T:Type = T':Type => checkSubtype(T', T) ~> T +
+

Method invocation and return

+

Methods can be applied on values of more concrete types than their +arguments:

+
k
rule (Ts:Types -> T:Type) (Ts':Types) => checkSubtype(Ts',Ts) ~> T +
+

Similarly, we allow values of more concrete types to be returned by +methods:

+
k
rule <k> return T:Type; => checkSubtype(T,T') ~> stmt ...</k> + <returnType> T':Type </returnType> +
+

Exceptions

+

Exceptions can throw and catch values of any types. Since unlike in Java +KOOL's methods do not declare the exception types that they can throw, +we cannot test the full type safety of exceptions. Instead, we +only check that the try and the catch statements +type correctly.

+
k
rule try block catch(T:Type X:Id) S => {T X; S} + rule throw _T:Type ; => stmt +
+

Spawn

+

The spawned cell needs to also be passed the parent's class.

+
k
// explain why + + rule <k> spawn S:Block => int ...</k> + <tenv> Rho </tenv> + <inClass> C </inClass> + (.Bag => <task> + <k> S </k> + <tenv> Rho </tenv> + <inClass> C </inClass> + </task>) +
+

Semantics of the new KOOL constructs

+

Class declaration

+

We process each class in the main task, adding the corresponding data +into its class cell and also adding a class task for it. We +also perform some well-formedness checks on the class hierarchy.

+

Initiate class processing
+We create a class cell and a class task for each task. Also, we start +the class task with a check that the class it extends is declared +(this delays the task until that class is processed using another +instance of this rule).

+
k
// There seems to be some error with the configuration concretization, +// as the rule below does not work when rewriting . to both the task +// and the class cells; I had to include two separate . rewrites + +// TODO: the following fails krun; see #2117 + rule <task> <k> class C:Id extends C':Id { S:Stmt } => stmt ...</k> </task> + (.Bag => <classData>... + <className> C </className> + <baseClass> C' </baseClass> + ...</classData>) +// <br/> + (.Bag => <task> + <k> checkType(`class`(C')) ~> S </k> + <inClass> C </inClass> + <ctenvT> .Map </ctenvT> + </task>) + +// You may want to try the thing below, but that failed, too +/* +syntax Type ::= "stmtStop" + + rule <tasks>... + <task> <k> class C:Id extends C':Id { S:Stmt } => stmtStop ...</k> </task> + (.Bag => <task> + <k> checkType(`class`(C')) ~> S </k> + <inClass> C </inClass> + <ctenvT> .Map </ctenvT> + </task>) + ...</tasks> + <classes>... + .Bag => <classData>... + <className> C </className> + <baseClass> C' </baseClass> + ...</classData> + ...</classes> +// <br/> +*/ +
+

Check for unique class names

+
k
rule (<T>... + <className> C </className> + <className> C </className> + ...</T> => .Bag) + <output>... .List => ListItem("Class \"" +String Id2String(C) + +String "\" declared twice!\n") </output> +
+

Check for cycles in class hierarchy
+We check for cycles in the class hierarchy by transitively closing the +class extends relation using the extendsAll cells, and +checking that a class will never appear in its own extendsAll +cell. The first rule below initiates the transitive closure of the +superclass relation, the second transitively closes it, and the third +checks for cycles.

+
k
rule <baseClass> C </baseClass> + <baseClasses> .Set => SetItem(C) </baseClasses> [priority(25)] + + rule <classData>... + <baseClasses> SetItem(C) Cs:Set (.Set => SetItem(C')) </baseClasses> + ...</classData> + <classData>... <className>C</className> <baseClass>C'</baseClass> ...</classData> + requires notBool(C' in (SetItem(C) Cs)) [priority(25)] + + rule (<T>... + <className> C </className> + <baseClasses>... SetItem(C) ...</baseClasses> + ...</T> => .Bag) + <output>... .List => ListItem("Class \"" +String Id2String(C) + +String "\" is in a cycle!\n") </output> + [priority(25)] +
+

New

+

To type new we only need to check that the class constructor +can be called with arguments of the given types, so we initiate a call +to the constructor method in the corresponding class. If that +succeeds, meaning that it types to stmt, then we discard the +stmt type and produce instead the corresponding class type of +the new object. The auxiliary discard operation is defined +also at the end of this module.

+
k
rule new C:Id(Ts:Types) => `class`(C) . C (Ts) ~> discard ~> `class`(C) +
+

Self reference

+

The typing rule for this is straightforward: reduce to the +current class type.

+
k
rule <k> this => `class`(C) ...</k> + <inClass> C:Id </inClass> +
+

Super

+

Similarly, super types to the parent class type. +Note that for typing concerns, super can be considered as an object +(recall that this was not the case in the dynamic semantics).

+
k
rule <k> super => `class`(C') ...</k> + <inClass> C:Id </inClass> + <className> C </className> + <baseClass> C':Id </baseClass> +
+

Object member access

+

There are several cases to consider here. First, if we are in a class +task, we should lookup the member into the temporary class type +environemnt in cell ctenvT. That is because we want to allow +initialized field declarations in classes, such as int x=10;. +This is desugared to a declaration of x, which is added to +ctenvT during the class task processing, followed by an +assignment of x to 10. In order for the assignment to type +check, we need to know that x has been declared with type +int; this information can only be found in the +ctenvT cell. Second, we should redirect non-local variable +lookups in method tasks to corresponding member accesses (the +local variables are handled by the rule borrowed from SIMPLE). +This is what the second rule below does. Third, we should allow +object member accesses as lvalues, which is done by the third rule +below. These last two rules therefore ensure that each necessary +object member access is explicitly allowed for evaluation. Recall +from the annotated syntax module above that the member access +operation is strict in the object. That means that the object is +expected to evaluate to a class type. The next two rules below define +the actual member lookup operation, moving the search to the +superclass when the member is not found in the current class. Note +that this works because we create the class type environments +atomically; thus, a class either has its complete type environment +available, in which case these rules can safely apply, or its cell +ctenv is not yet available, in which case these rules have to +wait. Finally, the sixth rule below reports an error when the +Object class is reached.

+
k
rule <k> X:Id => T ...</k> + <ctenvT>... X |-> T ...</ctenvT> + + rule <k> X:Id => this . X ...</k> + <tenv> Rho </tenv> + requires notBool(X in keys(Rho)) + +// OLD approach: +// rule ltype(E:Exp . X:Id) => E . X + + rule <k> `class`(C:Id) . X:Id => T ...</k> + <className> C </className> + <ctenv>... X |-> T:Type ...</ctenv> + + rule <k> `class`(C1:Id => C2) . X:Id ...</k> + <className> C1 </className> + <baseClass> C2:Id </baseClass> + <ctenv> Rho </ctenv> + requires notBool(X in keys(Rho)) + + rule <k> `class`(Object) . X:Id => stuck(`class`(Object) . X) ...</k> + <inClass> C:Id </inClass> +// <br/> + <output>... .List => ListItem("Member \"" +String Id2String(X) + +String "\" not declared! (see class \"" + +String Id2String(C) +String "\")\n") </output> +
+

Instance of and casting

+

As it is hard to check statically whether casting is always safe, +the programmer is simply trusted from a typing perspective. We only +do some basic upcasting and downcasting checks, to reject casts which +will absolutely fail. However, dynamic semantics or implementations +of the language need to insert runtime checks for downcasting to be safe.

+
k
rule `class`(_C1:Id) instanceOf _C2:Id => bool + rule (C:Id) `class`(C) => `class`(C) + rule <k> (C2:Id) `class`(C1:Id) => `class`(C2) ...</k> + <className> C1 </className> + <baseClasses>...SetItem(C2)...</baseClasses> // upcast + rule <k> (C2:Id) `class`(C1:Id) => `class`(C2) ...</k> + <className> C2 </className> + <baseClasses>...SetItem(C1)...</baseClasses> // downcast + rule <k> (C2) `class`(C1:Id) => stuck((C2) `class`(C1)) ...</k> + <classData>... + <className> C1 </className> + <baseClasses> S1 </baseClasses> + ...</classData> + <classData>... + <className> C2 </className> + <baseClasses> S2 </baseClasses> + ...</classData> + <output>... .List => ListItem("Classes \"" +String Id2String(C1) + +String "\" and \"" +String Id2String(C2) + +String "\" are incompatible!\n") </output> + requires notBool(C1 in S2) andBool notBool(C2 in S1) +
+

Cleanup tasks

+

Finally, we need to clean up the terminated tasks. Each of the three +types of tasks is handled differently. The main task is replaced by a +method task holding new main();, which will ensure that a +main class with a main() method actually exists +(first rule below). A class task moves its temporary class type +environment into its class' cell, and then it dissolves itself (second +rule). A method task simply dissolves when terminated (third rule); +the presence of the tenv cell in that rule ensures that that +task is a method task. +Finally, when all the tasks are cleaned up, we can also remove the +tasks cell, issuing a corresponding message. Note that +checking for cycles or duplicate methods can still be performed after +the tasks cell has been removed.

+
k
// discard main task when done, issuing a "new main();" command to +// make sure that the class main and the method main() are declared. + + rule <task> <k> stmt => new Main(.Exps); </k> + (.Bag => <tenv> .Map </tenv> + <returnType> void </returnType> + <inClass> Main </inClass>) + </task> + +// discard class task when done, adding a ctenv in class + + rule (<task> + <k> stmt </k> + <ctenvT> Rho </ctenvT> + <inClass> C:Id </inClass> + </task> => .Bag) + <className> C </className> + (.Bag => <ctenv> Rho </ctenv>) + +// discard method task when done + + rule <task>... + <k> stmt </k> + <tenv> _ </tenv> // only to ensure that this is a method task + ...</task> => .Bag + +// cleanup tasks and output a success message when done + + rule (<T>... <tasks> .Bag </tasks> ...</T> => .Bag) + <output>... .List => ListItem("Type checked!\n") </output> +
+

KOOL-specific auxiliary declarations and operations

+

Subtype checking

+

The subclass relation introduces a subtyping relation.

+
k
syntax KItem ::= checkSubtype(Types,Types) + + rule checkSubtype(T:Type, T) => .K + + rule <k> checkSubtype(`class`(C:Id), `class`(C':Id)) => .K ...</k> + <className> C </className> + <baseClasses>... SetItem(C') ...</baseClasses> + + rule checkSubtype(Ts1->T2,Ts1'->T2') + => checkSubtype(((T2)::Type,Ts1'),((T2')::Type,Ts1)) + +// note that the following rule would be wrong! +// rule checkSubtype(T[],T'[]) => checkSubtype(T,T') + + rule checkSubtype((T:Type,Ts),(T':Type,Ts')) + => checkSubtype(T,T') ~> checkSubtype(Ts,Ts') + requires Ts =/=K .Types + + rule checkSubtype(.Types,.Types) => .K + rule checkSubtype(.Types,void) => .K +
+

Checking well-formedness of types

+

Since now any Id can be used as the type of a class, we need to +check that the types used in the program actually exists

+
k
syntax KItem ::= checkType(Types) + + rule checkType(T:Type,Ts:Types) => checkType(T) ~> checkType(Ts) + requires Ts =/=K .Types + rule checkType(.Types) => .K + rule checkType(int) => .K + rule checkType(bool) => .K + rule checkType(string) => .K + rule checkType(void) => .K + rule <k> checkType(`class`(C:Id)) => .K ...</k> <className> C </className> + rule checkType(`class`(Object)) => .K + rule checkType(Ts:Types -> T:Type) => checkType(T,Ts) + rule checkType(T:Type[]) => checkType(T) +
+

Checking correct overiding of methods

+

The checkMethod operation below searches to see whether +the current method overrides some other method in some superclass. +If yes, then it issues an additional check that the new method's type +is more concrete than the overridden method's. The types T and T' +below can only be function types. See the definition of +checkSubtype on function types at the end of this module (it +is co-variant in the codomain and contra-variant in the domain).

+
k
syntax KItem ::= checkMethod(Id,Type,Id) + + rule <k> checkMethod(F:Id, T:Type, C:Id) => checkSubtype(T, T') ...</k> + <className> C </className> + <ctenv>... F |-> T':Type ...</ctenv> + + rule <k> checkMethod(F:Id, _T:Type, (C:Id => C')) ...</k> + <className> C </className> + <baseClass> C':Id </baseClass> + <ctenv> Rho </ctenv> + requires notBool(F in keys(Rho)) + + rule checkMethod(_:Id,_,Object) => .K +
+

Generic operations which could be part of the K framework

+
k
syntax KItem ::= stuck(K) + + syntax KItem ::= "discard" + rule _:KResult ~> discard => .K + +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/index.html b/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/index.html new file mode 100644 index 00000000000..6fbaf1a532c --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/index.html @@ -0,0 +1,1226 @@ + + + + + + + + + + + + + + +FUN — Untyped — Environment | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

FUN — Untyped — Environment

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of the untyped FUN language. +FUN is a pedagogical and research language that captures the essence +of the functional programming paradigm, extended with several features +often encountered in functional programming languages. +Like many functional languages, FUN is an expression language, that +is, everything, including the main program, is an expression. +Functions can be declared anywhere and are first class values in the +language. +FUN is call-by-value here, but it has been extended (as student +homework assignments) with other parameter-passing styles. +To make it more interesting and to highlight some of K's strengths, +FUN includes the following features:

+
    +
  • +

    The basic builtin data-types of integers, booleans and strings.

    +
  • +
  • +

    Builtin lists, which can hold any elements, including other lists. +Lists are enclosed in square brackets and their elements are +comma-separated; e.g., [1,2,3].

    +
  • +
  • +

    User-defined data-types, by means of constructor terms. +Constructor names start with a capital letter (while any other +identifier in the language starts with a lowercase letter), and they +can be followed by an arbitrary number of comma-separated arguments +enclosed in parentheses; parentheses are not needed when the +constructor takes no arguments. +For example, Pair(5,7) is a constructor term holding two +numbers, Cons(1,Cons(2,Cons(3,Nil))) is a list-like +constructor term holding 3 elements, and +Tree(Tree(Leaf(1), Leaf(2)), Leaf(3)) is a tree-like +constructor term holding 3 elements. +In the untyped version of the FUN language, no type checking or +inference is performed to ensure that the data constructors are used +correctly. +The execution will simply get stuck when they are misused. +Moreover, since no type checking is performed, the data-types are not +even declared in the untyped version of FUN.

    +
  • +
  • +

    Functions and let/letrec binders can take +multiple space-separated arguments, but these are desugared to +ones that only take one argument, by currying. For example, the +expressions

    +
    fun x y -> x y
    +let x y = y in x
    +
    +

    are desugared, respectively, into the following expressions:

    +
    fun x -> fun y -> x y
    +let x = fun y -> y in x
    +
    +
  • +
  • +

    Functions can be defined using pattern matching over the +available data-types. For example, the program

    +
    letrec max = fun [h] -> h
    +             |   [h|t] -> let x = max t
    +                          in  if h > x then h else x
    +in max [1, 3, 5, 2, 4, 0, -1, -5]
    +
    +

    defines a function max that calculates the maximum element of +a non-empty list, and the function

    +
    letrec ack = fun Pair(0,n) -> n + 1
    +             |   Pair(m,0) -> ack Pair(m - 1, 1)
    +             |   Pair(m,n) -> ack Pair(m - 1, ack Pair(m, n - 1))
    +in ack Pair(2,3)
    +
    +

    calculates the Ackermann function applied to a particular pair of numbers. +Patterns can be nested. Patterns can currently only be used in function +definitions, and not directly in let/letrec binders. +For example, this is not allowed:

    +
    letrec Pai(x,y) = Pair(1,2) in x+y
    +
    +

    But this is allowed:

    +
    let f Pair(x,y) = x+y in f Pair(1,2)
    +
    +

    because it is first reduced to

    +
    let f = fun Pair(x,y) -> x+y in f Pair(1,2)
    +
    +

    by uncurrying of the let binder, and pattern matching is +allowed in function arguments.

    +
  • +
  • +

    We include a callcc construct, for two reasons: first, +several functional languages support this construct; second, some +semantic frameworks have difficulties defining it. Not K.

    +
  • +
  • +

    Finally, we include mutables by means of referencing an +expression, getting the reference of a variable, dereferencing and +assignment. We include these for the same reasons as above: there are +languages which have them, and they are not easy to define in some +semantic frameworks.

    +
  • +
+

Like in many other languages, some of FUN's constructs can be +desugared into a smaller set of basic constructs. We do that as usual, +using macros, and then we only give semantics to the core constructs.

+

Note:
+We recommend the reader to first consult the dynamic semantics of the +LAMBDA++ language in the first part of the K Tutorial. +To keep the comments below small and focused, we will not re-explain +functional or K features that have already been explained in there.

+

Syntax

+
k
//require "modules/pattern-matching.k" + +module FUN-UNTYPED-COMMON + imports DOMAINS-SYNTAX +
+

FUN is an expression language. The constructs below fall into +several categories: names, arithmetic constructs, conventional +functional constructs, patterns and pattern matching, data constructs, +lists, references, and call-with-current-continuation (callcc). +The arithmetic constructs are standard; they are present in almost all +our K language definitions. The meaning of FUN's constructs are +discussed in more depth when we define their semantics in the next +module.

+

The Syntactic Constructs

+

We start with the syntactic definition of FUN names. +We have several categories of names: ones to be used for functions and +variables, others to be used for data constructors, others for types and +others for type variables. We will introduce them as needed, starting +with the former category. We prefer the names of variables and functions +to start with lower case letters. We take the freedom to tacitly introduce +syntactic lists/sequences for each nonterminal for which we need them:

+
k
syntax Name [token] + syntax Names ::= List{Name,","} [overload(exps)] +
+

Expression constructs will be defined throughtout the syntax module. +Below are the very basic ones, namely the builtins, the names, and the +parentheses used as brackets for grouping. Lists of expressions are +declared strict, so all expressions in the list get evaluated whenever +the list is on a position which can be evaluated:

+
k
syntax Exp ::= Int | Bool | String | Name + | "(" Exp ")" [bracket] + syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Exp ::= Val + syntax Exps ::= Vals + syntax Vals ::= List{Val,","} [overload(exps)] + syntax Bottom + syntax Bottoms ::= List{Bottom,","} [overload(exps)] +
+

We next define the syntax of arithmetic constructs, together with +their relative priorities and left-/non-associativities. We also +tag all these rules as members of a new group, "arith", so we can more easily +define global syntax priorities later (at the end of the syntax module).

+
k
syntax Exp ::= left: + Exp "*" Exp [strict, group(arith)] + | Exp "/" Exp [strict, group(arith)] + | Exp "%" Exp [strict, group(arith)] + > left: + Exp "+" Exp [strict, left, group(arith)] + | Exp "^" Exp [strict, left, group(arith)] +// left attribute should not be necessary; currently a parsing bug + | Exp "-" Exp [strict, prefer, group(arith)] +// the "prefer" attribute above is to not parse x-1 as x(-1) +// Due to some parsing problems, we currently cannot add unary minus: + | "-" Exp [strict, group(arith)] + > non-assoc: + Exp "<" Exp [strict, group(arith)] + | Exp "<=" Exp [strict, group(arith)] + | Exp ">" Exp [strict, group(arith)] + | Exp ">=" Exp [strict, group(arith)] + | Exp "==" Exp [strict, group(arith)] + | Exp "!=" Exp [strict, group(arith)] + > "!" Exp [strict, group(arith)] + > Exp "&&" Exp [strict(1), left, group(arith)] + > Exp "||" Exp [strict(1), left, group(arith)] +
+

The conditional construct has the expected evaluation strategy, +stating that only the first argument is evaluate:

+
k
syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)] +
+

FUN's builtin lists are formed by enclosing comma-separated +sequences of expressions (i.e., terms of sort Exps) in square +brackets. The list constructor cons adds a new element to the +top of the list, head and tail get the first element +and the tail sublist of a list if they exist, respectively, and get +stuck otherwise, and null?? tests whether a list is empty or +not; syntactically, these are just expression constants. +In function patterns, we are also going to allow patterns following the +usual head/tail notation; for example, the pattern [x_1,...,x_n|t] +binds x_1, ..., x_n to the first elements of the matched list, +and t to the list formed with the remaining elements. We define list +patterns as ordinary expression constructs, although we will make sure that +we do not give them semantics if they appear in any other place then in a +function case pattern.

+
k
syntax Exp ::= "[" Exps "]" [strict, klabel(list)] + | "head" [macro] | "tail" [macro] | "null?" [macro] + | "[" Exps "|" Exp "]" + syntax Val ::= "[" Vals "]" [klabel(list)] + syntax Cons ::= "cons" + syntax Val ::= Cons + syntax Val ::= Cons Val [klabel(apply)] +
+

Data constructors start with capital letters and they may or may +not have arguments. We need to use the attribute "prefer" to make +sure that, e.g., Cons(a) parses as constructor Cons with +argument a, and not as the expression Cons (because +constructor names are also expressions) regarded as a function applied +to the expression a. Also, note that the constructor is strict +in its second argument, because we want to evaluate its arguments but +not the constuctor name itsef.

+
k
syntax ConstructorName [token] + syntax Exp ::= ConstructorName + | ConstructorName "(" Exps ")" [prefer, strict(2), klabel(constructor)] + syntax Val ::= ConstructorName "(" Vals ")" [klabel(constructor)] +
+

A function is essentially a |-separated ordered +sequence of cases, each case of the form pattern -> expression, +preceded by the language construct fun. Patterns will be defined +shortly, both for the builtin lists and for user-defined constructors. +Recall that the syntax we define in K is not meant to serve as a +ultimate parser for the defined language, but rather as a convenient +notation for K abstract syntax trees, which we prefer when we write +the semantic rules. It is therefore often the case that we define a +more ``generous'' syntax than we want to allow programs to use. +We do it here, too. Specifically, the syntax of Cases +below allows any expressions to appear as pattern. This syntactic +relaxation permits many wrong programs to be parsed, but that is not a +problem because we are not going to give semantics to wrong combinations, +so those programs will get stuck; moreover, our type inferencer will reject +those programs anyway. Function application is just concatenation of +expressions, without worrying about type correctness. Again, the type +system will reject type-incorrect programs.

+
k
syntax Exp ::= "fun" Cases + | Exp Exp [strict, left, klabel(apply)] +// NOTE: We would like eventually to also have Exp "(" Exps ") + syntax Case ::= Exp "->" Exp + syntax Cases ::= List{Case, "|"} +
+

The let and letrec binders have the usual syntax +and functional meaning. We allow multiple and-separated bindings. +Like for the function cases above, we allow a more generous syntax for +the left-hand sides of bindings, noting that the semantics will get stuck +on incorrect bindings and that the type system will reject those programs.

+
k
syntax Exp ::= "let" Bindings "in" Exp + | "letrec" Bindings "in" Exp [prefer] +// The "prefer" attribute for letrec currently needed due to tool bug, +// to make sure that "letrec" is not parsed as "let rec". + syntax Binding ::= Exp "=" Exp + syntax Bindings ::= List{Binding,"and"} +
+

References are first class values in FUN. The construct ref +takes an expression, evaluates it, and then it stores the resulting value +at a fresh location in the store and returns that reference. Syntactically, +ref is just an expression constant. The construct & +takes a name as argument and evaluates to a reference, namely the store +reference where the variable passed as argument stores its value; this +construct is a bit controversial and is further discussed in the +environment-based semantics of the FUN language, where we desugar +ref to it. The construct @ takes a reference +and evaluates to the value stored there. The construct := takes +two expressions, the first expected to evaluate to a reference; the value +of its second argument will be stored at the location to which the first +points (the old value is thus lost). Finally, since expression evaluation +now has side effects, it makes sense to also add a sequential composition +construct, which is sequentially strict. This evaluates to the value of +its second argument; the value of the first argument is lost (which has +therefore been evaluated only for its side effects.

+
k
syntax Exp ::= "ref" [macro] + | "&" Name + | "@" Exp [strict] + | Exp ":=" Exp [strict] + | Exp ";" Exp [strict(1), right] +
+

Call-with-current-continuation, named callcc in FUN, is a +powerful control operator that originated in the Scheme programming +language, but it now exists in many other functional languages. It works +by evaluating its argument, expected to evaluate to a function, and by +passing the current continuation, or evaluation context (or computation, +in K terminology), as a special value to it. When/If this special value +is invoked, the current context is discarded and replaced with the one +held by the special value and the computation continues from there. +It is like taking a snapshot of the execution context at some moment +in time and then, when desired, being able to get back in time to that +point. If you like games, it is like saving the game now (so you can +work on your homework!) and then continuing the game tomorrow or whenever +you wish. To issustrate the strength of callcc, we also +allow exceptions in FUN by means of a conventional try-catch +construct, which will desugar to callcc. We also need to +introduce the special expression contant throw, but we need to +use it as a function argument name in the desugaring macro, so we define +it as a name instead of as an expression constant:

+
k
syntax Exp ::= "try" Exp "catch" "(" Name ")" Exp [macro] + syntax Val ::= "callcc" + syntax Name ::= "throw" [token] +
+

Finally, FUN also allows polymorphic datatype declarations. These +will be useful when we define the type system later on.

+
k
syntax Exp ::= "datatype" Type "=" TypeCases Exp [macro] +// NOTE: In a future version of K, we want the datatype declaration +// to be a construct by itself, but that is not possible currently +// because K's parser wronly identifies the __ operation allowing +// a declaration to appear in front of an expression with the function +// application construct, giving ambiguous parsing errors. +
+

We next need to define the syntax of types and type cases that appear +in datatype declarations.

+

Like in many functional languages, type parameters/variables in +user-defined types are quoted identifiers.

+
k
syntax TypeVar [token] + syntax TypeVars ::= List{TypeVar,","} [overload(types)] +
+

Types can be basic types, function types, or user-defined +parametric types. In the dynamic semantics we are going to simply ignore +all the type declations, so here the syntax of types below is only useful +for generating the desired parser. To avoid syntactic ambiguities with +the arrow construct for function cases, we use the symbol --> as +a constructor for function types:

+
k
syntax TypeName [token] + syntax Type ::= "int" | "bool" | "string" + | Type "-->" Type [right] + | "(" Type ")" [bracket] + | TypeVar + | TypeName [klabel(TypeName), avoid] + | Type TypeName [klabel(Type-TypeName), symbol, macro] + | "(" Types ")" TypeName [prefer] + syntax Types ::= List{Type,","} [overload(types)] + syntax Types ::= TypeVars + + syntax TypeCase ::= ConstructorName + | ConstructorName "(" Types ")" + syntax TypeCases ::= List{TypeCase,"|"} [symbol(_|TypeCase_)] +
+

Additional Priorities

+
k
syntax priority @__FUN-UNTYPED-COMMON + > apply + > arith + > _:=__FUN-UNTYPED-COMMON + > let_in__FUN-UNTYPED-COMMON + letrec_in__FUN-UNTYPED-COMMON + if_then_else__FUN-UNTYPED-COMMON + > _;__FUN-UNTYPED-COMMON + > fun__FUN-UNTYPED-COMMON + > datatype_=___FUN-UNTYPED-COMMON +endmodule + +module FUN-UNTYPED-MACROS + imports FUN-UNTYPED-COMMON +
+

Desugaring macros

+

We desugar the list non-constructor operations to functions matching +over list patterns. In order to do that we need some new variables; for +those, we follow the same convention like in the K tutorial, where we +added them as new identifier constructs starting with the character $, +so we can easily recognize them when we debug or trace the semantics.

+
k
syntax Name ::= "$h" [token] | "$t" [token] + rule head => fun [$h|$t] -> $h + rule tail => fun [$h|$t] -> $t + rule null? => fun [.Exps] -> true | [$h|$t] -> false +
+

Multiple-head list patterns desugar into successive one-head patterns:

+
k
rule [E1,E2,Es:Exps|T] => [E1|[E2,Es|T]] [anywhere] +
+

Uncurrying of multiple arguments in functions and binders:

+
k
rule P1 P2 -> E => P1 -> fun P2 -> E [anywhere] + rule F P = E => F = fun P -> E [anywhere] +
+

We desugar the try-catch construct into callcc:

+
k
syntax Name ::= "$k" [token] | "$v" [token] + rule try E catch(X) E' + => callcc (fun $k -> (fun throw -> E)(fun X -> $k E')) +
+

For uniformity, we reduce all types to their general form:

+
k
rule `Type-TypeName`(T:Type, Tn:TypeName) => (T) Tn +
+

The dynamic semantics ignores all the type declarations:

+
k
rule datatype _T = _TCs E => E + +endmodule + + +module FUN-UNTYPED-SYNTAX + imports FUN-UNTYPED-COMMON + imports BUILTIN-ID-TOKENS + + syntax Name ::= r"[a-z][_a-zA-Z0-9]*" [token, prec(2)] + | #LowerId [token] + syntax ConstructorName ::= #UpperId [token] + syntax TypeVar ::= r"['][a-z][_a-zA-Z0-9]*" [token] + syntax TypeName ::= Name [token] +endmodule +
+

Semantics

+

The semantics below is environment-based. A substitution-based +definition of FUN is also available, but that drops the & +construct as explained above.

+
k
module FUN-UNTYPED + imports FUN-UNTYPED-COMMON + imports FUN-UNTYPED-MACROS + imports DOMAINS + //imports PATTERN-MATCHING +
+

Configuration

+

The k, env, and store cells are standard +(see, for example, the definition of LAMBDA++ or IMP++ in the first +part of the K tutorial).

+
k
configuration <T color="yellow"> + <k color="green"> $PGM:Exp </k> + <env color="violet"> .Map </env> + <store color="white"> .Map </store> + </T> +
+

Values and results

+

We only define integers, Booleans and strings as values here, but will +add more values later.

+
k
syntax Val ::= Int | Bool | String + syntax Vals ::= Bottoms + syntax KResult ::= Val +
+

Lookup

+
k
rule <k> X:Name => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V ...</store> +
+

Arithmetic expressions

+
k
rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule I1 + I2 => I1 +Int I2 + rule S1 ^ S2 => S1 +String S2 + rule I1 - I2 => I1 -Int I2 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E +
+

Conditional

+
k
rule if true then E else _ => E + rule if false then _ else E => E +
+

Lists

+

We have already declared the syntactic list of expressions strict, so +we can assume that all the elements that appear in a FUN list are +evaluated. The only thing left to do is to state that a list of +values is a value itself, that is, that the list square-bracket +construct is indeed a constructor, and to give the semantics of +cons. Since cons is a builtin function and is +expected to take two arguments, we have to also state that +cons itself is a value (specifically, a function/closure +value, but we do not need that level of detail here), and also that +cons applied to a value is a value (specifically, it would be +a function/closure value that expects the second, list argument):

+
k
rule cons V:Val [Vs:Vals] => [V,Vs] +
+

Data Constructors

+

Constructors take values as arguments and produce other values:

+
k
syntax Val ::= ConstructorName +
+

Functions and Closures

+

Like in the environment-based semantics of LAMBDA++ in the first part +of the K tutorial, functions evaluate to closures. A closure includes +the current environment besides the function contents; the environment +will be used at execution time to lookup all the variables that appear +free in the function body (we want static scoping in FUN).

+
k
syntax Val ::= closure(Map,Cases) + rule <k> fun Cases => closure(Rho,Cases) ...</k> <env> Rho </env> +
+

Note: The reader may want to get familiar with +how the pre-defined pattern matching works before proceeding. +The best way to do that is to consult +k/include/modules/pattern-matching.k.

+ +

We distinguish two cases when the closure is applied. +If the first pattern matches, then we pick the first case: switch to +the closed environment, get the matching map and bind all its +variables, and finally evaluate the function body of the first case, +making sure that the environment is properly recovered afterwards. +If the first pattern does not match, then we drop it and thus move on +to the next one.

+
k
rule (.K => getMatching(P, V)) ~> closure(_, P->_ | _) V:Val + rule <k> matchResult(M:Map) ~> closure(Rho, _->E | _) _ + => bindMap(M) ~> E ~> setEnv(Rho') ...</k> + <env> Rho' => Rho </env> + rule (matchFailure => .K) ~> closure(_, (_->_ | Cs:Cases => Cs)) _ +// rule <k> closure(Rho, P->E | _) V:Val +// => bindMap(getMatching(P,V)) ~> E ~> setEnv(Rho') ...</k> +// <env> Rho' => Rho </env> when isMatching(P,V) +// rule closure(_, (P->_ | Cs:Cases => Cs)) V:Val when notBool isMatching(P,V) +
+

Let and Letrec

+

To highlight the similarities and differences between let and +letrec, we prefer to give them direct semantics instead of +to desugar them like in LAMBDA. See the formal definitions of +bindTo, bind, and assignTo at the end of +this module. Informally, bindTo(Xs, Es) first +evaluates the expressions Es in Exps in the current +environment (i.e., it is strict in its second argument), then it binds +the variables in Xs in Names to new locations and adds +those bindings to the environment, and finally writes the values +previously obtained after evaluating the expressions Es to those +new locations; bind(Xs) does only the bindings of +Xs to new locations and adds those bindings to the environment; +and assignTo(Xs,Es) evaluates the expressions +Es in the current environment and then it writes the resulting +values to the locations to which the variables Xs are already +bound to in the environment.

+

Therefore, let Xs = Es in E first +evaluates Es in the current environment, then adds new +bindings for Xs to fresh locations in the environment, then +writes the values of Es to those locations, and finally +evaluates E in the new environment, making sure that the +environment is properly recovered after the evaluation of E. +On the other hand, letrec does the same things but in a +different order: it first adds new bindings for Xs to fresh +locations in the environment, then it evaluates Es in the new +environment, then it writes the resulting values to their +corresponding locations, and finally it evaluates E and +recovers the environment. The crucial difference is that the +expressions Es now see the locations of the variables Xs +in the environment, so if they are functions, which is typically the +case with letrec, their closures will encapsulate in their +environments the bindings of all the bound variables, including +themselves (thus, we may have a closure value stored at location +L, whose environment contains a binding of the form +F ↦ L; this way, the closure can invoke +itself).

+
k
rule <k> let Bs in E + => bindTo(names(Bs),exps(Bs)) ~> E ~> setEnv(Rho) ...</k> + <env> Rho </env> + + rule <k> letrec Bs in E + => bind(names(Bs))~>assignTo(names(Bs),exps(Bs))~>E~>setEnv(Rho)...</k> + <env> Rho </env> +
+

Recall that our syntax allows let and letrec to +take any expression in place of its binding. This allows us to use +the already existing function application construct to bind names to +functions, such as, e.g., let x y = y in .... +The desugaring macro in the syntax module uncurries such declarations, +and then the semantic rules above only work when the remaining +bindings are identifiers, so the semantics will get stuck on programs +that misuse the let and letrec binders.

+

References

+

The semantics of references is self-explanatory, except maybe for the +desugaring rule of ref, which is further discussed. Note +that &X grabs the location of X from the environment. +Sequential composition, which is needed only to accumulate the +side effects due to assignments, was strict in the first argument. +Once evaluated, its first argument is simply discarded:

+
k
syntax Name ::= "$x" [token] + rule ref => fun $x -> & $x + rule <k> & X => L ...</k> <env>... X |-> L ...</env> + rule <k> @ L:Int => V:Val ...</k> <store>... L |-> V ...</store> + rule <k> L:Int := V:Val => V ...</k> <store>... L |-> (_=>V) ...</store> + rule _V:Val; E => E +
+

The desugaring rule of ref (first rule above) works +because & takes a variable and returns its location (like in C). +Note that some ``pure'' functional programming researchers strongly dislike +the & construct, but favor ref. We refrain from having +a personal opinion on this issue here, but support & in the +environment-based definition of FUN because it is, technically speaking, +more powerful than ref. From a language design perspective, it +would be equally easy to drop & and instead give a direct +semantics to ref. In fact, this is precisely what we do in the +substitution-based definition of FUN, because there appears to be no way +to give a substitution-based definition to the & construct.

+

Callcc

+

As we know it from the LAMBDA++ tutorial, call-with-current-continuation +is quite easy to define in K. We first need to define a special +value wrapping an execution context, that is, an environment saying +where the variables should be looked up, and a computation structure +saying what is left to execute (in a substitution-based definition, +this special value would be even simpler, as it would only need to +wrap the computation structure---see, for example, the +substitution-based semantics of LAMBDA++ in the the first part of the +K tutorial, or the substitution-based definition of FUN). Then +callcc creates such a value containing the current +environment and the current remaining computation, and passes it to +its argument function. When/If invoked, the special value replaces +the current execution context with its own and continues the execution +normally.

+
k
syntax Val ::= cc(Map,K) + rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k> <env> Rho </env> + rule <k> cc(Rho,K) V:Val ~> _ => V ~> K </k> <env> _ => Rho </env> +
+

Auxiliary operations

+

Environment recovery

+

The environment recovery operation is the same as for the LAMBDA++ +language in the K tutorial and many other languages provided with the +K distribution. The first ``anywhere'' rule below shows an elegant +way to achieve the benefits of tail recursion in K.

+
k
syntax KItem ::= setEnv(Map) // TODO: get rid of env + //rule (setEnv(_) => .) ~> setEnv(_) [anywhere] + rule <k> _:Val ~> (setEnv(Rho) => .K) ...</k> <env> _ => Rho </env> +
+

bindTo, bind and assignTo

+

The meaning of these operations has already been explained when we +discussed the let and letrec language constructs +above.

+
k
syntax KItem ::= bindTo(Names,Exps) [strict(2)] + | bindMap(Map) + | bind(Names) + + rule (.K => getMatchingAux(Xs,Vs)) ~> bindTo(Xs:Names,Vs:Vals) + rule matchResult(M:Map) ~> bindTo(_:Names, _:Vals) => bindMap(M) + + rule bindMap(.Map) => .K + rule <k> bindMap((X:Name |-> V:Val => .Map) _:Map) ...</k> + <env> Rho => Rho[X <- !L:Int] </env> + <store>... .Map => !L |-> V ...</store> + + rule bind(.Names) => .K + rule <k> bind(X:Name,Xs => Xs) ...</k> + <env> Rho => Rho[X <- !_L:Int] </env> + + syntax KItem ::= assignTo(Names,Exps) [strict(2)] + + rule <k> assignTo(.Names,.Vals) => .K ...</k> + rule <k> assignTo((X:Name,Xs => Xs),(V:Val,Vs:Vals => Vs)) ...</k> + <env>... X |-> L ...</env> + <store>... .Map => L |-> V ...</store> +
+

Getters

+

The following auxiliary operations extract the list of identifiers +and of expressions in a binding, respectively.

+
k
syntax Names ::= names(Bindings) [function] + rule names(.Bindings) => .Names + rule names(X:Name=_ and Bs) => (X,names(Bs))::Names + + syntax Exps ::= exps(Bindings) [function] + rule exps(.Bindings) => .Exps + rule exps(_:Name=E and Bs) => E,exps(Bs) + + /* Extra kore stuff */ + syntax KResult ::= Vals + syntax Exps ::= Names + syntax Names ::= Bottoms + + /* Matching */ + syntax MatchResult ::= getMatching(Exp, Val) [function] + | getMatchingAux(Exps, Vals) [function] + | mergeMatching(MatchResult, MatchResult) [function] + | matchResult(Map) + | "matchFailure" + + rule getMatching(C:ConstructorName(Es:Exps), C(Vs:Vals)) => getMatchingAux(Es, Vs) + rule getMatching([Es:Exps], [Vs:Vals]) => getMatchingAux(Es, Vs) + rule getMatching(C:ConstructorName, C) => matchResult(.Map) + rule getMatching(B:Bool, B) => matchResult(.Map) + rule getMatching(I:Int, I) => matchResult(.Map) + rule getMatching(S:String, S) => matchResult(.Map) + rule getMatching(N:Name, V:Val) => matchResult(N |-> V) + rule getMatching(_, _) => matchFailure [owise] + + rule getMatchingAux((E:Exp, Es:Exps), (V:Val, Vs:Vals)) => mergeMatching(getMatching(E, V), getMatchingAux(Es, Vs)) + rule getMatchingAux(.Exps, .Vals) => matchResult(.Map) + rule getMatchingAux(_, _) => matchFailure [owise] + + rule mergeMatching(matchResult(M1:Map), matchResult(M2:Map)) => matchResult(M1 M2) + requires intersectSet(keys(M1), keys(M2)) ==K .Set + //rule mergeMatching(_, _) => matchFailure [owsie] + rule mergeMatching(matchResult(_:Map), matchFailure) => matchFailure + rule mergeMatching(matchFailure, matchResult(_:Map)) => matchFailure + rule mergeMatching(matchFailure, matchFailure) => matchFailure +
+

Besides the generic decomposition rules for patterns and values, +we also want to allow [head|tail] matching for lists, so we add +the following custom pattern decomposition rule:

+
k
rule getMatching([H:Exp | T:Exp], [V:Val, Vs:Vals]) + => getMatchingAux((H, T), (V, [Vs])) +endmodule +
+

Go to Lesson 2, FUN untyped, Substitution-Based.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/2_substitution/fun-untyped/index.html b/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/2_substitution/fun-untyped/index.html new file mode 100644 index 00000000000..1e4f462108c --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/2_substitution/fun-untyped/index.html @@ -0,0 +1,724 @@ + + + + + + + + + + + + + + +FUN — Untyped — Substitution | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

// NOTE: this definition is not up to date with the latest version of K, as it +// uses both substitution and symbolic reasoning. +// It is intended for documentation and academic purposes only.

+

FUN — Untyped — Substitution

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the substitution-based definition of FUN. For additional +explanations regarding the semantics of the various FUN constructs, +the reader should consult the emvironment-based definition of FUN.

+

Syntax

+
k
requires "substitution.md" +//requires "modules/pattern-matching.k" + +module FUN-UNTYPED-COMMON + imports DOMAINS-SYNTAX +
+

The Syntactic Constructs

+
k
syntax Name + syntax Names ::= List{Name,","} + + syntax Exp ::= Int | Bool | String | Name + | "(" Exp ")" [bracket] + syntax Exps ::= List{Exp,","} [strict] + syntax Val + syntax Vals ::= List{Val,","} + + syntax Exp ::= left: + Exp "*" Exp [strict, arith] + | Exp "/" Exp [strict, arith] + | Exp "%" Exp [strict, arith] + > left: + Exp "+" Exp [strict, left, arith] + | Exp "^" Exp [strict, left, arith] + | Exp "-" Exp [strict, prefer, arith] + | "-" Exp [strict, arith] + > non-assoc: + Exp "<" Exp [strict, arith] + | Exp "<=" Exp [strict, arith] + | Exp ">" Exp [strict, arith] + | Exp ">=" Exp [strict, arith] + | Exp "==" Exp [strict, arith] + | Exp "!=" Exp [strict, arith] + > "!" Exp [strict, arith] + > Exp "&&" Exp [strict(1), left, arith] + > Exp "||" Exp [strict(1), left, arith] + + syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)] + + syntax Exp ::= "[" Exps "]" [strict] + | "cons" | "head" | "tail" | "null?" + | "[" Exps "|" Exp "]" + syntax Val ::= "[" Vals "]" + + syntax ConstructorName + syntax Exp ::= ConstructorName + | ConstructorName "(" Exps ")" [prefer, strict(2)] + syntax Val ::= ConstructorName "(" Vals ")" + + syntax Exp ::= "fun" Cases + | Exp Exp [strict, left] + syntax Case ::= Exp "->" Exp [binder] +// NOTE: The binder attribute above is the only difference between this +// module and the syntax module of environment-based FUN. We need +// to fix a bug in order to import modules and override the attributes +// of operations. + syntax Cases ::= List{Case, "|"} + + syntax Exp ::= "let" Bindings "in" Exp + | "letrec" Bindings "in" Exp [prefer] + syntax Binding ::= Exp "=" Exp + syntax Bindings ::= List{Binding,"and"} + + syntax Exp ::= "ref" + | "&" Name + | "@" Exp [strict] + | Exp ":=" Exp [strict] + | Exp ";" Exp [strict(1), right] + + syntax Exp ::= "callcc" + | "try" Exp "catch" "(" Name ")" Exp + syntax Name ::= "throw" [token] + + syntax Exp ::= "datatype" Type "=" TypeCases Exp + + syntax TypeVar + syntax TypeVars ::= List{TypeVar,","} + + syntax TypeName + syntax Type ::= "int" | "bool" | "string" + | Type "-->" Type [right] + | "(" Type ")" [bracket] + | TypeVar + | TypeName [klabel(TypeName), avoid] + | Type TypeName [klabel(Type-TypeName), onlyLabel] + | "(" Types ")" TypeName [prefer] + syntax Types ::= List{Type,","} + syntax Types ::= TypeVars + + syntax TypeCase ::= ConstructorName + | ConstructorName "(" Types ")" + syntax TypeCases ::= List{TypeCase,"|"} [klabel(_|TypeCase_)] +
+

Additional Priorities

+
k
syntax priority @__FUN-UNTYPED-COMMON + > ___FUN-UNTYPED-COMMON + > arith + > _:=__FUN-UNTYPED-COMMON + > let_in__FUN-UNTYPED-COMMON + letrec_in__FUN-UNTYPED-COMMON + if_then_else__FUN-UNTYPED-COMMON + > _;__FUN-UNTYPED-COMMON + > fun__FUN-UNTYPED-COMMON + > datatype_=___FUN-UNTYPED-COMMON +endmodule + +module FUN-UNTYPED-MACROS + imports FUN-UNTYPED-COMMON +
+

Desugaring macros

+
k
rule P1 P2 -> E => P1 -> fun P2 -> E [macro-rec] + rule F P = E => F = fun P -> E [macro-rec] + + rule [E1,E2,Es:Exps|T] => [E1|[E2,Es|T]] [macro-rec] + +// rule 'TypeName(Tn:TypeName) => (.TypeVars) Tn [macro] + rule `Type-TypeName`(T:Type, Tn:TypeName) => (T) Tn [macro] + + syntax Name ::= "$h" | "$t" + rule head => fun [$h|$t] -> $h [macro] + rule tail => fun [$h|$t] -> $t [macro] + rule null? => fun [.Exps] -> true | [$h|$t] -> false [macro] + + syntax Name ::= "$k" | "$v" + rule try E catch(X) E' + => callcc (fun $k -> (fun throw -> E)(fun X -> $k E')) [macro] + + rule datatype _T = _TCs E => E [macro] +
+

mu needed for letrec, but we put it here so we can also write +programs with mu in them, which is particularly useful for testing.

+
k
syntax Exp ::= "mu" Case + +endmodule + + +module FUN-UNTYPED-SYNTAX + imports FUN-UNTYPED-COMMON + imports BUILTIN-ID-TOKENS + + syntax Name ::= r"[a-z][_a-zA-Z0-9]*" [token, prec(2)] + | #LowerId [token] + syntax ConstructorName ::= #UpperId [token] + syntax TypeVar ::= r"['][a-z][_a-zA-Z0-9]*" [token] + syntax TypeName ::= Name [token] +endmodule +
+

Semantics

+
k
module FUN-UNTYPED + imports FUN-UNTYPED-COMMON + imports FUN-UNTYPED-MACROS + imports DOMAINS + imports SUBSTITUTION + //imports PATTERN-MATCHING + + configuration <T color="yellow"> + <k color="green"> $PGM:Exp </k> + <store color="white"> .Map </store> + </T> +
+

Both Name and functions are values now:

+
k
syntax Val ::= Int | Bool | String | Name + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + syntax Exps ::= Names + syntax Vals ::= Names + + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 when I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 when I2 =/=K 0 + rule I1 + I2 => I1 +Int I2 + rule S1 ^ S2 => S1 +String S2 + rule I1 - I2 => I1 -Int I2 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E + + rule if true then E else _ => E + rule if false then _ else E => E + + rule isVal(cons) => true + rule isVal(cons _V:Val) => true + rule cons V:Val [Vs:Vals] => [V,Vs] + + syntax Val ::= ConstructorName + + rule isVal(fun _) => true + syntax KVar ::= Name + syntax Name ::= freshName(Int) [freshGenerator, function] + rule freshName(I:Int) => {#parseToken("Name", "#" +String Int2String(I))}:>Name + + rule (. => getMatching(P, V)) ~> (fun P->_ | _) V:Val + rule matchResult(M:Map) ~> (fun _->E | _) _ => E[M] + rule (matchFailure => .) ~> (fun (_->_ | Cs:Cases => Cs)) _ +// rule (fun P->E | _) V:Val => E[getMatching(P,V)] when isMatching(P,V) +// rule (fun (P->_ | Cs:Cases => Cs)) V:Val when notBool isMatching(P,V) +
+

We can reduce multiple bindings to one list binding, and then +apply the usual desugaring of let into function application. +It is important that the rule below is a macro, so let is eliminated +immediately, otherwise it may interfere in ugly ways with substitution.

+
k
rule let Bs in E => ((fun [names(Bs)] -> E) [exps(Bs)]) [macro] +
+

We only give the semantics of one-binding letrec. +Multipe bindings are left as an exercise.

+
k
// changed because of parsing error + //rule mu X:Name -> E => E[(mu X -> E) / X] + rule mu X:Name -> E => E[X |-> (mu X -> E)] + rule letrec F:Name = E in E' => let F = (mu F -> E) in E' [macro] +
+

We cannot have & anymore, but we can give direct +semantics to ref. We also have to declare ref to +be a value, so that we will never heat on it.

+
k
// rule <k> & X => L ...</k> <env>... X |-> L </env> + rule isVal(ref) => true + rule <k> ref V:Val => !L:Int ...</k> <store>... .Map => !L |-> V ...</store> + rule <k> @ L:Int => V:Val ...</k> <store>... L |-> V ...</store> + rule <k> L:Int := V:Val => V ...</k> <store>... L |-> (_=>V) ...</store> + rule _V:Val; E => E + + syntax Val ::= cc(K) + rule isVal(callcc) => true + rule <k> (callcc V:Val => V cc(K)) ~> K </k> + rule <k> cc(K) V:Val ~> _ => V ~> K </k> +
+

Auxiliary getters

+
k
syntax Names ::= names(Bindings) [function] + rule names(.Bindings) => .Names + rule names(X:Name=_ and Bs) => X,names(Bs) + + syntax Exps ::= exps(Bindings) [function] + rule exps(.Bindings) => .Exps + rule exps(_:Name=E and Bs) => E,exps(Bs) + + /* Extra kore stuff */ + syntax KResult ::= Vals + syntax Exps ::= Names + + /* Matching */ + syntax MatchResult ::= getMatching(Exp, Val) [function] + | getMatchingAux(Exps, Vals) [function] + | mergeMatching(MatchResult, MatchResult) [function] + | matchResult(Map) + | "matchFailure" + + rule getMatching(C:ConstructorName(Es:Exps), C(Vs:Vals)) => getMatchingAux(Es, Vs) + rule getMatching([Es:Exps], [Vs:Vals]) => getMatchingAux(Es, Vs) + rule getMatching(C:ConstructorName, C) => matchResult(.Map) + rule getMatching(B:Bool, B) => matchResult(.Map) + rule getMatching(I:Int, I) => matchResult(.Map) + rule getMatching(S:String, S) => matchResult(.Map) + rule getMatching(N:Name, V:Val) => matchResult(N |-> V) + rule getMatching(_, _) => matchFailure [owise] + + rule getMatchingAux((E:Exp, Es:Exps), (V:Val, Vs:Vals)) => mergeMatching(getMatching(E, V), getMatchingAux(Es, Vs)) + rule getMatchingAux(.Exps, .Vals) => matchResult(.Map) + rule getMatchingAux(_, _) => matchFailure [owise] + + rule mergeMatching(matchResult(M1:Map), matchResult(M2:Map)) => matchResult(M1 M2) + requires intersectSet(keys(M1), keys(M2)) ==K .Set + //rule mergeMatching(_, _) => matchFailure [owsie] + rule mergeMatching(matchResult(_:Map), matchFailure) => matchFailure + rule mergeMatching(matchFailure, matchResult(_:Map)) => matchFailure + rule mergeMatching(matchFailure, matchFailure) => matchFailure +
+

Besides the generic decomposition rules for patterns and values, +we also want to allow [head|tail] matching for lists, so we add +the following custom pattern decomposition rule:

+
k
rule getMatching([H:Exp | T:Exp], [V:Val, Vs:Vals]) + => getMatchingAux((H, T), (V, [Vs])) +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/4_logik/basic/logik/index.html b/k-distribution/pl-tutorial/2_languages/4_logik/basic/logik/index.html new file mode 100644 index 00000000000..df7940eb45b --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/4_logik/basic/logik/index.html @@ -0,0 +1,713 @@ + + + + + + + + + + + + + + +LOGIK | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

// NOTE: this definition is not runnable as is. +// It is intended for documentation and academic purposes only.

+

LOGIK

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of LOGIK, a trivial language +capturing the essence of the logic programming paradigm. In this +definition, we explicitly focus on simplicity and mathematical +clarity, not on advanced logic programming features or performance. +Those are covered in the LOGIK++ extension under examples/logik++.

+

Specifically, a LOGIK program consists of a sequence of Horn clauses +of the form

+
P :- P1, P2, ..., Pn .
+
+

followed by a query of the form

+
?- Q1, Q2, ..., Qm .
+
+

where P, P1, P2, ..., Pn, Q1, Q2, +..., Qm are literals. The +symbol :- is read "if". A literal has the form +p(T1,T2,...,Tk), where p is a predicate symbol +and where T1,T2,...,Tk are terms. Terms are built as +usual, with operation symbols and variables. A common +convention in logic programming languages, also adopted here, is that +variables are capitalized and operation symbols are not. Operations +with zero arguments are called constants and are written without +parentheses, that is, c instead of c(). Horn +clauses without conditions, called facts, are written +without :-, that is, P. instead of P :- ..

+

For example, the LOGIK program below gives a few facts about a +parent predicate, then several clauses defining some useful +predicates including an ancestor predicate, and finally a +query asking for those who both have ancestors and are ancestors +themselves in the parent relation:

+
parent(david,john).
+parent(jim,david).
+parent(steve,jim).
+parent(nathan,steve).
+
+grandparent(A,B):-
+  parent(A,X),
+  parent(X,B).
+
+ancestor(A,B):-
+  parent(A,X),
+  parents(X,B).
+
+parents(X,X).
+parents(A,B):-
+  ancestor(A,B).
+
+both(X) :- ancestor(A,X), ancestor(X,B).
+
+?- both(X).
+
+

Above, we only have constant operation symbols, so these and variables +are the only terms that can be used in predicates. As expected, the +LOGIK program above will give us three solutions for X: +david, steve, and jim. If we inline the +both(X) predicate in the query, that is, if we replace the +query with ?- ancestor(A,X), ancestor(X,B). then we get +10 solutions, one for for each triple A, X, and +B satisfying both predicates ancestor(A,X) and +ancestor(X,B).

+

As another example, the program below defines an append +predicate followed by a simple goal:

+
append(nil,L,L).
+append(cons(H,T),L,cons(H,Z)) :- append(T,L,Z).
+
+?- append(cons(a,nil), cons(b,nil), V).
+
+

Besides the predicate symbol append, the program above also +includes a constant symbol nil and a binary operation symbol +cons. Additionally, the query also includes two more +constants, a and b. The capitalized identifiers are +all variables. As expected, the LOGIK program above yields only one +solution, namely V = cons(a,cons(b,nil)). On the other hand, +if we change the query to:

+
?- append(L1, cons(a,L2), cons(a,cons(b,cons(a,nil)))).
+
+

then LOGIK yields two solutions: one where L1 is +cons(a,cons(b,nil)) and L2 is nil, +and another where L1 is nil and L2 is +cons(a,cons(b,nil)).

+

The programs above all generated ground solutions, that is, +solutions where the query variables are mapped to ground terms (i.e., +terms without variables). Let us now consider the following query:

+
?- append(cons(a,nil), Y, Z).
+
+

There are obviously infinitely many ground solutions for the query +above, e.g.,
+Y = nil and Z = cons(a,nil),
+Y = cons(a,nil) and Z = cons(a,cons(a,nil)),
+Y = cons(b,nil) and Z = cons(a,cons(b,nil)),
+Y = cons(c,cons(b,nil)) and Z = cons(a,cons(c,cons(b,nil))),
+etc. However, all the ground solutions for the query above can be +elegantly characterized by the property that Z is bound to a list +starting with a and followed by the list that Y is +bound to. This property can in fact be described as a symbolic solution +to the query: Z = cons(a,Y) or, equivalently, +Y = Symb and Z = cons(a,Symb). It is possible to +define a ``more general than'' relation on such symbolic solutions, +in the sense that the more particular solution can be obtained as a +specialization/substitution of the more general one, and then it can +be shown that the above is the most general solution to the +stated query. Logic programming languages, including our LOGIK, +attempt to always compute such most general solutions.

+

Logic programming languages are highly non-deterministic, in that +several Horn clauses may be used at the same time, each possibly +resulting in a different solution. Implementations of logic +programming languages consist of complex, optimized search and +indexing algorithms, which we are not concerned with here. Instead, +we here take advantage of K's builtin support for search. +Specifically, to find all the solutions of a LOGIK program, we have to +use krun with the option --search. However, note +that some programs have infinitely many solutions which cannot relate +to each other by the "more general" relation. For example, the query

+
?- append(L1, cons(a,L2), L3) .
+
+

To address such cases and terminate, logic programming languages allow +the user to choose how many solutions to be computed and displayed. +In LOGIK, we can use the --bound option of krun for +this purpose.

+

Finally, note that some queries have no solution. In some cases that +is easy to detect by exhaustive analysis, such as for the following +query:

+
?- append(cons(a,L1), L2, cons(b,L3)).
+
+

Logic programming languages, including LOGIK, terminate in such cases +and report a no solution answer. However, there are cases where +exhaustive analysis is not sufficient, such as for the query:

+
?- append(cons(a,L), nil, L).
+
+

In such cases, logic programming languages do not terminate. While +one may devise techniques to detect non-termination in some cases, +one cannot do it in general (same like for all Turing-complete +languages).

+
k
requires "unification.k" + +module LOGIK-COMMON + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of LOGIK is straightforward: a program is a sequence of +Horn clauses followed by a query:

+
k
syntax Literal + syntax Term ::= Literal | Literal "(" Terms ")" + syntax Terms ::= List{Term,","} + syntax Clause ::= Term ":-" Terms "." | Term "." + syntax Query ::= "?-" Terms "." + syntax Pgm ::= Query | Clause Pgm +endmodule + +module LOGIK-SYNTAX + imports LOGIK-COMMON + imports BUILTIN-ID-TOKENS +
+

Variables and literals are defined as tokens following the conventions +used in Prolog (variables start with _ or capital letter, while literals +start with lower case letters):

+
k
syntax #KVariable ::= r"[A-Z_][A-Za-z0-9_]*" [token, prec(2)] + | #UpperId [token] + syntax Term ::= #KVariable [klabel(#SemanticCastToTerm)] + syntax Literal ::= r"[a-z][a-zA-Z0-9_]*" [token] + | #LowerId [token] +endmodule + +module LOGIK + imports LOGIK-COMMON + imports DOMAINS + imports UNIFICATION +
+

Unification is at the core of logic programming. Here we are +going to use the predefined unification procedure (the same one we +used in the type inferencers in Tutorial 5).

+

Configuration

+

The configuration stores each clause in its own cell for easy access, +and the most general unifier in a cell named mgu, same like +the type inferencers. The k cell holds the query and the +fresh cell holds a fresh clause instance to be attempted on +the next query item. To more easily read the solutions, we add a +second top-level cell, solution. Both top cells are +optional. Indeed, we start with the main top cell and, when a +solution is found, we move it into the solution cell and +discard the main cell.

+
k
configuration <T color="yellow" multiplicity="?"> + <k color="green"> $PGM:Pgm </k> + <fresh color="orange"> .K </fresh> + <clauses color="red"> + <clause color="pink" multiplicity="*"> .K </clause> + </clauses> + <mgu> .K </mgu> + </T> + <solution multiplicity="?"> .K </solution> +
+

Pre- and post-processing

+

Before we launch the semantics, we first scan the given program and +place each clause in its own cell, and then place the query in the +k cell and initialize the mgu with the variables from the query.

+

Note that we put a fresh instance of the clause to avoid interference with +the query variables. By a "fresh instance" of a clause we mean one whose +variables are renamed with fresh names; we need that in order to avoid +undesired unification conflicts due to particular names chosen for +variables in the original program, as well as conflicts due to +subsequent uses of the same clause. It is safe to rename the +variables in a clause, because clauses are universally quantified in +their variables. This process of creating a fresh instance of a +clause is similar to how we created fresh instances of type schemas in +the higher-order type inferencer discussed in Tutorial 5. Indeed, we +can safely regard clauses as "clause schemas" comprising infinitely +many instances, one for each context.

+
k
rule <k> C:Clause Pgm => Pgm </k> + (.Bag => <clause> #renameVariables(C) </clause>) + + rule <k> ?- Ls:Terms. => Ls ...</k> + <mgu> _ => #variablesMap(#variables(Ls)) </mgu> +
+

We also sequentialize the goals for easier processing:

+
k
rule L:Term, Ls:Terms => L ~> Ls + rule .Terms => . +
+

When all the goals are solved, indicated by the empty k +cell, the calculated most general unifier (mgu) is in the mgu +cell. In that case, to ease reading of the final solution we move the +mgu in the solution cell and delete the rest of the +configuration:

+
k
rule <T>... <k> . </k> <mgu> Theta </mgu> ...</T> + => <solution> Theta </solution> +
+

Since we are not interested in seeing the failed attempts to solve +the query, we collapse all the error configurations into an empty +configuration (recall that both top-level cells in the configuration +were declared optional). This way, if we see an empty configuration +when we search for all solutions, we know that some attempts failed +(but we do not know which ones).

+
k
// this would be nice, but we need feedback from the external unifier +// for this. +// rule <T>... <mgu> _:MguError </mgu> ...</T> => . +
+

Semantics

+

Once all the infrastructure is in place, the actual semantics of LOGIK +is quite simple. All we have to do is to pick some (fresh instance of +a) clause, then unify its conclusion with the first query literal, and +then replace that literal with condition of the clause. The intuition +here is the following: to satisfy the first literal in the query, we +need to find some instance of some clause that matches it, and then to +similarly show that we can satisfy the conditions of that clause. +Mathematically, this is an instance of the proof principle called +resolution: if p ∨ q and ¬ p ∨ r hold, then so does +q ∨ r. We let it as an exercise to the reader to see how the two +relate (hint: assume the negation of the goal together with all the +clauses, and then derive false).

+

The following two rules are tightly connected and they together +perform the following core task: pick a fresh instance of a clause +which unifies with the first goal item, then add its conditions as new +goals.

+

Pick a clause and generate a fresh instance of it when the +fresh cell is empty:

+
k
rule <fresh> . => #renameVariables(C) </fresh> <clause> C </clause> + <k> T:Term ...</k> + requires #unifiable(T,head(C)) + + syntax Term ::= head(Clause) [function] + rule head(L.) => L + rule head(L:-_.) => L +
+

If the goal is unifiable with the fresh clause's head, replace the goal +with the clause body, and empty the fresh cell (so that +another clause can be chosen using the rule above):

+
k
rule <k> L:Term => . ...</k> + <fresh> L:Term . => . </fresh> + + rule <k> L:Term :KItem => Ls ...</k> + <fresh> L:Term :- Ls:Terms. => . </fresh> +
+

Note that there is no problem if a clause is chosen whose +conclusion literal does not unify with the first goal literal. +The search +option of krun will systematically try all clauses, so no +solution is missed. Of course, the above is not the most efficient +way to implement a logic programming language, but recall that our +objective here was to present a simple and mathematically clean +solution. We encourage the interested reader to consult the LOGIK++ +language definition for a more efficient definition of a richer logic +programming language.

+
k
endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/2_languages/index.html b/k-distribution/pl-tutorial/2_languages/index.html new file mode 100644 index 00000000000..6dec03dc3a4 --- /dev/null +++ b/k-distribution/pl-tutorial/2_languages/index.html @@ -0,0 +1,397 @@ + + + + + + + + + + + + + + +K Languages | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K Languages

+

Here we present several "real-world" language examples. These languages +demonstrate many of the features you would expect to find in a full-fledged +programming language.

+
    +
  • SIMPLE: Imperative programming language with threads.
  • +
  • KOOL: SIMPLE extended with object-oriented features.
  • +
  • FUN: A functional language with algebraic data-types and pattern-matching.
  • +
  • LOGIK: A logical programming language based on clause unification.
  • +
+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/LICENSE/index.html b/k-distribution/pl-tutorial/LICENSE/index.html new file mode 100644 index 00000000000..28cd14a5e04 --- /dev/null +++ b/k-distribution/pl-tutorial/LICENSE/index.html @@ -0,0 +1,407 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

BSD 3-Clause License

+

Copyright (c) 2010-2024, K Team +All rights reserved.

+

Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met:

+
    +
  1. +

    Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimer.

    +
  2. +
  3. +

    Redistributions in binary form must reproduce the above copyright notice, +this list of conditions and the following disclaimer in the documentation +and/or other materials provided with the distribution.

    +
  4. +
  5. +

    Neither the name of the copyright holder nor the names of its +contributors may be used to endorse or promote products derived from +this software without specific prior written permission.

    +
  6. +
+

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/NOTES/index.html b/k-distribution/pl-tutorial/NOTES/index.html new file mode 100644 index 00000000000..02dd981fafc --- /dev/null +++ b/k-distribution/pl-tutorial/NOTES/index.html @@ -0,0 +1,456 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Dear reader: these NOTES.md documents are mostly for myself (Grigore), to +keep track of changes and updates that need to be made as things evolve +in the K framework. You can safely ignore them. However, if you are curious +how things will change and decide to read them, I would be grateful if you +let me know whenever you find inconsistencies or things that I forgot to +mention here. Or even better, feel free to make pull requests with suggested +changes or updates.

+

Global changes that need to be made:

+
    +
  • Replace when in rules with requires
  • +
+

Things to revise each time the structure of the tutorial changes:

+
    +
  • 1_k\2_imp\lesson_1\README.md refers to Tutorial 1
  • +
  • 1_k\2_imp\lesson_4\README.md refers to Lesson 1
  • +
  • 1_k\2_imp\lesson_4\README.md refers to Tutorial 1, Lesson 2.5
  • +
  • 1_k\3_lambda++\lesson_1\README.md refers to Lesson 8, Tutorial 1
  • +
  • `1_k\3_lambda++\lesson_1\exercises refers to Lesson 1, tests/config.xml
  • +
  • 1_k\3_lambda++\lesson_2\README.md Lesson 1, Tutorial 1; Tutorial 6; Part 1, 2
  • +
  • 1_k\3_lambda++\lesson_3\README.md refers to Lesson 7, Tutorial 1
  • +
  • 1_k\3_lambda++\lesson_4\README.md refers to Lesson 1
  • +
  • 1_k\3_lambda++\lesson_5\README.md refers to Lesson 4, Lesson 8 and Lesson 7 of Tutorial 1
  • +
  • 1_k\3_lambda++\lesson_6\README.md refers to Parts 3 and 4 of the tutorial
  • +
  • 1_k\4_imp++\lesson_1\README.md refers to Lesson 4, Tutorial 2; also Tutorial 3 (at the end)
  • +
  • 1_k\4_imp++\lesson_2\README.md refers to Tutorial 3; Tutorial 2
  • +
  • 1_k\4_imp++\lesson_3\README.md refers to Lesson 1, Lesson 6
  • +
  • 1_k\4_imp++\lesson_4\README.md refers to Tutorial 6
  • +
  • 1_k\4_imp++\lesson_5\README.md refers to Lesson 4; Tutorial 3
  • +
  • 1_k\4_imp++\lesson_6\README.md refers to Lesson 3
  • +
  • 1_k\4_imp++\lesson_7\README.md refers to Lesson 1, 6
  • +
  • 1_k\5_types\lesson_1\README.md refers to Part 4; SIMPLE
  • +
  • 1_k\5_types\lesson_2\NOTES/README.md refer to Tutorial 1
  • +
  • 1_k\5_types\lesson_3\README.md refers to Part 1; Lesson 1,2
  • +
  • 1_k\5_types\lesson_4\README.md refers to Part 1, and to Lessons 2 and 3
  • +
  • 1_k\5_types\lesson_5\README.md refers to Lessons 4, 3, 2
  • +
  • 1_k\5_types\lesson_6\README.md refers to Lesson 5; SIMPLE, KOOL, IMP++
  • +
  • 1_k\5_types\lesson_7\README.md refers to Lesson 4, 8, 9
  • +
  • 1_k\5_types\lesson_8\README.md refers to Lessons 5, 7
  • +
  • 1_k\5_types\lesson_9\README.md refers to Lessons 8, 5, 7, 4
  • +
  • +
+

1_k\4_imp++\lesson_2\README.md states "generates a term of the form +symNat(n) of sort Nat", but the representation of symbolic numbers may +have changed

+

Describe/use/explain/justify the terminology "the <k/> cell" as opposed to "the k cell".

+

Would it be a good idea to make the README files self contained, that is, +to include the entire lang.k code in them, spread over the entire README, as things +are discussed? In case we decide not to, make sure that the code snippets mentioned +in the READMEs are in perfect correspondence to the code in the actual .k definitions. +Maybe add a tag before each code snippet saying what file and what lines in that +file comes from, then we can use a script to check them to be identical.

+

1_k\5_types\lesson_4\README.md refers to polymorphism, but some may say that is not precisely +polymorphism, because the types are not universally quantified. Explain that better.

+

Modify the entire tutorial to use . or, if needed, .::Map, etc., +instead of .Map, etc.. Check for each instance specifically, because +the surrounding text may also need to be modified.

+

We sometimes use "Kompile", or "kompile", as a verb instead of "Compile", +or "compile", to indicate that we mean compilation with K. Similarly for +"Krun", or "krun", instead of "Run" or "run".

+

Add citations to:

+
    +
  • chemical abstract machine
  • +
  • logics, where the distinction between side condition and premise is explained
  • +
  • reduction semantics with evaluation contexts
  • +
+

Replace I1 +Int I2, notBool B, etc., with (I1 + I2)@INT, (not B)@Bool, +etc., when we have module qualification in place and working.

+

Explain isSort(T) for all sorts Sort, in one place, when it is first used. +Explain also that T:Sort yields a side condition isSort(T).

+

Currently all the K collections are "untyped", that is, over the sort K. +In the future we want to have parametric collections. Make sure the tutorial +is systematically changed when this happens.

+

See issue #2023 and modify pl-tutorial/1_k/2_imp/lesson_4 accordingly, if needed.

+

All definitions, and corresponding READMEs, should be changed to take advantage +of modules and module operations. Ideally, we'd like to have no code repetition +in any examples, except for demonstration purposes.

+

In the PL semantics book, define print(AExps) to have the same semantics as in +IMP++: evaluates and prints each of its arguments in order (as opposed to +first evaluate all of them and then print them---for example, if the second +argument performs a division by zero, I still want to print the first argument.)

+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/pl-tutorial/index.html b/k-distribution/pl-tutorial/index.html new file mode 100644 index 00000000000..a552e8cda6d --- /dev/null +++ b/k-distribution/pl-tutorial/index.html @@ -0,0 +1,579 @@ + + + + + + + + + + + + + + +K PL Tutorial | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K PL Tutorial

+

Here you will learn how to use the K tool to define languages by means of a series of screencast movies. It is recommended to do these in the indicated order, because K features already discussed in a previous language definition will likely not be rediscussed in latter definitions. The screencasts follow quite closely the structure of the files under the tutorial folder in the K tool distribution. If you'd rather follow the instructions there and do the tutorial exercises yourself, then go back to https://kframework.org and download the K tool, if you have not done it already. Or, you can first watch the screencasts below and then do the exercises, or do them in parallel.

+

K Overview

+

Make sure you watch the K overview video before you do the K tutorial:

+ +

Learning K

+

[34'46"] Part 1: Defining LAMBDA

+

Here you will learn how to define a very simple functional language in K and the basics of how to use the K tool. The language is a call-by-value variant of lambda calculus with builtins and mu, and its definition is based on substitution.

+ +

[37'07"] Part 2: Defining IMP

+

Here you will learn how to define a very simple, prototypical textbook C-like imperative language, called IMP, and several new features of the K tool.

+ +

[33'10"] Part 3: Defining LAMBDA++

+

Here you will learn how to define constructs which abruptly change the execution control, as well as how to define functional languages using environments and closures. LAMBDA++ extends the LAMBDA language above with a callcc construct.

+ +

[46'46"] Part 4: Defining IMP++

+

Here you will learn how to refine configurations, how to generate fresh elements, how to tag syntactic constructs and rules, how to exhaustively search the space of non-deterministic or concurrent program executions, etc. IMP++ extends the IMP language above with increment, blocks and locals, dynamic threads, input/output, and abrupt termination.

+ +

[17'03"] Part 5: Defining Type Systems

+

Here you will learn how to define various kinds of type systems following various approaches or styles using K.

+ +

[??'??"] Part 6: Miscellaneous Other K Features

+

Here you will learn a few other K features, and better understand how features that you have already seen work.

+
    +
  • [??'??"] ...
  • +
+

Learning Language Design and Semantics using K

+

[??'??"] Part 7: SIMPLE: Designing Imperative Programming Languages

+

Here you will learn how to design imperative programming languages using K. SIMPLE is an imperative language with functions, threads, pointers, exceptions, multi-dimensional arrays, etc. We first define an untyped version of SIMPLE, then a typed version. For the typed version, we define both a static and a dynamic semantics.

+ +

[??'??"] Part 8: KOOL: Designing Object-Oriented Programming Languages

+

Here woul will learn how to design object-oriented programming languages using K. KOOL is an object-oriented language that extends SIMPLE with classes and objects. We first define an untyped version of KOOL, then a typed version, with both a dynamic and a static semantics.

+ +

[??'??"] Part 9: FUN: Designing Functional Programming Languages

+

H +ere woul will learn how to design functional programming languages using K. FUN is a higher-order functional language with general let, letrec, pattern matching, references, lists, callcc, etc. We first define an untyped version of FUN, then a let-polymorphic type inferencer.

+ +

[??'??"] Part 10: LOGIK: Designing Logic Programming Languages

+

Here you will learn how to design a logic programming language using K.

+ +
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/checks/markdownErrorLocation/index.html b/k-distribution/tests/regression-new/checks/markdownErrorLocation/index.html new file mode 100644 index 00000000000..2aed99ab79b --- /dev/null +++ b/k-distribution/tests/regression-new/checks/markdownErrorLocation/index.html @@ -0,0 +1,394 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

1

+
k
// keep indentation +module MARKDOWNERRORLOCATION-SYNTAX +endmodule +
+

7

+
.a .b
9 +
+

11

+
.k .x
module MARKDOWNERRORLOCATION + imports INT +
+
{
} +
+
k
rule 21 // pandoc would think this is line 20, column 7 +
+
.y .k
endmodule // pandoc would miss this last unfinished block +
+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/imp++-llvm/imp/index.html b/k-distribution/tests/regression-new/imp++-llvm/imp/index.html new file mode 100644 index 00000000000..0c4944995cf --- /dev/null +++ b/k-distribution/tests/regression-new/imp++-llvm/imp/index.html @@ -0,0 +1,962 @@ + + + + + + + + + + + + + + +IMP++ | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

IMP++

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Abstract

+

This is the K semantic definition of the IMP++ language. +IMP++ extends the IMP language with the features listed below. We +strongly recommend you to first familiarize yourself with the IMP +language and its K definition in Tutorial 2 before proceeding.

+

Strings and concatenation of strings. Strings are useful +for the print statement, which is discussed below. For +string concatenation, we use the same + construct that we use +for addition (so we overload it).

+

Variable increment. We only add a pre-increment construct: +++x increments variable x and evaluates to the +incremented value. Variable increment makes the evaluation of +expressions have side effects, and thus makes the evaluation strategies +of the various language constructs have an influence on the set +of possible program behaviors.

+

Input and output. IMP++ adds a read() expression +construct which reads an integer number and evaluates to it, and +a variadic (i.e., it has an arbitrary number of arguments) statement +construct print(e1,e2,...,en) which evaluates its arguments +and then outputs their values. Note that the K tool allows to +connect the input and output cells to the standard input and output +buffers, this way compiling the language definition into an +interactive interpreter.

+

Abrupt termination. The halt statement simply halts +the program. The K tool shows the resulting configuration, as if the +program terminated normally. We therefore assume that an external +observer does not care whether the program terminates normally or +abruptly, same like with exit statements in conventional +programming languages like C.

+

Dynamic threads. The expression construct spawn s +starts a new concurrent thread that executes statement s, +which is expected to be a block, and evaluates immediately to a fresh +thread identifier that is also assigned to the newly created thread. +The new thread is given at creation time the environment of its +parent, so it can access all its parent's variables. This allows for +the parent thread, and the child thread to communicate; it also allows +for races and "unexpected" behaviors, so be careful. +For thread synchronization, IMP++ provides a thread join statement +construct join t;, where t evaluates to a thread +identifier, which stalls the current thread until thread t +completes its computation. For simplicity, we here assume a +sequentially consistent shared memory model. To experiment with other +memory models, see the definition of KERNELC.

+

Blocks and local variables. IMP++ allows blocks enclosed by +curly brackets. Also, IMP's global variable declaration construct is +generalized to be used anywhere as a statement, not only at the +beginning of the program. As expected, the scope of the declared +variables is from their declaration point till the end of the most +nested enclosing block.

+

What You Will Learn Here

+
    +
  • How to define a less trivial language in K, as explained above.
  • +
  • How to use the superheat and supercool +options of the K tool kompile to exhaustively explore the +non-determinism due to underspecified evaluation strategies.
  • +
  • How to use the transition option of the K tool to +exhaustively explore the non-determinism due to concurrency.
  • +
  • How to connect certain cells in the configuration to the +standard input and standard output, and thus turn the krun +tool into an interactive interpreter for the defined language.
  • +
  • How to exhaustively search for the non-deterministic behaviors +of a program using the search option of krun.
  • +
+
k
module IMP-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

IMP++ adds several syntactic constructs to IMP. Also, since the +variable declaration construct is generalized to be used anywhere a +statement can be used, not only at the beginning of the program, we +need to remove the previous global variable declaration of IMP and +instead add a variable declaration statement construct

+

We do not re-discuss the constructs which are taken over from IMP, +except when their syntax has been subtly modified (such as, for +example, the syntax of the previous "statement" assignment which +is now obtained by composing the new assignment expression, and the +new expression statement constructs); go the last lesson of +Tutorial 2 if you are interested in IMP's constructs. For execution +purposes, we tag the addition and division operations with the +addition and division tags. These attributes have +no theoretical significance, in that they do not affect the semantics +of the language in any way. They only have practical relevance, +specific to our implementation of the K tool. Specifically, we can +tell the K tool (using its superheat and supercool +options) that we want to exhaustively explore all the non-deterministic +behaviors (due to strictness) of these language constructs. For performance +reasons, by default the K tool chooses an arbitrary but fixed order to +evaluate the arguments of the strict language constructs, thus possibly +losing behaviors due to missed interleavings. This aspect was irrelevant in +IMP, because its expressions had no side effects, but it becomes relevant +in IMP++.

+

The syntax of the IMP++ constructs is self-explanatory. Note that assignment +is now an expression construct. Also, print is variadic, taking a +list of expressions as argument. It is also strict, which means that the +entire list of expressions, that is, each expression in the list, will be +evaluated. Note also that we have now defined sequential composition +of statements as a whitespace-separated list of statements, aliased with +the nonterminal Stmts, and block as such a (possibly empty) sequence +of statements surrounded by curly brackets.

+
k
syntax AExp ::= Int | String | Id + | "++" Id + | "read" "(" ")" + | "-" AExp [strict] + | "(" AExp ")" [bracket] + > AExp "/" AExp [left, strict, group(division)] + > AExp "+" AExp [left, strict] + > "spawn" Block + > Id "=" AExp [strict(2)] + syntax BExp ::= Bool + | AExp "<=" AExp [seqstrict] + | "!" BExp [strict] + | "(" BExp ")" [bracket] + > BExp "&&" BExp [left, strict(1)] + syntax Block ::= "{" Stmts "}" + syntax Stmt ::= Block + | AExp ";" [strict] + | "if" "(" BExp ")" + Block "else" Block [strict(1)] + | "while" "(" BExp ")" Block + | "int" Ids ";" + | "print" "(" AExps ")" ";" + | "halt" ";" + > "join" AExp ";" [strict] + + syntax Ids ::= List{Id,","} + syntax AExps ::= List{AExp,","} + syntax Stmts ::= List{Stmt,""} + syntax AExps ::= Ids +endmodule + + +module IMP + imports IMP-SYNTAX + imports DOMAINS +
+

Semantics

+

We next give the semantics of IMP++. We start by first defining its +configuration.

+

Configuration

+

The original configuration of IMP has been extended to include +all the various additional cells needed for IMP++. +To facilitate the semantics of threads, more specifically +to naturally give them access to their parent's variables, we prefer a +(rather conventional) split of the program state into an +environment and a store. An environment maps +variable names into locations, while a store maps locations +into values. Stores are also sometimes called states, or +heaps, or memory, in the literature. Like values, locations +can be anything. For simplicity, here we assume they are natural +numbers. Moreover, each thread has its own environment, so it knows +where all the variables that it has access to are located in the store +(that includes its locally declared variables as well as the variables +of its parent thread), and its own unique identifier. The store is +shared by all threads. For simplicity, we assume a sequentially consistent +memory model in IMP++. Note that the thread cell has multiplicity +*, meaning that there could be zero, one, or more instances of that cell +in the configuration at any given time. This multiplicity information +is important for K's configuration abstraction process: it tells +K how to complete rules which, in order to increase the modularity of the +definition, choose to not mention the entire configuration context. +The in and out cells hold the input and the output +buffers as lists of items.

+
k
configuration <T color="yellow"> + <threads color="orange"> + <thread multiplicity="*" type="Set" color="blue"> + <k color="green"> $PGM:Stmts </k> + <env color="LightSkyBlue"> .Map </env> + <id color="black"> 0 </id> + </thread> + </threads> +// <br/> + <store color="red"> .Map </store> +// <input color="magenta"> .List </input> +// <output color="Orchid"> .List </output> + <input color="magenta" stream="stdin"> .List </input> + <output color="Orchid" stream="stdout"> .List </output> + </T> +// Replace the <input/> and <output/> cells with the next two in order to +// initialize the input buffer through krun +// <input color="magenta"> $IN:List </input> +// <output color="Orchid"> .List </output> +// Replace the <input/> and <output/> cells with the next two to connect the +// input/output buffers to stdin/stdout through krun +// <input color="magenta" stream="stdin"> .List </input> +// <output color="Orchid" stream="stdout"> .List </output> +// Replace the <input/> and <output/> cells with the next two to connect the +// input/output buffers to stdin/stdout and also allow input through krun +// <input color="magenta" stream="stdin"> $IN:List </input> +// <output color="Orchid" stream="stdout"> .List </output> +
+

We can also use configuration variables to initialize +the configuration through krun. For example, we may want to +pass a few list items in the in cell when the program makes +use of read(), so that the semantics does not get stuck. +Recall from IMP that configuration variables start with a ParseError: KaTeX parse error: Expected group after '_' at position 63: …, for example, +_̲PGM) and can be initialized with any string by +krun; or course, the string should parse to a term of the +corresponding sort, otherwise errors will be generated. +Moreover, K allows you to connect list cells to the standard input or +the standard output. For example, if you add the attribute +stream="stdin" to the in cell, then krun +will prompt the user to pass input when the in cell is empty +and any semantic rule needs at least one item to be present there in +order to match. Similarly but dually, if you add the attribute +stream="stdout" to the out cell, then any item +placed into this cell by any rule will be promptly sent to the +standard output. This way, krun can be used to obtain +interactive interpreters based directly on the K semantics of the +language. For example:

+
shell
sh$ krun sum-io.imp --output none +Add numbers up to (<= 0 to quit)? 10 +Sum = 55 +Add numbers up to (<= 0 to quit)? 1000 +Sum = 500500 +Add numbers up to (<= 0 to quit)? 0 +sh$ +
+

The option --output none instructs krun to not +display the resulting configuration after the program executes. The +input/output streaming works with or without this option, although +if you don't use the option then a configuration with empty +in and out cells will be displayed after the program +is executed. You can also initialize the configuration using +configuration variables and stream the contents of the cells to +standard input/output at the same time. For example, if you use a +configuration variable in the in cell and pass contents to it +through krun, then that contents will be first consumed and +then the user will be prompted to introduce additional input if the +program's execution encounters more read() constructs.

+

The old IMP constructs

+

The semantics of the old IMP constructs is almost identical to their +semantics in the original IMP language, except for those constructs +making use of the program state and for those whose syntax has slightly +changed. Indeed, the rules for variable lookup and assignment in IMP +accessed the state cell, but that cell is not available in IMP++ +anymore. Instead, we have to use the combination of environment and store +cells. Thanks to K's implicit configuration abstraction, we do not have +to mention the thread and threads cells: these are +automatically inferred (and added by the K tool at compile time) from the +definition of the configuration above, as there is only one correct +way to complete the configuration context of these rules in order to +match the configuration declared above. In our case here, "correct way" +means that the k and env cells will be considered as +being part of the same thread cell, as opposed to each being part +of a different thread. Configuration abstraction is crucial for modularity, +because it gives us the possibility to write our definitions in a way that +may not require us to revisit existing rules when we change the configuration. +Changes in the configuration are quite frequent in practice, typically +needed in order to accommodate new language features. For example, +imagine that we initially did not have threads in IMP++. There +would be no need for the thread and threads cells in +the configuration then, the cells k and env being simply +placed at the top level in the T cell, together with the +already existing cells. Then the rules below would be exactly the +same. Thus, configuration abstraction allows you to not have to +modify your rules when you make structural changes in your language +configuration.

+

Below we list the semantics of the old IMP constructs, referring the +reader to the K semantics of IMP for their meaning. Like we tagged the +addition and the division rules above in the syntax, we also tag the lookup +and the assignment rules below (with tags lookup and +assignment), because we want to refer to them when we generate the +language model (with the kompile tool), basically to allow them to +generate (possibly non-deterministic) transitions. Indeed, these two rules, +unlike the other rules corresponding to old IMP constructs, can yield +non-deterministic behaviors when more threads are executed concurrently. +In terms of rewriting, these two rules can "compete" with each other on +some program configurations, in the sense that they can both match at the +same time and different behaviors may be obtained depending upon which of +them is chosen first.

+
k
syntax KResult ::= Int | Bool +
+

Variable lookup

+
k
rule <k> X:Id => I ...</k> + <env>... X |-> N ...</env> + <store>... N |-> I ...</store> [group(lookup)] +
+

Arithmetic constructs

+
k
rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0 + rule I1 + I2 => I1 +Int I2 + rule - I => 0 -Int I +
+

Boolean constructs

+
k
rule I1 <= I2 => I1 <=Int I2 + rule ! T => notBool T + rule true && B => B + rule false && _ => false +
+

Variable assignment

+

Note that the old IMP assignment statement X = I; is now composed of two +constructs: an assignment expression construct X = I, followed by a +semicolon ; turning the expression into a statement. The rationale behind +this syntactic restructuring has been explained in Lesson 7. Here is the +semantics of the two constructs:

+
k
rule _:Int; => .K + rule <k> X = I:Int => I ...</k> + <env>... X |-> N ...</env> + <store>... N |-> (_ => I) ...</store> [group(assignment)] +
+

Sequential composition

+

Sequential composition has been defined as a whitespace-separated syntactic +list of statements. Recall that syntactic lists are actually syntactic +sugar for cons-lists. Therefore, the following two rules eventually +sequentialize a syntactic list of statements s1 s2 ... sn.. into the +corresponding computation s1 ~> s2 ~> ... ~> sn.

+
k
rule .Stmts => .K + rule S:Stmt Ss:Stmts => S ~> Ss +
+

Conditional statement

+
k
rule if (true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+

The only thing to notice here is that the empty block has been replaced +with the block holding the explicit empty sequence. That's because in +the semantics all empty lists become explicit corresponding dots +(to avoid parsing ambiguities)

+
k
rule while (B) S => if (B) {S while (B) S} else {.Stmts} +
+

The new IMP++ constructs

+

We next discuss the semantics of the new IMP++ constructs.

+

Strings

+

First, we have to state that strings are also results. +Second, we give the semantics of IMP++ string concatenation (which +uses the already existing addition symbol + from IMP) by +reduction to the built-in string concatenation operation.

+
k
syntax KResult ::= String + rule Str1 + Str2 => Str1 +String Str2 +
+

Variable increment

+

Like variable lookup, this is also meant to be a supercool transition: we +want it to count both in the non-determinism due to strict operations above +it in the computation and in the non-determinism due to thread +interleavings. This rule also relies on K's configuration abstraction. +Without abstraction, you would have to also include the thread and +threads cells.

+
k
rule <k> ++X => I +Int 1 ...</k> + <env>... X |-> N ...</env> + <store>... N |-> (I => I +Int 1) ...</store> [group(increment)] +
+

Read

+

The read() construct evaluates to the first integer in the +input buffer, which it consumes. Note that this rule is tagged +increment. This is because we will include it in the set of +potentially non-deterministic transitions when we kompile the definition; +we want to do that because two or more threads can "compete" on +reading the next integer from the input buffer, and different choices +for the next transition can lead to different behaviors.

+
k
rule <k> read() => I ...</k> + <input> ListItem(I:Int) => .List ...</input> [group(read)] +
+

Print

+

The print statement is strict, so all its arguments are +eventually evaluated (recall that print is variadic). We +append each of its evaluated arguments, in order, to the output buffer, +and structurally discard the residual print statement with an +empty list of arguments. We only want to allow printing integers and +strings, so we define a Printable syntactic category including +only these and define the print statement to only print +Printable elements. Alternatively, we could have had two +similar rules, one for integers and one for strings. Recall that, +currently, K's lists are cons-lists, so we cannot simply rewrite the +head of a list (P) into a list (.). The first rule below is tagged, +because we want to include it in the list of transitions when we kompile; +different threads may compete on the output buffer and we want to capture +all behaviors.

+
k
syntax Printable ::= Int | String + +/* currently it is necessary to subsort Printable to AExp, + but future K should be able to infer that automatically. */ + syntax AExp ::= Printable + + context print(HOLE:AExp, _AEs:AExps); + + rule <k> print(P:Printable,AEs => AEs); ...</k> + <output>... .List => ListItem(P) </output> [group(print)] + rule print(.AExps); => .K +
+

Halt

+

The halt statement empties the computation, so the rewriting process +simply terminates as if the program terminated normally. Interestingly, once +we add threads to the language, the halt statement as defined below +will terminate the current thread only. If you want an abrupt termination +statement that halts the entire program, then you need to discard the entire +contents of the threads cell, so the entire computation abruptly +terminates the entire program, no matter how many concurrent threads it has, +because there is nothing else to rewrite.

+
k
rule <k> halt; ~> _ => .K </k> +
+

Spawn thread

+

A spawned thread is passed its parent's environment at creation time. +The spawn expression in the parent thread is immediately +replaced by the unique identifier of the newly created thread, so the +parent thread can continue its execution. We only consider a sequentially +consistent shared memory model for IMP++, but other memory models can also +be defined in K; see, for example, the definition of KERNELC. Note that +the rule below does not need to be tagged in order to make it a transition +when we kompile, because the creation of the thread itself does not interfere +with the execution of other threads. Also, note that K's configuration +abstraction is at heavy work here, in two different places. First, the +parent thread's k and env cells are wrapped within a +thread cell. Second, the child thread's k, env +and id cells are also wrapped within a thread cell. Why +that way and not putting all these four cells together within the +same thread, or even create an additional threads cell at top +holding a thread cell with the new k, env +and id? Because in the original configuration we declared +the multiplicity of the thread cell to be *, which +effectively tells the K tool that zero, one or more such cells can +co-exist in a configuration at any moment. The other cells have the +default multiplicity one, so they are not allowed to multiply. +Thus, the only way to complete the rule below in a way consistent with +the declared configuration is to wrap the first two cells in a +thread cell, and the latter two cells under the . +also in a thread cell. Once the rule applies, the spawning +thread cell will add a new thread cell next to it, which is consistent +with the declared configuration cell multiplicity. The unique identifier +of the new thread is generated using the fresh side condition.

+
k
rule <k> spawn S => !T:Int ...</k> <env> Rho </env> + (.Bag => <thread>... <k> S </k> <env> Rho </env> <id> !T </id> ...</thread>) +
+

Join thread

+

A thread who wants to join another thread T has to wait until +the computation of T becomes empty. When that happens, the +join statement is simply dissolved. The terminated thread is not removed, +because we want to allow possible other join statements to also dissolve.

+
k
rule <k> join(T); => .K ...</k> <thread>... <k> .K </k> <id>T</id> ...</thread> +
+

Blocks

+

The body statement of a block is executed normally, making sure +that the environment at the block entry point is saved in the computation, +in order to be recovered after the block body statement. This step is +necessary because blocks can declare new variables having the same +name as variables which already exist in the environment, and our +semantics of variable declarations is to update the environment map in +the declared variable with a fresh location. Thus, variables which +are shadowed lose their original binding, which is why we take a +snapshot of the environment at block entrance and place it after the +block body (see the semantics of environment recovery at the end of +this module). Note that any store updates through variables which are +not declared locally are kept at the end of the block, since the store +is not saved/restored. An alternative to this environment save/restore +approach is to actually maintain a stack of environments and to push a +new layer at block entrance and pop it at block exit. The variable +lookup/assign/increment operations then also need to change, so we do +not prefer that non-modular approach. Compilers solve this problem by +statically renaming all local variables into fresh ones, to completely +eliminate shadowing and thus environment saving/restoring. The rule +below can be structural, because what it effectively does is to take a +snapshot of the current environment; this operation is arguably not a +computational step.

+
k
rule <k> {Ss} => Ss ~> Rho ...</k> <env> Rho </env> +
+

Variable declaration

+

We allocate a fresh location for each newly declared variable and +initialize it with 0.

+
k
rule <k> int (X,Xs => Xs); ...</k> + <env> Rho => Rho[X <- !N:Int] </env> + <store>... .Map => !N |-> 0 ...</store> + rule int .Ids; => .K +
+

Auxiliary operations

+

We only have one auxiliary operation in IMP++, the environment +recovery. Its role is to discard the current environment in the +env cell and replace it with the environment that it holds. +This rule is structural: we do not want them to count as computational +steps in the transition system of a program.

+
k
rule <k> Rho => .K ...</k> <env> _ => Rho </env> +
+

If you want to avoid useless environment recovery steps and keep the size +of the computation structure smaller, then you can also add the rule

+
  rule (_:Map => .) ~> _:Map
+
+

This rule acts like a ``tail recursion'' optimization, but for blocks. */

+
k
// verification ids + syntax Id ::= "n" [token] + | "sum" [token] + | "a" [token] + | "b" [token] + | "c" [token] +endmodule +
+

On Kompilation Options

+

We are done with the IMP++ semantics. The next step is to kompile the +definition using the kompile tool, this way generating a language +model. Depending upon for what you want to use the generated language model, +you may need to kompile the definition using various options. We here discuss +these options.

+

To tell the K tool to exhaustively explore all the behaviors due to the +non-determinism of addition, division, and threads, we have to kompile +with the command:

+
shell
kompile imp.k --transition="addition division lookup assignment increment read print" +
+

As already mentioned, the syntax and rule tags play no theoretical or +foundational role in K. They are only a means to allow kompile to +refer to them in its options, like we did above. By default, kompile's +transition option is empty, because this yields the fastest language model when +executed. Transitions may slow down the execution, but they instrument +the language model to allow for formal analysis of program behaviors, even for +exhaustive analysis.

+

Theoretically, the heating/cooling rules in K are fully reversible and +unconstrained by side conditions as we showed in the semantics of IMP. +For example, the theoretical heating/cooling rules corresponding to the +strict attribute of division are the following:

+
E₁ / E₂ ⇒ E₁ ⤳ □ / E₂
+E₁ ⤳ □ / E₂ ⇒ E₁ / E₂
+E₁ / E₂ ⇒ E₂ ⤳ E₁ / □
+E₂ ⤳ E₁ / □ ⇒ E₁ / E₂
+
+

The other semantic rules apply modulo such structural rules. +For example, using heating rules we can bring a redex (a subterm which +can be reduced with semantic rules) to the front of the computation, +then reduce it, then use cooling rules to reconstruct a term over the +original syntax of the language, then heat again and +non-deterministically pick another redex, and so on and so forth +without losing any opportunities to apply semantic rules. +Nevertheless, these unrestricted heating/cooling rules may create an +immense, often unfeasibly large space of possibilities to analyze. +The --transition option implements an optimization which works +well with other implementation choices made in the current K tool. +Recall from the detailed description of the IMP language semantics that +(theoretical) reversible rules like above are restricted by default +to complementary conditional rules of the form

+
E₁ / E₂ ⇒ E₁ ⤳ □ / E₂
+   if E₁ not in KResult
+E₁ ⤳ □ / E₂ ⇒ E₁ / E₂
+   if E₁ in KResult
+E₁ / E₂ ⇒ E₂ ⤳ E₁ / □
+   if E₂ not in KResult
+E₂ ⤳ E₁ / □  ⇒ E₁ / E₂
+   if  E₂ in KResult
+
+

Therefore, our tool eagerly heats and lazily cools the computation. +In other words, heating rules apply until a redex gets placed on the +top of the computation, then some semantic rule applies and rewrites +that into a result, then a cooling rule is applied to plug the +obtained result back into its context, then another argument may be +chosen and completely heated, and so on. This leads to efficient +execution, but it may and typically does hide program behaviors. +Using the --transition option allows you to interfere with this +process and to obtain all possible non-deterministic behaviors as if +the theoretical heating/cooling rules were applied. Optimizations +of course happen under the hood, but you need not be aware of them. +Used carefully, this mechanism allows us to efficiently explore more of +the non-deterministic behaviors of a program, even all of them (like here). +For example, with the semantics of IMP++ given above, the krun +command with the --search option detects all five behaviors +of the following IMP++ program (x can be 0, 1, 2, 3, or undefined +due to division-by-zero):

+
  int x,y;
+  x = 1;
+  y = ++x / (++x / x);
+
+

Besides non-determinism due to underspecified argument evaluation +orders, which the current K tool addresses as explained above, there +is another important source of non-determinism in programming languages: +non-determinism due to concurrency/parallelism. For example, when two +or more threads are about to access the same location in the store and at +least one of these accesses is a write (i.e., an instance of the variable +assignment rule), there is a high chance that different choices for +the next transition lead to different program behaviors. While in the +theory of K all the rules count as computational steps +and hereby as transitions in the transition system associated to the +program, in practice that may yield a tremendous number of step +interleavings to consider. Most of these interleavings are behaviorally +equivalent for most purposes. For example, the fact that a thread computes +a step 8+3 ⇒ 11 is likely irrelevant for the other +threads, so one may not want to consider it as an observable transition in +the space of interleavings. Since the K tool cannot know without help which +transitions need to be explored and which do not, our approach is to +let the user say so explicitly using the transition option of +kompile.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/kprove-markdown/set-balance-spec/index.html b/k-distribution/tests/regression-new/kprove-markdown/set-balance-spec/index.html new file mode 100644 index 00000000000..1286f36d1ca --- /dev/null +++ b/k-distribution/tests/regression-new/kprove-markdown/set-balance-spec/index.html @@ -0,0 +1,434 @@ + + + + + + + + + + + + + + +Balances Module Specifications | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Balances Module Specifications

+
keep
module SET-BALANCE-SPEC + imports VERIFICATION +
+
k
ignore thie code block! +
+

total_balance tests

+
keep
claim <k> totalBalance(AID) => 50 </k> + <account> + <accountID> AID </accountID> + <freeBalance> 30 </freeBalance> + <reservedBalance> 20 </reservedBalance> + ... + </account> +
+

No Zero-Balance Accounts Exist

+

This property shows that set_balance will not result in a zero-balance attack. +TODO: Generalize to any EntryAction. +TODO: Assertions about log events.

+
discard
rule <k> set_balance(Root, WHO, FREE_BALANCE', RESERVED_BALANCE') => . ... </k> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE +Int ( FREE_BALANCE' -Int FREE_BALANCE ) +Int ( RESERVED_BALANCE' -Int RESERVED_BALANCE ) </totalIssuance> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE => FREE_BALANCE' </freeBalance> + <reservedBalance> RESERVED_BALANCE => RESERVED_BALANCE' </reservedBalance> + ... + </account> + requires #inWidth(96, TOTAL_ISSUANCE +Int (FREE_BALANCE' -Int FREE_BALANCE)) + andBool #inWidth(96, TOTAL_ISSUANCE +Int (FREE_BALANCE' -Int FREE_BALANCE) +Int (RESERVED_BALANCE' -Int RESERVED_BALANCE)) + andBool EXISTENTIAL_DEPOSIT <=Int FREE_BALANCE' + andBool EXISTENTIAL_DEPOSIT <=Int RESERVED_BALANCE' +
+
keep
claim <k> set_balance_reserved ( WHO , RESERVED_BALANCE' ) => .K ... </k> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <totalIssuance> TOTAL_ISSUANCE +Int ( FREE_BALANCE' -Int FREE_BALANCE ) => TOTAL_ISSUANCE +Int ( FREE_BALANCE' -Int FREE_BALANCE ) +Int ( RESERVED_BALANCE' -Int RESERVED_BALANCE ) </totalIssuance> + <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE' </freeBalance> + <reservedBalance> RESERVED_BALANCE => RESERVED_BALANCE' </reservedBalance> + ... + </account> + requires #inWidth(96, TOTAL_ISSUANCE +Int (FREE_BALANCE' -Int FREE_BALANCE) +Int (RESERVED_BALANCE' -Int RESERVED_BALANCE)) + andBool EXISTENTIAL_DEPOSIT <=Int RESERVED_BALANCE' +
+
keep
endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/kprove-markdown/set-balance/index.html b/k-distribution/tests/regression-new/kprove-markdown/set-balance/index.html new file mode 100644 index 00000000000..7f68db1a8b5 --- /dev/null +++ b/k-distribution/tests/regression-new/kprove-markdown/set-balance/index.html @@ -0,0 +1,1228 @@ + + + + + + + + + + + + + + +set_balance spec | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

set_balance spec

+

State Model

+
k
+module SET-BALANCE + imports INT + imports DOMAINS + imports COLLECTIONS + + configuration + <set-balance> + <k> $ACTION:Action </k> + <now> 0 </now> + <events> .List </events> + <return-value> .Result </return-value> + <call-stack> .List </call-stack> + <existentialDeposit> 0 </existentialDeposit> + <creationFee> 0 </creationFee> + <transferFee> 0 </transferFee> + <totalIssuance> 0 </totalIssuance> + <accounts> + <account multiplicity="*" type="Map"> + <accountID> .AccountId:AccountId </accountID> + <freeBalance> 0 </freeBalance> + <reservedBalance> 0 </reservedBalance> + <vestingBalance> 0 </vestingBalance> + <startingBlock> 0 </startingBlock> + <perBlock> 0 </perBlock> + <nonce> .Nonce </nonce> + <locks> .Set </locks> + </account> + </accounts> + </set-balance> +
+

Data

+
    +
  • An AccountId is an Int.
  • +
  • An Origin is an AccountId, Root, or None.
  • +
  • A Nonce is an optional Int.
  • +
  • An Event records some happenning.
  • +
+
k
syntax AccountId ::= ".AccountId" | Int + // --------------------------------------- + + syntax Origin ::= AccountId | ".Root" | ".None" + // ----------------------------------------------- + + syntax Nonce ::= ".Nonce" | Int + // ------------------------------- + + syntax Event ::= DustEvent ( Int ) + // ---------------------------------- +
+

Some predicates which help specifying behavior:

+
    +
  • #inWidth: Specify that a given number is in some bitwidth.
  • +
+
k
syntax Bool ::= #inWidth(Int, Int) [function, total] + // --------------------------------------------------------- + rule #inWidth(N, M) => 0 <=Int M andBool M <Int (2 ^Int N) +
+

Results

+

A Result is the return value of an execution step.

+
    +
  • AccountKilled indicates that the free balance goes below the existential threshold.
  • +
  • Updated indicates that an account was updated successfully.
  • +
+
k
syntax Result ::= ".Result" | "AccountKilled" | "Updated" + // --------------------------------------------------------- +
+

Public Getters

+

total_balance

+

Retrieves the total balance of an account. This includes both the free and +reserved balances.

+
k
syntax Int ::= "total_balance" "(" AccountId ")" [function, total] + // ----------------------------------------------------------------------- + rule total_balance(WHO) => free_balance(WHO) +Int reserved_balance(WHO) +
+

free_balance

+

Gets the free balance of an account.

+

Other than when this module is executing, this will never be strictly between +EXISTENTIAL_DEPOSIT and zero.

+
k
syntax Int ::= "free_balance" "(" AccountId ")" [function, total] + // ---------------------------------------------------------------------- + rule free_balance(_) => 0 [owise] + rule [[ free_balance(WHO) => FREE_BALANCE ]] + <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + ... + </account> +
+

reserved_balance

+

Gets the reserved balance of an account.

+

Other than when this module is executing, this will never be strictly between +EXISTENTIAL_DEPOSIT and zero.

+
k
syntax Int ::= "reserved_balance" "(" AccountId ")" [function, total] + // -------------------------------------------------------------------------- + rule reserved_balance(_) => 0 [owise] + rule [[ reserved_balance(WHO) => FREE_BALANCE ]] + <account> + <accountID> WHO </accountID> + <reservedBalance> FREE_BALANCE </reservedBalance> + ... + </account> +
+

can_slash

+

Determines if an account’s free balance is over the value provided. This is +often used to determine if an account has enough balance to cover a potential +slash, hence the name.

+
k
syntax Bool ::= "can_slash" "(" AccountId "," Int ")" [function, total] + // ---------------------------------------------------------------------------- + rule can_slash(_, _) => false + rule [[ can_slash(WHO, AMOUNT) => FREE_BALANCE >=Int AMOUNT ]] + <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + ... + </account> +
+

total_issuance

+

Retrieves the total outstanding amount of currency outstanding. This will +always be equal to the sum of all free and reserved balances in all active +accounts, except when the balances module is executing.

+
k
syntax Int ::= "total_issuance" [function, total] + // ------------------------------------------------------ + rule [[ total_issuance => TOTAL_ISSUANCE ]] + <totalIssuance> TOTAL_ISSUANCE </totalIssuance> +
+

issue

+

Issues currency, creating an imbalance.

+

This is not specified, since these semantics do not include the concept of an +imbalance. Without the concept of destructors and move semantics, it would be +almost impossible to use correctly.

+

burn

+

Burns currency.

+

This is not part of the semantics for the same reason burn is not.

+

Actions and Results

+

An Action is an execution step (or the result of an execution step). +An EntryAction is an Action that can be invoked externally. +A Result is considered an Action, as is an EntryAction.

+
k
syntax Action ::= Result | EntryAction + // -------------------------------------- +
+

account_exists

+
k
syntax Bool ::= "account_exists" "(" AccountId ")" [function, total] + // ------------------------------------------------------------------------- + rule account_exists(_) => false [owise] + rule [[ account_exists(WHO) => true ]] + <account> <accountID> WHO </accountID> ... </account> +
+

create_account

+
k
syntax Action ::= "create_account" "(" AccountId ")" + // ---------------------------------------------------- + rule <k> create_account(WHO) => .K ... </k> + <accounts> ( .Bag => <account> <accountID> WHO </accountID> ... </account> ) ... </accounts> +
+

set_free_balance

+
    +
  • Updates an accounts balance if the new balance is above the existential threshold.
  • +
  • Kills the account if the balance goes below the existential threshold and the reserved balance is non-zero.
  • +
  • Reaps the account if the balance goes below the existential threshold and the reserved balance is zero.
  • +
+
k
syntax Action ::= "set_free_balance" "(" AccountId "," Int ")" + // -------------------------------------------------------------- + rule <k> (.K => create_account(WHO)) ~> set_free_balance(WHO, _) ... </k> + requires notBool account_exists(WHO) + + rule [free-account-updated]: + <k> set_free_balance(WHO, BALANCE) => .K ... </k> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <account> + <accountID> WHO </accountID> + <freeBalance> _ => BALANCE </freeBalance> + ... + </account> + requires EXISTENTIAL_DEPOSIT <=Int BALANCE + + rule [free-account-killed]: + <k> set_free_balance(WHO, BALANCE) => .K ... </k> + <events> ... (.List => ListItem(DustEvent(FREE_BALANCE))) </events> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int BALANCE </totalIssuance> + <account> + <accountID> WHO </accountID> + <nonce> _ => .Nonce </nonce> + <freeBalance> FREE_BALANCE => 0 </freeBalance> + <reservedBalance> RESERVED_BALANCE </reservedBalance> + ... + </account> + requires BALANCE <Int EXISTENTIAL_DEPOSIT + andBool 0 <Int RESERVED_BALANCE + + rule [free-account-reaped]: + <k> set_free_balance(WHO, BALANCE) => .K ... </k> + <events> ... (.List => ListItem(DustEvent(FREE_BALANCE))) </events> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int BALANCE </totalIssuance> + <accounts> + ( <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + <reservedBalance> 0 </reservedBalance> + ... + </account> + => .Bag + ) + ... + </accounts> + requires BALANCE <Int EXISTENTIAL_DEPOSIT +
+

set_reserved_balance

+
    +
  • Updates an accounts balance if the new balance is above the existential threshold.
  • +
  • Kills the account if the balance goes below the existential threshold and the free balance is non-zero.
  • +
  • Reaps the account if the balance goes below the existential threshold and the free balance is zero.
  • +
+
k
syntax Action ::= "set_reserved_balance" "(" AccountId "," Int ")" + // ------------------------------------------------------------------ + rule <k> (.K => create_account(WHO)) ~> set_reserved_balance(WHO, _) ... </k> + requires notBool account_exists(WHO) + + rule [reserved-account-updated]: + <k> set_reserved_balance(WHO, BALANCE) => .K ... </k> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <account> + <accountID> WHO </accountID> + <reservedBalance> _ => BALANCE </reservedBalance> + ... + </account> + requires EXISTENTIAL_DEPOSIT <=Int BALANCE + + rule [reserved-account-killed]: + <k> set_reserved_balance(WHO, BALANCE) => .K ... </k> + <events> ... (.List => ListItem(DustEvent(RESERVED_BALANCE))) </events> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int BALANCE </totalIssuance> + <account> + <accountID> WHO </accountID> + <nonce> _ => .Nonce </nonce> + <freeBalance> FREE_BALANCE </freeBalance> + <reservedBalance> RESERVED_BALANCE => 0 </reservedBalance> + ... + </account> + requires BALANCE <Int EXISTENTIAL_DEPOSIT + andBool 0 <Int FREE_BALANCE + + rule [reserved-account-reaped]: + <k> set_reserved_balance(WHO, BALANCE) => .K ... </k> + <events> ... (.List => ListItem(DustEvent(RESERVED_BALANCE))) </events> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int BALANCE </totalIssuance> + <accounts> + ( <account> + <accountID> WHO </accountID> + <freeBalance> 0 </freeBalance> + <reservedBalance> RESERVED_BALANCE </reservedBalance> + ... + </account> + => .Bag + ) + ... + </accounts> + requires BALANCE <Int EXISTENTIAL_DEPOSIT +
+

set_balance

+
    +
  • Sets the new free balance
  • +
  • Creates suitible imbalances (both positive and negative).
  • +
  • Calls set_free_balance with the new free balance.
  • +
  • Calls set_reserved_balance with the new reserved balance.
  • +
+
k
syntax EntryAction ::= "set_balance" "(" AccountId "," AccountId "," Int "," Int ")" + // ------------------------------------------------------------------------------------ + rule [balance-set]: + <k> set_balance(_, WHO, FREE_BALANCE, RESERVED_BALANCE) + => set_balance_free(WHO, FREE_BALANCE) + ~> set_balance_reserved(WHO, RESERVED_BALANCE) + ... + </k> +
+

Helpers for calling set_free_balance and set_reserved_balance.

+
    +
  • Sets the new free balance
  • +
  • Emits an imbalance event
  • +
  • Helper function for set_balance
  • +
+
k
syntax Action ::= "set_balance_free" "(" AccountId "," Int ")" + syntax Action ::= "set_balance_reserved" "(" AccountId "," Int ")" + // ------------------------------------------------------------------ + rule [balance-set-free]: + <k> set_balance_free(WHO, FREE_BALANCE') => set_free_balance(WHO, FREE_BALANCE') ... </k> + <totalIssuance> ISSUANCE => ISSUANCE +Int (FREE_BALANCE' -Int free_balance(WHO)) </totalIssuance> + requires #inWidth(96, ISSUANCE +Int (FREE_BALANCE' -Int free_balance(WHO))) + + rule [balance-set-reserved]: + <k> set_balance_reserved(WHO, RESERVED_BALANCE') => set_reserved_balance(WHO, RESERVED_BALANCE') ... </k> + <totalIssuance> ISSUANCE => ISSUANCE +Int (RESERVED_BALANCE' -Int reserved_balance(WHO)) </totalIssuance> + requires #inWidth(96, ISSUANCE +Int (RESERVED_BALANCE' -Int reserved_balance(WHO))) +
+

transfer_raw

+

Transfer some liquid free balance to another account.

+

transfer will set the FreeBalance of the sender and receiver. +It will decrease the total issuance of the system by the TransferFee. +If the sender's account is below the existential deposit as a result +of the transfer, the account will be reaped.

+

The dispatch origin for this call must be Signed by the transactor.

+
k
syntax ExistenceRequirement ::= "AllowDeath" + | "KeepAlive" + + syntax EntryAction ::= transfer(Origin, AccountId, Int) + | "transfer_keep_alive" "(" Origin "," AccountId "," Int ")" + // --------------------------------------------------------------------------------- + + syntax Action ::= rawTransfer(AccountId, AccountId, Int, ExistenceRequirement) + // ------------------------------------------------------------------------------ + rule [transfer-to-raw]: + <k> transfer(ORIGIN:AccountId, DESTINATION, AMOUNT) + => rawTransfer(ORIGIN, DESTINATION, AMOUNT, AllowDeath) + ... + </k> + + rule [transfer-keep-alive]: + <k> transfer_keep_alive(ORIGIN:AccountId, DESTINATION, AMOUNT) + => rawTransfer(ORIGIN, DESTINATION, AMOUNT, KeepAlive) + ... + </k> + + rule <k> (.K => create_account(DESTINATION)) ~> rawTransfer(ORIGIN, DESTINATION, _, _) ... </k> + requires account_exists(ORIGIN) + andBool notBool account_exists(DESTINATION) + + rule [transfer-self]: + <k> rawTransfer(ORIGIN:AccountId, ORIGIN, _, _) => .K ... </k> + requires account_exists(ORIGIN) + + rule [transfer-existing-account]: + <k> rawTransfer(ORIGIN, DESTINATION, AMOUNT, EXISTENCE_REQUIREMENT) + => set_free_balance(ORIGIN, SOURCE_BALANCE -Int AMOUNT -Int FEE) + ~> set_free_balance(DESTINATION, DESTINATION_BALANCE +Int AMOUNT) + ... + </k> + <totalIssuance> ISSUANCE => ISSUANCE -Int FEE </totalIssuance> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <transferFee> FEE </transferFee> + <accounts> + <account> + <accountID> ORIGIN </accountID> + <freeBalance> SOURCE_BALANCE </freeBalance> + ... + </account> + <account> + <accountID> DESTINATION </accountID> + <freeBalance> DESTINATION_BALANCE </freeBalance> + ... + </account> + </accounts> + requires ORIGIN =/=K DESTINATION + andBool DESTINATION_BALANCE >Int 0 + andBool SOURCE_BALANCE >=Int (AMOUNT +Int FEE) + andBool ensure_can_withdraw(ORIGIN, Transfer, SOURCE_BALANCE -Int AMOUNT -Int FEE) + andBool (EXISTENCE_REQUIREMENT ==K AllowDeath orBool SOURCE_BALANCE -Int AMOUNT -Int FEE >Int EXISTENTIAL_DEPOSIT) + + rule [transfer-create-account]: + <k> rawTransfer(ORIGIN:AccountId, DESTINATION, AMOUNT, EXISTENCE_REQUIREMENT) + => set_free_balance(ORIGIN, SOURCE_BALANCE -Int AMOUNT -Int CREATION_FEE) + ~> set_free_balance(DESTINATION, AMOUNT) + ... + </k> + <totalIssuance> ISSUANCE => ISSUANCE -Int CREATION_FEE </totalIssuance> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + <creationFee> CREATION_FEE </creationFee> + <accounts> + <account> + <accountID> ORIGIN </accountID> + <freeBalance> SOURCE_BALANCE </freeBalance> + ... + </account> + <account> + <accountID> DESTINATION </accountID> + <freeBalance> 0 </freeBalance> + <reservedBalance> 0 </reservedBalance> + ... + </account> + ... + </accounts> + requires ORIGIN =/=K DESTINATION + andBool SOURCE_BALANCE >=Int (AMOUNT +Int CREATION_FEE) + andBool EXISTENTIAL_DEPOSIT <=Int AMOUNT + andBool ensure_can_withdraw(ORIGIN, Transfer, SOURCE_BALANCE -Int AMOUNT -Int CREATION_FEE) + andBool (EXISTENCE_REQUIREMENT ==K AllowDeath orBool SOURCE_BALANCE -Int AMOUNT -Int CREATION_FEE >=Int EXISTENTIAL_DEPOSIT) +
+

force_transfer

+

Force a transfer from any account to any other account. This can only be done by root.

+
k
syntax EntryAction ::= "force_transfer" "(" Origin "," AccountId "," AccountId "," Int ")" + // ------------------------------------------------------------------------------------------ + rule [force-transfer]: + <k> force_transfer(.Root, SOURCE, DESTINATION, AMOUNT) => transfer(SOURCE, DESTINATION, AMOUNT) ... </k> +
+

withdraw

+

Withdraw funds from an account.

+
k
syntax EntryAction ::= withdraw(AccountId, Int, WithdrawReason, ExistenceRequirement) + // ------------------------------------------------------------------------------------- + rule [withdraw]: // K really needs where clauses + <k> withdraw(WHO, AMOUNT, REASON, EXISTENCE_REQUIREMENT) + => withdrawInner(WHO, AMOUNT, AMOUNT -Int free_balance(WHO), REASON, EXISTENCE_REQUIREMENT) + ... + </k> + + syntax Action ::= withdrawInner(AccountId, Int, Int, WithdrawReason, ExistenceRequirement) + // ------------------------------------------------------------------------------------------ + rule [withdrawInner]: + <k> withdrawInner(WHO, AMOUNT, NEW_BALANCE, REASON, EXISTENCE_REQUIREMENT) + => set_free_balance(WHO, NEW_BALANCE) + ... + </k> + <totalIssuance> ISSUANCE => ISSUANCE -Int AMOUNT </totalIssuance> + <existentialDeposit> EXISTENTIAL_DEPOSIT </existentialDeposit> + requires NEW_BALANCE >=Int 0 + andBool ensure_can_withdraw(WHO, REASON, NEW_BALANCE) + andBool (EXISTENCE_REQUIREMENT ==K AllowDeath orBool NEW_BALANCE >=Int EXISTENTIAL_DEPOSIT) +
+

Call Frames

+

Function call and return.

+
k
syntax CallFrame ::= frame(continuation: K) + syntax Action ::= call ( Action ) + | return ( Result ) + // ----------------------------------- + rule [call]: + <k> call(Action) ~> CONT => Action </k> + <call-stack> .List => ListItem(frame(CONT)) ... </call-stack> + + rule [return]: + <k> return(R) ~> _ => CONT </k> + <return-value> _ => R </return-value> + <call-stack> ListItem(frame(CONT)) => .List ... </call-stack> + + rule [return-unit]: + <k> .K => CONT </k> + <return-value> _ => .Result </return-value> + <call-stack> ListItem(frame(CONT)) => .List ... </call-stack> +
+

Ensure that a given amount can be withdrawn from an account.

+

FIXME: we do not account for multiple withdrawl reasons, due to K’s +lacking polymorphism.

+
k
syntax WithdrawReason ::= "TransactionPayment" + | "Transfer" + | "Reserve" + | "Fee" + | "Tip" + // ------------------------------- + + + syntax Bool ::= "ensure_can_withdraw" "(" AccountId "," WithdrawReason "," Int ")" [function, total] + // --------------------------------------------------------------------------------------------------------- + rule ensure_can_withdraw(_, _, _) => true [owise] + + rule [[ ensure_can_withdraw(WHO, Transfer #Or Reserve, BALANCE) => false ]] + <account> + <accountID> WHO </accountID> + <vestingBalance> VESTING_BALANCE </vestingBalance> + ... + </account> + requires VESTING_BALANCE <Int BALANCE + + rule [[ ensure_can_withdraw(WHO, REASON, BALANCE) => false ]] + <now> NOW </now> + <account> + <accountID> WHO </accountID> + <locks> ACCOUNT_LOCKS </locks> + ... + </account> + requires activeLocks(ACCOUNT_LOCKS, NOW, REASON, BALANCE) + + syntax LockID ::= "Election" + | "Staking" + | "Democracy" + | "Phragmen" + // ---------------------------- + + syntax AccountLock ::= lock ( id: LockID, until: Int, amount: Int, reasons: Set ) + // --------------------------------------------------------------------------------- + + syntax Bool ::= activeLock (AccountLock, Int, WithdrawReason, Int ) [function] + | activeLocks(Set, Int, WithdrawReason, Int ) [function] + | activeLocks(List, Int, WithdrawReason, Int, Bool) [function, klabel(activeLocksAux)] + // ----------------------------------------------------------------------------------------------------------- + rule activeLock(AL, NOW, REASON, BALANCE) => NOW <Int until(AL) andBool BALANCE <Int amount(AL) andBool REASON in reasons(AL) + + rule activeLocks(ALS, NOW, REASON, BALANCE) => activeLocks(Set2List(ALS), NOW, REASON, BALANCE, false) + + rule activeLocks(.List, _, _, _, RESULT) => RESULT + rule activeLocks((ListItem(AL) => .List) _, NOW, REASON, BALANCE, RESULT => RESULT orBool activeLock(AL, NOW, REASON, BALANCE)) +
+

Slashing and repatriation of reserved balances

+

The first of these is also used by slash.

+
    +
  • slash_reserved
  • +
  • repatriate_reserved
  • +
+
k
syntax Action ::= "slash_reserved" "(" AccountId "," Int ")" + // ------------------------------------------------------------ + rule [slash-reserved]: + <k> slash_reserved(ACCOUNT, AMOUNT) + => set_reserved_balance(ACCOUNT, maxInt(0, RESERVED_BALANCE -Int AMOUNT)) + ... + </k> + <accounts> + <account> + <accountID> ACCOUNT </accountID> + <reservedBalance> RESERVED_BALANCE </reservedBalance> + ... + </account> + </accounts> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int minInt(RESERVED_BALANCE, AMOUNT) </totalIssuance> + + syntax Action ::= "repatriate_reserved" "(" AccountId "," AccountId "," Int ")" + // ------------------------------------------------------------------------------- + rule [repatriate-reserved]: + <k> repatriate_reserved(SLASHED, BENEFICIARY, AMOUNT) + => set_free_balance(BENEFICIARY, BENEFICIARY_FREE_BALANCE +Int minInt(SLASHED_RESERVED_BALANCE, AMOUNT)) + ~> set_reserved_balance(SLASHED, SLASHED_RESERVED_BALANCE -Int minInt(SLASHED_RESERVED_BALANCE, AMOUNT)) + ... + </k> + <accounts> + <account> + <accountID> SLASHED </accountID> + <reservedBalance> SLASHED_RESERVED_BALANCE </reservedBalance> + ... + </account> + <account> + <accountID> BENEFICIARY </accountID> + <reservedBalance> BENEFICIARY_RESERVED_BALANCE </reservedBalance> + <freeBalance> BENEFICIARY_FREE_BALANCE </freeBalance> + ... + </account> + </accounts> + requires BENEFICIARY_FREE_BALANCE +Int BENEFICIARY_RESERVED_BALANCE >Int 0 + andBool SLASHED =/=K BENEFICIARY + + rule [repatriate-reserved-same-account]: + <k> repatriate_reserved(SLASHED, SLASHED, AMOUNT) => unreserve(SLASHED, AMOUNT) ... </k> +
+

Slashing

+

Used to punish a node for violating the protocol.

+
k
syntax EntryAction ::= slash ( AccountId , Int ) + // ------------------------------------------------ + rule [slash]: + <k> slash(ACCOUNT, AMOUNT) => set_free_balance(ACCOUNT, FREE_BALANCE -Int AMOUNT) ... </k> + <accounts> + <account> + <accountID> ACCOUNT </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + ... + </account> + </accounts> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int AMOUNT </totalIssuance> + requires FREE_BALANCE >=Int AMOUNT + + rule [slash-empty-free]: + <k> slash(ACCOUNT, AMOUNT) + => set_free_balance(ACCOUNT, 0) + ~> slash_reserved(ACCOUNT, AMOUNT -Int FREE_BALANCE) + ... + </k> + <accounts> + <account> + <accountID> ACCOUNT </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + ... + </account> + </accounts> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE -Int FREE_BALANCE </totalIssuance> + requires FREE_BALANCE <Int AMOUNT +
+

Reservation and unreservation of balances

+

Used to move balance from free to reserved and visa versa.

+
k
syntax Action ::= reserve ( AccountId , Int ) + // --------------------------------------------- + rule [reserve]: + <k> reserve(ACCOUNT, AMOUNT) + => set_reserved_balance(ACCOUNT, FREE_BALANCE +Int AMOUNT) + ~> set_free_balance(ACCOUNT, FREE_BALANCE -Int AMOUNT) + ... + </k> + <accounts> + <account> + <accountID> ACCOUNT </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + <reservedBalance> _ </reservedBalance> + ... + </account> + </accounts> + requires FREE_BALANCE >=Int AMOUNT + andBool ensure_can_withdraw(ACCOUNT, Reserve, FREE_BALANCE -Int AMOUNT) + + syntax Action ::= unreserve ( AccountId , Int ) + // ----------------------------------------------- + rule [unreserve]: + <k> unreserve(ACCOUNT, AMOUNT) + => set_free_balance(ACCOUNT, FREE_BALANCE +Int minInt(AMOUNT, RESERVED_BALANCE)) + ~> set_reserved_balance(ACCOUNT, FREE_BALANCE -Int minInt(AMOUNT, RESERVED_BALANCE)) + ... + </k> + <accounts> + <account> + <accountID> ACCOUNT </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + <reservedBalance> RESERVED_BALANCE </reservedBalance> + ... + </account> + </accounts> +
+

Vesting

+
    +
  • locked_at ― amount currently locked
  • +
  • vesting_balance ― get the balance that cannot currently be withdrawn.
  • +
+
k
syntax Int ::= "locked_at" "(" AccountId ")" [function, total] + // ------------------------------------------------------------------- + rule [[ locked_at(WHO) => maxInt(0, VESTING_BALANCE -Int (PER_BLOCK *Int maxInt(0, NOW -Int STARTING_BLOCK))) ]] + <now> NOW </now> + <account> + <accountID> WHO </accountID> + <vestingBalance> VESTING_BALANCE </vestingBalance> + <startingBlock> STARTING_BLOCK </startingBlock> + <perBlock> PER_BLOCK </perBlock> + ... + </account> + + syntax Int ::= "vesting_balance" "(" AccountId ")" [function, total] + // ------------------------------------------------------------------------- + rule [[ vesting_balance(WHO) => minInt(FREE_BALANCE, locked_at(WHO)) ]] + <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE </freeBalance> + ... + </account> +
+

Deposits

+

Deposit into an existing account.

+
k
syntax EntryAction ::= "deposit_into_existing" "(" AccountId "," Int ")" + // ------------------------------------------------------------------------ + rule [deposit-into-existing]: + <k> deposit_into_existing(WHO, AMOUNT) => .K ... </k> + <totalIssuance> TOTAL_ISSUANCE => TOTAL_ISSUANCE +Int AMOUNT </totalIssuance> + <account> + <accountID> WHO </accountID> + <freeBalance> FREE_BALANCE => FREE_BALANCE +Int AMOUNT </freeBalance> + ... + </account> + requires FREE_BALANCE >Int 0 +
+

End of module

+
k
endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/markdownSelectors/a-spec/index.html b/k-distribution/tests/regression-new/markdownSelectors/a-spec/index.html new file mode 100644 index 00000000000..ad1faded7ce --- /dev/null +++ b/k-distribution/tests/regression-new/markdownSelectors/a-spec/index.html @@ -0,0 +1,382 @@ + + + + + + + + + + + + + + +K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+
k
requires "test.md" + +module A-SPEC + +endmodule +
+
+
+ + +
+ +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/markdownSelectors/test/index.html b/k-distribution/tests/regression-new/markdownSelectors/test/index.html new file mode 100644 index 00000000000..29aef8e7f05 --- /dev/null +++ b/k-distribution/tests/regression-new/markdownSelectors/test/index.html @@ -0,0 +1,408 @@ + + + + + + + + + + + + + + +Test | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Test

+
k
module TEST-SYNTAX + imports INT +endmodule +module TEST + imports INT +
+
.k
configuration <k> $PGM:K </k> <r> 0 </r> +
+
.discard
rule <r> 0 => 1 </r> +
+
.keep
rule <k> 0 => 1 </k> +
+
.k .keep
rule <k> 1 => 2 </k> +
+
.k .discard .numberLines
rule <k> 2 => 3 </k> +
+
.keep .discard
rule <r> 0 => 1 </r> +
+
k
endmodule +
+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/index.html new file mode 100644 index 00000000000..d7c3783eb06 --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/index.html @@ -0,0 +1,1710 @@ + + + + + + + + + + + + + + +SIMPLE — Untyped | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

SIMPLE — Untyped

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of the untyped SIMPLE language. +SIMPLE is intended to be a pedagogical and research language that captures +the essence of the imperative programming paradigm, extended with several +features often encountered in imperative programming languages. +A program consists of a set of global variable declarations and +function definitions. Like in C, function definitions cannot be +nested and each program must have one function called main, +which is invoked when the program is executed. To make it more +interesting and to highlight some of K's strengths, SIMPLE includes +the following features in addition to the conventional imperative +expression and statement constructs:

+
    +
  • +

    Multidimensional arrays and array references. An array evaluates +to an array reference, which is a special value holding a location (where +the elements of the array start) together with the size of the array; +the elements of the array can be array references themselves (particularly +when the array is multi-dimensional). Array references are ordinary values, +so they can be assigned to variables and passed/received by functions.

    +
  • +
  • +

    Functions and function values. Functions can have zero or +more parameters and can return abruptly using a return statement. +SIMPLE follows a call-by-value parameter passing style, with static scoping. +Function names evaluate to function abstractions, which hereby become ordinary +values in the language, same like the array references.

    +
  • +
  • +

    Blocks with locals. SIMPLE variables can be declared +anywhere, their scope being from the place where they are declared +until the end of the most nested enclosing block.

    +
  • +
  • +

    Input/Output. The expression read() evaluates to the +next value in the input buffer, and the statement write(e) +evaluates e and outputs its value to the output buffer. The +input and output buffers are lists of values.

    +
  • +
  • +

    Exceptions. SIMPLE has parametric exceptions (the value thrown as +an exception can be caught and bound).

    +
  • +
  • +

    Concurrency via dynamic thread creation/termination and +synchronization. One can spawn a thread to execute any statement. +The spawned thread shares with its parent its environment at creation time. +Threads can be synchronized via a join command which blocks the current thread +until the joined thread completes, via re-entrant locks which can be acquired +and released, as well as through rendezvous commands.

    +
  • +
+

Like in many other languages, some of SIMPLE's constructs can be +desugared into a smaller set of basic constructs. We do that at the end +of the syntax module, and then we only give semantics to the core constructs.

+

Note: This definition is commented slightly more than others, because it is +intended to be one of the first non-trivial definitions that the new +user of K sees. We recommend the beginner user to first check the +language definitions discussed in the K tutorial.

+
k
module SIMPLE-UNTYPED-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

We start by defining the SIMPLE syntax. The language constructs discussed +above have the expected syntax and evaluation strategies. Recall that in K +we annotate the syntax with appropriate strictness attributes, thus giving +each language construct the desired evaluation strategy.

+

Identifiers

+

Recall from the K tutorial that identifiers are builtin and come under the +syntactic category Id. The special identifier for the function +main belongs to all programs, and plays a special role in the semantics, +so we declare it explicitly. This would not be necessary if the identifiers +were all included automatically in semantic definitions, but that is not +possible because of parsing reasons (e.g., K variables used to match +concrete identifiers would then be ambiguously parsed as identifiers). They +are only included in the parser generated to parse programs (and used by the +kast tool). Consequently, we have to explicitly declare all the +concrete identifiers that play a special role in the semantics, like +main below.

+
k
syntax Id ::= "main" [token] +
+

Declarations

+

There are two types of declarations: for variables (including arrays) and +for functions. We are going to allow declarations of the form +var x=10, a[10,10], y=23;, which is why we allow the var +keyword to take a list of expressions. The non-terminals used in the two +productions below are defined shortly.

+
k
syntax Stmt ::= "var" Exps ";" + | "function" Id "(" Ids ")" Block +
+

Expressions

+

The expression constructs below are standard. Increment (++) takes +an expression rather than a variable because it can also increment an array +element. Recall that the syntax we define in K is what we call the syntax +of the semantics: while powerful enough to define non-trivial syntaxes +(thanks to the underlying SDF technology that we use), we typically refrain +from defining precise syntaxes, that is, ones which accept precisely the +well-formed programs (that would not be possible anyway in general). That job +is deferred to type systems, which can also be defined in K. In other words, +we are not making any effort to guarantee syntactically that only variables +or array elements are passed to the increment construct, we allow any +expression. Nevertheless, we will only give semantics to those, so expressions +of the form ++5, which parse (but which will be rejected by our type +system in the typed version of SIMPLE later), will get stuck when executed. +Arrays can be multidimensional and can hold other arrays, so their +lookup operation takes a list of expressions as argument and applies to an +expression (which can in particular be another array lookup), respectively. +The construct sizeOf gives the size of an array in number of elements +of its first dimension. Note that almost all constructs are strict. The only +constructs which are not strict are the increment (since its first argument +gets updated, so it cannot be evaluated), the input read which takes no +arguments so strictness is irrelevant for it, the logical and and or constructs +which are short-circuited, the thread spawning construct which creates a new +thread executing the argument expression and return its unique identifier to +the creating thread (so it cannot just evaluate its argument in place), and the +assignment which is only strict in its second argument (for the same reason as +the increment).

+
k
syntax Exp ::= Int | Bool | String | Id + | "(" Exp ")" [bracket] + | "++" Exp + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] +
+

We also need comma-separated lists of identifiers and of expressions. +Moreover, we want them to be strict, that is, to evaluate to lists of results +whenever requested (e.g., when they appear as strict arguments of +the constructs above).

+
k
syntax Ids ::= List{Id,","} [overload(Exps)] + syntax Exps ::= List{Exp,","} [overload(Exps), strict] // automatically hybrid now + syntax Exps ::= Ids + syntax Val + syntax Vals ::= List{Val,","} [overload(Exps)] + syntax Bottom + syntax Bottoms ::= List{Bottom,","} [overload(Exps)] + syntax Ids ::= Bottoms +
+

Statements

+

Most of the statement constructs are standard for imperative languages. +We syntactically distinguish between empty and non-empty blocks, because we +chose Stmts not to be a (;-separated) list of +Stmt. Variables can be declared anywhere inside a block, their scope +ending with the block. Expressions are allowed to be used for their side +effects only (followed by a semicolon ;). Functions are allowed +to abruptly return. The exceptions are parametric, i.e., one can throw a value +which is bound to the variable declared by catch. Threads can be +dynamically created and terminated, and can synchronize with join, +acquire, release and rendezvous. Note that the +strictness attributes obey the intended evaluation strategy of the various +constructs. In particular, the if-then-else construct is strict only in its +first argument (the if-then construct will be desugared into if-then-else), +while the loop constructs are not strict in any arguments. The print +statement construct is variadic, that is, it takes an arbitrary number of +arguments.

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" [macro] + | "print" "(" Exps ")" ";" [strict] +// NOTE: print strict allows non-deterministic evaluation of its arguments +// Either keep like this but document, or otherwise make Exps seqstrict. +// Of define and use a different expression list here, which is seqstrict. + | "try" Block "catch" "(" Id ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] +
+

The reason we allow Stmts as the first argument of for +instead of Stmt is because we want to allow more than one statement +to be executed when the loop is initialized. Also, as seens shorly, macros +may expand one statement into more statements; for example, an initialized +variable declaration statement var x=0; desugars into two statements, +namely var x; x=0;, so if we use Stmt instead of Stmts +in the production of for above then we risk that the macro expansion +of statement var x=0; happens before the macro expansion of for, +also shown below, in which case the latter would not apply anymore because +of syntactic mismatch.

+
k
syntax Stmt ::= Stmt Stmt [right] + +// I wish I were able to write the following instead, but confuses the parser. +// +// syntax Stmts ::= List{Stmt,""} +// syntax Top ::= Stmt | "function" Id "(" Ids ")" Block +// syntax Pgm ::= List{Top,""} +// +// With that, I could have also eliminated the empty block +
+

Desugared Syntax

+

This part desugars some of SIMPLE's language constructs into core ones. +We only want to give semantics to core constructs, so we get rid of the +derived ones before we start the semantics. All desugaring macros below are +straightforward.

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}} + rule for(Start Cond; Step) {} => {Start while (Cond) {Step;}} + rule var E1:Exp, E2:Exp, Es:Exps; => var E1; var E2, Es; + rule var X:Id = E; => var X; X = E; +
+

For the semantics, we can therefore assume from now on that each +conditional has both branches, that there are only while loops, and +that each variable is declared alone and without any initialization as part of +the declaration.

+
k
endmodule + + +module SIMPLE-UNTYPED + imports SIMPLE-UNTYPED-SYNTAX + imports DOMAINS +
+

Basic Semantic Infrastructure

+

Before one starts adding semantic rules to a K definition, one needs to +define the basic semantic infrastructure consisting of definitions for +values and configuration. As discussed in the definitions +in the K tutorial, the values are needed to know when to stop applying +the heating rules and when to start applying the cooling rules corresponding +to strictness or context declarations. The configuration serves as a backbone +for the process of configuration abstraction which allows users to only +mention the relevant cells in each semantic rule, the rest of the configuration +context being inferred automatically. Although in some cases the configuration +could be automatically inferred from the rules, we believe that it is very +useful for language designers/semanticists to actually think of and design +their configuration explicitly, so the current implementation of K requires +one to define it.

+

Values

+

We here define the values of the language that the various fragments of +programs evaluate to. First, integers and Booleans are values. As discussed, +arrays evaluate to special array reference values holding (1) a location from +where the array's elements are contiguously allocated in the store, and +(2) the size of the array. Functions evaluate to function values as +λ-abstractions (we do not need to evaluate functions to closures +because each function is executed in the fixed global environment and +function definitions cannot be nested). Like in IMP and other +languages, we finally tell the tool that values are K results.

+
k
syntax Val ::= Int | Bool | String + | array(Int,Int) + | lambda(Ids,Stmt) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax Val ::= Bottom + syntax Vals ::= Bottoms + syntax KResult ::= Val + | Vals // TODO: should not need this +
+

The inclusion of values in expressions follows the methodology of +syntactic definitions (like, e.g., in SOS): extend the syntax of the language +to encompass all values and additional constructs needed to give semantics. +In addition to that, it allows us to write the semantic rules using the +original syntax of the language, and to parse them with the same (now extended +with additional values) parser. If writing the semantics directly on the K +AST, using the associated labels instead of the syntactic constructs, then one +would not need to include values in expressions.

+

Configuration

+

The K configuration of SIMPLE consists of a top level cell, T, +holding a threads cell, a global environment map cell genv +mapping the global variables and function names to their locations, a shared +store map cell store mapping each location to some value, a set cell +busy holding the locks which have been acquired but not yet released +by threads, a set cell terminated holding the unique identifiers of +the threads which already terminated (needed for join), input +and output list cells, and a nextLoc cell holding a natural +number indicating the next available location. Unlike in the small languages +in the K tutorial, where we used the fresh predicate to generate fresh +locations, in larger languages, like SIMPLE, we prefer to explicitly manage +memory. The location counter in nextLoc models an actual physical +location in the store; for simplicity, we assume arbitrarily large memory and +no garbage collection. The threads cell contains one thread +cell for each existing thread in the program. Note that the thread cell has +multiplicity *, which means that at any given moment there could be zero, +one or more thread cells. Each thread cell contains a +computation cell k, a control cell holding the various +control structures needed to jump to certain points of interest in the program +execution, a local environment map cell env mapping the thread local +variables to locations in the store, and finally a holds map cell +indicating what locks have been acquired by the thread and not released so far +and how many times (SIMPLE's locks are re-entrant). The control cell +currently contains only two subcells, a function stack fstack which +is a list and an exception stack xstack which is also a list. +One can add more control structures in the control cell, such as a +stack for break/continue of loops, etc., if the language is extended with more +control-changing constructs. Note that all cells except for k are +also initialized, in that they contain a ground term of their corresponding +sort. The k cell is initialized with the program that will be passed +to the K tool, as indicated by the $PGM variable, followed by the +execute task (defined shortly).

+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + + syntax ControlCell + syntax ControlCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" type="Map" color="yellow"> + <id color="pink"> -1 </id> + <k color="green"> $PGM:Stmt ~> execute </k> + //<br/> // TODO(KORE): support latex annotations #1799 + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + </control> + //<br/> // TODO(KORE): support latex annotations #1799 + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + </thread> + </threads> + //<br/> // TODO(KORE): support latex annotations #1799 + <genv color="pink"> .Map </genv> + <store color="white"> .Map </store> + <busy color="cyan"> .Set </busy> + <terminated color="red"> .Set </terminated> + //<br/> // TODO(KORE): support latex annotations #1799 + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + </T> +
+

Declarations and Initialization

+

We start by defining the semantics of declarations (for variables, +arrays and functions).

+

Variable Declaration

+

The SIMPLE syntax was desugared above so that each variable is +declared alone and its initialization is done as a separate statement. +The semantic rule below matches resulting variable declarations of the +form var X; on top of the k cell +(indeed, note that the k cell is complete, or round, to the +left, and is torn, or ruptured, to the right), allocates a fresh +location L in the store which is initialized with a special value + (indeed, the unit ., or nothing, is matched anywhere +in the map ‒note the tears at both sides‒ and replaced with the +mapping L ↦ ⊥), and binds X to L in the local +environment shadowing previous declarations of X, if any. +This possible shadowing of X requires us to therefore update the +entire environment map, which is expensive and can significantly slow +down the execution of larger programs. On the other hand, since we know +that L is not already bound in the store, we simply add the binding +L ↦ ⊥ to the store, thus avoiding a potentially complete +traversal of the the store map in order to update it. We prefer the approach +used for updating the store whenever possible, because, in addition to being +faster, it offers more true concurrency than the latter; indeed, according +to the concurrent semantics of K, the store is not frozen while +L ↦ ⊥ is added to it, while the environment is frozen during the +update operation Env[L/X]. The variable declaration command is +also removed from the top of the computation cell and the fresh location +counter is incremented. The undefined symbol added in the store +is of sort KItem, instead of Val, on purpose; this way, the +store lookup rules will get stuck when one attempts to lookup an +uninitialized location. All the above happen in one transactional step, +with the rule below. Note also how configuration abstraction allows us to +only mention the needed cells; indeed, as the configuration above states, +the k and env cells are actually located within a +thread cell within the threads cell, but one needs +not mention these: the configuration context of the rule is +automatically transformed to match the declared configuration +structure.

+
k
syntax KItem ::= "undefined" + + rule <k> var X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

Array Declaration

+

The K semantics of the uni-dimensional array declaration is somehow similar +to the above declaration of ordinary variables. First, note the +context declaration below, which requests the evaluation of the array +dimension. Once evaluated, say to a natural number N, then +N +Int 1 locations are allocated in the store for +an array of size N, the additional location (chosen to be the first +one allocated) holding the array reference value. The array reference +value array(L,N) states that the array has size N and its +elements are located contiguously in the store starting with location +L. The operation L … L' ↦ V, defined at the end of this +file in the auxiliary operation section, initializes each location in +the list L … L' to V. Note that, since the dimensions of +array declarations can be arbitrary expressions, this virtually means +that we can dynamically allocate memory in SIMPLE by means of array +declarations.

+
k
context var _:Id[HOLE]; + + rule <k> var X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(L +Int 1, N) + (L +Int 1) ... (L +Int N) |-> undefined ...</store> + <nextLoc> L => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 +
+

SIMPLE allows multi-dimensional arrays. For semantic simplicity, we +desugar them all into uni-dimensional arrays by code transformation. +This way, we only need to give semantics to uni-dimensional arrays. +First, note that the context rule above actually evaluates all the array +dimensions (that's why we defined the expression lists strict!): +Upon evaluating the array dimensions, the code generation rule below +desugars multi-dimensional array declaration to uni-dimensional declarations. +To this aim, we introduce two special unique variable identifiers, +$1 and $2. The first variable, $1, iterates +through and initializes each element of the first dimension with an array +of the remaining dimensions, declared as variable $2:

+
k
syntax Id ::= "$1" [token] | "$2" [token] + rule var X:Id[N1:Int, N2:Int, Vs:Vals]; + => var X[N1]; + { + for(var $1 = 0; $1 <= N1 - 1; ++$1) { + var $2[N2, Vs]; + X[$1] = $2; + } + } +
+

Ideally, one would like to perform syntactic desugarings like the one +above before the actual semantics. Unfortunately, that was not possible in +this case because the dimension expressions of the multi-dimensional array need +to be evaluated first. Indeed, the desugaring rule above does not work if the +dimensions of the declared array are arbitrary expressions, because they can +have side effects (e.g., a[++x,++x]) and those side effects would be +propagated each time the expression is evaluated in the desugaring code (note +that both the loop condition and the nested multi-dimensional declaration +would need to evaluate the expressions given as array dimensions).

+

Function declaration

+

Functions are evaluated to λ-abstractions and stored like any other +values in the store. A binding is added into the environment for the function +name to the location holding its body. Similarly to the C language, SIMPLE +only allows function declarations at the top level of the program. More +precisely, the subsequent semantics of SIMPLE only works well when one +respects this requirement. Indeed, the simplistic context-free parser +generated by the grammar above is more generous than we may want, in that it +allows function declarations anywhere any declaration is allowed, including +inside arbitrary blocks. However, as the rule below shows, we are not +storing the declaration environment with the λ-abstraction value as +closures do. Instead, as seen shortly, we switch to the global environment +whenever functions are invoked, which is consistent with our requirement that +functions should only be declared at the top. Thus, if one declares local +functions, then one may see unexpected behaviors (e.g., when one shadows a +global variable before declaring a local function). The type checker of +SIMPLE, also defined in K (see examples/simple/typed/static), +discards programs which do not respect this requirement.

+
k
rule <k> function F(Xs) S => .K ...</k> + <env> Env => Env[F <- L] </env> + <store>... .Map => L |-> lambda(Xs, S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

When we are done with the first pass (pre-processing), the computation +cell k contains only the token execute (see the configuration +declaration above, where the computation item execute was placed +right after the program in the k cell of the initial configuration) +and the cell genv is empty. In this case, we have to call +main() and to initialize the global environment by transferring the +contents of the local environment into it. We prefer to do it this way, as +opposed to processing all the top level declarations directly within the global +environment, because we want to avoid duplication of semantics: the syntax of +the global declarations is identical to that of their corresponding local +declarations, so the semantics of the latter suffices provided that we copy +the local environment into the global one once we are done with the +pre-processing. We want this separate pre-processing step precisely because +we want to create the global environment. All (top-level) functions end up +having their names bound in the global environment and, as seen below, they +are executed in that same global environment; all these mean, in particular, +that the functions "see" each other, allowing for mutual recursion, etc.

+
k
syntax KItem ::= "execute" + rule <k> execute => main(.Exps); </k> + <env> Env </env> + <genv> .Map => Env </genv> +
+

Expressions

+

We next define the K semantics of all the expression constructs.

+

Variable lookup

+

When a variable X is the first computational task, and X is bound to some +location L in the environment, and L is mapped to some value V in the +store, then we rewrite X into V:

+
k
rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> [group(lookup)] +
+

Note that the rule above excludes reading , because is not +a value and V is checked at runtime to be a value.

+

Variable/Array increment

+

This is tricky, because we want to allow both ++x and ++a[5]. +Therefore, we need to extract the lvalue of the expression to increment. +To do that, we state that the expression to increment should be wrapped +by the auxiliary lvalue operation and then evaluated. The semantics +of this auxiliary operation is defined at the end of this file. For now, all +we need to know is that it takes an expression and evaluates to a location +value. Location values, also defined at the end of the file, are integers +wrapped with the operation loc, to distinguish them from ordinary +integers.

+
k
context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I => I +Int 1) ...</store> [group(increment)] +
+

Arithmetic operators

+

There is nothing special about the following rules. They rewrite the +language constructs to their library counterparts when their arguments +become values of expected sorts:

+
k
rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 +
+

The equality and inequality constructs reduce to syntactic comparison +of the two argument values (which is what the equality on K terms does).

+
k
rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 +
+

The logical negation is clear, but the logical conjunction and disjunction +are short-circuited:

+
k
rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E +
+

Array lookup

+

Untyped SIMPLE does not check array bounds (the dynamically typed version of +it, in examples/simple/typed/dynamic, does check for array out of +bounds). The first rule below desugars the multi-dimensional array access to +uni-dimensional array access; recall that the array access operation was +declared strict, so all sub-expressions involved are already values at this +stage. The second rule rewrites the array access to a lookup operation at a +precise location; we prefer to do it this way to avoid locking the store. +The semantics of the auxiliary lookup operation is straightforward, +and is defined at the end of the file.

+
k
// The [anywhere] feature is underused, because it would only be used +// at the top of the computation or inside the lvalue wrapper. So it +// may not be worth, or we may need to come up with a special notation +// allowing us to enumerate contexts for [anywhere] rules. + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + + rule array(L,_)[N:Int] => lookup(L +Int N) + [anywhere] +
+

Size of an array

+

The size of the array is stored in the array reference value, and the +sizeOf construct was declared strict, so:

+
k
rule sizeOf(array(_,N)) => N +
+

Function call

+

Function application was strict in both its arguments, so we can +assume that both the function and its arguments are evaluated to +values (the former expected to be a λ-abstraction). The first +rule below matches a well-formed function application on top of the +computation and performs the following steps atomically: it switches +to the function body followed by return; (for the case in +which the function does not use an explicit return statement); it +pushes the remaining computation, the current environment, and the +current control data onto the function stack (the remaining +computation can thus also be discarded from the computation cell, +because an unavoidable subsequent return statement ‒see +above‒ will always recover it from the stack); it switches the +current environment (which is being pushed on the function stack) to +the global environment, which is where the free variables in the +function body should be looked up; it binds the formal parameters to +fresh locations in the new environment, and stores the actual +arguments to those locations in the store (this latter step is easily +done by reducing the problem to variable declarations, whose semantics +we have already defined; the auxiliary operation mkDecls is +defined at the end of the file). The second rule pops the +computation, the environment and the control data from the function +stack when a return statement is encountered as the next +computational task, passing the returned value to the popped +computation (the popped computation was the context in which the +returning function was called). Note that the pushing/popping of the +control data is crucial. Without it, one may have a function that +contains an exception block with a return statement inside, which +would put the xstack cell in an inconsistent state (since the +exception block modifies it, but that modification should be +irrelevant once the function returns). We add an artificial +nothing value to the language, which is returned by the +nulary return; statements.

+
k
syntax KItem ::= (Map,K,ControlCellFragment) + + rule <k> lambda(Xs,S)(Vs:Vals) ~> K => mkDecls(Xs,Vs) S return; </k> + <control> + <fstack> .List => ListItem((Env,K,C)) ...</fstack> + C + </control> + <env> Env => GEnv </env> + <genv> GEnv </genv> + + rule <k> return(V:Val); ~> _ => V ~> K </k> + <control> + <fstack> ListItem((Env,K,C)) => .List ...</fstack> + (_ => C) + </control> + <env> _ => Env </env> + + syntax Val ::= "nothing" + rule return; => return nothing; +
+

Like for division-by-zero, it is left unspecified what happens +when the nothing value is used in domain calculations. For +example, from the the perspective of the language semantics, +7 +Int nothing can evaluate to anything, or +may not evaluate at all (be undefined). If one wants to make sure that +such artificial values are never misused, then one needs to define a static +checker (also using K, like our the type checker in +examples/simple/typed/static) and reject programs that do. +Note that, unlike the undefined symbol which had the sort K +instead of Val, we defined nothing to be a value. That +is because, as explained above, we do not want the program to get +stuck when nothing is returned by a function. Instead, we want the +behavior to be unspecified; in particular, if one is careful to never +use the returned value in domain computation, like it happens when we +call a function for its side effects (e.g., with a statement of the +form f(x);), then the program does not get stuck.

+

Read

+

The read() expression construct simply evaluates to the next +input value, at the same time discarding the input value from the +in cell.

+
k
rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> [group(read)] +
+

Assignment

+

In SIMPLE, like in C, assignments are expression constructs and not statement +constructs. To make it a statement all one needs to do is to follow it by a +semi-colon ; (see the semantics for expression statements below). +Like for the increment, we want to allow assignments not only to variables but +also to array elements, e.g., e1[e2] = e3 where e1 evaluates +to an array reference, e2 to a natural number, and e3 to any +value. Thus, we first compute the lvalue of the left-hand-side expression +that appears in an assignment, and then we do the actual assignment to the +resulting location:

+
k
context (HOLE => lvalue(HOLE)) = _ + + rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store> + [group(assignment)] +
+

Statements

+

We next define the K semantics of statements.

+

Blocks

+

Empty blocks are simply discarded, as shown in the first rule below. +For non-empty blocks, we schedule the enclosed statement but we have to +make sure the environment is recovered after the enclosed statement executes. +Recall that we allow local variable declarations, whose scope is the block +enclosing them. That is the reason for which we have to recover the +environment after the block. This allows us to have a very simple semantics +for variable declarations, as we did above. One can make the two rules below +computational if one wants them to count as computational steps.

+
k
rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> +
+

The basic definition of environment recovery is straightforward and +given in the section on auxiliary constructs at the end of the file.

+

There are two common alternatives to the above semantics of blocks. +One is to keep track of the variables which are declared in the block and only +recover those at the end of the block. This way one does more work for +variable declarations but conceptually less work for environment recovery; we +say conceptually because it is not clear that it is indeed the case that +one does less work when AC matching is involved. The other alternative is to +work with a stack of environments instead of a flat environment, and push the +current environment when entering a block and pop it when exiting it. This +way, one does more work when accessing variables (since one has to search the +variable in the environment stack in a top-down manner), but on the other hand +uses smaller environments and the definition gets closer to an implementation. +Based on experience with dozens of language semantics and other K definitions, +we have found that our approach above is the best trade-off between elegance +and efficiency (especially since rewrite engines have built-in techniques to +lazily copy terms, by need, thus not creating unnecessary copies), +so it is the one that we follow in general.

+

Sequential composition

+

Sequential composition is desugared into K's builtin sequentialization +operation (recall that, like in C, the semi-colon ; is not a +statement separator in SIMPLE — it is either a statement terminator or a +construct for a statement from an expression). Note that K allows +to define the semantics of SIMPLE in such a way that statements eventually +dissolve from the top of the computation when they are completed; this is in +sharp contrast to (artificially) evaluating them to a special +skip statement value and then getting rid of that special value, as +it is the case in other semantic approaches (where everything must evaluate +to something). This means that once S₁ completes in the rule below, S₂ +becomes automatically the next computation item without any additional +(explicit or implicit) rules.

+
k
rule S1:Stmt S2:Stmt => S1 ~> S2 +
+

A subtle aspect of the rule above is that S₁ is declared to have sort +Stmts and not Stmt. That is because desugaring macros can indeed +produce left associative sequential composition of statements. For example, +the code var x=0; x=1; is desugared to +(var x; x=0;) x=1;, so although originally the first term of +the sequential composition had sort Stmt, after desugaring it became +of sort Stmts. Note that the attribute [right] associated +to the sequential compositon production is an attribute of the syntax, and not +of the semantics: e.g., it tells the parser to parse +var x; x=0; x=1; as var x; (x=0; x=1;), but it +does not tell the rewrite engine to rewrite (var x; x=0;) x=1; to +var x; (x=0; x=1;).

+

Expression statements

+

Expression statements are only used for their side effects, so their result +value is simply discarded. Common examples of expression statements are ones +of the form ++x;, x=e;, e1[e2]=e3;, etc.

+
k
rule _:Val; => .K +
+

Conditional

+

Since the conditional was declared with the strict(1) attribute, we +can assume that its first argument will eventually be evaluated. The rules +below cover the only two possibilities in which the conditional is allowed to +proceed (otherwise the rewriting process gets stuck).

+
k
rule if ( true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+

The simplest way to give the semantics of the while loop is by unrolling. +Note, however, that its unrolling is only allowed when the while loop reaches +the top of the computation (to avoid non-termination of unrolling). The +simple while loop semantics below works because our while loops in SIMPLE are +indeed very basic. If we allowed break/continue of loops then we would need +a completely different semantics, which would also involve the control cell.

+
k
rule while (E) S => if (E) {S while(E)S} +
+

Print

+

The print statement was strict, so all its arguments are now +evaluated (recall that print is variadic). We append each of +its evaluated arguments to the output buffer, and discard the residual +print statement with an empty list of arguments.

+
k
rule <k> print(V:Val, Es:Vals => Es); ...</k> <output>... .List => ListItem(V) </output> + [group(print)] + rule print(.Vals); => .K +
+

Exceptions

+

SIMPLE allows parametric exceptions, in that one can throw and catch a +particular value. The statement try S₁ catch(X) S₂ +proceeds with the evaluation of S₁. If S₁ evaluates normally, i.e., +without any exception thrown, then S₂ is discarded and the execution +continues normally. If S₁ throws an exception with a statement of the +form throw E, then E is first evaluated to some value V +(throw was declared to be strict), then V is bound to X, then +S₂ is evaluated in the new environment while the reminder of S₁ is +discarded, then the environment is recovered and the execution continues +normally with the statement following the try S₁ catch(X) S₂ statement. +Exceptions can be nested and the statements in the +catch part (S₂ in our case) can throw exceptions to the +upper level. One should be careful with how one handles the control data +structures here, so that the abrupt changes of control due to exception +throwing and to function returns interact correctly with each other. +For example, we want to allow function calls inside the statement S₁ in +a try S₁ catch(X) S₂ block which can throw an exception +that is not caught by the function but instead is propagated to the +try S₁ catch(X) S₂ block that called the function. +Therefore, we have to make sure that the function stack as well as other +potential control structures are also properly modified when the exception +is thrown to correctly recover the execution context. This can be easily +achieved by pushing/popping the entire current control context onto the +exception stack. The three rules below modularly do precisely the above.

+
k
syntax KItem ::= (Id,Stmt,K,Map,ControlCellFragment) + + syntax KItem ::= "popx" + + rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem((X, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k> + <control> + <xstack> ListItem((X, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

The catch statement S₂ needs to be executed in the original environment, +but where the thrown value V is bound to the catch variable X. We here +chose to rely on two previously defined constructs when giving semantics to +the catch part of the statement: (1) the variable declaration with +initialization, for binding X to V; and (2) the block construct for +preventing X from shadowing variables in the original environment upon the +completion of S₂.

+

Threads

+

SIMPLE's threads can be created and terminated dynamically, and can +synchronize by acquiring and releasing re-entrant locks and by rendezvous. +We discuss the seven rules giving the semantics of these operations below.

+

Thread creation

+

Threads can be created by any other threads using the spawn S +construct. The spawn expression construct evaluates to the unique identifier +of the newly created thread and, at the same time, a new thread cell is added +into the configuration, initialized with the S statement and sharing the +same environment with the parent thread. Note that the newly created +thread cell is torn. That means that the remaining cells are added +and initialized automatically as described in the definition of SIMPLE's +configuration. This is part of K's configuration abstraction mechanism.

+
k
rule <thread>... + <k> spawn S => !T:Int ...</k> + <env> Env </env> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T </id> + ...</thread>) +
+

Thread termination

+

Dually to the above, when a thread terminates its assigned computation (the +contents of its k cell) is empty, so the thread can be dissolved. +However, since no discipline is imposed on how locks are acquired and released, +it can be the case that a terminating thread still holds locks. Those locks +must be released, so other threads attempting to acquire them do not deadlock. +We achieve that by removing all the locks held by the terminating thread in its +holds cell from the set of busy locks in the busy cell +(keys(H) returns the domain of the map H as a set, that is, only +the locks themselves ignoring their multiplicity). As seen below, a lock is +added to the busy cell as soon as it is acquired for the first time +by a thread. The unique identifier of the terminated thread is also collected +into the terminated cell, so the join construct knows which +threads have terminated.

+
k
rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> +
+

Thread joining

+

Thread joining is now straightforward: all we need to do is to check whether +the identifier of the thread to be joined is in the terminated cell. +If yes, then the join statement dissolves and the joining thread +continues normally; if not, then the joining thread gets stuck.

+
k
rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> +
+

Acquire lock

+

There are two cases to distinguish when a thread attempts to acquire a lock +(in SIMPLE any value can be used as a lock):
+(1) The thread does not currently have the lock, in which case it has to +take it provided that the lock is not already taken by another thread (see +the side condition of the first rule).
+(2) The thread already has the lock, in which case it just increments its +counter for the lock (the locks are re-entrant). These two cases are captured +by the two rules below:

+
k
rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy)) [group(acquire)] + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N => N +Int 1) ...</holds> +
+

Release lock

+

Similarly, there are two corresponding cases to distinguish when a thread +releases a lock:
+(1) The thread holds the lock more than once, in which case all it needs to do +is to decrement the lock counter.
+(2) The thread holds the lock only once, in which case it needs to remove it +from its holds cell and also from the the shared busy cell, +so other threads can acquire it if they need to.

+
k
rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> +
+

Rendezvous synchronization

+

In addition to synchronization through acquire and release of locks, SIMPLE +also provides a construct for rendezvous synchronization. A thread whose next +statement to execute is rendezvous(V) gets stuck until another +thread reaches an identical statement; when that happens, the two threads +drop their rendezvous statements and continue their executions. If three +threads happen to have an identical rendezvous statement as their next +statement, then precisely two of them will synchronize and the other will +remain blocked until another thread reaches a similar rendezvous statement. +The rule below is as simple as it can be. Note, however, that, again, it is +K's mechanism for configuration abstraction that makes it work as desired: +since the only cell which can multiply containing a k cell inside is +the thread cell, the only way to concretize the rule below to the +actual configuration of SIMPLE is to include each k cell in a +thread cell.

+
k
rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> [group(rendezvous)] +
+

Auxiliary declarations and operations

+

In this section we define all the auxiliary constructs used in the +above semantics.

+

Making declarations

+

The mkDecls auxiliary construct turns a list of identifiers +and a list of values in a sequence of corresponding variable +declarations.

+
k
syntax Stmt ::= mkDecls(Ids,Vals) [function] + rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs) + rule mkDecls(.Ids,.Vals) => {} +
+

Location lookup

+

The operation below is straightforward. Note that we place it in the same +lookup group as the variable lookup rule defined above. This way, +both rules will be considered transitions when we include the lookup +tag in the transition option of kompile.

+
k
syntax Exp ::= lookup(Int) + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> [group(lookup)] +
+

Environment recovery

+

We have already discussed the environment recovery auxiliary operation in the +IMP++ tutorial:

+
k
// TODO: eliminate the env wrapper, like we did in IMP++ + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> +
+

While theoretically sufficient, the basic definition for environment +recovery alone is suboptimal. Consider a loop while (E)S, +whose semantics (see above) was given by unrolling. S +is a block. Then the semantics of blocks above, together with the +unrolling semantics of the while loop, will yield a computation +structure in the k cell that increasingly grows, adding a new +environment recovery task right in front of the already existing sequence of +similar environment recovery tasks (this phenomenon is similar to the ``tail +recursion'' problem). Of course, when we have a sequence of environment +recovery tasks, we only need to keep the last one. The elegant rule below +does precisely that, thus avoiding the unnecessary computation explosion +problem:

+
k
rule (setEnv(_) => .K) ~> setEnv(_) +
+

In fact, the above follows a common convention in K for recovery +operations of cell contents: the meaning of a computation task of the form +cell(C) that reaches the top of the computation is that the current +contents of cell cell is discarded and gets replaced with C. We +did not add support for these special computation tasks in our current +implementation of K, so we need to define them as above.

+

lvalue and loc

+

For convenience in giving the semantics of constructs like the increment and +the assignment, that we want to operate the same way on variables and on +array elements, we used an auxiliary lvalue(E) construct which was +expected to evaluate to the lvalue of the expression E. This is only +defined when E has an lvalue, that is, when E is either a variable or +evaluates to an array element. lvalue(E) evaluates to a value of +the form loc(L), where L is the location where the value of E +can be found; for clarity, we use loc to structurally distinguish +natural numbers from location values. In giving semantics to lvalue +there are two cases to consider. (1) If E is a variable, then all we need +to do is to grab its location from the environment. (2) If E is an array +element, then we first evaluate the array and its index in order to identify +the exact location of the element of concern, and then return that location; +the last rule below works because its preceding context declarations ensure +that the array and its index are evaluated, and then the rule for array lookup +(defined above) rewrites the evaluated array access construct to its +corresponding store lookup operation.

+
k
// For parsing reasons, we prefer to allow lvalue to take a K + + syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + +// Local variable + + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + +// Array element: evaluate the array and its index; +// then the array lookup rule above applies. + + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + +// Finally, return the address of the desired object member + + rule lvalue(lookup(L:Int) => loc(L)) +
+

Initializing multiple locations

+

The following operation initializes a sequence of locations with the same +value:

+
k
syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M +
+

The semantics of SIMPLE is now complete. Make sure you kompile the +definition with the right options in order to generate the desired model. +No kompile options are needed if you only only want to execute the definition +(and thus get an interpreter), but if you want to search for a different +program behaviors then you need to kompile with the transition option +including rule groups such as lookup, increment, acquire, etc. See the +IMP++ tutorial for what the transition option means how to use it.

+
k
endmodule +
+

Go to Lesson 2, SIMPLE typed static

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/index.html new file mode 100644 index 00000000000..4d430f63446 --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/index.html @@ -0,0 +1,1151 @@ + + + + + + + + + + + + + + +SIMPLE — Typed — Static | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

SIMPLE — Typed — Static

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K definition of the static semantics of the typed SIMPLE +language, or in other words, a type system for the typed SIMPLE +language in K. We do not re-discuss the various features of the +SIMPLE language here. The reader is referred to the untyped version of +the language for such discussions. We here only focus on the new and +interesting problems raised by the addition of type declarations, and +what it takes to devise a type system/checker for the language.

+

When designing a type system for a language, no matter in what +paradigm, we have to decide upon the intended typing policy. Note +that we can have multiple type systems for the same language, one for +each typing policy. For example, should we accept programs which +don't have a main function? Or should we allow functions that do not +return explicitly? Or should we allow functions whose type expects +them to return a value (say an int) to use a plain +return; statement, which returns no value, like in C? +And so on and so forth. Typically, there are two opposite tensions +when designing a type system. On the one hand, you want your type +system to be as permissive as possible, that is, to accept as many +programs that do not get stuck when executed with the untyped +semantics as possible; this will keep the programmers using your +language happy. On the other hand, you want your type system to have +a reasonable performance when implemented; this will keep both the +programmers and the implementers of your language happy. For example, +a type system for rejecting programs that could perform +division-by-zero is not expected to be feasible in general. A simple +guideline when designing typing policies is to imagine how the +semantics of the untyped language may get stuck and try to prevent +those situations from happening.

+

Before we give the K type system of SIMPLE formally, we discuss, +informally, the intended typing policy:

+
    +
  • +

    Each program should contain a main() function. Indeed, +the untyped SIMPLE semantics will get stuck on any program which does +not have a main function.

    +
  • +
  • +

    Each primitive value has its own type, which can be int +bool, or string. There is also a type void +for nonexistent values, for example for the result of a function meant +to return no value (but only be used for its side effects, like a +procedure).

    +
  • +
  • +

    The syntax of untyped SIMPLE is extended to allow type +declarations for all the variables, including array variables. This is +done in a C/Java-style. For example, int x; or +int x=7, y=x+3;, or int[][][] a[10,20]; +(the latter defines a 10 × 20 matrix of arrays of integers). +Recall from untyped SIMPLE that, unlike in C/Java, our multi-dimensional +arrays use comma-separated arguments, although they have the array-of-array +semantics.

    +
  • +
  • +

    Functions are also typed in a C/Java style. However, since in SIMPLE +we allow functions to be passed to and returned by other functions, we also +need function types. We will use the conventional higher-order arrow-notation +for function types, but will separate the argument types with commas. For +example, a function returning an array of bool elements and +taking as argument an array x of two-integer-argument functions +returning an integer, is declared using a syntax of the form +bool[] f(((int,int)->int)[] x) { ... } +and has the type ((int,int)->int)[] -> bool[].

    +
  • +
  • +

    We allow any variable declarations at the top level. Functions +can only be declared at the top level. Each function can only access the +other functions and variables declared at the top level, or its own locally +declared variables. SIMPLE has static scoping.

    +
  • +
  • +

    The various expression and statement constructs take only elements of +the expected types.

    +
  • +
  • +

    Increment and assignment can operate both on variables and on array +elements. For example, if f has type int->int[][] and +function g has the type int->int, then the +increment expression ++f(7)[g(2),g(3)] is valid.

    +
  • +
  • +

    Functions should only return values of their declared result +type. To give the programmers more flexibility, we allow functions to +use return; statements to terminate without returning an +actual value, or to not explicitly use any return statement, +regardless of their declared return type. This flexibility can be +handy when writing programs using certain functions only for their +side effects. Nevertheless, as the dynamic semantics shows, a return +value is automatically generated when an explicit return +statement is not encountered.

    +
  • +
  • +

    For simplicity, we here limit exceptions to only throw and catch +integer values. We let it as an exercise to the reader to extend the +semantics to allow throwing and catching arbitrary-type exceptions. +Like in programming languages like Java, one can go even further and +define a semantics where thrown exceptions are propagated through +try-catch statements until one of the corresponding type is found. +We will do this when we define the KOOL language, not here. +To keep the definition if SIMPLE simple, here we do not attempt to +reject programs which throw uncaught exceptions.

    +
  • +
+

Like in untyped SIMPLE, some constructs can be desugared into a +smaller set of basic constructs. In general, it should be clear why a +program does not type by looking at the top of the k cells in +its stuck configuration.

+
k
module SIMPLE-TYPED-STATIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of typed SIMPLE extends that of untyped SIMPLE with support +for declaring types to variables and functions.

+
k
syntax Id ::= "main" [token] +
+

Types

+

Primitive, array and function types, as well as lists (or tuples) of types. +The lists of types are useful for function arguments.

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + + syntax Types ::= List{Type,","} [overload(exps)] +
+

Declarations

+

Variable and function declarations have the expected syntax. For variables, +we basically just replaced the var keyword of untyped SIMPLE with a +type. For functions, besides replacing the function keyword with a +type, we also introduce a new syntactic category for typed variables, +Param, and lists over it.

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" + | Type Id "(" Params ")" Block +
+

Expressions

+

The syntax of expressions is identical to that in untyped SIMPLE, +except for the logical conjunction and disjunction which have +different strictness attributes, because they now have different +evaluation strategies.

+
k
syntax Exp ::= Int | Bool | String | Id + | "(" Exp ")" [bracket] + | "++" Exp + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict, left] + | Exp "||" Exp [strict, left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] +
+

Note that spawn has not been declared strict. This may +seem unexpected, because the child thread shares the same environment +with the parent thread, so from a typing perspective the spawned +statement makes the same sense in a child thread as it makes in the +parent thread. The reason for not declaring it strict is because we +want to disallow programs where the spawned thread calls the +return statement, because those programs would get stuck in +the dynamic semantics. The type semantics of spawn below will reject +such programs.

+

We still need lists of expressions, defined below, but note that we do +not need lists of identifiers anymore. They have been replaced by the lists +of parameters.

+
k
syntax Exps ::= List{Exp,","} [strict, overload(exps)] +
+

Statements

+

The statements have the same syntax as in untyped SIMPLE, except for +the exceptions, which now type their parameter. Note that, unlike in untyped +SIMPLE, all statement constructs which have arguments and are not desugared +are strict, including the conditional and the while. Indeed, from a +typing perspective, they are all strict: first type their arguments and then +type the actual construct.

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block [strict] + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" + | "print" "(" Exps ")" ";" [strict] + | "try" Block "catch" "(" Param ")" Block [strict(1)] + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] +
+

Note that the sequential composition is now sequentially strict, +because, unlike in the dynamic semantics where statements dissolved, +they now reduce to the stmt type, which is a result.

+
k
syntax Stmt ::= Stmt Stmt [seqstrict, right] +
+

Desugaring macros

+

We use the same desugaring macros like in untyped SIMPLE, but, of +course, including the types of the involved variables.

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}} + rule for(Start Cond; Step) {} => {Start while(Cond){Step;}} + rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es; [anywhere] + rule T:Type X:Id = E; => T X; X = E; [anywhere] + +endmodule + + +module SIMPLE-TYPED-STATIC + imports SIMPLE-TYPED-STATIC-SYNTAX + imports DOMAINS +
+

Static semantics

+

Here we define the type system of SIMPLE. Like concrete semantics, +type systems defined in K are also executable. However, K type +systems turn into type checkers instead of interpreters when executed.

+

The typing process is done in two (overlapping) phases. In the first +phase the global environment is built, which contains type bindings +for all the globally declared variables and functions. For functions, +the declared types will be ``trusted'' during the first phase and +simply bound to their corresponding function names and placed in the +global type environment. At the same time, type-checking tasks that +the function bodies indeed respect their claimed types are generated. +All these tasks are (concurrently) verified during the second phase. +This way, all the global variable and function declarations are +available in the global type environment and can be used in order to +type-check each function code. This is consistent with the semantics +of untyped SIMPLE, where functions can access all the global variables +and can call any other function declared in the same program. The +two phases may overlap because of the K concurrent semantics. For +example, a function task can be started while the first phase is still +running; moreover, it may even complete before the first phase does, +namely when all the global variables and functions that it needs have +already been processed and made available in the global environment by +the first phase task.

+

Extended syntax and results

+

The idea is to start with a configuration holding the program to type +in one of its cells, then apply rewrite rules on it mixing types and +language syntax, and eventually obtain a type instead of the original +program. In other words, the program reduces to its type using +the K rules giving the type system of the language. In doing so, +additional typing tasks for function bodies are generated and solved +the same way. If this rewriting process gets stuck, then we say that +the program is not well-typed. Otherwise the program is well-typed +(by definition). We did not need types for statements and for blocks +as part of the typed SIMPLE syntax, because programmers are not allowed +to use such types explicitly. However, we are going to need them in the +type system, because blocks and statements reduce to them.

+

We start by allowing types to be used inside expressions and statements in +our language. This way, types can be used together with language syntax in +subsequent K rules without any parsing errors. Like in the type system of +IMP++ in the K tutorial, we prefer to group the block and statement types +under one syntactic sub-category of types, because this allows us to more +compactly state that certain terms can be either blocks or statements. Also, +since programs and fragments of program will reduce to their types, in order +for the strictness and context declarations to be executable we state that +types are results (same like we did in the IMP++ tutorial).

+
k
syntax Exp ::= Type + syntax Exps ::= Types + syntax BlockOrStmtType ::= "block" | "stmt" + syntax Type ::= BlockOrStmtType + syntax Block ::= BlockOrStmtType + syntax KResult ::= Type + | Types //TODO: remove this, eventually +
+

Configuration

+

The configuration of our type system consists of a tasks cell +holding various typing task cells, and a global type environment. +Each task includes a k cell holding the code to type, a tenv +cell holding the local type environment, and a return cell holding +the return type of the currently checked function. The latter is needed in +order to check whether return statements return values of the expected type. +Initially, the program is placed in a k cell inside a +task cell. Since the cells with multiplicity ? are not +included in the initial configuration, the task cell holding +the original program in its k cell will contain no other +subcells.

+
k
configuration <T color="yellow"> + <tasks color="orange"> + <task multiplicity="*" color="yellow" type="Set"> + <k color="green"> $PGM:Stmt </k> + <tenv multiplicity="?" color="cyan"> .Map </tenv> + <returnType multiplicity="?" color="black"> void </returnType> + </task> + </tasks> +// <br/> + <gtenv color="blue"> .Map </gtenv> + </T> +
+

Variable declarations

+

Variable declarations type as statements, that is, they reduce to the +type stmt. There are only two cases that need to be +considered: when a simple variable is declared and when an array +variable is declared. The macros at the end of the syntax module +above take care of reducing other variable declarations, including +ones where the declared variables are initialized, to only these two +cases. The first case has two subcases: when the variable declaration +is global (i.e., the task cell contains only the k +cell), in which case it is added to the global type environment +checking at the same time that the variable has not been already +declared; and when the variable declaration is local (i.e., a +tenv cell is available), in which case it is simply added to +the local type environment, possibly shadowing previous homonymous +variables. The third case reduces to the second, incrementally moving +the array dimension into the type until the array becomes a simple +variable.

+
k
rule <task> <k> T:Type X:Id; => stmt ...</k> </task> + <gtenv> Rho (.Map => X |-> T) </gtenv> + requires notBool(X in keys(Rho)) + rule <k> T:Type X:Id; => stmt ...</k> <tenv> Rho => Rho[X <- T] </tenv> + + context _:Type _::Exp[HOLE::Exps]; +// The rule below may need to sort E to Exp in the future, if the +// parser gets stricter; without that information, it may not be able +// to complete the LHS into T E[int,Ts],.Exps; (and similarly for the RHS) + rule T:Type E:Exp[int,Ts:Types]; => T[] E[Ts]; +// I want to write the rule below as _:Type (E:Exp[.Types] => E), +// but the list completion seems to not work well with that. + rule T:Type E:Exp[.Types]; => T E; +
+

Function declarations

+

Functions are allowed to be declared only at the top level (the +task cell holds only its k subcell). Each function +declaration reduces to a variable declaration (a binding of its name +to its declared function type), but also adds a task into the +tasks cell. The task consists of a typing of the statement +declaring all the function parameters followed by the function body, +together with the expected return type of the function. The +getTypes and mkDecls functions, defined at the end of +the file in the section on auxiliary operations, extracts the list of +types and makes a sequence of variable declarations from a list of +function parameters, respectively. Note that, although in the dynamic +semantics we include a terminating return statement at the +end of the function body to eliminate from the analysis the case when +the function does not provide an explicit return, we do not need to +include such a similar return statement here. That's because +the return statements type to stmt anyway, and the +entire code of the function body needs to type anyway.

+
k
rule <task> <k> T:Type F:Id(Ps:Params) S => getTypes(Ps)->T F; ...</k> </task> + (.Bag => <task> + <k> mkDecls(Ps) S </k> <tenv> .Map </tenv> <returnType> T </returnType> + </task>) +
+

Checking if main() exists}

+

Once the entire program is processed (generating appropriate tasks +to type check its function bodies), we can dissolve the main +task cell (the one holding only a k subcell). Since +we want to enforce that programs include a main function, we also +generate a function task executing main() to ensure that it +types (remove this task creation if you do not want your type system +to reject programs without a main function).

+
k
rule <task> <k> stmt => main(.Exps); </k> (.Bag => <tenv> .Map </tenv>) </task> +
+

Collecting the terminated tasks

+

Similarly, once a non-main task (i.e., one which contains a +tenv subcells) is completed using the subsequent rules (i.e., +its k cell holds only the block or stmt +type), we can dissolve its corresponding cell. Note that it is +important to ensure that we only dissolve tasks containing a +tenv cell with the rule below, because the main task should +not dissolve this way! It should do what the above rule says. +In the end, there should be no task cell left in the configuration +when the program correctly type checks.

+
k
rule <task>... <k> _:BlockOrStmtType </k> <tenv> _ </tenv> ...</task> => .Bag +
+

Basic values

+

The first three rewrite rules below reduce the primitive values to +their types, as we typically do when we define type systems in K.

+
k
rule _:Int => int + rule _:Bool => bool + rule _:String => string +
+

Variable lookup

+

There are three cases to distinguish for variable lookup: (1) if the +variable is bound in the local type environment, then look its type up +there; (2) if a local environment exists and the variable is not bound +in it, then look its type up in the global environment; (3) finally, +if there is no local environment, meaning that we are executing the +top-level pass, then look the variable's type up in the global +environment, too.

+
k
rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</tenv> + + rule <k> X:Id => T ...</k> <tenv> Rho </tenv> <gtenv>... X |-> T ...</gtenv> + requires notBool(X in keys(Rho)) + + rule <task> <k> X:Id => T ...</k> </task> <gtenv>... X |-> T ...</gtenv> +
+

Increment

+

We want the increment operation to apply to any lvalue, including +array elements, not only to variables. For that reason, we define a +special context extracting the type of the argument of the increment +operation only if that argument is an lvalue. Otherwise the rewriting +process gets stuck. The operation ltype is defined at the +end of this file, in the auxiliary operation section. It essentially +acts as a filter, getting stuck if its argument is not an lvalue and +letting it reduce otherwise. The type of the lvalue is expected to be +an integer in order to be allowed to be incremented, as seen in the +rule ++ int => int below.

+
k
context ++(HOLE => ltype(HOLE)) + rule ++ int => int +
+

Common expression constructs

+

The rules below are straightforward and self-explanatory:

+
k
rule int + int => int + rule string + string => string + rule int - int => int + rule int * int => int + rule int / int => int + rule int % int => int + rule - int => int + rule int < int => bool + rule int <= int => bool + rule int > int => bool + rule int >= int => bool + rule T:Type == T => bool + rule T:Type != T => bool + rule bool && bool => bool + rule bool || bool => bool + rule ! bool => bool +
+

Array access and size

+

Array access requires each index to type to an integer, and the +array type to be at least as deep as the number of indexes:

+
k
// NOTE: +// We used to need parentheses in the RHS, to avoid capturing Ts as an attribute +// Let's hope that is not a problem anymore. + + rule (T[])[int, Ts:Types] => T[Ts] + rule T:Type[.Types] => T +
+

sizeOf only needs to check that its argument is an array:

+
k
rule sizeOf(_T[]) => int +
+

Input/Output

+

The read expression construct types to an integer, while print types +to a statement provided that all its arguments type to integers or +strings.

+
k
rule read() => int + + rule print(T:Type, Ts => Ts); requires T ==K int orBool T ==K string + rule print(.Types); => stmt +
+

Assignment

+

The special context and the rule for assignment below are similar +to those for increment: the LHS of the assignment must be an lvalue +and, in that case, it must have the same type as the RHS, which then +becomes the type of the assignment.

+
k
context (HOLE => ltype(HOLE)) = _ + rule T:Type = T => T +
+

Function application and return

+

Function application requires the type of the function and the +types of the passed values to be compatible. Note that a special case +is needed to handle the no-argument case:

+
k
rule (Ts:Types -> T)(Ts) => T requires Ts =/=K .Types + rule (void -> T)(.Types) => T +
+

The returned value must have the same type as the declared +function return type. If an empty return is encountered, than +we should check that we are in a function (and not a thread) +context, that is, a return cell must be available:

+
k
rule <k> return T:Type; => stmt ...</k> <returnType> T </returnType> + rule <k> return; => stmt ...</k> <returnType> _ </returnType> +
+

Blocks

+

To avoid having to recover type environments after blocks, we prefer +to start a new task for block body, making sure that the new task +is passed the same type environment and return cells. The value +returned by return statements must have the same type as +stated in the return cell. The print variadic +function is allowed to only print integers and strings. The thrown +exceptions can only have integer type.

+
k
rule {} => block + + rule <task> <k> {S} => block ...</k> <tenv> Rho </tenv> R </task> + (.Bag => <task> <k> S </k> <tenv> Rho </tenv> R </task>) +
+

Expression statement

+
k
rule _:Type; => stmt +
+

Conditional and while loop

+
k
rule if (bool) block else block => stmt + rule while (bool) block => stmt +
+

Exceptions

+

We currently force the parameters of exceptions to only be integers. +Moreover, for simplicity, we assume that integer exceptions can be +thrown from anywhere, including from functions which do not define +any try-catch block (with the currently unchecked ‒also for +simplicity‒ expectation that the caller functions would catch those +exceptions).

+
k
rule try block catch(int X:Id) {S} => {int X; S} + rule try block catch(int X:Id) {} => {int X;} + rule throw int; => stmt +
+

Concurrency

+

Nothing special about typing the concurrency constructs, except that +we do not want the spawned thread to return, so we do not include any +return cell in the new task cell for the thread statement. +Same like with the functions above, we do not check for thrown +exceptions which are not caught.

+
k
rule <k> spawn S => int ...</k> <tenv> Rho </tenv> + (.Bag => <task> <k> S </k> <tenv> Rho </tenv> </task>) + rule join int; => stmt + rule acquire _:Type; => stmt + rule release _:Type; => stmt + rule rendezvous _:Type; => stmt + + rule _:BlockOrStmtType _:BlockOrStmtType => stmt +
+

Auxiliary constructs

+

The function mkDecls turns a list of parameters into a +list of variable declarations.

+
k
syntax Stmt ::= mkDecls(Params) [function] + rule mkDecls(T:Type X:Id, Ps:Params) => T X; mkDecls(Ps) + rule mkDecls(.Params) => {} +
+

The ltype context allows only expressions which have an +lvalue to evaluate.

+
k
syntax LValue ::= Id + rule isLValue(_:Exp[_:Exps]) => true + syntax Exp ::= LValue // K should be able to infer this + // if not added, then it gets stuck with an Id on k cell + +// Instead of the second LValue production above you can use a rule: +// rule isLValue(_:Exp[_:Exps]) => true + + syntax Exp ::= ltype(Exp) +// context ltype(HOLE:LValue) +// The above context does not work due to some error, so we write instead + context ltype(HOLE) requires isLValue(HOLE) +
+

The function getTypes is the same as in SIMPLE typed dynamic.

+
k
syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types // I would like to not use .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types + +endmodule +
+

Go to Lesson 3, SIMPLE typed dynamic

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/index.html new file mode 100644 index 00000000000..ed0cb72b9d7 --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/index.html @@ -0,0 +1,1142 @@ + + + + + + + + + + + + + + +SIMPLE — Typed — Dynamic | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

SIMPLE — Typed — Dynamic

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K dynamic semantics of the typed SIMPLE language. +It is very similar to the semantics of the untyped SIMPLE, the +difference being that we now dynamically check the typing policy +described in the static semantics of typed SIMPLE. Because of the +dynamic nature of the semantics, we can also perform some additional +checks which were not possible in the static semantics, such as +memory leaks due to accessing an array out of its bounds. We will +highlight the differences between the dynamically typed and the +untyped SIMPLE as we proceed with the semantics. We recommend the +reader to consult the typing policy and the syntax of types discussed +in the static semantics of the typed SIMPLE language.

+
k
module SIMPLE-TYPED-DYNAMIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of typed SIMPLE extends that of untyped SIMPLE with support +for declaring types to variables and functions.

+

The syntax below is identical to that of the static semantics of typed +SIMPLE. However, the K strictness attributes are like those of the untyped +SIMPLE, to capture the desired evaluation strategies of the various language +constructs.

+
k
syntax Id ::= "main" [token] +
+

Types

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + syntax Types ::= List{Type,","} +
+

Declarations

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" + | Type Id "(" Params ")" Block +
+

Expressions

+
k
syntax Exp ::= Int | Bool | String | Id + | "(" Exp ")" [bracket] + | "++" Exp + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] +
+

Like in the static semantics, there is no need for lists of identifiers +(because we now have lists of parameters).

+
k
syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Vals ::= List{Val,","} [overload(exps)] +
+

Statements

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "print" "(" Exps ")" ";" [strict] + | "return" Exp ";" [strict] + | "return" ";" + | "try" Block "catch" "(" Param ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [right] +
+

The same desugaring macros like in the statically typed SIMPLE.

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}} + rule for(Start Cond; Step) {} => {Start while(Cond){Step;}} + rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es; [anywhere] + rule T:Type X:Id = E; => T X; X = E; [anywhere] + +endmodule + + +module SIMPLE-TYPED-DYNAMIC + imports SIMPLE-TYPED-DYNAMIC-SYNTAX + imports DOMAINS +
+

Semantics

+

Values and results

+

These are similar to those of untyped SIMPLE, except that the array +references and the function abstrations now also hold their types. +These types are needed in order to easily compute the type of any +value in the language (see the auxiliary typeOf operation at +the end of this module).

+
k
syntax Val ::= Int | Bool | String + | array(Type,Int,Int) + | lambda(Type,Params,Stmt) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + | Vals // TODO: should not need this +
+

Configuration

+

The configuration is almost identical to that of untyped SIMPLE, +except for a return cell inside the control cell. +This return cell will hold, like in the static semantics of +typed SIMPLE, the expected type of the value returned by the function +being executed. The contents of this cell will be set whenever a +function is invoked and will be checked whenever the evaluation of the +function body encounters an explicit return statement.

+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + + syntax ControlCell + syntax ControlCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" color="yellow" type="Map"> + <id color="pink"> 0 </id> + <k color="green"> ($PGM:Stmt ~> execute) </k> +// <br/> + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + <returnType color="LimeGreen"> void </returnType> + </control> +// <br/> + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + </thread> + </threads> +// <br/> + <genv color="pink"> .Map </genv> + <store color="white"> .Map </store> + <busy color="cyan">.Set</busy> + <terminated color="red"> .Set </terminated> + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + </T> +
+

Declarations and Initialization

+

Variable Declaration

+

The undefined construct is now parameterized by a type. +A main difference between untyped SIMPLE and dynamically typed SIMPLE +is that the latter assigns a type to each of its locations and that +type cannot be changed during the execution of the program. We do not +do any memory management in our semantic definitions here, so +locations cannot be reclaimed, garbage collected and/or reused. Each +location corresponds precisely to an allocated variable or array +element, whose type was explicitly or implicitly declared in the +program and does not change. It is therefore safe to type each +location and then never allow that type to change. The typed +undefined values effectively assign both a type and an undefined value +to a location.

+
k
syntax KItem ::= undefined(Type) + + rule <k> T:Type X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 </nextLoc> +
+

Array Declaration

+

The dynamic semantics of typed array declarations is similar to that +in untyped SIMPLE, but we have to make sure that we associate the +right type to the allocated locations.

+
k
rule <k> T:Type X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(T, L +Int 1, N) + (L +Int 1)...(L +Int N) |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 + + context _:Type _::Exp[HOLE::Exps]; +
+

The desugaring of multi-dimensional arrays into unidimensional +ones is also similar to that in untyped SIMPLE, although we have to +make sure that all the declared variables have the right types. The +auxiliary operation T<Vs>, defined at the end of the file, +adds the length of Vs dimensions to the type T.

+
k
// TODO: Check the desugaring below to be consistent with the one for untyped simple + + syntax Id ::= "$1" [token] | "$2" [token] + rule T:Type X:Id[N1:Int, N2:Int, Vs:Vals]; + => T[]<Vs> X[N1]; + { + T[][]<Vs> $1=X; + for(int $2=0; $2 <= N1 - 1; ++$2) { + T X[N2,Vs]; + $1[$2] = X; + } + } +
+

Function declaration

+

Store all function parameters, as well as the return type, as part +of the lambda abstraction. In the spirit of dynamic typing, we will +make sure that parameters are well typed when the function is invoked.

+
k
rule <k> T:Type F:Id(Ps:Params) S => .K ...</k> + <env> Env => Env[F <- L] </env> + <store>... .Map => L |-> lambda(T, Ps, S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

Calling main()

+

When done with the first pass, call main().

+
k
syntax KItem ::= "execute" + rule <k> execute => main(.Exps); </k> + <env> Env </env> + <genv> .Map => Env </genv> +
+

Expressions

+

Variable lookup

+
k
rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> [group(lookup)] +
+

Variable/Array increment

+
k
context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I:Int => I +Int 1) ...</store> [group(increment)] +
+

Arithmetic operators

+
k
rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E +
+

Array lookup

+

Check array bounds, as part of the dynamic typing policy.

+
k
// Same comment as for simple untyped regarding [anywhere] + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + +// Same comment as for simple untyped regarding [anywhere] + rule array(_:Type, L:Int, M:Int)[N:Int] => lookup(L +Int N) + requires N >=Int 0 andBool N <Int M [anywhere] +
+

Size of an array

+
k
rule sizeOf(array(_,_,N)) => N +
+

Function call

+

Define function call and return together, to see their relationship. +Note that the operation mkDecls now declares properly typed +instantiated variables, and that the semantics of return also +checks that that type of the returned value is expected one.

+
k
syntax KItem ::= (Type,Map,K,ControlCellFragment) + + rule <k> lambda(T,Ps,S)(Vs:Vals) ~> K => mkDecls(Ps,Vs) S return; </k> + <control> + <fstack> .List => ListItem((T',Env,K,C)) ...</fstack> + <returnType> T' => T </returnType> + C + </control> + <env> Env => GEnv </env> + <genv> GEnv </genv> + + rule <k> return V:Val; ~> _ => V ~> K </k> + <control> + <fstack> ListItem((T',Env,K,C)) => .List ...</fstack> + <returnType> T => T' </returnType> + (_ => C) + </control> + <env> _ => Env </env> + requires typeOf(V) ==K T // check the type of the returned value +
+

Like the undefined above, nothing also gets +tagged with a type now. The empty return statement is +completed to return the nothing value tagged as expected.

+
k
syntax Val ::= nothing(Type) + rule <k> return; => return nothing(T); ...</k> <returnType> T </returnType> +
+

Read

+
k
rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> [group(read)] +
+

Assignment

+

The assignment now checks that the type of the assigned location is +preserved:

+
k
context (HOLE => lvalue(HOLE)) = _ + + rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (V' => V) ...</store> + requires typeOf(V) ==K typeOf(V') [group(assignment)] +
+

Statements

+

Blocks

+
k
rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> +
+

Sequential composition

+
k
rule S1:Stmt S2:Stmt => S1 ~> S2 +
+

Expression statements

+
k
rule _:Val; => .K +
+

Conditional

+
k
rule if ( true) S else _ => S + rule if (false) _ else S => S +
+

While loop

+
k
rule while (E) S => if (E) {S while(E)S} +
+

Print

+

We only allow printing integers and strings:

+
k
rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + requires typeOf(V) ==K int orBool typeOf(V) ==K string [group(print)] + rule print(.Vals); => .K +
+

Exceptions

+

Exception parameters are now typed, but note that the semantics below +works correctly only when the thrown exception has the same type as +the innermost try-catch paramete. To keep things simple, for the time +being we can assume that SIMPLE only throws and catches integer +values, in which case our semantics below works fine:

+
k
syntax KItem ::= (Param,Stmt,K,Map,ControlCellFragment) // Param instead of Id + + syntax KItem ::= "popx" + + rule <k> (try S1 catch(P) S2 => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem((P, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ => { T X = V; S2 } ~> K </k> + <control> + <xstack> ListItem((T:Type X:Id, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

Threads

+

Thread creation

+
k
rule <thread>... + <k> spawn S => !T:Int +Int 1 ...</k> + <env> Env </env> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T +Int 1 </id> + ...</thread>) +
+

Thread termination

+
k
rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> +
+

Thread joining

+
k
rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> +
+

Acquire lock

+
k
rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy:Set)) [group(acquire)] + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds> +
+

Release lock

+
k
rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N:Int -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> +
+

Rendezvous synchronization

+
k
rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> [group(rendezvous)] +
+

Auxiliary declarations and operations

+

Turns a list of parameters and a list of instance values for them +into a list of variable declarations.

+
k
syntax Stmt ::= mkDecls(Params,Vals) [function] + rule mkDecls((T:Type X:Id, Ps:Params), (V:Val, Vs:Vals)) + => T X=V; mkDecls(Ps,Vs) + rule mkDecls(.Params,.Vals) => {} +
+

Location lookup.

+
k
syntax Exp ::= lookup(Int) // see NOTES.md for why Exp instead of KItem + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> [group(lookup)] +
+

Environment recovery.

+
k
// TODO: same comment regarding setEnv(...) as for simple untyped + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> + rule (setEnv(_) => .K) ~> setEnv(_) +
+

lvalue and loc

+
k
syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + + //context lvalue(_[HOLE]) + //context lvalue(HOLE[_]) + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + + rule lvalue(lookup(L:Int) => loc(L)) +
+

Adds the corresponding depth to an array type

+
k
syntax Type ::= Type "<" Vals ">" [function] + rule T:Type<_,Vs:Vals> => T[]<Vs> + rule T:Type<.Vals> => T +
+

Sequences of locations.

+
k
syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M + +// Type of a value. + syntax Type ::= typeOf(K) [function] + rule typeOf(_:Int) => int + rule typeOf(_:Bool) => bool + rule typeOf(_:String) => string + rule typeOf(array(T,_,_)) => (T[]) // () needed! K parses [] as "no tags" + rule typeOf(lambda(T,Ps,_)) => getTypes(Ps) -> T + rule typeOf(undefined(T)) => T + rule typeOf(nothing(T)) => T +
+

List of types of a parameter.

+
k
syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types // I would like to not use .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/index.html new file mode 100644 index 00000000000..8106f5dd440 --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/index.html @@ -0,0 +1,1522 @@ + + + + + + + + + + + + + + +KOOL — Untyped | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

KOOL — Untyped

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of the untyped KOOL language. KOOL +is aimed at being a pedagogical and research language that captures +the essence of the object-oriented programming paradigm. Its untyped +variant discussed here is simpler than the typed one, ignoring several +intricate aspects of types in the presence of objects. A program +consists of a set of class declarations. Each class can extend at +most one other class (KOOL is single-inheritance). A class can +declare a set of fields and a set of methods, all public and called +the class' members. Specifically, KOOL includes the +following features:

+
    +
  • +

    Class declarations, where a class may or may not explicitly +extend another class. In case a class does not explicitly extend +another class, then it is assumed that it extends the default top-most +and empty (i.e., no members) class called Object. Each class +is required to declare precisely one homonymous method, called its +constructor. Each valid program should contain one class +named Main, whose constructor, Main(), takes no +arguments. The execution of a program consists of creating an object +instance of class Main and invoking the constructor +Main() on it, that is, of executing new Main();.

    +
  • +
  • +

    All features of SIMPLE (see examples/simple/untyped), +i.e., multidimensional arrays, function (here called "method") +abstractions with call-by-value parameter passing style and static +scoping, blocks with locals, input/output, parametric exceptions, and +concurrency via dynamic thread creation/termination and synchronization. +The only change in the syntax of SIMPLE when imported in KOOL is the +function declaration keyword, function, which is changed into +method. The exact same desugaring macros from SIMPLE are +also included in KOOL. We can think of KOOL's classes as embedding +SIMPLE programs (extended with OO constructs, as discussed next).

    +
  • +
  • +

    Object creation using the new C(e1,...,en) +expression construct. An object instance of class C is first +created and then the constructor C(e1,...,en) is implicitly +called on that object. KOOL only allows (and requires) one +constructor per class. The class constructor can be called either +implicitly during a new object creation for the class, or explicitly. +The superclass constructor is not implicitly invoked when a +class constructor is invoked; if you want to invoke the superclass +constructor from a subclass constructor then you have to do it +explicitly.

    +
  • +
  • +

    An expression construct this, which evaluates to the +current object.

    +
  • +
  • +

    An expression construct super, which is used (only) in +combination with member lookup (see next) to refer to a superclass +field or method.

    +
  • +
  • +

    A member lookup expression construct e.x, where e +is an expression (either an expression expected to evaluate to an object +or the super construct) and x is a class member name, +that is, a field or a method name.

    +
  • +
  • +

    Expression constructs e instanceOf C and +(C) e, where e is an expression expected +to evaluate to an object and C a class name. The former +tells whether the class of e is a subclass of C, +that is, whether e can be used as an instance of C, +and the latter changes the class of e to C. These +operations always succeed: the former returns a Boolean value, while +the latter changes the current class of e to C +regardless of whether it is safe to do so or not. The typed version +of KOOL will check the safety of casting by ensuring that the instance +class of the object is a subclass of C. In untyped KOOL we +do not want to perform this check because we want to allow the +programmer maximum of flexibility: if one always accesses only +available members, then the program can execute successfully despite +the potentially unsafe cast.

    +
  • +
+

There are some specific aspects of KOOL that need to be discussed.

+

First, KOOL is higher-order, allowing function abstractions to be +treated like any other values in the language. For example, if +m is a method of object e then e.m +evaluates to the corresponding function abstraction. The function +abstraction is in fact a closure, because in addition to the method +parameters and body it also encapsulates the object value (i.e., the +environment of the object together with its current class—see below) +that e evaluates to. This way, function abstractions can be +invoked anywhere and have the capability to change the state of their +object. For example, if m is a method of object e +which increments a field c of e when invoked, and if +getm is another method of e which simply returns +m when invoked, then the double application +(e.getm())() has the same effect as e.m(), that is, +increments the counter c of e. Note that the +higher-order nature of KOOL was not originally planned; it came as a +natural consequence of evaluating methods to closures and we decided +to keep it. If you do not like it then do not use it.

+

Second, since all the fields and methods are public in KOOL and since +they can be redeclared in subclasses, it is not immediately clear how +to lookup the member x when we write e.x and +e is different from super. We distinguish two cases, +depending on whether e.x occurs in a method invocation +context (i.e., e.x(...)) or in a field context. KOOL has +dynamic method dispatch, so if e.x is invoked as a method +then x will be searched for starting with the instance class of +the object value to which e evaluates. If e.x +occurs in a non-method-invocation context then x will be +treated as a field (although it may hold a method closure due to the +higher-order nature of KOOL) and thus will be searched starting with +the current class of the object value of e (which, because of +this and casting, may be different from its instance class). +In order to achieve the above, each object value will consist of a +pair holding the current class of the object and an environment stack +with one layer for each class in the object's instance class hierarchy.

+

Third, although KOOL is dynamic method dispatch, its capabilities +described above are powerful enough to allow us to mimic static +method dispatch. For example, suppose that you want to invoke method +m() statically. Then all you need to do is to declare a +local variable and bind it to m, for example var staticm = m;, and +then call staticm(). This works because +staticm is first bound to the method closure that m +evaluates to, and then looked up as any local variable when invoked. +We only enable the dynamic method dispatch when we have an object +member on an application position, e.g., m().

+

In what follows, we limit our comments to the new, KOOL-specific +aspects of the language. We refer the reader to the untyped SIMPLE +language for documentation on the the remaining features, because +those were all borrowed from SIMPLE.

+
k
module KOOL-UNTYPED-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of KOOL extends that of SIMPLE with object-oriented +constructs. We removed from the K annotated syntax of SIMPLE two +constructs, namely the one for function declarations (because we want +to call them methods now) and the one for function application +(because application is not strict in the first argument +anymore—needs to initiate dynamic method dispatch). The additional +syntax includes:

+
    +
  • First, we need a new dedicated identifier, Object, for +the default top-most class.
  • +
  • Second, we rename the function keyword of SIMPLE into method.
  • +
  • Third, we add syntax for class declarations together with a +macro making classes which extend nothing to extend Object.
  • +
  • Fourth, we change the strictness attribute of application +into strict(2).
  • +
  • Finally, we add syntax and corresponding strictness +for the KOOL object-oriented constructs.
  • +
+
k
syntax Id ::= "Object" [token] | "Main" [token] + + syntax Stmt ::= "var" Exps ";" + | "method" Id "(" Ids ")" Block // called "function" in SIMPLE + | "class" Id Block // KOOL + | "class" Id "extends" Id Block // KOOL + + syntax Exp ::= Int | Bool | String | Id + | "this" // KOOL + | "super" // KOOL + | "(" Exp ")" [bracket] + | "++" Exp + | Exp "instanceOf" Id [strict(1)] // KOOL + | "(" Id ")" Exp [strict(2)] // KOOL cast + | "new" Id "(" Exps ")" [strict(2)] // KOOL + | Exp "." Id // KOOL + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict(2)] // was strict in SIMPLE + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] + + syntax Ids ::= List{Id,","} + + syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Vals ::= List{Val,","} [overload(exps)] + + syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" [macro] + | "print" "(" Exps ")" ";" [strict] + | "try" Block "catch" "(" Id ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [right] +
+

Old desugaring rules, from SIMPLE

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S} => {Start while (Cond) {S Step;}} + rule var E1::Exp, E2::Exp, Es::Exps; => var E1; var E2, Es; [anywhere] + rule var X::Id = E; => var X; X = E; [anywhere] +
+

New desugaring rule

+
k
rule class C:Id S => class C extends Object S // KOOL + +endmodule +
+

Semantics

+

We first discuss the new configuration of KOOL, which extends that of +SIMPLE. Then we include the semantics of the constructs borrowed from +SIMPLE unchanged; we refrain from discussing those, because they were +already discussed in the K definition of SIMPLE. Then we discuss +changes to SIMPLE's semantics needed for the more general meaning of +the previous SIMPLE constructs (for example for thread spawning, +assignment, etc.). Finally, we discuss in detail the +semantics of the additional KOOL constructs.

+
k
module KOOL-UNTYPED + imports KOOL-UNTYPED-SYNTAX + imports DOMAINS +
+

Configuration

+

KOOL removes one cell and adds two nested cells to the configuration +of SIMPLE. The cell which is removed is the one holding the global +environment, because a KOOL program consists of a set of classes only, +with no global declarations. In fact, since informally speaking each +KOOL class now includes a SIMPLE program, it is safe to say that the +global variables in SIMPLE became class fields in KOOL. Let us now +discuss the new cells that are added to the configuration of SIMPLE.

+
    +
  • +

    The cell crntObj holds data pertaining to the current +object, that is, the object environment in which the code in cell +k executes: crntClass holds the current class (which +can change as methods of the current object are invoked); +envStack holds the stack of environments as a list, +each layer corresponding to one class in the objects' instance class +hierarchy; location, which is optional, holds the location in +the store where the current object is or has to be located (this is +useful both for method closures and for the semantics of object +creation).

    +
  • +
  • +

    The cell classes holds all the declared classes, each +class being held in its own class cell which contains a name +(className), a parent (extends), and the actual +member declarations (declarations).

    +
  • +
+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + syntax EnvCell + syntax ControlCell + syntax EnvStackCell + syntax CrntObjCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" type="Set" color="yellow"> + <k color="green"> $PGM:Stmt ~> execute </k> + //<br/> // TODO(KORE): support latex annotations #1799 + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + //<br/> // TODO(KORE): support latex annotations #1799 + <crntObj color="Fuchsia"> // KOOL + <crntClass> Object </crntClass> + <envStack> .List </envStack> + <location multiplicity="?"> .K </location> + </crntObj> + </control> + //<br/> // TODO(KORE): support latex annotations #1799 + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + <id color="pink"> 0 </id> + </thread> + </threads> + //<br/> // TODO(KORE): support latex annotations #1799 + <store color="white"> .Map </store> + <busy color="cyan">.Set </busy> + <terminated color="red"> .Set </terminated> + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <classes color="Fuchsia"> // KOOL + <classData multiplicity="*" type="Map" color="Fuchsia"> + // the Map has as its key the first child of the cell, + // in this case the className cell. + <className color="Fuchsia"> Main </className> + <baseClass color="Fuchsia"> Object </baseClass> + <declarations color="Fuchsia"> .K </declarations> + </classData> + </classes> + </T> +
+

Unchanged Semantics from untyped SIMPLE

+

The semantics below is taken over from SIMPLE unchanged. +The semantics of function declaration and invocation, including the +use of the special lambda abstraction value, needs to change +in order to account for the fact that methods are now invoked into +their object's environment. The semantics of function return actually +stays unchanged. Also, the semantics of program initialization is +different: now we have to create an instance of the Main +class which also calls the constructor Main(), while in +SIMPLE we only had to invoke the function Main(). +Finally, the semantics of thread spawning needs to change, too: the +parent thread needs to also share its object environment with the +spawned thread (in addition to its local environment, like in SIMPLE). +This is needed in order to be able to spawn method invokations under +dynamic method dispatch; for example, spawn { run(); } +will need to look up the method run() in the newly created +thread, operation which will most likely fail unless the child thread +sees the object environment of the parent thread. Note that the +spawn statement of KOOL is more permissive than the threads +of Java. In fact, the latter can be implemented in terms of our +spawn—see the program threads.kool for a sketch.

+

Below is a subset of the values of SIMPLE, which are also values +of KOOL. We will add other values later in the semantics, such as +object and method closures.

+
k
syntax Val ::= Int | Bool | String + | array(Int,Int) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + syntax KResult ::= Vals +
+

The semantics below are taken verbatim from the untyped SIMPLE +definition.

+
k
syntax KItem ::= "undefined" + + rule <k> var X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined ...</store> + <nextLoc> L:Int => L +Int 1 </nextLoc> + + + context var _:Id[HOLE]; + + rule <k> var X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(L +Int 1, N) + (L +Int 1) ... (L +Int N) |-> undefined ...</store> + <nextLoc> L:Int => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 + + + syntax Id ::= "$1" [token] | "$2" [token] + rule var X:Id[N1:Int, N2:Int, Vs:Vals]; + => var X[N1]; + { + var $1=X; + for(var $2=0; $2 <= N1 - 1; ++$2) { + var X[N2,Vs]; + $1[$2] = X; + } + } + + + rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> [group(lookup)] + + + context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I:Int => I +Int 1) ...</store> [group(increment)] + + + rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E + + + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + + rule array(L,_)[N:Int] => lookup(L +Int N) + [anywhere] + + + rule sizeOf(array(_,N)) => N +
+

The semantics of function application needs to change into dynamic +method dispatch invocation, which is defined shortly. However, +interestingly, the semantics of return stays unchanged.

+
k
rule <k> return(V:Val); ~> _ => V ~> K </k> + <control> + <fstack> ListItem(fstackFrame(Env,K,XS,<crntObj> CO </crntObj>)) => .List ...</fstack> + <xstack> _ => XS </xstack> + <crntObj> _ => CO </crntObj> + </control> + <env> _ => Env </env> + + syntax Val ::= "nothing" + rule return; => return nothing; + + + rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> [group(read)] + + + context (HOLE => lvalue(HOLE)) = _ + + rule <k> loc(L) = V:Val => V ...</k> <store>... L |-> (_ => V) ...</store> + [group(assignment)] + + + rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> + + + rule S1::Stmt S2::Stmt => S1 ~> S2 + + rule _:Val; => .K + + rule if ( true) S else _ => S + rule if (false) _ else S => S + + rule while (E) S => if (E) {S while(E)S} + + rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + [group(print)] + rule print(.Vals); => .K + + + syntax KItem ::= xstackFrame(Id,Stmt,K,Map,K) + // TODO(KORE): drop the additional production once parsing issue #1842 is fixed + | (Id,Stmt,K,Map,K) + + syntax KItem ::= "popx" + + rule <k> (try S1 catch(X) {S2} => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem(xstackFrame(X, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ => { var X = V; S2 } ~> K </k> + <control> + <xstack> ListItem(xstackFrame(X, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

Thread spawning needs a new semantics, because we want the child +thread to also share the object environment with its parent. The new +semantics of thread spawning will be defined shortly. However, +interestingly, the other concurrency constructs keep their semantics +from SIMPLE unchanged.

+
k
// TODO(KORE): ..Bag should be . throughout this definition #1772 + rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + /* + rule (<thread>... <k>.</k> <holds>H</holds> <id>T</id> ...</thread> => .) + */ + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> + + rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> + + rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy:Set)) [group(acquire)] + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds> + + rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N:Int -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> + + rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> [group(rendezvous)] +
+

Unchanged auxiliary operations from untyped SIMPLE

+
k
syntax Stmt ::= mkDecls(Ids,Vals) [function] + rule mkDecls((X:Id, Xs:Ids), (V:Val, Vs:Vals)) => var X=V; mkDecls(Xs,Vs) + rule mkDecls(.Ids,.Vals) => {} + + // TODO(KORE): clarify sort inferences #1803 + syntax Exp ::= lookup(Int) + /* + syntax KItem ::= lookup(Int) + */ + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> [group(lookup)] + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> + rule (setEnv(_) => .K) ~> setEnv(_) + // TODO: How can we make sure that the second rule above applies before the first one? + // Probably we'll deal with this using strategies, eventually. + + syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + + rule lvalue(lookup(L:Int) => loc(L)) + + + syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M +
+

Changes to the existing untyped SIMPLE semantics

+

When we extend a language, sometimes we need to do more than just add +new language constructs and semantics for them. Sometimes we want to +also extend the semantics of existing language constructs, in order to +get more from them.

+

Program initialization

+

In SIMPLE, once all the global declarations were processed, the +function main() was invoked. In KOOL, the global +declarations are classes, and their specific semantics is given +shortly; essentially, they are pre-processed one by one and added +into the class cell structure in the configuration. +Once all the classes are processed, the computation item +execute, which was placed right after the program in the +initial configuration, is reached. In SIMPLE, the program was +initialized by calling the method main(). In KOOL, the +program is initialized by creating an object instance of class +Main. This will also implicitly call the method +Main() (the Main class constructor). The emptiness +of the env cell below is just a sanity check, to make sure +that the user has not declared anything but classes at the top level +of the program.

+
k
syntax KItem ::= "execute" + rule <k> execute => new Main(.Exps); </k> <env> .Map </env> +
+

The semantics of new (defined below) requires the +execution of all the class' declarations (and also of its +superclasses').

+

Object and method closures

+

Before we can define the semantics of method application (previously +called function application in SIMPLE), we need to add two more values +to the language, namely object and method closures:

+
k
syntax Val ::= objectClosure(Id, List) + | methodClosure(Id,Int,Ids,Stmt) +
+

An object value consists of an objectClosure-wrapped bag +containing the current class of the object and the environment stack +of the object. The current class of an object will always be one of +the classes mapped to an environment in the environment stack of the +object. A method closure encapsulates the method's parameters and +code (last two arguments), as well as the object context in which the +method code should execute. This object context includes the current +class of the object (the first argument of methodClosure) and +the object environment stack (located in the object stored at the +location specified as the second argument of methodClosure).

+

Method application

+

KOOL has a complex mechanism to invoke methods, because it allows both +dynamic method dispatch and methods as first-class-citizen values (the +latter making it a higher-order language). The invocation mechanism +will be defined later. What is sufficient to know for now is that +the two arguments of the application construct eventually reduce to +values, the first being a method closure and the latter a list of +values. The semantics of the method closure application is then as +expected: the local environment and control are stacked, then we +switch to method closure's class and object environment and execute +the method body. The mkDecls construct is the one that came +with the unchanged semantics of SIMPLE above.

+
k
syntax KItem ::= fstackFrame(Map,K,List,K) + // TODO(KORE): drop the additional production once parsing issue #1842 is fixed + | (Map,K,K) + + rule <k> methodClosure(Class,OL,Xs,S)(Vs:Vals) ~> K + => mkDecls(Xs,Vs) S return; </k> + <env> Env => .Map </env> + <store>... OL |-> objectClosure(_, EnvStack)...</store> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> + <xstack> XS </xstack> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj' </crntObj>)) + ...</fstack> + <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EnvStack </envStack> </crntObj> + </control> +
+

Spawn

+

We want to extend the semantics of spawn to also share the +current object environment with the child thread, in addition to the +current environment. This extension will allow us to also use method +invocations in the spawned statements, which will be thus looked up as +expected, using dynamic method dispatch. This lookup operation would +fail if the child thread did not have access to its parent's object +environment.

+
k
rule <thread>... + <k> spawn S => !T:Int ...</k> + <env> Env </env> + <crntObj> Obj </crntObj> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T </id> + <crntObj> Obj </crntObj> + ...</thread>) +
+

Semantics of the new KOOL constructs

+

Class declaration

+

Initially, the classes forming the program are moved into their +corresponding cells:

+
k
rule <k> class Class1 extends Class2 { S } => .K ...</k> + <classes>... (.Bag => <classData> + <className> Class1 </className> + <baseClass> Class2 </baseClass> + <declarations> S </declarations> + </classData>) + ...</classes> +
+

Method declaration

+

Like in SIMPLE, method names are added to the environment and bound +to their code. However, unlike in SIMPLE where each function was +executed in the same environment, namely the program global +environment, a method in KOOL needs to be executed into its object's +environment. Thus, methods evaluate to closures, which encapsulate +their object's context (i.e., the current class and environment stack +of the object) in addition to method's parameters and body. This +approach to bind method names to method closures in the environment +will also allow objects to pass their methods to other objects, to +dynamically change their methods by assigning them other method +closures, and even to allow all these to be done from other objects. +This gives the KOOL programmer a lot of power; one should use this +power wisely, though, because programs can become easily hard to +understand and reason about if one overuses these features.

+
k
rule <k> method F:Id(Xs:Ids) S => .K ...</k> + <crntClass> Class:Id </crntClass> + <location> OL:Int </location> + <env> Env => Env[F <- L] </env> + <store>... .Map => L |-> methodClosure(Class,OL,Xs,S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

New

+

The semantics of new consists of two actions: memory +allocation for the new object and execution of the corresponding +constructor. Then the created object is returned as the result of the +new operation; the value returned by the constructor, if any, +is discarded. The current environment and object are stored onto the +stack and recovered after new (according to the semantics of +return borrowed from SIMPLE, when the statement +return this; in the rule below is reached and evaluated), +because the object creation part of new will destroy them. +The rule below also initializes the object creation process by +emptying the local environment and the current object, and allocating +a location in the store where the created object will be eventually +stored (this is what the storeObj task after the object +creation task in the rule below will do—its rule is defined +shortly). The location where the object will be stored is also made +available in the crntObj cell, so that method closures can +refer to it (see rule above).

+
k
syntax KItem ::= "envStackFrame" "(" Id "," Map ")" + + rule <k> new Class:Id(Vs:Vals) ~> K + => create(Class) ~> storeObj ~> Class(Vs); return this; </k> + <env> Env => .Map </env> + <nextLoc> L:Int => L +Int 1 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> <xstack> XS </xstack> + <crntObj> Obj + => <crntClass> Object </crntClass> + <envStack> ListItem(envStackFrame(Object, .Map)) </envStack> + <location> L </location> + </crntObj> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, <crntObj> Obj </crntObj>)) ...</fstack> + </control> +
+

The creation of a new object (the memory allocation part only) is +a recursive process, requiring to first create an object for the +superclass. A memory object representation is a layered structure: +for each class on the path from the instance class to the root of the +hierarchy there is a layer including the memory allocated for the +members (both fields and methods) of that class.

+
k
syntax KItem ::= create(Id) + + rule <k> create(Class:Id) + => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k> + <className> Class </className> + <baseClass> Class1:Id </baseClass> + <declarations> S </declarations> + + rule <k> create(Object) => .K ...</k> +
+

The next operation sets the current class of the current object. +This is necessary to be done at each layer, because the current class +of the object is enclosed as part of the method closures (see the +semantics of method declarations above).

+
k
syntax KItem ::= setCrntClass(Id) + + rule <k> setCrntClass(C) => .K ...</k> + <crntClass> _ => C </crntClass> +
+

The next operation adds a new tagged environment layer to the +current object and gets ready for the next layer by clearing the +environment (note that create expects the environment to be +empty).

+
k
syntax KItem ::= "addEnvLayer" + + rule <k> addEnvLayer => .K ...</k> + <env> Env => .Map </env> + <crntClass> Class:Id </crntClass> + <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack> +
+

The following operation stores the created object at the location +reserved by new. Note that the location reserved by +new was temporarily stored in the crntObj cell +precisely for this purpose. Now that the newly created object is +stored at its location and that all method closures are aware of it, +the location is unnecessary and thus we delete it from the +crntObj cell.

+
k
syntax KItem ::= "storeObj" + + rule <k> storeObj => .K ...</k> + <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> (<location> L:Int </location> => .Bag) </crntObj> + <store>... .Map => L |-> objectClosure(CC, ES) ...</store> +
+

Self reference

+

The semantics of this is straightforward: evaluate to the +current object.

+
k
rule <k> this => objectClosure(CC, ES) ...</k> + <crntObj> <crntClass> CC </crntClass> <envStack> ES </envStack> </crntObj> +
+

Object member access

+

We can access an object member (field or method) either explicitly, +using the construct e.x, or implicitly, using only the member +name x directly. The borrowed semantics of SIMPLE will +already lookup a sole name in the local environment. The first rule +below reduces implicit member access to explicit access when the name +cannot be found in the local environment. There are two cases to +analyze for explicit object member access, depending upon whether the +object is a proper object or it is just a redirection to the parent +class via the construct super. In the first case, we +evaluate the object expression and lookup the member starting with the +current class (static scoping). Note the use of the conditional +evaluation context. In the second case, we just lookup the member +starting with the superclass of the current class. In both cases, +the lookupMember task eventually yields a lookup(L) +task for some appropriate location L, which will be further +solved with the corresponding rule borrowed from SIMPLE. Note that the +current object is not altered by super, so future method +invocations see the entire object, as needed for dynamic method dispatch.

+
k
rule <k> X:Id => this . X ...</k> <env> Env:Map </env> + requires notBool(X in keys(Env)) + + context HOLE._::Id requires (HOLE =/=K super) + +// TODO: explain how Assoc matching has been replaced with two rules here. +// Maybe also improve it a bit. + +/* rule objectClosure(<crntClass> Class:Id </crntClass> + <envStack>... envStackFrame(Class,EnvC) EStack </envStack>) + . X:Id + => lookupMember(envStackFrame(Class,EnvC) EStack, X) */ + + rule objectClosure(Class:Id, ListItem(envStackFrame(Class,Env)) EStack) + . X:Id + => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X) + rule objectClosure(Class:Id, (ListItem(envStackFrame(Class':Id,_)) => .List) _) + . _X:Id + requires Class =/=K Class' + +/* rule <k> super . X => lookupMember(EStack, X) ...</k> + <crntClass> Class </crntClass> + <envStack>... envStackFrame(Class,EnvC) EStack </envStack> */ + rule <k> super . X => lookupMember(EStack, X) ...</k> + <crntClass> Class:Id </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> super . _X ...</k> + <crntClass> Class </crntClass> + <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack> + requires Class =/=K Class' +
+

Method invocation

+

Unlike in SIMPLE, in KOOL application was declared strict only in its +second argument. That is because we want to ensure dynamic method +dispatch when the first argument is a method access. As a +consequence, we need to consider all the cases of interest for the +first argument and to explicitly say what to do in each case. In all +cases except for method access in a proper object (i.e., not +super), we want the same behavior for the first argument as +if it was not in a method invocation position. When it is a member +access (the third rule below), we look it up starting with the +instance class of the corresponding object. This ensures dynamic +dispatch for methods; it actually dynamically dispatches field +accesses, too, which is correct in KOOL, because one can assign method +closures to fields and the field appeared in a method invocation +context. The last context declaration below says that method +applications or array accesses are also allowed as first argument to +applications; that is because methods are allowed to return methods +and arrays are allowed to hold methods in KOOL, since it is +higher-order. If that is the case, then we want to evaluate the +method call or the array access.

+
k
rule <k> (X:Id => V)(_:Exps) ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> [group(lookup)] + + rule <k> (X:Id => this . X)(_:Exps) ...</k> + <env> Env </env> + requires notBool(X in keys(Env)) + + context HOLE._::Id(_) requires HOLE =/=K super + + rule (objectClosure(_, EStack) . X + => lookupMember(EStack, X:Id))(_:Exps) + +/* rule <k> (super . X + => lookupMember(EStack,X))(_:Exps)...</k> + <crntClass> Class </crntClass> + <envStack>... envStackFrame(Class,_) EStack </envStack> */ + rule <k> (super . X + => lookupMember(EStack,X))(_:Exps)...</k> + <crntClass> Class </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> (super . _X)(_:Exps) ...</k> + <crntClass> Class </crntClass> + <envStack> ListItem(envStackFrame(Class':Id,_)) => .List ...</envStack> + requires Class =/=K Class' + + // TODO(KORE): fix getKLabel #1801 + rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C) + rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C) + rule V:Val ~> #freezerFunCall(C:Exps) => V(C) + syntax KItem ::= "#freezerFunCall" "(" K ")" + /* + context HOLE(_:Exps) + requires getKLabel(HOLE) ==K #klabel(`_(_)`) orBool getKLabel(HOLE) ==K #klabel(`_[_]`) + */ +
+

Eventually, each of the rules above produces a lookup(L) +task as a replacement for the method. When that happens, we just +lookup the value at location L:

+
k
rule <k> (lookup(L) => V)(_:Exps) ...</k> <store>... L |-> V:Val ...</store> + [group(lookup)] +
+

The value V looked up above is expected to be a method closure, +in which case the semantics of method application given above will +apply. Otherwise, the execution will get stuck.

+

Instance Of

+

It searches the object environment for a layer corresponding to the +desired class. It returns true iff it can find the class, +otherwise it returns false; it only gets stuck when its first +argument does not evaluate to an object.

+
k
rule objectClosure(_, ListItem(envStackFrame(C,_)) _) + instanceOf C => true + + rule objectClosure(_, (ListItem(envStackFrame(C,_)) => .List) _) + instanceOf C' requires C =/=K C' +//TODO: remove the sort cast ::Id of C above, when sort inference bug fixed + + rule objectClosure(_, .List) instanceOf _ => false +
+

Cast

+

In untyped KOOL, we prefer to not check the validity of casting. In +other words, any cast is allowed on any object, simply changing the +current class of the object to the desired class. The execution will +get stuck later if one attempts to access a field which is not +available. Moreover, the execution may complete successfully even +in the presence of invalid casts, provided that each accessed member +during the current execution is, or happens to be, available.

+
k
rule (C) objectClosure(_ , EnvStack) => objectClosure(C ,EnvStack) +
+

KOOL-specific auxiliary declarations and operations

+

Here we define all the auxiliary constructs used in the above +KOOL-specific semantics (those used in the SIMPLE fragment +have already been defined in a corresponding section above).

+

Objects as lvalues

+

The current machinery borrowed with the semantics of SIMPLE allows us +to enrich the set of lvalues, this way allowing new means to assign +values to locations. In KOOL, we want object member names to be +lvalues, so that we can assign values to them using the already +existing machinery. The first rule below ensures that the object is +always explicit, the evaluation context enforces the object to be +evaluated, and finally the second rule initiates the lookup for the +member's location based on the current class of the object.

+
k
rule <k> lvalue(X:Id => this . X) ...</k> <env> Env </env> + requires notBool(X in keys(Env)) + + context lvalue((HOLE . _)::Exp) + +/* rule lvalue(objectClosure(<crntClass> C </crntClass> + <envStack>... envStackFrame(C,EnvC) EStack </envStack>) + . X + => lookupMember(<envStack> envStackFrame(C,EnvC) EStack </envStack>, + X)) */ + rule lvalue(objectClosure(Class, ListItem(envStackFrame(Class,Env)) EStack) + . X + => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, + X)) + rule lvalue(objectClosure(Class, (ListItem(envStackFrame(Class':Id,_)) => .List) _) + . _X) + requires Class =/=K Class' +
+

Lookup member

+

It searches for the given member in the given environment stack, +starting with the most concrete class and going up in the hierarchy.

+
k
// TODO(KORE): clarify sort inferences #1803 + syntax Exp ::= lookupMember(List, Id) [function] + /* + syntax KItem ::= lookupMember(EnvStackCell,Id) [function] + */ + +// rule lookupMember(<envStack> envStackFrame(_, <env>... X|->L ...</env>) ...</envStack>, X) +// => lookup(L) + rule lookupMember(ListItem(envStackFrame(_, X|->L _)) _, X) + => lookup(L) + +// rule lookupMember(<envStack> envStackFrame(_, <env> Env </env>) => .List ...</envStack>, X) +// requires notBool(X in keys(Env)) + rule lookupMember(ListItem(envStackFrame(_, Env)) Rest, X) => + lookupMember(Rest, X) + requires notBool(X in keys(Env)) +//TODO: beautify the above + +endmodule +
+

Go to Lesson 2, KOOL typed dynamic.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/index.html new file mode 100644 index 00000000000..fa7b20aad5a --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/index.html @@ -0,0 +1,1381 @@ + + + + + + + + + + + + + + +KOOL — Typed — Dynamic | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

KOOL — Typed — Dynamic

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K dynamic semantics of the typed KOOL language. It is +very similar to the semantics of the untyped KOOL, the difference +being that we now check the typing policy dynamically. Since we have +to now declare the types of variables and methods, we adopt a syntax +for those which is close to Java. Like in the semantics of +untyped KOOL, where we borrowed almost all the semantics of untyped +SIMPLE, we are going to also borrow much of the semantics of +dynamically typed SIMPLE here. We will highlight the differences +between the dynamically typed and the untyped KOOL as we proceed with +the semantics. In general, the type policy of the typed KOOL language +is similar to that of Java. You may find it useful to also read +the discussion in the preamble of the static semantics of typed KOOL +before proceeding.

+
k
module KOOL-TYPED-DYNAMIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

Like for the untyped KOOL language, the syntax of typed KOOL extends +that of typed SIMPLE with object-oriented constructs. +The syntax below was produced by copying and modifying/extending the +syntax of dynamically typed SIMPLE. In fact, the only change we made +to the existing syntax of dynamically typed SIMPLE was to change the +strictness of the application construct like in untyped KOOL, from +strict to strict(2) (because application is not +strict in the first argument anymore due to dynamic method dispatch). +The KOOL-specific syntactic extensions are identical to those in +untyped KOOL.

+
k
syntax Id ::= "Object" [token] | "Main" [token] +
+

Types

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Id // KOOL class + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + syntax Types ::= List{Type,","} +
+

Declarations

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" [avoid] + | Type Id "(" Params ")" Block // stays like in typed SIMPLE + | "class" Id Block // KOOL + | "class" Id "extends" Id Block // KOOL +
+

Expressions

+
k
syntax Exp ::= Int | Bool | String | Id + | "this" // KOOL + | "super" // KOOL + | "(" Exp ")" [bracket] + | "++" Exp + | Exp "instanceOf" Id [strict(1)] // KOOL + | "(" Id ")" Exp [strict(2)] // KOOL cast + | "new" Id "(" Exps ")" [strict(2)] // KOOL + | Exp "." Id // KOOL + > Exp "[" Exps "]" [strict] + > Exp "(" Exps ")" [strict(2)] // was strict in SIMPLE + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict(1), left] + | Exp "||" Exp [strict(1), left] + > "spawn" Block + > Exp "=" Exp [strict(2), right] + + syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Vals ::= List{Val,","} [overload(exps)] +
+

Statements

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict(1)] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "print" "(" Exps ")" ";" [strict] + | "return" Exp ";" [strict] + | "return" ";" + | "try" Block "catch" "(" Param ")" Block + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [right] +
+

Desugaring macros

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S::Stmt} => {Start while(Cond){S Step;}} + rule T::Type E1::Exp, E2::Exp, Es::Exps; => T E1; T E2, Es; [anywhere] + rule T::Type X::Id = E; => T X; X = E; [anywhere] + + rule class C:Id S => class C extends Object S // KOOL + +endmodule +
+

Semantics

+

We first discuss the new configuration, then we include the semantics of +the constructs borrowed from SIMPLE which stay unchanged, then those +whose semantics had to change, and finally the semantics of the +KOOL-specific constructs.

+
k
module KOOL-TYPED-DYNAMIC + imports KOOL-TYPED-DYNAMIC-SYNTAX + imports DOMAINS +
+

Configuration

+

The configuration of dynamically typed KOOL is almost identical to +that of its untyped variant. The only difference is the cell +return, inside the control cell, whose role is to +hold the expected return type of the invoked method. That is because +we want to dynamically check that the value that a method returns has +the expected type.

+
k
// the syntax declarations below are required because the sorts are + // referenced directly by a production and, because of the way KIL to KORE + // is implemented, the configuration syntax is not available yet + // should simply work once KIL is removed completely + // check other definitions for this hack as well + syntax EnvCell + syntax ControlCellFragment + syntax EnvStackCell + syntax CrntObjCellFragment + + configuration <T color="red"> + <threads color="orange"> + <thread multiplicity="*" type="Set" color="yellow"> + <k color="green"> ($PGM:Stmt ~> execute) </k> + //<br/> // TODO(KORE): support latex annotations #1799 + <control color="cyan"> + <fstack color="blue"> .List </fstack> + <xstack color="purple"> .List </xstack> + <returnType color="LimeGreen"> void </returnType> // KOOL + //<br/> // TODO(KORE): support latex annotations #1799 + <crntObj color="Fuchsia"> // KOOL + <crntClass> Object </crntClass> + <envStack> .List </envStack> + <location multiplicity="?"> .K </location> + </crntObj> + </control> + //<br/> // TODO(KORE): support latex annotations #1799 + <env color="violet"> .Map </env> + <holds color="black"> .Map </holds> + <id color="pink"> 0 </id> + </thread> + </threads> + //<br/> // TODO(KORE): support latex annotations #1799 + <store color="white"> .Map </store> + <busy color="cyan">.Set </busy> + <terminated color="red"> .Set </terminated> + <input color="magenta" stream="stdin"> .List </input> + <output color="brown" stream="stdout"> .List </output> + <nextLoc color="gray"> 0 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <classes color="Fuchsia"> // KOOL + <classData multiplicity="*" type="Map" color="Fuchsia"> + <className color="Fuchsia"> Main </className> + <baseClass color="Fuchsia"> Object </baseClass> + <declarations color="Fuchsia"> .K </declarations> + </classData> + </classes> + </T> +
+

Unchanged semantics from dynamically typed SIMPLE

+

The semantics below is taken over from dynamically typed SIMPLE +unchanged. Like for untyped KOOL, the semantics of function/method +declaration and invocation, and of program initialization needs to +change. Moreover, due to subtyping, the semantics of several imported +SIMPLE constructs can be made more general, such as that of the +return statement, that of the assignment, and that of the exceptions. +We removed all these from the imported semantics of SIMPLE below and +gave their modified semantics right after, together with the extended +semantics of thread spawning (which is identical to that of untyped +KOOL).

+
k
syntax Val ::= Int | Bool | String + | array(Type,Int,Int) + syntax Exp ::= Val + syntax Exps ::= Vals + syntax KResult ::= Val + syntax KResult ::= Vals + + + syntax KItem ::= undefined(Type) + + rule <k> T:Type X:Id; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 </nextLoc> + + + rule <k> T:Type X:Id[N:Int]; => .K ...</k> + <env> Env => Env[X <- L] </env> + <store>... .Map => L |-> array(T, L +Int 1, N) + (L +Int 1)...(L +Int N) |-> undefined(T) ...</store> + <nextLoc> L:Int => L +Int 1 +Int N </nextLoc> + requires N >=Int 0 + + context _:Type _::Exp[HOLE::Exps]; + + + syntax Id ::= "$1" [token] | "$2" [token] + rule T:Type X:Id[N1:Int, N2:Int, Vs:Vals]; + => T[]<Vs> X[N1]; + { + T[][]<Vs> $1=X; + for(int $2=0; $2 <= N1 - 1; ++$2) { + T X[N2,Vs]; + $1[$2] = X; + } + } + + + rule <k> X:Id => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> [group(lookup)] + + + context ++(HOLE => lvalue(HOLE)) + rule <k> ++loc(L) => I +Int 1 ...</k> + <store>... L |-> (I:Int => I +Int 1) ...</store> [group(increment)] + + + rule I1 + I2 => I1 +Int I2 + rule Str1 + Str2 => Str1 +String Str2 + rule I1 - I2 => I1 -Int I2 + rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E + + + rule V:Val[N1:Int, N2:Int, Vs:Vals] => V[N1][N2, Vs] + [anywhere] + + rule array(_:Type, L:Int, M:Int)[N:Int] => lookup(L +Int N) + requires N >=Int 0 andBool N <Int M [anywhere] + + rule sizeOf(array(_,_,N)) => N + + + syntax Val ::= nothing(Type) + rule <k> return; => return nothing(T); ...</k> <returnType> T </returnType> + + + rule <k> read() => I ...</k> <input> ListItem(I:Int) => .List ...</input> [group(read)] + + + context (HOLE => lvalue(HOLE)) = _ + + + rule {} => .K + rule <k> { S } => S ~> setEnv(Env) ...</k> <env> Env </env> + + + rule S1:Stmt S2:Stmt => S1 ~> S2 + + + rule _:Val; => .K + + + rule if ( true) S else _ => S + rule if (false) _ else S => S + + + rule while (E) S => if (E) {S while(E)S} + + + rule <k> print(V:Val, Es => Es); ...</k> <output>... .List => ListItem(V) </output> + requires typeOf(V) ==K int orBool typeOf(V) ==K string [group(print)] + rule print(.Vals); => .K + + + rule (<thread>... <k>.K</k> <holds>H</holds> <id>T</id> ...</thread> => .Bag) + <busy> Busy => Busy -Set keys(H) </busy> + <terminated>... .Set => SetItem(T) ...</terminated> + + rule <k> join T:Int; => .K ...</k> + <terminated>... SetItem(T) ...</terminated> + + rule <k> acquire V:Val; => .K ...</k> + <holds>... .Map => V |-> 0 ...</holds> + <busy> Busy (.Set => SetItem(V)) </busy> + requires (notBool(V in Busy:Set)) [group(acquire)] + + rule <k> acquire V; => .K ...</k> + <holds>... V:Val |-> (N:Int => N +Int 1) ...</holds> + + rule <k> release V:Val; => .K ...</k> + <holds>... V |-> (N => N:Int -Int 1) ...</holds> + requires N >Int 0 + + rule <k> release V; => .K ...</k> <holds>... V:Val |-> 0 => .Map ...</holds> + <busy>... SetItem(V) => .Set ...</busy> + + rule <k> rendezvous V:Val; => .K ...</k> + <k> rendezvous V; => .K ...</k> [group(rendezvous)] +
+

Unchanged auxiliary operations from dynamically typed SIMPLE

+
k
syntax Stmt ::= mkDecls(Params,Vals) [function] + rule mkDecls((T:Type X:Id, Ps:Params), (V:Val, Vs:Vals)) + => T X=V; mkDecls(Ps,Vs) + rule mkDecls(.Params,.Vals) => {} + + syntax Exp ::= lookup(Int) + rule <k> lookup(L) => V ...</k> <store>... L |-> V:Val ...</store> [group(lookup)] + + syntax KItem ::= setEnv(Map) + rule <k> setEnv(Env) => .K ...</k> <env> _ => Env </env> + rule (setEnv(_) => .K) ~> setEnv(_) + + syntax Exp ::= lvalue(K) + syntax Val ::= loc(Int) + rule <k> lvalue(X:Id => loc(L)) ...</k> <env>... X |-> L:Int ...</env> + + context lvalue(_::Exp[HOLE::Exps]) + context lvalue(HOLE::Exp[_::Exps]) + + rule lvalue(lookup(L:Int) => loc(L)) + + syntax Type ::= Type "<" Vals ">" [function] + rule T:Type<_,Vs:Vals> => T[]<Vs> + rule T:Type<.Vals> => T + + syntax Map ::= Int "..." Int "|->" K [function] + rule N...M |-> _ => .Map requires N >Int M + rule N...M |-> K => N |-> K (N +Int 1)...M |-> K requires N <=Int M + + syntax Type ::= typeOf(K) [function] + rule typeOf(_:Int) => int + rule typeOf(_:Bool) => bool + rule typeOf(_:String) => string + rule typeOf(array(T,_,_)) => (T[]) + rule typeOf(undefined(T)) => T + rule typeOf(nothing(T)) => T + + syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types +
+

Changes to the existing dynamically typed SIMPLE semantics

+

We extend/change the semantics of several SIMPLE constructs in order +to take advantage of the richer KOOL semantic infrastructure and thus +get more from the existing SIMPLE constructs.

+

Program initialization

+

Like in untyped KOOL.

+
k
syntax KItem ::= "execute" + rule <k> execute => new Main(.Exps); </k> <env> .Map </env> +
+

Method application

+

The only change to untyped KOOL's values is that method closures are +now typed (their first argument holds their type):

+
k
syntax Val ::= objectClosure(Id,List) + | methodClosure(Type,Id,Int,Params,Stmt) +
+

The type held by a method clossure will be the entire type of the +method, not only its result type like the lambda-closure of typed +SIMPLE. The reason for this change comes from the the need to +dynamically upcast values when passed to contexts where values of +superclass types are expected; since we want method closures to be +first-class-citizen values in our language, we have to be able to +dynamically upcast them, and in order to do that elegantly it is +convenient to store the entire ``current type'' of the method closure +instead of just its result type. Note that this was unnecessary in +the semantics of the dynamically typed SIMPLE language.

+

Method closure application needs to also set a new return type in +the return cell, like in dynamically typed SIMPLE, in order +for the values returned by its body to be checked against the return +type of the method. To do this correctly, we also need to stack the +current status of the return cell and then pop it when the +method returns. We have to do the same with the current object +environment, so we group them together in the stack frame.

+
k
syntax KItem ::= fstackFrame(Map, K, List, Type, K) + + rule <k> methodClosure(_->T,Class,OL,Ps,S)(Vs:Vals) ~> K + => mkDecls(Ps,Vs) S return; </k> + <env> Env => .Map </env> + <store>... OL |-> objectClosure(_, EStack)...</store> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, T', <crntObj> Obj' </crntObj>)) ...</fstack> + <xstack> XS </xstack> + <returnType> T' => T </returnType> + <crntObj> Obj' => <crntClass> Class </crntClass> <envStack> EStack </envStack> </crntObj> + </control> +
+

At method return, we have to check that the type of the returned +value is a subtype of the expected return type. Moreover, if that is +the case, then we also upcast the returned value to one of the +expected type. The computation item unsafeCast(V,T) changes +the typeof V to T without any additional checks; however, it only +does it when V is an object or a method, otherwise it returns V +unchanged.

+
k
rule <k> return V:Val; ~> _ + => subtype(typeOf(V), T) ~> true? ~> unsafeCast(V, T) ~> K + </k> + <control> + <fstack> ListItem(fstackFrame(Env, K, XS, RT, <crntObj> CO </crntObj>)) => .List ...</fstack> + <xstack> _ => XS </xstack> + <returnType> T:Type => RT </returnType> + <crntObj> _ => CO </crntObj> + </control> + <env> _ => Env </env> +
+

Assignment

+

Typed KOOL allows to assign subtype instance values to supertype +lvalues. The semantics of assignment below is similar in spirit to +dynamically typed SIMPLE's, but a check is performed that the assigned +value's type is a subtype of the location's type. If that is the +case, then the assigned value is returned as a result and stored, but +it is upcast appropriately first, so the context will continue to see +a value of the expected type of the location. Note that the type of a +location is implicit in the type of its contents and it never changes +during the execution of a program; its type is assigned when the +location is allocated and initialized, and then only type-preserving +values are allowed to be stored in each location.

+
k
rule <k> loc(L) = V:Val + => subtype(typeOf(V),typeOf(V')) ~> true? + ~> unsafeCast(V, typeOf(V')) ...</k> + <store>... L |-> (V' => unsafeCast(V, typeOf(V'))) ...</store> + [group(assignment)] +
+

Typed exceptions

+

Exceptions are propagated now until a catch that can handle them is +encountered.

+
k
syntax KItem ::= xstackFrame(Param, Stmt, K, Map, K) + syntax KItem ::= "popx" + + rule <k> (try S1 catch(P) S2 => S1 ~> popx) ~> K </k> + <control> + <xstack> .List => ListItem(xstackFrame(P, S2, K, Env, C)) ...</xstack> + C + </control> + <env> Env </env> + + rule <k> popx => .K ...</k> + <xstack> ListItem(_) => .List ...</xstack> + + rule <k> throw V:Val; ~> _ + => if (subtype(typeOf(V),T)) { T X = V; S2 } else { throw V; } ~> K + </k> + <control> + <xstack> ListItem(xstackFrame(T:Type X:Id, S2, K, Env, C)) => .List ...</xstack> + (_ => C) + </control> + <env> _ => Env </env> +
+

Spawn

+

Like in untyped KOOL.

+
k
rule <thread>... + <k> spawn S => !T:Int ...</k> + <env> Env </env> + <crntObj> Obj </crntObj> + ...</thread> + (.Bag => <thread>... + <k> S </k> + <env> Env </env> + <id> !T </id> + <crntObj> Obj </crntObj> + ...</thread>) +
+

Semantics of the new KOOL constructs

+

Class declaration

+

Like in untyped KOOL.

+
k
rule <k> class Class1 extends Class2 { S } => .K ...</k> + <classes>... (.Bag => <classData> + <className> Class1 </className> + <baseClass> Class2 </baseClass> + <declarations> S </declarations> + </classData>) + ...</classes> +
+

Method declaration

+

Methods are now typed and we need to store their types in their +closures, so that their type contract can be checked at invocation +time. The rule below is conceptually similar to that of untyped KOOL; +the only difference is the addition of the types.

+
k
rule <k> T:Type F:Id(Ps:Params) S => .K ...</k> + <crntClass> C </crntClass> + <location> OL </location> + <env> Env => Env[F <- L] </env> + <store>... .Map => L|->methodClosure(getTypes(Ps)->T,C,OL,Ps,S) ...</store> + <nextLoc> L => L +Int 1 </nextLoc> +
+

New

+

The semantics of new in dynamically typed KOOL is also +similar to that in untyped KOOL, the main difference being the +management of the return types. Indeed, when a new object is created +we also have to stack the current type in the return cell in +order to be recovered after the creation of the new object. Only the +first rule below needs to be changed; the others are identical to +those in untyped KOOL.

+
k
syntax KItem ::= envStackFrame(Id, Map) + + rule <k> new Class:Id(Vs:Vals) ~> K + => create(Class) ~> (storeObj ~> ((Class(Vs)); return this;)) </k> + <env> Env => .Map </env> + <nextLoc> L:Int => L +Int 1 </nextLoc> + //<br/> // TODO(KORE): support latex annotations #1799 + <control> + <xstack> XS </xstack> + <crntObj> Obj + => <crntClass> Object </crntClass> + <envStack> ListItem(envStackFrame(Object, .Map)) </envStack> + <location> L </location> + </crntObj> + <returnType> T => Class </returnType> + <fstack> .List => ListItem(fstackFrame(Env, K, XS, T, <crntObj>Obj</crntObj>)) ...</fstack> + </control> + + syntax KItem ::= create(Id) + + rule <k> create(Class:Id) + => create(Class1) ~> setCrntClass(Class) ~> S ~> addEnvLayer ...</k> + <className> Class </className> + <baseClass> Class1:Id </baseClass> + <declarations> S </declarations> + + rule <k> create(Object) => .K ...</k> + + syntax KItem ::= setCrntClass(Id) + + rule <k> setCrntClass(C) => .K ...</k> + <crntClass> _ => C </crntClass> + + syntax KItem ::= "addEnvLayer" + + rule <k> addEnvLayer => .K ...</k> + <env> Env => .Map </env> + <crntClass> Class:Id </crntClass> + <envStack> .List => ListItem(envStackFrame(Class, Env)) ...</envStack> + + syntax KItem ::= "storeObj" + + rule <k> storeObj => .K ...</k> + <crntObj> + <crntClass> Class </crntClass> + <envStack> EStack </envStack> + (<location> L:Int </location> => .Bag) + </crntObj> + <store>... .Map => L |-> objectClosure(Class, EStack) ...</store> +
+

Self reference

+

Like in untyped KOOL.

+
k
rule <k> this => objectClosure(Class, EStack) ...</k> + <crntObj> + <crntClass> Class </crntClass> + <envStack> EStack </envStack> + ... + </crntObj> +
+

Object member access

+

Like in untyped KOOL.

+
k
rule <k> X:Id => this . X ...</k> <env> Env:Map </env> + requires notBool(X in keys(Env)) + + context HOLE . _::Id requires (HOLE =/=K super) + +/* rule objectClosure(<crntObj> <crntClass> Class:Id </crntClass> + <envStack>... ListItem((Class,EnvC:EnvCell)) EStack </envStack> </crntObj>) + . X:Id + => lookupMember(<envStack> ListItem((Class,EnvC)) EStack </envStack>, X) */ + rule objectClosure(Class:Id, + ListItem(envStackFrame(Class,Env)) EStack) + . X:Id + => lookupMember(ListItem(envStackFrame(Class,Env)) EStack, X) + rule objectClosure(Class:Id, + (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack) + . _X:Id + requires Class =/=K Class' + +/* rule <k> super . X => lookupMember(<envStack>EStack</envStack>, X) ...</k> + <crntClass> Class </crntClass> + <envStack>... ListItem((Class,EnvC:EnvCell)) EStack </envStack> */ + rule <k> super . X => lookupMember(EStack, X) ...</k> + <crntClass> Class:Id </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> super . _X ...</k> + <crntClass> Class:Id </crntClass> + <envStack> (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack </envStack> + requires Class =/=K Class' +
+

Method invocation

+

The method lookup is the same as in untyped KOOL.

+
k
rule <k> (X:Id => V)(_:Exps) ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V:Val ...</store> [group(lookup)] + + rule <k> (X:Id => this . X)(_:Exps) ...</k> + <env> Env </env> + requires notBool(X in keys(Env)) + + context HOLE._::Id(_) requires HOLE =/=K super + + rule (objectClosure(_, EStack) . X + => lookupMember(EStack, X:Id))(_:Exps) + +/* rule <k> (super . X + => lookupMember(<envStack>EStack</envStack>,X))(_:Exps)...</k> + <crntClass> Class </crntClass> + <envStack>... ListItem((Class,_)) EStack </envStack> */ + rule <k> (super . X + => lookupMember(EStack,X))(_:Exps)...</k> + <crntClass> Class:Id </crntClass> + <envStack> ListItem(envStackFrame(Class,_)) EStack </envStack> + rule <k> (super . _X)(_:Exps)...</k> + <crntClass> Class:Id </crntClass> + <envStack> (ListItem(envStackFrame(Class':Id,_)) => .List) _EStack </envStack> + requires Class =/=K Class' + + // TODO(KORE): fix getKLabel #1801 + rule (A:Exp(B:Exps))(C:Exps) => A(B) ~> #freezerFunCall(C) + rule (A:Exp[B:Exps])(C:Exps) => A[B] ~> #freezerFunCall(C) + rule V:Val ~> #freezerFunCall(C:Exps) => V(C) + syntax KItem ::= "#freezerFunCall" "(" K ")" + /* + context HOLE(_:Exps) + requires getKLabel HOLE ==KLabel '_`(_`) orBool getKLabel HOLE ==KLabel '_`[_`] + */ + + rule <k> (lookup(L) => V)(_:Exps) ...</k> <store>... L |-> V:Val ...</store> + [group(lookup)] +
+

Instance of

+

Like in untyped KOOL.

+
k
rule objectClosure(_, ListItem(envStackFrame(C,_)) _) + instanceOf C => true + + rule objectClosure(_, (ListItem(envStackFrame(C::Id,_)) => .List) _) + instanceOf C' requires C =/=K C' + + rule objectClosure(_, .List) instanceOf _ => false +
+

Cast

+

Unlike in untyped KOOL, in typed KOOL we actually check that the object +can indeed be cast to the claimed type.

+
k
rule (C:Id) objectClosure(Irrelevant, EStack) + => objectClosure(Irrelevant, EStack) instanceOf C ~> true? + ~> objectClosure(C, EStack) +
+

KOOL-specific auxiliary declarations and operations

+

Objects as lvalues

+

Like in untyped KOOL.

+
k
rule <k> lvalue(X:Id => this . X) ...</k> <env> Env </env> + requires notBool(X in keys(Env)) + + context lvalue((HOLE . _)::Exp) + +/* rule lvalue(objectClosure(<crntObj> <crntClass> C </crntClass> + <envStack>... ListItem((C,EnvC:EnvCell)) EStack </envStack> </crntObj>) + . X + => lookupMember(<envStack> ListItem((C,EnvC)) EStack </envStack>, + X)) */ + rule lvalue(objectClosure(C:Id, + ListItem(envStackFrame(C,Env)) EStack) + . X + => lookupMember(ListItem(envStackFrame(C,Env)) EStack, + X)) + rule lvalue(objectClosure(C, + (ListItem(envStackFrame(C',_)) => .List) _EStack) + . _X) + requires C =/=K C' +
+

Lookup member

+

Like in untyped KOOL.

+
k
syntax Exp ::= lookupMember(List,Id) [function] + + rule lookupMember(ListItem(envStackFrame(_, X |-> L _)) _, X) => lookup(L) + + // TODO: fix rule below as shown once we support functions with deep rewrites + // rule lookupMember(<envStack> ListItem((_, <env> Env </env>)) => .List + // ...</envStack>, X) + // requires notBool(X in keys(Env)) + rule lookupMember(ListItem(envStackFrame(_, Env)) L, X) + => lookupMember(L, X) + requires notBool(X in keys(Env)) +
+

typeOf for the additional values}

+
k
rule typeOf(objectClosure(C,_)) => C + rule typeOf(methodClosure(T:Type,_,_,_Ps:Params,_)) => T +
+

Subtype checking

+

The subclass relation induces a subtyping relation.

+
k
syntax Exp ::= subtype(Types,Types) + + rule subtype(T:Type, T) => true + + rule <k> subtype(C1:Id, C:Id) => subtype(C2, C) ...</k> + <className> C1 </className> + <baseClass> C2:Id </baseClass> + requires C1 =/=K C + + rule subtype(Object,Class:Id) => false + requires Class =/=K Object + + rule subtype(Ts1->T2,Ts1'->T2') => subtype(((T2)::Type,Ts1'),((T2')::Type,Ts1)) + +// Note that the following rule would be wrong! +// rule subtype(T[],T'[]) => subtype(T,T') + + rule subtype((T:Type,Ts),(T':Type,Ts')) => subtype(T,T') && subtype(Ts,Ts') + requires Ts =/=K .Types + rule subtype(.Types,.Types) => true +
+

Unsafe Casting

+

Performs unsafe casting. One should only use it in combination with +the subtype relation above.

+
k
syntax Val ::= unsafeCast(Val,Type) [function] + + rule unsafeCast(objectClosure(_,EStack), C:Id) + => objectClosure(C,EStack) + + rule unsafeCast(methodClosure(_T',C,OL,Ps,S), T) => methodClosure(T,C,OL,Ps,S) + + rule unsafeCast(V:Val, T:Type) => V requires typeOf(V) ==K T +
+

Generic guard

+

A generic computational guard: it allows the computation to continue +only if a prefix guard evaluates to true.

+
k
syntax KItem ::= "true?" + rule true ~> true? => .K + +endmodule +
+

Go to Lesson 3, KOOL typed static.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/index.html new file mode 100644 index 00000000000..9cb66763cf7 --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/index.html @@ -0,0 +1,1425 @@ + + + + + + + + + + + + + + +KOOL — Typed — Static | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

KOOL — Typed — Static

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K static semantics of the typed KOOL language. +It extends the static semantics of typed SIMPLE with static semantics +for the object-oriented constructs. Also, the static semantics of +some of the existing SIMPLE constructs need to change, in order to +become more generous with regards to the set of accepted programs, +mostly due to subtyping. For example, the assignment construct +x = e required that both the variable x and the +expression e had the same type in SIMPLE. In KOOL, the type +of e can be a subtype of the type of x. +Specifically, we define the following typing policy for KOOL, +everything else not mentioned below borrowing its semantics from +SIMPLE:

+
    +
  • +

    Each class C yields a homonymous type, which can be +explicitly used in programs to type variables and methods, possibly in +combination with other types.

    +
  • +
  • +

    Since now we have user-defined types, we check that each type +used in a KOOL program is well-formed, that is, it is constructed only +from primitive and class types corresponding to declared classes.

    +
  • +
  • +

    Class members and their types form a class type +environment. Each class will have such a type environment. +Each member in a class is allowed to be declared only once. Since in +KOOL we allow methods to be assigned to fields, we make no distinction +between field and method members; in other words, we reject programs +declaring both a field and a method with the same name.

    +
  • +
  • +

    If an identifier is not found in the local type environment, it +will be searched for in the current class type environment. If not +there, then it will be searched for in its superclass' type +environment. And so on and so forth. If not found until the +Object class is reached, a typing error is reported.

    +
  • +
  • +

    The assignment allows variables to be assigned values of +more concrete types. The result type of the assignment expression +construct will be the (more abstract) type of the assigned variable, +and not the (more concrete) type of the expression, like in Java.

    +
  • +
  • +

    Exceptions are changed (from SIMPLE) to allow throwing and +catching only objects, like in Java. Also, unlike in SIMPLE, we do +not check whether the type of the thrown exception matches the type of +the caught variable, because exceptions can be caught by other +try/catch blocks, even by ones in other methods. To avoid +having to annotate each method with what exceptions it can throw, we +prefer to not check the type safety of exceptions (although this is an +excellent homework!). We only check that the try block +type-checks and that the catch block type-checks after we bind +the caught variable to its claimed type.

    +
  • +
  • +

    Class declarations are not allowed to have any cycles in their +extends relation. Such cycles would lead to non-termination of +new, as it actually does in the dynamic semantics of KOOL +where no such circularity checks are performed.

    +
  • +
  • +

    Methods overriding other methods should be in the right subtyping +relationship with the overridden methods: co-variant in the codomain +and contra-variant in the domain.

    +
  • +
+
k
module KOOL-TYPED-STATIC-SYNTAX + imports DOMAINS-SYNTAX +
+

Syntax

+

The syntax of statically typed KOOL is identical to that of +dynamically typed KOOL, they both taking as input the same programs. +What differs is the K strictness attributes. Like in statically +typed SIMPLE, almost all language constructs are strict now, since we +want each to type its arguments almost all the time. Like in the +other two KOOL definitions, we prefer to copy and then modify/extend +the syntax of statically typed SIMPLE.

+

Note: This paragraph is old, now we can do things better. We keep +it here only for historical reasons, to see how much we used to suffer :)

+

Annoying K-tool technical problem: +Currently, the K tool treats the "non-terminal" productions (i.e., +productions consisting of just one non-terminal), also called +"subsorting" production, differently from the other productions. +Specifically, it does not insert a node in the AST for them. This may +look desirable at first, but it has a big problem: it does not allow +us to treat the subsort differently in different context. For +example, since we want Id to be both a type (a class name) and a +program variable, and since we want expressions to reduce to their +types, we are in an impossible situations in which we do not know how +to treat an identifier in the semantics: as a type, i.e., a result of +computations, or as a program variable, i.e., a non-result. Ideally, +we would like to tag the identifiers at parse-time with their local +interpretation, but that, unfortunately, is not possible with the +current parsing capabilities of the K tool, because it requires to +insert additional information in the AST for the subsort productions. +This will be fixed soon. Until then, unfortunately, we have to do the +job of the parser manually. Instead of subsorting Id directly +to Type, we "wrap" it first, say with a wrapper called +class(...), exactly how the parser should have done. +The major drawback of this is that all the typed KOOL programs +in kool/typed/programs need to also be modified to always +declare class types accordingly. The modified programs can be found +in kool/typed/static/programs. So make sure you execute the +static semantics of KOOL using the modified programs. To avoid seeing +the wrapper in the generated documentation, we associate it an +"invisibility" latex attribute below.

+
k
syntax Id ::= "Object" [token] | "Main" [token] +
+

Types

+
k
syntax Type ::= "void" | "int" | "bool" | "string" + | Id [klabel("class"), symbol, avoid] // see next + | Type "[" "]" + | "(" Type ")" [bracket] + > Types "->" Type + + syntax Types ::= List{Type,","} [overload(exps)] +
+

Declarations

+
k
syntax Param ::= Type Id + syntax Params ::= List{Param,","} + + syntax Stmt ::= Type Exps ";" [avoid] + | Type Id "(" Params ")" Block + | "class" Id Block + | "class" Id "extends" Id Block +
+

Expressions

+
k
syntax FieldReference ::= Exp "." Id [strict(1)] + syntax ArrayReference ::= Exp "[" Exps "]" [strict] + + syntax Exp ::= Int | Bool | String | Id + | "this" + | "super" + | "(" Exp ")" [bracket] + | "++" Exp + | Exp "instanceOf" Id [strict(1)] + | "(" Id ")" Exp [strict(2)] + | "new" Id "(" Exps ")" [strict(2)] + > Exp "(" Exps ")" [strict] + | "-" Exp [strict] + | "sizeOf" "(" Exp ")" [strict] + | "read" "(" ")" + > left: + Exp "*" Exp [strict, left] + | Exp "/" Exp [strict, left] + | Exp "%" Exp [strict, left] + > left: + Exp "+" Exp [strict, left] + | Exp "-" Exp [strict, left] + > non-assoc: + Exp "<" Exp [strict, non-assoc] + | Exp "<=" Exp [strict, non-assoc] + | Exp ">" Exp [strict, non-assoc] + | Exp ">=" Exp [strict, non-assoc] + | Exp "==" Exp [strict, non-assoc] + | Exp "!=" Exp [strict, non-assoc] + > "!" Exp [strict] + > left: + Exp "&&" Exp [strict, left] + | Exp "||" Exp [strict, left] + > "spawn" Block // not strict: to check return and exceptions + > Exp "=" Exp [strict(2), right] + + syntax Exp ::= FieldReference | ArrayReference + syntax priority _.__KOOL-TYPED-STATIC-SYNTAX > _[_]_KOOL-TYPED-STATIC-SYNTAX > _(_)_KOOL-TYPED-STATIC-SYNTAX + + syntax Exps ::= List{Exp,","} [strict, overload(exps)] +
+

Statements

+
k
syntax Block ::= "{" "}" + | "{" Stmt "}" + + syntax Stmt ::= Block + | Exp ";" [strict] + | "if" "(" Exp ")" Block "else" Block [avoid, strict] + | "if" "(" Exp ")" Block [macro] + | "while" "(" Exp ")" Block [strict] + | "for" "(" Stmt Exp ";" Exp ")" Block [macro] + | "return" Exp ";" [strict] + | "return" ";" + | "print" "(" Exps ")" ";" [strict] + | "try" Block "catch" "(" Param ")" Block [strict(1)] + | "throw" Exp ";" [strict] + | "join" Exp ";" [strict] + | "acquire" Exp ";" [strict] + | "release" Exp ";" [strict] + | "rendezvous" Exp ";" [strict] + + syntax Stmt ::= Stmt Stmt [seqstrict, right] +
+

Desugaring macros

+
k
rule if (E) S => if (E) S else {} + rule for(Start Cond; Step) {S:Stmt} => {Start while(Cond){S Step;}} + rule T:Type E1:Exp, E2:Exp, Es:Exps; => T E1; T E2, Es; [anywhere] + rule T:Type X:Id = E; => T X; X = E; [anywhere] + + rule class C:Id S => class C extends Object S + +endmodule +
+

Static semantics

+

We first discuss the configuration, then give the static semantics +taken over unchanged from SIMPLE, then discuss the static semantics of +SIMPLE syntactic constructs that needs to change, and in the end we +discuss the static semantics and additional checks specifically +related to the KOOL proper syntax.

+
k
module KOOL-TYPED-STATIC + imports KOOL-TYPED-STATIC-SYNTAX + imports DOMAINS +
+

Configuration

+

The configuration of our type system consists of a tasks +cell with the same meaning like in statically typed SIMPLE, of an +out cell streamed to the standard output that will be used to +display typing error messages, and of a cell classes holding +data about each class in a separate class cell. The +task cells now have two additional optional subcells, namely +ctenvT and inClass. The former holds a temporary +class type environment; its contents will be transferred into the +ctenv cell of the corresponding class as soon as all the +fields and methods in the task are processed. In fact, there will be +three types of tasks in the subsequent semantics, each determined by +the subset of cells that it holds:

+
    +
  1. +

    Main task, holding only a k cell holding the +original program as a set of classes. The role of this task is to +process each class, generating a class task (see next) for each.

    +
  2. +
  3. +

    Class task, holding k, ctenvT, and +inClass subcells. The role of this task type is to process +a class' contents, generating a class type environment in the +ctenvT cell and a method task (see next) for each method in +the class. To avoid interference with object member lookup rules +below, it is important to add the class type environment to a class +atomically; this is the reason for which we use ctenvT +temporary cells within class tasks (instead of adding each member +incrementally to the class' type environment).

    +
  4. +
  5. +

    Method task, holding k, tenv and +return cells. These tasks are similar to SIMPLE's function +tasks, so we do not discuss them here any further.

    +
  6. +
+

Each class cell hods its name (in the className +cell) and the name of the class it extends (in the extends +cell), as well as its type environment (in the ctenv cell) +and the set of all its superclasses (in the extendsAll cell). +The later is useful for example for checking whether there are cycles +in the class extends relation.

+
k
configuration <T multiplicity="?" color="yellow"> + <tasks color="orange" multiplicity="?"> + <task multiplicity="*" color="yellow" type="Set"> + <k color="green"> $PGM:Stmt </k> + <tenv multiplicity="?" color="cyan"> .Map </tenv> + <ctenvT multiplicity="?" color="blue"> .Map </ctenvT> + <returnType multiplicity="?" color="black"> void </returnType> + <inClass multiplicity="?" color="Fuchsia"> .K </inClass> + </task> + </tasks> +// <br/> + <classes color="Fuchsia"> + <classData multiplicity="*" type="Map"> + <className color="Fuchsia"> Object </className> + <baseClass color="Fuchsia"> .K </baseClass> + <baseClasses color="Fuchsia"> .Set </baseClasses> + <ctenv multiplicity="?" color="blue"> .Map </ctenv> + </classData> + </classes> + </T> + <output color="brown" stream="stdout"> .List </output> +
+

Unchanged semantics from statically typed SIMPLE

+

The syntax and rules below are borrowed unchanged from statically +typed SIMPLE, so we do not discuss them much here.

+
k
syntax Exp ::= Type + syntax Exps ::= Types + syntax BlockOrStmtType ::= "block" | "stmt" + syntax Type ::= BlockOrStmtType + syntax Block ::= BlockOrStmtType + syntax KResult ::= Type + | Types // TODO: should not be needed + + + context _:Type _::Exp[HOLE::Exps]; + + rule T:Type E:Exp[int,Ts:Types]; => T[] E[Ts]; + rule T:Type E:Exp[.Types]; => T E; + + + rule <task>... <k> _:BlockOrStmtType </k> <tenv> _ </tenv> ...</task> => .Bag + + + rule _:Int => int + rule _:Bool => bool + rule _:String => string + + + rule <k> X:Id => T ...</k> <tenv>... X |-> T ...</tenv> + + + context ++(HOLE => ltype(HOLE)) + rule ++ int => int + rule int + int => int + rule string + string => string + rule int - int => int + rule int * int => int + rule int / int => int + rule int % int => int + rule - int => int + rule int < int => bool + rule int <= int => bool + rule int > int => bool + rule int >= int => bool + rule T:Type == T => bool + rule T:Type != T => bool + rule bool && bool => bool + rule bool || bool => bool + rule ! bool => bool + + + rule (T[])[int, Ts:Types] => T[Ts] + rule T:Type[.Types] => T + + rule sizeOf(_T[]) => int + + + rule read() => int + + rule print(T:Type, Ts => Ts); requires T ==K int orBool T ==K string + rule print(.Types); => stmt + + + context (HOLE => ltype(HOLE)) = _ + + + rule <k> return; => stmt ...</k> <returnType> _ </returnType> + + + rule {} => block + + rule <task> <k> {S:Stmt} => block ...</k> <tenv> Rho </tenv> R </task> + (.Bag => <task> <k> S </k> <tenv> Rho </tenv> R </task>) + + rule _:Type; => stmt + rule if (bool) block else block => stmt + rule while (bool) block => stmt + + rule join int; => stmt + rule acquire _:Type; => stmt + rule release _:Type; => stmt + rule rendezvous _:Type; => stmt + + syntax Stmt ::= BlockOrStmtType + rule _:BlockOrStmtType _:BlockOrStmtType => stmt +
+

Unchanged auxiliary operations from dynamically typed SIMPLE

+
k
syntax Stmt ::= mkDecls(Params) [function] + rule mkDecls(T:Type X:Id, Ps:Params) => T X; mkDecls(Ps) + rule mkDecls(.Params) => {} + + syntax LValue ::= Id + | FieldReference + | ArrayReference + syntax Exp ::= LValue + + syntax Exp ::= ltype(Exp) +// We would like to say: +// context ltype(HOLE:LValue) +// but we currently cannot type the HOLE + context ltype(HOLE) requires isLValue(HOLE) + +// OLD approach: +// syntax Exp ::= ltype(Exp) [function] +// rule ltype(X:Id) => X +// rule ltype(E:Exp [Es:Exps]) => E[Es] + + syntax Types ::= getTypes(Params) [function] + rule getTypes(T:Type _:Id) => T, .Types + rule getTypes(T:Type _:Id, P, Ps) => T, getTypes(P,Ps) + rule getTypes(.Params) => void, .Types +
+

Changes to the existing statically typed SIMPLE semantics

+

Below we give the new static semantics for language constructs that +come from SIMPLE, but whose SIMPLE static semantics was too +restrictive or too permissive and thus had to change.

+

Local variable declaration

+

Since we can define new types in KOOL (corresponding to classes), the +variable declaration needs to now check that the claimed types exist. +The operation checkType, defined at the end of this module, +checks whether the argument type is correct (it actually works with +lists of types as well).

+
k
rule <k> T:Type X:Id; => checkType(T) ~> stmt ...</k> + <tenv> Rho => Rho[X <- T] </tenv> +
+

Class member declaration

+

In class tasks, variable declarations mean class member declarations. +Since we reduce method declarations to variable declarations (see +below), a variable declaration in a class task can mean either a field +or a method declaration. Unlike local variable declarations, which +can shadow previous homonymous local or member declarations, member +declarations are regarded as a set, so we disallow multiple +declarations for the same member (one could improve upon this, like in +Java, by treating members with different types or number of arguments +as different, etc., but we do not do it here). We also issue an error +message if one attempts to redeclare the same class member. The +framed variable declaration in the second rule below should be read +"stuck". In fact, it is nothing but a unary operation called +stuck, which takes a K-term as argument and does nothing +with it; this stuck operation is displayed as a frame in this +PDF document because of its latex attribute (see the ASCII .k file, +at the end of this module).

+
k
rule <k> T:Type X:Id; => checkType(T) ~> stmt ...</k> + <ctenvT> Rho (.Map => X |-> T) </ctenvT> + requires notBool(X in keys(Rho)) + + rule <k> T:Type X:Id; => stuck(T X;) ...</k> + <ctenvT>... X |-> _ ...</ctenvT> + <inClass> C:Id </inClass> +// <br/> + <output>... .List => ListItem("Member \"" +String Id2String(X) + +String "\" declared twice in class \"" + +String Id2String(C) +String "\"!\n") </output> +
+

Method declaration

+

A method declaration requires two conceptual checks to be performed: +first, that the method's type is consistent with the type of the +homonymous method that it overrides, if any; and second, that its body +types correctly. At the same time, it should also be added to the +type environment of its class. The first conceptual task is performed +using the checkMethod operation defined below, and the second +by generating a corresponding method task. To add it to the class +type environment, we take advantage of the fact that KOOL is higher +order and reduce the problem to a field declaration problem, which we +have already defined. The role of the ctenvT cell in the +rule below is to structurally ensure that the method declaration takes +place in a class task (we do not want to allow methods to be declared, +for example, inside other methods).

+
k
rule <k> T:Type F:Id(Ps:Params) S + => checkMethod(F, getTypes(Ps)->T, C') + ~> getTypes(Ps)->T F; ...</k> +// <br/> + <inClass> C </inClass> + <ctenvT> _ </ctenvT> // to ensure we are in a class pass + <className> C </className> + <baseClass> C' </baseClass> +// <br/> + (.Bag => <task> + <k> mkDecls(Ps) S </k> + <inClass> C </inClass> + <tenv> .Map </tenv> + <returnType> T </returnType> + </task>) +
+

Assignment

+

A more concrete value is allowed to be assigned to a more abstract +variable. The operation checkSubtype is defined at the end +of the module and it also works with pairs of lists of types.

+
k
rule T:Type = T':Type => checkSubtype(T', T) ~> T +
+

Method invocation and return

+

Methods can be applied on values of more concrete types than their +arguments:

+
k
rule (Ts:Types -> T:Type) (Ts':Types) => checkSubtype(Ts',Ts) ~> T +
+

Similarly, we allow values of more concrete types to be returned by +methods:

+
k
rule <k> return T:Type; => checkSubtype(T,T') ~> stmt ...</k> + <returnType> T':Type </returnType> +
+

Exceptions

+

Exceptions can throw and catch values of any types. Since unlike in Java +KOOL's methods do not declare the exception types that they can throw, +we cannot test the full type safety of exceptions. Instead, we +only check that the try and the catch statements +type correctly.

+
k
rule try block catch(T:Type X:Id) S => {T X; S} + rule throw _T:Type ; => stmt +
+

Spawn

+

The spawned cell needs to also be passed the parent's class.

+
k
// explain why + + rule <k> spawn S:Block => int ...</k> + <tenv> Rho </tenv> + <inClass> C </inClass> + (.Bag => <task> + <k> S </k> + <tenv> Rho </tenv> + <inClass> C </inClass> + </task>) +
+

Semantics of the new KOOL constructs

+

Class declaration

+

We process each class in the main task, adding the corresponding data +into its class cell and also adding a class task for it. We +also perform some well-formedness checks on the class hierarchy.

+

Initiate class processing
+We create a class cell and a class task for each task. Also, we start +the class task with a check that the class it extends is declared +(this delays the task until that class is processed using another +instance of this rule).

+
k
// There seems to be some error with the configuration concretization, +// as the rule below does not work when rewriting . to both the task +// and the class cells; I had to include two separate . rewrites + +// TODO: the following fails krun; see #2117 + rule <task> <k> class C:Id extends C':Id { S:Stmt } => stmt ...</k> </task> + (.Bag => <classData>... + <className> C </className> + <baseClass> C' </baseClass> + ...</classData>) +// <br/> + (.Bag => <task> + <k> checkType(`class`(C')) ~> S </k> + <inClass> C </inClass> + <ctenvT> .Map </ctenvT> + </task>) + +// You may want to try the thing below, but that failed, too +/* +syntax Type ::= "stmtStop" + + rule <tasks>... + <task> <k> class C:Id extends C':Id { S:Stmt } => stmtStop ...</k> </task> + (.Bag => <task> + <k> checkType(`class`(C')) ~> S </k> + <inClass> C </inClass> + <ctenvT> .Map </ctenvT> + </task>) + ...</tasks> + <classes>... + .Bag => <classData>... + <className> C </className> + <baseClass> C' </baseClass> + ...</classData> + ...</classes> +// <br/> +*/ +
+

Check for unique class names

+
k
rule (<T>... + <className> C </className> + <className> C </className> + ...</T> => .Bag) + <output>... .List => ListItem("Class \"" +String Id2String(C) + +String "\" declared twice!\n") </output> +
+

Check for cycles in class hierarchy
+We check for cycles in the class hierarchy by transitively closing the +class extends relation using the extendsAll cells, and +checking that a class will never appear in its own extendsAll +cell. The first rule below initiates the transitive closure of the +superclass relation, the second transitively closes it, and the third +checks for cycles.

+
k
rule <baseClass> C </baseClass> + <baseClasses> .Set => SetItem(C) </baseClasses> [priority(25)] + + rule <classData>... + <baseClasses> SetItem(C) Cs:Set (.Set => SetItem(C')) </baseClasses> + ...</classData> + <classData>... <className>C</className> <baseClass>C'</baseClass> ...</classData> + requires notBool(C' in (SetItem(C) Cs)) [priority(25)] + + rule (<T>... + <className> C </className> + <baseClasses>... SetItem(C) ...</baseClasses> + ...</T> => .Bag) + <output>... .List => ListItem("Class \"" +String Id2String(C) + +String "\" is in a cycle!\n") </output> + [group(inheritance-cycle), priority(25)] +
+

New

+

To type new we only need to check that the class constructor +can be called with arguments of the given types, so we initiate a call +to the constructor method in the corresponding class. If that +succeeds, meaning that it types to stmt, then we discard the +stmt type and produce instead the corresponding class type of +the new object. The auxiliary discard operation is defined +also at the end of this module.

+
k
rule new C:Id(Ts:Types) => `class`(C) . C (Ts) ~> discard ~> `class`(C) +
+

Self reference

+

The typing rule for this is straightforward: reduce to the +current class type.

+
k
rule <k> this => `class`(C) ...</k> + <inClass> C:Id </inClass> +
+

Super

+

Similarly, super types to the parent class type. +Note that for typing concerns, super can be considered as an object +(recall that this was not the case in the dynamic semantics).

+
k
rule <k> super => `class`(C') ...</k> + <inClass> C:Id </inClass> + <className> C </className> + <baseClass> C':Id </baseClass> +
+

Object member access

+

There are several cases to consider here. First, if we are in a class +task, we should lookup the member into the temporary class type +environemnt in cell ctenvT. That is because we want to allow +initialized field declarations in classes, such as int x=10;. +This is desugared to a declaration of x, which is added to +ctenvT during the class task processing, followed by an +assignment of x to 10. In order for the assignment to type +check, we need to know that x has been declared with type +int; this information can only be found in the +ctenvT cell. Second, we should redirect non-local variable +lookups in method tasks to corresponding member accesses (the +local variables are handled by the rule borrowed from SIMPLE). +This is what the second rule below does. Third, we should allow +object member accesses as lvalues, which is done by the third rule +below. These last two rules therefore ensure that each necessary +object member access is explicitly allowed for evaluation. Recall +from the annotated syntax module above that the member access +operation is strict in the object. That means that the object is +expected to evaluate to a class type. The next two rules below define +the actual member lookup operation, moving the search to the +superclass when the member is not found in the current class. Note +that this works because we create the class type environments +atomically; thus, a class either has its complete type environment +available, in which case these rules can safely apply, or its cell +ctenv is not yet available, in which case these rules have to +wait. Finally, the sixth rule below reports an error when the +Object class is reached.

+
k
rule <k> X:Id => T ...</k> + <ctenvT>... X |-> T ...</ctenvT> + + rule <k> X:Id => this . X ...</k> + <tenv> Rho </tenv> + requires notBool(X in keys(Rho)) + +// OLD approach: +// rule ltype(E:Exp . X:Id) => E . X + + rule <k> `class`(C:Id) . X:Id => T ...</k> + <className> C </className> + <ctenv>... X |-> T:Type ...</ctenv> + + rule <k> `class`(C1:Id => C2) . X:Id ...</k> + <className> C1 </className> + <baseClass> C2:Id </baseClass> + <ctenv> Rho </ctenv> + requires notBool(X in keys(Rho)) + + rule <k> `class`(Object) . X:Id => stuck(`class`(Object) . X) ...</k> + <inClass> C:Id </inClass> +// <br/> + <output>... .List => ListItem("Member \"" +String Id2String(X) + +String "\" not declared! (see class \"" + +String Id2String(C) +String "\")\n") </output> +
+

Instance of and casting

+

As it is hard to check statically whether casting is always safe, +the programmer is simply trusted from a typing perspective. We only +do some basic upcasting and downcasting checks, to reject casts which +will absolutely fail. However, dynamic semantics or implementations +of the language need to insert runtime checks for downcasting to be safe.

+
k
rule `class`(_C1:Id) instanceOf _C2:Id => bool + rule (C:Id) `class`(C) => `class`(C) + rule <k> (C2:Id) `class`(C1:Id) => `class`(C2) ...</k> + <className> C1 </className> + <baseClasses>...SetItem(C2)...</baseClasses> // upcast + rule <k> (C2:Id) `class`(C1:Id) => `class`(C2) ...</k> + <className> C2 </className> + <baseClasses>...SetItem(C1)...</baseClasses> // downcast + rule <k> (C2) `class`(C1:Id) => stuck((C2) `class`(C1)) ...</k> + <classData>... + <className> C1 </className> + <baseClasses> S1 </baseClasses> + ...</classData> + <classData>... + <className> C2 </className> + <baseClasses> S2 </baseClasses> + ...</classData> + <output>... .List => ListItem("Classes \"" +String Id2String(C1) + +String "\" and \"" +String Id2String(C2) + +String "\" are incompatible!\n") </output> + requires notBool(C1 in S2) andBool notBool(C2 in S1) +
+

Cleanup tasks

+

Finally, we need to clean up the terminated tasks. Each of the three +types of tasks is handled differently. The main task is replaced by a +method task holding new main();, which will ensure that a +main class with a main() method actually exists +(first rule below). A class task moves its temporary class type +environment into its class' cell, and then it dissolves itself (second +rule). A method task simply dissolves when terminated (third rule); +the presence of the tenv cell in that rule ensures that that +task is a method task. +Finally, when all the tasks are cleaned up, we can also remove the +tasks cell, issuing a corresponding message. Note that +checking for cycles or duplicate methods can still be performed after +the tasks cell has been removed.

+
k
// discard main task when done, issuing a "new main();" command to +// make sure that the class main and the method main() are declared. + + rule <task> <k> stmt => new Main(.Exps); </k> + (.Bag => <tenv> .Map </tenv> + <returnType> void </returnType> + <inClass> Main </inClass>) + </task> + +// discard class task when done, adding a ctenv in class + + rule (<task> + <k> stmt </k> + <ctenvT> Rho </ctenvT> + <inClass> C:Id </inClass> + </task> => .Bag) + <className> C </className> + (.Bag => <ctenv> Rho </ctenv>) + +// discard method task when done + + rule <task>... + <k> stmt </k> + <tenv> _ </tenv> // only to ensure that this is a method task + ...</task> => .Bag + +// cleanup tasks and output a success message when done + + rule (<T>... <tasks> .Bag </tasks> ...</T> => .Bag) + <output>... .List => ListItem("Type checked!\n") </output> +
+

KOOL-specific auxiliary declarations and operations

+

Subtype checking

+

The subclass relation introduces a subtyping relation.

+
k
syntax KItem ::= checkSubtype(Types,Types) + + rule checkSubtype(T:Type, T) => .K + + rule <k> checkSubtype(`class`(C:Id), `class`(C':Id)) => .K ...</k> + <className> C </className> + <baseClasses>... SetItem(C') ...</baseClasses> + + rule checkSubtype(Ts1->T2,Ts1'->T2') + => checkSubtype(((T2)::Type,Ts1'),((T2')::Type,Ts1)) + +// note that the following rule would be wrong! +// rule checkSubtype(T[],T'[]) => checkSubtype(T,T') + + rule checkSubtype((T:Type,Ts),(T':Type,Ts')) + => checkSubtype(T,T') ~> checkSubtype(Ts,Ts') + requires Ts =/=K .Types + + rule checkSubtype(.Types,.Types) => .K + rule checkSubtype(.Types,void) => .K +
+

Checking well-formedness of types

+

Since now any Id can be used as the type of a class, we need to +check that the types used in the program actually exists

+
k
syntax KItem ::= checkType(Types) + + rule checkType(T:Type,Ts:Types) => checkType(T) ~> checkType(Ts) + requires Ts =/=K .Types + rule checkType(.Types) => .K + rule checkType(int) => .K + rule checkType(bool) => .K + rule checkType(string) => .K + rule checkType(void) => .K + rule <k> checkType(`class`(C:Id)) => .K ...</k> <className> C </className> + rule checkType(`class`(Object)) => .K + rule checkType(Ts:Types -> T:Type) => checkType(T,Ts) + rule checkType(T:Type[]) => checkType(T) +
+

Checking correct overiding of methods

+

The checkMethod operation below searches to see whether +the current method overrides some other method in some superclass. +If yes, then it issues an additional check that the new method's type +is more concrete than the overridden method's. The types T and T' +below can only be function types. See the definition of +checkSubtype on function types at the end of this module (it +is co-variant in the codomain and contra-variant in the domain).

+
k
syntax KItem ::= checkMethod(Id,Type,Id) + + rule <k> checkMethod(F:Id, T:Type, C:Id) => checkSubtype(T, T') ...</k> + <className> C </className> + <ctenv>... F |-> T':Type ...</ctenv> + + rule <k> checkMethod(F:Id, _T:Type, (C:Id => C')) ...</k> + <className> C </className> + <baseClass> C':Id </baseClass> + <ctenv> Rho </ctenv> + requires notBool(F in keys(Rho)) + + rule checkMethod(_:Id,_,Object) => .K +
+

Generic operations which could be part of the K framework

+
k
syntax KItem ::= stuck(K) + + syntax KItem ::= "discard" + rule _:KResult ~> discard => .K + +endmodule +
+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/k-distribution/tests/regression-new/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/index.html b/k-distribution/tests/regression-new/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/index.html new file mode 100644 index 00000000000..7eeae13820e --- /dev/null +++ b/k-distribution/tests/regression-new/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/index.html @@ -0,0 +1,1227 @@ + + + + + + + + + + + + + + +FUN — Untyped — Environment | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

FUN — Untyped — Environment

+

Author: Grigore Roșu (grosu@illinois.edu)
+Organization: University of Illinois at Urbana-Champaign

+

Author: Traian Florin Șerbănuță (traian.serbanuta@unibuc.ro)
+Organization: University of Bucharest

+

Abstract

+

This is the K semantic definition of the untyped FUN language. +FUN is a pedagogical and research language that captures the essence +of the functional programming paradigm, extended with several features +often encountered in functional programming languages. +Like many functional languages, FUN is an expression language, that +is, everything, including the main program, is an expression. +Functions can be declared anywhere and are first class values in the +language. +FUN is call-by-value here, but it has been extended (as student +homework assignments) with other parameter-passing styles. +To make it more interesting and to highlight some of K's strengths, +FUN includes the following features:

+
    +
  • +

    The basic builtin data-types of integers, booleans and strings.

    +
  • +
  • +

    Builtin lists, which can hold any elements, including other lists. +Lists are enclosed in square brackets and their elements are +comma-separated; e.g., [1,2,3].

    +
  • +
  • +

    User-defined data-types, by means of constructor terms. +Constructor names start with a capital letter (while any other +identifier in the language starts with a lowercase letter), and they +can be followed by an arbitrary number of comma-separated arguments +enclosed in parentheses; parentheses are not needed when the +constructor takes no arguments. +For example, Pair(5,7) is a constructor term holding two +numbers, Cons(1,Cons(2,Cons(3,Nil))) is a list-like +constructor term holding 3 elements, and +Tree(Tree(Leaf(1), Leaf(2)), Leaf(3)) is a tree-like +constructor term holding 3 elements. +In the untyped version of the FUN language, no type checking or +inference is performed to ensure that the data constructors are used +correctly. +The execution will simply get stuck when they are misused. +Moreover, since no type checking is performed, the data-types are not +even declared in the untyped version of FUN.

    +
  • +
  • +

    Functions and let/letrec binders can take +multiple space-separated arguments, but these are desugared to +ones that only take one argument, by currying. For example, the +expressions

    +
    fun x y -> x y
    +let x y = y in x
    +
    +

    are desugared, respectively, into the following expressions:

    +
    fun x -> fun y -> x y
    +let x = fun y -> y in x
    +
    +
  • +
  • +

    Functions can be defined using pattern matching over the +available data-types. For example, the program

    +
    letrec max = fun [h] -> h
    +             |   [h|t] -> let x = max t
    +                          in  if h > x then h else x
    +in max [1, 3, 5, 2, 4, 0, -1, -5]
    +
    +

    defines a function max that calculates the maximum element of +a non-empty list, and the function

    +
    letrec ack = fun Pair(0,n) -> n + 1
    +             |   Pair(m,0) -> ack Pair(m - 1, 1)
    +             |   Pair(m,n) -> ack Pair(m - 1, ack Pair(m, n - 1))
    +in ack Pair(2,3)
    +
    +

    calculates the Ackermann function applied to a particular pair of numbers. +Patterns can be nested. Patterns can currently only be used in function +definitions, and not directly in let/letrec binders. +For example, this is not allowed:

    +
    letrec Pai(x,y) = Pair(1,2) in x+y
    +
    +

    But this is allowed:

    +
    let f Pair(x,y) = x+y in f Pair(1,2)
    +
    +

    because it is first reduced to

    +
    let f = fun Pair(x,y) -> x+y in f Pair(1,2)
    +
    +

    by uncurrying of the let binder, and pattern matching is +allowed in function arguments.

    +
  • +
  • +

    We include a callcc construct, for two reasons: first, +several functional languages support this construct; second, some +semantic frameworks have difficulties defining it. Not K.

    +
  • +
  • +

    Finally, we include mutables by means of referencing an +expression, getting the reference of a variable, dereferencing and +assignment. We include these for the same reasons as above: there are +languages which have them, and they are not easy to define in some +semantic frameworks.

    +
  • +
+

Like in many other languages, some of FUN's constructs can be +desugared into a smaller set of basic constructs. We do that as usual, +using macros, and then we only give semantics to the core constructs.

+

Note:
+We recommend the reader to first consult the dynamic semantics of the +LAMBDA++ language in the first part of the K Tutorial. +To keep the comments below small and focused, we will not re-explain +functional or K features that have already been explained in there.

+

Syntax

+
k
//require "modules/pattern-matching.k" + +module FUN-UNTYPED-COMMON + imports DOMAINS-SYNTAX +
+

FUN is an expression language. The constructs below fall into +several categories: names, arithmetic constructs, conventional +functional constructs, patterns and pattern matching, data constructs, +lists, references, and call-with-current-continuation (callcc). +The arithmetic constructs are standard; they are present in almost all +our K language definitions. The meaning of FUN's constructs are +discussed in more depth when we define their semantics in the next +module.

+

The Syntactic Constructs

+

We start with the syntactic definition of FUN names. +We have several categories of names: ones to be used for functions and +variables, others to be used for data constructors, others for types and +others for type variables. We will introduce them as needed, starting +with the former category. We prefer the names of variables and functions +to start with lower case letters. We take the freedom to tacitly introduce +syntactic lists/sequences for each nonterminal for which we need them:

+
k
syntax Name [token] + syntax Names ::= List{Name,","} [overload(exps)] +
+

Expression constructs will be defined throughtout the syntax module. +Below are the very basic ones, namely the builtins, the names, and the +parentheses used as brackets for grouping. Lists of expressions are +declared strict, so all expressions in the list get evaluated whenever +the list is on a position which can be evaluated:

+
k
syntax Exp ::= Int | Bool | String | Name + | "(" Exp ")" [bracket] + syntax Exps ::= List{Exp,","} [strict, overload(exps)] + syntax Val + syntax Exp ::= Val + syntax Exps ::= Vals + syntax Vals ::= List{Val,","} [overload(exps)] + syntax Bottom + syntax Bottoms ::= List{Bottom,","} [overload(exps)] +
+

We next define the syntax of arithmetic constructs, together with +their relative priorities and left-/non-associativities. We also +tag all these rules as members of a new group, "arith", so we can more easily +define global syntax priorities later (at the end of the syntax module).

+
k
syntax Exp ::= left: + Exp "*" Exp [strict, group(arith)] + | Exp "/" Exp [strict, group(arith)] + | Exp "%" Exp [strict, group(arith)] + > left: + Exp "+" Exp [strict, left, group(arith)] + | Exp "^" Exp [strict, left, group(arith)] +// left attribute should not be necessary; currently a parsing bug + | Exp "-" Exp [strict, prefer, group(arith)] +// the "prefer" attribute above is to not parse x-1 as x(-1) +// Due to some parsing problems, we currently cannot add unary minus: + | "-" Exp [strict, group(arith)] + > non-assoc: + Exp "<" Exp [strict, group(arith)] + | Exp "<=" Exp [strict, group(arith)] + | Exp ">" Exp [strict, group(arith)] + | Exp ">=" Exp [strict, group(arith)] + | Exp "==" Exp [strict, group(arith)] + | Exp "!=" Exp [strict, group(arith)] + > "!" Exp [strict, group(arith)] + > Exp "&&" Exp [strict(1), left, group(arith)] + > Exp "||" Exp [strict(1), left, group(arith)] +
+

The conditional construct has the expected evaluation strategy, +stating that only the first argument is evaluate:

+
k
syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)] +
+

FUN's builtin lists are formed by enclosing comma-separated +sequences of expressions (i.e., terms of sort Exps) in square +brackets. The list constructor cons adds a new element to the +top of the list, head and tail get the first element +and the tail sublist of a list if they exist, respectively, and get +stuck otherwise, and null?? tests whether a list is empty or +not; syntactically, these are just expression constants. +In function patterns, we are also going to allow patterns following the +usual head/tail notation; for example, the pattern [x_1,...,x_n|t] +binds x_1, ..., x_n to the first elements of the matched list, +and t to the list formed with the remaining elements. We define list +patterns as ordinary expression constructs, although we will make sure that +we do not give them semantics if they appear in any other place then in a +function case pattern.

+
k
syntax Exp ::= "[" Exps "]" [strict, klabel(list)] + | "head" [macro] | "tail" [macro] | "null?" [macro] + | "[" Exps "|" Exp "]" + syntax Val ::= "[" Vals "]" [klabel(list)] + syntax Cons ::= "cons" + syntax Val ::= Cons + syntax Val ::= Cons Val [klabel(apply)] +
+

Data constructors start with capital letters and they may or may +not have arguments. We need to use the attribute "prefer" to make +sure that, e.g., Cons(a) parses as constructor Cons with +argument a, and not as the expression Cons (because +constructor names are also expressions) regarded as a function applied +to the expression a. Also, note that the constructor is strict +in its second argument, because we want to evaluate its arguments but +not the constuctor name itsef.

+
k
syntax ConstructorName [token] + syntax Exp ::= ConstructorName + | ConstructorName "(" Exps ")" [prefer, strict(2), klabel(constructor)] + syntax Val ::= ConstructorName "(" Vals ")" [klabel(constructor)] +
+

A function is essentially a |-separated ordered +sequence of cases, each case of the form pattern -> expression, +preceded by the language construct fun. Patterns will be defined +shortly, both for the builtin lists and for user-defined constructors. +Recall that the syntax we define in K is not meant to serve as a +ultimate parser for the defined language, but rather as a convenient +notation for K abstract syntax trees, which we prefer when we write +the semantic rules. It is therefore often the case that we define a +more ``generous'' syntax than we want to allow programs to use. +We do it here, too. Specifically, the syntax of Cases +below allows any expressions to appear as pattern. This syntactic +relaxation permits many wrong programs to be parsed, but that is not a +problem because we are not going to give semantics to wrong combinations, +so those programs will get stuck; moreover, our type inferencer will reject +those programs anyway. Function application is just concatenation of +expressions, without worrying about type correctness. Again, the type +system will reject type-incorrect programs.

+
k
syntax Exp ::= "fun" Cases + | Exp Exp [strict, left, klabel(apply)] +// NOTE: We would like eventually to also have Exp "(" Exps ") + syntax Case ::= Exp "->" Exp + syntax Cases ::= List{Case, "|"} +
+

The let and letrec binders have the usual syntax +and functional meaning. We allow multiple and-separated bindings. +Like for the function cases above, we allow a more generous syntax for +the left-hand sides of bindings, noting that the semantics will get stuck +on incorrect bindings and that the type system will reject those programs.

+
k
syntax Exp ::= "let" Bindings "in" Exp + | "letrec" Bindings "in" Exp [prefer] +// The "prefer" attribute for letrec currently needed due to tool bug, +// to make sure that "letrec" is not parsed as "let rec". + syntax Binding ::= Exp "=" Exp + syntax Bindings ::= List{Binding,"and"} +
+

References are first class values in FUN. The construct ref +takes an expression, evaluates it, and then it stores the resulting value +at a fresh location in the store and returns that reference. Syntactically, +ref is just an expression constant. The construct & +takes a name as argument and evaluates to a reference, namely the store +reference where the variable passed as argument stores its value; this +construct is a bit controversial and is further discussed in the +environment-based semantics of the FUN language, where we desugar +ref to it. The construct @ takes a reference +and evaluates to the value stored there. The construct := takes +two expressions, the first expected to evaluate to a reference; the value +of its second argument will be stored at the location to which the first +points (the old value is thus lost). Finally, since expression evaluation +now has side effects, it makes sense to also add a sequential composition +construct, which is sequentially strict. This evaluates to the value of +its second argument; the value of the first argument is lost (which has +therefore been evaluated only for its side effects.

+
k
syntax Exp ::= "ref" [macro] + | "&" Name + | "@" Exp [strict] + | Exp ":=" Exp [strict] + | Exp ";" Exp [strict(1), right] +
+

Call-with-current-continuation, named callcc in FUN, is a +powerful control operator that originated in the Scheme programming +language, but it now exists in many other functional languages. It works +by evaluating its argument, expected to evaluate to a function, and by +passing the current continuation, or evaluation context (or computation, +in K terminology), as a special value to it. When/If this special value +is invoked, the current context is discarded and replaced with the one +held by the special value and the computation continues from there. +It is like taking a snapshot of the execution context at some moment +in time and then, when desired, being able to get back in time to that +point. If you like games, it is like saving the game now (so you can +work on your homework!) and then continuing the game tomorrow or whenever +you wish. To issustrate the strength of callcc, we also +allow exceptions in FUN by means of a conventional try-catch +construct, which will desugar to callcc. We also need to +introduce the special expression contant throw, but we need to +use it as a function argument name in the desugaring macro, so we define +it as a name instead of as an expression constant:

+
k
syntax Exp ::= "try" Exp "catch" "(" Name ")" Exp [macro] + syntax Val ::= "callcc" + syntax Name ::= "throw" [token] +
+

Finally, FUN also allows polymorphic datatype declarations. These +will be useful when we define the type system later on.

+
k
syntax Exp ::= "datatype" Type "=" TypeCases Exp [macro] +// NOTE: In a future version of K, we want the datatype declaration +// to be a construct by itself, but that is not possible currently +// because K's parser wronly identifies the __ operation allowing +// a declaration to appear in front of an expression with the function +// application construct, giving ambiguous parsing errors. +
+

We next need to define the syntax of types and type cases that appear +in datatype declarations.

+

Like in many functional languages, type parameters/variables in +user-defined types are quoted identifiers.

+
k
syntax TypeVar [token] + syntax TypeVars ::= List{TypeVar,","} [overload(types)] +
+

Types can be basic types, function types, or user-defined +parametric types. In the dynamic semantics we are going to simply ignore +all the type declations, so here the syntax of types below is only useful +for generating the desired parser. To avoid syntactic ambiguities with +the arrow construct for function cases, we use the symbol --> as +a constructor for function types:

+
k
syntax TypeName [token] + syntax Type ::= "int" | "bool" | "string" + | Type "-->" Type [right] + | "(" Type ")" [bracket] + | TypeVar + | TypeName [symbol(TypeName), avoid] + | Type TypeName [symbol(Type-TypeName), macro] + | "(" Types ")" TypeName [prefer] + syntax Types ::= List{Type,","} [overload(types)] + syntax Types ::= TypeVars + + syntax TypeCase ::= ConstructorName + | ConstructorName "(" Types ")" + syntax TypeCases ::= List{TypeCase,"|"} [symbol(_|TypeCase_)] +
+

Additional Priorities

+
k
syntax priority @__FUN-UNTYPED-COMMON + > apply + > arith + > _:=__FUN-UNTYPED-COMMON + > let_in__FUN-UNTYPED-COMMON + letrec_in__FUN-UNTYPED-COMMON + if_then_else__FUN-UNTYPED-COMMON + > _;__FUN-UNTYPED-COMMON + > fun__FUN-UNTYPED-COMMON + > datatype_=___FUN-UNTYPED-COMMON +endmodule + +module FUN-UNTYPED-MACROS + imports FUN-UNTYPED-COMMON +
+

Desugaring macros

+

We desugar the list non-constructor operations to functions matching +over list patterns. In order to do that we need some new variables; for +those, we follow the same convention like in the K tutorial, where we +added them as new identifier constructs starting with the character $, +so we can easily recognize them when we debug or trace the semantics.

+
k
syntax Name ::= "$h" [token] | "$t" [token] + rule head => fun [$h|$t] -> $h + rule tail => fun [$h|$t] -> $t + rule null? => fun [.Exps] -> true | [$h|$t] -> false +
+

Multiple-head list patterns desugar into successive one-head patterns:

+
k
rule [E1,E2,Es:Exps|T] => [E1|[E2,Es|T]] [anywhere] +
+

Uncurrying of multiple arguments in functions and binders:

+
k
rule P1 P2 -> E => P1 -> fun P2 -> E [anywhere] + rule F P = E => F = fun P -> E [anywhere] +
+

We desugar the try-catch construct into callcc:

+
k
syntax Name ::= "$k" [token] | "$v" [token] + rule try E catch(X) E' + => callcc (fun $k -> (fun throw -> E)(fun X -> $k E')) +
+

For uniformity, we reduce all types to their general form:

+
k
rule `Type-TypeName`(T:Type, Tn:TypeName) => (T) Tn +
+

The dynamic semantics ignores all the type declarations:

+
k
rule datatype _T = _TCs E => E + +endmodule + + +module FUN-UNTYPED-SYNTAX + imports FUN-UNTYPED-COMMON + imports BUILTIN-ID-TOKENS + + syntax Name ::= r"[a-z][_a-zA-Z0-9]*" [token, prec(2)] + | #LowerId [token] + syntax ConstructorName ::= #UpperId [token] + syntax TypeVar ::= r"['][a-z][_a-zA-Z0-9]*" [token] + syntax TypeName ::= Name [token] +endmodule +
+

Semantics

+

The semantics below is environment-based. A substitution-based +definition of FUN is also available, but that drops the & +construct as explained above.

+
k
module FUN-UNTYPED + imports FUN-UNTYPED-COMMON + imports FUN-UNTYPED-MACROS + imports DOMAINS + //imports PATTERN-MATCHING +
+

Configuration

+

The k, env, and store cells are standard +(see, for example, the definition of LAMBDA++ or IMP++ in the first +part of the K tutorial).

+
k
configuration <T color="yellow"> + <k color="green"> $PGM:Exp </k> + <env color="violet"> .Map </env> + <store color="white"> .Map </store> + </T> +
+

Values and results

+

We only define integers, Booleans and strings as values here, but will +add more values later.

+
k
syntax Val ::= Int | Bool | String + syntax Val ::= Bottom + syntax Vals ::= Bottoms + syntax KResult ::= Val +
+

Lookup

+
k
rule <k> X:Name => V ...</k> + <env>... X |-> L ...</env> + <store>... L |-> V ...</store> +
+

Arithmetic expressions

+
k
rule I1 * I2 => I1 *Int I2 + rule I1 / I2 => I1 /Int I2 requires I2 =/=K 0 + rule I1 % I2 => I1 %Int I2 requires I2 =/=K 0 + rule I1 + I2 => I1 +Int I2 + rule S1 ^ S2 => S1 +String S2 + rule I1 - I2 => I1 -Int I2 + rule - I => 0 -Int I + rule I1 < I2 => I1 <Int I2 + rule I1 <= I2 => I1 <=Int I2 + rule I1 > I2 => I1 >Int I2 + rule I1 >= I2 => I1 >=Int I2 + rule V1:Val == V2:Val => V1 ==K V2 + rule V1:Val != V2:Val => V1 =/=K V2 + rule ! T => notBool(T) + rule true && E => E + rule false && _ => false + rule true || _ => true + rule false || E => E +
+

Conditional

+
k
rule if true then E else _ => E + rule if false then _ else E => E +
+

Lists

+

We have already declared the syntactic list of expressions strict, so +we can assume that all the elements that appear in a FUN list are +evaluated. The only thing left to do is to state that a list of +values is a value itself, that is, that the list square-bracket +construct is indeed a constructor, and to give the semantics of +cons. Since cons is a builtin function and is +expected to take two arguments, we have to also state that +cons itself is a value (specifically, a function/closure +value, but we do not need that level of detail here), and also that +cons applied to a value is a value (specifically, it would be +a function/closure value that expects the second, list argument):

+
k
rule cons V:Val [Vs:Vals] => [V,Vs] +
+

Data Constructors

+

Constructors take values as arguments and produce other values:

+
k
syntax Val ::= ConstructorName +
+

Functions and Closures

+

Like in the environment-based semantics of LAMBDA++ in the first part +of the K tutorial, functions evaluate to closures. A closure includes +the current environment besides the function contents; the environment +will be used at execution time to lookup all the variables that appear +free in the function body (we want static scoping in FUN).

+
k
syntax Val ::= closure(Map,Cases) + rule <k> fun Cases => closure(Rho,Cases) ...</k> <env> Rho </env> +
+

Note: The reader may want to get familiar with +how the pre-defined pattern matching works before proceeding. +The best way to do that is to consult +k/include/modules/pattern-matching.k.

+ +

We distinguish two cases when the closure is applied. +If the first pattern matches, then we pick the first case: switch to +the closed environment, get the matching map and bind all its +variables, and finally evaluate the function body of the first case, +making sure that the environment is properly recovered afterwards. +If the first pattern does not match, then we drop it and thus move on +to the next one.

+
k
rule (.K => getMatching(P, V)) ~> closure(_, P->_ | _) V:Val + rule <k> matchResult(M:Map) ~> closure(Rho, _->E | _) _ + => bindMap(M) ~> E ~> setEnv(Rho') ...</k> + <env> Rho' => Rho </env> + rule (matchFailure => .K) ~> closure(_, (_->_ | Cs:Cases => Cs)) _ +// rule <k> closure(Rho, P->E | _) V:Val +// => bindMap(getMatching(P,V)) ~> E ~> setEnv(Rho') ...</k> +// <env> Rho' => Rho </env> requires isMatching(P,V) +// rule closure(_, (P->_ | Cs:Cases => Cs)) V:Val requires notBool isMatching(P,V) +
+

Let and Letrec

+

To highlight the similarities and differences between let and +letrec, we prefer to give them direct semantics instead of +to desugar them like in LAMBDA. See the formal definitions of +bindTo, bind, and assignTo at the end of +this module. Informally, bindTo(Xs, Es) first +evaluates the expressions Es in Exps in the current +environment (i.e., it is strict in its second argument), then it binds +the variables in Xs in Names to new locations and adds +those bindings to the environment, and finally writes the values +previously obtained after evaluating the expressions Es to those +new locations; bind(Xs) does only the bindings of +Xs to new locations and adds those bindings to the environment; +and assignTo(Xs,Es) evaluates the expressions +Es in the current environment and then it writes the resulting +values to the locations to which the variables Xs are already +bound to in the environment.

+

Therefore, let Xs = Es in E first +evaluates Es in the current environment, then adds new +bindings for Xs to fresh locations in the environment, then +writes the values of Es to those locations, and finally +evaluates E in the new environment, making sure that the +environment is properly recovered after the evaluation of E. +On the other hand, letrec does the same things but in a +different order: it first adds new bindings for Xs to fresh +locations in the environment, then it evaluates Es in the new +environment, then it writes the resulting values to their +corresponding locations, and finally it evaluates E and +recovers the environment. The crucial difference is that the +expressions Es now see the locations of the variables Xs +in the environment, so if they are functions, which is typically the +case with letrec, their closures will encapsulate in their +environments the bindings of all the bound variables, including +themselves (thus, we may have a closure value stored at location +L, whose environment contains a binding of the form +F ↦ L; this way, the closure can invoke +itself).

+
k
rule <k> let Bs in E + => bindTo(names(Bs),exps(Bs)) ~> E ~> setEnv(Rho) ...</k> + <env> Rho </env> + + rule <k> letrec Bs in E + => bind(names(Bs))~>assignTo(names(Bs),exps(Bs))~>E~>setEnv(Rho)...</k> + <env> Rho </env> +
+

Recall that our syntax allows let and letrec to +take any expression in place of its binding. This allows us to use +the already existing function application construct to bind names to +functions, such as, e.g., let x y = y in .... +The desugaring macro in the syntax module uncurries such declarations, +and then the semantic rules above only work when the remaining +bindings are identifiers, so the semantics will get stuck on programs +that misuse the let and letrec binders.

+

References

+

The semantics of references is self-explanatory, except maybe for the +desugaring rule of ref, which is further discussed. Note +that &X grabs the location of X from the environment. +Sequential composition, which is needed only to accumulate the +side effects due to assignments, was strict in the first argument. +Once evaluated, its first argument is simply discarded:

+
k
syntax Name ::= "$x" [token] + rule ref => fun $x -> & $x + rule <k> & X => L ...</k> <env>... X |-> L ...</env> + rule <k> @ L:Int => V:Val ...</k> <store>... L |-> V ...</store> + rule <k> L:Int := V:Val => V ...</k> <store>... L |-> (_=>V) ...</store> + rule _V:Val; E => E +
+

The desugaring rule of ref (first rule above) works +because & takes a variable and returns its location (like in C). +Note that some ``pure'' functional programming researchers strongly dislike +the & construct, but favor ref. We refrain from having +a personal opinion on this issue here, but support & in the +environment-based definition of FUN because it is, technically speaking, +more powerful than ref. From a language design perspective, it +would be equally easy to drop & and instead give a direct +semantics to ref. In fact, this is precisely what we do in the +substitution-based definition of FUN, because there appears to be no way +to give a substitution-based definition to the & construct.

+

Callcc

+

As we know it from the LAMBDA++ tutorial, call-with-current-continuation +is quite easy to define in K. We first need to define a special +value wrapping an execution context, that is, an environment saying +where the variables should be looked up, and a computation structure +saying what is left to execute (in a substitution-based definition, +this special value would be even simpler, as it would only need to +wrap the computation structure---see, for example, the +substitution-based semantics of LAMBDA++ in the the first part of the +K tutorial, or the substitution-based definition of FUN). Then +callcc creates such a value containing the current +environment and the current remaining computation, and passes it to +its argument function. When/If invoked, the special value replaces +the current execution context with its own and continues the execution +normally.

+
k
syntax Val ::= cc(Map,K) + rule <k> (callcc V:Val => V cc(Rho,K)) ~> K </k> <env> Rho </env> + rule <k> cc(Rho,K) V:Val ~> _ => V ~> K </k> <env> _ => Rho </env> +
+

Auxiliary operations

+

Environment recovery

+

The environment recovery operation is the same as for the LAMBDA++ +language in the K tutorial and many other languages provided with the +K distribution. The first ``anywhere'' rule below shows an elegant +way to achieve the benefits of tail recursion in K.

+
k
syntax KItem ::= setEnv(Map) // TODO: get rid of env + //rule (setEnv(_) => .) ~> setEnv(_) [anywhere] + rule <k> _:Val ~> (setEnv(Rho) => .K) ...</k> <env> _ => Rho </env> +
+

bindTo, bind and assignTo

+

The meaning of these operations has already been explained when we +discussed the let and letrec language constructs +above.

+
k
syntax KItem ::= bindTo(Names,Exps) [strict(2)] + | bindMap(Map) + | bind(Names) + + rule (.K => getMatchingAux(Xs,Vs)) ~> bindTo(Xs:Names,Vs:Vals) + rule matchResult(M:Map) ~> bindTo(_:Names, _:Vals) => bindMap(M) + + rule bindMap(.Map) => .K + rule <k> bindMap((X:Name |-> V:Val => .Map) _:Map) ...</k> + <env> Rho => Rho[X <- !L:Int] </env> + <store>... .Map => !L |-> V ...</store> + + rule bind(.Names) => .K + rule <k> bind(X:Name,Xs => Xs) ...</k> + <env> Rho => Rho[X <- !_L:Int] </env> + + syntax KItem ::= assignTo(Names,Exps) [strict(2)] + + rule <k> assignTo(.Names,.Vals) => .K ...</k> + rule <k> assignTo((X:Name,Xs => Xs),(V:Val,Vs:Vals => Vs)) ...</k> + <env>... X |-> L ...</env> + <store>... .Map => L |-> V ...</store> +
+

Getters

+

The following auxiliary operations extract the list of identifiers +and of expressions in a binding, respectively.

+
k
syntax Names ::= names(Bindings) [function] + rule names(.Bindings) => .Names + rule names(X:Name=_ and Bs) => (X,names(Bs))::Names + + syntax Exps ::= exps(Bindings) [function] + rule exps(.Bindings) => .Exps + rule exps(_:Name=E and Bs) => E,exps(Bs) + + /* Extra kore stuff */ + syntax KResult ::= Vals + syntax Exps ::= Names + syntax Names ::= Bottoms + + /* Matching */ + syntax MatchResult ::= getMatching(Exp, Val) [function] + | getMatchingAux(Exps, Vals) [function] + | mergeMatching(MatchResult, MatchResult) [function] + | matchResult(Map) + | "matchFailure" + + rule getMatching(C:ConstructorName(Es:Exps), C(Vs:Vals)) => getMatchingAux(Es, Vs) + rule getMatching([Es:Exps], [Vs:Vals]) => getMatchingAux(Es, Vs) + rule getMatching(C:ConstructorName, C) => matchResult(.Map) + rule getMatching(B:Bool, B) => matchResult(.Map) + rule getMatching(I:Int, I) => matchResult(.Map) + rule getMatching(S:String, S) => matchResult(.Map) + rule getMatching(N:Name, V:Val) => matchResult(N |-> V) + rule getMatching(_, _) => matchFailure [owise] + + rule getMatchingAux((E:Exp, Es:Exps), (V:Val, Vs:Vals)) => mergeMatching(getMatching(E, V), getMatchingAux(Es, Vs)) + rule getMatchingAux(.Exps, .Vals) => matchResult(.Map) + rule getMatchingAux(_, _) => matchFailure [owise] + + rule mergeMatching(matchResult(M1:Map), matchResult(M2:Map)) => matchResult(M1 M2) + requires intersectSet(keys(M1), keys(M2)) ==K .Set + //rule mergeMatching(_, _) => matchFailure [owsie] + rule mergeMatching(matchResult(_:Map), matchFailure) => matchFailure + rule mergeMatching(matchFailure, matchResult(_:Map)) => matchFailure + rule mergeMatching(matchFailure, matchFailure) => matchFailure +
+

Besides the generic decomposition rules for patterns and values, +we also want to allow [head|tail] matching for lists, so we add +the following custom pattern decomposition rule:

+
k
rule getMatching([H:Exp | T:Exp], [V:Val, Vs:Vals]) + => getMatchingAux((H, T), (V, [Vs])) +endmodule +
+

Go to Lesson 2, FUN untyped, Substitution-Based.

+
+
+ + + +
+ +
+
+ + + + + + + + + + + + + diff --git a/news/k-framework-demo/index.html b/news/k-framework-demo/index.html new file mode 100644 index 00000000000..456da8b3f1d --- /dev/null +++ b/news/k-framework-demo/index.html @@ -0,0 +1,355 @@ + + + + + + + + + + + + + + +The K Framework Demo | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

The K Framework Demo

+ +
+
+ + + +
+ +
+
+ + + + + + + + + + + + diff --git a/overview/index.html b/overview/index.html new file mode 100644 index 00000000000..07c18da697e --- /dev/null +++ b/overview/index.html @@ -0,0 +1,357 @@ + + + + + + + + + + + + + + +K overview | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

K overview

+ +

Go to Youtube mirror, if the above does not work.

+

Go back to https://kframework.org for further links, the K tool and contact information.

+
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + diff --git a/projects/index.html b/projects/index.html new file mode 100644 index 00000000000..09bca25d195 --- /dev/null +++ b/projects/index.html @@ -0,0 +1,448 @@ + + + + + + + + + + + + + + +Projects using K | Runtime Verification Inc + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Projects using K

+

A list of projects using the K framework. If you are working on something interesting, and you want to share it with the community, +let us know on our socials, and we will feature you on this list.

+
+ +
+
    +
  • +

    KAVM (Feb 2022 - Present)

    +

    The Algorand Virtual Machine and TEAL Semantics in K
    +KAVM leverages the K Framework to empower Algorand smart contracts' developers +with property-based testing and formal verification.

    +
  • +
  • +

    KPlutus (2016 - Present)

    +

    The K Semantics of Plutus-Core

    +
  • +
  • +

    Dedukti (Mar 2021 - Present)

    +

    This project aims to translate real K semantics into Dedukti.

    +
  • +
  • +

    KWasm (Aug 2015 - Present)

    +

    KWasm is the K semantics of WebAssembly. +WebAssembly is a low-level (but simple and streamlined) assembly language that was originally developed to provide a fast execution engine for browser-based tools. +More recently, it has been used in several blockchain smart-contract platforms as the underlying language for executing financial agreements. +KWasm has been used for measuring coverage of test-suites over Wasm code and verifying programs which are compiled to Wasm.

    +
  • +
  • +

    KEVM (Sep 2017 - Present)

    +

    KEVM is the K semantics of the Ethereum Virtual Machine. +It passes all the Ethereum Test Suite, and is used for verifying EVM programs.

    +
  • +
  • +

    IELE (Oct 2016 - Present)

    +

    IELE is the underlying VM integrated into the Cardano blockchain. +IELE is a register-based VM (inspired by LLVM), which attempts to avoid many of the missteps in design present in EVM.

    +
  • +
  • +

    K-Michelson (Oct 2019 - Present)

    +

    K-Michelson is the K semantics of Michelson blockchain programming language, which powers the Tezos blockchain. +KMichelson provides additional testing tools for developers, including a unit-testing framework which is extendable to symbolic property testing.

    +
  • +
  • +

    C (Jul 2010 - Present)

    +

    The K semantics of the C programming language specifies the translation, linking, and execution semantics of the C language according to the official C standard. +It has been used to build tools like RV-Match, which detects undefined behaviors in users programs by running their test-suites through the C semantics.

    +
  • +
+

Archived

+ +
+
+ + +
+ + + +
+
+ +
+
+ + + + + + + + + + + + diff --git a/pyk/_modules/index.html b/pyk/_modules/index.html new file mode 100644 index 00000000000..438611e4b20 --- /dev/null +++ b/pyk/_modules/index.html @@ -0,0 +1,180 @@ + + + + + + Overview: module code — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+ +
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/coverage.html b/pyk/_modules/pyk/coverage.html new file mode 100644 index 00000000000..354c37f13ce --- /dev/null +++ b/pyk/_modules/pyk/coverage.html @@ -0,0 +1,251 @@ + + + + + + pyk.coverage — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.coverage

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from .kast import Atts
+  6from .kast.inner import KApply, KRewrite, KSequence
+  7from .kast.outer import KRule, read_kast_definition
+  8
+  9if TYPE_CHECKING:
+ 10    from collections.abc import Iterable
+ 11    from os import PathLike
+ 12
+ 13    from .kast.outer import KDefinition
+ 14
+ 15
+
+[docs] + 16def get_rule_by_id(definition: KDefinition, rule_id: str) -> KRule: + 17 """Get a rule from the definition by coverage rule id. + 18 + 19 Args: + 20 definition: JSON-encoded definition. + 21 rule_id: String of unique rule identifier generated by `kompile --coverage`. + 22 + 23 Returns: + 24 JSON encoded rule which has identifier `rule_id`. + 25 """ + 26 for module in definition.modules: + 27 for sentence in module.sentences: + 28 if type(sentence) is KRule: + 29 if Atts.UNIQUE_ID in sentence.att and sentence.att[Atts.UNIQUE_ID] == rule_id: + 30 return sentence + 31 raise ValueError(f'Could not find rule with ID: {rule_id}')
+ + 32 + 33 +
+[docs] + 34def strip_coverage_logger(rule: KRule) -> KRule: + 35 body = rule.body + 36 if type(body) is KRewrite: + 37 lhs = body.lhs + 38 rhs = body.rhs + 39 if type(rhs) is KApply and rhs.label.name.startswith('project:'): + 40 rhs_seq = rhs.args[0] + 41 if type(rhs_seq) is KSequence and rhs_seq.arity == 2: + 42 body = KRewrite(lhs, rhs_seq.items[1]) + 43 return rule.let(body=body)
+ + 44 + 45 +
+[docs] + 46def translate_coverage( + 47 src_all_rules: Iterable[str], + 48 dst_all_rules: Iterable[str], + 49 dst_definition: KDefinition, + 50 src_rules_list: Iterable[str], + 51) -> list[str]: + 52 """Translate the coverage data from one kompiled definition to another. + 53 + 54 Args: + 55 src_all_rules: Contents of allRules.txt for definition which coverage was generated for. + 56 dst_all_rules: Contents of allRules.txt for definition which you desire coverage for. + 57 dst_definition: JSON encoded definition of dst kompiled definition. + 58 src_rules_list: Actual coverage data produced. + 59 + 60 Returns: + 61 List of non-functional rules applied in dst definition translated from src definition. + 62 """ + 63 # Load the src_rule_id -> src_source_location rule map from the src kompiled directory + 64 src_rule_map = {} + 65 for line in src_all_rules: + 66 src_rule_hash, src_rule_loc = line.split(' ') + 67 src_rule_loc = src_rule_loc.split('/')[-1] + 68 src_rule_map[src_rule_hash.strip()] = src_rule_loc.strip() + 69 + 70 # Load the dst_rule_id -> dst_source_location rule map (and inverts it) from the dst kompiled directory + 71 dst_rule_map = {} + 72 for line in dst_all_rules: + 73 dst_rule_hash, dst_rule_loc = line.split(' ') + 74 dst_rule_loc = dst_rule_loc.split('/')[-1] + 75 dst_rule_map[dst_rule_loc.strip()] = dst_rule_hash.strip() + 76 + 77 src_rule_list = [rule_hash.strip() for rule_hash in src_rules_list] + 78 + 79 # Filter out non-functional rules from rule map (determining if they are functional via the top symbol in the rule being `<generatedTop>`) + 80 dst_non_function_rules = [] + 81 for module in dst_definition.modules: + 82 for sentence in module.sentences: + 83 if type(sentence) is KRule: + 84 body = sentence.body + 85 if (type(body) is KApply and body.label.name == '<generatedTop>') or ( + 86 type(body) is KRewrite and type(body.lhs) is KApply and body.lhs.label.name == '<generatedTop>' + 87 ): + 88 if Atts.UNIQUE_ID in sentence.att: + 89 dst_non_function_rules.append(sentence.att[Atts.UNIQUE_ID]) + 90 + 91 # Convert the src_coverage rules to dst_no_coverage rules via the maps generated above + 92 dst_rule_list = [] + 93 for src_rule in src_rule_list: + 94 if src_rule not in src_rule_map: + 95 raise ValueError(f'Could not find rule in src_rule_map: {src_rule}') + 96 src_rule_loc = src_rule_map[src_rule] + 97 + 98 if src_rule_loc not in dst_rule_map: + 99 raise ValueError(f'Could not find rule location in dst_rule_map: {src_rule_loc}') +100 dst_rule = dst_rule_map[src_rule_loc] +101 +102 if dst_rule in dst_non_function_rules: +103 dst_rule_list.append(dst_rule) +104 +105 return dst_rule_list
+ +106 +107 +
+[docs] +108def translate_coverage_from_paths(src_kompiled_dir: str, dst_kompiled_dir: str, src_rules_file: PathLike) -> list[str]: +109 """Translate coverage information given paths to needed files. +110 +111 Args: +112 src_kompiled_dir: Path to kompiled directory of source. +113 dst_kompiled_dir: Path to kompiled directory of destination. +114 src_rules_file: Path to generated rules coverage file. +115 +116 Returns: +117 Translated list of rules with non-semantic rules stripped out. +118 """ +119 src_all_rules = [] +120 with open(src_kompiled_dir + '/allRules.txt') as src_all_rules_file: +121 src_all_rules = [line.strip() for line in src_all_rules_file] +122 +123 dst_all_rules = [] +124 with open(dst_kompiled_dir + '/allRules.txt') as dst_all_rules_file: +125 dst_all_rules = [line.strip() for line in dst_all_rules_file] +126 +127 dst_definition = read_kast_definition(dst_kompiled_dir + '/compiled.json') +128 +129 src_rules_list = [] +130 with open(src_rules_file) as src_rules: +131 src_rules_list = [line.strip() for line in src_rules] +132 +133 return translate_coverage(src_all_rules, dst_all_rules, dst_definition, src_rules_list)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/cterm/cterm.html b/pyk/_modules/pyk/cterm/cterm.html new file mode 100644 index 00000000000..f6aec239c91 --- /dev/null +++ b/pyk/_modules/pyk/cterm/cterm.html @@ -0,0 +1,570 @@ + + + + + + pyk.cterm.cterm — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.cterm.cterm

+  1from __future__ import annotations
+  2
+  3from dataclasses import dataclass
+  4from functools import cached_property
+  5from itertools import chain
+  6from typing import TYPE_CHECKING
+  7
+  8from ..kast import KInner
+  9from ..kast.inner import KApply, KRewrite, KToken, Subst, bottom_up
+ 10from ..kast.manip import (
+ 11    abstract_term_safely,
+ 12    build_claim,
+ 13    build_rule,
+ 14    flatten_label,
+ 15    free_vars,
+ 16    ml_pred_to_bool,
+ 17    normalize_constraints,
+ 18    push_down_rewrites,
+ 19    remove_useless_constraints,
+ 20    split_config_and_constraints,
+ 21    split_config_from,
+ 22)
+ 23from ..prelude.k import GENERATED_TOP_CELL
+ 24from ..prelude.kbool import andBool, orBool
+ 25from ..prelude.ml import is_bottom, is_top, mlAnd, mlBottom, mlEqualsTrue, mlImplies, mlTop
+ 26from ..utils import unique
+ 27
+ 28if TYPE_CHECKING:
+ 29    from collections.abc import Iterable, Iterator
+ 30    from typing import Any
+ 31
+ 32    from ..kast.outer import KClaim, KDefinition, KRule
+ 33
+ 34
+
+[docs] + 35@dataclass(frozen=True, order=True) + 36class CTerm: + 37 """Represent a symbolic program state, obtained and manipulated using symbolic execution. + 38 + 39 Contains the data: + 40 - `config`: the _configuration_ (structural component of the state, potentially containing free variabls) + 41 - `constraints`: conditiions which limit/constraint the free variables from the `config` + 42 """ + 43 + 44 config: KInner # TODO Optional? + 45 constraints: tuple[KInner, ...] + 46 +
+[docs] + 47 def __init__(self, config: KInner, constraints: Iterable[KInner] = ()) -> None: + 48 """Instantiate a given `CTerm`, performing basic sanity checks on the `config` and `constraints`.""" + 49 if is_top(config, weak=True): + 50 config = mlTop() + 51 constraints = () + 52 elif is_bottom(config, weak=True): + 53 config = mlBottom() + 54 constraints = () + 55 else: + 56 self._check_config(config) + 57 constraints = self._normalize_constraints(constraints) + 58 object.__setattr__(self, 'config', config) + 59 object.__setattr__(self, 'constraints', constraints)
+ + 60 +
+[docs] + 61 @staticmethod + 62 def from_kast(kast: KInner) -> CTerm: + 63 """Interpret a given `KInner` as a `CTerm` by splitting the `config` and `constraints` (see `CTerm.kast`).""" + 64 if is_top(kast, weak=True): + 65 return CTerm.top() + 66 elif is_bottom(kast, weak=True): + 67 return CTerm.bottom() + 68 else: + 69 config, constraint = split_config_and_constraints(kast) + 70 constraints = flatten_label('#And', constraint) + 71 return CTerm(config, constraints)
+ + 72 +
+[docs] + 73 @staticmethod + 74 def from_dict(dct: dict[str, Any]) -> CTerm: + 75 """Deserialize a `CTerm` from its dictionary representation.""" + 76 config = KInner.from_dict(dct['config']) + 77 constraints = [KInner.from_dict(c) for c in dct['constraints']] + 78 return CTerm(config, constraints)
+ + 79 +
+[docs] + 80 @staticmethod + 81 def top() -> CTerm: + 82 """Construct a `CTerm` representing all possible states.""" + 83 return CTerm(mlTop(), ())
+ + 84 +
+[docs] + 85 @staticmethod + 86 def bottom() -> CTerm: + 87 """Construct a `CTerm` representing no possible states.""" + 88 return CTerm(mlBottom(), ())
+ + 89 + 90 @staticmethod + 91 def _check_config(config: KInner) -> None: + 92 if not isinstance(config, KApply) or not config.is_cell: + 93 raise ValueError(f'Expected cell label, found: {config}') + 94 + 95 @staticmethod + 96 def _normalize_constraints(constraints: Iterable[KInner]) -> tuple[KInner, ...]: + 97 constraints = sorted(normalize_constraints(constraints), key=CTerm._constraint_sort_key) + 98 return tuple(constraints) + 99 +100 @property +101 def is_bottom(self) -> bool: +102 """Check if a given `CTerm` is trivially empty.""" +103 return is_bottom(self.config, weak=True) or any(is_bottom(cterm, weak=True) for cterm in self.constraints) +104 +105 @staticmethod +106 def _constraint_sort_key(term: KInner) -> tuple[int, str]: +107 term_str = str(term) +108 return (len(term_str), term_str) +109 +
+[docs] +110 def __iter__(self) -> Iterator[KInner]: +111 """Return an iterator with the head being the `config` and the tail being the `constraints`.""" +112 return chain([self.config], self.constraints)
+ +113 +
+[docs] +114 def to_dict(self) -> dict[str, Any]: +115 """Serialize a `CTerm` to dictionary representation.""" +116 return { +117 'config': self.config.to_dict(), +118 'constraints': [c.to_dict() for c in self.constraints], +119 }
+ +120 +121 @cached_property +122 def kast(self) -> KInner: +123 """Return the unstructured bare `KInner` representation of a `CTerm` (see `CTerm.from_kast`).""" +124 return mlAnd(self, GENERATED_TOP_CELL) +125 +126 @cached_property +127 def free_vars(self) -> frozenset[str]: +128 """Return the set of free variable names contained in this `CTerm`.""" +129 return frozenset(free_vars(self.kast)) +130 +131 @property +132 def hash(self) -> str: +133 """Unique hash representing the contents of this `CTerm`.""" +134 return self.kast.hash +135 +136 @cached_property +137 def cells(self) -> Subst: +138 """Return key-value store of the contents of each cell in the `config`.""" +139 _, subst = split_config_from(self.config) +140 return Subst(subst) +141 +
+[docs] +142 def cell(self, cell: str) -> KInner: +143 """Access the contents of a named cell in the `config`, die on failure.""" +144 return self.cells[cell]
+ +145 +
+[docs] +146 def try_cell(self, cell: str) -> KInner | None: +147 """Access the contents of a named cell in the `config`, return `None` on failure.""" +148 return self.cells.get(cell)
+ +149 +
+[docs] +150 def match(self, cterm: CTerm) -> Subst | None: +151 """Find `Subst` instantiating this `CTerm` to the other, return `None` if no such `Subst` exists.""" +152 csubst = self.match_with_constraint(cterm) +153 +154 if not csubst: +155 return None +156 +157 if csubst.constraint != mlTop(GENERATED_TOP_CELL): +158 return None +159 +160 return csubst.subst
+ +161 +
+[docs] +162 def match_with_constraint(self, cterm: CTerm) -> CSubst | None: +163 """Find `CSubst` instantiating this `CTerm` to the other, return `None` if no such `CSubst` exists.""" +164 subst = self.config.match(cterm.config) +165 +166 if subst is None: +167 return None +168 +169 constraint = self._ml_impl(cterm.constraints, map(subst, self.constraints)) +170 +171 return CSubst(subst=subst, constraints=[constraint])
+ +172 +173 @staticmethod +174 def _ml_impl(antecedents: Iterable[KInner], consequents: Iterable[KInner]) -> KInner: +175 antecedent = mlAnd(unique(antecedents), GENERATED_TOP_CELL) +176 consequent = mlAnd(unique(term for term in consequents if term not in set(antecedents)), GENERATED_TOP_CELL) +177 +178 if mlTop(GENERATED_TOP_CELL) in {antecedent, consequent}: +179 return consequent +180 +181 return mlImplies(antecedent, consequent, GENERATED_TOP_CELL) +182 +
+[docs] +183 def add_constraint(self, new_constraint: KInner) -> CTerm: +184 """Return a new `CTerm` with the additional constraints.""" +185 return CTerm(self.config, [new_constraint] + list(self.constraints))
+ +186 +
+[docs] +187 def anti_unify( +188 self, other: CTerm, keep_values: bool = False, kdef: KDefinition | None = None +189 ) -> tuple[CTerm, CSubst, CSubst]: +190 """Given two `CTerm` instances, find a more general `CTerm` which can instantiate to both. +191 +192 Args: +193 other: other `CTerm` to consider for finding a more general `CTerm` with this one. +194 keep_values: do not discard information about abstracted variables in returned result. +195 kdef (optional): `KDefinition` to make analysis more precise. +196 +197 Returns: +198 A tuple ``(cterm, csubst1, csubst2)`` where +199 +200 - ``cterm``: More general `CTerm` than either `self` or `other`. +201 - ``csubst1``: Constrained substitution to apply to `cterm` to obtain `self`. +202 - ``csubst2``: Constrained substitution to apply to `cterm` to obtain `other`. +203 """ +204 new_config, self_subst, other_subst = anti_unify(self.config, other.config, kdef=kdef) +205 common_constraints = [constraint for constraint in self.constraints if constraint in other.constraints] +206 self_unique_constraints = [ +207 ml_pred_to_bool(constraint) for constraint in self.constraints if constraint not in other.constraints +208 ] +209 other_unique_constraints = [ +210 ml_pred_to_bool(constraint) for constraint in other.constraints if constraint not in self.constraints +211 ] +212 +213 new_cterm = CTerm(config=new_config, constraints=()) +214 if keep_values: +215 disjunct_lhs = andBool([self_subst.pred] + self_unique_constraints) +216 disjunct_rhs = andBool([other_subst.pred] + other_unique_constraints) +217 if KToken('true', 'Bool') not in [disjunct_lhs, disjunct_rhs]: +218 new_cterm = new_cterm.add_constraint(mlEqualsTrue(orBool([disjunct_lhs, disjunct_rhs]))) +219 +220 new_constraints = [] +221 fvs = new_cterm.free_vars +222 len_fvs = 0 +223 while len_fvs < len(fvs): +224 len_fvs = len(fvs) +225 for constraint in common_constraints: +226 if constraint not in new_constraints: +227 constraint_fvs = free_vars(constraint) +228 if any(fv in fvs for fv in constraint_fvs): +229 new_constraints.append(constraint) +230 fvs = fvs | constraint_fvs +231 +232 for constraint in new_constraints: +233 new_cterm = new_cterm.add_constraint(constraint) +234 self_csubst = new_cterm.match_with_constraint(self) +235 other_csubst = new_cterm.match_with_constraint(other) +236 if self_csubst is None or other_csubst is None: +237 raise ValueError( +238 f'Anti-unification failed to produce a more general state: {(new_cterm, (self, self_csubst), (other, other_csubst))}' +239 ) +240 return (new_cterm, self_csubst, other_csubst)
+ +241 +
+[docs] +242 def remove_useless_constraints(self, keep_vars: Iterable[str] = ()) -> CTerm: +243 """Return a new `CTerm` with constraints over unbound variables removed. +244 +245 Args: +246 keep_vars: List of variables to keep constraints for even if unbound in the `CTerm`. +247 +248 Returns: +249 A `CTerm` with the constraints over unbound variables removed. +250 """ +251 initial_vars = free_vars(self.config) | set(keep_vars) +252 new_constraints = remove_useless_constraints(self.constraints, initial_vars) +253 return CTerm(self.config, new_constraints)
+
+ +254 +255 +
+[docs] +256def anti_unify(state1: KInner, state2: KInner, kdef: KDefinition | None = None) -> tuple[KInner, Subst, Subst]: +257 """Return a generalized state over the two input states. +258 +259 Args: +260 state1: State to generalize over, represented as bare `KInner`. +261 state2: State to generalize over, represented as bare `KInner`. +262 kdef (optional): `KDefinition` to make the analysis more precise. +263 +264 Note: +265 Both `state1` and `state2` are expected to be bare configurations with no constraints attached. +266 +267 Returns: +268 A tuple ``(state, subst1, subst2)`` such that +269 +270 - ``state``: A symbolic state represented as `KInner` which is more general than `state1` or `state2`. +271 - ``subst1``: A `Subst` which, when applied to `state`, recovers `state1`. +272 - ``subst2``: A `Subst` which, when applied to `state`, recovers `state2`. +273 """ +274 +275 def _rewrites_to_abstractions(_kast: KInner) -> KInner: +276 if type(_kast) is KRewrite: +277 sort = kdef.sort(_kast) if kdef else None +278 return abstract_term_safely(_kast, sort=sort) +279 return _kast +280 +281 minimized_rewrite = push_down_rewrites(KRewrite(state1, state2)) +282 abstracted_state = bottom_up(_rewrites_to_abstractions, minimized_rewrite) +283 subst1 = abstracted_state.match(state1) +284 subst2 = abstracted_state.match(state2) +285 if subst1 is None or subst2 is None: +286 raise ValueError('Anti-unification failed to produce a more general state!') +287 return (abstracted_state, subst1, subst2)
+ +288 +289 +
+[docs] +290@dataclass(frozen=True, order=True) +291class CSubst: +292 """Store information about instantiation of a symbolic state (`CTerm`) to a more specific one. +293 +294 Contains the data: +295 - `subst`: assignment to apply to free variables in the state to achieve more specific one +296 - `constraints`: additional constraints over the free variables of the original state and the `subst` to add to the new state +297 """ +298 +299 subst: Subst +300 constraints: tuple[KInner, ...] +301 +
+[docs] +302 def __init__(self, subst: Subst | None = None, constraints: Iterable[KInner] = ()) -> None: +303 """Construct a new `CSubst` given a `Subst` and set of constraints as `KInner`, performing basic sanity checks.""" +304 object.__setattr__(self, 'subst', subst if subst is not None else Subst({})) +305 object.__setattr__(self, 'constraints', normalize_constraints(constraints))
+ +306 +
+[docs] +307 def __iter__(self) -> Iterator[Subst | KInner]: +308 """Return an iterator with the head being the `subst` and the tail being the `constraints`.""" +309 return chain([self.subst], self.constraints)
+ +310 +
+[docs] +311 def to_dict(self) -> dict[str, Any]: +312 """Serialize `CSubst` to dictionary representation.""" +313 return { +314 'subst': self.subst.to_dict(), +315 'constraints': [c.to_dict() for c in self.constraints], +316 }
+ +317 +
+[docs] +318 @staticmethod +319 def from_dict(dct: dict[str, Any]) -> CSubst: +320 """Deserialize `CSubst` from a dictionary representation.""" +321 subst = Subst.from_dict(dct['subst']) +322 constraints = (KInner.from_dict(c) for c in dct['constraints']) +323 return CSubst(subst=subst, constraints=constraints)
+ +324 +325 @property +326 def constraint(self) -> KInner: +327 """Return the set of constraints as a single flattened constraint using `mlAnd`.""" +328 return mlAnd(self.constraints) +329 +
+[docs] +330 def add_constraint(self, constraint: KInner) -> CSubst: +331 """Return this `CSubst` with an additional constraint added.""" +332 return CSubst(self.subst, list(self.constraints) + [constraint])
+ +333 +
+[docs] +334 def apply(self, cterm: CTerm) -> CTerm: +335 """Apply this `CSubst` to the given `CTerm` (instantiating the free variables, and adding the constraints).""" +336 _kast = self.subst(cterm.kast) +337 return CTerm(_kast, [self.constraint])
+
+ +338 +339 +
+[docs] +340def cterm_build_claim( +341 claim_id: str, init_cterm: CTerm, final_cterm: CTerm, keep_vars: Iterable[str] = () +342) -> tuple[KClaim, Subst]: +343 """Return a `KClaim` between the supplied initial and final states. +344 +345 Args: +346 claim_id: Label to give the claim. +347 init_cterm: State to put on LHS of the rule (constraints interpreted as `requires` clause). +348 final_cterm: State to put on RHS of the rule (constraints interpreted as `ensures` clause). +349 keep_vars: Variables to leave in the side-conditions even if not bound in the configuration. +350 +351 Returns: +352 A tuple ``(claim, var_map)`` where +353 +354 - ``claim``: A `KClaim` with variable naming conventions applied +355 so that it should be parseable by the K Frontend. +356 - ``var_map``: The variable renamings applied to make the claim parseable by the K Frontend +357 (which can be undone to recover original variables). +358 """ +359 init_config, *init_constraints = init_cterm +360 final_config, *final_constraints = final_cterm +361 return build_claim(claim_id, init_config, final_config, init_constraints, final_constraints, keep_vars=keep_vars)
+ +362 +363 +
+[docs] +364def cterm_build_rule( +365 rule_id: str, +366 init_cterm: CTerm, +367 final_cterm: CTerm, +368 priority: int | None = None, +369 keep_vars: Iterable[str] = (), +370) -> tuple[KRule, Subst]: +371 """Return a `KRule` between the supplied initial and final states. +372 +373 Args: +374 rule_id: Label to give the rule. +375 init_cterm: State to put on LHS of the rule (constraints interpreted as `requires` clause). +376 final_cterm: State to put on RHS of the rule (constraints interpreted as `ensures` clause). +377 keep_vars: Variables to leave in the side-conditions even if not bound in the configuration. +378 +379 Returns: +380 A tuple ``(rule, var_map)`` where +381 +382 - ``rule``: A `KRule` with variable naming conventions applied +383 so that it should be parseable by the K Frontend. +384 - ``var_map``: The variable renamings applied to make the rule parseable by the K Frontend +385 (which can be undone to recover original variables). +386 """ +387 init_config, *init_constraints = init_cterm +388 final_config, *final_constraints = final_cterm +389 return build_rule(rule_id, init_config, final_config, init_constraints, final_constraints, priority, keep_vars)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/cterm/symbolic.html b/pyk/_modules/pyk/cterm/symbolic.html new file mode 100644 index 00000000000..ffb875e2713 --- /dev/null +++ b/pyk/_modules/pyk/cterm/symbolic.html @@ -0,0 +1,525 @@ + + + + + + pyk.cterm.symbolic — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.cterm.symbolic

+  1from __future__ import annotations
+  2
+  3import logging
+  4from contextlib import contextmanager
+  5from dataclasses import dataclass
+  6from typing import TYPE_CHECKING, NamedTuple, final
+  7
+  8from pyk.utils import not_none
+  9
+ 10from ..cterm import CSubst, CTerm
+ 11from ..kast.inner import KApply, KLabel, KRewrite, KVariable, Subst
+ 12from ..kast.manip import flatten_label, is_spurious_constraint, sort_ac_collections
+ 13from ..kast.pretty import PrettyPrinter
+ 14from ..konvert import kast_to_kore, kore_to_kast
+ 15from ..kore.rpc import (
+ 16    AbortedResult,
+ 17    KoreClient,
+ 18    KoreExecLogFormat,
+ 19    SatResult,
+ 20    SmtSolverError,
+ 21    StopReason,
+ 22    TransportType,
+ 23    UnknownResult,
+ 24    UnsatResult,
+ 25    kore_server,
+ 26)
+ 27from ..prelude.k import GENERATED_TOP_CELL, K_ITEM
+ 28from ..prelude.ml import is_top, mlAnd, mlEquals
+ 29
+ 30if TYPE_CHECKING:
+ 31    from collections.abc import Iterable, Iterator
+ 32    from pathlib import Path
+ 33    from typing import Final
+ 34
+ 35    from ..kast import KInner
+ 36    from ..kast.outer import KDefinition
+ 37    from ..kore.rpc import FallbackReason, LogEntry
+ 38    from ..kore.syntax import Pattern
+ 39    from ..utils import BugReport
+ 40
+ 41
+ 42_LOGGER: Final = logging.getLogger(__name__)
+ 43
+ 44
+
+[docs] + 45class NextState(NamedTuple): + 46 state: CTerm + 47 condition: KInner | None
+ + 48 + 49 +
+[docs] + 50class CTermExecute(NamedTuple): + 51 state: CTerm + 52 next_states: tuple[NextState, ...] + 53 depth: int + 54 vacuous: bool + 55 logs: tuple[LogEntry, ...]
+ + 56 + 57 +
+[docs] + 58class CTermImplies(NamedTuple): + 59 csubst: CSubst | None + 60 failing_cells: tuple[tuple[str, KInner], ...] + 61 remaining_implication: KInner | None + 62 logs: tuple[LogEntry, ...]
+ + 63 + 64 +
+[docs] + 65@final + 66@dataclass + 67class CTermSMTError(Exception): + 68 def __init__(self, message: str): + 69 super().__init__(message) + 70 self.message = message
+ + 71 + 72 +
+[docs] + 73class CTermSymbolic: + 74 _kore_client: KoreClient + 75 _definition: KDefinition + 76 _trace_rewrites: bool + 77 + 78 def __init__( + 79 self, + 80 kore_client: KoreClient, + 81 definition: KDefinition, + 82 *, + 83 trace_rewrites: bool = False, + 84 ): + 85 self._kore_client = kore_client + 86 self._definition = definition + 87 self._trace_rewrites = trace_rewrites + 88 +
+[docs] + 89 def kast_to_kore(self, kinner: KInner) -> Pattern: + 90 return kast_to_kore(self._definition, kinner, sort=GENERATED_TOP_CELL)
+ + 91 +
+[docs] + 92 def kore_to_kast(self, pattern: Pattern) -> KInner: + 93 return kore_to_kast(self._definition, pattern)
+ + 94 +
+[docs] + 95 def minimize_constraints(self, constraints: tuple[KInner, ...], path_condition: KInner) -> tuple[KInner, ...]: + 96 """Minimize given branching constraints with respect to a given path condition.""" + 97 # By construction, this function is to be called with at least two sets of constraints + 98 assert len(constraints) >= 2 + 99 # Determine intersection between all returned sets of branching constraints +100 flattened_default = [flatten_label('#And', c) for c in constraints] +101 intersection = set.intersection(*(set(cs) for cs in flattened_default)) +102 # If intersection is empty, there is nothing to be done +103 if not intersection: +104 return constraints +105 # Check if non-empty intersection is entailed by the path condition +106 dummy_config = self._definition.empty_config(sort=GENERATED_TOP_CELL) +107 path_condition_cterm = CTerm(dummy_config, constraints=[path_condition]) +108 intersection_cterm = CTerm(dummy_config, constraints=intersection) +109 implication_check = self.implies(path_condition_cterm, intersection_cterm, bind_universally=True) +110 # The intersection is not entailed, there is nothing to be done +111 if implication_check.csubst is None: +112 return constraints +113 # The intersection is entailed and can be filtered out of the branching constraints +114 else: +115 return tuple(mlAnd(c for c in cs if c not in intersection) for cs in flattened_default)
+ +116 +
+[docs] +117 def execute( +118 self, +119 cterm: CTerm, +120 depth: int | None = None, +121 cut_point_rules: Iterable[str] | None = None, +122 terminal_rules: Iterable[str] | None = None, +123 module_name: str | None = None, +124 ) -> CTermExecute: +125 +126 _LOGGER.debug(f'Executing: {cterm}') +127 kore = self.kast_to_kore(cterm.kast) +128 try: +129 response = self._kore_client.execute( +130 kore, +131 max_depth=depth, +132 cut_point_rules=cut_point_rules, +133 terminal_rules=terminal_rules, +134 module_name=module_name, +135 log_successful_rewrites=True, +136 log_failed_rewrites=self._trace_rewrites, +137 ) +138 except SmtSolverError as err: +139 raise self._smt_solver_error(err) from err +140 +141 if isinstance(response, AbortedResult): +142 unknown_predicate = response.unknown_predicate.text if response.unknown_predicate else None +143 raise ValueError(f'Backend responded with aborted state. Unknown predicate: {unknown_predicate}') +144 +145 state = CTerm.from_kast(self.kore_to_kast(response.state.kore)) +146 resp_next_states = response.next_states or () +147 branching_constraints = tuple( +148 self.kore_to_kast(not_none(s.rule_predicate)) if s.rule_predicate is not None else None +149 for s in resp_next_states +150 ) +151 # Branch constraint minimization makes sense only if there is a proper branching +152 if len(branching_constraints) >= 2 and all(bc is not None for bc in branching_constraints): +153 branching_constraints = self.minimize_constraints( +154 tuple(not_none(bc) for bc in branching_constraints), path_condition=mlAnd(cterm.constraints) +155 ) +156 next_states = tuple( +157 NextState(CTerm.from_kast(self.kore_to_kast(ns.kore)), c) +158 for ns, c in zip(resp_next_states, branching_constraints, strict=True) +159 ) +160 +161 assert all(not cterm.is_bottom for cterm, _ in next_states) +162 assert len(next_states) != 1 or response.reason is StopReason.CUT_POINT_RULE +163 +164 return CTermExecute( +165 state=state, +166 next_states=next_states, +167 depth=response.depth, +168 vacuous=response.reason is StopReason.VACUOUS, +169 logs=response.logs, +170 )
+ +171 +
+[docs] +172 def simplify(self, cterm: CTerm, module_name: str | None = None) -> tuple[CTerm, tuple[LogEntry, ...]]: +173 _LOGGER.debug(f'Simplifying: {cterm}') +174 kast_simplified, logs = self.kast_simplify(cterm.kast, module_name=module_name) +175 return CTerm.from_kast(kast_simplified), logs
+ +176 +
+[docs] +177 def kast_simplify(self, kast: KInner, module_name: str | None = None) -> tuple[KInner, tuple[LogEntry, ...]]: +178 _LOGGER.debug(f'Simplifying: {kast}') +179 kore = self.kast_to_kore(kast) +180 try: +181 kore_simplified, logs = self._kore_client.simplify(kore, module_name=module_name) +182 except SmtSolverError as err: +183 raise self._smt_solver_error(err) from err +184 +185 kast_simplified = self.kore_to_kast(kore_simplified) +186 return kast_simplified, logs
+ +187 +
+[docs] +188 def get_model(self, cterm: CTerm, module_name: str | None = None) -> Subst | None: +189 _LOGGER.debug(f'Getting model: {cterm}') +190 kore = self.kast_to_kore(cterm.kast) +191 try: +192 result = self._kore_client.get_model(kore, module_name=module_name) +193 except SmtSolverError as err: +194 raise self._smt_solver_error(err) from err +195 +196 if type(result) is UnknownResult: +197 _LOGGER.debug('Result is Unknown') +198 return None +199 elif type(result) is UnsatResult: +200 _LOGGER.debug('Result is UNSAT') +201 return None +202 elif type(result) is SatResult: +203 _LOGGER.debug('Result is SAT') +204 if not result.model: +205 return Subst({}) +206 model_subst = self.kore_to_kast(result.model) +207 try: +208 return Subst.from_pred(model_subst) +209 except ValueError as err: +210 raise AssertionError(f'Received a non-substitution from get-model endpoint: {model_subst}') from err +211 +212 else: +213 raise AssertionError('Received an invalid response from get-model endpoint')
+ +214 +
+[docs] +215 def implies( +216 self, +217 antecedent: CTerm, +218 consequent: CTerm, +219 bind_universally: bool = False, +220 failure_reason: bool = False, +221 module_name: str | None = None, +222 ) -> CTermImplies: +223 _LOGGER.debug(f'Checking implication: {antecedent} #Implies {consequent}') +224 _consequent = consequent.kast +225 unbound_consequent = [v for v in consequent.free_vars if v not in antecedent.free_vars] +226 if len(unbound_consequent) > 0: +227 bind_text, bind_label = ('existentially', '#Exists') +228 if bind_universally: +229 bind_text, bind_label = ('universally', '#Forall') +230 _LOGGER.debug(f'Binding variables in consequent {bind_text}: {unbound_consequent}') +231 for uc in unbound_consequent: +232 # Setting Sort1 to KItem in #Exists to avoid inferring the type of each uc. +233 # This should not have any effect on the resulting KORE pattern (\exists only has Sort2 as sort variable). +234 _consequent = KApply(KLabel(bind_label, [K_ITEM, GENERATED_TOP_CELL]), [KVariable(uc), _consequent]) +235 antecedent_kore = self.kast_to_kore(antecedent.kast) +236 consequent_kore = self.kast_to_kore(_consequent) +237 try: +238 result = self._kore_client.implies(antecedent_kore, consequent_kore, module_name=module_name) +239 except SmtSolverError as err: +240 raise self._smt_solver_error(err) from err +241 +242 if not result.valid: +243 if result.substitution is not None: +244 _LOGGER.debug(f'Received a non-empty substitution for falsifiable implication: {result.substitution}') +245 if result.predicate is not None: +246 _LOGGER.debug(f'Received a non-empty predicate for falsifiable implication: {result.predicate}') +247 failing_cells: list[tuple[str, KInner]] = [] +248 remaining_implication: KInner | None = None +249 if failure_reason: +250 _config_match = self.implies( +251 CTerm.from_kast(antecedent.config), +252 CTerm.from_kast(consequent.config), +253 bind_universally=bind_universally, +254 failure_reason=False, +255 module_name=module_name, +256 ) +257 config_match = _config_match.csubst +258 if config_match is None: +259 curr_cell_match = Subst({}) +260 for cell in antecedent.cells: +261 antecedent_cell = sort_ac_collections(antecedent.cell(cell)) +262 consequent_cell = sort_ac_collections(consequent.cell(cell)) +263 cell_match = consequent_cell.match(antecedent_cell) +264 if cell_match is not None: +265 _curr_cell_match = curr_cell_match.union(cell_match) +266 if _curr_cell_match is not None: +267 curr_cell_match = _curr_cell_match +268 continue +269 failing_cells.append((cell, KRewrite(antecedent_cell, consequent_cell))) +270 else: +271 consequent_constraints = list( +272 filter( +273 lambda x: not is_spurious_constraint(x), +274 map(config_match.subst, consequent.constraints), +275 ) +276 ) +277 remaining_implication = CTerm._ml_impl(antecedent.constraints, consequent_constraints) +278 return CTermImplies(None, tuple(failing_cells), remaining_implication, result.logs) +279 +280 if result.substitution is None: +281 raise ValueError('Received empty substutition for valid implication.') +282 if result.predicate is None: +283 raise ValueError('Received empty predicate for valid implication.') +284 ml_subst = self.kore_to_kast(result.substitution) +285 ml_pred = self.kore_to_kast(result.predicate) +286 ml_preds = flatten_label('#And', ml_pred) +287 if is_top(ml_subst): +288 csubst = CSubst(subst=Subst({}), constraints=ml_preds) +289 return CTermImplies(csubst, (), None, result.logs) +290 subst_pattern = mlEquals(KVariable('###VAR'), KVariable('###TERM')) +291 _subst: dict[str, KInner] = {} +292 for subst_pred in flatten_label('#And', ml_subst): +293 m = subst_pattern.match(subst_pred) +294 if m is not None and type(m['###VAR']) is KVariable: +295 _subst[m['###VAR'].name] = m['###TERM'] +296 else: +297 raise AssertionError(f'Received a non-substitution from implies endpoint: {subst_pred}') +298 csubst = CSubst(subst=Subst(_subst), constraints=ml_preds) +299 return CTermImplies(csubst, (), None, result.logs)
+ +300 +
+[docs] +301 def assume_defined(self, cterm: CTerm, module_name: str | None = None) -> CTerm: +302 _LOGGER.debug(f'Computing definedness condition for: {cterm}') +303 cterm_simplified, logs = self.simplify(cterm, module_name=module_name) +304 kast = KApply(KLabel('#Ceil', [GENERATED_TOP_CELL, GENERATED_TOP_CELL]), [cterm_simplified.config]) +305 kast_simplified, logs = self.kast_simplify(kast, module_name=module_name) +306 _LOGGER.debug(f'Definedness condition computed: {kast_simplified}') +307 return cterm.add_constraint(kast_simplified)
+ +308 +309 def _smt_solver_error(self, err: SmtSolverError) -> CTermSMTError: +310 kast = self.kore_to_kast(err.pattern) +311 pretty_pattern = PrettyPrinter(self._definition).print(kast) +312 return CTermSMTError(pretty_pattern)
+ +313 +314 +
+[docs] +315@contextmanager +316def cterm_symbolic( +317 definition: KDefinition, +318 definition_dir: Path, +319 *, +320 id: str | None = None, +321 port: int | None = None, +322 kore_rpc_command: str | Iterable[str] | None = None, +323 llvm_definition_dir: Path | None = None, +324 smt_timeout: int | None = None, +325 smt_retry_limit: int | None = None, +326 smt_tactic: str | None = None, +327 bug_report: BugReport | None = None, +328 haskell_log_format: KoreExecLogFormat = KoreExecLogFormat.ONELINE, +329 haskell_log_entries: Iterable[str] = (), +330 log_axioms_file: Path | None = None, +331 trace_rewrites: bool = False, +332 start_server: bool = True, +333 maude_port: int | None = None, +334 fallback_on: Iterable[FallbackReason] | None = None, +335 interim_simplification: int | None = None, +336 no_post_exec_simplify: bool = False, +337) -> Iterator[CTermSymbolic]: +338 if start_server: +339 # Old way of handling KoreServer, to be removed +340 with kore_server( +341 definition_dir=definition_dir, +342 llvm_definition_dir=llvm_definition_dir, +343 module_name=definition.main_module_name, +344 port=port, +345 command=kore_rpc_command, +346 bug_report=bug_report, +347 smt_timeout=smt_timeout, +348 smt_retry_limit=smt_retry_limit, +349 smt_tactic=smt_tactic, +350 haskell_log_format=haskell_log_format, +351 haskell_log_entries=haskell_log_entries, +352 log_axioms_file=log_axioms_file, +353 fallback_on=fallback_on, +354 interim_simplification=interim_simplification, +355 no_post_exec_simplify=no_post_exec_simplify, +356 ) as server: +357 with KoreClient('localhost', server.port, bug_report=bug_report, bug_report_id=id) as client: +358 yield CTermSymbolic(client, definition, trace_rewrites=trace_rewrites) +359 else: +360 if port is None: +361 raise ValueError('Missing port with start_server=False') +362 if maude_port is None: +363 dispatch = None +364 else: +365 dispatch = { +366 'execute': [('localhost', maude_port, TransportType.HTTP)], +367 'simplify': [('localhost', maude_port, TransportType.HTTP)], +368 'add-module': [ +369 ('localhost', maude_port, TransportType.HTTP), +370 ('localhost', port, TransportType.SINGLE_SOCKET), +371 ], +372 } +373 with KoreClient('localhost', port, bug_report=bug_report, bug_report_id=id, dispatch=dispatch) as client: +374 yield CTermSymbolic(client, definition, trace_rewrites=trace_rewrites)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/dequote.html b/pyk/_modules/pyk/dequote.html new file mode 100644 index 00000000000..5db97488f6a --- /dev/null +++ b/pyk/_modules/pyk/dequote.html @@ -0,0 +1,253 @@ + + + + + + pyk.dequote — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.dequote

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5if TYPE_CHECKING:
+  6    from collections.abc import Iterable, Iterator
+  7    from typing import Final
+  8
+  9
+
+[docs] + 10def enquote_string(s: str) -> str: + 11 return ''.join(enquoted(s))
+ + 12 + 13 +
+[docs] + 14def dequote_string(s: str) -> str: + 15 return ''.join(dequoted(s))
+ + 16 + 17 +
+[docs] + 18def enquote_bytes(s: str) -> str: + 19 return ''.join(enquoted(s, allow_unicode=False))
+ + 20 + 21 +
+[docs] + 22def dequote_bytes(s: str) -> str: + 23 return ''.join(dequoted(s, allow_unicode=False))
+ + 24 + 25 +
+[docs] + 26def bytes_encode(s: str) -> bytes: + 27 return s.encode('latin-1')
+ + 28 + 29 +
+[docs] + 30def bytes_decode(b: bytes) -> str: + 31 return b.decode('latin-1')
+ + 32 + 33 + 34NORMAL = 1 + 35ESCAPE = 2 + 36CPOINT = 3 + 37 + 38ESCAPE_TABLE: Final = { + 39 '"': '"', + 40 '\\': '\\', + 41 'n': '\n', + 42 't': '\t', + 43 'r': '\r', + 44 'f': '\f', + 45} + 46 + 47CPOINT_TABLE: Final = { + 48 'x': 2, + 49 'u': 4, + 50 'U': 8, + 51} + 52 + 53HEX_TABLE = {c: int(c, 16) for c in '0123456789abcdefABCDEF'} + 54 + 55 +
+[docs] + 56def dequoted(it: Iterable[str], *, allow_unicode: bool = True) -> Iterator[str]: + 57 acc = 0 + 58 cnt = 0 + 59 state = NORMAL + 60 for c in it: + 61 if state == CPOINT: + 62 if c not in HEX_TABLE: + 63 raise ValueError(f'Expected hex digit, got: {c}') + 64 + 65 acc *= 16 + 66 acc += HEX_TABLE[c] + 67 cnt -= 1 + 68 if cnt == 0: + 69 yield chr(acc) + 70 acc = 0 + 71 state = NORMAL + 72 + 73 elif state == ESCAPE: + 74 if c in CPOINT_TABLE: + 75 if not allow_unicode and c != 'x': + 76 raise ValueError(fr'Unicode escape sequence not allowed: \{c}') + 77 cnt = CPOINT_TABLE[c] + 78 state = CPOINT + 79 elif c in ESCAPE_TABLE: + 80 yield ESCAPE_TABLE[c] + 81 state = NORMAL + 82 else: + 83 raise ValueError(fr'Unexpected escape sequence: \{c}') + 84 + 85 elif c == '\\': + 86 state = ESCAPE + 87 + 88 else: + 89 yield c + 90 + 91 if state == CPOINT: + 92 raise ValueError('Incomplete Unicode code point') + 93 elif state == ESCAPE: + 94 raise ValueError('Incomplete escape sequence')
+ + 95 + 96 + 97ENQUOTE_TABLE: Final = { + 98 ord('\t'): r'\t', # 9 + 99 ord('\n'): r'\n', # 10 +100 ord('\f'): r'\f', # 12 +101 ord('\r'): r'\r', # 13 +102 ord('"'): r'\"', # 34 +103 ord('\\'): r'\\', # 92 +104} +105 +106 +
+[docs] +107def enquoted(it: Iterable[str], *, allow_unicode: bool = True) -> Iterator[str]: +108 for c in it: +109 code = ord(c) +110 if code in ENQUOTE_TABLE: +111 yield ENQUOTE_TABLE[code] +112 elif 32 <= code < 127: +113 yield c +114 elif code <= 0xFF: +115 yield fr'\x{code:02x}' +116 elif not allow_unicode: +117 raise ValueError(f"Unicode character not allowed: '{c}' ({code})") +118 elif code <= 0xFFFF: +119 yield fr'\u{code:04x}' +120 elif code <= 0xFFFFFFFF: +121 yield fr'\U{code:08x}' +122 else: +123 raise ValueError(f"Unsupported character: '{c}' ({code})")
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/att.html b/pyk/_modules/pyk/kast/att.html new file mode 100644 index 00000000000..eb6e91742cc --- /dev/null +++ b/pyk/_modules/pyk/kast/att.html @@ -0,0 +1,785 @@ + + + + + + pyk.kast.att — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.att

+  1from __future__ import annotations
+  2
+  3import logging
+  4import re
+  5from abc import ABC, abstractmethod
+  6from collections.abc import Mapping
+  7from dataclasses import dataclass, field
+  8from functools import cache
+  9from itertools import chain
+ 10from pathlib import Path
+ 11from typing import ClassVar  # noqa: TC003
+ 12from typing import TYPE_CHECKING, Any, Generic, TypeVar, final, overload
+ 13
+ 14from ..utils import FrozenDict
+ 15from .color import Color
+ 16from .kast import KAst
+ 17
+ 18if TYPE_CHECKING:
+ 19    from collections.abc import Callable, Container, Iterable, Iterator
+ 20    from typing import Final
+ 21
+ 22    U = TypeVar('U')
+ 23    W = TypeVar('W', bound='WithKAtt')
+ 24
+ 25
+ 26T = TypeVar('T')
+ 27_LOGGER: Final = logging.getLogger(__name__)
+ 28
+ 29
+
+[docs] + 30class AttType(Generic[T], ABC): +
+[docs] + 31 @abstractmethod + 32 def from_dict(self, obj: Any) -> T: ...
+ + 33 +
+[docs] + 34 @abstractmethod + 35 def to_dict(self, value: T) -> Any: ...
+ + 36 +
+[docs] + 37 @abstractmethod + 38 def unparse(self, value: T) -> str | None: ...
+ + 39 +
+[docs] + 40 @abstractmethod + 41 def parse(self, text: str) -> T: ...
+
+ + 42 + 43 +
+[docs] + 44class NoneType(AttType[None]): +
+[docs] + 45 def from_dict(self, obj: Any) -> None: + 46 assert obj == '' + 47 return None
+ + 48 +
+[docs] + 49 def to_dict(self, value: None) -> Any: + 50 assert value is None + 51 return ''
+ + 52 +
+[docs] + 53 def unparse(self, value: None) -> None: + 54 return None
+ + 55 +
+[docs] + 56 def parse(self, text: str) -> None: + 57 assert text == '' + 58 return None
+
+ + 59 + 60 +
+[docs] + 61class OptionalType(Generic[T], AttType[T | None]): + 62 _value_type: AttType[T] + 63 + 64 def __init__(self, value_type: AttType[T]): + 65 self._value_type = value_type + 66 +
+[docs] + 67 def from_dict(self, obj: Any) -> T | None: + 68 if obj == '': + 69 return None + 70 return self._value_type.from_dict(obj)
+ + 71 +
+[docs] + 72 def to_dict(self, value: T | None) -> Any: + 73 if value is None: + 74 return '' + 75 return self._value_type.to_dict(value)
+ + 76 +
+[docs] + 77 def unparse(self, value: T | None) -> str | None: + 78 if value is None: + 79 return None + 80 return self._value_type.unparse(value)
+ + 81 +
+[docs] + 82 def parse(self, text: str) -> T | None: + 83 if text == '': + 84 return None + 85 return self._value_type.parse(text)
+
+ + 86 + 87 +
+[docs] + 88class AnyType(AttType[Any]): +
+[docs] + 89 def from_dict(self, obj: Any) -> Any: + 90 return self._freeze(obj)
+ + 91 +
+[docs] + 92 def to_dict(self, value: Any) -> Any: + 93 return self._unfreeze(value)
+ + 94 +
+[docs] + 95 def unparse(self, value: Any) -> str: + 96 return str(value)
+ + 97 +
+[docs] + 98 def parse(self, text: str) -> Any: + 99 raise ValueError(f'Parsing a string into an Any attribute type is not supported. Attempted to parse: {text!r}')
+ +100 +101 @staticmethod +102 def _freeze(obj: Any) -> Any: +103 if isinstance(obj, list): +104 return tuple(AnyType._freeze(v) for v in obj) +105 if isinstance(obj, dict): +106 return FrozenDict((k, AnyType._freeze(v)) for (k, v) in obj.items()) +107 return obj +108 +109 @staticmethod +110 def _unfreeze(value: Any) -> Any: +111 if isinstance(value, tuple): +112 return [AnyType._unfreeze(v) for v in value] +113 if isinstance(value, FrozenDict): +114 return {k: AnyType._unfreeze(v) for (k, v) in value.items()} +115 return value
+ +116 +117 +
+[docs] +118class IntType(AttType[int]): +
+[docs] +119 def from_dict(self, obj: Any) -> int: +120 assert isinstance(obj, str) +121 return int(obj)
+ +122 +
+[docs] +123 def to_dict(self, value: int) -> str: +124 return str(value)
+ +125 +
+[docs] +126 def unparse(self, value: int) -> str: +127 return str(value)
+ +128 +
+[docs] +129 def parse(self, text: str) -> int: +130 return int(text)
+
+ +131 +132 +
+[docs] +133class StrType(AttType[str]): +
+[docs] +134 def from_dict(self, obj: Any) -> str: +135 assert isinstance(obj, str) +136 return obj
+ +137 +
+[docs] +138 def to_dict(self, value: str) -> Any: +139 return value
+ +140 +
+[docs] +141 def unparse(self, value: str) -> str: +142 return f'"{value}"'
+ +143 +
+[docs] +144 def parse(self, text: str) -> str: +145 return text
+
+ +146 +147 +
+[docs] +148class LocationType(AttType[tuple[int, int, int, int]]): +149 _PARSE_REGEX: Final = re.compile('(\\d+),(\\d+),(\\d+),(\\d+)') +150 +
+[docs] +151 def from_dict(self, obj: Any) -> tuple[int, int, int, int]: +152 assert isinstance(obj, list) +153 a, b, c, d = obj +154 assert isinstance(a, int) +155 assert isinstance(b, int) +156 assert isinstance(c, int) +157 assert isinstance(d, int) +158 return a, b, c, d
+ +159 +
+[docs] +160 def to_dict(self, value: tuple[int, int, int, int]) -> Any: +161 return list(value)
+ +162 +
+[docs] +163 def unparse(self, value: tuple[int, int, int, int]) -> str: +164 return ','.join(str(e) for e in value)
+ +165 +
+[docs] +166 def parse(self, text: str) -> tuple[int, int, int, int]: +167 m = self._PARSE_REGEX.fullmatch(text) +168 assert m is not None +169 a, b, c, d = (int(x) for x in m.groups()) +170 return a, b, c, d
+
+ +171 +172 +
+[docs] +173class PathType(AttType[Path]): +
+[docs] +174 def from_dict(self, obj: Any) -> Path: +175 assert isinstance(obj, str) +176 return Path(obj)
+ +177 +
+[docs] +178 def to_dict(self, value: Path) -> Any: +179 return str(value)
+ +180 +
+[docs] +181 def unparse(self, value: Path) -> str: +182 return f'"{value}"'
+ +183 +
+[docs] +184 def parse(self, text: str) -> Path: +185 return Path(text)
+
+ +186 +187 +
+[docs] +188@final +189@dataclass(frozen=True) +190class Format: +191 tokens: tuple[str, ...] +192 +193 _pattern: ClassVar[re.Pattern] = re.compile(r'%\D|%\d+|[^%]+') +194 +195 def __init__(self, tokens: Iterable[str] = ()): +196 object.__setattr__(self, 'tokens', tuple(tokens)) +197 +
+[docs] +198 @classmethod +199 def parse(cls, s: str) -> Format: +200 matches = list(cls._pattern.finditer(s)) +201 +202 matched_len: int +203 if not matches: +204 matched_len = 0 +205 else: +206 _, matched_len = matches[-1].span() +207 +208 if matched_len != len(s): +209 assert s and s[-1] == '%' +210 raise ValueError(f'Incomplete escape sequence at the end of format string: {s}') +211 +212 return Format(m[0] for m in matches)
+ +213 +
+[docs] +214 def unparse(self) -> str: +215 return ''.join(self.tokens)
+
+ +216 +217 +
+[docs] +218class FormatType(AttType[Format]): +
+[docs] +219 def from_dict(self, obj: Any) -> Format: +220 assert isinstance(obj, str) +221 return Format.parse(obj)
+ +222 +
+[docs] +223 def to_dict(self, value: Format) -> Any: +224 return value.unparse()
+ +225 +
+[docs] +226 def unparse(self, value: Format) -> str: +227 return f'"{value.unparse}"'
+ +228 +
+[docs] +229 def parse(self, text: str) -> Format: +230 return Format.parse(text)
+
+ +231 +232 +
+[docs] +233class ColorType(AttType[Color]): +
+[docs] +234 def from_dict(self, obj: Any) -> Color: +235 assert isinstance(obj, str) +236 return Color(obj)
+ +237 +
+[docs] +238 def to_dict(self, value: Color) -> str: +239 return value.value
+ +240 +
+[docs] +241 def unparse(self, value: Color) -> str: +242 return value.value
+ +243 +
+[docs] +244 def parse(self, text: str) -> Color: +245 return Color(text)
+
+ +246 +247 +
+[docs] +248class ColorsType(AttType[tuple[Color, ...]]): +
+[docs] +249 def from_dict(self, obj: Any) -> tuple[Color, ...]: +250 assert isinstance(obj, str) +251 return self.parse(obj)
+ +252 +
+[docs] +253 def to_dict(self, value: tuple[Color, ...]) -> str: +254 return self.unparse(value)
+ +255 +
+[docs] +256 def unparse(self, value: tuple[Color, ...]) -> str: +257 return ','.join(v.value for v in value)
+ +258 +
+[docs] +259 def parse(self, text: str) -> tuple[Color, ...]: +260 return tuple(Color(color) for color in text.replace(' ', '').split(','))
+
+ +261 +262 +263_NONE: Final = NoneType() +264_ANY: Final = AnyType() +265_INT: Final = IntType() +266_STR: Final = StrType() +267_LOCATION: Final = LocationType() +268_PATH: Final = PathType() +269 +270 +
+[docs] +271@final +272@dataclass(frozen=True) +273class AttKey(Generic[T]): +274 name: str +275 type: AttType[T] = field(compare=False, repr=False, kw_only=True) +276 +277 def __call__(self, value: T) -> AttEntry[T]: +278 return AttEntry(self, value)
+ +279 +280 +
+[docs] +281@final +282@dataclass(frozen=True) +283class AttEntry(Generic[T]): +284 key: AttKey[T] +285 value: T
+ +286 +287 +
+[docs] +288class Atts: +289 ALIAS: Final = AttKey('alias', type=_NONE) +290 ALIAS_REC: Final = AttKey('alias-rec', type=_NONE) +291 ANYWHERE: Final = AttKey('anywhere', type=_NONE) +292 ASSOC: Final = AttKey('assoc', type=_NONE) +293 BRACKET: Final = AttKey('bracket', type=_NONE) +294 BRACKET_LABEL: Final = AttKey('bracketLabel', type=_ANY) +295 CIRCULARITY: Final = AttKey('circularity', type=_NONE) +296 CELL: Final = AttKey('cell', type=_NONE) +297 CELL_COLLECTION: Final = AttKey('cellCollection', type=_NONE) +298 CELL_FRAGMENT: Final = AttKey('cellFragment', type=_ANY) +299 CELL_NAME: Final = AttKey('cellName', type=_STR) +300 CELL_OPT_ABSENT: Final = AttKey('cellOptAbsent', type=_ANY) +301 COLOR: Final = AttKey('color', type=ColorType()) +302 COLORS: Final = AttKey('colors', type=ColorsType()) +303 COMM: Final = AttKey('comm', type=_NONE) +304 CONCAT: Final = AttKey('concat', type=_ANY) +305 CONCRETE: Final = AttKey('concrete', type=OptionalType(_STR)) +306 CONSTRUCTOR: Final = AttKey('constructor', type=_NONE) +307 DEPENDS: Final = AttKey('depends', type=_ANY) +308 DIGEST: Final = AttKey('digest', type=_ANY) +309 ELEMENT: Final = AttKey('element', type=_ANY) +310 FORMAT: Final = AttKey('format', type=FormatType()) +311 FRESH_GENERATOR: Final = AttKey('freshGenerator', type=_NONE) +312 FUNCTION: Final = AttKey('function', type=_NONE) +313 FUNCTIONAL: Final = AttKey('functional', type=_NONE) +314 GROUP: Final = AttKey('group', type=_STR) +315 HAS_DOMAIN_VALUES: Final = AttKey('hasDomainValues', type=_NONE) +316 HOOK: Final = AttKey('hook', type=_ANY) +317 IDEM: Final = AttKey('idem', type=_NONE) +318 IMPURE: Final = AttKey('impure', type=_NONE) +319 INDEX: Final = AttKey('index', type=_INT) +320 INITIALIZER: Final = AttKey('initializer', type=_NONE) +321 INJECTIVE: Final = AttKey('injective', type=_NONE) +322 KLABEL: Final = AttKey('klabel', type=_ANY) +323 LABEL: Final = AttKey('label', type=_ANY) +324 LEFT: Final = AttKey('left', type=_ANY) # LEFT and LEFT_INTERNAL on the Frontend +325 LOCATION: Final = AttKey('org.kframework.attributes.Location', type=_LOCATION) +326 MACRO: Final = AttKey('macro', type=_NONE) +327 MACRO_REC: Final = AttKey('macro-rec', type=_NONE) +328 MAINCELL: Final = AttKey('maincell', type=_NONE) +329 OVERLOAD: Final = AttKey('overload', type=_STR) +330 OWISE: Final = AttKey('owise', type=_NONE) +331 PREDICATE: Final = AttKey('predicate', type=_ANY) +332 PREFER: Final = AttKey('prefer', type=_NONE) +333 PRIORITY: Final = AttKey('priority', type=_ANY) +334 PRIORITIES: Final = AttKey('priorities', type=_ANY) # only in KORE output +335 PRIVATE: Final = AttKey('private', type=_NONE) +336 PRODUCTION: Final = AttKey('org.kframework.definition.Production', type=_ANY) +337 PROJECTION: Final = AttKey('projection', type=_NONE) +338 RIGHT: Final = AttKey('right', type=_ANY) # RIGHT and RIGHT_INTERNAL on the Frontend +339 SIMPLIFICATION: Final = AttKey('simplification', type=_ANY) +340 SEQSTRICT: Final = AttKey('seqstrict', type=_NONE) +341 SORT: Final = AttKey('org.kframework.kore.Sort', type=_ANY) +342 SOURCE: Final = AttKey('org.kframework.attributes.Source', type=_PATH) +343 STRICT: Final = AttKey('strict', type=_ANY) +344 SYMBOL: Final = AttKey('symbol', type=OptionalType(_STR)) +345 SYNTAX_MODULE: Final = AttKey('syntaxModule', type=_STR) +346 TERMINALS: Final = AttKey('terminals', type=_STR) +347 TOKEN: Final = AttKey('token', type=_NONE) +348 TOTAL: Final = AttKey('total', type=_NONE) +349 TRUSTED: Final = AttKey('trusted', type=_NONE) +350 UNIT: Final = AttKey('unit', type=_STR) +351 UNIQUE_ID: Final = AttKey('UNIQUE_ID', type=_ANY) +352 UNPARSE_AVOID: Final = AttKey('unparseAvoid', type=_NONE) +353 USER_LIST: Final = AttKey('userList', type=_ANY) +354 WRAP_ELEMENT: Final = AttKey('wrapElement', type=_ANY) +355 +
+[docs] +356 @classmethod +357 @cache +358 def keys(cls) -> FrozenDict[str, AttKey]: +359 keys = [value for value in vars(cls).values() if isinstance(value, AttKey)] +360 res: FrozenDict[str, AttKey] = FrozenDict({key.name: key for key in keys}) +361 assert len(res) == len(keys) # Fails on duplicate key name +362 return res
+
+ +363 +364 +
+[docs] +365@final +366@dataclass(frozen=True) +367class KAtt(KAst, Mapping[AttKey, Any]): +368 atts: FrozenDict[AttKey, Any] +369 +370 def __init__(self, entries: Iterable[AttEntry] = ()): +371 atts: FrozenDict[AttKey, Any] = FrozenDict((e.key, e.value) for e in entries) +372 object.__setattr__(self, 'atts', atts) +373 +374 def __iter__(self) -> Iterator[AttKey]: +375 return iter(self.atts) +376 +377 def __len__(self) -> int: +378 return len(self.atts) +379 +380 def __getitem__(self, key: AttKey[T]) -> T: +381 return self.atts[key] +382 +383 @overload +384 def get(self, key: AttKey[T], /) -> T | None: ... +385 +386 @overload +387 def get(self, key: AttKey[T], /, default: U) -> T | U: ... +388 +
+[docs] +389 def get(self, *args: Any, **kwargs: Any) -> Any: +390 return self.atts.get(*args, **kwargs)
+ +391 +
+[docs] +392 def entries(self) -> Iterator[AttEntry]: +393 return (key(value) for key, value in self.atts.items())
+ +394 +
+[docs] +395 @classmethod +396 def from_dict(cls: type[KAtt], d: Mapping[str, Any]) -> KAtt: +397 entries: list[AttEntry] = [] +398 for k, v in d['att'].items(): +399 key = Atts.keys().get(k, AttKey(k, type=_ANY)) +400 value = key.type.from_dict(v) +401 entries.append(key(value)) +402 return KAtt(entries=entries)
+ +403 +
+[docs] +404 def to_dict(self) -> dict[str, Any]: +405 return {'node': 'KAtt', 'att': {key.name: key.type.to_dict(value) for key, value in self.atts.items()}}
+ +406 +
+[docs] +407 @classmethod +408 def parse(cls: type[KAtt], d: Mapping[str, str]) -> KAtt: +409 entries: list[AttEntry] = [] +410 for k, v in d.items(): +411 key = Atts.keys().get(k, AttKey(k, type=_ANY)) +412 value = key.type.parse(v) +413 entries.append(key(value)) +414 return KAtt(entries=entries)
+ +415 +416 @property +417 def pretty(self) -> str: +418 if not self: +419 return '' +420 att_strs: list[str] = [] +421 for key, value in self.items(): +422 value_str = key.type.unparse(value) +423 if value_str is None: +424 att_strs.append(key.name) +425 else: +426 att_strs.append(f'{key.name}({value_str})') +427 return f'[{", ".join(att_strs)}]' +428 +
+[docs] +429 def update(self, entries: Iterable[AttEntry]) -> KAtt: +430 entries = chain((AttEntry(key, value) for key, value in self.atts.items()), entries) +431 return KAtt(entries=entries)
+ +432 +
+[docs] +433 def discard(self, keys: Container[AttKey]) -> KAtt: +434 entries = (AttEntry(key, value) for key, value in self.atts.items() if key not in keys) +435 return KAtt(entries=entries)
+ +436 +
+[docs] +437 def drop_source(self) -> KAtt: +438 return self.discard([Atts.SOURCE, Atts.LOCATION])
+
+ +439 +440 +441EMPTY_ATT: Final = KAtt() +442 +443 +
+[docs] +444class WithKAtt(ABC): +445 att: KAtt +446 +
+[docs] +447 @abstractmethod +448 def let_att(self: W, att: KAtt) -> W: ...
+ +449 +
+[docs] +450 def map_att(self: W, f: Callable[[KAtt], KAtt]) -> W: +451 return self.let_att(att=f(self.att))
+ +452 +
+[docs] +453 def update_atts(self: W, entries: Iterable[AttEntry]) -> W: +454 return self.let_att(att=self.att.update(entries))
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/color.html b/pyk/_modules/pyk/kast/color.html new file mode 100644 index 00000000000..beaabf11096 --- /dev/null +++ b/pyk/_modules/pyk/kast/color.html @@ -0,0 +1,510 @@ + + + + + + pyk.kast.color — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.color

+  1from __future__ import annotations
+  2
+  3import sys
+  4from enum import Enum
+  5from typing import TYPE_CHECKING
+  6
+  7if TYPE_CHECKING:
+  8    from typing import IO, Final
+  9
+ 10
+
+[docs] + 11class Color(Enum): + 12 ALICE_BLUE = 'AliceBlue' + 13 ANTIQUE_WHITE = 'AntiqueWhite' + 14 APRICOT = 'Apricot' + 15 AQUA = 'Aqua' + 16 AQUAMARINE = 'Aquamarine' + 17 AZURE = 'Azure' + 18 BEIGE = 'Beige' + 19 BISQUE = 'Bisque' + 20 BITTERSWEET = 'Bittersweet' + 21 BLACK = 'black' + 22 BLANCHED_ALMOND = 'BlanchedAlmond' + 23 BLUE = 'blue' + 24 BLUE_GREEN = 'BlueGreen' + 25 BLUE_VIOLET = 'BlueViolet' + 26 BRICK_RED = 'BrickRed' + 27 BROWN = 'brown' + 28 BURLY_WOOD = 'BurlyWood' + 29 BURNT_ORANGE = 'BurntOrange' + 30 CADET_BLUE = 'CadetBlue' + 31 CARNATION_PINK = 'CarnationPink' + 32 CERULEAN = 'Cerulean' + 33 CHARTREUSE = 'Chartreuse' + 34 CHOCOLATE = 'Chocolate' + 35 CORAL = 'Coral' + 36 CORNFLOWER_BLUE = 'CornflowerBlue' + 37 CORNSILK = 'Cornsilk' + 38 CRIMSON = 'Crimson' + 39 CYAN = 'cyan' + 40 DANDELION = 'Dandelion' + 41 DARKGRAY = 'darkgray' + 42 DARK_BLUE = 'DarkBlue' + 43 DARK_CYAN = 'DarkCyan' + 44 DARK_GOLDENROD = 'DarkGoldenrod' + 45 DARK_GRAY = 'DarkGray' + 46 DARK_GREEN = 'DarkGreen' + 47 DARK_GREY = 'DarkGrey' + 48 DARK_KHAKI = 'DarkKhaki' + 49 DARK_MAGENTA = 'DarkMagenta' + 50 DARK_OLIVE_GREEN = 'DarkOliveGreen' + 51 DARK_ORANGE = 'DarkOrange' + 52 DARK_ORCHID = 'DarkOrchid' + 53 DARK_RED = 'DarkRed' + 54 DARK_SALMON = 'DarkSalmon' + 55 DARK_SEA_GREEN = 'DarkSeaGreen' + 56 DARK_SLATE_BLUE = 'DarkSlateBlue' + 57 DARK_SLATE_GRAY = 'DarkSlateGray' + 58 DARK_SLATE_GREY = 'DarkSlateGrey' + 59 DARK_TURQUOISE = 'DarkTurquoise' + 60 DARK_VIOLET = 'DarkViolet' + 61 DEEP_PINK = 'DeepPink' + 62 DEEP_SKY_BLUE = 'DeepSkyBlue' + 63 DIM_GRAY = 'DimGray' + 64 DIM_GREY = 'DimGrey' + 65 DODGER_BLUE = 'DodgerBlue' + 66 EMERALD = 'Emerald' + 67 FIRE_BRICK = 'FireBrick' + 68 FLORAL_WHITE = 'FloralWhite' + 69 FOREST_GREEN = 'ForestGreen' + 70 FUCHSIA = 'Fuchsia' + 71 GAINSBORO = 'Gainsboro' + 72 GHOST_WHITE = 'GhostWhite' + 73 GOLD = 'Gold' + 74 GOLDENROD = 'Goldenrod' + 75 GRAY = 'gray' + 76 GREEN = 'green' + 77 GREEN_YELLOW = 'GreenYellow' + 78 GREY = 'Grey' + 79 HONEYDEW = 'Honeydew' + 80 HOT_PINK = 'HotPink' + 81 INDIAN_RED = 'IndianRed' + 82 INDIGO = 'Indigo' + 83 IVORY = 'Ivory' + 84 JUNGLE_GREEN = 'JungleGreen' + 85 KHAKI = 'Khaki' + 86 LAVENDER = 'Lavender' + 87 LAVENDER_BLUSH = 'LavenderBlush' + 88 LAWN_GREEN = 'LawnGreen' + 89 LEMON_CHIFFON = 'LemonChiffon' + 90 LIGHTGRAY = 'lightgray' + 91 LIGHT_BLUE = 'LightBlue' + 92 LIGHT_CORAL = 'LightCoral' + 93 LIGHT_CYAN = 'LightCyan' + 94 LIGHT_GOLDENROD = 'LightGoldenrod' + 95 LIGHT_GOLDENROD_YELLOW = 'LightGoldenrodYellow' + 96 LIGHT_GRAY = 'LightGray' + 97 LIGHT_GREEN = 'LightGreen' + 98 LIGHT_GREY = 'LightGrey' + 99 LIGHT_PINK = 'LightPink' +100 LIGHT_SALMON = 'LightSalmon' +101 LIGHT_SEA_GREEN = 'LightSeaGreen' +102 LIGHT_SKY_BLUE = 'LightSkyBlue' +103 LIGHT_SLATE_BLUE = 'LightSlateBlue' +104 LIGHT_SLATE_GRAY = 'LightSlateGray' +105 LIGHT_SLATE_GREY = 'LightSlateGrey' +106 LIGHT_STEEL_BLUE = 'LightSteelBlue' +107 LIGHT_YELLOW = 'LightYellow' +108 LIME = 'lime' +109 LIME_GREEN = 'LimeGreen' +110 LINEN = 'Linen' +111 MAGENTA = 'magenta' +112 MAHOGANY = 'Mahogany' +113 MAROON = 'Maroon' +114 MEDIUM_AQUAMARINE = 'MediumAquamarine' +115 MEDIUM_BLUE = 'MediumBlue' +116 MEDIUM_ORCHID = 'MediumOrchid' +117 MEDIUM_PURPLE = 'MediumPurple' +118 MEDIUM_SEA_GREEN = 'MediumSeaGreen' +119 MEDIUM_SLATE_BLUE = 'MediumSlateBlue' +120 MEDIUM_SPRING_GREEN = 'MediumSpringGreen' +121 MEDIUM_TURQUOISE = 'MediumTurquoise' +122 MEDIUM_VIOLET_RED = 'MediumVioletRed' +123 MELON = 'Melon' +124 MIDNIGHT_BLUE = 'MidnightBlue' +125 MINT_CREAM = 'MintCream' +126 MISTY_ROSE = 'MistyRose' +127 MOCCASIN = 'Moccasin' +128 MULBERRY = 'Mulberry' +129 NAVAJO_WHITE = 'NavajoWhite' +130 NAVY = 'Navy' +131 NAVY_BLUE = 'NavyBlue' +132 OLD_LACE = 'OldLace' +133 OLIVE = 'olive' +134 OLIVE_DRAB = 'OliveDrab' +135 OLIVE_GREEN = 'OliveGreen' +136 ORANGE = 'orange' +137 ORANGE_RED = 'OrangeRed' +138 ORCHID = 'Orchid' +139 PALE_GOLDENROD = 'PaleGoldenrod' +140 PALE_GREEN = 'PaleGreen' +141 PALE_TURQUOISE = 'PaleTurquoise' +142 PALE_VIOLET_RED = 'PaleVioletRed' +143 PAPAYA_WHIP = 'PapayaWhip' +144 PEACH = 'Peach' +145 PEACH_PUFF = 'PeachPuff' +146 PERIWINKLE = 'Periwinkle' +147 PERU = 'Peru' +148 PINE_GREEN = 'PineGreen' +149 PINK = 'pink' +150 PLUM = 'Plum' +151 POWDER_BLUE = 'PowderBlue' +152 PROCESS_BLUE = 'ProcessBlue' +153 PURPLE = 'purple' +154 RAW_SIENNA = 'RawSienna' +155 RED = 'red' +156 RED_ORANGE = 'RedOrange' +157 RED_VIOLET = 'RedViolet' +158 RHODAMINE = 'Rhodamine' +159 ROSY_BROWN = 'RosyBrown' +160 ROYAL_BLUE = 'RoyalBlue' +161 ROYAL_PURPLE = 'RoyalPurple' +162 RUBINE_RED = 'RubineRed' +163 SADDLE_BROWN = 'SaddleBrown' +164 SALMON = 'Salmon' +165 SANDY_BROWN = 'SandyBrown' +166 SEASHELL = 'Seashell' +167 SEA_GREEN = 'SeaGreen' +168 SEPIA = 'Sepia' +169 SIENNA = 'Sienna' +170 SILVER = 'Silver' +171 SKY_BLUE = 'SkyBlue' +172 SLATE_BLUE = 'SlateBlue' +173 SLATE_GRAY = 'SlateGray' +174 SLATE_GREY = 'SlateGrey' +175 SNOW = 'Snow' +176 SPRING_GREEN = 'SpringGreen' +177 STEEL_BLUE = 'SteelBlue' +178 TAN = 'Tan' +179 TEAL = 'teal' +180 TEAL_BLUE = 'TealBlue' +181 THISTLE = 'Thistle' +182 TOMATO = 'Tomato' +183 TURQUOISE = 'Turquoise' +184 VIOLET = 'violet' +185 VIOLET_RED = 'VioletRed' +186 WHEAT = 'Wheat' +187 WHITE = 'white' +188 WHITE_SMOKE = 'WhiteSmoke' +189 WILD_STRAWBERRY = 'WildStrawberry' +190 YELLOW = 'yellow' +191 YELLOW_GREEN = 'YellowGreen' +192 YELLOW_ORANGE = 'YellowOrange' +193 +194 @property +195 def ansi_code(self) -> str: +196 return f'\x1b[38;5;{_ansi_index[self]}m' +197 +
+[docs] +198 @staticmethod +199 def reset_code() -> str: +200 return '\x1b[0m'
+ +201 +
+[docs] +202 def set(self, *, file: IO[str] = sys.stdout) -> None: +203 print(self.ansi_code, end='', file=file, flush=True)
+ +204 +
+[docs] +205 @staticmethod +206 def reset(*, file: IO[str] = sys.stdout) -> None: +207 print(Color.reset_code(), end='', file=file, flush=True)
+
+ +208 +209 +210_ansi_index: Final = { +211 Color.ALICE_BLUE: 231, +212 Color.ANTIQUE_WHITE: 231, +213 Color.APRICOT: 216, +214 Color.AQUA: 51, +215 Color.AQUAMARINE: 122, +216 Color.AZURE: 231, +217 Color.BEIGE: 230, +218 Color.BISQUE: 223, +219 Color.BITTERSWEET: 130, +220 Color.BLACK: 16, +221 Color.BLANCHED_ALMOND: 223, +222 Color.BLUE: 21, +223 Color.BLUE_GREEN: 37, +224 Color.BLUE_VIOLET: 93, +225 Color.BRICK_RED: 124, +226 Color.BROWN: 137, +227 Color.BURLY_WOOD: 180, +228 Color.BURNT_ORANGE: 208, +229 Color.CADET_BLUE: 73, +230 Color.CARNATION_PINK: 211, +231 Color.CERULEAN: 39, +232 Color.CHARTREUSE: 118, +233 Color.CHOCOLATE: 166, +234 Color.CORAL: 209, +235 Color.CORNFLOWER_BLUE: 68, +236 Color.CORNSILK: 230, +237 Color.CRIMSON: 197, +238 Color.CYAN: 51, +239 Color.DANDELION: 214, +240 Color.DARKGRAY: 59, +241 Color.DARK_BLUE: 18, +242 Color.DARK_CYAN: 30, +243 Color.DARK_GOLDENROD: 136, +244 Color.DARK_GRAY: 145, +245 Color.DARK_GREEN: 22, +246 Color.DARK_GREY: 145, +247 Color.DARK_KHAKI: 143, +248 Color.DARK_MAGENTA: 90, +249 Color.DARK_OLIVE_GREEN: 58, +250 Color.DARK_ORANGE: 208, +251 Color.DARK_ORCHID: 128, +252 Color.DARK_RED: 88, +253 Color.DARK_SALMON: 173, +254 Color.DARK_SEA_GREEN: 108, +255 Color.DARK_SLATE_BLUE: 61, +256 Color.DARK_SLATE_GRAY: 23, +257 Color.DARK_SLATE_GREY: 23, +258 Color.DARK_TURQUOISE: 44, +259 Color.DARK_VIOLET: 92, +260 Color.DEEP_PINK: 198, +261 Color.DEEP_SKY_BLUE: 74, +262 Color.DIM_GRAY: 59, +263 Color.DIM_GREY: 59, +264 Color.DODGER_BLUE: 33, +265 Color.EMERALD: 37, +266 Color.FIRE_BRICK: 124, +267 Color.FLORAL_WHITE: 231, +268 Color.FOREST_GREEN: 28, +269 Color.FUCHSIA: 201, +270 Color.GAINSBORO: 188, +271 Color.GHOST_WHITE: 231, +272 Color.GOLD: 220, +273 Color.GOLDENROD: 178, +274 Color.GRAY: 102, +275 Color.GREEN: 46, +276 Color.GREEN_YELLOW: 154, +277 Color.GREY: 102, +278 Color.HONEYDEW: 231, +279 Color.HOT_PINK: 205, +280 Color.INDIAN_RED: 167, +281 Color.INDIGO: 54, +282 Color.IVORY: 231, +283 Color.JUNGLE_GREEN: 37, +284 Color.KHAKI: 186, +285 Color.LAVENDER: 189, +286 Color.LAVENDER_BLUSH: 231, +287 Color.LAWN_GREEN: 118, +288 Color.LEMON_CHIFFON: 230, +289 Color.LIGHTGRAY: 145, +290 Color.LIGHT_BLUE: 152, +291 Color.LIGHT_CORAL: 210, +292 Color.LIGHT_CYAN: 195, +293 Color.LIGHT_GOLDENROD: 186, +294 Color.LIGHT_GOLDENROD_YELLOW: 230, +295 Color.LIGHT_GRAY: 188, +296 Color.LIGHT_GREEN: 120, +297 Color.LIGHT_GREY: 188, +298 Color.LIGHT_PINK: 217, +299 Color.LIGHT_SALMON: 216, +300 Color.LIGHT_SEA_GREEN: 37, +301 Color.LIGHT_SKY_BLUE: 117, +302 Color.LIGHT_SLATE_BLUE: 99, +303 Color.LIGHT_SLATE_GRAY: 102, +304 Color.LIGHT_SLATE_GREY: 102, +305 Color.LIGHT_STEEL_BLUE: 153, +306 Color.LIGHT_YELLOW: 230, +307 Color.LIME: 154, +308 Color.LIME_GREEN: 40, +309 Color.LINEN: 231, +310 Color.MAGENTA: 201, +311 Color.MAHOGANY: 124, +312 Color.MAROON: 88, +313 Color.MEDIUM_AQUAMARINE: 79, +314 Color.MEDIUM_BLUE: 20, +315 Color.MEDIUM_ORCHID: 134, +316 Color.MEDIUM_PURPLE: 98, +317 Color.MEDIUM_SEA_GREEN: 35, +318 Color.MEDIUM_SLATE_BLUE: 99, +319 Color.MEDIUM_SPRING_GREEN: 49, +320 Color.MEDIUM_TURQUOISE: 44, +321 Color.MEDIUM_VIOLET_RED: 162, +322 Color.MELON: 216, +323 Color.MIDNIGHT_BLUE: 18, +324 Color.MINT_CREAM: 231, +325 Color.MISTY_ROSE: 224, +326 Color.MOCCASIN: 223, +327 Color.MULBERRY: 126, +328 Color.NAVAJO_WHITE: 223, +329 Color.NAVY: 18, +330 Color.NAVY_BLUE: 18, +331 Color.OLD_LACE: 231, +332 Color.OLIVE: 100, +333 Color.OLIVE_DRAB: 64, +334 Color.OLIVE_GREEN: 28, +335 Color.ORANGE: 220, +336 Color.ORANGE_RED: 202, +337 Color.ORCHID: 170, +338 Color.PALE_GOLDENROD: 187, +339 Color.PALE_GREEN: 120, +340 Color.PALE_TURQUOISE: 159, +341 Color.PALE_VIOLET_RED: 168, +342 Color.PAPAYA_WHIP: 230, +343 Color.PEACH: 209, +344 Color.PEACH_PUFF: 223, +345 Color.PERIWINKLE: 104, +346 Color.PERU: 173, +347 Color.PINE_GREEN: 29, +348 Color.PINK: 217, +349 Color.PLUM: 182, +350 Color.POWDER_BLUE: 152, +351 Color.PROCESS_BLUE: 39, +352 Color.PURPLE: 161, +353 Color.RAW_SIENNA: 124, +354 Color.RED: 196, +355 Color.RED_ORANGE: 202, +356 Color.RED_VIOLET: 125, +357 Color.RHODAMINE: 205, +358 Color.ROSY_BROWN: 138, +359 Color.ROYAL_BLUE: 62, +360 Color.ROYAL_PURPLE: 61, +361 Color.RUBINE_RED: 198, +362 Color.SADDLE_BROWN: 94, +363 Color.SALMON: 210, +364 Color.SANDY_BROWN: 215, +365 Color.SEASHELL: 231, +366 Color.SEA_GREEN: 29, +367 Color.SEPIA: 52, +368 Color.SIENNA: 130, +369 Color.SILVER: 145, +370 Color.SKY_BLUE: 117, +371 Color.SLATE_BLUE: 62, +372 Color.SLATE_GRAY: 102, +373 Color.SLATE_GREY: 102, +374 Color.SNOW: 231, +375 Color.SPRING_GREEN: 48, +376 Color.STEEL_BLUE: 67, +377 Color.TAN: 180, +378 Color.TEAL: 30, +379 Color.TEAL_BLUE: 37, +380 Color.THISTLE: 182, +381 Color.TOMATO: 203, +382 Color.TURQUOISE: 80, +383 Color.VIOLET: 90, +384 Color.VIOLET_RED: 162, +385 Color.WHEAT: 223, +386 Color.WHITE: 231, +387 Color.WHITE_SMOKE: 231, +388 Color.WILD_STRAWBERRY: 197, +389 Color.YELLOW: 226, +390 Color.YELLOW_GREEN: 112, +391 Color.YELLOW_ORANGE: 214, +392} +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/formatter.html b/pyk/_modules/pyk/kast/formatter.html new file mode 100644 index 00000000000..5bd3b8a27f6 --- /dev/null +++ b/pyk/_modules/pyk/kast/formatter.html @@ -0,0 +1,312 @@ + + + + + + pyk.kast.formatter — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.formatter

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from ..utils import intersperse
+  6from .att import Atts
+  7from .inner import KApply, KToken, KVariable
+  8from .outer import KNonTerminal, KRegexTerminal, KSequence, KTerminal
+  9
+ 10if TYPE_CHECKING:
+ 11    from . import KInner
+ 12    from .inner import KSort
+ 13    from .outer import KDefinition, KProduction
+ 14
+ 15
+
+[docs] + 16class Formatter: + 17 definition: KDefinition + 18 + 19 _indent: int + 20 _brackets: bool + 21 + 22 def __init__(self, definition: KDefinition, *, indent: int = 0, brackets: bool = True): + 23 self.definition = definition + 24 self._indent = indent + 25 self._brackets = brackets + 26 + 27 def __call__(self, term: KInner) -> str: + 28 return self.format(term) + 29 +
+[docs] + 30 def format(self, term: KInner) -> str: + 31 if self._brackets: + 32 term = add_brackets(self.definition, term) + 33 return ''.join(self._format(term))
+ + 34 + 35 def _format(self, term: KInner) -> list[str]: + 36 match term: + 37 case KToken(token, _): + 38 return [token] + 39 case KVariable(name, sort): + 40 sort_str = f':{sort.name}' if sort else '' + 41 return [f'{name}{sort_str}'] + 42 case KSequence(): + 43 return self._format_ksequence(term) + 44 case KApply(): + 45 return self._format_kapply(term) + 46 case _: + 47 raise ValueError(f'Unsupported term: {term}') + 48 + 49 def _format_ksequence(self, ksequence: KSequence) -> list[str]: + 50 items = [self._format(item) for item in ksequence.items] # recur + 51 items.append(['.K']) + 52 return [chunk for chunks in intersperse(items, [' ~> ']) for chunk in chunks] + 53 + 54 def _format_kapply(self, kapply: KApply) -> list[str]: + 55 production = self.definition.syntax_symbols[kapply.label.name] + 56 formatt = production.att.get(Atts.FORMAT, production.default_format) + 57 return [ + 58 chunk + 59 for token in formatt.tokens + 60 for chunks in self._interpret_token(token, production, kapply) + 61 for chunk in chunks + 62 ] + 63 + 64 def _interpret_token(self, token: str, production: KProduction, kapply: KApply) -> list[str]: + 65 if not token[0] == '%': + 66 return [token] + 67 + 68 escape = token[1:] + 69 + 70 if escape[0].isdigit(): + 71 try: + 72 index = int(escape) + 73 except ValueError as err: + 74 raise AssertionError(f'Incorrect format escape sequence: {token}') from err + 75 return self._interpret_index(index, production, kapply) + 76 + 77 assert len(escape) == 1 + 78 + 79 match escape: + 80 case 'n': + 81 return ['\n', self._indent * ' '] + 82 case 'i': + 83 self._indent += 1 + 84 return [] + 85 case 'd': + 86 self._indent -= 1 + 87 return [] + 88 case 'c' | 'r': + 89 return [] # TODO add color support + 90 case _: + 91 return [escape] + 92 + 93 def _interpret_index(self, index: int, production: KProduction, kapply: KApply) -> list[str]: + 94 assert index > 0 + 95 if index > len(production.items): + 96 raise ValueError(f'Format escape index out of bounds: {index}: {production}') + 97 + 98 item = production.items[index - 1] + 99 match item: +100 case KTerminal(value): +101 return [value] +102 case KNonTerminal(): +103 arg_index = sum(isinstance(item, KNonTerminal) for item in production.items[: index - 1]) +104 if arg_index >= len(kapply.args): +105 raise ValueError('NonTerminal index out of bounds: {arg_index}: {kapply}') +106 arg = kapply.args[arg_index] +107 return self._format(arg) # recur +108 case KRegexTerminal(): +109 raise ValueError(f'Invalid format index escape to regex terminal: {index}: {production}') +110 case _: +111 raise AssertionError()
+ +112 +113 +
+[docs] +114def add_brackets(definition: KDefinition, term: KInner) -> KInner: +115 if not isinstance(term, KApply): +116 return term +117 prod = definition.symbols[term.label.name] +118 +119 args: list[KInner] = [] +120 +121 arg_index = -1 +122 for index, item in enumerate(prod.items): +123 if not isinstance(item, KNonTerminal): +124 continue +125 +126 arg_index += 1 +127 arg = term.args[arg_index] +128 arg = add_brackets(definition, arg) +129 arg = _with_bracket(definition, term, arg, item.sort, index) +130 args.append(arg) +131 +132 return term.let(args=args)
+ +133 +134 +135def _with_bracket(definition: KDefinition, parent: KApply, term: KInner, bracket_sort: KSort, index: int) -> KInner: +136 if not _requires_bracket(definition, parent, term, index): +137 return term +138 +139 bracket_prod = definition.brackets.get(bracket_sort) +140 if not bracket_prod: +141 return term +142 +143 bracket_label = bracket_prod.att[Atts.BRACKET_LABEL]['name'] +144 return KApply(bracket_label, term) +145 +146 +147def _requires_bracket(definition: KDefinition, parent: KApply, term: KInner, index: int) -> bool: +148 if isinstance(term, (KToken, KVariable, KSequence)): +149 return False +150 +151 assert isinstance(term, KApply) +152 +153 if len(term.args) == 1: +154 return False +155 +156 if _between_terminals(definition, parent, index): +157 return False +158 +159 if _associativity_wrong(definition, parent, term, index): +160 return True +161 +162 if _priority_wrong(definition, parent, term): +163 return True +164 +165 return False +166 +167 +168def _between_terminals(definition: KDefinition, parent: KApply, index: int) -> bool: +169 prod = definition.symbols[parent.label.name] +170 if index in [0, len(prod.items) - 1]: +171 return False +172 return all(isinstance(prod.items[index + offset], KTerminal) for offset in [-1, 1]) +173 +174 +175def _associativity_wrong(definition: KDefinition, parent: KApply, term: KApply, index: int) -> bool: +176 """Return whether `term` can appear as the `index`-th child of `parent` according to associativity rules. +177 +178 A left (right) associative symbol cannot appear as the rightmost (leftmost) child of a symbol with equal priority. +179 """ +180 parent_label = parent.label.name +181 term_label = term.label.name +182 prod = definition.symbols[parent_label] +183 if index == 0 and term_label in definition.right_assocs.get(parent_label, ()): +184 return True +185 if index == len(prod.items) - 1 and term_label in definition.left_assocs.get(parent_label, ()): +186 return True +187 return False +188 +189 +190def _priority_wrong(definition: KDefinition, parent: KApply, term: KApply) -> bool: +191 """Return whether `term` can appear as a child of `parent` according to priority rules. +192 +193 A symbol with a lesser priority cannot appear as the child of a symbol with greater priority. +194 """ +195 parent_label = parent.label.name +196 term_label = term.label.name +197 return term_label in definition.priorities.get(parent_label, ()) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/inner.html b/pyk/_modules/pyk/kast/inner.html new file mode 100644 index 00000000000..1fe8da8babe --- /dev/null +++ b/pyk/_modules/pyk/kast/inner.html @@ -0,0 +1,1313 @@ + + + + + + pyk.kast.inner — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.inner

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5from abc import abstractmethod
+  6from collections.abc import Iterable, Mapping, Sequence
+  7from dataclasses import dataclass
+  8from functools import reduce
+  9from itertools import chain
+ 10from typing import TYPE_CHECKING, final, overload
+ 11
+ 12from ..utils import EMPTY_FROZEN_DICT, FrozenDict
+ 13from .kast import KAst
+ 14
+ 15if TYPE_CHECKING:
+ 16    from collections.abc import Callable, Iterator
+ 17    from typing import Any, Final, TypeVar
+ 18
+ 19    T = TypeVar('T', bound='KAst')
+ 20    KI = TypeVar('KI', bound='KInner')
+ 21    A = TypeVar('A')
+ 22    B = TypeVar('B')
+ 23
+ 24_LOGGER: Final = logging.getLogger(__name__)
+ 25
+ 26
+
+[docs] + 27@final + 28@dataclass(frozen=True) + 29class KSort(KAst): + 30 """Store a simple sort name.""" + 31 + 32 name: str + 33 +
+[docs] + 34 def __init__(self, name: str): + 35 """Construct a new sort given the name.""" + 36 object.__setattr__(self, 'name', name)
+ + 37 +
+[docs] + 38 @staticmethod + 39 def from_dict(d: Mapping[str, Any]) -> KSort: + 40 return KSort(name=d['name'])
+ + 41 +
+[docs] + 42 def to_dict(self) -> dict[str, Any]: + 43 return {'node': 'KSort', 'name': self.name}
+ + 44 +
+[docs] + 45 def let(self, *, name: str | None = None) -> KSort: + 46 """Return a new `KSort` with the name potentially updated.""" + 47 name = name if name is not None else self.name + 48 return KSort(name=name)
+
+ + 49 + 50 +
+[docs] + 51@final + 52@dataclass(frozen=True) + 53class KLabel(KAst): + 54 """Represents a symbol that can be applied in a K AST, potentially with sort parameters.""" + 55 + 56 name: str + 57 params: tuple[KSort, ...] + 58 + 59 @overload + 60 def __init__(self, name: str, params: Iterable[str | KSort]): ... + 61 + 62 @overload + 63 def __init__(self, name: str, *params: str | KSort): ... + 64 + 65 # TODO Is it possible to extract a decorator? +
+[docs] + 66 def __init__(self, name: str, *args: Any, **kwargs: Any): + 67 """Construct a new `KLabel`, with optional sort parameters.""" + 68 if kwargs: + 69 bad_arg = next((arg for arg in kwargs if arg != 'params'), None) + 70 if bad_arg: + 71 raise TypeError(f'KLabel() got an unexpected keyword argument: {bad_arg}') + 72 if args: + 73 raise TypeError('KLabel() got multiple values for argument: params') + 74 params = kwargs['params'] + 75 + 76 elif ( + 77 len(args) == 1 + 78 and isinstance(args[0], Iterable) + 79 and not isinstance(args[0], str) + 80 and not isinstance(args[0], KInner) + 81 ): + 82 params = args[0] + 83 + 84 else: + 85 params = args + 86 + 87 params = tuple(KSort(param) if type(param) is str else param for param in params) + 88 object.__setattr__(self, 'name', name) + 89 object.__setattr__(self, 'params', params)
+ + 90 +
+[docs] + 91 def __iter__(self) -> Iterator[str | KSort]: + 92 """Return this symbol as iterator with the name as the head and the parameters as the tail.""" + 93 return chain([self.name], self.params)
+ + 94 + 95 @overload + 96 def __call__(self, args: Iterable[KInner]) -> KApply: ... + 97 + 98 @overload + 99 def __call__(self, *args: KInner) -> KApply: ... +100 +101 def __call__(self, *args: Any, **kwargs: Any) -> KApply: +102 return self.apply(*args, **kwargs) +103 +
+[docs] +104 @staticmethod +105 def from_dict(d: Mapping[str, Any]) -> KLabel: +106 return KLabel(name=d['name'], params=(KSort.from_dict(param) for param in d['params']))
+ +107 +
+[docs] +108 def to_dict(self) -> dict[str, Any]: +109 return {'node': 'KLabel', 'name': self.name, 'params': [param.to_dict() for param in self.params]}
+ +110 +
+[docs] +111 def let(self, *, name: str | None = None, params: Iterable[str | KSort] | None = None) -> KLabel: +112 """Return a copy of this `KLabel` with potentially the name or sort parameters updated.""" +113 name = name if name is not None else self.name +114 params = params if params is not None else self.params +115 return KLabel(name=name, params=params)
+ +116 +117 @overload +118 def apply(self, args: Iterable[KInner]) -> KApply: ... +119 +120 @overload +121 def apply(self, *args: KInner) -> KApply: ... +122 +
+[docs] +123 def apply(self, *args: Any, **kwargs: Any) -> KApply: +124 """Construct a `KApply` with this `KLabel` as the AST head and the supplied parameters as the arguments.""" +125 return KApply(self, *args, **kwargs)
+
+ +126 +127 +
+[docs] +128class KInner(KAst): +129 """Represent the AST of a given K inner term. +130 +131 This class represents the AST of a given term. +132 The nodes in the AST should be coming from a given KDefinition, so that they can be checked for well-typedness. +133 """ +134 +135 _NODES: Final = {'KVariable', 'KToken', 'KApply', 'KAs', 'KRewrite', 'KSequence'} +136 +
+[docs] +137 @staticmethod +138 def from_json(s: str) -> KInner: +139 return KInner.from_dict(json.loads(s))
+ +140 +
+[docs] +141 @staticmethod +142 def from_dict(dct: Mapping[str, Any]) -> KInner: +143 """Deserialize a given `KInner` into a more specific type from a dictionary.""" +144 stack: list = [dct, KInner._extract_dicts(dct), []] +145 while True: +146 terms = stack[-1] +147 dcts = stack[-2] +148 dct = stack[-3] +149 idx = len(terms) - len(dcts) +150 if not idx: +151 stack.pop() +152 stack.pop() +153 stack.pop() +154 cls = globals()[dct['node']] +155 term = cls._from_dict(dct, terms) +156 if not stack: +157 return term +158 stack[-1].append(term) +159 else: +160 dct = dcts[idx] +161 stack.append(dct) +162 stack.append(KInner._extract_dicts(dct)) +163 stack.append([])
+ +164 +165 @staticmethod +166 def _extract_dicts(dct: Mapping[str, Any]) -> list[Mapping[str, Any]]: +167 match dct['node']: +168 case 'KApply': +169 return dct['args'] +170 case 'KSequence': +171 return dct['items'] +172 case 'KRewrite': +173 return [dct['lhs'], dct['rhs']] +174 case 'KAs': +175 return [dct['pattern'], dct['alias']] +176 case _: +177 return [] +178 +179 @classmethod +180 @abstractmethod +181 def _from_dict(cls: type[KI], d: Mapping[str, Any], terms: list[KInner]) -> KI: ... +182 +183 @property +184 @abstractmethod +185 def terms(self) -> tuple[KInner, ...]: +186 """Returns the children of this given `KInner`.""" +187 ... +188 +
+[docs] +189 @abstractmethod +190 def let_terms(self: KI, terms: Iterable[KInner]) -> KI: +191 """Set children of this given `KInner`.""" +192 ...
+ +193 +
+[docs] +194 @final +195 def map_inner(self: KI, f: Callable[[KInner], KInner]) -> KI: +196 """Apply a transformation to all children of this given `KInner`.""" +197 return self.let_terms(f(term) for term in self.terms)
+ +198 +
+[docs] +199 @abstractmethod +200 def match(self, term: KInner) -> Subst | None: +201 """Perform syntactic pattern matching and return the substitution. +202 +203 Args: +204 term: Term to match. +205 +206 Returns: +207 A substitution instantiating `self` to `term` if one exists, ``None`` otherwise. +208 """ +209 ...
+ +210 +211 @staticmethod +212 def _combine_matches(substs: Iterable[Subst | None]) -> Subst | None: +213 def combine(subst1: Subst | None, subst2: Subst | None) -> Subst | None: +214 if subst1 is None or subst2 is None: +215 return None +216 +217 return subst1.union(subst2) +218 +219 unit: Subst | None = Subst() +220 return reduce(combine, substs, unit) +221 +
+[docs] +222 @final +223 def to_dict(self) -> dict[str, Any]: +224 stack: list = [self, []] +225 while True: +226 dicts = stack[-1] +227 term = stack[-2] +228 idx = len(dicts) - len(term.terms) +229 if not idx: +230 stack.pop() +231 stack.pop() +232 dct = term._to_dict(dicts) +233 if not stack: +234 return dct +235 stack[-1].append(dct) +236 else: +237 stack.append(term.terms[idx]) +238 stack.append([])
+ +239 +240 @abstractmethod +241 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: ...
+ +242 +243 +
+[docs] +244@final +245@dataclass(frozen=True) +246class KToken(KInner): +247 """Represent a domain-value in K AST.""" +248 +249 token: str +250 sort: KSort +251 +
+[docs] +252 def __init__(self, token: str, sort: str | KSort): +253 """Construct a new `KToken` with a given string representation in the supplied sort.""" +254 if type(sort) is str: +255 sort = KSort(sort) +256 +257 object.__setattr__(self, 'token', token) +258 object.__setattr__(self, 'sort', sort)
+ +259 +260 @classmethod +261 def _from_dict(cls: type[KToken], dct: Mapping[str, Any], terms: list[KInner]) -> KToken: +262 assert not terms +263 return KToken(token=dct['token'], sort=KSort.from_dict(dct['sort'])) +264 +265 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: +266 assert not terms +267 return {'node': 'KToken', 'token': self.token, 'sort': self.sort.to_dict()} +268 +
+[docs] +269 def let(self, *, token: str | None = None, sort: str | KSort | None = None) -> KToken: +270 """Return a copy of the `KToken` with the token or sort potentially updated.""" +271 token = token if token is not None else self.token +272 sort = sort if sort is not None else self.sort +273 return KToken(token=token, sort=sort)
+ +274 +275 @property +276 def terms(self) -> tuple[()]: +277 return () +278 +
+[docs] +279 def let_terms(self, terms: Iterable[KInner]) -> KToken: +280 () = terms +281 return self
+ +282 +
+[docs] +283 def match(self, term: KInner) -> Subst | None: +284 if type(term) is KToken: +285 return Subst() if term.token == self.token else None +286 _LOGGER.debug(f'Matching failed: ({self}.match({term}))') +287 return None
+
+ +288 +289 +
+[docs] +290@final +291@dataclass(frozen=True) +292class KVariable(KInner): +293 """Represent a logical variable in a K AST, with a name and optionally a sort.""" +294 +295 name: str +296 sort: KSort | None +297 +
+[docs] +298 def __init__(self, name: str, sort: str | KSort | None = None): +299 """Construct a new `KVariable` with a given name and optional sort.""" +300 if type(sort) is str: +301 sort = KSort(sort) +302 +303 object.__setattr__(self, 'name', name) +304 object.__setattr__(self, 'sort', sort)
+ +305 +
+[docs] +306 def __lt__(self, other: Any) -> bool: +307 """Lexicographic comparison of `KVariable` based on name for sorting.""" +308 if not isinstance(other, KAst): +309 return NotImplemented +310 if type(other) is KVariable: +311 if (self.sort is None or other.sort is None) and self.name == other.name: +312 return self.sort is None +313 return super().__lt__(other)
+ +314 +315 @classmethod +316 def _from_dict(cls: type[KVariable], dct: Mapping[str, Any], terms: list[KInner]) -> KVariable: +317 assert not terms +318 sort = None +319 if 'sort' in dct: +320 sort = KSort.from_dict(dct['sort']) +321 return KVariable(name=dct['name'], sort=sort) +322 +323 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: +324 assert not terms +325 _d: dict[str, Any] = {'node': 'KVariable', 'name': self.name} +326 if self.sort is not None: +327 _d['sort'] = self.sort.to_dict() +328 return _d +329 +
+[docs] +330 def let(self, *, name: str | None = None, sort: str | KSort | None = None) -> KVariable: +331 """Return a copy of this `KVariable` with potentially the name or sort updated.""" +332 name = name if name is not None else self.name +333 sort = sort if sort is not None else self.sort +334 return KVariable(name=name, sort=sort)
+ +335 +
+[docs] +336 def let_sort(self, sort: KSort | None) -> KVariable: +337 """Return a copy of this `KVariable` with just the sort updated.""" +338 return KVariable(self.name, sort=sort)
+ +339 +340 @property +341 def terms(self) -> tuple[()]: +342 return () +343 +
+[docs] +344 def let_terms(self, terms: Iterable[KInner]) -> KVariable: +345 () = terms +346 return self
+ +347 +
+[docs] +348 def match(self, term: KInner) -> Subst: +349 return Subst({self.name: term})
+
+ +350 +351 +
+[docs] +352@final +353@dataclass(frozen=True) +354class KApply(KInner): +355 """Represent the application of a `KLabel` in a K AST to arguments.""" +356 +357 label: KLabel +358 args: tuple[KInner, ...] +359 +360 @overload +361 def __init__(self, label: str | KLabel, args: Iterable[KInner]): ... +362 +363 @overload +364 def __init__(self, label: str | KLabel, *args: KInner): ... +365 +
+[docs] +366 def __init__(self, label: str | KLabel, *args: Any, **kwargs: Any): +367 """Construct a new `KApply` given the input `KLabel` or str, applied to arguments.""" +368 if type(label) is str: +369 label = KLabel(label) +370 +371 if kwargs: +372 bad_arg = next((arg for arg in kwargs if arg != 'args'), None) +373 if bad_arg: +374 raise TypeError(f'KApply() got an unexpected keyword argument: {bad_arg}') +375 if args: +376 raise TypeError('KApply() got multiple values for argument: args') +377 _args = kwargs['args'] +378 +379 elif len(args) == 1 and isinstance(args[0], Iterable) and not isinstance(args[0], KInner): +380 _args = args[0] +381 +382 else: +383 _args = args +384 +385 object.__setattr__(self, 'label', label) +386 object.__setattr__(self, 'args', tuple(_args))
+ +387 +388 @property +389 def arity(self) -> int: +390 """Return the count of the arguments.""" +391 return len(self.args) +392 +393 @property +394 def is_cell(self) -> bool: +395 """Return whether this is a cell-label application (based on heuristic about label names).""" +396 return len(self.label.name) > 1 and self.label.name[0] == '<' and self.label.name[-1] == '>' +397 +398 @classmethod +399 def _from_dict(cls: type[KApply], dct: Mapping[str, Any], terms: list[KInner]) -> KApply: +400 return KApply(label=KLabel.from_dict(dct['label']), args=terms) +401 +402 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: +403 return { +404 'node': 'KApply', +405 'label': self.label.to_dict(), +406 'args': terms, +407 'arity': self.arity, +408 'variable': False, +409 } +410 +
+[docs] +411 def let(self, *, label: str | KLabel | None = None, args: Iterable[KInner] | None = None) -> KApply: +412 """Return a copy of this `KApply` with either the label or the arguments updated.""" +413 label = label if label is not None else self.label +414 args = args if args is not None else self.args +415 return KApply(label=label, args=args)
+ +416 +417 @property +418 def terms(self) -> tuple[KInner, ...]: +419 return self.args +420 +
+[docs] +421 def let_terms(self, terms: Iterable[KInner]) -> KApply: +422 return self.let(args=terms)
+ +423 +
+[docs] +424 def match(self, term: KInner) -> Subst | None: +425 if type(term) is KApply and term.label.name == self.label.name and term.arity == self.arity: +426 return KInner._combine_matches( +427 arg.match(term_arg) for arg, term_arg in zip(self.args, term.args, strict=True) +428 ) +429 _LOGGER.debug(f'Matching failed: ({self}.match({term}))') +430 return None
+
+ +431 +432 +
+[docs] +433@final +434@dataclass(frozen=True) +435class KAs(KInner): +436 """Represent a K `#as` pattern in the K AST format, with the original pattern and the variabl alias.""" +437 +438 pattern: KInner +439 alias: KInner +440 +
+[docs] +441 def __init__(self, pattern: KInner, alias: KInner): +442 """Construct a new `KAs` given the original pattern and the alias.""" +443 object.__setattr__(self, 'pattern', pattern) +444 object.__setattr__(self, 'alias', alias)
+ +445 +446 @classmethod +447 def _from_dict(cls: type[KAs], dct: Mapping[str, Any], terms: list[KInner]) -> KAs: +448 pattern, alias = terms +449 return KAs(pattern=pattern, alias=alias) +450 +451 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: +452 pattern, alias = terms +453 return {'node': 'KAs', 'pattern': pattern, 'alias': alias} +454 +
+[docs] +455 def let(self, *, pattern: KInner | None = None, alias: KInner | None = None) -> KAs: +456 """Return a copy of this `KAs` with potentially the pattern or alias updated.""" +457 pattern = pattern if pattern is not None else self.pattern +458 alias = alias if alias is not None else self.alias +459 return KAs(pattern=pattern, alias=alias)
+ +460 +461 @property +462 def terms(self) -> tuple[KInner, KInner]: +463 return (self.pattern, self.alias) +464 +
+[docs] +465 def let_terms(self, terms: Iterable[KInner]) -> KAs: +466 pattern, alias = terms +467 return KAs(pattern=pattern, alias=alias)
+ +468 +
+[docs] +469 def match(self, term: KInner) -> Subst | None: +470 raise TypeError('KAs does not support pattern matching')
+
+ +471 +472 +
+[docs] +473@final +474@dataclass(frozen=True) +475class KRewrite(KInner): +476 """Represent a K rewrite in the K AST.""" +477 +478 lhs: KInner +479 rhs: KInner +480 +
+[docs] +481 def __init__(self, lhs: KInner, rhs: KInner): +482 """Construct a `KRewrite` given the LHS (left-hand-side) and RHS (right-hand-side) to use.""" +483 object.__setattr__(self, 'lhs', lhs) +484 object.__setattr__(self, 'rhs', rhs)
+ +485 +
+[docs] +486 def __iter__(self) -> Iterator[KInner]: +487 """Return a two-element iterator with the LHS first and RHS second.""" +488 return iter([self.lhs, self.rhs])
+ +489 +490 def __call__(self, term: KInner, *, top: bool = False) -> KInner: +491 if top: +492 return self.apply_top(term) +493 +494 return self.apply(term) +495 +496 @classmethod +497 def _from_dict(cls: type[KRewrite], dct: Mapping[str, Any], terms: list[KInner]) -> KRewrite: +498 lhs, rhs = terms +499 return KRewrite(lhs=lhs, rhs=rhs) +500 +501 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: +502 lhs, rhs = terms +503 return {'node': 'KRewrite', 'lhs': lhs, 'rhs': rhs} +504 +
+[docs] +505 def let( +506 self, +507 *, +508 lhs: KInner | None = None, +509 rhs: KInner | None = None, +510 ) -> KRewrite: +511 """Return a copy of this `KRewrite` with potentially the LHS or RHS updated.""" +512 lhs = lhs if lhs is not None else self.lhs +513 rhs = rhs if rhs is not None else self.rhs +514 return KRewrite(lhs=lhs, rhs=rhs)
+ +515 +516 @property +517 def terms(self) -> tuple[KInner, KInner]: +518 return (self.lhs, self.rhs) +519 +
+[docs] +520 def let_terms(self, terms: Iterable[KInner]) -> KRewrite: +521 lhs, rhs = terms +522 return KRewrite(lhs=lhs, rhs=rhs)
+ +523 +
+[docs] +524 def match(self, term: KInner) -> Subst | None: +525 if type(term) is KRewrite: +526 lhs_subst = self.lhs.match(term.lhs) +527 rhs_subst = self.rhs.match(term.rhs) +528 if lhs_subst is None or rhs_subst is None: +529 return None +530 return lhs_subst.union(rhs_subst) +531 _LOGGER.debug(f'Matching failed: ({self}.match({term}))') +532 return None
+ +533 +
+[docs] +534 def apply_top(self, term: KInner) -> KInner: +535 """Rewrite a given term at the top. +536 +537 Args: +538 term: Term to rewrite. +539 +540 Returns: +541 The term with the rewrite applied once at the top. +542 """ +543 subst = self.lhs.match(term) +544 if subst is not None: +545 return subst(self.rhs) +546 return term
+ +547 +
+[docs] +548 def apply(self, term: KInner) -> KInner: +549 """Attempt rewriting once at every position in a term bottom-up. +550 +551 Args: +552 term: Term to rewrite. +553 +554 Returns: +555 The term with rewrites applied at every node once starting from the bottom. +556 """ +557 return bottom_up(self.apply_top, term)
+ +558 +
+[docs] +559 def replace_top(self, term: KInner) -> KInner: +560 """Similar to apply_top but using exact syntactic matching instead of pattern matching.""" +561 if self.lhs == term: +562 return self.rhs +563 return term
+ +564 +
+[docs] +565 def replace(self, term: KInner) -> KInner: +566 """Similar to apply but using exact syntactic matching instead of pattern matching.""" +567 return bottom_up(self.replace_top, term)
+
+ +568 +569 +
+[docs] +570@final +571@dataclass(frozen=True) +572class KSequence(KInner, Sequence[KInner]): +573 """Represent a associative list of `K` as a cons-list of `KItem` for sequencing computation in K AST format.""" +574 +575 items: tuple[KInner, ...] +576 +577 @overload +578 def __init__(self, items: Iterable[KInner]): ... +579 +580 @overload +581 def __init__(self, *items: KInner): ... +582 +
+[docs] +583 def __init__(self, *args: Any, **kwargs: Any): +584 """Construct a new `KSequence` given the arguments.""" +585 if kwargs: +586 bad_arg = next((arg for arg in kwargs if arg != 'items'), None) +587 if bad_arg: +588 raise TypeError(f'KSequence() got an unexpected keyword argument: {bad_arg}') +589 if args: +590 raise TypeError('KSequence() got multiple values for argument: items') +591 items = kwargs['items'] +592 +593 elif len(args) == 1 and isinstance(args[0], Iterable) and not isinstance(args[0], KInner): +594 items = args[0] +595 +596 else: +597 items = args +598 +599 _items: list[KInner] = [] +600 for i in items: +601 if type(i) is KSequence: +602 _items.extend(i.items) +603 else: +604 _items.append(i) +605 items = tuple(_items) +606 +607 object.__setattr__(self, 'items', tuple(items))
+ +608 +609 @overload +610 def __getitem__(self, key: int) -> KInner: ... +611 +612 @overload +613 def __getitem__(self, key: slice) -> tuple[KInner, ...]: ... +614 +615 def __getitem__(self, key: int | slice) -> KInner | tuple[KInner, ...]: +616 return self.items[key] +617 +618 def __len__(self) -> int: +619 return self.arity +620 +621 @property +622 def arity(self) -> int: +623 """Return the count of `KSequence` items.""" +624 return len(self.items) +625 +626 @classmethod +627 def _from_dict(cls: type[KSequence], dct: Mapping[str, Any], terms: list[KInner]) -> KSequence: +628 return KSequence(items=terms) +629 +630 def _to_dict(self, terms: list[KInner]) -> dict[str, Any]: +631 return {'node': 'KSequence', 'items': terms, 'arity': self.arity} +632 +
+[docs] +633 def let(self, *, items: Iterable[KInner] | None = None) -> KSequence: +634 """Return a copy of this `KSequence` with the items potentially updated.""" +635 items = items if items is not None else self.items +636 return KSequence(items=items)
+ +637 +638 @property +639 def terms(self) -> tuple[KInner, ...]: +640 return self.items +641 +
+[docs] +642 def let_terms(self, terms: Iterable[KInner]) -> KSequence: +643 return KSequence(items=terms)
+ +644 +
+[docs] +645 def match(self, term: KInner) -> Subst | None: +646 if type(term) is KSequence: +647 if term.arity == self.arity: +648 return KInner._combine_matches( +649 item.match(term_item) for item, term_item in zip(self.items, term.items, strict=True) +650 ) +651 if 0 < self.arity and self.arity < term.arity and type(self.items[-1]) is KVariable: +652 common_length = len(self.items) - 1 +653 _subst: Subst | None = Subst({self.items[-1].name: KSequence(term.items[common_length:])}) +654 for si, ti in zip(self.items[:common_length], term.items[:common_length], strict=True): +655 _subst = KInner._combine_matches([_subst, si.match(ti)]) +656 return _subst +657 _LOGGER.debug(f'Matching failed: ({self}.match({term}))') +658 return None
+
+ +659 +660 +
+[docs] +661@dataclass(frozen=True) +662class Subst(Mapping[str, KInner]): +663 """Represents a substitution, which is a binding of variables to values of `KInner`.""" +664 +665 _subst: FrozenDict[str, KInner] +666 +
+[docs] +667 def __init__(self, subst: Mapping[str, KInner] = EMPTY_FROZEN_DICT): +668 """Construct a new `Subst` given a mapping fo variable names to `KInner`.""" +669 object.__setattr__(self, '_subst', FrozenDict(subst))
+ +670 +
+[docs] +671 def __iter__(self) -> Iterator[str]: +672 """Return the underlying `Subst` mapping as an iterator.""" +673 return iter(self._subst)
+ +674 +
+[docs] +675 def __len__(self) -> int: +676 """Return the length of the underlying `Subst` mapping.""" +677 return len(self._subst)
+ +678 +
+[docs] +679 def __getitem__(self, key: str) -> KInner: +680 """Get the `KInner` associated with the given variable name from the underlying `Subst` mapping.""" +681 return self._subst[key]
+ +682 +
+[docs] +683 def __mul__(self, other: Subst) -> Subst: +684 """Overload for `Subst.compose`.""" +685 return self.compose(other)
+ +686 +
+[docs] +687 def __call__(self, term: KInner) -> KInner: +688 """Overload for `Subst.apply`.""" +689 return self.apply(term)
+ +690 +
+[docs] +691 @staticmethod +692 def from_dict(d: Mapping[str, Any]) -> Subst: +693 """Deserialize a `Subst` from a given dictionary representing it.""" +694 return Subst({k: KInner.from_dict(v) for k, v in d.items()})
+ +695 +
+[docs] +696 def to_dict(self) -> dict[str, Any]: +697 """Serialize a `Subst` to a dictionary representation.""" +698 return {k: v.to_dict() for k, v in self.items()}
+ +699 +
+[docs] +700 def minimize(self) -> Subst: +701 """Return a new substitution with any identity items removed.""" +702 return Subst({k: v for k, v in self.items() if type(v) is not KVariable or v.name != k})
+ +703 +
+[docs] +704 def compose(self, other: Subst) -> Subst: +705 """Union two substitutions together, preferring the assignments in `self` if present in both.""" +706 from_other = ((k, self(v)) for k, v in other.items()) +707 from_self = ((k, v) for k, v in self.items() if k not in other) +708 return Subst(dict(chain(from_other, from_self)))
+ +709 +
+[docs] +710 def union(self, other: Subst) -> Subst | None: +711 """Union two substitutions together, failing with `None` if there are conflicting assignments.""" +712 subst = dict(self) +713 for v in other: +714 if v in subst and subst[v] != other[v]: +715 return None +716 subst[v] = other[v] +717 return Subst(subst)
+ +718 +
+[docs] +719 def apply(self, term: KInner) -> KInner: +720 """Apply the given substitution to `KInner`, replacing free variable occurances with their valuations defined in this `Subst`.""" +721 +722 def replace(term: KInner) -> KInner: +723 if type(term) is KVariable and term.name in self: +724 return self[term.name] +725 return term +726 +727 return bottom_up(replace, term)
+ +728 +
+[docs] +729 def unapply(self, term: KInner) -> KInner: +730 """Replace occurances of valuations from this `Subst` with the variables that they are assigned to.""" +731 new_term = term +732 for var_name in self: +733 lhs = self[var_name] +734 rhs = KVariable(var_name) +735 new_term = KRewrite(lhs, rhs).replace(new_term) +736 return new_term
+ +737 +
+[docs] +738 @staticmethod +739 def from_pred(pred: KInner) -> Subst: +740 """Given a generic matching logic predicate, attempt to extract a `Subst` from it.""" +741 from .manip import flatten_label +742 +743 subst: dict[str, KInner] = {} +744 for conjunct in flatten_label('#And', pred): +745 match conjunct: +746 case KApply(KLabel('#Equals'), [KVariable(var), term]): +747 subst[var] = term +748 case _: +749 raise ValueError(f'Invalid substitution predicate: {conjunct}') +750 return Subst(subst)
+ +751 +752 @property +753 def ml_pred(self) -> KInner: +754 """Turn this `Subst` into a matching logic predicate using `{_#Equals_}` operator.""" +755 items = [] +756 for k in self: +757 if KVariable(k) != self[k]: +758 items.append(KApply('#Equals', [KVariable(k), self[k]])) +759 if len(items) == 0: +760 return KApply('#Top') +761 ml_term = items[0] +762 for _i in items[1:]: +763 ml_term = KApply('#And', [ml_term, _i]) +764 return ml_term +765 +766 @property +767 def pred(self) -> KInner: +768 """Turn this `Subst` into a boolean predicate using `_==K_` operator.""" +769 conjuncts = [ +770 KApply('_==K_', KVariable(name), val) +771 for name, val in self.items() +772 if type(val) is not KVariable or val.name != name +773 ] +774 if not conjuncts: +775 return KToken('true', 'Bool') +776 +777 return reduce(KLabel('_andBool_'), conjuncts) +778 +779 @property +780 def is_identity(self) -> bool: +781 return len(self.minimize()) == 0
+ +782 +783 +
+[docs] +784def bottom_up_with_summary(f: Callable[[KInner, list[A]], tuple[KInner, A]], kinner: KInner) -> tuple[KInner, A]: +785 """Traverse a term from the bottom moving upward, collecting information about it. +786 +787 Args: +788 f: Function to apply at each AST node to transform it and collect summary. +789 kinner: Term to apply this transformation to. +790 +791 Returns: +792 A tuple of the transformed term and the summarized results. +793 """ +794 stack: list = [kinner, [], []] +795 while True: +796 summaries = stack[-1] +797 terms = stack[-2] +798 term = stack[-3] +799 idx = len(terms) - len(term.terms) +800 if not idx: +801 stack.pop() +802 stack.pop() +803 stack.pop() +804 term, summary = f(term.let_terms(terms), summaries) +805 if not stack: +806 return term, summary +807 stack[-1].append(summary) +808 stack[-2].append(term) +809 else: +810 stack.append(term.terms[idx]) +811 stack.append([]) +812 stack.append([])
+ +813 +814 +815# TODO make method of KInner +
+[docs] +816def bottom_up(f: Callable[[KInner], KInner], kinner: KInner) -> KInner: +817 """Transform a term from the bottom moving upward. +818 +819 Args: +820 f: Function to apply to each node in the term. +821 kinner: Original term to transform. +822 +823 Returns: +824 The transformed term. +825 """ +826 stack: list = [kinner, []] +827 while True: +828 terms = stack[-1] +829 term = stack[-2] +830 idx = len(terms) - len(term.terms) +831 if not idx: +832 stack.pop() +833 stack.pop() +834 term = f(term.let_terms(terms)) +835 if not stack: +836 return term +837 stack[-1].append(term) +838 else: +839 stack.append(term.terms[idx]) +840 stack.append([])
+ +841 +842 +843# TODO make method of KInner +
+[docs] +844def top_down(f: Callable[[KInner], KInner], kinner: KInner) -> KInner: +845 """Transform a term from the top moving downward. +846 +847 Args: +848 f: Function to apply to each node in the term. +849 kinner: Original term to transform. +850 +851 Returns: +852 The transformed term. +853 """ +854 stack: list = [f(kinner), []] +855 while True: +856 terms = stack[-1] +857 term = stack[-2] +858 idx = len(terms) - len(term.terms) +859 if not idx: +860 stack.pop() +861 stack.pop() +862 term = term.let_terms(terms) +863 if not stack: +864 return term +865 stack[-1].append(term) +866 else: +867 stack.append(f(term.terms[idx])) +868 stack.append([])
+ +869 +870 +871# TODO: make method of KInner +
+[docs] +872def var_occurrences(term: KInner) -> dict[str, list[KVariable]]: +873 """Collect the list of occurrences of each variable in a given term. +874 +875 Args: +876 term: Term to collect variables from. +877 +878 Returns: +879 A dictionary with variable names as keys and the list of all occurrences of the variable as values. +880 """ +881 _var_occurrences: dict[str, list[KVariable]] = {} +882 +883 # TODO: should treat #Exists and #Forall specially. +884 def _var_occurence(_term: KInner) -> None: +885 if type(_term) is KVariable: +886 if _term.name not in _var_occurrences: +887 _var_occurrences[_term.name] = [] +888 _var_occurrences[_term.name].append(_term) +889 +890 collect(_var_occurence, term) +891 return _var_occurrences
+ +892 +893 +894# TODO replace by method that does not reconstruct the AST +
+[docs] +895def collect(callback: Callable[[KInner], None], kinner: KInner) -> None: +896 """Collect information about a given term traversing it bottom-up using a function with side effects. +897 +898 Args: +899 callback: Function with the side effect of collecting desired information at each AST node. +900 kinner: The term to traverse. +901 """ +902 +903 def f(kinner: KInner) -> KInner: +904 callback(kinner) +905 return kinner +906 +907 bottom_up(f, kinner)
+ +908 +909 +
+[docs] +910def build_assoc(unit: KInner, label: str | KLabel, terms: Iterable[KInner]) -> KInner: +911 """Build an associative list. +912 +913 Args: +914 unit: The empty variant of the given list type. +915 label: The associative list join operator. +916 terms: List (potentially empty) of terms to join in an associative list. +917 +918 Returns: +919 The list of terms joined using the supplied label, or the unit element in the case of no terms. +920 """ +921 _label = label if type(label) is KLabel else KLabel(label) +922 res: KInner | None = None +923 for term in reversed(list(terms)): +924 if term == unit: +925 continue +926 if not res: +927 res = term +928 else: +929 res = _label(term, res) +930 return res or unit
+ +931 +932 +
+[docs] +933def build_cons(unit: KInner, label: str | KLabel, terms: Iterable[KInner]) -> KInner: +934 """Build a cons list. +935 +936 Args: +937 unit: The empty variant of the given list type. +938 label: The associative list join operator. +939 terms: List (potentially empty) of terms to join in an associative list. +940 +941 Returns: +942 The list of terms joined using the supplied label, terminated with the unit element. +943 """ +944 it = iter(terms) +945 try: +946 fst = next(it) +947 return KApply(label, (fst, build_cons(unit, label, it))) +948 except StopIteration: +949 return unit
+ +950 +951 +
+[docs] +952def flatten_label(label: str, kast: KInner) -> list[KInner]: +953 """Given a cons list, return a flat Python list of the elements. +954 +955 Args: +956 label: The cons operator. +957 kast: The cons list to flatten. +958 +959 Returns: +960 Items of cons list. +961 """ +962 flattened_args = [] +963 rest_of_args = [kast] # Rest of arguments in reversed order +964 while rest_of_args: +965 current_arg = rest_of_args.pop() +966 if isinstance(current_arg, KApply) and current_arg.label.name == label: +967 rest_of_args.extend(reversed(current_arg.args)) +968 else: +969 flattened_args.append(current_arg) +970 return flattened_args
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/kast.html b/pyk/_modules/pyk/kast/kast.html new file mode 100644 index 00000000000..53840e0f70e --- /dev/null +++ b/pyk/_modules/pyk/kast/kast.html @@ -0,0 +1,177 @@ + + + + + + pyk.kast.kast — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.kast

+ 1from __future__ import annotations
+ 2
+ 3import json
+ 4import logging
+ 5from abc import ABC, abstractmethod
+ 6from dataclasses import fields
+ 7from functools import cached_property
+ 8from typing import TYPE_CHECKING, Any, final
+ 9
+10from ..utils import hash_str
+11
+12if TYPE_CHECKING:
+13    from collections.abc import Mapping
+14    from typing import Final
+15
+16
+17_LOGGER: Final = logging.getLogger(__name__)
+18
+19
+
+[docs] +20class KAst(ABC): +
+[docs] +21 @staticmethod +22 def version() -> int: +23 return 3
+ +24 +
+[docs] +25 @abstractmethod +26 def to_dict(self) -> dict[str, Any]: ...
+ +27 +
+[docs] +28 @final +29 def to_json(self) -> str: +30 return json.dumps(self.to_dict(), sort_keys=True)
+ +31 +32 @final +33 @cached_property +34 def hash(self) -> str: +35 return hash_str(self.to_json()) +36 +37 def __lt__(self, other: Any) -> bool: +38 if not isinstance(other, KAst): +39 return NotImplemented +40 if type(self) == type(other): +41 return self._as_shallow_tuple() < other._as_shallow_tuple() +42 return type(self).__name__ < type(other).__name__ +43 +44 def _as_shallow_tuple(self) -> tuple[Any, ...]: +45 # shallow copy version of dataclass.astuple. +46 return tuple(self.__dict__[field.name] for field in fields(type(self))) # type: ignore
+ +47 +48 +
+[docs] +49def kast_term(dct: Mapping[str, Any]) -> Mapping[str, Any]: +50 if dct['format'] != 'KAST': +51 raise ValueError(f"Invalid format: {dct['format']}") +52 +53 if dct['version'] != KAst.version(): +54 raise ValueError(f"Invalid version: {dct['version']}") +55 +56 return dct['term']
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/lexer.html b/pyk/_modules/pyk/kast/lexer.html new file mode 100644 index 00000000000..2aadffed840 --- /dev/null +++ b/pyk/_modules/pyk/kast/lexer.html @@ -0,0 +1,383 @@ + + + + + + pyk.kast.lexer — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.lexer

+  1from __future__ import annotations
+  2
+  3from collections.abc import Callable, Iterator
+  4from enum import Enum, auto
+  5from typing import TYPE_CHECKING, NamedTuple
+  6
+  7if TYPE_CHECKING:
+  8    from collections.abc import Iterable
+  9    from typing import Final
+ 10
+ 11
+
+[docs] + 12class TokenType(Enum): + 13 EOF = auto() + 14 LPAREN = auto() + 15 RPAREN = auto() + 16 COMMA = auto() + 17 COLON = auto() + 18 KSEQ = auto() + 19 DOTK = auto() + 20 DOTKLIST = auto() + 21 TOKEN = auto() + 22 ID = auto() + 23 VARIABLE = auto() + 24 SORT = auto() + 25 KLABEL = auto() + 26 STRING = auto()
+ + 27 + 28 +
+[docs] + 29class Token(NamedTuple): + 30 text: str + 31 type: TokenType
+ + 32 + 33 +
+[docs] + 34class State(Enum): + 35 DEFAULT = auto() + 36 SORT = auto()
+ + 37 + 38 +
+[docs] + 39def lexer(text: Iterable[str]) -> Iterator[Token]: + 40 state = State.DEFAULT + 41 it = iter(text) + 42 la = next(it, '') + 43 while True: + 44 while la.isspace(): + 45 la = next(it, '') + 46 + 47 if not la: + 48 yield _TOKENS[TokenType.EOF] + 49 return + 50 + 51 try: + 52 sublexer = _SUBLEXER[state][la] + 53 except KeyError: + 54 raise _unexpected_char(la) from None + 55 + 56 token, la = sublexer(la, it) + 57 state = _STATE.get(token.type, State.DEFAULT) + 58 yield token
+ + 59 + 60 + 61_TOKENS: Final = { + 62 typ: Token(txt, typ) + 63 for typ, txt in ( + 64 (TokenType.EOF, ''), + 65 (TokenType.LPAREN, '('), + 66 (TokenType.RPAREN, ')'), + 67 (TokenType.COMMA, ','), + 68 (TokenType.COLON, ':'), + 69 (TokenType.KSEQ, '~>'), + 70 (TokenType.DOTK, '.K'), + 71 (TokenType.DOTKLIST, '.KList'), + 72 (TokenType.TOKEN, '#token'), + 73 ) + 74} + 75 + 76 + 77_DIGIT: Final = set('0123456789') + 78_LOWER: Final = set('abcdefghijklmnopqrstuvwxyz') + 79_UPPER: Final = set('ABCDEFGHIJKLMNOPQRSTUVWXYZ') + 80_ALNUM: Final = set.union(_DIGIT, _LOWER, _UPPER) + 81 + 82 + 83_UNEXPECTED_EOF: Final = ValueError('Unexpected end of file') + 84 + 85 + 86def _unexpected_char(actual: str, expected: str | None = None) -> ValueError: + 87 if expected is None: + 88 return ValueError(f'Unexpected character: {actual!r}') + 89 actual_str = repr(actual) if actual else '<EOF>' + 90 return ValueError(f'Expected {expected!r}, got: {actual_str}') + 91 + 92 + 93SubLexer = Callable[[str, Iterator[str]], tuple[Token, str]] + 94 + 95 + 96def _simple(token: Token) -> SubLexer: + 97 def sublexer(la: str, it: Iterator[str]) -> tuple[Token, str]: + 98 la = next(it, '') + 99 return token, la +100 +101 return sublexer +102 +103 +104def _delimited(delimiter: str, type: TokenType) -> SubLexer: +105 assert len(delimiter) == 1 +106 +107 def sublexer(la: str, it: Iterator[str]) -> tuple[Token, str]: +108 assert la == delimiter +109 buf = [la] +110 la = next(it, '') +111 while True: +112 if not la: +113 raise _UNEXPECTED_EOF +114 +115 elif la == delimiter: +116 buf.append(la) +117 la = next(it, '') +118 return Token(''.join(buf), type), la +119 +120 elif la == '\\': +121 buf.append(la) +122 la = next(it, '') +123 if not la: +124 raise _UNEXPECTED_EOF +125 buf.append(la) +126 la = next(it, '') +127 +128 else: +129 buf.append(la) +130 la = next(it, '') +131 +132 return sublexer +133 +134 +135def _kseq(la: str, it: Iterator[str]) -> tuple[Token, str]: +136 assert la == '~' +137 la = next(it, '') +138 if la != '>': +139 raise _unexpected_char(la, '>') +140 la = next(it, '') +141 return _TOKENS[TokenType.KSEQ], la +142 +143 +144_ID_CHARS: Final = set.union(_LOWER, _UPPER, _DIGIT) +145 +146 +147def _id_or_token(la: str, it: Iterator[str]) -> tuple[Token, str]: +148 """Match an ID or token. +149 +150 Corresponds to regex: [#a-z](a-zA-Z0-9)* +151 """ +152 assert la == '#' or la in _LOWER +153 buf = [la] +154 la = next(it, '') +155 while la in _ID_CHARS: +156 buf += la +157 la = next(it, '') +158 text = ''.join(buf) +159 if text == '#token': +160 return _TOKENS[TokenType.TOKEN], la +161 return Token(text, TokenType.ID), la +162 +163 +164_VARIABLE_CHARS: Final = set.union(_LOWER, _UPPER, _DIGIT, set("'_")) +165 +166 +167def _variable(la: str, it: Iterator[str]) -> tuple[Token, str]: +168 r"""Match a variable. +169 +170 Corresponds to regex: _ | \?_ | \??_?[A-Z][a-zA-Z0-9'_]* +171 """ +172 assert la == '?' or la == '_' or la in _UPPER +173 +174 # States: +175 # 0: expect '_' or _UPPER +176 # 1: continue if _UPPER +177 # 2: read while _VARIABLE_CHARS +178 state = {'?': 0, '_': 1}.get(la, 2) +179 +180 buf = [la] +181 la = next(it, '') +182 +183 if state == 0: +184 if la == '_': +185 state = 1 +186 elif la in _UPPER: +187 state = 2 +188 else: +189 raise _unexpected_char(la) +190 +191 buf += la +192 la = next(it, '') +193 +194 if state == 1: +195 if la in _UPPER: +196 buf += la +197 la = next(it, '') +198 state = 2 +199 else: +200 la = next(it, '') +201 text = ''.join(buf) +202 return Token(text, TokenType.VARIABLE), la +203 +204 assert state == 2 +205 while la in _VARIABLE_CHARS: +206 buf += la +207 la = next(it, '') +208 text = ''.join(buf) +209 return Token(text, TokenType.VARIABLE), la +210 +211 +212# For ease of implementation, KDOT and KDOTLIST tokens are read until _SEP +213# This allows LA(1) +214# But e.g. .KA won't be lexed, even though it can be read as [KDOT, VARIABLE] +215_SEP: Final = set(',:()`"#.~ \t\r\n').union({''}) +216 +217 +218def _dotk_or_dotklist(la: str, it: Iterator[str]) -> tuple[Token, str]: +219 assert la == '.' +220 la = next(it, '') +221 if la != 'K': +222 raise _unexpected_char(la, 'K') +223 la = next(it, '') +224 if la in _SEP: +225 return _TOKENS[TokenType.DOTK], la +226 for c in 'List': +227 if la != c: +228 raise _unexpected_char(la, c) +229 la = next(it, '') +230 if la in _SEP: +231 return _TOKENS[TokenType.DOTKLIST], la +232 raise _unexpected_char(la) +233 +234 +235def _sort(la: str, it: Iterator[str]) -> tuple[Token, str]: +236 assert la in _UPPER +237 buf = [la] +238 la = next(it, '') +239 while la in _ALNUM: +240 buf.append(la) +241 la = next(it, '') +242 text = ''.join(buf) +243 return Token(text, TokenType.SORT), la +244 +245 +246_SUBLEXER: Final[dict[State, dict[str, SubLexer]]] = { +247 State.DEFAULT: { +248 '(': _simple(_TOKENS[TokenType.LPAREN]), +249 ')': _simple(_TOKENS[TokenType.RPAREN]), +250 ',': _simple(_TOKENS[TokenType.COMMA]), +251 ':': _simple(_TOKENS[TokenType.COLON]), +252 '"': _delimited('"', TokenType.STRING), +253 '`': _delimited('`', TokenType.KLABEL), +254 '~': _kseq, +255 '.': _dotk_or_dotklist, +256 **{c: _id_or_token for c in {'#'}.union(_LOWER)}, +257 **{c: _variable for c in {'?', '_'}.union(_UPPER)}, +258 }, +259 State.SORT: {c: _sort for c in _UPPER}, +260} +261 +262 +263_STATE: Final[dict[TokenType, State]] = { +264 TokenType.COLON: State.SORT, +265} +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/manip.html b/pyk/_modules/pyk/kast/manip.html new file mode 100644 index 00000000000..88b3a4bb80e --- /dev/null +++ b/pyk/_modules/pyk/kast/manip.html @@ -0,0 +1,1089 @@ + + + + + + pyk.kast.manip — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.manip

+  1from __future__ import annotations
+  2
+  3import logging
+  4from collections import Counter
+  5from typing import TYPE_CHECKING
+  6
+  7from ..prelude.k import DOTS, GENERATED_TOP_CELL
+  8from ..prelude.kbool import FALSE, TRUE, andBool, impliesBool, notBool, orBool
+  9from ..prelude.ml import is_top, mlAnd, mlBottom, mlEqualsTrue, mlImplies, mlOr, mlTop
+ 10from ..utils import find_common_items, hash_str, unique
+ 11from .att import EMPTY_ATT, Atts, KAtt, WithKAtt
+ 12from .inner import (
+ 13    KApply,
+ 14    KLabel,
+ 15    KRewrite,
+ 16    KSequence,
+ 17    KSort,
+ 18    KToken,
+ 19    KVariable,
+ 20    Subst,
+ 21    bottom_up,
+ 22    collect,
+ 23    flatten_label,
+ 24    top_down,
+ 25    var_occurrences,
+ 26)
+ 27from .outer import KClaim, KDefinition, KFlatModule, KRule, KRuleLike
+ 28from .rewrite import indexed_rewrite
+ 29
+ 30if TYPE_CHECKING:
+ 31    from collections.abc import Callable, Collection, Iterable
+ 32    from typing import Final, TypeVar
+ 33
+ 34    from .inner import KInner
+ 35
+ 36    KI = TypeVar('KI', bound=KInner)
+ 37    W = TypeVar('W', bound=WithKAtt)
+ 38    RL = TypeVar('RL', bound=KRuleLike)
+ 39
+ 40_LOGGER: Final = logging.getLogger(__name__)
+ 41
+ 42
+
+[docs] + 43def is_term_like(kast: KInner) -> bool: + 44 non_term_found = False + 45 + 46 def _is_term_like(_kast: KInner) -> None: + 47 nonlocal non_term_found + 48 match _kast: + 49 case KVariable(name, _): + 50 if name.startswith('@'): + 51 non_term_found = True + 52 case KApply(KLabel(name, _), _): + 53 if name in { + 54 '#Equals', + 55 '#And', + 56 '#Or', + 57 '#Top', + 58 '#Bottom', + 59 '#Implies', + 60 '#Not', + 61 '#Ceil', + 62 '#Forall', + 63 '#Exists', + 64 }: + 65 non_term_found = True + 66 + 67 collect(_is_term_like, kast) + 68 return not non_term_found
+ + 69 + 70 +
+[docs] + 71def sort_assoc_label(label: str, kast: KInner) -> KInner: + 72 res: KInner | None = None + 73 if type(kast) is KApply and kast.label.name == label: + 74 terms = sorted(flatten_label(label, kast)) + 75 for term in reversed(terms): + 76 if not res: + 77 res = term + 78 else: + 79 res = kast.label(term, res) + 80 assert res is not None + 81 return res + 82 return kast
+ + 83 + 84 +
+[docs] + 85def sort_ac_collections(kast: KInner) -> KInner: + 86 def _sort_ac_collections(_kast: KInner) -> KInner: + 87 if type(_kast) is KApply and (_kast.label.name in {'_Set_', '_Map_'} or _kast.label.name.endswith('CellMap_')): + 88 return sort_assoc_label(_kast.label.name, _kast) + 89 return _kast + 90 + 91 return top_down(_sort_ac_collections, kast)
+ + 92 + 93 +
+[docs] + 94def if_ktype(ktype: type[KI], then: Callable[[KI], KInner]) -> Callable[[KInner], KInner]: + 95 def fun(term: KInner) -> KInner: + 96 if isinstance(term, ktype): + 97 return then(term) + 98 return term + 99 +100 return fun
+ +101 +102 +
+[docs] +103def bool_to_ml_pred(kast: KInner) -> KInner: +104 def _bool_constraint_to_ml(_kast: KInner) -> KInner: +105 if _kast == TRUE: +106 return mlTop() +107 if _kast == FALSE: +108 return mlBottom() +109 return mlEqualsTrue(_kast) +110 +111 return mlAnd([_bool_constraint_to_ml(cond) for cond in flatten_label('_andBool_', kast)])
+ +112 +113 +
+[docs] +114def ml_pred_to_bool(kast: KInner, unsafe: bool = False) -> KInner: +115 def _ml_constraint_to_bool(_kast: KInner) -> KInner: +116 if type(_kast) is KApply: +117 if _kast.label.name == '#Top': +118 return TRUE +119 if _kast.label.name == '#Bottom': +120 return FALSE +121 if _kast.label.name == '#Not' and len(_kast.args) == 1: +122 return notBool(_ml_constraint_to_bool(_kast.args[0])) +123 if _kast.label.name == '#And': +124 return andBool(map(_ml_constraint_to_bool, _kast.args)) +125 if _kast.label.name == '#Or': +126 return orBool(map(_ml_constraint_to_bool, _kast.args)) +127 if _kast.label.name == '#Implies' and len(_kast.args) == 2: +128 return impliesBool(_ml_constraint_to_bool(_kast.args[0]), _ml_constraint_to_bool(_kast.args[1])) +129 if _kast.label.name == '#Equals': +130 first, second = _kast.args +131 if first == TRUE: +132 return second +133 if first == FALSE: +134 return notBool(second) +135 if second == TRUE: +136 return first +137 if second == FALSE: +138 return notBool(first) +139 if isinstance(first, (KVariable, KToken)): +140 if first.sort == KSort('Int'): +141 return KApply('_==Int_', _kast.args) +142 else: +143 return KApply('_==K_', _kast.args) +144 if isinstance(second, (KVariable, KToken)): +145 if second.sort == KSort('Int'): +146 return KApply('_==Int_', _kast.args) +147 else: +148 return KApply('_==K_', _kast.args) +149 if type(first) is KSequence and type(second) is KSequence: +150 if first.arity == 1 and second.arity == 1: +151 return KApply('_==K_', (first.items[0], second.items[0])) +152 if is_term_like(first) and is_term_like(second): +153 return KApply('_==K_', first, second) +154 if unsafe: +155 if _kast.label.name == '#Equals': +156 return KApply('_==K_', _kast.args) +157 if _kast.label.name == '#Ceil': +158 ceil_var = abstract_term_safely(_kast, base_name='Ceil') +159 _LOGGER.warning(f'Converting #Ceil condition to variable {ceil_var.name}: {_kast}') +160 return ceil_var +161 if _kast.label.name == '#Exists': +162 exists_var = abstract_term_safely(_kast, base_name='Exists') +163 _LOGGER.warning(f'Converting #Exists condition to variable {exists_var.name}: {_kast}') +164 return exists_var +165 raise ValueError(f'Could not convert ML predicate to sort Bool: {_kast}') +166 +167 return _ml_constraint_to_bool(kast)
+ +168 +169 +
+[docs] +170def simplify_bool(k: KInner) -> KInner: +171 if k is None: +172 return None +173 +174 # fmt: off +175 simplify_rules = [ (KApply('_==K_', [KVariable('#LHS'), TRUE]), KVariable('#LHS')) +176 , (KApply('_==K_', [TRUE, KVariable('#RHS')]), KVariable('#RHS')) +177 , (KApply('_==K_', [KVariable('#LHS'), FALSE]), notBool(KVariable('#LHS'))) +178 , (KApply('_==K_', [FALSE, KVariable('#RHS')]), notBool(KVariable('#RHS'))) +179 , (notBool(FALSE), TRUE) +180 , (notBool(TRUE), FALSE) +181 , (notBool(KApply('_==K_' , [KVariable('#V1'), KVariable('#V2')])), KApply('_=/=K_' , [KVariable('#V1'), KVariable('#V2')])) +182 , (notBool(KApply('_=/=K_' , [KVariable('#V1'), KVariable('#V2')])), KApply('_==K_' , [KVariable('#V1'), KVariable('#V2')])) +183 , (notBool(KApply('_==Int_' , [KVariable('#V1'), KVariable('#V2')])), KApply('_=/=Int_' , [KVariable('#V1'), KVariable('#V2')])) +184 , (notBool(KApply('_=/=Int_' , [KVariable('#V1'), KVariable('#V2')])), KApply('_==Int_' , [KVariable('#V1'), KVariable('#V2')])) +185 , (andBool([TRUE, KVariable('#REST')]), KVariable('#REST')) +186 , (andBool([KVariable('#REST'), TRUE]), KVariable('#REST')) +187 , (andBool([FALSE, KVariable('#REST')]), FALSE) +188 , (andBool([KVariable('#REST'), FALSE]), FALSE) +189 , (orBool([FALSE, KVariable('#REST')]), KVariable('#REST')) +190 , (orBool([KVariable('#REST'), FALSE]), KVariable('#REST')) +191 , (orBool([TRUE, KVariable('#REST')]), TRUE) +192 , (orBool([KVariable('#REST'), TRUE]), TRUE) +193 ] +194 # fmt: on +195 +196 new_k = k +197 for rule in simplify_rules: +198 rewrite = KRewrite(*rule) +199 new_k = rewrite(new_k) +200 return new_k
+ +201 +202 +
+[docs] +203def normalize_ml_pred(pred: KInner) -> KInner: +204 return bool_to_ml_pred(simplify_bool(ml_pred_to_bool(pred)))
+ +205 +206 +
+[docs] +207def extract_lhs(term: KInner) -> KInner: +208 return top_down(if_ktype(KRewrite, lambda rw: rw.lhs), term)
+ +209 +210 +
+[docs] +211def extract_rhs(term: KInner) -> KInner: +212 return top_down(if_ktype(KRewrite, lambda rw: rw.rhs), term)
+ +213 +214 +
+[docs] +215def extract_subst(term: KInner) -> tuple[Subst, KInner]: +216 def _subst_for_terms(term1: KInner, term2: KInner) -> Subst | None: +217 if type(term1) is KVariable and type(term2) not in {KToken, KVariable}: +218 return Subst({term1.name: term2}) +219 if type(term2) is KVariable and type(term1) not in {KToken, KVariable}: +220 return Subst({term2.name: term1}) +221 return None +222 +223 def _extract_subst(conjunct: KInner) -> Subst | None: +224 if type(conjunct) is KApply: +225 if conjunct.label.name == '#Equals': +226 subst = _subst_for_terms(conjunct.args[0], conjunct.args[1]) +227 +228 if subst is not None: +229 return subst +230 +231 if ( +232 conjunct.args[0] == TRUE +233 and type(conjunct.args[1]) is KApply +234 and conjunct.args[1].label.name in {'_==K_', '_==Int_'} +235 ): +236 subst = _subst_for_terms(conjunct.args[1].args[0], conjunct.args[1].args[1]) +237 +238 if subst is not None: +239 return subst +240 +241 return None +242 +243 conjuncts = flatten_label('#And', term) +244 subst = Subst() +245 rem_conjuncts: list[KInner] = [] +246 +247 for conjunct in conjuncts: +248 new_subst = _extract_subst(conjunct) +249 if new_subst is None: +250 rem_conjuncts.append(conjunct) +251 else: +252 new_subst = subst.union(new_subst) +253 if new_subst is None: +254 raise ValueError('Conflicting substitutions') # TODO handle this case +255 subst = new_subst +256 +257 return subst, mlAnd(rem_conjuncts)
+ +258 +259 +
+[docs] +260def count_vars(term: KInner) -> Counter[str]: +261 counter: Counter[str] = Counter() +262 occurrences = var_occurrences(term) +263 for vname in occurrences: +264 counter[vname] = len(occurrences[vname]) +265 return counter
+ +266 +267 +
+[docs] +268def free_vars(kast: KInner) -> frozenset[str]: +269 return frozenset(count_vars(kast).keys())
+ +270 +271 +
+[docs] +272def propagate_up_constraints(k: KInner) -> KInner: +273 def _propagate_up_constraints(_k: KInner) -> KInner: +274 if not (type(_k) is KApply and _k.label.name == '#Or'): +275 return _k +276 top_sort = _k.label.params[0] +277 conjuncts1 = flatten_label('#And', _k.args[0]) +278 conjuncts2 = flatten_label('#And', _k.args[1]) +279 (common1, l1, r1) = find_common_items(conjuncts1, conjuncts2) +280 (common2, r2, l2) = find_common_items(r1, l1) +281 common = common1 + common2 +282 if len(common) == 0: +283 return _k +284 conjunct1 = mlAnd(l2, sort=top_sort) +285 conjunct2 = mlAnd(r2, sort=top_sort) +286 disjunct = mlOr([conjunct1, conjunct2], sort=top_sort) +287 return mlAnd([disjunct] + common, sort=top_sort) +288 +289 return bottom_up(_propagate_up_constraints, k)
+ +290 +291 +
+[docs] +292def split_config_and_constraints(kast: KInner) -> tuple[KInner, KInner]: +293 conjuncts = flatten_label('#And', kast) +294 term = None +295 constraints = [] +296 for c in conjuncts: +297 if type(c) is KApply and c.is_cell: +298 if term: +299 raise ValueError(f'Found two configurations in pattern:\n\n{term}\n\nand\n\n{c}') +300 term = c +301 else: +302 constraints.append(c) +303 if not term: +304 raise ValueError(f'Could not find configuration for: {kast}') +305 return (term, mlAnd(constraints, GENERATED_TOP_CELL))
+ +306 +307 +
+[docs] +308def cell_label_to_var_name(label: str) -> str: +309 """Return a variable name based on a cell label.""" +310 return label.replace('-', '_').replace('<', '').replace('>', '').upper() + '_CELL'
+ +311 +312 +
+[docs] +313def split_config_from(configuration: KInner) -> tuple[KInner, dict[str, KInner]]: +314 """Split the substitution from a given configuration. +315 +316 Given an input configuration `config`, will return a tuple `(symbolic_config, subst)`, where: +317 +318 1. `config == substitute(symbolic_config, subst)` +319 2. `symbolic_config` is the same configuration structure, but where the contents of leaf cells is replaced with a fresh KVariable. +320 3. `subst` is the substitution for the generated KVariables back to the original configuration contents. +321 """ +322 initial_substitution = {} +323 +324 def _replace_with_var(k: KInner) -> KInner: +325 if type(k) is KApply and k.is_cell: +326 if k.arity == 1 and not (type(k.args[0]) is KApply and k.args[0].is_cell): +327 config_var = cell_label_to_var_name(k.label.name) +328 initial_substitution[config_var] = k.args[0] +329 return KApply(k.label, [KVariable(config_var)]) +330 return k +331 +332 symbolic_config = top_down(_replace_with_var, configuration) +333 return (symbolic_config, initial_substitution)
+ +334 +335 +
+[docs] +336def collapse_dots(kast: KInner) -> KInner: +337 """Given a configuration with structural frames `...`, minimize the structural frames needed. +338 +339 Args: +340 kast: A configuration, potentially with structural frames. +341 +342 Returns: +343 The same configuration, with the amount of structural framing minimized. +344 """ +345 +346 def _collapse_dots(_kast: KInner) -> KInner: +347 if type(_kast) is KApply: +348 if _kast.is_cell and _kast.arity == 1 and _kast.args[0] == DOTS: +349 return DOTS +350 new_args = [arg for arg in _kast.args if arg != DOTS] +351 if _kast.is_cell and len(new_args) == 0: +352 return DOTS +353 if len(new_args) < len(_kast.args): +354 new_args.append(DOTS) +355 return _kast.let(args=new_args) +356 elif type(_kast) is KRewrite: +357 if _kast.lhs == DOTS: +358 return DOTS +359 return _kast +360 +361 return bottom_up(_collapse_dots, kast)
+ +362 +363 +
+[docs] +364def push_down_rewrites(kast: KInner) -> KInner: +365 def _push_down_rewrites(_kast: KInner) -> KInner: +366 if type(_kast) is KRewrite: +367 lhs = _kast.lhs +368 rhs = _kast.rhs +369 if lhs == rhs: +370 return lhs +371 if type(lhs) is KVariable and type(rhs) is KVariable and lhs.name == rhs.name: +372 return lhs +373 if type(lhs) is KApply and type(rhs) is KApply and lhs.label == rhs.label and lhs.arity == rhs.arity: +374 new_args = [ +375 KRewrite(left_arg, right_arg) for left_arg, right_arg in zip(lhs.args, rhs.args, strict=True) +376 ] +377 return lhs.let(args=new_args) +378 if type(lhs) is KSequence and type(rhs) is KSequence and lhs.arity > 0 and rhs.arity > 0: +379 if lhs.arity == 1 and rhs.arity == 1: +380 return KRewrite(lhs.items[0], rhs.items[0]) +381 if lhs.items[0] == rhs.items[0]: +382 lower_rewrite = _push_down_rewrites(KRewrite(KSequence(lhs.items[1:]), KSequence(rhs.items[1:]))) +383 return KSequence([lhs.items[0], lower_rewrite]) +384 if lhs.items[-1] == rhs.items[-1]: +385 lower_rewrite = _push_down_rewrites( +386 KRewrite(KSequence(lhs.items[0:-1]), KSequence(rhs.items[0:-1])) +387 ) +388 return KSequence([lower_rewrite, lhs.items[-1]]) +389 if ( +390 type(lhs) is KSequence +391 and lhs.arity > 0 +392 and type(lhs.items[-1]) is KVariable +393 and type(rhs) is KVariable +394 and lhs.items[-1] == rhs +395 ): +396 return KSequence([KRewrite(KSequence(lhs.items[0:-1]), KSequence([])), rhs]) +397 return _kast +398 +399 return top_down(_push_down_rewrites, kast)
+ +400 +401 +
+[docs] +402def inline_cell_maps(kast: KInner) -> KInner: +403 """Ensure that cell map collections are printed nicely, not as Maps. +404 +405 Args: +406 kast: A KAST term. +407 +408 Returns: +409 The KAST term with cell maps inlined. +410 """ +411 +412 def _inline_cell_maps(_kast: KInner) -> KInner: +413 if type(_kast) is KApply and _kast.label.name.endswith('CellMapItem'): +414 map_key = _kast.args[0] +415 if type(map_key) is KApply and map_key.is_cell: +416 return _kast.args[1] +417 return _kast +418 +419 return bottom_up(_inline_cell_maps, kast)
+ +420 +421 +
+[docs] +422def remove_semantic_casts(kast: KInner) -> KInner: +423 """Remove injected `#SemanticCast*` nodes in AST. +424 +425 Args: +426 kast: A term (possibly) containing automatically injected `#SemanticCast*` KApply nodes. +427 +428 Returns: +429 The term without the `#SemanticCast*` nodes. +430 """ +431 +432 def _remove_semtnaic_casts(_kast: KInner) -> KInner: +433 if type(_kast) is KApply and _kast.arity == 1 and _kast.label.name.startswith('#SemanticCast'): +434 return _kast.args[0] +435 return _kast +436 +437 return bottom_up(_remove_semtnaic_casts, kast)
+ +438 +439 +
+[docs] +440def useless_vars_to_dots(kast: KInner, keep_vars: Iterable[str] = ()) -> KInner: +441 """Structurally abstract away useless variables. +442 +443 Args: +444 kast: A term. +445 keep_vars: Iterable of variables to keep. +446 +447 Returns: +448 The term with the useless varables structurally abstracted. +449 """ +450 num_occs = count_vars(kast) + Counter(keep_vars) +451 +452 def _collapse_useless_vars(_kast: KInner) -> KInner: +453 if type(_kast) is KApply and _kast.is_cell: +454 new_args: list[KInner] = [] +455 for arg in _kast.args: +456 if type(arg) is KVariable and num_occs[arg.name] == 1: +457 new_args.append(DOTS) +458 else: +459 new_args.append(arg) +460 return _kast.let(args=new_args) +461 return _kast +462 +463 return bottom_up(_collapse_useless_vars, kast)
+ +464 +465 +
+[docs] +466def labels_to_dots(kast: KInner, labels: Collection[str]) -> KInner: +467 """Abstract specific labels for printing. +468 +469 Args: +470 kast: A term. +471 labels: List of labels to abstract. +472 +473 Returns +474 The term with `labels` abstracted. +475 """ +476 +477 def _labels_to_dots(k: KInner) -> KInner: +478 if type(k) is KApply and k.is_cell and k.label.name in labels: +479 return DOTS +480 return k +481 +482 return bottom_up(_labels_to_dots, kast)
+ +483 +484 +
+[docs] +485def extract_cells(kast: KInner, keep_cells: Collection[str]) -> KInner: +486 def _extract_cells(k: KInner) -> KInner: +487 if ( +488 type(k) is KApply +489 and k.is_cell +490 and not k.label.name in keep_cells +491 and all(type(arg) != KApply or not arg.is_cell or arg == DOTS for arg in k.args) +492 ): +493 return DOTS +494 return k +495 +496 return bottom_up(_extract_cells, kast)
+ +497 +498 +
+[docs] +499def on_attributes(kast: W, f: Callable[[KAtt], KAtt]) -> W: +500 kast = kast.map_att(f) +501 +502 # TODO mypy bug: https://github.com/python/mypy/issues/10817 +503 +504 if type(kast) is KFlatModule: +505 sentences = (sentence.map_att(f) for sentence in kast.sentences) +506 return kast.let(sentences=sentences) # type: ignore +507 +508 if type(kast) is KDefinition: +509 modules = (module.map_att(f) for module in kast.modules) +510 return kast.let(modules=modules) # type: ignore +511 +512 return kast
+ +513 +514 +
+[docs] +515def minimize_term( +516 term: KInner, keep_vars: Iterable[str] = (), abstract_labels: Collection[str] = (), keep_cells: Collection[str] = () +517) -> KInner: +518 """Minimize a K term for pretty-printing. +519 +520 - Variables only used once will be removed. +521 - Unused cells will be abstracted. +522 - Useless conditions will be attempted to be removed. +523 +524 Args: +525 kast: A term. +526 +527 Returns: +528 The term, minimized. +529 """ +530 term = inline_cell_maps(term) +531 term = remove_semantic_casts(term) +532 term = useless_vars_to_dots(term, keep_vars=keep_vars) +533 +534 if keep_cells: +535 term = extract_cells(term, keep_cells) +536 else: +537 term = labels_to_dots(term, abstract_labels) +538 +539 term = collapse_dots(term) +540 +541 return term
+ +542 +543 +
+[docs] +544def minimize_rule(rule: RL, keep_vars: Iterable[str] = ()) -> RL: +545 """Minimize a K rule or claim for pretty-printing. +546 +547 - Variables only used once will be removed. +548 - Unused cells will be abstracted. +549 - Useless side-conditions will be attempted to be removed. +550 +551 Args: +552 rule: A K rule or claim. +553 +554 Returns: +555 The rule or claim, minimized. +556 """ +557 body = rule.body +558 requires = rule.requires +559 ensures = rule.ensures +560 +561 requires = andBool(flatten_label('_andBool_', requires)) +562 requires = simplify_bool(requires) +563 +564 ensures = andBool(flatten_label('_andBool_', ensures)) +565 ensures = simplify_bool(ensures) +566 +567 constrained_vars = set(keep_vars) | free_vars(requires) | free_vars(ensures) +568 body = minimize_term(body, keep_vars=constrained_vars) +569 +570 return rule.let(body=body, requires=requires, ensures=ensures)
+ +571 +572 +
+[docs] +573def remove_source_map(definition: KDefinition) -> KDefinition: +574 return on_attributes(definition, lambda att: att.drop_source())
+ +575 +576 +
+[docs] +577def remove_attrs(term: KInner) -> KInner: +578 def remove_attr(term: KInner) -> KInner: +579 if isinstance(term, WithKAtt): +580 return term.let_att(EMPTY_ATT) +581 return term +582 +583 return top_down(remove_attr, term)
+ +584 +585 +
+[docs] +586def remove_generated_cells(term: KInner) -> KInner: +587 """Remove <generatedTop> and <generatedCounter> from a configuration. +588 +589 Args: +590 term: A term. +591 +592 Returns: +593 The term with those cells removed. +594 """ +595 rewrite = KRewrite(KApply('<generatedTop>', [KVariable('CONFIG'), KVariable('_')]), KVariable('CONFIG')) +596 return rewrite(term)
+ +597 +598 +
+[docs] +599def is_anon_var(kast: KInner) -> bool: +600 return type(kast) is KVariable and kast.name.startswith('_')
+ +601 +602 +
+[docs] +603def set_cell(constrained_term: KInner, cell_variable: str, cell_value: KInner) -> KInner: +604 state, constraint = split_config_and_constraints(constrained_term) +605 config, subst = split_config_from(state) +606 subst[cell_variable] = cell_value +607 return mlAnd([Subst(subst)(config), constraint])
+ +608 +609 +
+[docs] +610def abstract_term_safely( +611 kast: KInner, base_name: str = 'V', sort: KSort | None = None, existing_var_names: set[str] | None = None +612) -> KVariable: +613 def _abstract(k: KInner) -> KVariable: +614 vname = hash_str(k)[0:8] +615 return KVariable(base_name + '_' + vname, sort=sort) +616 +617 new_var = _abstract(kast) +618 if existing_var_names is not None: +619 while new_var.name in existing_var_names: +620 new_var = _abstract(new_var) +621 return new_var
+ +622 +623 +
+[docs] +624def apply_existential_substitutions(state: KInner, constraints: Iterable[KInner]) -> tuple[KInner, Iterable[KInner]]: +625 pattern = mlEqualsTrue(KApply('_==K_', [KVariable('#VAR'), KVariable('#VAL')])) +626 subst = {} +627 new_constraints = [] +628 for c in constraints: +629 match = pattern.match(c) +630 if match is not None and type(match['#VAR']) is KVariable and match['#VAR'].name.startswith('?'): +631 subst[match['#VAR'].name] = match['#VAL'] +632 else: +633 new_constraints.append(c) +634 return (Subst(subst)(state), [Subst(subst)(c) for c in new_constraints])
+ +635 +636 +
+[docs] +637def undo_aliases(definition: KDefinition, kast: KInner) -> KInner: +638 aliases = [] +639 for rule in definition.alias_rules: +640 rewrite = rule.body +641 if type(rewrite) is not KRewrite: +642 raise ValueError(f'Expected KRewrite as alias body, found: {rewrite}') +643 if rule.requires is not None and rule.requires != TRUE: +644 raise ValueError(f'Expended empty requires clause on alias, found: {rule.requires}') +645 if rule.ensures is not None and rule.ensures != TRUE: +646 raise ValueError(f'Expended empty ensures clause on alias, found: {rule.ensures}') +647 aliases.append(KRewrite(rewrite.rhs, rewrite.lhs)) +648 return indexed_rewrite(kast, aliases)
+ +649 +650 +
+[docs] +651def rename_generated_vars(term: KInner) -> KInner: +652 vars: set[str] = set(free_vars(term)) +653 cell_stack: list[str] = [] +654 +655 def _rename_vars(k: KInner) -> KInner: +656 if type(k) is KApply and k.is_cell: +657 cell_stack.append(cell_label_to_var_name(k.label.name)) +658 res = k.map_inner(_rename_vars) +659 cell_stack.pop() +660 return res +661 +662 if type(k) is KVariable and k.name.startswith(('_Gen', '?_Gen', '_DotVar', '?_DotVar')): +663 if not cell_stack: +664 return k +665 cell_name = cell_stack[-1] +666 new_var = abstract_term_safely(k, base_name=cell_name, sort=k.sort, existing_var_names=vars) +667 vars.add(new_var.name) +668 return new_var +669 +670 return k.map_inner(_rename_vars) +671 +672 return _rename_vars(term)
+ +673 +674 +
+[docs] +675def is_spurious_constraint(term: KInner) -> bool: +676 if type(term) is KApply and term.label.name == '#Equals' and term.args[0] == term.args[1]: +677 return True +678 if is_top(term, weak=True): +679 return True +680 return False
+ +681 +682 +
+[docs] +683def normalize_constraints(constraints: Iterable[KInner]) -> tuple[KInner, ...]: +684 constraints = (constraint for _constraint in constraints for constraint in flatten_label('#And', _constraint)) +685 constraints = unique(constraints) +686 constraints = (constraint for constraint in constraints if not is_spurious_constraint(constraint)) +687 return tuple(constraints)
+ +688 +689 +
+[docs] +690def remove_useless_constraints(constraints: Iterable[KInner], initial_vars: Iterable[str]) -> list[KInner]: +691 """Remove constraints that do not depend on a given iterable of variables (directly or indirectly). +692 +693 Args: +694 constraints: Iterable of constraints to filter. +695 initial_vars: Initial iterable of variables to keep constraints for. +696 +697 Returns: +698 A list of constraints with only those constraints that contain the initial variables, +699 or variables that depend on those through other constraints in the list. +700 """ +701 used_vars = list(initial_vars) +702 prev_len_used_vars = 0 +703 new_constraints = [] +704 while len(used_vars) > prev_len_used_vars: +705 prev_len_used_vars = len(used_vars) +706 for c in constraints: +707 if c not in new_constraints: +708 new_vars = free_vars(c) +709 if any(v in used_vars for v in new_vars): +710 new_constraints.append(c) +711 used_vars.extend(new_vars) +712 used_vars = list(set(used_vars)) +713 return new_constraints
+ +714 +715 +
+[docs] +716def build_claim( +717 claim_id: str, +718 init_config: KInner, +719 final_config: KInner, +720 init_constraints: Iterable[KInner] = (), +721 final_constraints: Iterable[KInner] = (), +722 keep_vars: Iterable[str] = (), +723) -> tuple[KClaim, Subst]: +724 """Return a `KClaim` between the supplied initial and final states. +725 +726 Args: +727 claim_id: Label to give the claim. +728 init_config: State to put on LHS of the rule. +729 final_config: State to put on RHS of the rule. +730 init_constraints: Constraints to use as `requires` clause. +731 final_constraints: Constraints to use as `ensures` clause. +732 keep_vars: Variables to leave in the side-conditions even if not bound in the configuration. +733 +734 Returns: +735 A tuple ``(claim, var_map)`` where +736 +737 - ``claim``: A `KClaim` with variable naming conventions applied +738 so that it should be parseable by the K Frontend. +739 - ``var_map``: The variable renamings applied to make the claim parseable by the K Frontend +740 (which can be undone to recover the original variables). +741 """ +742 rule, var_map = build_rule( +743 claim_id, init_config, final_config, init_constraints, final_constraints, keep_vars=keep_vars +744 ) +745 claim = KClaim(rule.body, requires=rule.requires, ensures=rule.ensures, att=rule.att) +746 return claim, var_map
+ +747 +748 +
+[docs] +749def build_rule( +750 rule_id: str, +751 init_config: KInner, +752 final_config: KInner, +753 init_constraints: Iterable[KInner] = (), +754 final_constraints: Iterable[KInner] = (), +755 priority: int | None = None, +756 keep_vars: Iterable[str] = (), +757) -> tuple[KRule, Subst]: +758 """Return a `KRule` between the supplied initial and final states. +759 +760 Args: +761 rule_id: Label to give the rule. +762 init_config: State to put on LHS of the rule. +763 final_config: State to put on RHS of the rule. +764 init_constraints: Constraints to use as `requires` clause. +765 final_constraints: Constraints to use as `ensures` clause. +766 keep_vars: Variables to leave in the side-conditions even if not bound in the configuration. +767 +768 Returns: +769 A tuple ``(rule, var_map)`` where +770 +771 - ``rule``: A `KRule` with variable naming conventions applied +772 so that it should be parseable by the K Frontend. +773 - ``var_map``: The variable renamings applied to make the rule parseable by the K Frontend +774 (which can be undone to recover the original variables). +775 """ +776 init_constraints = [normalize_ml_pred(c) for c in init_constraints] +777 final_constraints = [normalize_ml_pred(c) for c in final_constraints] +778 final_constraints = [c for c in final_constraints if c not in init_constraints] +779 init_term = mlAnd([init_config] + init_constraints) +780 final_term = mlAnd([final_config] + final_constraints) +781 +782 lhs_vars = free_vars(init_term) +783 rhs_vars = free_vars(final_term) +784 var_occurrences = count_vars( +785 mlAnd( +786 [push_down_rewrites(KRewrite(init_config, final_config))] + init_constraints + final_constraints, +787 GENERATED_TOP_CELL, +788 ) +789 ) +790 v_subst: dict[str, KVariable] = {} +791 vremap_subst: dict[str, KVariable] = {} +792 for v in var_occurrences: +793 new_v = v +794 if var_occurrences[v] == 1: +795 new_v = '_' + new_v +796 if v in rhs_vars and v not in lhs_vars: +797 new_v = '?' + new_v +798 if new_v != v: +799 v_subst[v] = KVariable(new_v) +800 vremap_subst[new_v] = KVariable(v) +801 +802 new_init_config = Subst(v_subst)(init_config) +803 new_init_constraints = [Subst(v_subst)(c) for c in init_constraints] +804 new_final_config, new_final_constraints = apply_existential_substitutions( +805 Subst(v_subst)(final_config), [Subst(v_subst)(c) for c in final_constraints] +806 ) +807 +808 rule_body = push_down_rewrites(KRewrite(new_init_config, new_final_config)) +809 rule_requires = simplify_bool(ml_pred_to_bool(mlAnd(new_init_constraints))) +810 rule_ensures = simplify_bool(ml_pred_to_bool(mlAnd(new_final_constraints))) +811 att_entries = [] if priority is None else [Atts.PRIORITY(str(priority))] +812 rule_att = KAtt(entries=att_entries) +813 +814 rule = KRule(rule_body, requires=rule_requires, ensures=rule_ensures, att=rule_att) +815 rule = rule.update_atts([Atts.LABEL(rule_id)]) +816 +817 return (rule, Subst(vremap_subst))
+ +818 +819 +
+[docs] +820def replace_rewrites_with_implies(kast: KInner) -> KInner: +821 def _replace_rewrites_with_implies(_kast: KInner) -> KInner: +822 if type(_kast) is KRewrite: +823 return mlImplies(_kast.lhs, _kast.rhs) +824 return _kast +825 +826 return bottom_up(_replace_rewrites_with_implies, kast)
+ +827 +828 +
+[docs] +829def no_cell_rewrite_to_dots(term: KInner) -> KInner: +830 """Transform a given term by replacing the contents of each cell with dots if the LHS and RHS are the same. +831 +832 This function recursively traverses the cells in a term. +833 When it finds a cell whose left-hand side (LHS) is identical to its right-hand side (RHS), +834 it replaces the cell's contents with a predefined DOTS. +835 +836 Args: +837 term: The term to be transformed. +838 +839 Returns: +840 The transformed term, where specific cell contents have been replaced with dots. +841 """ +842 +843 def _no_cell_rewrite_to_dots(_term: KInner) -> KInner: +844 if type(_term) is KApply and _term.is_cell: +845 lhs = extract_lhs(_term) +846 rhs = extract_rhs(_term) +847 if lhs == rhs: +848 return KApply(_term.label, [DOTS]) +849 return _term +850 +851 config, _subst = split_config_from(term) +852 subst = Subst({cell_name: _no_cell_rewrite_to_dots(cell_contents) for cell_name, cell_contents in _subst.items()}) +853 +854 return subst(config)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/markdown.html b/pyk/_modules/pyk/kast/markdown.html new file mode 100644 index 00000000000..1f6d1277155 --- /dev/null +++ b/pyk/_modules/pyk/kast/markdown.html @@ -0,0 +1,360 @@ + + + + + + pyk.kast.markdown — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.markdown

+  1from __future__ import annotations
+  2
+  3import re
+  4from abc import ABC, abstractmethod
+  5from dataclasses import dataclass
+  6from typing import TYPE_CHECKING, NamedTuple, final
+  7
+  8if TYPE_CHECKING:
+  9    from collections.abc import Container, Iterable, Iterator
+ 10    from typing import Final
+ 11
+ 12
+
+[docs] + 13def select_code_blocks(text: str, selector: str | None = None) -> str: + 14 _selector = SelectorParser(selector).parse() if selector else None + 15 + 16 def selected(code_block: CodeBlock) -> bool: + 17 if _selector is None: + 18 return True + 19 + 20 tags = parse_tags(code_block.info) + 21 return _selector.eval(tags) + 22 + 23 # TODO: Preserve line numbers from input text + 24 return '\n'.join(code_block.code for code_block in code_blocks(text) if selected(code_block))
+ + 25 + 26 +
+[docs] + 27class CodeBlock(NamedTuple): + 28 info: str + 29 code: str
+ + 30 + 31 + 32_CODE_BLOCK_PATTERN: Final = re.compile( + 33 r'(^|(?<=\n)) {0,3}(?P<fence>```+)(?!`)(?P<info>.*)\n(?P<code>(.*\n)*?) {0,3}(?P=fence)`*' + 34) + 35 + 36 +
+[docs] + 37def code_blocks(text: str) -> Iterator[CodeBlock]: + 38 return (CodeBlock(match['info'], match['code'].rstrip()) for match in _CODE_BLOCK_PATTERN.finditer(text))
+ + 39 + 40 +
+[docs] + 41def parse_tags(text: str) -> set[str]: + 42 def check_tag(tag: str) -> None: + 43 if not (tag and all(c.isalnum() or c == '_' for c in tag)): + 44 raise ValueError(f'Invalid tag: {tag!r}') + 45 + 46 if not text: + 47 return set() + 48 + 49 if text[0] != '{': + 50 check_tag(text) + 51 return {text} + 52 + 53 if text[-1] != '}': + 54 raise ValueError("Expected '}', found: {text[-1]!r}") + 55 + 56 res: set[str] = set() + 57 tags = text[1:-1].split() + 58 for tag in tags: + 59 if tag[0] != '.': + 60 raise ValueError("Expected '.', found: {tag[0]!r}") + 61 check_tag(tag[1:]) + 62 res.add(tag[1:]) + 63 + 64 return res
+ + 65 + 66 + 67# ---------------------- + 68# Selector mini-language + 69# ---------------------- + 70 + 71 +
+[docs] + 72class Selector(ABC): +
+[docs] + 73 @abstractmethod + 74 def eval(self, atoms: Container[str]) -> bool: ...
+
+ + 75 + 76 +
+[docs] + 77@final + 78@dataclass(frozen=True) + 79class Atom(Selector): + 80 name: str + 81 +
+[docs] + 82 def eval(self, atoms: Container[str]) -> bool: + 83 return self.name in atoms
+
+ + 84 + 85 +
+[docs] + 86@final + 87@dataclass(frozen=True) + 88class Not(Selector): + 89 op: Selector + 90 +
+[docs] + 91 def eval(self, atoms: Container[str]) -> bool: + 92 return not self.op.eval(atoms)
+
+ + 93 + 94 +
+[docs] + 95@final + 96@dataclass(frozen=True) + 97class And(Selector): + 98 ops: tuple[Selector, ...] + 99 +
+[docs] +100 def eval(self, atoms: Container[str]) -> bool: +101 return all(op.eval(atoms) for op in self.ops)
+
+ +102 +103 +
+[docs] +104@final +105@dataclass(frozen=True) +106class Or(Selector): +107 ops: tuple[Selector, ...] +108 +
+[docs] +109 def eval(self, atoms: Container[str]) -> bool: +110 return any(op.eval(atoms) for op in self.ops)
+
+ +111 +112 +113_SPECIAL = tuple('!&|()') +114 +115 +
+[docs] +116def selector_lexer(it: Iterable[str]) -> Iterator[str]: +117 it = iter(it) +118 la = next(it, '') +119 while True: +120 while la.isspace(): +121 la = next(it, '') +122 +123 if not la: +124 yield '' +125 return +126 +127 if la in _SPECIAL: +128 yield la +129 la = next(it, '') +130 continue +131 +132 buf: list[str] = [] +133 while la.isalnum() or la == '_': +134 buf.append(la) +135 la = next(it, '') +136 +137 if not buf: +138 raise ValueError(f'Unexpected character: {la!r}') +139 +140 yield ''.join(buf)
+ +141 +142 +
+[docs] +143class SelectorParser: +144 _la: str +145 _it: Iterator[str] +146 +147 def __init__(self, selector: str): +148 self._it = selector_lexer(selector) +149 self._consume() +150 +151 def _consume(self) -> None: +152 self._la = next(self._it, '') +153 +154 def _match(self, token: str) -> None: +155 if self._la != token: +156 raise ValueError('Unexpected token: {token}') +157 self._consume() +158 +
+[docs] +159 def parse(self) -> Selector: +160 res = self._or() +161 if self._la: +162 raise ValueError(f'Expected EOF, found: {self._la}') +163 return res
+ +164 +165 def _or(self) -> Selector: +166 ops = [self._and()] +167 while self._la == '|': +168 self._consume() +169 ops.append(self._and()) +170 if len(ops) > 1: +171 return Or(tuple(ops)) +172 return ops[0] +173 +174 def _and(self) -> Selector: +175 ops = [self._lit()] +176 while self._la == '&': +177 self._consume() +178 ops.append(self._lit()) +179 if len(ops) > 1: +180 return And(tuple(ops)) +181 return ops[0] +182 +183 def _lit(self) -> Selector: +184 if not self._la: +185 raise ValueError('Unexpected EOF') +186 +187 if self._la == '(': +188 self._consume() +189 expr = self._or() +190 self._match(')') +191 return expr +192 +193 if self._la == '!': +194 self._consume() +195 lit = self._lit() +196 return Not(lit) +197 +198 if len(self._la) > 1 or self._la.isalnum() or self._la == '-': +199 atom = self._la +200 self._consume() +201 return Atom(atom) +202 +203 raise ValueError(f'Unexpected token: {self._la}')
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/outer.html b/pyk/_modules/pyk/kast/outer.html new file mode 100644 index 00000000000..ee53edd78cf --- /dev/null +++ b/pyk/_modules/pyk/kast/outer.html @@ -0,0 +1,2025 @@ + + + + + + pyk.kast.outer — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.outer

+   1from __future__ import annotations
+   2
+   3import json
+   4import logging
+   5import re
+   6from abc import abstractmethod
+   7from collections import defaultdict
+   8from collections.abc import Iterable
+   9from dataclasses import InitVar  # noqa: TC003
+  10from dataclasses import dataclass
+  11from enum import Enum
+  12from functools import cached_property, reduce
+  13from itertools import pairwise, product
+  14from typing import TYPE_CHECKING, final, overload
+  15
+  16from ..prelude.kbool import TRUE
+  17from ..prelude.ml import ML_QUANTIFIERS
+  18from ..utils import FrozenDict, POSet, filter_none, single, unique
+  19from .att import EMPTY_ATT, Atts, Format, KAst, KAtt, WithKAtt
+  20from .inner import (
+  21    KApply,
+  22    KInner,
+  23    KLabel,
+  24    KRewrite,
+  25    KSequence,
+  26    KSort,
+  27    KToken,
+  28    KVariable,
+  29    Subst,
+  30    bottom_up,
+  31    bottom_up_with_summary,
+  32    top_down,
+  33)
+  34from .kast import kast_term
+  35from .rewrite import indexed_rewrite
+  36
+  37if TYPE_CHECKING:
+  38    from collections.abc import Callable, Iterator, Mapping
+  39    from os import PathLike
+  40    from typing import Any, Final, TypeVar
+  41
+  42    S = TypeVar('S', bound='KSentence')
+  43    RL = TypeVar('RL', bound='KRuleLike')
+  44
+  45_LOGGER: Final = logging.getLogger(__name__)
+  46
+  47
+
+[docs] + 48class KOuter(KAst): + 49 """Represents K definitions in KAST format. + 50 + 51 Outer syntax is K specific datastructures, including modules, definitions, imports, user-syntax declarations, rules, contexts, and claims. + 52 """ + 53 + 54 ...
+ + 55 + 56 +
+[docs] + 57class KProductionItem(KOuter): + 58 """Represents the elements used to declare components of productions in EBNF style.""" + 59 + 60 _NODES: Final = {'KTerminal', 'KRegexTerminal', 'KNonTerminal'} + 61 +
+[docs] + 62 @staticmethod + 63 def from_dict(d: Mapping[str, Any]) -> KProductionItem: + 64 node = d['node'] + 65 if node not in KProductionItem._NODES: + 66 raise ValueError(f'Invalid KProductionItem node: {node!r}') + 67 cls = globals()[node] + 68 return cls._from_dict(d)
+
+ + 69 + 70 +
+[docs] + 71@final + 72@dataclass(frozen=True) + 73class KRegexTerminal(KProductionItem): + 74 """Represents a regular-expression terminal in EBNF production, to be matched against input text.""" + 75 + 76 regex: str + 77 + 78 def __init__(self, regex: str): + 79 object.__setattr__(self, 'regex', regex) + 80 + 81 @classmethod + 82 def _from_dict(cls: type[KRegexTerminal], d: Mapping[str, Any]) -> KRegexTerminal: + 83 return KRegexTerminal(regex=d['regex']) + 84 +
+[docs] + 85 def to_dict(self) -> dict[str, Any]: + 86 return { + 87 'node': 'KRegexTerminal', + 88 'regex': self.regex, + 89 }
+ + 90 +
+[docs] + 91 def let(self, *, regex: str | None = None) -> KRegexTerminal: + 92 regex = regex if regex is not None else self.regex + 93 return KRegexTerminal(regex=regex)
+
+ + 94 + 95 +
+[docs] + 96@final + 97@dataclass(frozen=True) + 98class KNonTerminal(KProductionItem): + 99 """Represents a non-terminal of a given sort in EBNF productions, for defining arguments to to production.""" + 100 + 101 sort: KSort + 102 name: str | None + 103 + 104 def __init__(self, sort: KSort, name: str | None = None): + 105 object.__setattr__(self, 'sort', sort) + 106 object.__setattr__(self, 'name', name) + 107 + 108 @classmethod + 109 def _from_dict(cls: type[KNonTerminal], d: Mapping[str, Any]) -> KNonTerminal: + 110 name = d['name'] if 'name' in d else None + 111 return KNonTerminal(sort=KSort.from_dict(d['sort']), name=name) + 112 +
+[docs] + 113 def to_dict(self) -> dict[str, Any]: + 114 d = {'node': 'KNonTerminal', 'sort': self.sort.to_dict()} + 115 if self.name is not None: + 116 d['name'] = self.name + 117 return d
+ + 118 +
+[docs] + 119 def let(self, *, sort: KSort | None = None, name: str | None = None) -> KNonTerminal: + 120 sort = sort or self.sort + 121 name = name or self.name + 122 return KNonTerminal(sort=sort, name=name)
+
+ + 123 + 124 +
+[docs] + 125@final + 126@dataclass(frozen=True) + 127class KTerminal(KProductionItem): + 128 """Represents a string literal component of a production in EBNF grammar.""" + 129 + 130 value: str + 131 + 132 def __init__(self, value: str): + 133 object.__setattr__(self, 'value', value) + 134 + 135 @classmethod + 136 def _from_dict(cls: type[KTerminal], d: Mapping[str, Any]) -> KTerminal: + 137 return KTerminal(value=d['value']) + 138 +
+[docs] + 139 def to_dict(self) -> dict[str, Any]: + 140 return {'node': 'KTerminal', 'value': self.value}
+ + 141 +
+[docs] + 142 def let(self, *, value: str | None = None) -> KTerminal: + 143 value = value if value is not None else self.value + 144 return KTerminal(value=value)
+
+ + 145 + 146 +
+[docs] + 147class KSentence(KOuter, WithKAtt): + 148 """Represents an individual declaration in a K module.""" + 149 + 150 _NODES: Final = { + 151 'KProduction', + 152 'KSyntaxSort', + 153 'KSortSynonym', + 154 'KSyntaxLexical', + 155 'KSyntaxAssociativity', + 156 'KSyntaxPriority', + 157 'KBubble', + 158 'KRule', + 159 'KClaim', + 160 'KContext', + 161 } + 162 +
+[docs] + 163 @staticmethod + 164 def from_dict(d: Mapping[str, Any]) -> KSentence: + 165 node = d['node'] + 166 if node not in KSentence._NODES: + 167 raise ValueError(f'Invalid KSentence node: {node!r}') + 168 cls = globals()[node] + 169 return cls._from_dict(d)
+ + 170 + 171 @property + 172 def unique_id(self) -> str | None: + 173 """Return the unique ID assigned to this sentence, or None.""" + 174 return self.att.get(Atts.UNIQUE_ID) + 175 + 176 @property + 177 def source(self) -> str | None: + 178 """Return the source assigned to this sentence, or None.""" + 179 if Atts.SOURCE in self.att and Atts.LOCATION in self.att: + 180 return f'{self.att[Atts.SOURCE]}:{self.att[Atts.LOCATION]}' + 181 return None + 182 + 183 @property + 184 def label(self) -> str: + 185 """Return a (hopefully) unique label associated with the given `KSentence`. + 186 + 187 :return: Unique label for the given sentence, either (in order): + 188 - User supplied `label` attribute (or supplied in rule label),or + 189 - Unique identifier computed and inserted by the frontend. + 190 """ + 191 label = self.att.get(Atts.LABEL, self.unique_id) + 192 if label is None: + 193 raise ValueError(f'Found sentence without label or UNIQUE_ID: {self}') + 194 return label
+ + 195 + 196 +
+[docs] + 197@final + 198@dataclass(frozen=True) + 199class KProduction(KSentence): + 200 """Represents a production in K's EBNF grammar definitions, as a sequence of ProductionItem.""" + 201 + 202 # TODO Order in Java implementation: klabel, params, sort, items, att + 203 sort: KSort + 204 items: tuple[KProductionItem, ...] + 205 params: tuple[KSort, ...] + 206 klabel: KLabel | None + 207 att: KAtt + 208 + 209 def __init__( + 210 self, + 211 sort: str | KSort, + 212 items: Iterable[KProductionItem] = (), + 213 params: Iterable[str | KSort] = (), + 214 klabel: str | KLabel | None = None, + 215 att: KAtt = EMPTY_ATT, + 216 ): + 217 if type(sort) is str: + 218 sort = KSort(sort) + 219 if type(klabel) is str: + 220 klabel = KLabel(klabel) + 221 + 222 params = tuple(KSort(param) if type(param) is str else param for param in params) + 223 + 224 object.__setattr__(self, 'sort', sort) + 225 object.__setattr__(self, 'items', tuple(items)) + 226 object.__setattr__(self, 'params', params) + 227 object.__setattr__(self, 'klabel', klabel) + 228 object.__setattr__(self, 'att', att) + 229 + 230 @classmethod + 231 def _from_dict(cls: type[KProduction], d: Mapping[str, Any]) -> KProduction: + 232 return KProduction( + 233 sort=KSort.from_dict(d['sort']), + 234 items=(KProductionItem.from_dict(item) for item in d['productionItems']), + 235 params=(KSort.from_dict(param) for param in d['params']), + 236 klabel=KLabel.from_dict(d['klabel']) if d.get('klabel') else None, + 237 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 238 ) + 239 +
+[docs] + 240 def to_dict(self) -> dict[str, Any]: + 241 return filter_none( + 242 { + 243 'node': 'KProduction', + 244 'sort': self.sort.to_dict(), + 245 'productionItems': [item.to_dict() for item in self.items], + 246 'params': [param.to_dict() for param in self.params], + 247 'klabel': self.klabel.to_dict() if self.klabel else None, + 248 'att': self.att.to_dict(), + 249 } + 250 )
+ + 251 +
+[docs] + 252 def let( + 253 self, + 254 *, + 255 sort: str | KSort | None = None, + 256 items: Iterable[KProductionItem] | None = None, + 257 params: Iterable[str | KSort] | None = None, + 258 klabel: str | KLabel | None = None, + 259 att: KAtt | None = None, + 260 ) -> KProduction: + 261 sort = sort if sort is not None else self.sort + 262 items = items if items is not None else self.items + 263 params = params if params is not None else self.params + 264 klabel = klabel if klabel is not None else self.klabel # TODO figure out a way to set klabel to None + 265 att = att if att is not None else self.att + 266 return KProduction(sort=sort, items=items, params=params, klabel=klabel, att=att)
+ + 267 +
+[docs] + 268 def let_att(self, att: KAtt) -> KProduction: + 269 return self.let(att=att)
+ + 270 + 271 @cached_property + 272 def as_subsort(self) -> tuple[KSort, KSort] | None: + 273 """Return a pair `(supersort, subsort)` if `self` is a subsort production, and `None` otherwise.""" + 274 if self.klabel: + 275 return None + 276 if len(self.items) != 1: + 277 return None + 278 item = self.items[0] + 279 if not isinstance(item, KNonTerminal): + 280 return None + 281 assert not self.klabel + 282 return self.sort, item.sort + 283 + 284 @cached_property + 285 def non_terminals(self) -> tuple[KNonTerminal, ...]: + 286 """Return the non-terminals of the production.""" + 287 return tuple(item for item in self.items if isinstance(item, KNonTerminal)) + 288 + 289 @property + 290 def argument_sorts(self) -> list[KSort]: + 291 """Return the sorts of the non-terminal positions of the productions.""" + 292 return [knt.sort for knt in self.non_terminals] + 293 + 294 @cached_property + 295 def is_prefix(self) -> bool: + 296 """The production is of the form ``t* "(" (n ("," n)*)? ")"``. + 297 + 298 Here, ``t`` is a terminal other than ``"("``, ``","`` or ``")"``, and ``n`` a non-terminal. + 299 + 300 Example: ``syntax Int ::= "mul" "(" Int "," Int ")"`` + 301 """ + 302 + 303 def encode(item: KProductionItem) -> str: + 304 match item: + 305 case KTerminal(value): + 306 if value in ['(', ',', ')']: + 307 return value + 308 return 't' + 309 case KNonTerminal(): + 310 return 'n' + 311 case KRegexTerminal(): + 312 return 'r' + 313 case _: + 314 raise AssertionError() + 315 + 316 string = ''.join(encode(item) for item in self.items) + 317 pattern = r't*\((n(,n)*)?\)' + 318 return bool(re.fullmatch(pattern, string)) + 319 + 320 @cached_property + 321 def is_record(self) -> bool: + 322 """The production is prefix with labelled nonterminals.""" + 323 return bool(self.is_prefix and self.non_terminals and all(item.name is not None for item in self.non_terminals)) + 324 + 325 @property + 326 def default_format(self) -> Format: + 327 format_str: str + 328 if self.is_record: + 329 tokens = [] + 330 for i, item in enumerate(self.items): + 331 match item: + 332 case KTerminal('('): + 333 tokens.append(f'%{i + 1}...') + 334 case KTerminal(_): + 335 tokens.append(f'%{i + 1}') + 336 case KNonTerminal(_, name): + 337 assert name is not None + 338 tokens.append(f'{name}:') + 339 tokens.append(f'%{i + 1}') + 340 case KRegexTerminal(): + 341 raise ValueError('Default format is not supported for productions with regex terminals') + 342 case _: + 343 raise AssertionError() + 344 format_str = ' '.join(tokens) + 345 else: + 346 format_str = ' '.join(f'%{i}' for i in range(1, len(self.items) + 1)) + 347 + 348 return Format.parse(format_str)
+ + 349 + 350 +
+[docs] + 351@final + 352@dataclass(frozen=True) + 353class KSyntaxSort(KSentence): + 354 """Represents a sort declaration, potentially parametric.""" + 355 + 356 sort: KSort + 357 params: tuple[KSort, ...] + 358 att: KAtt + 359 + 360 def __init__(self, sort: KSort, params: Iterable[str | KSort] = (), att: KAtt = EMPTY_ATT): + 361 params = tuple(KSort(param) if type(param) is str else param for param in params) + 362 object.__setattr__(self, 'sort', sort) + 363 object.__setattr__(self, 'params', params) + 364 object.__setattr__(self, 'att', att) + 365 + 366 @classmethod + 367 def _from_dict(cls: type[KSyntaxSort], d: Mapping[str, Any]) -> KSyntaxSort: + 368 return KSyntaxSort( + 369 sort=KSort.from_dict(d['sort']), + 370 params=(KSort.from_dict(param) for param in d['params']), + 371 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 372 ) + 373 +
+[docs] + 374 def to_dict(self) -> dict[str, Any]: + 375 return { + 376 'node': 'KSyntaxSort', + 377 'sort': self.sort.to_dict(), + 378 'params': [param.to_dict() for param in self.params], + 379 'att': self.att.to_dict(), + 380 }
+ + 381 +
+[docs] + 382 def let( + 383 self, + 384 *, + 385 sort: KSort | None = None, + 386 params: Iterable[str | KSort] | None = None, + 387 att: KAtt | None = None, + 388 ) -> KSyntaxSort: + 389 sort = sort or self.sort + 390 params = params if params is not None else self.params + 391 att = att if att is not None else self.att + 392 return KSyntaxSort(sort=sort, params=params, att=att)
+ + 393 +
+[docs] + 394 def let_att(self, att: KAtt) -> KSyntaxSort: + 395 return self.let(att=att)
+
+ + 396 + 397 +
+[docs] + 398@final + 399@dataclass(frozen=True) + 400class KSortSynonym(KSentence): + 401 """Represents a sort synonym, allowing declaring a new name for a given sort.""" + 402 + 403 new_sort: KSort + 404 old_sort: KSort + 405 att: KAtt + 406 + 407 def __init__(self, new_sort: KSort, old_sort: KSort, att: KAtt = EMPTY_ATT): + 408 object.__setattr__(self, 'new_sort', new_sort) + 409 object.__setattr__(self, 'old_sort', old_sort) + 410 object.__setattr__(self, 'att', att) + 411 + 412 @classmethod + 413 def _from_dict(cls: type[KSortSynonym], d: Mapping[str, Any]) -> KSortSynonym: + 414 return KSortSynonym( + 415 new_sort=KSort.from_dict(d['newSort']), + 416 old_sort=KSort.from_dict(d['oldSort']), + 417 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 418 ) + 419 +
+[docs] + 420 def to_dict(self) -> dict[str, Any]: + 421 return { + 422 'node': 'KSortSynonym', + 423 'newSort': self.new_sort.to_dict(), + 424 'oldSort': self.old_sort.to_dict(), + 425 'att': self.att.to_dict(), + 426 }
+ + 427 +
+[docs] + 428 def let( + 429 self, *, old_sort: KSort | None = None, new_sort: KSort | None = None, att: KAtt | None = None + 430 ) -> KSortSynonym: + 431 new_sort = new_sort or self.new_sort + 432 old_sort = old_sort or self.old_sort + 433 att = att if att is not None else self.att + 434 return KSortSynonym(new_sort=new_sort, old_sort=old_sort, att=att)
+ + 435 +
+[docs] + 436 def let_att(self, att: KAtt) -> KSortSynonym: + 437 return self.let(att=att)
+
+ + 438 + 439 +
+[docs] + 440@final + 441@dataclass(frozen=True) + 442class KSyntaxLexical(KSentence): + 443 """Represents a named piece of lexical syntax, definable as a regular expression.""" + 444 + 445 name: str + 446 regex: str + 447 att: KAtt + 448 + 449 def __init__(self, name: str, regex: str, att: KAtt = EMPTY_ATT): + 450 object.__setattr__(self, 'name', name) + 451 object.__setattr__(self, 'regex', regex) + 452 object.__setattr__(self, 'att', att) + 453 + 454 @classmethod + 455 def _from_dict(cls: type[KSyntaxLexical], d: Mapping[str, Any]) -> KSyntaxLexical: + 456 return KSyntaxLexical( + 457 name=d['name'], + 458 regex=d['regex'], + 459 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 460 ) + 461 +
+[docs] + 462 def to_dict(self) -> dict[str, Any]: + 463 return { + 464 'node': 'KSyntaxLexcial', + 465 'name': self.name, + 466 'regex': self.regex, + 467 'att': self.att.to_dict(), + 468 }
+ + 469 +
+[docs] + 470 def let(self, *, name: str | None = None, regex: str | None = None, att: KAtt | None = None) -> KSyntaxLexical: + 471 name = name if name is not None else self.name + 472 regex = regex if regex is not None else self.regex + 473 att = att if att is not None else self.att + 474 return KSyntaxLexical(name=name, regex=regex, att=att)
+ + 475 +
+[docs] + 476 def let_att(self, att: KAtt) -> KSyntaxLexical: + 477 return self.let(att=att)
+
+ + 478 + 479 +
+[docs] + 480class KAssoc(Enum): + 481 LEFT = 'Left' + 482 RIGHT = 'Right' + 483 NON_ASSOC = 'NonAssoc'
+ + 484 + 485 +
+[docs] + 486@final + 487@dataclass(frozen=True) + 488class KSyntaxAssociativity(KSentence): + 489 """Represents a standalone declaration of operator associativity for tagged productions.""" + 490 + 491 assoc: KAssoc + 492 tags: frozenset[str] + 493 att: KAtt + 494 + 495 def __init__(self, assoc: KAssoc, tags: Iterable[str] = frozenset(), att: KAtt = EMPTY_ATT): + 496 object.__setattr__(self, 'assoc', assoc) + 497 object.__setattr__(self, 'tags', frozenset(tags)) + 498 object.__setattr__(self, 'att', att) + 499 + 500 @classmethod + 501 def _from_dict(cls: type[KSyntaxAssociativity], d: Mapping[str, Any]) -> KSyntaxAssociativity: + 502 return KSyntaxAssociativity( + 503 assoc=KAssoc(d['assoc']), + 504 tags=d['tags'], + 505 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 506 ) + 507 +
+[docs] + 508 def to_dict(self) -> dict[str, Any]: + 509 return { + 510 'node': 'KSyntaxAssociativity', + 511 'assoc': self.assoc.value, + 512 'tags': list(self.tags), + 513 'att': self.att.to_dict(), + 514 }
+ + 515 +
+[docs] + 516 def let( + 517 self, *, assoc: KAssoc | None = None, tags: Iterable[str] | None = None, att: KAtt | None = None + 518 ) -> KSyntaxAssociativity: + 519 assoc = assoc or self.assoc + 520 tags = tags if tags is not None else self.tags + 521 att = att if att is not None else self.att + 522 return KSyntaxAssociativity(assoc=assoc, tags=tags, att=att)
+ + 523 +
+[docs] + 524 def let_att(self, att: KAtt) -> KSyntaxAssociativity: + 525 return self.let(att=att)
+
+ + 526 + 527 +
+[docs] + 528@final + 529@dataclass(frozen=True) + 530class KSyntaxPriority(KSentence): + 531 """Represents a standalone declaration of syntax priorities, using productions tags.""" + 532 + 533 priorities: tuple[frozenset[str], ...] + 534 att: KAtt + 535 + 536 def __init__(self, priorities: Iterable[Iterable[str]] = (), att: KAtt = EMPTY_ATT): + 537 object.__setattr__(self, 'priorities', tuple(frozenset(group) for group in priorities)) + 538 object.__setattr__(self, 'att', att) + 539 + 540 @classmethod + 541 def _from_dict(cls: type[KSyntaxPriority], d: Mapping[str, Any]) -> KSyntaxPriority: + 542 return KSyntaxPriority( + 543 priorities=d['priorities'], + 544 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 545 ) + 546 +
+[docs] + 547 def to_dict(self) -> dict[str, Any]: + 548 return { + 549 'node': 'KSyntaxPriority', + 550 'priorities': [list(group) for group in self.priorities], + 551 'att': self.att.to_dict(), + 552 }
+ + 553 +
+[docs] + 554 def let(self, *, priorities: Iterable[Iterable[str]] | None = None, att: KAtt | None = None) -> KSyntaxPriority: + 555 priorities = priorities if priorities is not None else self.priorities + 556 att = att if att is not None else self.att + 557 return KSyntaxPriority(priorities=priorities, att=att)
+ + 558 +
+[docs] + 559 def let_att(self, att: KAtt) -> KSyntaxPriority: + 560 return self.let(att=att)
+
+ + 561 + 562 +
+[docs] + 563@final + 564@dataclass(frozen=True) + 565class KBubble(KSentence): + 566 """Represents an unparsed chunk of AST in user-defined syntax.""" + 567 + 568 sentence_type: str + 569 contents: str + 570 att: KAtt + 571 + 572 def __init__(self, sentence_type: str, contents: str, att: KAtt = EMPTY_ATT): + 573 object.__setattr__(self, 'sentence_type', sentence_type) + 574 object.__setattr__(self, 'contents', contents) + 575 object.__setattr__(self, 'att', att) + 576 + 577 @classmethod + 578 def _from_dict(cls: type[KBubble], d: Mapping[str, Any]) -> KBubble: + 579 return KBubble( + 580 sentence_type=d['sentenceType'], + 581 contents=d['contents'], + 582 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 583 ) + 584 +
+[docs] + 585 def to_dict(self) -> dict[str, Any]: + 586 return { + 587 'node': 'KBubble', + 588 'sentenceType': self.sentence_type, + 589 'contents': self.contents, + 590 'att': self.att.to_dict(), + 591 }
+ + 592 +
+[docs] + 593 def let(self, *, sentence_type: str | None = None, contents: str | None = None, att: KAtt | None = None) -> KBubble: + 594 sentence_type = sentence_type if sentence_type is not None else self.sentence_type + 595 contents = contents if contents is not None else self.contents + 596 att = att if att is not None else self.att + 597 return KBubble(sentence_type=sentence_type, contents=contents, att=att)
+ + 598 +
+[docs] + 599 def let_att(self, att: KAtt) -> KBubble: + 600 return self.let(att=att)
+
+ + 601 + 602 +
+[docs] + 603class KRuleLike(KSentence): + 604 """Represents something with rule-like structure (with body, requires, and ensures clauses).""" + 605 + 606 body: KInner + 607 requires: KInner + 608 ensures: KInner + 609 +
+[docs] + 610 @abstractmethod + 611 def let(
+ + 612 self: RL, + 613 *, + 614 body: KInner | None = None, + 615 requires: KInner | None = None, + 616 ensures: KInner | None = None, + 617 att: KAtt | None = None, + 618 ) -> RL: ...
+ + 619 + 620 +
+[docs] + 621@final + 622@dataclass(frozen=True) + 623class KRule(KRuleLike): + 624 """Represents a K rule definition, typically a conditional rewrite/transition.""" + 625 + 626 body: KInner + 627 requires: KInner + 628 ensures: KInner + 629 att: KAtt + 630 + 631 def __init__(self, body: KInner, requires: KInner = TRUE, ensures: KInner = TRUE, att: KAtt = EMPTY_ATT): + 632 object.__setattr__(self, 'body', body) + 633 object.__setattr__(self, 'requires', requires) + 634 object.__setattr__(self, 'ensures', ensures) + 635 object.__setattr__(self, 'att', att) + 636 + 637 @classmethod + 638 def _from_dict(cls: type[KRule], d: Mapping[str, Any]) -> KRule: + 639 return KRule( + 640 body=KInner.from_dict(d['body']), + 641 requires=KInner.from_dict(d['requires']) if d.get('requires') else TRUE, + 642 ensures=KInner.from_dict(d['ensures']) if d.get('ensures') else TRUE, + 643 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 644 ) + 645 +
+[docs] + 646 def to_dict(self) -> dict[str, Any]: + 647 return { + 648 'node': 'KRule', + 649 'body': self.body.to_dict(), + 650 'requires': self.requires.to_dict(), + 651 'ensures': self.ensures.to_dict(), + 652 'att': self.att.to_dict(), + 653 }
+ + 654 +
+[docs] + 655 def let( + 656 self, + 657 *, + 658 body: KInner | None = None, + 659 requires: KInner | None = None, + 660 ensures: KInner | None = None, + 661 att: KAtt | None = None, + 662 ) -> KRule: + 663 body = body if body is not None else self.body + 664 requires = requires if requires is not None else self.requires + 665 ensures = ensures if ensures is not None else self.ensures + 666 att = att if att is not None else self.att + 667 return KRule(body=body, requires=requires, ensures=ensures, att=att)
+ + 668 +
+[docs] + 669 def let_att(self, att: KAtt) -> KRule: + 670 return self.let(att=att)
+ + 671 + 672 @property + 673 def priority(self) -> int: + 674 return self.att.get(Atts.PRIORITY, 200 if Atts.OWISE in self.att else 50)
+ + 675 + 676 +
+[docs] + 677@final + 678@dataclass(frozen=True) + 679class KClaim(KRuleLike): + 680 """Represents a K claim, typically a transition with pre/post-conditions.""" + 681 + 682 body: KInner + 683 requires: KInner + 684 ensures: KInner + 685 att: KAtt + 686 + 687 def __init__(self, body: KInner, requires: KInner = TRUE, ensures: KInner = TRUE, att: KAtt = EMPTY_ATT): + 688 object.__setattr__(self, 'body', body) + 689 object.__setattr__(self, 'requires', requires) + 690 object.__setattr__(self, 'ensures', ensures) + 691 object.__setattr__(self, 'att', att) + 692 + 693 @classmethod + 694 def _from_dict(cls: type[KClaim], d: Mapping[str, Any]) -> KClaim: + 695 return KClaim( + 696 body=KInner.from_dict(d['body']), + 697 requires=KInner.from_dict(d['requires']) if d.get('requires') else TRUE, + 698 ensures=KInner.from_dict(d['ensures']) if d.get('ensures') else TRUE, + 699 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 700 ) + 701 +
+[docs] + 702 def to_dict(self) -> dict[str, Any]: + 703 return { + 704 'node': 'KClaim', + 705 'body': self.body.to_dict(), + 706 'requires': self.requires.to_dict(), + 707 'ensures': self.ensures.to_dict(), + 708 'att': self.att.to_dict(), + 709 }
+ + 710 +
+[docs] + 711 def let( + 712 self, + 713 *, + 714 body: KInner | None = None, + 715 requires: KInner | None = None, + 716 ensures: KInner | None = None, + 717 att: KAtt | None = None, + 718 ) -> KClaim: + 719 body = body if body is not None else self.body + 720 requires = requires if requires is not None else self.requires + 721 ensures = ensures if ensures is not None else self.ensures + 722 att = att if att is not None else self.att + 723 return KClaim(body=body, requires=requires, ensures=ensures, att=att)
+ + 724 +
+[docs] + 725 def let_att(self, att: KAtt) -> KClaim: + 726 return self.let(att=att)
+ + 727 + 728 @property + 729 def is_circularity(self) -> bool: + 730 """Return whether this claim is a circularity (must be used coinductively to prove itself).""" + 731 return Atts.CIRCULARITY in self.att + 732 + 733 @property + 734 def is_trusted(self) -> bool: + 735 """Return whether this claim is trusted (does not need to be proven to be considered true).""" + 736 return Atts.TRUSTED in self.att + 737 + 738 @property + 739 def dependencies(self) -> list[str]: + 740 """Return the dependencies of this claim (list of other claims needed to help prove this one or speed up this ones proof).""" + 741 deps = self.att.get(Atts.DEPENDS) + 742 if deps is None: + 743 return [] + 744 return [x.strip() for x in deps.split(',')]
+ + 745 + 746 +
+[docs] + 747@final + 748@dataclass(frozen=True) + 749class KContext(KSentence): + 750 """Represents a K evaluation context, used for isolating chunks of computation and focusing on them.""" + 751 + 752 body: KInner + 753 requires: KInner + 754 att: KAtt + 755 + 756 def __init__(self, body: KInner, requires: KInner = TRUE, att: KAtt = EMPTY_ATT): + 757 object.__setattr__(self, 'body', body) + 758 object.__setattr__(self, 'requires', requires) + 759 object.__setattr__(self, 'att', att) + 760 + 761 @classmethod + 762 def _from_dict(cls: type[KContext], d: Mapping[str, Any]) -> KContext: + 763 return KContext( + 764 body=KInner.from_dict(d['body']), + 765 requires=KInner.from_dict(d['requires']) if d.get('requires') else TRUE, + 766 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 767 ) + 768 +
+[docs] + 769 def to_dict(self) -> dict[str, Any]: + 770 return { + 771 'node': 'KContext', + 772 'body': self.body.to_dict(), + 773 'requires': self.requires.to_dict(), + 774 'att': self.att.to_dict(), + 775 }
+ + 776 +
+[docs] + 777 def let(self, *, body: KInner | None = None, requires: KInner | None = None, att: KAtt | None = None) -> KContext: + 778 body = body if body is not None else self.body + 779 requires = requires if requires is not None else self.requires + 780 att = att if att is not None else self.att + 781 return KContext(body=body, requires=requires, att=att)
+ + 782 +
+[docs] + 783 def let_att(self, att: KAtt) -> KContext: + 784 return self.let(att=att)
+
+ + 785 + 786 +
+[docs] + 787@final + 788@dataclass(frozen=True) + 789class KImport(KOuter): + 790 """Represents a K module import, used for inheriting all the sentences of the imported module into this one.""" + 791 + 792 name: str + 793 public: bool + 794 + 795 def __init__(self, name: str, public: bool = True): + 796 object.__setattr__(self, 'name', name) + 797 object.__setattr__(self, 'public', public) + 798 +
+[docs] + 799 @staticmethod + 800 def from_dict(d: Mapping[str, Any]) -> KImport: + 801 return KImport(name=d['name'], public=d['isPublic'])
+ + 802 +
+[docs] + 803 def to_dict(self) -> dict[str, Any]: + 804 return {'node': 'KImport', 'name': self.name, 'isPublic': self.public}
+ + 805 +
+[docs] + 806 def let(self, *, name: str | None = None, public: bool | None = None) -> KImport: + 807 name = name if name is not None else self.name + 808 public = public if public is not None else self.public + 809 return KImport(name=name, public=public)
+
+ + 810 + 811 +
+[docs] + 812@final + 813@dataclass(frozen=True) + 814class KFlatModule(KOuter, WithKAtt, Iterable[KSentence]): + 815 """Represents a K module, with a name, list of imports, and list of sentences.""" + 816 + 817 name: str + 818 sentences: tuple[KSentence, ...] + 819 imports: tuple[KImport, ...] + 820 att: KAtt + 821 + 822 def __init__( + 823 self, name: str, sentences: Iterable[KSentence] = (), imports: Iterable[KImport] = (), att: KAtt = EMPTY_ATT + 824 ): + 825 object.__setattr__(self, 'name', name) + 826 object.__setattr__(self, 'sentences', tuple(sentences)) + 827 object.__setattr__(self, 'imports', tuple(imports)) + 828 object.__setattr__(self, 'att', att) + 829 + 830 def __iter__(self) -> Iterator[KSentence]: + 831 return iter(self.sentences) + 832 + 833 @cached_property + 834 def productions(self) -> tuple[KProduction, ...]: + 835 """Return all the `KProduction` sentences from this module.""" + 836 return tuple(sentence for sentence in self if type(sentence) is KProduction) + 837 + 838 @cached_property + 839 def syntax_productions(self) -> tuple[KProduction, ...]: + 840 """Return all the `KProduction` sentences from this module that contain `KLabel` (are EBNF syntax declarations).""" + 841 return tuple(prod for prod in self.productions if prod.klabel) + 842 + 843 @cached_property + 844 def functions(self) -> tuple[KProduction, ...]: + 845 """Return all the `KProduction` sentences from this module that are function declarations.""" + 846 return tuple(prod for prod in self.syntax_productions if self._is_function(prod)) + 847 + 848 @cached_property + 849 def constructors(self) -> tuple[KProduction, ...]: + 850 """Return all the `KProduction` sentences from this module that are constructor declarations.""" + 851 return tuple(prod for prod in self.syntax_productions if not self._is_function(prod)) + 852 + 853 @cached_property + 854 def cell_collection_productions(self) -> tuple[KProduction, ...]: + 855 """Return all the `KProduction` sentences from this module that are cell collection declarations.""" + 856 return tuple(prod for prod in self.syntax_productions if Atts.CELL_COLLECTION in prod.att) + 857 + 858 @staticmethod + 859 def _is_function(prod: KProduction) -> bool: + 860 def is_not_actually_function(label: str) -> bool: + 861 is_cell_map_constructor = label.endswith('CellMapItem') or label.endswith('CellMap_') + 862 is_builtin_data_constructor = label in {'_Set_', '_List_', '_Map_', 'SetItem', 'ListItem', '_|->_'} + 863 return is_cell_map_constructor or is_builtin_data_constructor + 864 + 865 return (Atts.FUNCTION in prod.att or Atts.FUNCTIONAL in prod.att) and not ( + 866 prod.klabel and is_not_actually_function(prod.klabel.name) + 867 ) + 868 + 869 @cached_property + 870 def syntax_sorts(self) -> tuple[KSyntaxSort, ...]: + 871 """Return all the `KSyntaxSort` sentences from this module.""" + 872 return tuple(sentence for sentence in self if isinstance(sentence, KSyntaxSort)) + 873 + 874 @cached_property + 875 def rules(self) -> tuple[KRule, ...]: + 876 """Return all the `KRule` declared in this module.""" + 877 return tuple(sentence for sentence in self if type(sentence) is KRule) + 878 + 879 @cached_property + 880 def claims(self) -> tuple[KClaim, ...]: + 881 """Return all the `KClaim` declared in this module.""" + 882 return tuple(sentence for sentence in self if type(sentence) is KClaim) + 883 + 884 @cached_property + 885 def sentence_by_unique_id(self) -> dict[str, KSentence]: + 886 return {sent.unique_id: sent for sent in self.sentences if sent.unique_id is not None} + 887 + 888 @overload + 889 def map_sentences(self, f: Callable[[S], S], *, of_type: type[S]) -> KFlatModule: ... + 890 + 891 @overload + 892 def map_sentences(self, f: Callable[[KSentence], KSentence], *, of_type: None = None) -> KFlatModule: ... + 893 + 894 # Uses overload instead of default argument as a workaround: https://github.com/python/mypy/issues/3737 +
+[docs] + 895 def map_sentences(self, f: Callable, *, of_type: Any = None) -> KFlatModule: + 896 if of_type is None: + 897 of_type = KSentence + 898 return self.let(sentences=tuple(f(sent) if isinstance(sent, of_type) else sent for sent in self.sentences))
+ + 899 +
+[docs] + 900 @staticmethod + 901 def from_dict(d: Mapping[str, Any]) -> KFlatModule: + 902 return KFlatModule( + 903 name=d['name'], + 904 sentences=(KSentence.from_dict(sentence) for sentence in d['localSentences']), + 905 imports=(KImport.from_dict(imp) for imp in d['imports']), + 906 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, + 907 )
+ + 908 +
+[docs] + 909 def to_dict(self) -> dict[str, Any]: + 910 return { + 911 'node': 'KFlatModule', + 912 'name': self.name, + 913 'localSentences': [sentence.to_dict() for sentence in self.sentences], + 914 'imports': [imp.to_dict() for imp in self.imports], + 915 'att': self.att.to_dict(), + 916 }
+ + 917 +
+[docs] + 918 def let( + 919 self, + 920 *, + 921 name: str | None = None, + 922 sentences: Iterable[KSentence] | None = None, + 923 imports: Iterable[KImport] | None = None, + 924 att: KAtt | None = None, + 925 ) -> KFlatModule: + 926 name = name if name is not None else self.name + 927 sentences = sentences if sentences is not None else self.sentences + 928 imports = imports if imports is not None else self.imports + 929 att = att if att is not None else self.att + 930 return KFlatModule(name=name, imports=imports, sentences=sentences, att=att)
+ + 931 +
+[docs] + 932 def let_att(self, att: KAtt) -> KFlatModule: + 933 return self.let(att=att)
+
+ + 934 + 935 +
+[docs] + 936@final + 937@dataclass(frozen=True) + 938class KFlatModuleList(KOuter): + 939 """Represents a list of K modules, as returned by the prover parser for example, with a given module called out as the main module.""" + 940 + 941 main_module: str + 942 modules: tuple[KFlatModule, ...] + 943 + 944 def __init__(self, main_module: str, modules: Iterable[KFlatModule]): + 945 object.__setattr__(self, 'main_module', main_module) + 946 object.__setattr__(self, 'modules', tuple(modules)) + 947 +
+[docs] + 948 @staticmethod + 949 def from_dict(d: Mapping[str, Any]) -> KFlatModuleList: + 950 return KFlatModuleList(main_module=d['mainModule'], modules=(KFlatModule.from_dict(kfm) for kfm in d['term']))
+ + 951 +
+[docs] + 952 def to_dict(self) -> dict[str, Any]: + 953 return { + 954 'node': 'KFlatModuleList', + 955 'mainModule': self.main_module, + 956 'term': [mod.to_dict() for mod in self.modules], + 957 }
+ + 958 +
+[docs] + 959 def let(self, *, main_module: str | None = None, modules: Iterable[KFlatModule] | None = None) -> KFlatModuleList: + 960 main_module = main_module if main_module is not None else self.main_module + 961 modules = modules if modules is not None else self.modules + 962 return KFlatModuleList(main_module=main_module, modules=modules)
+
+ + 963 + 964 +
+[docs] + 965@final + 966@dataclass(frozen=True) + 967class KRequire(KOuter): + 968 """Represents a K file import of another file.""" + 969 + 970 require: str + 971 + 972 def __init__(self, require: str): + 973 object.__setattr__(self, 'require', require) + 974 +
+[docs] + 975 @staticmethod + 976 def from_dict(d: Mapping[str, Any]) -> KRequire: + 977 return KRequire(require=d['require'])
+ + 978 +
+[docs] + 979 def to_dict(self) -> dict[str, Any]: + 980 return {'node': 'KRequire', 'require': self.require}
+ + 981 +
+[docs] + 982 def let(self, *, require: str | None = None) -> KRequire: + 983 require = require if require is not None else self.require + 984 return KRequire(require=require)
+
+ + 985 + 986 +
+[docs] + 987@final + 988@dataclass(frozen=True) + 989class KDefinition(KOuter, WithKAtt, Iterable[KFlatModule]): + 990 """Represents an entire K definition, with file imports and modules in place, and a given module called out as main module.""" + 991 + 992 main_module_name: str + 993 all_modules: tuple[KFlatModule, ...] + 994 requires: tuple[KRequire, ...] + 995 att: KAtt + 996 + 997 main_module: InitVar[KFlatModule] + 998 + 999 _init_config: dict[KSort, KInner] +1000 _empty_config: dict[KSort, KInner] +1001 +1002 def __init__( +1003 self, +1004 main_module_name: str, +1005 all_modules: Iterable[KFlatModule], +1006 requires: Iterable[KRequire] = (), +1007 att: KAtt = EMPTY_ATT, +1008 ): +1009 all_modules = tuple(all_modules) +1010 main_modules = [module for module in all_modules if module.name == main_module_name] +1011 +1012 if not main_modules: +1013 raise ValueError(f'Module not found: {main_module_name}') +1014 if len(main_modules) > 1: +1015 raise ValueError(f'Module is not unique: {main_module_name}') +1016 +1017 main_module = main_modules[0] +1018 +1019 object.__setattr__(self, 'main_module_name', main_module_name) +1020 object.__setattr__(self, 'all_modules', tuple(all_modules)) +1021 object.__setattr__(self, 'requires', tuple(requires)) +1022 object.__setattr__(self, 'att', att) +1023 object.__setattr__(self, 'main_module', main_module) +1024 object.__setattr__(self, '_init_config', {}) +1025 object.__setattr__(self, '_empty_config', {}) +1026 +1027 def __iter__(self) -> Iterator[KFlatModule]: +1028 return iter(self.all_modules) +1029 +
+[docs] +1030 @staticmethod +1031 def from_dict(d: Mapping[str, Any]) -> KDefinition: +1032 return KDefinition( +1033 main_module_name=d['mainModule'], +1034 all_modules=(KFlatModule.from_dict(module) for module in d['modules']), +1035 requires=(KRequire.from_dict(require) for require in d['requires']) if d.get('requires') else (), +1036 att=KAtt.from_dict(d['att']) if d.get('att') else EMPTY_ATT, +1037 )
+ +1038 +
+[docs] +1039 def to_dict(self) -> dict[str, Any]: +1040 return { +1041 'node': 'KDefinition', +1042 'mainModule': self.main_module_name, +1043 'modules': [module.to_dict() for module in self.all_modules], +1044 'requires': [require.to_dict() for require in self.requires], +1045 'att': self.att.to_dict(), +1046 }
+ +1047 +
+[docs] +1048 def let( +1049 self, +1050 *, +1051 main_module_name: str | None = None, +1052 all_modules: Iterable[KFlatModule] | None = None, +1053 requires: Iterable[KRequire] | None = None, +1054 att: KAtt | None = None, +1055 ) -> KDefinition: +1056 main_module_name = main_module_name if main_module_name is not None else self.main_module_name +1057 all_modules = all_modules if all_modules is not None else self.all_modules +1058 requires = requires if requires is not None else self.requires +1059 att = att if att is not None else self.att +1060 return KDefinition(main_module_name=main_module_name, all_modules=all_modules, requires=requires, att=att)
+ +1061 +
+[docs] +1062 def let_att(self, att: KAtt) -> KDefinition: +1063 return self.let(att=att)
+ +1064 +1065 @cached_property +1066 def all_module_names(self) -> tuple[str, ...]: +1067 """Return the name of all modules in this `KDefinition`.""" +1068 return tuple(module.name for module in self.all_modules) +1069 +1070 @cached_property +1071 def module_names(self) -> tuple[str, ...]: +1072 """Return the list of module names transitively imported by the main module of this definition.""" +1073 module_names = [self.main_module_name] +1074 seen_modules = [] +1075 while len(module_names) > 0: +1076 mname = module_names.pop(0) +1077 if mname not in seen_modules: +1078 seen_modules.append(mname) +1079 module_names.extend([i.name for i in self.all_modules_dict[mname].imports]) +1080 return tuple(seen_modules) +1081 +1082 @cached_property +1083 def all_modules_dict(self) -> dict[str, KFlatModule]: +1084 """Returns a dictionary of all the modules (with names as keys) defined in this definition.""" +1085 return {m.name: m for m in self.all_modules} +1086 +1087 @cached_property +1088 def modules(self) -> tuple[KFlatModule, ...]: +1089 """Returns the list of modules transitively imported by th emain module of this definition.""" +1090 return tuple(self.all_modules_dict[mname] for mname in self.module_names) +1091 +1092 @cached_property +1093 def productions(self) -> tuple[KProduction, ...]: +1094 """Returns the `KProduction` transitively imported by the main module of this definition.""" +1095 return tuple(prod for module in self.modules for prod in module.productions) +1096 +1097 @cached_property +1098 def syntax_productions(self) -> tuple[KProduction, ...]: +1099 """Returns the `KProduction` which are syntax declarations transitively imported by the main module of this definition.""" +1100 return tuple(prod for module in self.modules for prod in module.syntax_productions) +1101 +1102 @cached_property +1103 def functions(self) -> tuple[KProduction, ...]: +1104 """Returns the `KProduction` which are function declarations transitively imported by the main module of this definition.""" +1105 return tuple(func for module in self.modules for func in module.functions) +1106 +1107 @cached_property +1108 def constructors(self) -> tuple[KProduction, ...]: +1109 """Returns the `KProduction` which are constructor declarations transitively imported by the main module of this definition.""" +1110 return tuple(ctor for module in self.modules for ctor in module.constructors) +1111 +1112 @cached_property +1113 def cell_collection_productions(self) -> tuple[KProduction, ...]: +1114 """Returns the `KProduction` which are cell collection declarations transitively imported by the main module of this definition.""" +1115 return tuple(prod for module in self.modules for prod in module.cell_collection_productions) +1116 +1117 @cached_property +1118 def rules(self) -> tuple[KRule, ...]: +1119 """Returns the `KRule` sentences transitively imported by the main module of this definition.""" +1120 return tuple(rule for module in self.modules for rule in module.rules) +1121 +1122 @cached_property +1123 def alias_rules(self) -> tuple[KRule, ...]: +1124 """Returns the `KRule` sentences which are `alias` transitively imported by the main module of this definition.""" +1125 return tuple(rule for rule in self.rules if Atts.ALIAS in rule.att) +1126 +1127 @cached_property +1128 def macro_rules(self) -> tuple[KRule, ...]: +1129 """Returns the `KRule` sentences which are `alias` or `macro` transitively imported by the main module of this definition.""" +1130 return tuple(rule for rule in self.rules if Atts.MACRO in rule.att) + self.alias_rules +1131 +1132 @cached_property +1133 def semantic_rules(self) -> tuple[KRule, ...]: +1134 """Returns the `KRule` sentences which are topmost transitively imported by the main module of this definition.""" +1135 +1136 def is_semantic(rule: KRule) -> bool: +1137 return (type(rule.body) is KApply and rule.body.label.name == '<generatedTop>') or ( +1138 type(rule.body) is KRewrite +1139 and type(rule.body.lhs) is KApply +1140 and rule.body.lhs.label.name == '<generatedTop>' +1141 ) +1142 +1143 return tuple(rule for rule in self.rules if is_semantic(rule)) +1144 +1145 @cached_property +1146 def sentence_by_unique_id(self) -> dict[str, KSentence]: +1147 unique_id_map: dict[str, KSentence] = {} +1148 for module in self.all_modules: +1149 for unique_id, sent in module.sentence_by_unique_id.items(): +1150 if unique_id in unique_id_map and sent != unique_id_map[unique_id]: +1151 _LOGGER.debug( +1152 f'Same UNIQUE_ID found for two different sentences: {(sent, unique_id_map[unique_id])}' +1153 ) +1154 else: +1155 unique_id_map[unique_id] = sent +1156 return unique_id_map +1157 +
+[docs] +1158 def production_for_cell_sort(self, sort: KSort) -> KProduction: +1159 """Return the production for a given cell-declaration syntax from the cell's declared sort.""" +1160 # Typical cell production has 3 productions: +1161 # syntax KCell ::= "project:KCell" "(" K ")" [function, projection] +1162 # syntax KCell ::= "initKCell" "(" Map ")" [function, initializer, noThread] +1163 # syntax KCell ::= "<k>" K "</k>" [cell, cellName(k), format(%1%i%n%2%d%n%3), maincell, org.kframework.definition.Production(syntax #RuleContent ::= #RuleBody [klabel(#ruleNoConditions), symbol])] +1164 # And it may have a 4th: +1165 # syntax GeneratedCounterCell ::= "getGeneratedCounterCell" "(" GeneratedTopCell ")" [function] +1166 # We want the actual label one (3rd one in the list). +1167 if not sort.name.endswith('Cell'): +1168 raise ValueError( +1169 f'Method production_for_cell_sort only intended to be called on sorts ending in "Cell", not: {sort}' +1170 ) +1171 try: +1172 return single(prod for prod in self.productions if prod.sort == sort and Atts.CELL in prod.att) +1173 except ValueError as err: +1174 raise ValueError(f'Expected a single cell production for sort {sort}') from err
+ +1175 +
+[docs] +1176 def module(self, name: str) -> KFlatModule: +1177 """Return the module associated with a given name.""" +1178 return self.all_modules_dict[name]
+ +1179 +1180 @cached_property +1181 def subsort_table(self) -> FrozenDict[KSort, frozenset[KSort]]: +1182 """Return a mapping from sorts to all their proper subsorts.""" +1183 poset = POSet(subsort for prod in self.productions if (subsort := prod.as_subsort) is not None) +1184 return poset.image +1185 +
+[docs] +1186 def subsorts(self, sort: KSort) -> frozenset[KSort]: +1187 """Return all subsorts of a given `KSort` by inspecting the definition.""" +1188 return self.subsort_table.get(sort, frozenset())
+ +1189 +1190 @cached_property +1191 def brackets(self) -> FrozenDict[KSort, KProduction]: +1192 brackets: dict[KSort, KProduction] = {} +1193 for prod in self.productions: +1194 if Atts.BRACKET in prod.att: +1195 assert not prod.klabel +1196 sort = prod.sort +1197 if sort in brackets: +1198 raise ValueError(f'Multiple bracket productions for sort: {sort.name}') +1199 brackets[sort] = prod +1200 return FrozenDict(brackets) +1201 +1202 @cached_property +1203 def symbols(self) -> FrozenDict[str, KProduction]: +1204 symbols: dict[str, KProduction] = {} +1205 for prod in self.productions: +1206 if not prod.klabel: +1207 continue +1208 symbol = prod.klabel.name +1209 if symbol in symbols: # Check if duplicate +1210 other = symbols[symbol] +1211 if prod.let(att=prod.att.drop_source()) != other.let(att=prod.att.drop_source()): +1212 prods = [other, prod] +1213 raise AssertionError(f'Found multiple productions for {symbol}: {prods}') +1214 continue +1215 symbols[symbol] = prod +1216 return FrozenDict(symbols) +1217 +1218 @cached_property +1219 def syntax_symbols(self) -> FrozenDict[str, KProduction]: +1220 brackets: dict[str, KProduction] = { +1221 prod.att[Atts.BRACKET_LABEL]['name']: prod for _, prod in self.brackets.items() +1222 } +1223 return FrozenDict({**self.symbols, **brackets}) +1224 +1225 @cached_property +1226 def overloads(self) -> FrozenDict[str, frozenset[str]]: +1227 """Return a mapping from symbols to the sets of symbols that overload them.""" +1228 +1229 def lt(overloader: KProduction, overloaded: KProduction) -> bool: +1230 assert overloader.klabel +1231 assert overloaded.klabel +1232 assert overloader.klabel.name != overloaded.klabel.name +1233 assert Atts.OVERLOAD in overloader.att +1234 assert Atts.OVERLOAD in overloaded.att +1235 assert overloader.att[Atts.OVERLOAD] == overloaded.att[Atts.OVERLOAD] +1236 overloader_sorts = [overloader.sort] + overloader.argument_sorts +1237 overloaded_sorts = [overloaded.sort] + overloaded.argument_sorts +1238 if len(overloader_sorts) != len(overloaded_sorts): +1239 return False +1240 less = False +1241 for overloader_sort, overloaded_sort in zip(overloader_sorts, overloaded_sorts, strict=True): +1242 if overloader_sort == overloaded_sort: +1243 continue +1244 if overloader_sort in self.subsorts(overloaded_sort): +1245 less = True +1246 continue +1247 return False +1248 return less +1249 +1250 symbols_by_overload: dict[str, list[str]] = {} +1251 for symbol in self.symbols: +1252 prod = self.symbols[symbol] +1253 if Atts.OVERLOAD in prod.att: +1254 symbols_by_overload.setdefault(prod.att[Atts.OVERLOAD], []).append(symbol) +1255 +1256 overloads: dict[str, list[str]] = {} +1257 for _, symbols in symbols_by_overload.items(): +1258 for overloader in symbols: +1259 for overloaded in symbols: +1260 if overloader == overloaded: +1261 continue +1262 if lt(overloader=self.symbols[overloader], overloaded=self.symbols[overloaded]): +1263 # Index by overloaded symbol, this way it is easy to look them up +1264 overloads.setdefault(overloaded, []).append(overloader) +1265 return FrozenDict({key: frozenset(values) for key, values in overloads.items()}) +1266 +1267 @cached_property +1268 def priorities(self) -> FrozenDict[str, frozenset[str]]: +1269 """Return a mapping from symbols to the sets of symbols with lower priority.""" +1270 syntax_priorities = ( +1271 sent for module in self.modules for sent in module.sentences if isinstance(sent, KSyntaxPriority) +1272 ) +1273 relation = tuple( +1274 pair +1275 for syntax_priority in syntax_priorities +1276 for highers, lowers in pairwise(syntax_priority.priorities) +1277 for pair in product(highers, lowers) +1278 ) +1279 return POSet(relation).image +1280 +1281 @cached_property +1282 def left_assocs(self) -> FrozenDict[str, frozenset[str]]: +1283 return FrozenDict({key: frozenset(value) for key, value in self._assocs(KAssoc.LEFT).items()}) +1284 +1285 @cached_property +1286 def right_assocs(self) -> FrozenDict[str, frozenset[str]]: +1287 return FrozenDict({key: frozenset(value) for key, value in self._assocs(KAssoc.RIGHT).items()}) +1288 +1289 def _assocs(self, assoc: KAssoc) -> dict[str, set[str]]: +1290 sents = ( +1291 sent +1292 for module in self.modules +1293 for sent in module.sentences +1294 if isinstance(sent, KSyntaxAssociativity) and sent.assoc in (assoc, KAssoc.NON_ASSOC) +1295 ) +1296 pairs = (pair for sent in sents for pair in product(sent.tags, sent.tags)) +1297 +1298 def insert(dct: dict[str, set[str]], *, key: str, value: str) -> dict[str, set[str]]: +1299 dct.setdefault(key, set()).add(value) +1300 return dct +1301 +1302 return reduce(lambda res, pair: insert(res, key=pair[0], value=pair[1]), pairs, {}) +1303 +
+[docs] +1304 def sort(self, kast: KInner) -> KSort | None: +1305 """Compute the sort of a given term using best-effort simple sorting algorithm, returns `None` on algorithm failure.""" +1306 match kast: +1307 case KToken(_, sort) | KVariable(_, sort): +1308 return sort +1309 case KRewrite(lhs, rhs): +1310 lhs_sort = self.sort(lhs) +1311 rhs_sort = self.sort(rhs) +1312 if lhs_sort and rhs_sort: +1313 return self.least_common_supersort(lhs_sort, rhs_sort) +1314 return None +1315 case KSequence(_): +1316 return KSort('K') +1317 case KApply(label, _): +1318 sort, _ = self.resolve_sorts(label) +1319 return sort +1320 case _: +1321 return None
+ +1322 +
+[docs] +1323 def sort_strict(self, kast: KInner) -> KSort: +1324 """Compute the sort of a given term using best-effort simple sorting algorithm, dies on algorithm failure.""" +1325 sort = self.sort(kast) +1326 if sort is None: +1327 raise ValueError(f'Could not determine sort of term: {kast}') +1328 return sort
+ +1329 +
+[docs] +1330 def resolve_sorts(self, label: KLabel) -> tuple[KSort, tuple[KSort, ...]]: +1331 """Compute the result and argument sorts for a given production based on a `KLabel`.""" +1332 prod = self.symbols[label.name] +1333 sorts = dict(zip(prod.params, label.params, strict=True)) +1334 +1335 def resolve(sort: KSort) -> KSort: +1336 return sorts.get(sort, sort) +1337 +1338 return resolve(prod.sort), tuple(resolve(sort) for sort in prod.argument_sorts)
+ +1339 +
+[docs] +1340 def least_common_supersort(self, sort1: KSort, sort2: KSort) -> KSort | None: +1341 """Compute the lowest-upper-bound of two sorts in the sort lattice using very simple approach, returning `None` on failure (not necessarily meaning there isn't a lub).""" +1342 if sort1 == sort2: +1343 return sort1 +1344 if sort1 in self.subsorts(sort2): +1345 return sort2 +1346 if sort2 in self.subsorts(sort1): +1347 return sort1 +1348 # Computing least common supersort is not currently supported if sort1 is not a subsort of sort2 or +1349 # vice versa. In that case there may be more than one LCS. +1350 return None
+ +1351 +
+[docs] +1352 def greatest_common_subsort(self, sort1: KSort, sort2: KSort) -> KSort | None: +1353 """Compute the greatest-lower-bound of two sorts in the sort lattice using very simple approach, returning `None` on failure (not necessarily meaning there isn't a glb).""" +1354 if sort1 == sort2: +1355 return sort1 +1356 if sort1 in self.subsorts(sort2): +1357 return sort1 +1358 if sort2 in self.subsorts(sort1): +1359 return sort2 +1360 # Computing greatest common subsort is not currently supported if sort1 is not a subsort of sort2 or +1361 # vice versa. In that case there may be more than one GCS. +1362 return None
+ +1363 +1364 # Sorts like Int cannot be injected directly into sort K so they are embedded in a KSequence. +
+[docs] +1365 def add_ksequence_under_k_productions(self, kast: KInner) -> KInner: +1366 """Inject a `KSequence` under the given term if it's a subsort of `K` and is being used somewhere that sort `K` is expected (determined by inspecting the definition).""" +1367 +1368 def _add_ksequence_under_k_productions(_kast: KInner) -> KInner: +1369 if type(_kast) is not KApply: +1370 return _kast +1371 +1372 prod = self.symbols[_kast.label.name] +1373 return KApply( +1374 _kast.label, +1375 [ +1376 KSequence(arg) if sort.name == 'K' and not self.sort(arg) == KSort('K') else arg +1377 for arg, sort in zip(_kast.args, prod.argument_sorts, strict=True) +1378 ], +1379 ) +1380 +1381 return top_down(_add_ksequence_under_k_productions, kast)
+ +1382 +
+[docs] +1383 def sort_vars(self, kast: KInner, sort: KSort | None = None) -> KInner: +1384 """Return the original term with all the variables having there sorts added or specialized, failing if recieving conflicting sorts for a given variable.""" +1385 if type(kast) is KVariable and kast.sort is None and sort is not None: +1386 return kast.let(sort=sort) +1387 +1388 def get_quantifier_variable(q: KApply) -> KVariable: +1389 if q.arity != 2: +1390 raise ValueError(f'Expected a quantifier to have 2 children, got {q.arity}.') +1391 var = q.args[0] +1392 if not isinstance(var, KVariable): +1393 raise ValueError(f"Expected a quantifier's first child to be a variable, got {type(var)}.") +1394 return var +1395 +1396 def merge_variables( +1397 term: KInner, occurrences_list: list[dict[str, list[KVariable]]] +1398 ) -> dict[str, list[KVariable]]: +1399 result: dict[str, list[KVariable]] = defaultdict(list) +1400 for occurrences in occurrences_list: +1401 assert isinstance(occurrences, dict), type(occurrences) +1402 for key, value in occurrences.items(): +1403 result[key] += value +1404 if isinstance(term, KVariable): +1405 result[term.name].append(term) +1406 elif isinstance(term, KApply): +1407 if term.label.name in ML_QUANTIFIERS: +1408 var = get_quantifier_variable(term) +1409 result[var.name].append(var) +1410 return result +1411 +1412 def add_var_to_subst(vname: str, vars: list[KVariable], subst: dict[str, KVariable]) -> None: +1413 vsorts = list(unique(v.sort for v in vars if v.sort is not None)) +1414 if len(vsorts) > 0: +1415 vsort = vsorts[0] +1416 for s in vsorts[1:]: +1417 _vsort = self.greatest_common_subsort(vsort, s) +1418 if _vsort is None: +1419 raise ValueError(f'Cannot compute greatest common subsort of {vname}: {(vsort, s)}') +1420 vsort = _vsort +1421 subst[vname] = KVariable(vname, sort=vsort) +1422 +1423 def transform( +1424 term: KInner, child_variables: list[dict[str, list[KVariable]]] +1425 ) -> tuple[KInner, dict[str, list[KVariable]]]: +1426 occurrences = merge_variables(term, child_variables) +1427 +1428 if isinstance(term, KApply): +1429 if term.label.name in ML_QUANTIFIERS: +1430 var = get_quantifier_variable(term) +1431 subst: dict[str, KVariable] = {} +1432 add_var_to_subst(var.name, occurrences[var.name], subst) +1433 del occurrences[var.name] +1434 return (Subst(subst)(term), occurrences) +1435 else: +1436 prod = self.symbols[term.label.name] +1437 if len(prod.params) == 0: +1438 for t, a in zip(prod.argument_sorts, term.args, strict=True): +1439 if type(a) is KVariable: +1440 occurrences[a.name].append(a.let_sort(t)) +1441 elif isinstance(term, KSequence) and term.arity > 0: +1442 for a in term.items[0:-1]: +1443 if type(a) is KVariable: +1444 occurrences[a.name].append(a.let_sort(KSort('KItem'))) +1445 last_a = term.items[-1] +1446 if type(last_a) is KVariable: +1447 occurrences[last_a.name].append(last_a.let_sort(KSort('K'))) +1448 return (term, occurrences) +1449 +1450 (new_term, var_occurrences) = bottom_up_with_summary(transform, kast) +1451 +1452 subst: dict[str, KVariable] = {} +1453 for vname, occurrences in var_occurrences.items(): +1454 add_var_to_subst(vname, occurrences, subst) +1455 +1456 return Subst(subst)(new_term)
+ +1457 +1458 # Best-effort addition of sort parameters to klabels, context insensitive +
+[docs] +1459 def add_sort_params(self, kast: KInner) -> KInner: +1460 """Return a given term with the sort parameters on the `KLabel` filled in (which may be missing because of how the frontend works), best effort.""" +1461 +1462 def _add_sort_params(_k: KInner) -> KInner: +1463 if type(_k) is KApply: +1464 prod = self.symbols[_k.label.name] +1465 if len(_k.label.params) == 0 and len(prod.params) > 0: +1466 sort_dict: dict[KSort, KSort] = {} +1467 for psort, asort in zip(prod.argument_sorts, map(self.sort, _k.args), strict=True): +1468 if asort is None: +1469 _LOGGER.warning( +1470 f'Failed to add sort parameter, unable to determine sort for argument in production: {(prod, psort, asort)}' +1471 ) +1472 return _k +1473 if psort in prod.params: +1474 if psort in sort_dict and sort_dict[psort] != asort: +1475 _LOGGER.warning( +1476 f'Failed to add sort parameter, sort mismatch between different occurances of sort parameter: {(prod, psort, sort_dict[psort], asort)}' +1477 ) +1478 return _k +1479 elif psort not in sort_dict: +1480 sort_dict[psort] = asort +1481 if all(p in sort_dict for p in prod.params): +1482 return _k.let(label=KLabel(_k.label.name, [sort_dict[p] for p in prod.params])) +1483 return _k +1484 +1485 return bottom_up(_add_sort_params, kast)
+ +1486 +
+[docs] +1487 def add_cell_map_items(self, kast: KInner) -> KInner: +1488 """Wrap cell-map items in the syntactical wrapper that the frontend generates for them (see `KDefinition.remove_cell_map_items`).""" +1489 # example: +1490 # syntax AccountCellMap [cellCollection, hook(MAP.Map)] +1491 # syntax AccountCellMap ::= AccountCellMap AccountCellMap [assoc, avoid, cellCollection, comm, element(AccountCellMapItem), function, hook(MAP.concat), unit(.AccountCellMap), wrapElement(<account>)] +1492 +1493 cell_wrappers = {} +1494 for ccp in self.cell_collection_productions: +1495 if Atts.ELEMENT in ccp.att and Atts.WRAP_ELEMENT in ccp.att: +1496 cell_wrappers[ccp.att[Atts.WRAP_ELEMENT]] = ccp.att[Atts.ELEMENT] +1497 +1498 def _wrap_elements(_k: KInner) -> KInner: +1499 if type(_k) is KApply and _k.label.name in cell_wrappers: +1500 return KApply(cell_wrappers[_k.label.name], [_k.args[0], _k]) +1501 return _k +1502 +1503 # To ensure we don't get duplicate wrappers. +1504 _kast = self.remove_cell_map_items(kast) +1505 return bottom_up(_wrap_elements, _kast)
+ +1506 +
+[docs] +1507 def remove_cell_map_items(self, kast: KInner) -> KInner: +1508 """Remove cell-map syntactical wrapper items that the frontend generates (see `KDefinition.add_cell_map_items`).""" +1509 # example: +1510 # syntax AccountCellMap [cellCollection, hook(MAP.Map)] +1511 # syntax AccountCellMap ::= AccountCellMap AccountCellMap [assoc, avoid, cellCollection, comm, element(AccountCellMapItem), function, hook(MAP.concat), unit(.AccountCellMap), wrapElement(<account>)] +1512 +1513 cell_wrappers = {} +1514 for ccp in self.cell_collection_productions: +1515 if Atts.ELEMENT in ccp.att and Atts.WRAP_ELEMENT in ccp.att: +1516 cell_wrappers[ccp.att[Atts.ELEMENT]] = ccp.att[Atts.WRAP_ELEMENT] +1517 +1518 def _wrap_elements(_k: KInner) -> KInner: +1519 if ( +1520 type(_k) is KApply +1521 and _k.label.name in cell_wrappers +1522 and len(_k.args) == 2 +1523 and type(_k.args[1]) is KApply +1524 and _k.args[1].label.name == cell_wrappers[_k.label.name] +1525 ): +1526 return _k.args[1] +1527 return _k +1528 +1529 return bottom_up(_wrap_elements, kast)
+ +1530 +
+[docs] +1531 def empty_config(self, sort: KSort) -> KInner: +1532 """Given a cell-sort, compute an "empty" configuration for it (all the constructor structure of the configuration in place, but variables in cell positions).""" +1533 if sort not in self._empty_config: +1534 self._empty_config[sort] = self._compute_empty_config(sort) +1535 return self._empty_config[sort]
+ +1536 +1537 def _compute_empty_config(self, sort: KSort) -> KInner: +1538 def _kdefinition_empty_config(_sort: KSort) -> KApply: +1539 cell_prod = self.production_for_cell_sort(_sort) +1540 cell_klabel = cell_prod.klabel +1541 assert cell_klabel is not None +1542 production = self.symbols[cell_klabel.name] +1543 args: list[KInner] = [] +1544 num_nonterminals = 0 +1545 num_freshvars = 0 +1546 for p_item in production.items: +1547 if type(p_item) is KNonTerminal: +1548 num_nonterminals += 1 +1549 if p_item.sort.name.endswith('Cell'): +1550 args.append(_kdefinition_empty_config(p_item.sort)) +1551 else: +1552 num_freshvars += 1 +1553 args.append(KVariable(_sort.name[0:-4].upper() + '_CELL')) +1554 if num_nonterminals > 1 and num_freshvars > 0: +1555 raise ValueError(f'Found mixed cell and non-cell arguments to cell constructor for: {sort}') +1556 return KApply(cell_klabel, args) +1557 +1558 return _kdefinition_empty_config(sort) +1559 +
+[docs] +1560 def instantiate_cell_vars(self, term: KInner) -> KInner: +1561 """Given a partially-complete configuration, find positions where there could be more cell structure but instead there are variables and instantiate more cell structure.""" +1562 +1563 def _cell_vars_to_labels(_kast: KInner) -> KInner: +1564 if type(_kast) is KApply and _kast.is_cell: +1565 production = self.symbols[_kast.label.name] +1566 production_arity = [item.sort for item in production.non_terminals] +1567 new_args = [] +1568 for sort, arg in zip(production_arity, _kast.args, strict=True): +1569 if sort.name.endswith('Cell') and type(arg) is KVariable: +1570 new_args.append(self.empty_config(sort)) +1571 else: +1572 new_args.append(arg) +1573 return KApply(_kast.label, new_args) +1574 return _kast +1575 +1576 return bottom_up(_cell_vars_to_labels, term)
+ +1577 +
+[docs] +1578 def init_config(self, sort: KSort) -> KInner: +1579 """Return an initialized configuration as the user declares it in the semantics, complete with configuration variables in place.""" +1580 if sort not in self._init_config: +1581 self._init_config[sort] = self._compute_init_config(sort) +1582 return self._init_config[sort]
+ +1583 +1584 def _compute_init_config(self, sort: KSort) -> KInner: +1585 config_var_map = KVariable('__###CONFIG_VAR_MAP###__') +1586 +1587 def _remove_config_var_lookups(_kast: KInner) -> KInner: +1588 if type(_kast) is KApply and _kast.label.name.startswith('project:') and len(_kast.args) == 1: +1589 _term = _kast.args[0] +1590 if type(_term) is KApply and _term.label == KLabel('Map:lookup') and _term.args[0] == config_var_map: +1591 _token_var = _term.args[1] +1592 if type(_token_var) is KToken and _token_var.sort == KSort('KConfigVar'): +1593 return KVariable(_token_var.token) +1594 return _kast +1595 +1596 init_prods = (prod for prod in self.syntax_productions if Atts.INITIALIZER in prod.att) +1597 try: +1598 init_prod = single(prod for prod in init_prods if prod.sort == sort) +1599 except ValueError as err: +1600 raise ValueError(f'Did not find unique initializer for sort: {sort}') from err +1601 +1602 prod_klabel = init_prod.klabel +1603 assert prod_klabel is not None +1604 arg_sorts = [nt.sort for nt in init_prod.items if type(nt) is KNonTerminal] +1605 init_config: KInner +1606 if len(arg_sorts) == 0: +1607 init_config = KApply(prod_klabel) +1608 elif len(arg_sorts) == 1 and arg_sorts[0] == KSort('Map'): +1609 init_config = KApply(prod_klabel, [config_var_map]) +1610 else: +1611 raise ValueError(f'Cannot handle initializer for label: {prod_klabel}') +1612 +1613 init_rewrites = [ +1614 rule.body for rule in self.rules if Atts.INITIALIZER in rule.att and type(rule.body) is KRewrite +1615 ] +1616 init_config = indexed_rewrite(init_config, init_rewrites) +1617 init_config = top_down(_remove_config_var_lookups, init_config) +1618 +1619 return init_config
+ +1620 +1621 +
+[docs] +1622def read_kast_definition(path: str | PathLike) -> KDefinition: +1623 """Read a `KDefinition` from disk, failing if it's not actually a `KDefinition`.""" +1624 with open(path) as f: +1625 _LOGGER.info(f'Loading JSON definition: {path}') +1626 json_defn = json.load(f) +1627 _LOGGER.info(f'Converting JSON definition to Kast: {path}') +1628 return KDefinition.from_dict(kast_term(json_defn))
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/outer_lexer.html b/pyk/_modules/pyk/kast/outer_lexer.html new file mode 100644 index 00000000000..3dd6d2b9a25 --- /dev/null +++ b/pyk/_modules/pyk/kast/outer_lexer.html @@ -0,0 +1,1086 @@ + + + + + + pyk.kast.outer_lexer — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.outer_lexer

+  1from __future__ import annotations
+  2
+  3import re
+  4from collections.abc import Iterator
+  5from enum import Enum, auto
+  6from typing import TYPE_CHECKING, NamedTuple
+  7
+  8if TYPE_CHECKING:
+  9    from collections.abc import Collection, Generator, Iterable
+ 10    from typing import Final
+ 11
+ 12
+
+[docs] + 13class TokenType(Enum): + 14 EOF = 0 + 15 COMMA = auto() + 16 LPAREN = auto() + 17 RPAREN = auto() + 18 LBRACE = auto() + 19 RBRACE = auto() + 20 LBRACK = auto() + 21 RBRACK = auto() + 22 VBAR = auto() + 23 EQ = auto() + 24 GT = auto() + 25 PLUS = auto() + 26 TIMES = auto() + 27 QUESTION = auto() + 28 TILDE = auto() + 29 COLON = auto() + 30 DCOLONEQ = auto() + 31 KW_ALIAS = auto() + 32 KW_CLAIM = auto() + 33 KW_CONFIG = auto() + 34 KW_CONTEXT = auto() + 35 KW_ENDMODULE = auto() + 36 KW_IMPORTS = auto() + 37 KW_LEFT = auto() + 38 KW_LEXICAL = auto() + 39 KW_MODULE = auto() + 40 KW_NONASSOC = auto() + 41 KW_PRIORITY = auto() + 42 KW_PRIVATE = auto() + 43 KW_PUBLIC = auto() + 44 KW_REQUIRES = auto() + 45 KW_RIGHT = auto() + 46 KW_RULE = auto() + 47 KW_SYNTAX = auto() + 48 NAT = auto() + 49 STRING = auto() + 50 REGEX = auto() + 51 ID_LOWER = auto() + 52 ID_UPPER = auto() + 53 MODNAME = auto() + 54 KLABEL = auto() + 55 RULE_LABEL = auto() + 56 ATTR_KEY = auto() + 57 ATTR_CONTENT = auto() + 58 BUBBLE = auto()
+ + 59 + 60 +
+[docs] + 61class Loc(NamedTuple): + 62 line: int + 63 col: int + 64 + 65 def __add__(self, other: object) -> Loc: + 66 if isinstance(other, str): + 67 """Return the line,column after the additional text""" + 68 line, col = self.line, self.col + 69 for c in other: + 70 if c == '\n': + 71 line += 1 + 72 col = 0 + 73 col += 1 + 74 return Loc(line, col) + 75 return NotImplemented
+ + 76 + 77 + 78INIT_LOC: Final = Loc(1, 0) + 79 + 80 +
+[docs] + 81class Token(NamedTuple): + 82 text: str + 83 type: TokenType + 84 loc: Loc + 85 +
+[docs] + 86 def let(self, *, text: str | None = None, type: TokenType | None = None, loc: Loc | None = None) -> Token: + 87 text = text if text else self.text + 88 type = type if type else self.type + 89 loc = loc if loc else self.loc + 90 return Token(text=text, type=type, loc=loc)
+
+ + 91 + 92 + 93_EOF_TOKEN: Final = Token('', TokenType.EOF, INIT_LOC) + 94 + 95_SIMPLE_CHARS: Final = { + 96 ',': TokenType.COMMA, + 97 '(': TokenType.LPAREN, + 98 ')': TokenType.RPAREN, + 99 '[': TokenType.LBRACK, +100 ']': TokenType.RBRACK, +101 '>': TokenType.GT, +102 '{': TokenType.LBRACE, +103 '}': TokenType.RBRACE, +104 '|': TokenType.VBAR, +105 '=': TokenType.EQ, +106 '+': TokenType.PLUS, +107 '*': TokenType.TIMES, +108 '?': TokenType.QUESTION, +109 '~': TokenType.TILDE, +110} +111 +112_KEYWORDS: Final = { +113 'alias': TokenType.KW_ALIAS, +114 'claim': TokenType.KW_CLAIM, +115 'configuration': TokenType.KW_CONFIG, +116 'context': TokenType.KW_CONTEXT, +117 'endmodule': TokenType.KW_ENDMODULE, +118 'imports': TokenType.KW_IMPORTS, +119 'left': TokenType.KW_LEFT, +120 'lexical': TokenType.KW_LEXICAL, +121 'module': TokenType.KW_MODULE, +122 'non-assoc': TokenType.KW_NONASSOC, +123 'priority': TokenType.KW_PRIORITY, +124 'private': TokenType.KW_PRIVATE, +125 'public': TokenType.KW_PUBLIC, +126 'requires': TokenType.KW_REQUIRES, +127 'right': TokenType.KW_RIGHT, +128 'rule': TokenType.KW_RULE, +129 'syntax': TokenType.KW_SYNTAX, +130} +131 +132_WHITESPACE: Final = {' ', '\t', '\n', '\r'} +133_DIGIT: Final = set('0123456789') +134_LOWER: Final = set('abcdefghijklmnopqrstuvwxyz') +135_UPPER: Final = set('ABCDEFGHIJKLMNOPQRSTUVWXYZ') +136_ALPHA: Final = _LOWER.union(_UPPER) +137_ALNUM: Final = _ALPHA.union(_DIGIT) +138_WORD: Final = {'_'}.union(_ALNUM) +139 +140 +
+[docs] +141class State(Enum): +142 DEFAULT = auto() +143 SYNTAX = auto() +144 KLABEL = auto() +145 BUBBLE = auto() +146 CONTEXT = auto() +147 ATTR = auto() +148 MODNAME = auto()
+ +149 +150 +151_NEXT_STATE: Final = { +152 # (state, token_type): state' +153 (State.BUBBLE, TokenType.KW_CLAIM): State.BUBBLE, +154 (State.BUBBLE, TokenType.KW_CONFIG): State.BUBBLE, +155 (State.BUBBLE, TokenType.KW_CONTEXT): State.CONTEXT, +156 (State.BUBBLE, TokenType.KW_ENDMODULE): State.DEFAULT, +157 (State.BUBBLE, TokenType.KW_RULE): State.BUBBLE, +158 (State.BUBBLE, TokenType.KW_SYNTAX): State.SYNTAX, +159 (State.CONTEXT, TokenType.KW_ALIAS): State.BUBBLE, +160 (State.CONTEXT, TokenType.KW_CLAIM): State.BUBBLE, +161 (State.CONTEXT, TokenType.KW_CONFIG): State.BUBBLE, +162 (State.CONTEXT, TokenType.KW_CONTEXT): State.CONTEXT, +163 (State.CONTEXT, TokenType.KW_ENDMODULE): State.DEFAULT, +164 (State.CONTEXT, TokenType.KW_RULE): State.BUBBLE, +165 (State.CONTEXT, TokenType.KW_SYNTAX): State.SYNTAX, +166 (State.DEFAULT, TokenType.KW_CLAIM): State.BUBBLE, +167 (State.DEFAULT, TokenType.KW_CONFIG): State.BUBBLE, +168 (State.DEFAULT, TokenType.KW_CONTEXT): State.CONTEXT, +169 (State.DEFAULT, TokenType.KW_IMPORTS): State.MODNAME, +170 (State.DEFAULT, TokenType.KW_MODULE): State.MODNAME, +171 (State.DEFAULT, TokenType.KW_RULE): State.BUBBLE, +172 (State.DEFAULT, TokenType.KW_SYNTAX): State.SYNTAX, +173 (State.DEFAULT, TokenType.LBRACK): State.ATTR, +174 (State.KLABEL, TokenType.KW_CLAIM): State.BUBBLE, +175 (State.KLABEL, TokenType.KW_CONFIG): State.BUBBLE, +176 (State.KLABEL, TokenType.KW_CONTEXT): State.CONTEXT, +177 (State.KLABEL, TokenType.KW_ENDMODULE): State.DEFAULT, +178 (State.KLABEL, TokenType.KW_RULE): State.BUBBLE, +179 (State.KLABEL, TokenType.KW_SYNTAX): State.SYNTAX, +180 (State.MODNAME, TokenType.MODNAME): State.DEFAULT, +181 (State.SYNTAX, TokenType.ID_UPPER): State.DEFAULT, +182 (State.SYNTAX, TokenType.KW_LEFT): State.KLABEL, +183 (State.SYNTAX, TokenType.KW_LEXICAL): State.DEFAULT, +184 (State.SYNTAX, TokenType.KW_NONASSOC): State.KLABEL, +185 (State.SYNTAX, TokenType.KW_PRIORITY): State.KLABEL, +186 (State.SYNTAX, TokenType.KW_RIGHT): State.KLABEL, +187 (State.SYNTAX, TokenType.LBRACE): State.DEFAULT, +188} +189 +190_BUBBLY_STATES: Final = {State.BUBBLE, State.CONTEXT} +191 +192 +
+[docs] +193class LocationIterator(Iterator[str]): +194 """A string iterator which tracks the line and column information of the characters in the string.""" +195 +196 _line: int +197 _col: int +198 _iter: Iterator[str] +199 _nextline: bool +200 +201 def __init__(self, text: Iterable[str], line: int = 1, col: int = 0) -> None: +202 self._iter = iter(text) +203 self._line = line +204 self._col = col +205 self._nextline = False +206 +207 def __next__(self) -> str: +208 la = next(self._iter) +209 self._col += 1 +210 if self._nextline: +211 self._line += 1 +212 self._col = 1 +213 self._nextline = la == '\n' +214 return la +215 +216 @property +217 def loc(self) -> Loc: +218 """Return the ``(line, column)`` of the last character returned by the iterator. +219 +220 If no character has been returned yet, it will be the location that this +221 iterator was initialized with. The default is (1,0), which is the only +222 time the column will be 0. +223 """ +224 return Loc(self._line, self._col)
+ +225 +226 +
+[docs] +227def outer_lexer(it: Iterable[str]) -> Iterator[Token]: +228 it = LocationIterator(it) +229 la = next(it, '') +230 state = State.DEFAULT +231 +232 while True: +233 if state in _SIMPLE_STATES: +234 token, la = _SIMPLE_STATES[state](la, it) +235 yield token +236 last_token = token +237 +238 elif state in _BUBBLY_STATES: +239 tokens, la = _bubble_or_context(la, it, context=state is State.CONTEXT) +240 yield from tokens +241 last_token = tokens[-1] +242 +243 elif state is State.ATTR: +244 la = yield from _attr(la, it) +245 state = State.DEFAULT +246 continue +247 +248 else: +249 raise AssertionError() +250 +251 if last_token.type is TokenType.EOF: +252 return +253 state = _NEXT_STATE.get((state, last_token.type), state)
+ +254 +255 +256_DEFAULT_KEYWORDS: Final = { +257 'claim', +258 'configuration', +259 'context', +260 'endmodule', +261 'import', +262 'imports', +263 'left', +264 'module', +265 'non-assoc', +266 'require', +267 'requires', +268 'right', +269 'rule', +270 'syntax', +271} +272 +273 +274def _default(la: str, it: LocationIterator) -> tuple[Token, str]: +275 la = _skip_ws_and_comments(la, it) +276 +277 if not la: +278 return Token('', TokenType.EOF, it.loc), la +279 +280 elif la in _SIMPLE_CHARS: +281 token_func = _simple_char +282 +283 elif la == '"': +284 token_func = _string +285 +286 elif la == 'r': +287 token_func = _regex_or_lower_id_or_keyword +288 +289 elif la in _DIGIT: +290 token_func = _nat +291 +292 elif la in _ALNUM: +293 token_func = _id_or_keyword +294 +295 elif la == '#': +296 token_func = _hash_id +297 +298 elif la == ':': +299 token_func = _colon_or_dcoloneq +300 +301 else: +302 raise _unexpected_character(la) +303 +304 loc = it.loc +305 text, token_type, la = token_func(la, it) +306 return Token(text, token_type, loc), la +307 +308 +309def _skip_ws_and_comments(la: str, it: Iterator[str]) -> str: +310 # Only use in states where "/" can only be lexed as comment +311 while True: +312 if la in _WHITESPACE: +313 la = next(it, '') +314 elif la == '/': +315 is_comment, consumed, la = _maybe_comment(la, it) +316 if not is_comment: +317 raise _unexpected_character(la) +318 la = next(it, '') +319 else: +320 break +321 return la +322 +323 +324def _simple_char(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +325 # assert la in _SIMPLE_CHARS +326 +327 text = la +328 token_type = _SIMPLE_CHARS[la] +329 la = next(it, '') +330 return text, token_type, la +331 +332 +333def _nat(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +334 # assert la in _DIGIT +335 +336 consumed = [] +337 while la in _DIGIT: +338 consumed.append(la) +339 la = next(it, '') +340 text = ''.join(consumed) +341 return text, TokenType.NAT, la +342 +343 +344def _id_or_keyword(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +345 # assert la in _ALPHA +346 +347 if la in _LOWER: +348 token_type = TokenType.ID_LOWER +349 else: +350 token_type = TokenType.ID_UPPER +351 +352 consumed = [] +353 while la in _ALNUM or la == '-': +354 consumed.append(la) +355 la = next(it, '') +356 text = ''.join(consumed) +357 if text in _DEFAULT_KEYWORDS: +358 return text, _KEYWORDS[text], la +359 return text, token_type, la +360 +361 +362def _hash_id(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +363 # assert la == '#' +364 +365 consumed = [la] +366 la = next(it, '') +367 +368 if la in _LOWER: +369 token_type = TokenType.ID_LOWER +370 elif la in _UPPER: +371 token_type = TokenType.ID_UPPER +372 else: +373 raise _unexpected_character(la) +374 +375 while la in _ALNUM: +376 consumed.append(la) +377 la = next(it, '') +378 text = ''.join(consumed) +379 return text, token_type, la +380 +381 +382def _colon_or_dcoloneq(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +383 # assert la == ':' +384 +385 la = next(it, '') +386 if la != ':': +387 return ':', TokenType.COLON, la +388 la = next(it, '') +389 if la != '=': +390 raise _unexpected_character(la) # Could return [":", ":"], but that never parses +391 la = next(it, '') +392 return '::=', TokenType.DCOLONEQ, la +393 +394 +395def _string(la: str, it: Iterator) -> tuple[str, TokenType, str]: +396 # assert la == '"' +397 consumed: list[str] = [] +398 la = _consume_string(consumed, la, it) +399 return ''.join(consumed), TokenType.STRING, la +400 +401 +402def _regex_or_lower_id_or_keyword(la: str, it: Iterator) -> tuple[str, TokenType, str]: +403 # assert la == 'r' +404 consumed = [la] +405 la = next(it, '') +406 +407 if la == '"': +408 la = _consume_string(consumed, la, it) +409 return ''.join(consumed), TokenType.REGEX, la +410 +411 while la in _ALNUM: +412 consumed.append(la) +413 la = next(it, '') +414 text = ''.join(consumed) +415 if text in _DEFAULT_KEYWORDS: +416 return text, _KEYWORDS[text], la +417 return text, TokenType.ID_LOWER, la +418 +419 +420def _consume_string(consumed: list[str], la: str, it: Iterator[str]) -> str: +421 # assert la == '"' +422 consumed.append(la) # ['"'] +423 +424 la = next(it, '') +425 while la not in {'"', '\n', ''}: +426 consumed.append(la) # ['"', ..., X] +427 if la == '\\': +428 la = next(it, '') +429 if not la or la not in {'\\', '"', 'n', 'r', 't'}: +430 raise _unexpected_character(la) +431 consumed.append(la) # ['"', ..., '//', X] +432 la = next(it, '') +433 +434 if not la or la == '\n': +435 raise _unexpected_character(la) +436 +437 consumed.append(la) # ['"', ..., '"'] +438 la = next(it, '') +439 return la +440 +441 +442_SYNTAX_KEYWORDS: Final = { +443 'left', +444 'lexical', +445 'non-assoc', +446 'priorities', +447 'priority', +448 'right', +449} +450 +451 +452def _syntax(la: str, it: LocationIterator) -> tuple[Token, str]: +453 la = _skip_ws_and_comments(la, it) +454 +455 if not la: +456 return Token('', TokenType.EOF, it.loc), la +457 +458 elif la == '{': +459 token_func = _simple_char +460 +461 elif la in _LOWER: +462 token_func = _syntax_keyword +463 +464 elif la in _UPPER: +465 token_func = _upper_id +466 +467 elif la == '#': +468 token_func = _hash_upper_id +469 +470 else: +471 raise _unexpected_character(la) +472 +473 loc = it.loc +474 text, token_type, la = token_func(la, it) +475 return Token(text, token_type, loc), la +476 +477 +478def _syntax_keyword(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +479 if la not in _LOWER: +480 raise _unexpected_character(la) +481 +482 consumed = [] +483 while la in _ALNUM or la == '-': +484 consumed.append(la) +485 la = next(it, '') +486 text = ''.join(consumed) +487 +488 if text not in _SYNTAX_KEYWORDS: +489 raise ValueError(f'Unexpected token: {text}') +490 +491 return text, _KEYWORDS[text], la +492 +493 +494def _upper_id(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +495 if la not in _UPPER: +496 raise _unexpected_character(la) +497 +498 consumed = [] +499 while la in _ALNUM: +500 consumed.append(la) +501 la = next(it, '') +502 text = ''.join(consumed) +503 return text, TokenType.ID_UPPER, la +504 +505 +506def _hash_upper_id(la: str, it: Iterator[str]) -> tuple[str, TokenType, str]: +507 # assert la == '#' +508 +509 consumed = [la] +510 la = next(it, '') +511 +512 if la not in _UPPER: +513 raise _unexpected_character(la) +514 +515 while la in _ALNUM: +516 consumed.append(la) +517 la = next(it, '') +518 text = ''.join(consumed) +519 return text, TokenType.ID_UPPER, la +520 +521 +522_MODNAME_KEYWORDS: Final = {'private', 'public'} +523 +524 +525def _modname(la: str, it: LocationIterator) -> tuple[Token, str]: +526 r"""Match a module name. +527 +528 Corresponds to regex: [a-zA-Z]\w*(-\w+)* +529 """ +530 la = _skip_ws_and_comments(la, it) +531 +532 consumed = [] +533 loc = it.loc +534 +535 if la not in _ALPHA: +536 raise _unexpected_character(la) +537 +538 consumed.append(la) +539 la = next(it, '') +540 +541 while la in _WORD: +542 consumed.append(la) +543 la = next(it, '') +544 +545 while True: +546 if la != '-': +547 break +548 +549 consumed.append(la) +550 la = next(it, '') +551 +552 if la not in _WORD: +553 raise _unexpected_character(la) +554 +555 consumed.append(la) +556 la = next(it, '') +557 +558 while la in _WORD: +559 consumed.append(la) +560 la = next(it, '') +561 +562 text = ''.join(consumed) +563 if text in _MODNAME_KEYWORDS: +564 return Token(text, _KEYWORDS[text], loc), la +565 return Token(text, TokenType.MODNAME, loc), la +566 +567 +568_KLABEL_KEYWORDS: Final = {'syntax', 'endmodule', 'rule', 'claim', 'configuration', 'context'} +569 +570 +571def _klabel(la: str, it: LocationIterator) -> tuple[Token, str]: +572 loc: Loc +573 consumed: list[str] +574 while True: +575 while la in _WHITESPACE: +576 la = next(it, '') +577 +578 if not la: +579 return Token('', TokenType.EOF, it.loc), la +580 +581 if la == '/': +582 loc = it.loc +583 is_comment, consumed, la = _maybe_comment(la, it) +584 +585 if not is_comment and len(consumed) > 1: +586 # Differs from K Frontend +587 raise ValueError('Unterminated block comment') +588 +589 if is_comment and (not la or la in _WHITESPACE): +590 continue +591 +592 break +593 +594 loc = it.loc +595 consumed = [] +596 break +597 +598 if la == '>' and not consumed: +599 consumed.append(la) +600 la = next(it, '') +601 if not la or la in _WHITESPACE: +602 return Token('>', TokenType.GT, loc), la +603 +604 while la and la not in _WHITESPACE: +605 consumed.append(la) +606 la = next(it, '') +607 +608 text = ''.join(consumed) +609 if text in _KLABEL_KEYWORDS: +610 token_type = _KEYWORDS[text] +611 else: +612 token_type = TokenType.KLABEL +613 return Token(text, token_type, loc), la +614 +615 +616_SIMPLE_STATES: Final = { +617 State.DEFAULT: _default, +618 State.SYNTAX: _syntax, +619 State.MODNAME: _modname, +620 State.KLABEL: _klabel, +621} +622 +623 +624_BUBBLE_KEYWORDS: Final = {'syntax', 'endmodule', 'rule', 'claim', 'configuration', 'context'} +625_CONTEXT_KEYWORDS: Final = {'alias'}.union(_BUBBLE_KEYWORDS) +626 +627 +628def _bubble_or_context(la: str, it: LocationIterator, *, context: bool = False) -> tuple[list[Token], str]: +629 keywords = _CONTEXT_KEYWORDS if context else _BUBBLE_KEYWORDS +630 +631 tokens: list[Token] = [] +632 +633 bubble, final_token, la, bubble_loc = _raw_bubble(la, it, keywords) +634 if bubble is not None: +635 label_tokens, bubble, bubble_loc = _strip_bubble_label(bubble, bubble_loc) +636 bubble, attr_tokens = _strip_bubble_attr(bubble, bubble_loc) +637 +638 tokens = label_tokens +639 if bubble: +640 bubble_token = Token(bubble, TokenType.BUBBLE, bubble_loc) +641 tokens += [bubble_token] +642 tokens += attr_tokens +643 +644 tokens += [final_token] +645 return tokens, la +646 +647 +648def _raw_bubble(la: str, it: LocationIterator, keywords: Collection[str]) -> tuple[str | None, Token, str, Loc]: +649 bubble: list[str] = [] # text that belongs to the bubble +650 special: list[str] = [] # text that belongs to the bubble iff preceded and followed by bubble text +651 current: list[str] = [] # text that might belong to the bubble or terminate the bubble if keyword +652 bubble_loc: Loc = it.loc +653 current_loc: Loc = it.loc +654 while True: +655 if not la or la in _WHITESPACE: +656 if current: +657 current_str = ''.join(current) +658 if current_str in keywords: # <special><keyword><ws> +659 return ( +660 ''.join(bubble) if bubble else None, +661 Token(current_str, _KEYWORDS[current_str], current_loc), +662 la, +663 bubble_loc, +664 ) +665 else: # <special><current><ws> +666 bubble_loc += '' if bubble else ''.join(special) +667 bubble += special if bubble else [] +668 bubble += current +669 special = [] +670 current = [] +671 current_loc = it.loc +672 +673 else: # <special><ws> +674 pass +675 +676 while la in _WHITESPACE: +677 special.append(la) +678 la = next(it, '') +679 current_loc = it.loc +680 +681 if not la: +682 return ''.join(bubble) if bubble else None, Token('', TokenType.EOF, it.loc), la, bubble_loc +683 +684 elif la == '/': +685 is_comment, consumed, la = _maybe_comment(la, it) +686 if is_comment: +687 if current: +688 current_str = ''.join(current) +689 if current_str in keywords: # <special><keyword><comment> +690 # Differs from K Frontend behavior, see: https://github.com/runtimeverification/k/issues/3501 +691 return ( +692 ''.join(bubble) if bubble else None, +693 Token(current_str, _KEYWORDS[current_str], current_loc), +694 la, +695 bubble_loc, +696 ) +697 else: # <special><current><comment> +698 bubble_loc += '' if bubble else ''.join(special) +699 bubble += special if bubble else [] +700 bubble += current +701 special = consumed +702 current = [] +703 current_loc = it.loc +704 +705 else: # <special><comment> +706 special += consumed +707 +708 else: +709 if len(consumed) > 1: # Unterminated block comment +710 # Differs from K Frontend behavior +711 raise ValueError('Unterminated block comment') +712 current += consumed +713 +714 else: # <special><current> +715 while la and la not in _WHITESPACE and la != '/': +716 current.append(la) +717 la = next(it, '') +718 +719 +720RULE_LABEL_PATTERN: Final = re.compile( +721 r'(?s)\s*(?P<lbrack>\[)\s*(?P<label>[^\[\]\_\n\r\t ]+)\s*(?P<rbrack>\])\s*(?P<colon>:)\s*(?P<rest>.*)' +722) +723 +724 +725def _strip_bubble_label(bubble: str, loc: Loc) -> tuple[list[Token], str, Loc]: +726 match = RULE_LABEL_PATTERN.fullmatch(bubble) +727 if not match: +728 return [], bubble, loc +729 +730 lbrack_loc = loc + bubble[: match.start('lbrack')] +731 label_loc = lbrack_loc + bubble[match.start('lbrack') : match.start('label')] +732 rbrack_loc = label_loc + bubble[match.start('label') : match.start('rbrack')] +733 colon_loc = rbrack_loc + bubble[match.start('rbrack') : match.start('colon')] +734 return ( +735 [ +736 Token('[', TokenType.LBRACK, lbrack_loc), +737 Token(match['label'], TokenType.RULE_LABEL, label_loc), +738 Token(']', TokenType.RBRACK, rbrack_loc), +739 Token(':', TokenType.COLON, colon_loc), +740 ], +741 match['rest'], +742 colon_loc + bubble[match.start('colon') : match.start('rest')], +743 ) +744 +745 +746def _strip_bubble_attr(bubble: str, loc: Loc) -> tuple[str, list[Token]]: +747 for i in range(len(bubble) - 1, -1, -1): +748 if bubble[i] != '[': +749 continue +750 +751 prefix = bubble[:i] +752 suffix = bubble[i + 1 :] +753 start_loc = loc + prefix +754 +755 it = LocationIterator(suffix, *start_loc) +756 la = next(it, '') +757 +758 tokens = [Token('[', TokenType.LBRACK, start_loc)] +759 attr_tokens = _attr(la, it) +760 try: +761 while True: +762 tokens.append(next(attr_tokens)) +763 except ValueError: +764 continue +765 except StopIteration as err: +766 la = err.value +767 +768 if la: +769 continue +770 +771 return prefix.rstrip(' \t\n\r'), tokens +772 +773 return bubble, [] +774 +775 +776def _attr(la: str, it: LocationIterator) -> Generator[Token, None, str]: +777 la = _skip_ws_and_comments(la, it) +778 if not la: +779 raise _unexpected_character(la) +780 +781 while True: +782 key, la = _attr_key(la, it) +783 yield key +784 +785 la = _skip_ws_and_comments(la, it) +786 +787 if la == '(': # TAG_STATE +788 yield Token('(', TokenType.LPAREN, it.loc) +789 la = next(it, '') +790 loc = it.loc +791 +792 if la == '"': +793 text, token_type, la = _string(la, it) +794 yield Token(text, token_type, loc) +795 else: +796 content, la = _attr_content(la, it) +797 if content: +798 # allows 'key()' +799 yield Token(content, TokenType.ATTR_CONTENT, loc) +800 +801 if la != ')': +802 raise _unexpected_character(la) +803 +804 yield Token(')', TokenType.RPAREN, it.loc) +805 +806 la = next(it, '') +807 la = _skip_ws_and_comments(la, it) +808 +809 if la != ',': +810 break +811 +812 yield Token(',', TokenType.COMMA, it.loc) +813 la = next(it, '') +814 la = _skip_ws_and_comments(la, it) +815 +816 if la != ']': +817 raise _unexpected_character(la) +818 +819 yield Token(']', TokenType.RBRACK, it.loc) +820 la = next(it, '') +821 +822 return la # noqa: B901 +823 +824 +825def _attr_key(la: str, it: LocationIterator) -> tuple[Token, str]: +826 # ["a"-"z","1"-"9"](["A"-"Z", "a"-"z", "-", "0"-"9", "."])*("<" (["A"-"Z", "a"-"z", "-", "0"-"9"])+ ">")? +827 +828 consumed: list[str] = [] +829 loc = it.loc +830 if la not in _LOWER and la not in _DIGIT: +831 raise _unexpected_character(la) +832 +833 consumed.append(la) +834 la = next(it, '') +835 +836 while la in _ALNUM or la == '-' or la == '.': +837 consumed.append(la) +838 la = next(it, '') +839 +840 if la == '<': +841 consumed.append(la) +842 la = next(it, '') +843 +844 if not la in _ALNUM and la != '-' and la != '.': +845 raise _unexpected_character(la) +846 +847 consumed.append(la) +848 la = next(it, '') +849 +850 while la in _ALNUM or la == '-' or la == '.': +851 consumed.append(la) +852 la = next(it, '') +853 +854 if la != '>': +855 raise _unexpected_character(la) +856 +857 consumed.append(la) +858 la = next(it, '') +859 +860 attr_key = ''.join(consumed) +861 return Token(attr_key, TokenType.ATTR_KEY, loc), la +862 +863 +864_ATTR_CONTENT_FORBIDDEN: Final = {'', '\n', '\r', '"'} +865 +866 +867def _attr_content(la: str, it: Iterator[str]) -> tuple[str, str]: +868 consumed: list[str] = [] +869 open_parens = 0 +870 +871 while la not in _ATTR_CONTENT_FORBIDDEN: +872 if la == ')': +873 if not open_parens: +874 break +875 open_parens -= 1 +876 +877 elif la == '(': +878 open_parens += 1 +879 +880 consumed.append(la) +881 la = next(it, '') +882 +883 if la in _ATTR_CONTENT_FORBIDDEN: +884 raise _unexpected_character(la) +885 +886 # assert la == ')' +887 +888 attr_content = ''.join(consumed) +889 return attr_content, la +890 +891 +892def _maybe_comment(la: str, it: Iterator[str]) -> tuple[bool, list[str], str]: +893 """Attempt to consume a line or block comment from the iterator. +894 +895 Expects la to be ``'/'``. +896 +897 Args: +898 la: The current lookahead. +899 it: The iterator. +900 +901 Returns: +902 A tuple ``(success, consumed, la)`` where +903 +904 - ``success``: Indicates whether `consumed` is a comment. +905 - ``consumed``: The list of consumed characters. +906 - ``la``: The current lookahead. +907 """ +908 assert la == '/' +909 consumed = [la] # ['/'] +910 +911 la = next(it, '') +912 if la == '': +913 return False, consumed, la +914 +915 elif la == '/': +916 consumed.append(la) # ['/', '/'] +917 la = next(it, '') +918 while la and la != '\n': +919 consumed.append(la) # ['/', '/', ..., X] +920 la = next(it, '') +921 return True, consumed, la +922 +923 elif la == '*': +924 consumed.append(la) # ['/', '*'] +925 +926 la = next(it, '') +927 while True: +928 if la == '': +929 return False, consumed, la +930 +931 elif la == '*': +932 consumed.append(la) # ['/', '*', ..., '*'] +933 +934 la = next(it, '') +935 if la == '': +936 return False, consumed, la +937 elif la == '/': +938 consumed.append(la) # ['/', '*', ..., '*', '/'] +939 la = next(it, '') +940 return True, consumed, la +941 else: +942 consumed.append(la) # ['/', '*', ..., '*', X] +943 la = next(it, '') +944 continue +945 +946 else: +947 consumed.append(la) # ['/', '*', ..., X] +948 la = next(it, '') +949 continue +950 +951 else: +952 return False, consumed, la +953 +954 +955def _unexpected_character(la: str) -> ValueError: +956 if la: +957 return ValueError(f'Unexpected character: {la!r}') +958 +959 return ValueError('Unexpected end of file') +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/outer_parser.html b/pyk/_modules/pyk/kast/outer_parser.html new file mode 100644 index 00000000000..91d7953c1ec --- /dev/null +++ b/pyk/_modules/pyk/kast/outer_parser.html @@ -0,0 +1,537 @@ + + + + + + pyk.kast.outer_parser — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.outer_parser

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from ..dequote import dequote_string
+  6from .outer_lexer import _EOF_TOKEN, TokenType, outer_lexer
+  7from .outer_syntax import (
+  8    EMPTY_ATT,
+  9    Alias,
+ 10    Assoc,
+ 11    Att,
+ 12    Claim,
+ 13    Config,
+ 14    Context,
+ 15    Definition,
+ 16    Import,
+ 17    Lexical,
+ 18    Module,
+ 19    NonTerminal,
+ 20    PriorityBlock,
+ 21    Production,
+ 22    Require,
+ 23    Rule,
+ 24    Sort,
+ 25    SortDecl,
+ 26    SyntaxAssoc,
+ 27    SyntaxDecl,
+ 28    SyntaxDefn,
+ 29    SyntaxLexical,
+ 30    SyntaxPriority,
+ 31    SyntaxSynonym,
+ 32    Terminal,
+ 33    UserList,
+ 34)
+ 35
+ 36if TYPE_CHECKING:
+ 37    from collections.abc import Collection, Iterable, Iterator
+ 38    from pathlib import Path
+ 39    from typing import Final
+ 40
+ 41    from .outer_lexer import Token
+ 42    from .outer_syntax import ProductionItem, ProductionLike, Sentence, StringSentence, SyntaxSentence
+ 43
+ 44
+ 45_STRING_SENTENCE: Final = {
+ 46    TokenType.KW_ALIAS.value: Alias,
+ 47    TokenType.KW_CLAIM.value: Claim,
+ 48    TokenType.KW_CONFIG.value: Config,
+ 49    TokenType.KW_CONTEXT.value: Context,
+ 50    TokenType.KW_RULE.value: Rule,
+ 51}
+ 52
+ 53_ASSOC_TOKENS: Final = (TokenType.KW_LEFT, TokenType.KW_RIGHT, TokenType.KW_NONASSOC)
+ 54_PRODUCTION_TOKENS: Final = (TokenType.ID_LOWER, TokenType.ID_UPPER, TokenType.STRING, TokenType.REGEX)
+ 55_PRODUCTION_ITEM_TOKENS: Final = (TokenType.STRING, TokenType.ID_LOWER, TokenType.ID_UPPER)
+ 56_ID_TOKENS: Final = (TokenType.ID_LOWER, TokenType.ID_UPPER)
+ 57_SIMPLE_BUBBLE_TOKENS: Final = (TokenType.KW_CLAIM, TokenType.KW_CONFIG, TokenType.KW_RULE)
+ 58_SORT_DECL_TOKENS: Final = (TokenType.LBRACE, TokenType.ID_UPPER)
+ 59_USER_LIST_IDS: Final = ('List', 'NeList')
+ 60
+ 61
+
+[docs] + 62class OuterParser: + 63 _lexer: Iterator[Token] + 64 _la: Token + 65 _la2: Token + 66 _source: Path | None + 67 + 68 def __init__(self, it: Iterable[str], source: Path | None = None): + 69 self._lexer = outer_lexer(it) + 70 self._la = next(self._lexer) + 71 self._la2 = next(self._lexer, _EOF_TOKEN) + 72 self._source = source + 73 + 74 def _consume(self) -> str: + 75 res = self._la.text + 76 self._la, self._la2 = self._la2, next(self._lexer, _EOF_TOKEN) + 77 return res + 78 + 79 def _error_location_string(self, t: Token) -> str: + 80 if not self._source: + 81 return '' + 82 return f'{self._source}:{t.loc.line}:{t.loc.col}: ' + 83 + 84 def _unexpected_token(self, token: Token, expected_types: Iterable[TokenType] = ()) -> ValueError: + 85 location = '' + 86 message = f'Unexpected token: {token.type.name}' + 87 if self._source: + 88 location = f'{self._source}:{token.loc.line}:{token.loc.col}: ' + 89 if expected_types: + 90 expected = ', '.join(sorted(token_type.name for token_type in expected_types)) + 91 message = f'Expected {expected}, got: {token.type.name}' + 92 return ValueError(f'{location}{message}') + 93 + 94 def _match(self, token_type: TokenType) -> str: + 95 if self._la.type != token_type: + 96 raise self._unexpected_token(self._la, (token_type,)) + 97 # _consume() inlined for efficiency + 98 res = self._la.text + 99 self._la, self._la2 = self._la2, next(self._lexer, _EOF_TOKEN) +100 return res +101 +102 def _match_any(self, token_types: Collection[TokenType]) -> str: +103 if self._la.type not in token_types: +104 raise self._unexpected_token(self._la, token_types) +105 # _consume() inlined for efficiency +106 res = self._la.text +107 self._la, self._la2 = self._la2, next(self._lexer, _EOF_TOKEN) +108 return res +109 +
+[docs] +110 def definition(self) -> Definition: +111 requires: list[Require] = [] +112 while self._la.type is TokenType.KW_REQUIRES: +113 requires.append(self.require()) +114 +115 modules: list[Module] = [] +116 while self._la.type is TokenType.KW_MODULE: +117 modules.append(self.module()) +118 +119 return Definition(modules, requires)
+ +120 +
+[docs] +121 def require(self) -> Require: +122 self._match(TokenType.KW_REQUIRES) +123 path = _dequote_string(self._match(TokenType.STRING)) +124 return Require(path)
+ +125 +
+[docs] +126 def module(self) -> Module: +127 begin_loc = self._la.loc +128 +129 self._match(TokenType.KW_MODULE) +130 +131 name = self._match(TokenType.MODNAME) +132 att = self._maybe_att() +133 +134 imports: list[Import] = [] +135 while self._la.type is TokenType.KW_IMPORTS: +136 imports.append(self.importt()) +137 +138 sentences: list[Sentence] = [] +139 while self._la.type is not TokenType.KW_ENDMODULE: +140 sentences.append(self.sentence()) +141 +142 end_loc = self._la.loc + self._la.text +143 self._consume() +144 +145 return Module(name, sentences, imports, att, source=self._source, location=(*begin_loc, *end_loc))
+ +146 +
+[docs] +147 def importt(self) -> Import: +148 self._match(TokenType.KW_IMPORTS) +149 +150 public = True +151 if self._la.type is TokenType.KW_PRIVATE: +152 public = False +153 self._consume() +154 elif self._la.type is TokenType.KW_PUBLIC: +155 self._consume() +156 +157 module_name = self._match(TokenType.MODNAME) +158 +159 return Import(module_name, public=public)
+ +160 +
+[docs] +161 def sentence(self) -> Sentence: +162 if self._la.type is TokenType.KW_SYNTAX: +163 return self.syntax_sentence() +164 +165 return self.string_sentence()
+ +166 +
+[docs] +167 def syntax_sentence(self) -> SyntaxSentence: +168 self._match(TokenType.KW_SYNTAX) +169 +170 if self._la.type in _SORT_DECL_TOKENS: +171 decl = self._sort_decl() +172 +173 if self._la.type is TokenType.EQ: +174 self._consume() +175 sort = self._sort() +176 att = self._maybe_att() +177 return SyntaxSynonym(decl, sort, att) +178 +179 if self._la.type is TokenType.DCOLONEQ: +180 self._consume() +181 blocks: list[PriorityBlock] = [] +182 blocks.append(self._priority_block()) +183 while self._la.type is TokenType.GT: +184 self._consume() +185 blocks.append(self._priority_block()) +186 return SyntaxDefn(decl, blocks) +187 +188 att = self._maybe_att() +189 return SyntaxDecl(decl, att) +190 +191 if self._la.type is TokenType.KW_PRIORITY: +192 self._consume() +193 groups: list[list[str]] = [] +194 group: list[str] = [] +195 group.append(self._match(TokenType.KLABEL)) +196 while self._la.type is TokenType.KLABEL: +197 group.append(self._consume()) +198 groups.append(group) +199 while self._la.type is TokenType.GT: +200 self._consume() +201 group = [] +202 group.append(self._match(TokenType.KLABEL)) +203 while self._la.type is TokenType.KLABEL: +204 group.append(self._consume()) +205 groups.append(group) +206 return SyntaxPriority(groups) +207 +208 if self._la.type in _ASSOC_TOKENS: +209 assoc = Assoc(self._consume()) +210 klabels: list[str] = [] +211 klabels.append(self._match(TokenType.KLABEL)) +212 while self._la.type is TokenType.KLABEL: +213 klabels.append(self._consume()) +214 return SyntaxAssoc(assoc, klabels) +215 +216 if self._la.type is TokenType.KW_LEXICAL: +217 self._consume() +218 name = self._match(TokenType.ID_UPPER) +219 self._match(TokenType.EQ) +220 regex = _dequote_regex(self._match(TokenType.REGEX)) +221 return SyntaxLexical(name, regex) +222 +223 raise self._unexpected_token(self._la)
+ +224 +225 def _sort_decl(self) -> SortDecl: +226 params: list[str] = [] +227 if self._la.type is TokenType.LBRACE: +228 self._consume() +229 params.append(self._match(TokenType.ID_UPPER)) +230 while self._la.type is TokenType.COMMA: +231 self._consume() +232 params.append(self._match(TokenType.ID_UPPER)) +233 self._match(TokenType.RBRACE) +234 +235 name = self._match(TokenType.ID_UPPER) +236 +237 args: list[str] = [] +238 if self._la.type is TokenType.LBRACE: +239 self._consume() +240 args.append(self._match(TokenType.ID_UPPER)) +241 while self._la.type is TokenType.COMMA: +242 self._consume() +243 args.append(self._match(TokenType.ID_UPPER)) +244 self._match(TokenType.RBRACE) +245 +246 return SortDecl(name, params, args) +247 +248 def _sort(self) -> Sort: +249 name = self._match(TokenType.ID_UPPER) +250 +251 args: list[int | str] = [] +252 if self._la.type is TokenType.LBRACE: +253 self._consume() +254 if self._la.type is TokenType.NAT: +255 args.append(int(self._consume())) +256 else: +257 args.append(self._match(TokenType.ID_UPPER)) +258 +259 while self._la.type is TokenType.COMMA: +260 self._consume() +261 if self._la.type is TokenType.NAT: +262 args.append(int(self._consume())) +263 else: +264 args.append(self._match(TokenType.ID_UPPER)) +265 +266 self._match(TokenType.RBRACE) +267 +268 return Sort(name, args) +269 +270 def _priority_block(self) -> PriorityBlock: +271 assoc: Assoc | None +272 if self._la.type in _ASSOC_TOKENS: +273 assoc = Assoc(self._consume()) +274 self._match(TokenType.COLON) +275 else: +276 assoc = None +277 +278 productions: list[ProductionLike] = [] +279 productions.append(self._production_like()) +280 while self._la.type is TokenType.VBAR: +281 self._consume() +282 productions.append(self._production_like()) +283 return PriorityBlock(productions, assoc) +284 +285 def _production_like(self) -> ProductionLike: +286 if ( +287 self._la2.type is TokenType.LBRACE +288 and self._la.type is TokenType.ID_UPPER +289 and self._la.text in _USER_LIST_IDS +290 ): +291 non_empty = self._la.text[0] == 'N' +292 self._consume() +293 self._consume() +294 sort = self._match(TokenType.ID_UPPER) +295 self._match(TokenType.COMMA) +296 sep = _dequote_string(self._match(TokenType.STRING)) +297 self._match(TokenType.RBRACE) +298 att = self._maybe_att() +299 return UserList(sort, sep, non_empty, att) +300 +301 items: list[ProductionItem] = [] +302 +303 if self._la2.type is TokenType.LPAREN: +304 items.append(Terminal(self._match_any(_ID_TOKENS))) +305 items.append(Terminal(self._consume())) +306 while self._la.type is not TokenType.RPAREN: +307 items.append(self._non_terminal()) +308 if self._la.type is TokenType.COMMA: +309 items.append(Terminal(self._consume())) +310 continue +311 break +312 items.append(Terminal(self._match(TokenType.RPAREN))) +313 +314 else: +315 items.append(self._production_item()) +316 while self._la.type in _PRODUCTION_ITEM_TOKENS: +317 items.append(self._production_item()) +318 +319 att = self._maybe_att() +320 return Production(items, att) +321 +322 def _production_item(self) -> ProductionItem: +323 if self._la.type is TokenType.STRING: +324 return Terminal(_dequote_string(self._consume())) +325 +326 if self._la.type is TokenType.REGEX: +327 return Lexical(_dequote_regex(self._consume())) +328 +329 return self._non_terminal() +330 +331 def _non_terminal(self) -> NonTerminal: +332 name: str +333 if self._la.type is TokenType.ID_LOWER or self._la2.type is TokenType.COLON: +334 name = self._match_any(_ID_TOKENS) +335 self._match(TokenType.COLON) +336 else: +337 name = '' +338 +339 sort = self._sort() +340 return NonTerminal(sort, name) +341 +
+[docs] +342 def string_sentence(self) -> StringSentence: +343 cls_key = self._la.type.value +344 +345 if self._la.type is TokenType.KW_CONTEXT: +346 self._consume() +347 if self._la.type is TokenType.KW_ALIAS: +348 cls_key = self._la.type.value +349 self._consume() +350 else: +351 self._match_any(_SIMPLE_BUBBLE_TOKENS) +352 +353 cls = _STRING_SENTENCE[cls_key] +354 +355 label: str +356 if self._la.type == TokenType.LBRACK: +357 self._consume() +358 label = self._match(TokenType.RULE_LABEL) +359 self._match(TokenType.RBRACK) +360 self._match(TokenType.COLON) +361 else: +362 label = '' +363 +364 bubble = self._match(TokenType.BUBBLE) +365 att = self._maybe_att() +366 return cls(bubble, label, att)
+ +367 +368 def _maybe_att(self) -> Att: +369 items: list[tuple[str, str]] = [] +370 +371 if self._la.type is not TokenType.LBRACK: +372 return EMPTY_ATT +373 +374 self._consume() +375 +376 while True: +377 key = self._match(TokenType.ATTR_KEY) +378 +379 value: str +380 if self._la.type == TokenType.LPAREN: +381 self._consume() +382 if self._la.type is TokenType.ATTR_CONTENT: +383 value = self._consume() +384 else: +385 value = _dequote_string(self._match(TokenType.STRING)) +386 self._match(TokenType.RPAREN) +387 else: +388 value = '' +389 +390 items.append((key, value)) +391 +392 if self._la.type != TokenType.COMMA: +393 break +394 else: +395 self._consume() +396 +397 self._match(TokenType.RBRACK) +398 +399 return Att(items)
+ +400 +401 +402def _dequote_string(s: str) -> str: +403 return dequote_string(s[1:-1]) +404 +405 +406def _dequote_regex(s: str) -> str: +407 return dequote_string(s[2:-1]) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/outer_syntax.html b/pyk/_modules/pyk/kast/outer_syntax.html new file mode 100644 index 00000000000..ab06032b212 --- /dev/null +++ b/pyk/_modules/pyk/kast/outer_syntax.html @@ -0,0 +1,494 @@ + + + + + + pyk.kast.outer_syntax — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.outer_syntax

+  1from __future__ import annotations
+  2
+  3from abc import ABC
+  4from collections.abc import Sequence
+  5from dataclasses import dataclass, field
+  6from enum import Enum
+  7from typing import TYPE_CHECKING, final, overload
+  8
+  9if TYPE_CHECKING:
+ 10    from collections.abc import Iterable
+ 11    from pathlib import Path
+ 12    from typing import Any, Final
+ 13
+ 14
+
+[docs] + 15@dataclass(frozen=True) + 16class AST(ABC): + 17 source: Path | None = field(default=None, kw_only=True) + 18 location: tuple[int, int, int, int] | None = field(default=None, kw_only=True)
+ + 19 + 20 +
+[docs] + 21@final + 22@dataclass(frozen=True) + 23class Att(AST, Sequence[tuple[str, str]]): + 24 items: tuple[tuple[str, str], ...] + 25 + 26 def __init__(self, items: Iterable[tuple[str, str]] = ()): + 27 object.__setattr__(self, 'items', tuple(items)) + 28 + 29 @overload + 30 def __getitem__(self, key: int) -> tuple[str, str]: ... + 31 + 32 @overload + 33 def __getitem__(self, key: slice) -> tuple[tuple[str, str], ...]: ... + 34 + 35 def __getitem__(self, key: Any) -> Any: + 36 return self.items[key] + 37 + 38 def __len__(self) -> int: + 39 return len(self.items)
+ + 40 + 41 + 42EMPTY_ATT: Final = Att() + 43 + 44 +
+[docs] + 45class Sentence(AST, ABC): ...
+ + 46 + 47 +
+[docs] + 48class SyntaxSentence(Sentence, ABC): ...
+ + 49 + 50 +
+[docs] + 51class Assoc(Enum): + 52 LEFT = 'left' + 53 RIGHT = 'right' + 54 NON_ASSOC = 'non-assoc'
+ + 55 + 56 +
+[docs] + 57@final + 58@dataclass(frozen=True) + 59class SortDecl(AST): + 60 name: str + 61 params: tuple[str, ...] + 62 args: tuple[str, ...] + 63 + 64 def __init__(self, name: str, params: Iterable[str] = (), args: Iterable[str] = ()): + 65 object.__setattr__(self, 'name', name) + 66 object.__setattr__(self, 'params', tuple(params)) + 67 object.__setattr__(self, 'args', tuple(args))
+ + 68 + 69 +
+[docs] + 70@final + 71@dataclass(frozen=True) + 72class Sort(AST): + 73 name: str + 74 args: tuple[int | str, ...] + 75 + 76 def __init__(self, name: str, args: Iterable[int | str] = ()): + 77 object.__setattr__(self, 'name', name) + 78 object.__setattr__(self, 'args', tuple(args))
+ + 79 + 80 +
+[docs] + 81@final + 82@dataclass(frozen=True) + 83class SyntaxDecl(SyntaxSentence): + 84 decl: SortDecl + 85 att: Att = field(default=EMPTY_ATT)
+ + 86 + 87 +
+[docs] + 88@final + 89@dataclass(frozen=True) + 90class SyntaxDefn(SyntaxSentence): + 91 decl: SortDecl + 92 blocks: tuple[PriorityBlock, ...] + 93 + 94 def __init__(self, decl: SortDecl, blocks: Iterable[PriorityBlock] = ()): + 95 object.__setattr__(self, 'decl', decl) + 96 object.__setattr__(self, 'blocks', tuple(blocks))
+ + 97 + 98 +
+[docs] + 99@final +100@dataclass(frozen=True) +101class PriorityBlock(AST): +102 productions: tuple[ProductionLike, ...] +103 assoc: Assoc | None +104 +105 def __init__(self, productions: Iterable[ProductionLike], assoc: Assoc | None = None): +106 object.__setattr__(self, 'productions', tuple(productions)) +107 object.__setattr__(self, 'assoc', assoc)
+ +108 +109 +
+[docs] +110class ProductionLike(AST, ABC): +111 att: Att
+ +112 +113 +
+[docs] +114@final +115@dataclass(frozen=True) +116class Production(ProductionLike): +117 items: tuple[ProductionItem, ...] +118 att: Att = field(default=EMPTY_ATT) +119 +120 def __init__(self, items: Iterable[ProductionItem], att: Att = EMPTY_ATT): +121 object.__setattr__(self, 'items', tuple(items)) +122 object.__setattr__(self, 'att', att)
+ +123 +124 +
+[docs] +125class ProductionItem(AST, ABC): ...
+ +126 +127 +
+[docs] +128@final +129@dataclass(frozen=True) +130class Terminal(ProductionItem): +131 value: str
+ +132 +133 +
+[docs] +134@final +135@dataclass(frozen=True) +136class NonTerminal(ProductionItem): +137 sort: Sort +138 name: str = field(default='')
+ +139 +140 +
+[docs] +141@final +142@dataclass(frozen=True) +143class Lexical(ProductionItem): +144 regex: str
+ +145 +146 +
+[docs] +147@final +148@dataclass(frozen=True) +149class UserList(ProductionLike): +150 sort: str +151 sep: str +152 non_empty: bool = field(default=False) +153 att: Att = field(default=EMPTY_ATT)
+ +154 +155 +
+[docs] +156@final +157@dataclass(frozen=True) +158class SyntaxSynonym(SyntaxSentence): +159 new: SortDecl +160 old: Sort +161 att: Att = field(default=EMPTY_ATT)
+ +162 +163 +
+[docs] +164@final +165@dataclass(frozen=True) +166class SyntaxPriority(SyntaxSentence): +167 groups: tuple[tuple[str, ...], ...] +168 +169 def __init__(self, groups: Iterable[Iterable[str]]): +170 object.__setattr__(self, 'groups', tuple(tuple(group) for group in groups))
+ +171 +172 +
+[docs] +173@final +174@dataclass(frozen=True) +175class SyntaxAssoc(SyntaxSentence): +176 assoc: Assoc +177 klabels: tuple[str, ...] +178 +179 def __init__(self, assoc: Assoc, klabels: Iterable[str]): +180 object.__setattr__(self, 'assoc', assoc) +181 object.__setattr__(self, 'klabels', tuple(klabels))
+ +182 +183 +
+[docs] +184@final +185@dataclass(frozen=True) +186class SyntaxLexical(SyntaxSentence): +187 name: str +188 regex: str
+ +189 +190 +
+[docs] +191class StringSentence(Sentence, ABC): +192 _prefix: str +193 +194 bubble: str +195 label: str +196 att: Att
+ +197 +198 +
+[docs] +199@final +200@dataclass(frozen=True) +201class Rule(StringSentence): +202 _prefix = 'rule' +203 +204 bubble: str +205 label: str = field(default='') +206 att: Att = field(default=EMPTY_ATT)
+ +207 +208 +
+[docs] +209@final +210@dataclass(frozen=True) +211class Claim(StringSentence): +212 _prefix = 'claim' +213 +214 bubble: str +215 label: str = field(default='') +216 att: Att = field(default=EMPTY_ATT)
+ +217 +218 +
+[docs] +219@final +220@dataclass(frozen=True) +221class Config(StringSentence): +222 _prefix = 'configuration' +223 +224 bubble: str +225 label: str = field(default='') +226 att: Att = field(default=EMPTY_ATT)
+ +227 +228 +
+[docs] +229@final +230@dataclass(frozen=True) +231class Context(StringSentence): +232 _prefix = 'context' +233 +234 bubble: str +235 label: str = field(default='') +236 att: Att = field(default=EMPTY_ATT)
+ +237 +238 +
+[docs] +239@final +240@dataclass(frozen=True) +241class Alias(StringSentence): +242 _prefix = 'context alias' +243 +244 bubble: str +245 label: str = field(default='') +246 att: Att = field(default=EMPTY_ATT)
+ +247 +248 +
+[docs] +249@final +250@dataclass(frozen=True) +251class Import(AST): +252 module_name: str +253 public: bool = field(default=True, kw_only=True)
+ +254 +255 +
+[docs] +256@final +257@dataclass(frozen=True) +258class Module(AST): +259 name: str +260 sentences: tuple[Sentence, ...] +261 imports: tuple[Import, ...] +262 att: Att +263 +264 def __init__( +265 self, +266 name: str, +267 sentences: Iterable[Sentence] = (), +268 imports: Iterable[Import] = (), +269 att: Att = EMPTY_ATT, +270 source: Path | None = None, +271 location: tuple[int, int, int, int] | None = None, +272 ): +273 object.__setattr__(self, 'name', name) +274 object.__setattr__(self, 'sentences', tuple(sentences)) +275 object.__setattr__(self, 'imports', tuple(imports)) +276 object.__setattr__(self, 'att', att) +277 object.__setattr__(self, 'source', source) +278 object.__setattr__(self, 'location', location)
+ +279 +280 +
+[docs] +281@final +282@dataclass(frozen=True) +283class Require(AST): +284 path: str
+ +285 +286 +
+[docs] +287@final +288@dataclass(frozen=True) +289class Definition(AST): +290 modules: tuple[Module, ...] +291 requires: tuple[Require, ...] +292 +293 def __init__(self, modules: Iterable[Module] = (), requires: Iterable[Require] = ()): +294 object.__setattr__(self, 'modules', tuple(modules)) +295 object.__setattr__(self, 'requires', tuple(requires))
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/parser.html b/pyk/_modules/pyk/kast/parser.html new file mode 100644 index 00000000000..13e4fa79c3c --- /dev/null +++ b/pyk/_modules/pyk/kast/parser.html @@ -0,0 +1,250 @@ + + + + + + pyk.kast.parser — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.parser

+  1from __future__ import annotations
+  2
+  3import re
+  4from typing import TYPE_CHECKING
+  5
+  6from .inner import KApply, KLabel, KSequence, KToken, KVariable
+  7from .lexer import TokenType, lexer
+  8
+  9if TYPE_CHECKING:
+ 10    from collections.abc import Iterable, Iterator
+ 11    from typing import Final
+ 12
+ 13    from . import KInner
+ 14    from .lexer import Token
+ 15
+ 16
+ 17TT = TokenType
+ 18
+ 19
+
+[docs] + 20class KAstParser: + 21 _it: Iterator[Token] + 22 _la: Token + 23 + 24 def __init__(self, it: Iterable[str]): + 25 self._it = lexer(it) + 26 self._la = next(self._it) + 27 + 28 def _consume(self) -> str: + 29 text = self._la.text + 30 self._la = next(self._it) + 31 return text + 32 + 33 def _match(self, expected: TokenType) -> str: + 34 if self._la.type is not expected: + 35 raise self._unexpected_token(self._la, [expected]) + 36 text = self._la.text + 37 self._la = next(self._it) + 38 return text + 39 + 40 @staticmethod + 41 def _unexpected_token(token: Token, expected: Iterable[TokenType] = ()) -> ValueError: + 42 types = sorted(expected, key=lambda typ: typ.name) + 43 + 44 if not types: + 45 return ValueError(f'Unexpected token: {token.text!r}') + 46 + 47 if len(types) == 1: + 48 typ = types[0] + 49 return ValueError(f'Unexpected token: {token.text!r}. Expected: {typ.name}') + 50 + 51 type_str = ', '.join(typ.name for typ in types) + 52 return ValueError(f'Unexpected token: {token.text!r}. Expected one of: {type_str}') + 53 +
+[docs] + 54 def eof(self) -> bool: + 55 return self._la.type is TT.EOF
+ + 56 +
+[docs] + 57 def k(self) -> KInner: + 58 if self._la.type is TT.DOTK: + 59 self._consume() + 60 return KSequence() + 61 + 62 items = [self.kitem()] + 63 while self._la.type is TT.KSEQ: + 64 self._consume() + 65 items.append(self.kitem()) + 66 + 67 if len(items) > 1: + 68 return KSequence(items) + 69 + 70 return items[0]
+ + 71 +
+[docs] + 72 def kitem(self) -> KInner: + 73 match self._la.type: + 74 case TT.VARIABLE: + 75 name = self._consume() + 76 sort: str | None = None + 77 if self._la.type is TT.COLON: + 78 self._consume() + 79 sort = self._match(TT.SORT) + 80 return KVariable(name, sort) + 81 + 82 case TT.TOKEN: + 83 self._consume() + 84 self._match(TT.LPAREN) + 85 token = _unquote(self._match(TT.STRING)) + 86 self._match(TT.COMMA) + 87 sort = _unquote(self._match(TT.STRING)) + 88 self._match(TT.RPAREN) + 89 return KToken(token, sort) + 90 + 91 case TT.ID | TT.KLABEL: + 92 label = self.klabel() + 93 self._match(TT.LPAREN) + 94 args = self.klist() + 95 self._match(TT.RPAREN) + 96 return KApply(label, args) + 97 + 98 case _: + 99 raise self._unexpected_token(self._la, [TT.VARIABLE, TT.TOKEN, TT.ID, TT.KLABEL])
+ +100 +
+[docs] +101 def klabel(self) -> KLabel: +102 match self._la.type: +103 case TT.ID: +104 return KLabel(self._consume()) +105 case TT.KLABEL: +106 return KLabel(_unquote(self._consume())) +107 case _: +108 raise self._unexpected_token(self._la, [TT.ID, TT.KLABEL])
+ +109 +
+[docs] +110 def klist(self) -> list[KInner]: +111 if self._la.type is TT.DOTKLIST: +112 self._consume() +113 return [] +114 +115 res = [self.k()] +116 while self._la.type is TT.COMMA: +117 self._consume() +118 res.append(self.k()) +119 return res
+
+ +120 +121 +122_UNQUOTE_PATTERN: Final = re.compile(r'\\.') +123 +124 +125def _unquote(s: str) -> str: +126 return _UNQUOTE_PATTERN.sub(lambda m: m.group(0)[1], s[1:-1]) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/pretty.html b/pyk/_modules/pyk/kast/pretty.html new file mode 100644 index 00000000000..b14fa6f9e32 --- /dev/null +++ b/pyk/_modules/pyk/kast/pretty.html @@ -0,0 +1,551 @@ + + + + + + pyk.kast.pretty — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.pretty

+  1from __future__ import annotations
+  2
+  3import logging
+  4from collections.abc import Callable
+  5from functools import cached_property
+  6from typing import TYPE_CHECKING
+  7
+  8from ..prelude.kbool import TRUE
+  9from .att import Atts, KAtt
+ 10from .inner import KApply, KAs, KInner, KLabel, KRewrite, KSequence, KSort, KToken, KVariable
+ 11from .manip import flatten_label, sort_ac_collections, undo_aliases
+ 12from .outer import (
+ 13    KBubble,
+ 14    KClaim,
+ 15    KContext,
+ 16    KDefinition,
+ 17    KFlatModule,
+ 18    KImport,
+ 19    KNonTerminal,
+ 20    KOuter,
+ 21    KProduction,
+ 22    KRegexTerminal,
+ 23    KRequire,
+ 24    KRule,
+ 25    KRuleLike,
+ 26    KSortSynonym,
+ 27    KSyntaxAssociativity,
+ 28    KSyntaxLexical,
+ 29    KSyntaxPriority,
+ 30    KSyntaxSort,
+ 31    KTerminal,
+ 32)
+ 33
+ 34if TYPE_CHECKING:
+ 35    from collections.abc import Iterable
+ 36    from typing import Any, Final, TypeVar
+ 37
+ 38    from .kast import KAst
+ 39
+ 40    RL = TypeVar('RL', bound='KRuleLike')
+ 41
+ 42_LOGGER: Final = logging.getLogger(__name__)
+ 43
+ 44SymbolTable = dict[str, Callable[..., str]]
+ 45
+ 46
+
+[docs] + 47class PrettyPrinter: + 48 definition: KDefinition + 49 _extra_unparsing_modules: Iterable[KFlatModule] + 50 _patch_symbol_table: Callable[[SymbolTable], None] | None + 51 _unalias: bool + 52 _sort_collections: bool + 53 + 54 def __init__( + 55 self, + 56 definition: KDefinition, + 57 extra_unparsing_modules: Iterable[KFlatModule] = (), + 58 patch_symbol_table: Callable[[SymbolTable], None] | None = None, + 59 unalias: bool = True, + 60 sort_collections: bool = False, + 61 ): + 62 self.definition = definition + 63 self._extra_unparsing_modules = extra_unparsing_modules + 64 self._patch_symbol_table = patch_symbol_table + 65 self._unalias = unalias + 66 self._sort_collections = sort_collections + 67 + 68 @cached_property + 69 def symbol_table(self) -> SymbolTable: + 70 symb_table = build_symbol_table( + 71 self.definition, + 72 extra_modules=self._extra_unparsing_modules, + 73 opinionated=True, + 74 ) + 75 if self._patch_symbol_table is not None: + 76 self._patch_symbol_table(symb_table) + 77 return symb_table + 78 +
+[docs] + 79 def print(self, kast: KAst) -> str: + 80 """Print out KAST terms/outer syntax. + 81 + 82 Args: + 83 kast: KAST term to print. + 84 + 85 Returns: + 86 Best-effort string representation of KAST term. + 87 """ + 88 _LOGGER.debug(f'Unparsing: {kast}') + 89 if type(kast) is KAtt: + 90 return self._print_katt(kast) + 91 if type(kast) is KSort: + 92 return self._print_ksort(kast) + 93 if type(kast) is KLabel: + 94 return self._print_klabel(kast) + 95 elif isinstance(kast, KOuter): + 96 return self._print_kouter(kast) + 97 elif isinstance(kast, KInner): + 98 if self._unalias: + 99 kast = undo_aliases(self.definition, kast) +100 if self._sort_collections: +101 kast = sort_ac_collections(kast) +102 return self._print_kinner(kast) +103 raise AssertionError(f'Error unparsing: {kast}')
+ +104 +105 def _print_kouter(self, kast: KOuter) -> str: +106 match kast: +107 case KTerminal(): +108 return self._print_kterminal(kast) +109 case KRegexTerminal(): +110 return self._print_kregexterminal(kast) +111 case KNonTerminal(): +112 return self._print_knonterminal(kast) +113 case KProduction(): +114 return self._print_kproduction(kast) +115 case KSyntaxSort(): +116 return self._print_ksyntaxsort(kast) +117 case KSortSynonym(): +118 return self._print_ksortsynonym(kast) +119 case KSyntaxLexical(): +120 return self._print_ksyntaxlexical(kast) +121 case KSyntaxAssociativity(): +122 return self._print_ksyntaxassociativity(kast) +123 case KSyntaxPriority(): +124 return self._print_ksyntaxpriority(kast) +125 case KBubble(): +126 return self._print_kbubble(kast) +127 case KRule(): +128 return self._print_krule(kast) +129 case KClaim(): +130 return self._print_kclaim(kast) +131 case KContext(): +132 return self._print_kcontext(kast) +133 case KImport(): +134 return self._print_kimport(kast) +135 case KFlatModule(): +136 return self._print_kflatmodule(kast) +137 case KRequire(): +138 return self._print_krequire(kast) +139 case KDefinition(): +140 return self._print_kdefinition(kast) +141 case _: +142 raise AssertionError(f'Error unparsing: {kast}') +143 +144 def _print_kinner(self, kast: KInner) -> str: +145 match kast: +146 case KVariable(): +147 return self._print_kvariable(kast) +148 case KToken(): +149 return self._print_ktoken(kast) +150 case KApply(): +151 return self._print_kapply(kast) +152 case KAs(): +153 return self._print_kas(kast) +154 case KRewrite(): +155 return self._print_krewrite(kast) +156 case KSequence(): +157 return self._print_ksequence(kast) +158 case _: +159 raise AssertionError(f'Error unparsing: {kast}') +160 +161 def _print_ksort(self, ksort: KSort) -> str: +162 return ksort.name +163 +164 def _print_klabel(self, klabel: KLabel) -> str: +165 return klabel.name +166 +167 def _print_kvariable(self, kvariable: KVariable) -> str: +168 sort = kvariable.sort +169 if not sort: +170 return kvariable.name +171 return kvariable.name + ':' + sort.name +172 +173 def _print_ktoken(self, ktoken: KToken) -> str: +174 return ktoken.token +175 +176 def _print_kapply(self, kapply: KApply) -> str: +177 label = kapply.label.name +178 args = kapply.args +179 unparsed_args = [self._print_kinner(arg) for arg in args] +180 if kapply.is_cell: +181 cell_contents = '\n'.join(unparsed_args).rstrip() +182 cell_str = label + '\n' + indent(cell_contents) + '\n</' + label[1:] +183 return cell_str.rstrip() +184 unparser = self._applied_label_str(label) if label not in self.symbol_table else self.symbol_table[label] +185 return unparser(*unparsed_args) +186 +187 def _print_kas(self, kas: KAs) -> str: +188 pattern_str = self._print_kinner(kas.pattern) +189 alias_str = self._print_kinner(kas.alias) +190 return pattern_str + ' #as ' + alias_str +191 +192 def _print_krewrite(self, krewrite: KRewrite) -> str: +193 lhs_str = self._print_kinner(krewrite.lhs) +194 rhs_str = self._print_kinner(krewrite.rhs) +195 return '( ' + lhs_str + ' => ' + rhs_str + ' )' +196 +197 def _print_ksequence(self, ksequence: KSequence) -> str: +198 if ksequence.arity == 0: +199 # TODO: Would be nice to say `return self._print_kinner(EMPTY_K)` +200 return '.K' +201 if ksequence.arity == 1: +202 return self._print_kinner(ksequence.items[0]) + ' ~> .K' +203 unparsed_k_seq = '\n~> '.join([self._print_kinner(item) for item in ksequence.items[0:-1]]) +204 if ksequence.items[-1] == KToken('...', KSort('K')): +205 unparsed_k_seq = unparsed_k_seq + '\n' + self._print_kinner(KToken('...', KSort('K'))) +206 else: +207 unparsed_k_seq = unparsed_k_seq + '\n~> ' + self._print_kinner(ksequence.items[-1]) +208 return unparsed_k_seq +209 +210 def _print_kterminal(self, kterminal: KTerminal) -> str: +211 return '"' + kterminal.value + '"' +212 +213 def _print_kregexterminal(self, kregexterminal: KRegexTerminal) -> str: +214 return 'r"' + kregexterminal.regex + '"' +215 +216 def _print_knonterminal(self, knonterminal: KNonTerminal) -> str: +217 return self.print(knonterminal.sort) +218 +219 def _print_kproduction(self, kproduction: KProduction) -> str: +220 if Atts.KLABEL not in kproduction.att and kproduction.klabel: +221 kproduction = kproduction.update_atts([Atts.KLABEL(kproduction.klabel.name)]) +222 syntax_str = 'syntax ' + self.print(kproduction.sort) +223 if kproduction.items: +224 syntax_str += ' ::= ' + ' '.join([self._print_kouter(pi) for pi in kproduction.items]) +225 att_str = self.print(kproduction.att) +226 if att_str: +227 syntax_str += ' ' + att_str +228 return syntax_str +229 +230 def _print_ksyntaxsort(self, ksyntaxsort: KSyntaxSort) -> str: +231 sort_str = self.print(ksyntaxsort.sort) +232 att_str = self.print(ksyntaxsort.att) +233 return 'syntax ' + sort_str + ' ' + att_str +234 +235 def _print_ksortsynonym(self, ksortsynonym: KSortSynonym) -> str: +236 new_sort_str = self.print(ksortsynonym.new_sort) +237 old_sort_str = self.print(ksortsynonym.old_sort) +238 att_str = self.print(ksortsynonym.att) +239 return 'syntax ' + new_sort_str + ' = ' + old_sort_str + ' ' + att_str +240 +241 def _print_ksyntaxlexical(self, ksyntaxlexical: KSyntaxLexical) -> str: +242 name_str = ksyntaxlexical.name +243 regex_str = ksyntaxlexical.regex +244 att_str = self.print(ksyntaxlexical.att) +245 # todo: proper escaping +246 return 'syntax lexical ' + name_str + ' = r"' + regex_str + '" ' + att_str +247 +248 def _print_ksyntaxassociativity(self, ksyntaxassociativity: KSyntaxAssociativity) -> str: +249 assoc_str = ksyntaxassociativity.assoc.value +250 tags_str = ' '.join(ksyntaxassociativity.tags) +251 att_str = self.print(ksyntaxassociativity.att) +252 return 'syntax associativity ' + assoc_str + ' ' + tags_str + ' ' + att_str +253 +254 def _print_ksyntaxpriority(self, ksyntaxpriority: KSyntaxPriority) -> str: +255 priorities_str = ' > '.join([' '.join(group) for group in ksyntaxpriority.priorities]) +256 att_str = self.print(ksyntaxpriority.att) +257 return 'syntax priority ' + priorities_str + ' ' + att_str +258 +259 def _print_kbubble(self, kbubble: KBubble) -> str: +260 body = '// KBubble(' + kbubble.sentence_type + ', ' + kbubble.contents + ')' +261 att_str = self.print(kbubble.att) +262 return body + ' ' + att_str +263 +264 def _print_krule(self, kterm: KRule) -> str: +265 body = '\n '.join(self.print(kterm.body).split('\n')) +266 rule_str = 'rule ' +267 if Atts.LABEL in kterm.att: +268 rule_str = rule_str + '[' + kterm.att[Atts.LABEL] + ']:' +269 rule_str = rule_str + ' ' + body +270 atts_str = self.print(kterm.att) +271 if kterm.requires != TRUE: +272 requires_str = 'requires ' + '\n '.join(self._print_kast_bool(kterm.requires).split('\n')) +273 rule_str = rule_str + '\n ' + requires_str +274 if kterm.ensures != TRUE: +275 ensures_str = 'ensures ' + '\n '.join(self._print_kast_bool(kterm.ensures).split('\n')) +276 rule_str = rule_str + '\n ' + ensures_str +277 return rule_str + '\n ' + atts_str +278 +279 def _print_kclaim(self, kterm: KClaim) -> str: +280 body = '\n '.join(self.print(kterm.body).split('\n')) +281 rule_str = 'claim ' +282 if Atts.LABEL in kterm.att: +283 rule_str = rule_str + '[' + kterm.att[Atts.LABEL] + ']:' +284 rule_str = rule_str + ' ' + body +285 atts_str = self.print(kterm.att) +286 if kterm.requires != TRUE: +287 requires_str = 'requires ' + '\n '.join(self._print_kast_bool(kterm.requires).split('\n')) +288 rule_str = rule_str + '\n ' + requires_str +289 if kterm.ensures != TRUE: +290 ensures_str = 'ensures ' + '\n '.join(self._print_kast_bool(kterm.ensures).split('\n')) +291 rule_str = rule_str + '\n ' + ensures_str +292 return rule_str + '\n ' + atts_str +293 +294 def _print_kcontext(self, kcontext: KContext) -> str: +295 body = indent(self.print(kcontext.body)) +296 context_str = 'context alias ' + body +297 requires_str = '' +298 atts_str = self.print(kcontext.att) +299 if kcontext.requires != TRUE: +300 requires_str = self.print(kcontext.requires) +301 requires_str = 'requires ' + indent(requires_str) +302 return context_str + '\n ' + requires_str + '\n ' + atts_str +303 +304 def _print_katt(self, katt: KAtt) -> str: +305 return katt.pretty +306 +307 def _print_kimport(self, kimport: KImport) -> str: +308 return ' '.join(['imports', ('public' if kimport.public else 'private'), kimport.name]) +309 +310 def _print_kflatmodule(self, kflatmodule: KFlatModule) -> str: +311 name = kflatmodule.name +312 imports = '\n'.join([self._print_kouter(kimport) for kimport in kflatmodule.imports]) +313 sentences = '\n\n'.join([self._print_kouter(sentence) for sentence in kflatmodule.sentences]) +314 contents = imports + '\n\n' + sentences +315 return 'module ' + name + '\n ' + '\n '.join(contents.split('\n')) + '\n\nendmodule' +316 +317 def _print_krequire(self, krequire: KRequire) -> str: +318 return 'requires "' + krequire.require + '"' +319 +320 def _print_kdefinition(self, kdefinition: KDefinition) -> str: +321 requires = '\n'.join([self._print_kouter(require) for require in kdefinition.requires]) +322 modules = '\n\n'.join([self._print_kouter(module) for module in kdefinition.all_modules]) +323 return requires + '\n\n' + modules +324 +325 def _print_kast_bool(self, kast: KAst) -> str: +326 """Print out KAST requires/ensures clause. +327 +328 Args: +329 kast: KAST Bool for requires/ensures clause. +330 +331 Returns: +332 Best-effort string representation of KAST term. +333 """ +334 _LOGGER.debug(f'_print_kast_bool: {kast}') +335 if type(kast) is KApply and kast.label.name in ['_andBool_', '_orBool_']: +336 clauses = [self._print_kast_bool(c) for c in flatten_label(kast.label.name, kast)] +337 head = kast.label.name.replace('_', ' ') +338 if head == ' orBool ': +339 head = ' orBool ' +340 separator = ' ' * (len(head) - 7) +341 spacer = ' ' * len(head) +342 +343 def join_sep(s: str) -> str: +344 return ('\n' + separator).join(s.split('\n')) +345 +346 clauses = ( +347 ['( ' + join_sep(clauses[0])] +348 + [head + '( ' + join_sep(c) for c in clauses[1:]] +349 + [spacer + (')' * len(clauses))] +350 ) +351 return '\n'.join(clauses) +352 else: +353 return self.print(kast) +354 +355 def _applied_label_str(self, symbol: str) -> Callable[..., str]: +356 return lambda *args: symbol + ' ( ' + ' , '.join(args) + ' )'
+ +357 +358 +
+[docs] +359def build_symbol_table( +360 definition: KDefinition, +361 extra_modules: Iterable[KFlatModule] = (), +362 opinionated: bool = False, +363) -> SymbolTable: +364 """Build the unparsing symbol table given a JSON encoded definition. +365 +366 Args: +367 definition: JSON encoded K definition. +368 +369 Returns: +370 Python dictionary mapping klabels to automatically generated unparsers. +371 """ +372 symbol_table = {} +373 all_modules = list(definition.all_modules) + ([] if extra_modules is None else list(extra_modules)) +374 for module in all_modules: +375 for prod in module.syntax_productions: +376 assert prod.klabel +377 label = prod.klabel.name +378 unparser = unparser_for_production(prod) +379 +380 symbol_table[label] = unparser +381 if Atts.SYMBOL in prod.att and Atts.KLABEL in prod.att: +382 symbol_table[prod.att[Atts.KLABEL]] = unparser +383 +384 if opinionated: +385 symbol_table['#And'] = lambda c1, c2: c1 + '\n#And ' + c2 +386 symbol_table['#Or'] = lambda c1, c2: c1 + '\n#Or\n' + indent(c2, size=4) +387 +388 return symbol_table
+ +389 +390 +
+[docs] +391def unparser_for_production(prod: KProduction) -> Callable[..., str]: +392 def _unparser(*args: Any) -> str: +393 index = 0 +394 result = [] +395 num_nonterm = len([item for item in prod.items if type(item) is KNonTerminal]) +396 num_named_nonterm = len([item for item in prod.items if type(item) is KNonTerminal and item.name != None]) +397 for item in prod.items: +398 if type(item) is KTerminal: +399 result.append(item.value) +400 elif type(item) is KNonTerminal and index < len(args): +401 if num_nonterm == num_named_nonterm: +402 if index == 0: +403 result.append('...') +404 result.append(f'{item.name}:') +405 result.append(args[index]) +406 index += 1 +407 return ' '.join(result) +408 +409 return _unparser
+ +410 +411 +
+[docs] +412def indent(text: str, size: int = 2) -> str: +413 return '\n'.join([(' ' * size) + line for line in text.split('\n')])
+ +414 +415 +
+[docs] +416def paren(printer: Callable[..., str]) -> Callable[..., str]: +417 return lambda *args: '( ' + printer(*args) + ' )'
+ +418 +419 +
+[docs] +420def assoc_with_unit(assoc_join: str, unit: str) -> Callable[..., str]: +421 def _assoc_with_unit(*args: str) -> str: +422 return assoc_join.join(arg for arg in args if arg != unit) +423 +424 return _assoc_with_unit
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/rewrite.html b/pyk/_modules/pyk/kast/rewrite.html new file mode 100644 index 00000000000..92c1c9f916d --- /dev/null +++ b/pyk/_modules/pyk/kast/rewrite.html @@ -0,0 +1,166 @@ + + + + + + pyk.kast.rewrite — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.rewrite

+ 1from __future__ import annotations
+ 2
+ 3import logging
+ 4from typing import TYPE_CHECKING
+ 5
+ 6from .att import WithKAtt
+ 7from .inner import KApply, KToken, bottom_up
+ 8
+ 9if TYPE_CHECKING:
+10    from collections.abc import Iterable
+11    from typing import Final, TypeVar
+12
+13    from .inner import KInner, KRewrite
+14
+15    KI = TypeVar('KI', bound=KInner)
+16    W = TypeVar('W', bound=WithKAtt)
+17
+18_LOGGER: Final = logging.getLogger(__name__)
+19
+20
+
+[docs] +21def indexed_rewrite(kast: KInner, rewrites: Iterable[KRewrite]) -> KInner: +22 token_rewrites: list[KRewrite] = [] +23 apply_rewrites: dict[str, list[KRewrite]] = {} +24 other_rewrites: list[KRewrite] = [] +25 for r in rewrites: +26 if type(r.lhs) is KToken: +27 token_rewrites.append(r) +28 elif type(r.lhs) is KApply: +29 if r.lhs.label.name in apply_rewrites: +30 apply_rewrites[r.lhs.label.name].append(r) +31 else: +32 apply_rewrites[r.lhs.label.name] = [r] +33 else: +34 other_rewrites.append(r) +35 +36 def _apply_rewrites(_kast: KInner) -> KInner: +37 if type(_kast) is KToken: +38 for tr in token_rewrites: +39 _kast = tr.apply_top(_kast) +40 elif type(_kast) is KApply: +41 if _kast.label.name in apply_rewrites: +42 for ar in apply_rewrites[_kast.label.name]: +43 _kast = ar.apply_top(_kast) +44 else: +45 for _or in other_rewrites: +46 _kast = _or.apply_top(_kast) +47 return _kast +48 +49 orig_kast: KInner = kast +50 new_kast: KInner | None = None +51 while orig_kast != new_kast: +52 if new_kast is None: +53 new_kast = orig_kast +54 else: +55 orig_kast = new_kast +56 new_kast = bottom_up(_apply_rewrites, new_kast) +57 return new_kast
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kast/utils.html b/pyk/_modules/pyk/kast/utils.html new file mode 100644 index 00000000000..22cababd6f5 --- /dev/null +++ b/pyk/_modules/pyk/kast/utils.html @@ -0,0 +1,198 @@ + + + + + + pyk.kast.utils — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kast.utils

+ 1from __future__ import annotations
+ 2
+ 3import logging
+ 4from pathlib import Path
+ 5from typing import TYPE_CHECKING
+ 6
+ 7from ._ast_to_kast import _ast_to_kast
+ 8from .markdown import select_code_blocks
+ 9from .outer import KDefinition
+10from .outer_parser import OuterParser
+11from .outer_syntax import Definition
+12
+13if TYPE_CHECKING:
+14    from collections.abc import Iterable
+15    from typing import Final
+16
+17    from .outer_syntax import Require
+18
+19_LOGGER: Final = logging.getLogger(__name__)
+20
+21
+
+[docs] +22def parse_outer( +23 definition_file: str | Path, +24 main_module: str, +25 *, +26 include_dirs: Iterable[str | Path] = (), +27 md_selector: str = 'k', +28 include_source: bool = True, +29) -> KDefinition: +30 parsed_files = slurp_definitions( +31 definition_file, +32 include_dirs=include_dirs, +33 md_selector=md_selector, +34 include_source=include_source, +35 ) +36 modules = tuple(module for _, definition in parsed_files.items() for module in definition.modules) +37 final_definition = _ast_to_kast(Definition(modules), main_module=main_module) +38 assert isinstance(final_definition, KDefinition) +39 return final_definition
+ +40 +41 +
+[docs] +42def slurp_definitions( +43 main_file: str | Path, +44 *, +45 include_dirs: Iterable[str | Path] = (), +46 md_selector: str = 'k', +47 include_source: bool = True, +48) -> dict[Path, Definition]: +49 main_file = Path(main_file).resolve() +50 _include_dirs = [Path(include_dir) for include_dir in include_dirs] +51 +52 result: dict[Path, Definition] = {} +53 +54 pending = [main_file] +55 while pending: # DFS +56 current_file = pending.pop() +57 +58 if current_file in result: +59 continue +60 +61 definition = _parse_file(current_file, md_selector, include_source) +62 pending += reversed([_resolve_require(require, current_file, _include_dirs) for require in definition.requires]) +63 +64 result[current_file] = definition +65 +66 return result
+ +67 +68 +69def _parse_file(definition_file: Path, md_selector: str, include_source: bool) -> Definition: +70 _LOGGER.info(f'Reading {definition_file}') +71 +72 text = definition_file.read_text() +73 if definition_file.suffix == '.md': +74 text = select_code_blocks(text, md_selector) +75 +76 parser = OuterParser(text, source=definition_file if include_source else None) +77 return parser.definition() +78 +79 +80def _resolve_require(require: Require, definition_file: Path, include_dirs: list[Path]) -> Path: +81 try_dirs = [definition_file.parent] + include_dirs +82 try_files = [try_dir / require.path for try_dir in try_dirs] +83 for file in try_files: +84 if file.is_file(): +85 return file.resolve() +86 raise FileNotFoundError(f'{require.path} not found. Searched paths: {[str(path) for path in try_dirs]}') +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kbuild/kbuild.html b/pyk/_modules/pyk/kbuild/kbuild.html new file mode 100644 index 00000000000..3c194d7fa40 --- /dev/null +++ b/pyk/_modules/pyk/kbuild/kbuild.html @@ -0,0 +1,285 @@ + + + + + + pyk.kbuild.kbuild — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kbuild.kbuild

+  1from __future__ import annotations
+  2
+  3import re
+  4from contextlib import contextmanager
+  5from dataclasses import dataclass
+  6from functools import cached_property
+  7from pathlib import Path
+  8from tempfile import TemporaryDirectory
+  9from typing import TYPE_CHECKING, final
+ 10
+ 11from filelock import FileLock
+ 12
+ 13from ..ktool.kompile import kompile
+ 14from ..utils import check_dir_path, single
+ 15from .utils import k_version, sync_files
+ 16
+ 17if TYPE_CHECKING:
+ 18    from collections.abc import Iterator
+ 19    from re import Match
+ 20    from typing import Any
+ 21
+ 22    from .project import Project, Target
+ 23
+ 24
+
+[docs] + 25@final + 26@dataclass(frozen=True) + 27class KBuild: + 28 kdist_dir: Path + 29 + 30 def __init__(self, kdist_dir: str | Path): + 31 kdist_dir = Path(kdist_dir).resolve() + 32 object.__setattr__(self, 'kdist_dir', kdist_dir) + 33 + 34 @cached_property + 35 def k_version(self) -> str: + 36 return k_version().text + 37 +
+[docs] + 38 def definition_dir(self, project: Project, target_name: str) -> Path: + 39 return self.kdist_dir / self.k_version / target_name
+ + 40 +
+[docs] + 41 def kompile(self, project: Project, target_name: str, *, debug: bool = False) -> Path: + 42 self.kdist_dir.mkdir(parents=True, exist_ok=True) + 43 + 44 with FileLock(self.kdist_dir / '.lock'): + 45 output_dir = self.definition_dir(project, target_name) + 46 + 47 if self.up_to_date(project, target_name): + 48 return output_dir + 49 + 50 with KBuildEnv.create_temp(project) as env: + 51 env.kompile(target_name, output_dir, debug=debug) + 52 + 53 return output_dir
+ + 54 +
+[docs] + 55 def up_to_date(self, project: Project, target_name: str) -> bool: + 56 definition_dir = self.definition_dir(project, target_name) + 57 timestamp = definition_dir / 'timestamp' + 58 + 59 if not timestamp.exists(): + 60 return False + 61 + 62 input_timestamps = (input_file.stat().st_mtime for input_file in project.all_files) + 63 target_timestamp = timestamp.stat().st_mtime + 64 return all(input_timestamp < target_timestamp for input_timestamp in input_timestamps)
+
+ + 65 + 66 +
+[docs] + 67@final + 68@dataclass(frozen=True) + 69class KBuildEnv: + 70 project: Project + 71 path: Path + 72 + 73 def __init__(self, project: Project, path: str | Path): + 74 path = Path(path).resolve() + 75 check_dir_path(path) + 76 object.__setattr__(self, 'project', project) + 77 object.__setattr__(self, 'path', path) + 78 +
+[docs] + 79 @staticmethod + 80 @contextmanager + 81 def create_temp(project: Project) -> Iterator[KBuildEnv]: + 82 with TemporaryDirectory(prefix=f'kbuild-{project.name}-') as path_str: + 83 env = KBuildEnv(project, path_str) + 84 env.sync() + 85 yield env
+ + 86 +
+[docs] + 87 def sync(self) -> None: + 88 for sub_project in self.project.sub_projects: + 89 self._sync_project(sub_project)
+ + 90 +
+[docs] + 91 def kompile(self, target_name: str, output_dir: Path, *, debug: bool = False) -> None: + 92 target = self.project.get_target(target_name) + 93 kompile( + 94 output_dir=output_dir, + 95 include_dirs=self._include_dirs, + 96 cwd=self.path, + 97 debug=debug, + 98 **self._kompile_args(target), + 99 )
+ +100 +101 @property +102 def _include_dirs(self) -> list[Path]: +103 return [self._include_dir(sub_project) for sub_project in self.project.sub_projects] +104 +105 def _include_dir(self, project: Project) -> Path: +106 return self.path / project.name / 'include' +107 +108 def _source_dir(self, project: Project) -> Path: +109 return self._include_dir(project) / project.name +110 +111 def _resource_dir(self, project: Project, resource_name: str) -> Path: +112 return self.path / project.name / 'resource' / resource_name +113 +114 def _sync_project(self, project: Project) -> None: +115 # Sync sources +116 sync_files( +117 source_dir=project.source_dir, +118 target_dir=self._source_dir(project), +119 file_names=project.source_file_names, +120 ) +121 +122 # Sync resources +123 for resource_name in project.resources: +124 sync_files( +125 source_dir=project.resources[resource_name], +126 target_dir=self._resource_dir(project, resource_name), +127 file_names=project.resource_file_names[resource_name], +128 ) +129 +130 def _kompile_args(self, target: Target) -> dict[str, Any]: +131 args = dict(target.args) +132 args['main_file'] = self._source_dir(self.project) / args['main_file'] +133 +134 if 'ccopts' in args: +135 args['ccopts'] = [self._render_opt(opt) for opt in args['ccopts']] +136 +137 return args +138 +139 def _render_opt(self, opt: str) -> str: +140 def render(match: Match) -> str: +141 project_name = match.group('project') +142 resource_name = match.group('resource') +143 +144 sub_project = single( +145 sub_project for sub_project in self.project.sub_projects if sub_project.name == project_name +146 ) +147 resource_path = self._resource_dir(sub_project, resource_name) +148 +149 if not resource_path.exists(): +150 raise ValueError('Failed to resolve opt {opt}: resource path {resource_path} does not exist') +151 +152 return str(resource_path) +153 +154 pattern = re.compile(r'{{ *(?P<project>\S+):(?P<resource>\S+) *}}') +155 return pattern.sub(render, opt)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kbuild/project.html b/pyk/_modules/pyk/kbuild/project.html new file mode 100644 index 00000000000..40773f06ab1 --- /dev/null +++ b/pyk/_modules/pyk/kbuild/project.html @@ -0,0 +1,348 @@ + + + + + + pyk.kbuild.project — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kbuild.project

+  1from __future__ import annotations
+  2
+  3from abc import ABC, abstractmethod
+  4from dataclasses import dataclass
+  5from functools import cached_property
+  6from importlib import resources
+  7from pathlib import Path, PosixPath
+  8from typing import TYPE_CHECKING, final
+  9
+ 10import tomli
+ 11
+ 12from ..cli.utils import relative_path
+ 13from ..utils import FrozenDict, abs_or_rel_to, check_dir_path, check_file_path, check_relative_path, single
+ 14from .config import PROJECT_FILE_NAME
+ 15
+ 16if TYPE_CHECKING:
+ 17    from collections.abc import Iterable, Mapping
+ 18    from typing import Any
+ 19
+ 20
+
+[docs] + 21class Source(ABC): +
+[docs] + 22 @staticmethod + 23 def from_dict(dct: Mapping[str, Any]) -> Source: + 24 if 'path' in dct: + 25 return PathSource(Path(dct['path'])) + 26 if 'package' in dct: + 27 return PackageSource(dct['package']) + 28 raise ValueError(f'Cannot parse source: {dct}')
+ + 29 +
+[docs] + 30 @abstractmethod + 31 def resolve(self, project_path: Path) -> Path: ...
+
+ + 32 + 33 +
+[docs] + 34@final + 35@dataclass(frozen=True) + 36class PathSource(Source): + 37 path: Path + 38 +
+[docs] + 39 def resolve(self, project_path: Path) -> Path: + 40 return abs_or_rel_to(self.path, project_path)
+
+ + 41 + 42 +
+[docs] + 43@final + 44@dataclass(frozen=True) + 45class PackageSource(Source): + 46 package: str + 47 +
+[docs] + 48 def resolve(self, project_path: Path) -> Path: + 49 traversable = resources.files(self.package) + 50 if not isinstance(traversable, PosixPath): + 51 raise ValueError(f'Package name {self.package!r} does not resolve to a directory') + 52 return traversable.resolve(strict=True)
+
+ + 53 + 54 +
+[docs] + 55@final + 56@dataclass(frozen=True) + 57class Target: + 58 name: str # TODO Maybe remove name and store in project as Dict + 59 + 60 args: dict[str, Any] + 61 + 62 def __init__( + 63 self, + 64 *, + 65 name: str, + 66 args: Mapping[str, Any], + 67 ): + 68 if args['main-file']: + 69 main_file = Path(args['main-file']) + 70 check_relative_path(main_file) + 71 newargs = {key.replace('-', '_'): value for key, value in args.items()} + 72 newargs['main_file'] = main_file + 73 object.__setattr__(self, 'name', name) + 74 object.__setattr__(self, 'args', newargs)
+ + 75 + 76 +
+[docs] + 77@final + 78@dataclass(frozen=True) + 79class Project: + 80 path: Path + 81 name: str + 82 version: str + 83 source_dir: Path + 84 resources: FrozenDict[str, Path] + 85 dependencies: tuple[Project, ...] + 86 targets: tuple[Target, ...] + 87 + 88 def __init__( + 89 self, + 90 *, + 91 path: str | Path, + 92 name: str, + 93 version: str, + 94 source_dir: str | Path, + 95 resources: Mapping[str, str | Path] | None = None, + 96 dependencies: Iterable[Project] = (), + 97 targets: Iterable[Target] = (), + 98 ): + 99 path = Path(path).resolve() +100 check_dir_path(path) +101 +102 source_dir = path / relative_path(source_dir) +103 check_dir_path(source_dir) +104 +105 resources = resources or {} +106 resources = { +107 resource_name: path / relative_path(resource_dir) for resource_name, resource_dir in resources.items() +108 } +109 +110 object.__setattr__(self, 'path', path) +111 object.__setattr__(self, 'name', name) +112 object.__setattr__(self, 'version', version) +113 object.__setattr__(self, 'source_dir', source_dir) +114 object.__setattr__(self, 'resources', FrozenDict(resources)) +115 object.__setattr__(self, 'dependencies', tuple(dependencies)) +116 object.__setattr__(self, 'targets', tuple(targets)) +117 +
+[docs] +118 @staticmethod +119 def load(project_file: str | Path) -> Project: +120 project_file = Path(project_file) +121 check_file_path(project_file) +122 project_path = project_file.parent +123 +124 def _load_dependency(name: str, dct: Any) -> Project: +125 source = Source.from_dict(dct) +126 dependency_path = source.resolve(project_path) +127 project = Project.load_from_dir(dependency_path) +128 if project.name != name: +129 raise ValueError(f'Invalid dependency, expected name {name}, got: {project.name}') +130 return project +131 +132 with open(project_file, 'rb') as f: +133 dct = tomli.load(f) +134 +135 project = Project( +136 path=project_path, +137 name=dct['project']['name'], +138 version=dct['project']['version'], +139 source_dir=dct['project']['source'], +140 resources=dct['project'].get('resources'), +141 dependencies=tuple( +142 _load_dependency(name, source_dct) for name, source_dct in dct.get('dependencies', {}).items() +143 ), +144 targets=tuple(Target(name=name, args=target) for name, target in dct.get('targets', {}).items()), +145 ) +146 +147 return project
+ +148 +
+[docs] +149 @staticmethod +150 def load_from_dir(project_dir: str | Path) -> Project: +151 project_dir = Path(project_dir) +152 check_dir_path(project_dir) +153 return Project.load(project_dir / PROJECT_FILE_NAME)
+ +154 +155 @cached_property +156 def sub_projects(self) -> tuple[Project, ...]: +157 res: tuple[Project, ...] = (self,) +158 for project in self.dependencies: +159 res += project.sub_projects +160 return res +161 +162 @property +163 def project_file(self) -> Path: +164 return self.path / PROJECT_FILE_NAME +165 +166 @property +167 def source_files(self) -> list[Path]: +168 res: list[Path] = [] +169 res.extend(self.source_dir.rglob('*.k')) +170 res.extend(self.source_dir.rglob('*.md')) +171 return res +172 +173 @property +174 def source_file_names(self) -> list[str]: +175 return [str(source_file.relative_to(self.source_dir)) for source_file in self.source_files] +176 +177 @property +178 def resource_files(self) -> dict[str, list[Path]]: +179 res: dict[str, list[Path]] = {} +180 for resource_name, resource_dir in self.resources.items(): +181 check_dir_path(resource_dir) +182 res[resource_name] = [resource_file for resource_file in resource_dir.rglob('*') if resource_file.is_file()] +183 return res +184 +185 @property +186 def resource_file_names(self) -> dict[str, list[str]]: +187 return { +188 resource_name: [ +189 str(resource_file.relative_to(self.resources[resource_name])) for resource_file in resource_files +190 ] +191 for resource_name, resource_files in self.resource_files.items() +192 } +193 +194 @property +195 def all_files(self) -> list[Path]: +196 res: list[Path] = [] +197 for sub_project in self.sub_projects: +198 res.append(sub_project.project_file) +199 res.extend(sub_project.source_files) +200 for resource_name in sub_project.resources: +201 res.extend(sub_project.resource_files[resource_name]) +202 return res +203 +
+[docs] +204 def get_target(self, target_name: str) -> Target: +205 # TODO Should be enforced as a validation rule +206 return single(target for target in self.targets if target.name == target_name)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kbuild/utils.html b/pyk/_modules/pyk/kbuild/utils.html new file mode 100644 index 00000000000..2f643f3f5b3 --- /dev/null +++ b/pyk/_modules/pyk/kbuild/utils.html @@ -0,0 +1,232 @@ + + + + + + pyk.kbuild.utils — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kbuild.utils

+  1from __future__ import annotations
+  2
+  3import re
+  4import shutil
+  5from dataclasses import dataclass
+  6from typing import ClassVar  # noqa: TC003
+  7from typing import TYPE_CHECKING, final
+  8
+  9from ..cli.utils import check_dir_path, check_file_path
+ 10from ..utils import run_process
+ 11
+ 12if TYPE_CHECKING:
+ 13    from collections.abc import Iterable
+ 14    from pathlib import Path
+ 15
+ 16
+
+[docs] + 17@final + 18@dataclass(frozen=True) + 19class KVersion: +
+[docs] + 20 @final + 21 @dataclass(frozen=True) + 22 class Git: + 23 ahead: int + 24 rev: str + 25 dirty: bool
+ + 26 + 27 major: int + 28 minor: int + 29 patch: int + 30 git: Git | None + 31 + 32 _PATTERN_STR: ClassVar = ( + 33 r'v(?P<major>[1-9]+)' + 34 r'\.(?P<minor>[0-9]+)' + 35 r'\.(?P<patch>[0-9]+)' + 36 r'(?P<git>' + 37 r'-(?P<ahead>[0-9]+)' + 38 r'-g(?P<rev>[0-9a-f]{10})' + 39 r'(?P<dirty>-dirty)?)?' + 40 ) + 41 PATTERN: ClassVar = re.compile(_PATTERN_STR) + 42 +
+[docs] + 43 @staticmethod + 44 def parse(text: str) -> KVersion: + 45 match = KVersion.PATTERN.fullmatch(text) + 46 if not match: + 47 raise ValueError(f'Invalid K version string: {text}') + 48 + 49 major = int(match['major']) + 50 minor = int(match['minor']) + 51 patch = int(match['patch']) + 52 git = ( + 53 KVersion.Git( + 54 ahead=int(match['ahead']), + 55 rev=match['rev'], + 56 dirty=bool(match['dirty']), + 57 ) + 58 if match['git'] + 59 else None + 60 ) + 61 + 62 return KVersion(major=major, minor=minor, patch=patch, git=git)
+ + 63 + 64 @property + 65 def text(self) -> str: + 66 version = f'v{self.major}.{self.minor}.{self.patch}' + 67 dirty = '-dirty' if self.git and self.git.dirty else '' + 68 git = f'-{self.git.ahead}-g{self.git.rev}{dirty}' if self.git else '' + 69 return f'{version}{git}'
+ + 70 + 71 +
+[docs] + 72def k_version() -> KVersion: + 73 try: + 74 proc_res = run_process(['kompile', '--version'], pipe_stderr=True) + 75 except FileNotFoundError as err: + 76 raise RuntimeError('K is not installed') from err + 77 + 78 version = proc_res.stdout.splitlines()[0][14:] # 'K version: ...' + 79 return KVersion.parse(version)
+ + 80 + 81 +
+[docs] + 82def sync_files(source_dir: Path, target_dir: Path, file_names: Iterable[str]) -> list[Path]: + 83 check_dir_path(source_dir) + 84 shutil.rmtree(target_dir, ignore_errors=True) + 85 target_dir.mkdir(parents=True) + 86 + 87 res = [] + 88 for file_name in file_names: + 89 source_file = source_dir / file_name + 90 check_file_path(source_file) + 91 target_file = target_dir / file_name + 92 target_file.parent.mkdir(parents=True, exist_ok=True) + 93 shutil.copy2(source_file, target_file) + 94 res.append(target_file) + 95 + 96 return res
+ + 97 + 98 +
+[docs] + 99def find_file_upwards(file_name: str, start_dir: Path) -> Path: +100 check_dir_path(start_dir) +101 curr_dir = start_dir.resolve() +102 while True: +103 path = curr_dir / file_name +104 if path.is_file(): +105 return path +106 if curr_dir == curr_dir.parent: +107 raise FileNotFoundError(f'{file_name} not found') +108 curr_dir = curr_dir.parent
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/exploration.html b/pyk/_modules/pyk/kcfg/exploration.html new file mode 100644 index 00000000000..35be5d2453b --- /dev/null +++ b/pyk/_modules/pyk/kcfg/exploration.html @@ -0,0 +1,251 @@ + + + + + + pyk.kcfg.exploration — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.exploration

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from pyk.kcfg.kcfg import KCFG, NodeAttr
+  6
+  7if TYPE_CHECKING:
+  8    from collections.abc import Iterable, Mapping
+  9    from typing import Any
+ 10
+ 11    from pyk.kcfg.kcfg import NodeIdLike
+ 12
+ 13
+
+[docs] + 14class KCFGExplorationNodeAttr(NodeAttr): + 15 TERMINAL = NodeAttr('terminal')
+ + 16 + 17 +
+[docs] + 18class KCFGExploration: + 19 kcfg: KCFG + 20 + 21 def __init__(self, kcfg: KCFG, terminal: Iterable[NodeIdLike] | None = None) -> None: + 22 self.kcfg = kcfg + 23 if terminal: + 24 for node_id in terminal: + 25 self.add_terminal(node_id) + 26 + 27 @property + 28 def terminal_ids(self) -> set[int]: + 29 return {node.id for node in self.kcfg.nodes if KCFGExplorationNodeAttr.TERMINAL in node.attrs} + 30 + 31 # + 32 # Recognisers + 33 # + 34 + 35 # Terminal node recogniser +
+[docs] + 36 def is_terminal(self, node_id: NodeIdLike) -> bool: + 37 return KCFGExplorationNodeAttr.TERMINAL in self.kcfg.node(node_id).attrs
+ + 38 + 39 # Explorable node recogniser +
+[docs] + 40 def is_explorable(self, node_id: NodeIdLike) -> bool: + 41 return ( + 42 self.kcfg.is_leaf(node_id) + 43 and not self.is_terminal(node_id) + 44 and not self.kcfg.is_stuck(node_id) + 45 and not self.kcfg.is_vacuous(node_id) + 46 )
+ + 47 + 48 # + 49 # Collectors + 50 # + 51 + 52 # Terminal node collector + 53 @property + 54 def terminal(self) -> list[KCFG.Node]: + 55 return [node for node in self.kcfg.nodes if self.is_terminal(node.id)] + 56 + 57 # Explorable node collector + 58 @property + 59 def explorable(self) -> list[KCFG.Node]: + 60 return [node for node in self.kcfg.leaves if self.is_explorable(node.id)] + 61 + 62 # + 63 # Terminal node manipulation + 64 # + 65 + 66 # Marking a given node as terminal +
+[docs] + 67 def add_terminal(self, node_id: NodeIdLike) -> None: + 68 self.kcfg.add_attr(node_id, KCFGExplorationNodeAttr.TERMINAL)
+ + 69 + 70 # Unmarking a given node as terminal +
+[docs] + 71 def remove_terminal(self, node_id: int) -> None: + 72 self.kcfg.remove_attr(node_id, KCFGExplorationNodeAttr.TERMINAL)
+ + 73 + 74 # + 75 # Lifted KCFG functions that may affect terminal nodes + 76 # + 77 + 78 # Removing a given node +
+[docs] + 79 def remove_node(self, node_id: NodeIdLike) -> None: + 80 node_id = self.kcfg._resolve(node_id) + 81 self.kcfg.remove_node(node_id)
+ + 82 + 83 # Pruning a KCFG subtree starting from a given node +
+[docs] + 84 def prune(self, node_id: NodeIdLike, keep_nodes: Iterable[NodeIdLike] = ()) -> list[int]: + 85 return self.kcfg.prune(node_id, keep_nodes=keep_nodes)
+ + 86 + 87 # + 88 # Dictionarisation + 89 # + 90 + 91 # Conversion from dictionary +
+[docs] + 92 @staticmethod + 93 def from_dict(dct: Mapping[str, Any]) -> KCFGExploration: + 94 kcfg = KCFG.from_dict(dct['kcfg']) + 95 terminal = dct['terminal'] + 96 + 97 return KCFGExploration(kcfg, terminal)
+ + 98 + 99 # Conversion to dictionary +
+[docs] +100 def to_dict(self) -> dict[str, Any]: +101 dct: dict[str, Any] = {} +102 dct['kcfg'] = self.kcfg.to_dict() +103 dct['terminal'] = sorted(node.id for node in self.kcfg.nodes if self.is_terminal(node.id)) +104 return dct
+ +105 +106 # +107 # Minimization +108 # +109 +110 # Minimizing the KCFG +
+[docs] +111 def minimize_kcfg(self) -> None: +112 self.kcfg.minimize()
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/explore.html b/pyk/_modules/pyk/kcfg/explore.html new file mode 100644 index 00000000000..0791c8c7e85 --- /dev/null +++ b/pyk/_modules/pyk/kcfg/explore.html @@ -0,0 +1,417 @@ + + + + + + pyk.kcfg.explore — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.explore

+  1from __future__ import annotations
+  2
+  3import logging
+  4from functools import cached_property
+  5from typing import TYPE_CHECKING
+  6
+  7from ..kast.inner import KApply, KVariable
+  8from ..kast.manip import (
+  9    flatten_label,
+ 10    minimize_term,
+ 11    ml_pred_to_bool,
+ 12    no_cell_rewrite_to_dots,
+ 13    push_down_rewrites,
+ 14    replace_rewrites_with_implies,
+ 15)
+ 16from ..kast.pretty import PrettyPrinter
+ 17from ..kore.rpc import LogRewrite, RewriteSuccess
+ 18from ..prelude.ml import is_top, mlAnd
+ 19from ..utils import not_none, shorten_hashes, single, unique
+ 20from .kcfg import KCFG, Abstract, Branch, NDBranch, Step, Stuck, Vacuous
+ 21from .semantics import DefaultSemantics
+ 22
+ 23if TYPE_CHECKING:
+ 24    from collections.abc import Iterable
+ 25    from typing import Final
+ 26
+ 27    from ..cterm import CTerm, CTermSymbolic
+ 28    from ..kast import KInner
+ 29    from ..kcfg.exploration import KCFGExploration
+ 30    from ..kore.rpc import LogEntry
+ 31    from .kcfg import KCFGExtendResult, NodeIdLike
+ 32    from .semantics import KCFGSemantics
+ 33
+ 34
+ 35_LOGGER: Final = logging.getLogger(__name__)
+ 36
+ 37
+
+[docs] + 38class KCFGExplore: + 39 cterm_symbolic: CTermSymbolic + 40 + 41 kcfg_semantics: KCFGSemantics + 42 id: str + 43 + 44 def __init__( + 45 self, + 46 cterm_symbolic: CTermSymbolic, + 47 *, + 48 kcfg_semantics: KCFGSemantics | None = None, + 49 id: str | None = None, + 50 ): + 51 self.cterm_symbolic = cterm_symbolic + 52 self.kcfg_semantics = kcfg_semantics if kcfg_semantics is not None else DefaultSemantics() + 53 self.id = id if id is not None else 'NO ID' + 54 + 55 @cached_property + 56 def _pretty_printer(self) -> PrettyPrinter: + 57 return PrettyPrinter(self.cterm_symbolic._definition) + 58 +
+[docs] + 59 def pretty_print(self, kinner: KInner) -> str: + 60 return self._pretty_printer.print(kinner)
+ + 61 + 62 def _extract_rule_labels(self, _logs: tuple[LogEntry, ...]) -> list[str]: + 63 _rule_lines = [] + 64 for node_log in _logs: + 65 if isinstance(node_log, LogRewrite) and isinstance(node_log.result, RewriteSuccess): + 66 if node_log.result.rule_id in self.cterm_symbolic._definition.sentence_by_unique_id: + 67 sent = self.cterm_symbolic._definition.sentence_by_unique_id[node_log.result.rule_id] + 68 _rule_lines.append(f'{sent.label}:{sent.source}') + 69 else: + 70 if node_log.result.rule_id == 'UNKNOWN': + 71 _LOGGER.warning(f'Unknown unique id attached to rule log entry: {node_log}') + 72 _rule_lines.append(f'{node_log.result.rule_id}:UNKNOWN') + 73 return _rule_lines + 74 +
+[docs] + 75 def implication_failure_reason(self, antecedent: CTerm, consequent: CTerm) -> tuple[bool, str]: + 76 def _is_cell_subst(csubst: KInner) -> bool: + 77 if type(csubst) is KApply and csubst.label.name == '_==K_': + 78 csubst_arg = csubst.args[0] + 79 if type(csubst_arg) is KVariable and csubst_arg.name.endswith('_CELL'): + 80 return True + 81 return False + 82 + 83 def _is_negative_cell_subst(constraint: KInner) -> bool: + 84 constraint_bool = ml_pred_to_bool(constraint) + 85 if type(constraint_bool) is KApply and constraint_bool.label.name == 'notBool_': + 86 negative_constraint = constraint_bool.args[0] + 87 if type(negative_constraint) is KApply and negative_constraint.label.name == '_andBool_': + 88 constraints = flatten_label('_andBool_', negative_constraint) + 89 cell_constraints = list(filter(_is_cell_subst, constraints)) + 90 if len(cell_constraints) > 0: + 91 return True + 92 return False + 93 + 94 cterm_implies = self.cterm_symbolic.implies(antecedent, consequent, failure_reason=True) + 95 if cterm_implies.csubst is not None: + 96 return (True, '') + 97 + 98 failing_cells_strs = [] + 99 for name, failing_cell in cterm_implies.failing_cells: +100 failing_cell = push_down_rewrites(failing_cell) +101 failing_cell = no_cell_rewrite_to_dots(failing_cell) +102 failing_cell = replace_rewrites_with_implies(failing_cell) +103 failing_cells_strs.append(f'{name}: {self.pretty_print(minimize_term(failing_cell))}') +104 +105 ret_str = 'Matching failed.' +106 if len(failing_cells_strs) > 0: +107 failing_cells_str = '\n'.join(failing_cells_strs) +108 ret_str = f'{ret_str}\nThe following cells failed matching individually (antecedent #Implies consequent):\n{failing_cells_str}' +109 +110 if cterm_implies.remaining_implication is not None: +111 ret_str = ( +112 f'{ret_str}\nThe remaining implication is:\n{self.pretty_print(cterm_implies.remaining_implication)}' +113 ) +114 +115 if cterm_implies.csubst is not None and not is_top(cterm_implies.remaining_implication): +116 negative_cell_constraints = list(filter(_is_negative_cell_subst, antecedent.constraints)) +117 +118 if len(negative_cell_constraints) > 0: +119 negative_cell_constraints_str = '\n'.join(self.pretty_print(cc) for cc in negative_cell_constraints) +120 ret_str = f'{ret_str}\nNegated cell substitutions found (consider using _ => ?_):\n{negative_cell_constraints_str}' +121 +122 return (False, ret_str)
+ +123 +
+[docs] +124 def simplify(self, cfg: KCFG, logs: dict[int, tuple[LogEntry, ...]]) -> None: +125 for node in cfg.nodes: +126 _LOGGER.info(f'Simplifying node {self.id}: {shorten_hashes(node.id)}') +127 new_term, next_node_logs = self.cterm_symbolic.simplify(node.cterm) +128 if new_term != node.cterm: +129 cfg.let_node(node.id, cterm=new_term) +130 if node.id in logs: +131 logs[node.id] += next_node_logs +132 else: +133 logs[node.id] = next_node_logs
+ +134 +
+[docs] +135 def step( +136 self, +137 cfg: KCFG, +138 node_id: NodeIdLike, +139 logs: dict[int, tuple[LogEntry, ...]], +140 depth: int = 1, +141 module_name: str | None = None, +142 ) -> int: +143 if depth <= 0: +144 raise ValueError(f'Expected positive depth, got: {depth}') +145 node = cfg.node(node_id) +146 successors = list(cfg.successors(node.id)) +147 if len(successors) != 0 and type(successors[0]) is KCFG.Split: +148 raise ValueError(f'Cannot take step from split node {self.id}: {shorten_hashes(node.id)}') +149 _LOGGER.info(f'Taking {depth} steps from node {self.id}: {shorten_hashes(node.id)}') +150 exec_res = self.cterm_symbolic.execute(node.cterm, depth=depth, module_name=module_name) +151 if exec_res.depth != depth: +152 raise ValueError(f'Unable to take {depth} steps from node, got {exec_res.depth} steps {self.id}: {node.id}') +153 if len(exec_res.next_states) > 0: +154 raise ValueError(f'Found branch within {depth} steps {self.id}: {node.id}') +155 new_node = cfg.create_node(exec_res.state) +156 _LOGGER.info(f'Found new node at depth {depth} {self.id}: {shorten_hashes((node.id, new_node.id))}') +157 logs[new_node.id] = exec_res.logs +158 out_edges = cfg.edges(source_id=node.id) +159 rule_logs = self._extract_rule_labels(exec_res.logs) +160 if len(out_edges) == 0: +161 cfg.create_edge(node.id, new_node.id, depth=depth, rules=rule_logs) +162 else: +163 edge = out_edges[0] +164 if depth > edge.depth: +165 raise ValueError( +166 f'Step depth {depth} greater than original edge depth {edge.depth} {self.id}: {shorten_hashes((edge.source.id, edge.target.id))}' +167 ) +168 cfg.remove_edge(edge.source.id, edge.target.id) +169 cfg.create_edge(edge.source.id, new_node.id, depth=depth, rules=rule_logs) +170 cfg.create_edge(new_node.id, edge.target.id, depth=(edge.depth - depth), rules=edge.rules[depth:]) +171 return new_node.id
+ +172 +
+[docs] +173 def section_edge( +174 self, +175 cfg: KCFG, +176 source_id: NodeIdLike, +177 target_id: NodeIdLike, +178 logs: dict[int, tuple[LogEntry, ...]], +179 sections: int = 2, +180 ) -> tuple[int, ...]: +181 if sections <= 1: +182 raise ValueError(f'Cannot section an edge less than twice {self.id}: {sections}') +183 edge = single(cfg.edges(source_id=source_id, target_id=target_id)) +184 section_depth = int(edge.depth / sections) +185 if section_depth == 0: +186 raise ValueError(f'Too many sections, results in 0-length section {self.id}: {sections}') +187 orig_depth = edge.depth +188 new_depth = section_depth +189 new_nodes = [] +190 curr_node_id = edge.source.id +191 while new_depth < orig_depth: +192 curr_node_id = self.step(cfg, curr_node_id, logs, depth=section_depth) +193 new_nodes.append(curr_node_id) +194 new_depth += section_depth +195 return tuple(new_nodes)
+ +196 +
+[docs] +197 def check_extendable(self, kcfg_exploration: KCFGExploration, node: KCFG.Node) -> None: +198 kcfg: KCFG = kcfg_exploration.kcfg +199 if not kcfg.is_leaf(node.id): +200 raise ValueError(f'Cannot extend non-leaf node {self.id}: {node.id}') +201 if kcfg.is_stuck(node.id): +202 raise ValueError(f'Cannot extend stuck node {self.id}: {node.id}') +203 if kcfg.is_vacuous(node.id): +204 raise ValueError(f'Cannot extend vacuous node {self.id}: {node.id}') +205 if kcfg_exploration.is_terminal(node.id): +206 raise ValueError(f'Cannot extend terminal node {self.id}: {node.id}')
+ +207 +
+[docs] +208 def extend_cterm( +209 self, +210 _cterm: CTerm, +211 node_id: int, +212 *, +213 execute_depth: int | None = None, +214 cut_point_rules: Iterable[str] = (), +215 terminal_rules: Iterable[str] = (), +216 module_name: str | None = None, +217 ) -> KCFGExtendResult: +218 def log(message: str, *, warning: bool = False) -> None: +219 _LOGGER.log(logging.WARNING if warning else logging.INFO, f'Extend result for {self.id}: {message}') +220 +221 custom_step_result = self.kcfg_semantics.custom_step(_cterm) +222 if custom_step_result is not None: +223 log(f'custom step node: {node_id}') +224 return custom_step_result +225 +226 abstract_cterm = self.kcfg_semantics.abstract_node(_cterm) +227 if _cterm != abstract_cterm: +228 log(f'abstraction node: {node_id}') +229 return Abstract(abstract_cterm) +230 +231 cterm, next_states, depth, vacuous, next_node_logs = self.cterm_symbolic.execute( +232 _cterm, +233 depth=execute_depth, +234 cut_point_rules=cut_point_rules, +235 terminal_rules=terminal_rules, +236 module_name=module_name, +237 ) +238 +239 # Basic block +240 if depth > 0: +241 log(f'basic block at depth {depth}: {node_id}') +242 return Step(cterm, depth, next_node_logs, self._extract_rule_labels(next_node_logs)) +243 +244 # Stuck or vacuous +245 if not next_states: +246 if vacuous: +247 log(f'vacuous node: {node_id}', warning=True) +248 return Vacuous() +249 log(f'stuck node: {node_id}') +250 return Stuck() +251 +252 # Cut rule +253 if len(next_states) == 1: +254 log(f'cut-rule basic block at depth {depth}: {node_id}') +255 return Step( +256 next_states[0].state, +257 1, +258 next_node_logs, +259 self._extract_rule_labels(next_node_logs), +260 cut=True, +261 ) +262 +263 # Branch +264 assert len(next_states) > 1 +265 if all(branch_constraint for _, branch_constraint in next_states): +266 branch_preds = [flatten_label('#And', not_none(rule_predicate)) for _, rule_predicate in next_states] +267 common_preds = list( +268 unique( +269 pred +270 for branch_pred in branch_preds +271 for pred in branch_pred +272 if all(pred in bp for bp in branch_preds) +273 ) +274 ) +275 branches = [mlAnd(pred for pred in branch_pred if pred not in common_preds) for branch_pred in branch_preds] +276 if common_preds: +277 log( +278 f'Common predicates found in branches: {[self.pretty_print(ml_pred_to_bool(cp)) for cp in common_preds]}' +279 ) +280 constraint_strs = [self.pretty_print(ml_pred_to_bool(bc)) for bc in branches] +281 log(f'{len(branches)} branches: {node_id} -> {constraint_strs}') +282 return Branch(branches) +283 else: +284 # NDBranch +285 log(f'{len(next_states)} non-deterministic branches: {node_id}') +286 next_cterms = [cterm for cterm, _ in next_states] +287 return NDBranch(next_cterms, next_node_logs, self._extract_rule_labels(next_node_logs))
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/kcfg.html b/pyk/_modules/pyk/kcfg/kcfg.html new file mode 100644 index 00000000000..dbe026fd586 --- /dev/null +++ b/pyk/_modules/pyk/kcfg/kcfg.html @@ -0,0 +1,1813 @@ + + + + + + pyk.kcfg.kcfg — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.kcfg

+   1from __future__ import annotations
+   2
+   3import json
+   4import logging
+   5from abc import ABC, abstractmethod
+   6from collections.abc import Container
+   7from dataclasses import dataclass, field
+   8from functools import reduce
+   9from threading import RLock
+  10from typing import TYPE_CHECKING, Final, List, Union, cast, final
+  11
+  12from ..cterm import CSubst, CTerm, cterm_build_claim, cterm_build_rule
+  13from ..kast import EMPTY_ATT
+  14from ..kast.inner import KApply
+  15from ..kast.manip import (
+  16    bool_to_ml_pred,
+  17    extract_lhs,
+  18    extract_rhs,
+  19    flatten_label,
+  20    inline_cell_maps,
+  21    rename_generated_vars,
+  22    sort_ac_collections,
+  23)
+  24from ..kast.outer import KFlatModule
+  25from ..prelude.kbool import andBool
+  26from ..utils import ensure_dir_path, not_none, single
+  27
+  28if TYPE_CHECKING:
+  29    from collections.abc import Callable, Iterable, Mapping, MutableMapping
+  30    from pathlib import Path
+  31    from types import TracebackType
+  32    from typing import Any
+  33
+  34    from pyk.kore.rpc import LogEntry
+  35
+  36    from ..kast import KAtt
+  37    from ..kast.inner import KInner
+  38    from ..kast.outer import KClaim, KDefinition, KImport, KRuleLike
+  39
+  40
+  41NodeIdLike = int | str
+  42
+  43_LOGGER: Final = logging.getLogger(__name__)
+  44
+  45
+
+[docs] + 46@dataclass(frozen=True) + 47class NodeAttr: + 48 value: str
+ + 49 + 50 +
+[docs] + 51class KCFGNodeAttr(NodeAttr): + 52 VACUOUS = NodeAttr('vacuous') + 53 STUCK = NodeAttr('stuck')
+ + 54 + 55 +
+[docs] + 56class KCFGStore: + 57 store_path: Path + 58 + 59 def __init__(self, store_path: Path) -> None: + 60 self.store_path = store_path + 61 ensure_dir_path(store_path) + 62 ensure_dir_path(self.kcfg_node_dir) + 63 + 64 @property + 65 def kcfg_json_path(self) -> Path: + 66 return self.store_path / 'kcfg.json' + 67 + 68 @property + 69 def kcfg_node_dir(self) -> Path: + 70 return self.store_path / 'nodes' + 71 +
+[docs] + 72 def kcfg_node_path(self, node_id: int) -> Path: + 73 return self.kcfg_node_dir / f'{node_id}.json'
+ + 74 +
+[docs] + 75 def write_cfg_data( + 76 self, dct: dict[str, Any], deleted_nodes: Iterable[int] = (), created_nodes: Iterable[int] = () + 77 ) -> None: + 78 node_dict = {node_dct['id']: node_dct for node_dct in dct['nodes']} + 79 vacuous_nodes = [ + 80 node_id for node_id in node_dict.keys() if KCFGNodeAttr.VACUOUS.value in node_dict[node_id]['attrs'] + 81 ] + 82 stuck_nodes = [ + 83 node_id for node_id in node_dict.keys() if KCFGNodeAttr.STUCK.value in node_dict[node_id]['attrs'] + 84 ] + 85 dct['vacuous'] = vacuous_nodes + 86 dct['stuck'] = stuck_nodes + 87 for node_id in deleted_nodes: + 88 self.kcfg_node_path(node_id).unlink(missing_ok=True) + 89 for node_id in created_nodes: + 90 del node_dict[node_id]['attrs'] + 91 self.kcfg_node_path(node_id).write_text(json.dumps(node_dict[node_id])) + 92 dct['nodes'] = list(node_dict.keys()) + 93 self.kcfg_json_path.write_text(json.dumps(dct))
+ + 94 +
+[docs] + 95 def read_cfg_data(self) -> dict[str, Any]: + 96 dct = json.loads(self.kcfg_json_path.read_text()) + 97 nodes = [self.read_node_data(node_id) for node_id in dct.get('nodes') or []] + 98 dct['nodes'] = nodes + 99 + 100 new_nodes = [] + 101 for node in dct['nodes']: + 102 attrs = [] + 103 if node['id'] in dct['vacuous']: + 104 attrs.append(KCFGNodeAttr.VACUOUS.value) + 105 if node['id'] in dct['stuck']: + 106 attrs.append(KCFGNodeAttr.STUCK.value) + 107 new_nodes.append({'id': node['id'], 'cterm': node['cterm'], 'attrs': attrs}) + 108 + 109 dct['nodes'] = new_nodes + 110 + 111 del dct['vacuous'] + 112 del dct['stuck'] + 113 + 114 return dct
+ + 115 +
+[docs] + 116 def read_node_data(self, node_id: int) -> dict[str, Any]: + 117 return json.loads(self.kcfg_node_path(node_id).read_text())
+
+ + 118 + 119 +
+[docs] + 120class KCFG(Container[Union['KCFG.Node', 'KCFG.Successor']]): +
+[docs] + 121 @final + 122 @dataclass(frozen=True, order=True) + 123 class Node: + 124 id: int + 125 cterm: CTerm + 126 attrs: frozenset[NodeAttr] + 127 + 128 def __init__(self, id: int, cterm: CTerm, attrs: Iterable[NodeAttr] = ()) -> None: + 129 object.__setattr__(self, 'id', id) + 130 object.__setattr__(self, 'cterm', cterm) + 131 object.__setattr__(self, 'attrs', frozenset(attrs)) + 132 +
+[docs] + 133 def to_dict(self) -> dict[str, Any]: + 134 return {'id': self.id, 'cterm': self.cterm.to_dict(), 'attrs': [attr.value for attr in self.attrs]}
+ + 135 +
+[docs] + 136 @staticmethod + 137 def from_dict(dct: dict[str, Any]) -> KCFG.Node: + 138 return KCFG.Node(dct['id'], CTerm.from_dict(dct['cterm']), [NodeAttr(attr) for attr in dct['attrs']])
+ + 139 +
+[docs] + 140 def add_attr(self, attr: NodeAttr) -> KCFG.Node: + 141 return KCFG.Node(self.id, self.cterm, list(self.attrs) + [attr])
+ + 142 +
+[docs] + 143 def remove_attr(self, attr: NodeAttr) -> KCFG.Node: + 144 if attr not in self.attrs: + 145 raise ValueError(f'Node {self.id} does not have attribute {attr.value}') + 146 return KCFG.Node(self.id, self.cterm, self.attrs.difference([attr]))
+ + 147 +
+[docs] + 148 def discard_attr(self, attr: NodeAttr) -> KCFG.Node: + 149 return KCFG.Node(self.id, self.cterm, self.attrs.difference([attr]))
+ + 150 +
+[docs] + 151 def let(self, cterm: CTerm | None = None, attrs: Iterable[KCFGNodeAttr] | None = None) -> KCFG.Node: + 152 new_cterm = cterm if cterm is not None else self.cterm + 153 new_attrs = attrs if attrs is not None else self.attrs + 154 return KCFG.Node(self.id, new_cterm, new_attrs)
+ + 155 + 156 @property + 157 def free_vars(self) -> frozenset[str]: + 158 return frozenset(self.cterm.free_vars)
+ + 159 +
+[docs] + 160 class Successor(ABC): + 161 source: KCFG.Node + 162 + 163 def __lt__(self, other: Any) -> bool: + 164 if not isinstance(other, KCFG.Successor): + 165 return NotImplemented + 166 return self.source < other.source + 167 + 168 @property + 169 def source_vars(self) -> frozenset[str]: + 170 return frozenset(self.source.free_vars) + 171 + 172 @property + 173 @abstractmethod + 174 def targets(self) -> tuple[KCFG.Node, ...]: ... + 175 + 176 @property + 177 def target_ids(self) -> list[int]: + 178 return sorted(target.id for target in self.targets) + 179 + 180 @property + 181 def target_vars(self) -> frozenset[str]: + 182 return frozenset(set.union(set(), *(target.free_vars for target in self.targets))) + 183 +
+[docs] + 184 @abstractmethod + 185 def replace_source(self, node: KCFG.Node) -> KCFG.Successor: ...
+ + 186 +
+[docs] + 187 @abstractmethod + 188 def replace_target(self, node: KCFG.Node) -> KCFG.Successor: ...
+ + 189 +
+[docs] + 190 @abstractmethod + 191 def to_dict(self) -> dict[str, Any]: ...
+ + 192 +
+[docs] + 193 @staticmethod + 194 @abstractmethod + 195 def from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) -> KCFG.Successor: ...
+
+ + 196 +
+[docs] + 197 class EdgeLike(Successor): + 198 source: KCFG.Node + 199 target: KCFG.Node + 200 + 201 @property + 202 def targets(self) -> tuple[KCFG.Node, ...]: + 203 return (self.target,)
+ + 204 +
+[docs] + 205 @final + 206 @dataclass(frozen=True) + 207 class Edge(EdgeLike): + 208 source: KCFG.Node + 209 target: KCFG.Node + 210 depth: int + 211 rules: tuple[str, ...] + 212 +
+[docs] + 213 def to_dict(self) -> dict[str, Any]: + 214 return { + 215 'source': self.source.id, + 216 'target': self.target.id, + 217 'depth': self.depth, + 218 'rules': list(self.rules), + 219 }
+ + 220 +
+[docs] + 221 @staticmethod + 222 def from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) -> KCFG.Edge: + 223 return KCFG.Edge(nodes[dct['source']], nodes[dct['target']], dct['depth'], tuple(dct['rules']))
+ + 224 +
+[docs] + 225 def to_rule(self, label: str, claim: bool = False, priority: int | None = None) -> KRuleLike: + 226 def is_ceil_condition(kast: KInner) -> bool: + 227 return type(kast) is KApply and kast.label.name == '#Ceil' + 228 + 229 def _simplify_config(config: KInner) -> KInner: + 230 return sort_ac_collections(inline_cell_maps(config)) + 231 + 232 sentence_id = f'{label}-{self.source.id}-TO-{self.target.id}' + 233 init_constraints = [c for c in self.source.cterm.constraints if not is_ceil_condition(c)] + 234 init_cterm = CTerm(_simplify_config(self.source.cterm.config), init_constraints) + 235 target_constraints = [c for c in self.target.cterm.constraints if not is_ceil_condition(c)] + 236 target_cterm = CTerm(_simplify_config(self.target.cterm.config), target_constraints) + 237 rule: KRuleLike + 238 if claim: + 239 rule, _ = cterm_build_claim(sentence_id, init_cterm, target_cterm) + 240 else: + 241 rule, _ = cterm_build_rule(sentence_id, init_cterm, target_cterm, priority=priority) + 242 return rule
+ + 243 +
+[docs] + 244 def replace_source(self, node: KCFG.Node) -> KCFG.Edge: + 245 assert node.id == self.source.id + 246 return KCFG.Edge(node, self.target, self.depth, self.rules)
+ + 247 +
+[docs] + 248 def replace_target(self, node: KCFG.Node) -> KCFG.Edge: + 249 assert node.id == self.target.id + 250 return KCFG.Edge(self.source, node, self.depth, self.rules)
+
+ + 251 +
+[docs] + 252 @final + 253 @dataclass(frozen=True) + 254 class Cover(EdgeLike): + 255 source: KCFG.Node + 256 target: KCFG.Node + 257 csubst: CSubst + 258 +
+[docs] + 259 def to_dict(self) -> dict[str, Any]: + 260 return { + 261 'source': self.source.id, + 262 'target': self.target.id, + 263 'csubst': self.csubst.to_dict(), + 264 }
+ + 265 +
+[docs] + 266 @staticmethod + 267 def from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) -> KCFG.Cover: + 268 return KCFG.Cover(nodes[dct['source']], nodes[dct['target']], CSubst.from_dict(dct['csubst']))
+ + 269 +
+[docs] + 270 def replace_source(self, node: KCFG.Node) -> KCFG.Cover: + 271 assert node.id == self.source.id + 272 return KCFG.Cover(node, self.target, self.csubst)
+ + 273 +
+[docs] + 274 def replace_target(self, node: KCFG.Node) -> KCFG.Cover: + 275 assert node.id == self.target.id + 276 return KCFG.Cover(self.source, node, self.csubst)
+
+ + 277 +
+[docs] + 278 @dataclass(frozen=True) + 279 class MultiEdge(Successor): + 280 source: KCFG.Node + 281 + 282 def __lt__(self, other: Any) -> bool: + 283 if not type(other) is type(self): + 284 return NotImplemented + 285 return (self.source, self.target_ids) < (other.source, other.target_ids) + 286 +
+[docs] + 287 @abstractmethod + 288 def with_single_target(self, target: KCFG.Node) -> KCFG.MultiEdge: ...
+
+ + 289 +
+[docs] + 290 @final + 291 @dataclass(frozen=True) + 292 class Split(MultiEdge): + 293 source: KCFG.Node + 294 _targets: tuple[tuple[KCFG.Node, CSubst], ...] + 295 + 296 def __init__(self, source: KCFG.Node, _targets: Iterable[tuple[KCFG.Node, CSubst]]) -> None: + 297 object.__setattr__(self, 'source', source) + 298 object.__setattr__(self, '_targets', tuple(_targets)) + 299 + 300 @property + 301 def targets(self) -> tuple[KCFG.Node, ...]: + 302 return tuple(target for target, _ in self._targets) + 303 + 304 @property + 305 def splits(self) -> dict[int, CSubst]: + 306 return {target.id: csubst for target, csubst in self._targets} + 307 +
+[docs] + 308 def to_dict(self) -> dict[str, Any]: + 309 return { + 310 'source': self.source.id, + 311 'targets': [ + 312 { + 313 'target': target.id, + 314 'csubst': csubst.to_dict(), + 315 } + 316 for target, csubst in self._targets + 317 ], + 318 }
+ + 319 +
+[docs] + 320 @staticmethod + 321 def from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) -> KCFG.Split: + 322 _targets = [(nodes[target['target']], CSubst.from_dict(target['csubst'])) for target in dct['targets']] + 323 return KCFG.Split(nodes[dct['source']], tuple(_targets))
+ + 324 +
+[docs] + 325 def with_single_target(self, target: KCFG.Node) -> KCFG.Split: + 326 return KCFG.Split(self.source, ((target, self.splits[target.id]),))
+ + 327 + 328 @property + 329 def covers(self) -> tuple[KCFG.Cover, ...]: + 330 return tuple(KCFG.Cover(target, self.source, csubst) for target, csubst in self._targets) + 331 +
+[docs] + 332 def replace_source(self, node: KCFG.Node) -> KCFG.Split: + 333 assert node.id == self.source.id + 334 return KCFG.Split(node, self._targets)
+ + 335 +
+[docs] + 336 def replace_target(self, node: KCFG.Node) -> KCFG.Split: + 337 assert node.id in self.target_ids + 338 new_targets = [ + 339 (node, csubst) if node.id == target_node.id else (target_node, csubst) + 340 for target_node, csubst in self._targets + 341 ] + 342 return KCFG.Split(self.source, tuple(new_targets))
+
+ + 343 +
+[docs] + 344 @final + 345 @dataclass(frozen=True) + 346 class NDBranch(MultiEdge): + 347 source: KCFG.Node + 348 _targets: tuple[KCFG.Node, ...] + 349 rules: tuple[str, ...] + 350 + 351 def __init__(self, source: KCFG.Node, _targets: Iterable[KCFG.Node], rules: tuple[str, ...]) -> None: + 352 object.__setattr__(self, 'source', source) + 353 object.__setattr__(self, '_targets', tuple(_targets)) + 354 object.__setattr__(self, 'rules', rules) + 355 + 356 @property + 357 def targets(self) -> tuple[KCFG.Node, ...]: + 358 return self._targets + 359 +
+[docs] + 360 def to_dict(self) -> dict[str, Any]: + 361 return { + 362 'source': self.source.id, + 363 'targets': [target.id for target in self.targets], + 364 'rules': list(self.rules), + 365 }
+ + 366 +
+[docs] + 367 @staticmethod + 368 def from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) -> KCFG.NDBranch: + 369 return KCFG.NDBranch( + 370 nodes[dct['source']], tuple([nodes[target] for target in dct['targets']]), tuple(dct['rules']) + 371 )
+ + 372 +
+[docs] + 373 def with_single_target(self, target: KCFG.Node) -> KCFG.NDBranch: + 374 return KCFG.NDBranch(self.source, (target,), ())
+ + 375 + 376 @property + 377 def edges(self) -> tuple[KCFG.Edge, ...]: + 378 return tuple(KCFG.Edge(self.source, target, 1, ()) for target in self.targets) + 379 +
+[docs] + 380 def replace_source(self, node: KCFG.Node) -> KCFG.NDBranch: + 381 assert node.id == self.source.id + 382 return KCFG.NDBranch(node, self._targets, self.rules)
+ + 383 +
+[docs] + 384 def replace_target(self, node: KCFG.Node) -> KCFG.NDBranch: + 385 assert node.id in self.target_ids + 386 new_targets = [node if node.id == target_node.id else target_node for target_node in self._targets] + 387 return KCFG.NDBranch(self.source, tuple(new_targets), self.rules)
+
+ + 388 + 389 _node_id: int + 390 _nodes: MutableMapping[int, KCFG.Node] + 391 + 392 _created_nodes: set[int] + 393 _deleted_nodes: set[int] + 394 + 395 _edges: dict[int, Edge] + 396 _covers: dict[int, Cover] + 397 _splits: dict[int, Split] + 398 _ndbranches: dict[int, NDBranch] + 399 _aliases: dict[str, int] + 400 _lock: RLock + 401 + 402 _kcfg_store: KCFGStore | None + 403 + 404 def __init__(self, cfg_dir: Path | None = None, optimize_memory: bool = True) -> None: + 405 self._node_id = 1 + 406 if optimize_memory: + 407 from .store import OptimizedNodeStore + 408 + 409 self._nodes = OptimizedNodeStore() + 410 else: + 411 self._nodes = {} + 412 self._created_nodes = set() + 413 self._deleted_nodes = set() + 414 self._edges = {} + 415 self._covers = {} + 416 self._splits = {} + 417 self._ndbranches = {} + 418 self._aliases = {} + 419 self._lock = RLock() + 420 if cfg_dir is not None: + 421 self._kcfg_store = KCFGStore(cfg_dir) + 422 + 423 def __contains__(self, item: object) -> bool: + 424 if type(item) is KCFG.Node: + 425 return self.contains_node(item) + 426 if type(item) is KCFG.Edge: + 427 return self.contains_edge(item) + 428 if type(item) is KCFG.Cover: + 429 return self.contains_cover(item) + 430 if type(item) is KCFG.Split: + 431 return self.contains_split(item) + 432 if type(item) is KCFG.NDBranch: + 433 return self.contains_ndbranch(item) + 434 return False + 435 + 436 def __enter__(self) -> KCFG: + 437 self._lock.acquire() + 438 return self + 439 + 440 def __exit__( + 441 self, + 442 exc_type: type[BaseException] | None, + 443 exc_value: BaseException | None, + 444 traceback: TracebackType | None, + 445 ) -> bool: + 446 self._lock.release() + 447 if exc_type is None: + 448 return True + 449 return False + 450 + 451 @property + 452 def nodes(self) -> list[KCFG.Node]: + 453 return list(self._nodes.values()) + 454 + 455 @property + 456 def root(self) -> list[KCFG.Node]: + 457 return [node for node in self.nodes if self.is_root(node.id)] + 458 + 459 @property + 460 def vacuous(self) -> list[KCFG.Node]: + 461 return [node for node in self.nodes if self.is_vacuous(node.id)] + 462 + 463 @property + 464 def stuck(self) -> list[KCFG.Node]: + 465 return [node for node in self.nodes if self.is_stuck(node.id)] + 466 + 467 @property + 468 def leaves(self) -> list[KCFG.Node]: + 469 return [node for node in self.nodes if self.is_leaf(node.id)] + 470 + 471 @property + 472 def covered(self) -> list[KCFG.Node]: + 473 return [node for node in self.nodes if self.is_covered(node.id)] + 474 + 475 @property + 476 def uncovered(self) -> list[KCFG.Node]: + 477 return [node for node in self.nodes if not self.is_covered(node.id)] + 478 +
+[docs] + 479 @staticmethod + 480 def from_claim( + 481 defn: KDefinition, claim: KClaim, cfg_dir: Path | None = None, optimize_memory: bool = True + 482 ) -> tuple[KCFG, NodeIdLike, NodeIdLike]: + 483 cfg = KCFG(cfg_dir=cfg_dir, optimize_memory=optimize_memory) + 484 claim_body = claim.body + 485 claim_body = defn.instantiate_cell_vars(claim_body) + 486 claim_body = rename_generated_vars(claim_body) + 487 + 488 claim_lhs = CTerm.from_kast(extract_lhs(claim_body)).add_constraint(bool_to_ml_pred(claim.requires)) + 489 init_node = cfg.create_node(claim_lhs) + 490 + 491 claim_rhs = CTerm.from_kast(extract_rhs(claim_body)).add_constraint( + 492 bool_to_ml_pred(andBool([claim.requires, claim.ensures])) + 493 ) + 494 target_node = cfg.create_node(claim_rhs) + 495 + 496 return cfg, init_node.id, target_node.id
+ + 497 +
+[docs] + 498 @staticmethod + 499 def path_length(_path: Iterable[KCFG.Successor]) -> int: + 500 _path = tuple(_path) + 501 if len(_path) == 0: + 502 return 0 + 503 if type(_path[0]) is KCFG.Split or type(_path[0]) is KCFG.Cover: + 504 return KCFG.path_length(_path[1:]) + 505 elif type(_path[0]) is KCFG.NDBranch: + 506 return 1 + KCFG.path_length(_path[1:]) + 507 elif type(_path[0]) is KCFG.Edge: + 508 return _path[0].depth + KCFG.path_length(_path[1:]) + 509 raise ValueError(f'Cannot handle Successor type: {type(_path[0])}')
+ + 510 +
+[docs] + 511 def extend( + 512 self, + 513 extend_result: KCFGExtendResult, + 514 node: KCFG.Node, + 515 logs: dict[int, tuple[LogEntry, ...]], + 516 ) -> None: + 517 match extend_result: + 518 case Vacuous(): + 519 self.add_vacuous(node.id) + 520 + 521 case Stuck(): + 522 self.add_stuck(node.id) + 523 + 524 case Abstract(cterm): + 525 new_node = self.create_node(cterm) + 526 self.create_cover(node.id, new_node.id) + 527 + 528 case Step(cterm, depth, next_node_logs, rule_labels, _): + 529 next_node = self.create_node(cterm) + 530 logs[next_node.id] = next_node_logs + 531 self.create_edge(node.id, next_node.id, depth, rules=rule_labels) + 532 + 533 case Branch(constraints, _): + 534 self.split_on_constraints(node.id, constraints) + 535 + 536 case NDBranch(cterms, next_node_logs, rule_labels): + 537 next_ids = [self.create_node(cterm).id for cterm in cterms] + 538 for i in next_ids: + 539 logs[i] = next_node_logs + 540 self.create_ndbranch(node.id, next_ids, rules=rule_labels) + 541 + 542 case _: + 543 raise AssertionError()
+ + 544 +
+[docs] + 545 def to_dict(self) -> dict[str, Any]: + 546 nodes = [node.to_dict() for node in self.nodes] + 547 edges = [edge.to_dict() for edge in self.edges()] + 548 covers = [cover.to_dict() for cover in self.covers()] + 549 splits = [split.to_dict() for split in self.splits()] + 550 ndbranches = [ndbranch.to_dict() for ndbranch in self.ndbranches()] + 551 + 552 aliases = dict(sorted(self._aliases.items())) + 553 + 554 res = { + 555 'next': self._node_id, + 556 'nodes': nodes, + 557 'edges': edges, + 558 'covers': covers, + 559 'splits': splits, + 560 'ndbranches': ndbranches, + 561 'aliases': aliases, + 562 } + 563 return {k: v for k, v in res.items() if v}
+ + 564 +
+[docs] + 565 @staticmethod + 566 def from_dict(dct: Mapping[str, Any], optimize_memory: bool = True) -> KCFG: + 567 cfg = KCFG(optimize_memory=optimize_memory) + 568 + 569 for node_dict in dct.get('nodes') or []: + 570 node = KCFG.Node.from_dict(node_dict) + 571 cfg.add_node(node) + 572 + 573 max_id = max([node.id for node in cfg.nodes], default=0) + 574 cfg._node_id = dct.get('next', max_id + 1) + 575 + 576 for edge_dict in dct.get('edges') or []: + 577 edge = KCFG.Edge.from_dict(edge_dict, cfg._nodes) + 578 cfg.add_successor(edge) + 579 + 580 for cover_dict in dct.get('covers') or []: + 581 cover = KCFG.Cover.from_dict(cover_dict, cfg._nodes) + 582 cfg.add_successor(cover) + 583 + 584 for split_dict in dct.get('splits') or []: + 585 split = KCFG.Split.from_dict(split_dict, cfg._nodes) + 586 cfg.add_successor(split) + 587 + 588 for ndbranch_dict in dct.get('ndbranches') or []: + 589 ndbranch = KCFG.NDBranch.from_dict(ndbranch_dict, cfg._nodes) + 590 cfg.add_successor(ndbranch) + 591 + 592 for alias, node_id in dct.get('aliases', {}).items(): + 593 cfg.add_alias(alias=alias, node_id=node_id) + 594 + 595 return cfg
+ + 596 +
+[docs] + 597 def aliases(self, node_id: NodeIdLike) -> list[str]: + 598 node_id = self._resolve(node_id) + 599 return [alias for alias, value in self._aliases.items() if node_id == value]
+ + 600 +
+[docs] + 601 def to_json(self) -> str: + 602 return json.dumps(self.to_dict(), sort_keys=True)
+ + 603 +
+[docs] + 604 @staticmethod + 605 def from_json(s: str, optimize_memory: bool = True) -> KCFG: + 606 return KCFG.from_dict(json.loads(s), optimize_memory=optimize_memory)
+ + 607 +
+[docs] + 608 def to_rules(self, priority: int = 20, id: str | None = None) -> list[KRuleLike]: + 609 id = '' if id is None else f'{id}-' + 610 return [e.to_rule(f'{id}BASIC-BLOCK', priority=priority) for e in self.edges()]
+ + 611 +
+[docs] + 612 def to_module( + 613 self, + 614 module_name: str | None = None, + 615 imports: Iterable[KImport] = (), + 616 priority: int = 20, + 617 att: KAtt = EMPTY_ATT, + 618 ) -> KFlatModule: + 619 module_name = 'KCFG' if module_name is None else module_name + 620 return KFlatModule(module_name, self.to_rules(priority=priority), imports=imports, att=att)
+ + 621 + 622 def _resolve_or_none(self, id_like: NodeIdLike) -> int | None: + 623 if type(id_like) is int: + 624 if id_like in self._nodes: + 625 return id_like + 626 + 627 return None + 628 + 629 if type(id_like) is not str: + 630 raise TypeError(f'Expected int or str for id_like, got: {id_like}') + 631 + 632 if id_like.startswith('@'): + 633 if id_like[1:] in self._aliases: + 634 return self._aliases[id_like[1:]] + 635 raise ValueError(f'Unknown alias: {id_like}') + 636 + 637 return None + 638 + 639 def _resolve(self, id_like: NodeIdLike) -> int: + 640 match = self._resolve_or_none(id_like) + 641 if not match: + 642 raise ValueError(f'Unknown node: {id_like}') + 643 return match + 644 +
+[docs] + 645 def node(self, node_id: NodeIdLike) -> KCFG.Node: + 646 node_id = self._resolve(node_id) + 647 return self._nodes[node_id]
+ + 648 +
+[docs] + 649 def get_node(self, node_id: NodeIdLike) -> KCFG.Node | None: + 650 resolved_id = self._resolve_or_none(node_id) + 651 if resolved_id is None: + 652 return None + 653 return self._nodes[resolved_id]
+ + 654 +
+[docs] + 655 def contains_node(self, node: KCFG.Node) -> bool: + 656 return bool(self.get_node(node.id))
+ + 657 +
+[docs] + 658 def add_node(self, node: KCFG.Node) -> None: + 659 if node.id in self._nodes: + 660 raise ValueError(f'Node with id already exists: {node.id}') + 661 self._nodes[node.id] = node + 662 self._created_nodes.add(node.id)
+ + 663 +
+[docs] + 664 def create_node(self, cterm: CTerm) -> KCFG.Node: + 665 node = KCFG.Node(self._node_id, cterm) + 666 self._node_id += 1 + 667 self._nodes[node.id] = node + 668 self._created_nodes.add(node.id) + 669 return node
+ + 670 +
+[docs] + 671 def remove_node(self, node_id: NodeIdLike) -> None: + 672 node_id = self._resolve(node_id) + 673 + 674 node = self._nodes.pop(node_id) + 675 self._created_nodes.discard(node_id) + 676 self._deleted_nodes.add(node.id) + 677 + 678 self._edges = {k: s for k, s in self._edges.items() if k != node_id and node_id not in s.target_ids} + 679 self._covers = {k: s for k, s in self._covers.items() if k != node_id and node_id not in s.target_ids} + 680 + 681 self._splits = {k: s for k, s in self._splits.items() if k != node_id and node_id not in s.target_ids} + 682 self._ndbranches = {k: b for k, b in self._ndbranches.items() if k != node_id and node_id not in b.target_ids} + 683 + 684 for alias in [alias for alias, id in self._aliases.items() if id == node_id]: + 685 self.remove_alias(alias)
+ + 686 + 687 def _update_refs(self, node_id: int) -> None: + 688 node = self.node(node_id) + 689 for succ in self.successors(node_id): + 690 new_succ = succ.replace_source(node) + 691 if type(new_succ) is KCFG.Edge: + 692 self._edges[new_succ.source.id] = new_succ + 693 if type(new_succ) is KCFG.Cover: + 694 self._covers[new_succ.source.id] = new_succ + 695 if type(new_succ) is KCFG.Split: + 696 self._splits[new_succ.source.id] = new_succ + 697 if type(new_succ) is KCFG.NDBranch: + 698 self._ndbranches[new_succ.source.id] = new_succ + 699 + 700 for pred in self.predecessors(node_id): + 701 new_pred = pred.replace_target(node) + 702 if type(new_pred) is KCFG.Edge: + 703 self._edges[new_pred.source.id] = new_pred + 704 if type(new_pred) is KCFG.Cover: + 705 self._covers[new_pred.source.id] = new_pred + 706 if type(new_pred) is KCFG.Split: + 707 self._splits[new_pred.source.id] = new_pred + 708 if type(new_pred) is KCFG.NDBranch: + 709 self._ndbranches[new_pred.source.id] = new_pred + 710 +
+[docs] + 711 def remove_attr(self, node_id: NodeIdLike, attr: NodeAttr) -> None: + 712 node = self.node(node_id) + 713 new_node = node.remove_attr(attr) + 714 self.replace_node(new_node)
+ + 715 +
+[docs] + 716 def discard_attr(self, node_id: NodeIdLike, attr: NodeAttr) -> None: + 717 node = self.node(node_id) + 718 new_node = node.discard_attr(attr) + 719 self.replace_node(new_node)
+ + 720 +
+[docs] + 721 def add_attr(self, node_id: NodeIdLike, attr: NodeAttr) -> None: + 722 node = self.node(node_id) + 723 new_node = node.add_attr(attr) + 724 self.replace_node(new_node)
+ + 725 +
+[docs] + 726 def let_node( + 727 self, node_id: NodeIdLike, cterm: CTerm | None = None, attrs: Iterable[KCFGNodeAttr] | None = None + 728 ) -> None: + 729 node = self.node(node_id) + 730 new_node = node.let(cterm=cterm, attrs=attrs) + 731 self.replace_node(new_node)
+ + 732 +
+[docs] + 733 def replace_node(self, node: KCFG.Node) -> None: + 734 self._nodes[node.id] = node + 735 self._created_nodes.add(node.id) + 736 self._update_refs(node.id)
+ + 737 +
+[docs] + 738 def successors(self, source_id: NodeIdLike) -> list[Successor]: + 739 out_edges: Iterable[KCFG.Successor] = self.edges(source_id=source_id) + 740 out_covers: Iterable[KCFG.Successor] = self.covers(source_id=source_id) + 741 out_splits: Iterable[KCFG.Successor] = self.splits(source_id=source_id) + 742 out_ndbranches: Iterable[KCFG.Successor] = self.ndbranches(source_id=source_id) + 743 return list(out_edges) + list(out_covers) + list(out_splits) + list(out_ndbranches)
+ + 744 +
+[docs] + 745 def predecessors(self, target_id: NodeIdLike) -> list[Successor]: + 746 in_edges: Iterable[KCFG.Successor] = self.edges(target_id=target_id) + 747 in_covers: Iterable[KCFG.Successor] = self.covers(target_id=target_id) + 748 in_splits: Iterable[KCFG.Successor] = self.splits(target_id=target_id) + 749 in_ndbranches: Iterable[KCFG.Successor] = self.ndbranches(target_id=target_id) + 750 return list(in_edges) + list(in_covers) + list(in_splits) + list(in_ndbranches)
+ + 751 + 752 def _check_no_successors(self, source_id: NodeIdLike) -> None: + 753 if len(self.successors(source_id)) > 0: + 754 raise ValueError(f'Node already has successors: {source_id} -> {self.successors(source_id)}') + 755 + 756 def _check_no_zero_loops(self, source_id: NodeIdLike, target_ids: Iterable[NodeIdLike]) -> None: + 757 for target_id in target_ids: + 758 path = self.shortest_path_between(target_id, source_id) + 759 if path is not None and KCFG.path_length(path) == 0: + 760 raise ValueError( + 761 f'Adding successor would create zero-length loop with backedge: {source_id} -> {target_id}' + 762 ) + 763 +
+[docs] + 764 def add_successor(self, succ: KCFG.Successor) -> None: + 765 self._check_no_successors(succ.source.id) + 766 self._check_no_zero_loops(succ.source.id, succ.target_ids) + 767 if type(succ) is KCFG.Edge: + 768 self._edges[succ.source.id] = succ + 769 elif type(succ) is KCFG.Cover: + 770 self._covers[succ.source.id] = succ + 771 else: + 772 if len(succ.target_ids) <= 1: + 773 raise ValueError( + 774 f'Cannot create {type(succ)} node with less than 2 targets: {succ.source.id} -> {succ.target_ids}' + 775 ) + 776 if type(succ) is KCFG.Split: + 777 self._splits[succ.source.id] = succ + 778 elif type(succ) is KCFG.NDBranch: + 779 self._ndbranches[succ.source.id] = succ
+ + 780 +
+[docs] + 781 def edge(self, source_id: NodeIdLike, target_id: NodeIdLike) -> Edge | None: + 782 source_id = self._resolve(source_id) + 783 target_id = self._resolve(target_id) + 784 edge = self._edges.get(source_id, None) + 785 return edge if edge is not None and edge.target.id == target_id else None
+ + 786 +
+[docs] + 787 def edges(self, *, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) -> list[Edge]: + 788 source_id = self._resolve(source_id) if source_id is not None else None + 789 target_id = self._resolve(target_id) if target_id is not None else None + 790 return [ + 791 edge + 792 for edge in self._edges.values() + 793 if (source_id is None or source_id == edge.source.id) and (target_id is None or target_id == edge.target.id) + 794 ]
+ + 795 +
+[docs] + 796 def contains_edge(self, edge: Edge) -> bool: + 797 if other := self.edge(source_id=edge.source.id, target_id=edge.target.id): + 798 return edge == other + 799 return False
+ + 800 +
+[docs] + 801 def create_edge(self, source_id: NodeIdLike, target_id: NodeIdLike, depth: int, rules: Iterable[str] = ()) -> Edge: + 802 if depth <= 0: + 803 raise ValueError(f'Cannot build KCFG Edge with non-positive depth: {depth}') + 804 source = self.node(source_id) + 805 target = self.node(target_id) + 806 edge = KCFG.Edge(source, target, depth, tuple(rules)) + 807 self.add_successor(edge) + 808 return edge
+ + 809 +
+[docs] + 810 def remove_edge(self, source_id: NodeIdLike, target_id: NodeIdLike) -> None: + 811 source_id = self._resolve(source_id) + 812 target_id = self._resolve(target_id) + 813 edge = self.edge(source_id, target_id) + 814 if not edge: + 815 raise ValueError(f'Edge does not exist: {source_id} -> {target_id}') + 816 self._edges.pop(source_id)
+ + 817 +
+[docs] + 818 def cover(self, source_id: NodeIdLike, target_id: NodeIdLike) -> Cover | None: + 819 source_id = self._resolve(source_id) + 820 target_id = self._resolve(target_id) + 821 cover = self._covers.get(source_id, None) + 822 return cover if cover is not None and cover.target.id == target_id else None
+ + 823 +
+[docs] + 824 def covers(self, *, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) -> list[Cover]: + 825 source_id = self._resolve(source_id) if source_id is not None else None + 826 target_id = self._resolve(target_id) if target_id is not None else None + 827 return [ + 828 cover + 829 for cover in self._covers.values() + 830 if (source_id is None or source_id == cover.source.id) + 831 and (target_id is None or target_id == cover.target.id) + 832 ]
+ + 833 +
+[docs] + 834 def contains_cover(self, cover: Cover) -> bool: + 835 if other := self.cover(source_id=cover.source.id, target_id=cover.target.id): + 836 return cover == other + 837 return False
+ + 838 +
+[docs] + 839 def create_cover(self, source_id: NodeIdLike, target_id: NodeIdLike, csubst: CSubst | None = None) -> Cover: + 840 source = self.node(source_id) + 841 target = self.node(target_id) + 842 if csubst is None: + 843 csubst = target.cterm.match_with_constraint(source.cterm) + 844 if csubst is None: + 845 raise ValueError(f'No matching between: {source.id} and {target.id}') + 846 cover = KCFG.Cover(source, target, csubst=csubst) + 847 self.add_successor(cover) + 848 return cover
+ + 849 +
+[docs] + 850 def remove_cover(self, source_id: NodeIdLike, target_id: NodeIdLike) -> None: + 851 source_id = self._resolve(source_id) + 852 target_id = self._resolve(target_id) + 853 cover = self.cover(source_id, target_id) + 854 if not cover: + 855 raise ValueError(f'Cover does not exist: {source_id} -> {target_id}') + 856 self._covers.pop(source_id)
+ + 857 +
+[docs] + 858 def edge_likes(self, *, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) -> list[EdgeLike]: + 859 return cast('List[KCFG.EdgeLike]', self.edges(source_id=source_id, target_id=target_id)) + cast( + 860 'List[KCFG.EdgeLike]', self.covers(source_id=source_id, target_id=target_id) + 861 )
+ + 862 +
+[docs] + 863 def add_vacuous(self, node_id: NodeIdLike) -> None: + 864 self.add_attr(node_id, KCFGNodeAttr.VACUOUS)
+ + 865 +
+[docs] + 866 def remove_vacuous(self, node_id: NodeIdLike) -> None: + 867 self.remove_attr(node_id, KCFGNodeAttr.VACUOUS)
+ + 868 +
+[docs] + 869 def discard_vacuous(self, node_id: NodeIdLike) -> None: + 870 self.discard_attr(node_id, KCFGNodeAttr.VACUOUS)
+ + 871 +
+[docs] + 872 def add_stuck(self, node_id: NodeIdLike) -> None: + 873 self.add_attr(node_id, KCFGNodeAttr.STUCK)
+ + 874 +
+[docs] + 875 def remove_stuck(self, node_id: NodeIdLike) -> None: + 876 self.remove_attr(node_id, KCFGNodeAttr.STUCK)
+ + 877 +
+[docs] + 878 def discard_stuck(self, node_id: NodeIdLike) -> None: + 879 self.discard_attr(node_id, KCFGNodeAttr.STUCK)
+ + 880 +
+[docs] + 881 def splits(self, *, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) -> list[Split]: + 882 source_id = self._resolve(source_id) if source_id is not None else None + 883 target_id = self._resolve(target_id) if target_id is not None else None + 884 return [ + 885 s + 886 for s in self._splits.values() + 887 if (source_id is None or source_id == s.source.id) and (target_id is None or target_id in s.target_ids) + 888 ]
+ + 889 +
+[docs] + 890 def contains_split(self, split: Split) -> bool: + 891 return split in self._splits.values()
+ + 892 +
+[docs] + 893 def create_split(self, source_id: NodeIdLike, splits: Iterable[tuple[NodeIdLike, CSubst]]) -> KCFG.Split: + 894 source_id = self._resolve(source_id) + 895 split = KCFG.Split(self.node(source_id), tuple((self.node(nid), csubst) for nid, csubst in list(splits))) + 896 self.add_successor(split) + 897 return split
+ + 898 +
+[docs] + 899 def ndbranches(self, *, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) -> list[NDBranch]: + 900 source_id = self._resolve(source_id) if source_id is not None else None + 901 target_id = self._resolve(target_id) if target_id is not None else None + 902 return [ + 903 b + 904 for b in self._ndbranches.values() + 905 if (source_id is None or source_id == b.source.id) and (target_id is None or target_id in b.target_ids) + 906 ]
+ + 907 +
+[docs] + 908 def contains_ndbranch(self, ndbranch: NDBranch) -> bool: + 909 return ndbranch in self._ndbranches
+ + 910 +
+[docs] + 911 def create_ndbranch( + 912 self, source_id: NodeIdLike, ndbranches: Iterable[NodeIdLike], rules: Iterable[str] = () + 913 ) -> KCFG.NDBranch: + 914 source_id = self._resolve(source_id) + 915 ndbranch = KCFG.NDBranch(self.node(source_id), tuple(self.node(nid) for nid in list(ndbranches)), tuple(rules)) + 916 self.add_successor(ndbranch) + 917 return ndbranch
+ + 918 +
+[docs] + 919 def split_on_constraints(self, source_id: NodeIdLike, constraints: Iterable[KInner]) -> list[int]: + 920 source = self.node(source_id) + 921 branch_node_ids = [self.create_node(source.cterm.add_constraint(c)).id for c in constraints] + 922 csubsts = [not_none(source.cterm.match_with_constraint(self.node(id).cterm)) for id in branch_node_ids] + 923 csubsts = [ + 924 reduce(CSubst.add_constraint, flatten_label('#And', constraint), csubst) + 925 for (csubst, constraint) in zip(csubsts, constraints, strict=True) + 926 ] + 927 self.create_split(source.id, zip(branch_node_ids, csubsts, strict=True)) + 928 return branch_node_ids
+ + 929 +
+[docs] + 930 def lift_edge(self, b_id: NodeIdLike) -> None: + 931 """Lift an edge up another edge directly preceding it. + 932 + 933 `A --M steps--> B --N steps--> C` becomes `A --(M + N) steps--> C`. Node `B` is removed. + 934 + 935 Args: + 936 b_id: the identifier of the central node `B` of a sequence of edges `A --> B --> C`. + 937 + 938 Raises: + 939 AssertionError: If the edges in question are not in place. + 940 """ + 941 # Obtain edges `A -> B`, `B -> C` + 942 a_to_b = single(self.edges(target_id=b_id)) + 943 b_to_c = single(self.edges(source_id=b_id)) + 944 # Remove the node `B`, effectively removing the entire initial structure + 945 self.remove_node(b_id) + 946 # Create edge `A -> C` + 947 self.create_edge(a_to_b.source.id, b_to_c.target.id, a_to_b.depth + b_to_c.depth, a_to_b.rules + b_to_c.rules)
+ + 948 +
+[docs] + 949 def lift_edges(self) -> bool: + 950 """Perform all possible edge lifts across the KCFG. + 951 + 952 The KCFG is transformed to an equivalent in which no further edge lifts are possible. + 953 + 954 Given the KCFG design, it is not possible for one edge lift to either disallow another or + 955 allow another that was not previously possible. Therefore, this function is guaranteed to + 956 lift all possible edges without having to loop. + 957 + 958 Returns: + 959 An indicator of whether or not at least one edge lift was performed. + 960 """ + 961 edges_to_lift = sorted( + 962 [ + 963 node.id + 964 for node in self.nodes + 965 if len(self.edges(source_id=node.id)) > 0 and len(self.edges(target_id=node.id)) > 0 + 966 ] + 967 ) + 968 for node_id in edges_to_lift: + 969 self.lift_edge(node_id) + 970 return len(edges_to_lift) > 0
+ + 971 +
+[docs] + 972 def lift_split_edge(self, b_id: NodeIdLike) -> None: + 973 """Lift a split up an edge directly preceding it. + 974 + 975 `A --M steps--> B --[cond_1, ..., cond_N]--> [C_1, ..., C_N]` becomes + 976 `A --[cond_1, ..., cond_N]--> [A #And cond_1 --M steps--> C_1, ..., A #And cond_N --M steps--> C_N]`. + 977 Node `B` is removed. + 978 + 979 Args: + 980 b_id: The identifier of the central node `B` of the structure `A --> B --> [C_1, ..., C_N]`. + 981 + 982 Raises: + 983 AssertionError: If the structure in question is not in place. + 984 AssertionError: If any of the `cond_i` contain variables not present in `A`. + 985 """ + 986 # Obtain edge `A -> B`, split `[cond_I, C_I | I = 1..N ]` + 987 a_to_b = single(self.edges(target_id=b_id)) + 988 a = a_to_b.source + 989 split_from_b = single(self.splits(source_id=b_id)) + 990 ci, csubsts = list(split_from_b.splits.keys()), list(split_from_b.splits.values()) + 991 # Ensure split can be lifted soundly (i.e., that it does not introduce fresh variables) + 992 assert ( + 993 len(split_from_b.source_vars.difference(a.free_vars)) == 0 + 994 and len(split_from_b.target_vars.difference(split_from_b.source_vars)) == 0 + 995 ) + 996 # Create CTerms and CSubsts corresponding to the new targets of the split + 997 new_cterms_with_constraints = [ + 998 (CTerm(a.cterm.config, a.cterm.constraints + csubst.constraints), csubst.constraint) for csubst in csubsts + 999 ] +1000 # Generate substitutions for new targets, which all exist by construction +1001 new_csubsts = [ +1002 not_none(a.cterm.match_with_constraint(cterm)).add_constraint(constraint) +1003 for (cterm, constraint) in new_cterms_with_constraints +1004 ] +1005 # Remove the node `B`, effectively removing the entire initial structure +1006 self.remove_node(b_id) +1007 # Create the nodes `[ A #And cond_I | I = 1..N ]`. +1008 ai: list[NodeIdLike] = [self.create_node(cterm).id for (cterm, _) in new_cterms_with_constraints] +1009 # Create the edges `[A #And cond_1 --M steps--> C_I | I = 1..N ]` +1010 for i in range(len(ai)): +1011 self.create_edge(ai[i], ci[i], a_to_b.depth, a_to_b.rules) +1012 # Create the split `A --[cond_1, ..., cond_N]--> [A #And cond_1, ..., A #And cond_N] +1013 self.create_split(a.id, zip(ai, new_csubsts, strict=True))
+ +1014 +
+[docs] +1015 def lift_split_split(self, b_id: NodeIdLike) -> None: +1016 """Lift a split up a split directly preceding it, joining them into a single split. +1017 +1018 `A --[..., cond_B, ...]--> [..., B, ...]` with `B --[cond_1, ..., cond_N]--> [C_1, ..., C_N]` becomes +1019 `A --[..., cond_B #And cond_1, ..., cond_B #And cond_N, ...]--> [..., C_1, ..., C_N, ...]`. +1020 Node `B` is removed. +1021 +1022 Args: +1023 b_id: the identifier of the node `B` of the structure +1024 `A --[..., cond_B, ...]--> [..., B, ...]` with `B --[cond_1, ..., cond_N]--> [C_1, ..., C_N]`. +1025 +1026 Raises: +1027 AssertionError: If the structure in question is not in place. +1028 """ +1029 # Obtain splits `A --[..., cond_B, ...]--> [..., B, ...]` and +1030 # `B --[cond_1, ..., cond_N]--> [C_1, ..., C_N]-> [C_1, ..., C_N]` +1031 split_from_a, split_from_b = single(self.splits(target_id=b_id)), single(self.splits(source_id=b_id)) +1032 splits_from_a, splits_from_b = split_from_a.splits, split_from_b.splits +1033 a = split_from_a.source +1034 ci = list(splits_from_b.keys()) +1035 # Ensure split can be lifted soundly (i.e., that it does not introduce fresh variables) +1036 assert ( +1037 len(split_from_b.source_vars.difference(a.free_vars)) == 0 +1038 and len(split_from_b.target_vars.difference(split_from_b.source_vars)) == 0 +1039 ) +1040 # Get the substitution for `B`, at the same time removing 'B' from the targets of `A`. +1041 csubst_b = splits_from_a.pop(self._resolve(b_id)) +1042 # Generate substitutions for additional targets `C_I`, which all exist by construction; +1043 # the constraints are cumulative, resulting in `cond_B #And cond_I` +1044 additional_csubsts = [ +1045 not_none(a.cterm.match_with_constraint(self.node(ci).cterm)) +1046 .add_constraint(csubst_b.constraint) +1047 .add_constraint(csubst.constraint) +1048 for ci, csubst in splits_from_b.items() +1049 ] +1050 # Create the targets of the new split +1051 ci = list(splits_from_b.keys()) +1052 new_splits = zip( +1053 list(splits_from_a.keys()) + ci, list(splits_from_a.values()) + additional_csubsts, strict=True +1054 ) +1055 # Remove the node `B`, thereby removing the two splits as well +1056 self.remove_node(b_id) +1057 # Create the new split `A --[..., cond_B #And cond_1, ..., cond_B #And cond_N, ...]--> [..., C_1, ..., C_N, ...]` +1058 self.create_split(a.id, new_splits)
+ +1059 +
+[docs] +1060 def lift_splits(self) -> bool: +1061 """Perform all possible split liftings. +1062 +1063 The KCFG is transformed to an equivalent in which no further split lifts are possible. +1064 +1065 Returns: +1066 An indicator of whether or not at least one split lift was performed. +1067 """ +1068 +1069 def _lift_split(finder: Callable, lifter: Callable) -> bool: +1070 result = False +1071 while True: +1072 splits_to_lift = sorted( +1073 [ +1074 node.id +1075 for node in self.nodes +1076 if (splits := self.splits(source_id=node.id)) != [] +1077 and (sources := finder(target_id=node.id)) != [] +1078 and (source := single(sources).source) +1079 and (split := single(splits)) +1080 and len(split.source_vars.difference(source.free_vars)) == 0 +1081 and len(split.target_vars.difference(split.source_vars)) == 0 +1082 ] +1083 ) +1084 for id in splits_to_lift: +1085 lifter(id) +1086 result = True +1087 if len(splits_to_lift) == 0: +1088 break +1089 return result +1090 +1091 def _fold_lift(result: bool, finder_lifter: tuple[Callable, Callable]) -> bool: +1092 return _lift_split(finder_lifter[0], finder_lifter[1]) or result +1093 +1094 return reduce(_fold_lift, [(self.edges, self.lift_split_edge), (self.splits, self.lift_split_split)], False)
+ +1095 +
+[docs] +1096 def minimize(self) -> None: +1097 """Minimize KCFG by repeatedly performing the lifting transformations. +1098 +1099 The KCFG is transformed to an equivalent in which no further lifting transformations are possible. +1100 The loop is designed so that each transformation is performed once in each iteration. +1101 """ +1102 repeat = True +1103 while repeat: +1104 repeat = self.lift_edges() +1105 repeat = self.lift_splits() or repeat
+ +1106 +
+[docs] +1107 def add_alias(self, alias: str, node_id: NodeIdLike) -> None: +1108 if '@' in alias: +1109 raise ValueError('Alias may not contain "@"') +1110 if alias in self._aliases: +1111 raise ValueError(f'Duplicate alias: {alias}') +1112 node_id = self._resolve(node_id) +1113 self._aliases[alias] = node_id
+ +1114 +
+[docs] +1115 def remove_alias(self, alias: str) -> None: +1116 if alias not in self._aliases: +1117 raise ValueError(f'Alias does not exist: {alias}') +1118 self._aliases.pop(alias)
+ +1119 +
+[docs] +1120 def is_root(self, node_id: NodeIdLike) -> bool: +1121 node_id = self._resolve(node_id) +1122 return len(self.predecessors(node_id)) == 0
+ +1123 +
+[docs] +1124 def is_vacuous(self, node_id: NodeIdLike) -> bool: +1125 return KCFGNodeAttr.VACUOUS in self.node(node_id).attrs
+ +1126 +
+[docs] +1127 def is_stuck(self, node_id: NodeIdLike) -> bool: +1128 return KCFGNodeAttr.STUCK in self.node(node_id).attrs
+ +1129 +
+[docs] +1130 def is_split(self, node_id: NodeIdLike) -> bool: +1131 node_id = self._resolve(node_id) +1132 return node_id in self._splits
+ +1133 +
+[docs] +1134 def is_ndbranch(self, node_id: NodeIdLike) -> bool: +1135 node_id = self._resolve(node_id) +1136 return node_id in self._ndbranches
+ +1137 +
+[docs] +1138 def is_leaf(self, node_id: NodeIdLike) -> bool: +1139 return len(self.successors(node_id)) == 0
+ +1140 +
+[docs] +1141 def is_covered(self, node_id: NodeIdLike) -> bool: +1142 node_id = self._resolve(node_id) +1143 return node_id in self._covers
+ +1144 +
+[docs] +1145 def prune(self, node_id: NodeIdLike, keep_nodes: Iterable[NodeIdLike] = ()) -> list[int]: +1146 nodes = self.reachable_nodes(node_id) +1147 keep_nodes = [self._resolve(nid) for nid in keep_nodes] +1148 pruned_nodes: list[int] = [] +1149 for node in nodes: +1150 if node.id not in keep_nodes: +1151 self.remove_node(node.id) +1152 pruned_nodes.append(node.id) +1153 return pruned_nodes
+ +1154 +
+[docs] +1155 def shortest_path_between( +1156 self, source_node_id: NodeIdLike, target_node_id: NodeIdLike +1157 ) -> tuple[Successor, ...] | None: +1158 paths = self.paths_between(source_node_id, target_node_id) +1159 if len(paths) == 0: +1160 return None +1161 return sorted(paths, key=(lambda path: KCFG.path_length(path)))[0]
+ +1162 +
+[docs] +1163 def shortest_distance_between(self, node_1_id: NodeIdLike, node_2_id: NodeIdLike) -> int | None: +1164 path_1 = self.shortest_path_between(node_1_id, node_2_id) +1165 path_2 = self.shortest_path_between(node_2_id, node_1_id) +1166 distance: int | None = None +1167 if path_1 is not None: +1168 distance = KCFG.path_length(path_1) +1169 if path_2 is not None: +1170 distance_2 = KCFG.path_length(path_2) +1171 if distance is None or distance_2 < distance: +1172 distance = distance_2 +1173 return distance
+ +1174 +
+[docs] +1175 def zero_depth_between(self, node_1_id: NodeIdLike, node_2_id: NodeIdLike) -> bool: +1176 shortest_distance = self.shortest_distance_between(node_1_id, node_2_id) +1177 return shortest_distance is not None and shortest_distance == 0
+ +1178 +
+[docs] +1179 def paths_between(self, source_id: NodeIdLike, target_id: NodeIdLike) -> list[tuple[Successor, ...]]: +1180 source_id = self._resolve(source_id) +1181 target_id = self._resolve(target_id) +1182 +1183 if source_id == target_id: +1184 return [()] +1185 +1186 source_successors = list(self.successors(source_id)) +1187 assert len(source_successors) <= 1 +1188 if len(source_successors) == 0: +1189 return [] +1190 +1191 paths: list[tuple[KCFG.Successor, ...]] = [] +1192 worklist: list[list[KCFG.Successor]] = [[source_successors[0]]] +1193 +1194 def _in_path(_nid: int, _path: list[KCFG.Successor]) -> bool: +1195 for succ in _path: +1196 if _nid == succ.source.id: +1197 return True +1198 if len(_path) > 0: +1199 if isinstance(_path[-1], KCFG.EdgeLike) and _path[-1].target.id == _nid: +1200 return True +1201 elif isinstance(_path[-1], KCFG.MultiEdge) and _nid in _path[-1].target_ids: +1202 return True +1203 return False +1204 +1205 while worklist: +1206 curr_path = worklist.pop() +1207 curr_successor = curr_path[-1] +1208 successors: list[KCFG.Successor] = [] +1209 +1210 if isinstance(curr_successor, KCFG.EdgeLike): +1211 if curr_successor.target.id == target_id: +1212 paths.append(tuple(curr_path)) +1213 continue +1214 else: +1215 successors = list(self.successors(curr_successor.target.id)) +1216 +1217 elif isinstance(curr_successor, KCFG.MultiEdge): +1218 if len(list(curr_successor.targets)) == 1: +1219 target = list(curr_successor.targets)[0] +1220 if target.id == target_id: +1221 paths.append(tuple(curr_path)) +1222 continue +1223 else: +1224 successors = list(self.successors(target.id)) +1225 if len(list(curr_successor.targets)) > 1: +1226 curr_path = curr_path[0:-1] +1227 successors = [curr_successor.with_single_target(target) for target in curr_successor.targets] +1228 +1229 for successor in successors: +1230 if isinstance(successor, KCFG.EdgeLike) and not _in_path(successor.target.id, curr_path): +1231 worklist.append(curr_path + [successor]) +1232 elif isinstance(successor, KCFG.MultiEdge): +1233 if len(list(successor.targets)) == 1: +1234 target = list(successor.targets)[0] +1235 if not _in_path(target.id, curr_path): +1236 worklist.append(curr_path + [successor]) +1237 elif len(list(successor.targets)) > 1: +1238 worklist.append(curr_path + [successor]) +1239 +1240 return paths
+ +1241 +
+[docs] +1242 def reachable_nodes(self, source_id: NodeIdLike, *, reverse: bool = False) -> set[KCFG.Node]: +1243 visited: set[KCFG.Node] = set() +1244 worklist: list[KCFG.Node] = [self.node(source_id)] +1245 +1246 while worklist: +1247 node = worklist.pop() +1248 +1249 if node in visited: +1250 continue +1251 +1252 visited.add(node) +1253 +1254 if not reverse: +1255 worklist.extend(target for succ in self.successors(source_id=node.id) for target in succ.targets) +1256 else: +1257 worklist.extend(succ.source for succ in self.predecessors(target_id=node.id)) +1258 +1259 return visited
+ +1260 +
+[docs] +1261 def write_cfg_data(self) -> None: +1262 assert self._kcfg_store is not None +1263 self._kcfg_store.write_cfg_data( +1264 self.to_dict(), deleted_nodes=self._deleted_nodes, created_nodes=self._created_nodes +1265 ) +1266 self._deleted_nodes.clear() +1267 self._created_nodes.clear()
+ +1268 +
+[docs] +1269 @staticmethod +1270 def read_cfg_data(cfg_dir: Path) -> KCFG: +1271 store = KCFGStore(cfg_dir) +1272 cfg = KCFG.from_dict(store.read_cfg_data()) +1273 cfg._kcfg_store = store +1274 return cfg
+ +1275 +
+[docs] +1276 @staticmethod +1277 def read_node_data(cfg_dir: Path, node_id: int) -> KCFG.Node: +1278 store = KCFGStore(cfg_dir) +1279 return KCFG.Node.from_dict(store.read_node_data(node_id))
+
+ +1280 +1281 +
+[docs] +1282class KCFGExtendResult(ABC): ...
+ +1283 +1284 +
+[docs] +1285@final +1286@dataclass(frozen=True) +1287class Vacuous(KCFGExtendResult): ...
+ +1288 +1289 +
+[docs] +1290@final +1291@dataclass(frozen=True) +1292class Stuck(KCFGExtendResult): ...
+ +1293 +1294 +
+[docs] +1295@final +1296@dataclass(frozen=True) +1297class Abstract(KCFGExtendResult): +1298 cterm: CTerm
+ +1299 +1300 +
+[docs] +1301@final +1302@dataclass(frozen=True) +1303class Step(KCFGExtendResult): +1304 cterm: CTerm +1305 depth: int +1306 logs: tuple[LogEntry, ...] +1307 rule_labels: list[str] +1308 cut: bool = field(default=False)
+ +1309 +1310 +
+[docs] +1311@final +1312@dataclass(frozen=True) +1313class Branch(KCFGExtendResult): +1314 constraints: tuple[KInner, ...] +1315 heuristic: bool +1316 +1317 def __init__(self, constraints: Iterable[KInner], *, heuristic: bool = False): +1318 object.__setattr__(self, 'constraints', tuple(constraints)) +1319 object.__setattr__(self, 'heuristic', heuristic)
+ +1320 +1321 +
+[docs] +1322@final +1323@dataclass(frozen=True) +1324class NDBranch(KCFGExtendResult): +1325 cterms: tuple[CTerm, ...] +1326 logs: tuple[LogEntry, ...] +1327 rule_labels: tuple[str, ...] +1328 +1329 def __init__(self, cterms: Iterable[CTerm], logs: Iterable[LogEntry,], rule_labels: Iterable[str]): +1330 object.__setattr__(self, 'cterms', tuple(cterms)) +1331 object.__setattr__(self, 'logs', tuple(logs)) +1332 object.__setattr__(self, 'rule_labels', tuple(rule_labels))
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/semantics.html b/pyk/_modules/pyk/kcfg/semantics.html new file mode 100644 index 00000000000..f0679dca3a6 --- /dev/null +++ b/pyk/_modules/pyk/kcfg/semantics.html @@ -0,0 +1,172 @@ + + + + + + pyk.kcfg.semantics — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.semantics

+ 1from __future__ import annotations
+ 2
+ 3from abc import ABC, abstractmethod
+ 4from typing import TYPE_CHECKING
+ 5
+ 6if TYPE_CHECKING:
+ 7    from ..cterm import CTerm
+ 8    from .kcfg import KCFGExtendResult
+ 9
+10
+
+[docs] +11class KCFGSemantics(ABC): +
+[docs] +12 @abstractmethod +13 def is_terminal(self, c: CTerm) -> bool: ...
+ +14 +
+[docs] +15 @abstractmethod +16 def abstract_node(self, c: CTerm) -> CTerm: ...
+ +17 +
+[docs] +18 @abstractmethod +19 def same_loop(self, c1: CTerm, c2: CTerm) -> bool: ...
+ +20 +
+[docs] +21 @abstractmethod +22 def custom_step(self, c: CTerm) -> KCFGExtendResult | None: ...
+
+ +23 +24 +
+[docs] +25class DefaultSemantics(KCFGSemantics): +
+[docs] +26 def is_terminal(self, c: CTerm) -> bool: +27 return False
+ +28 +
+[docs] +29 def abstract_node(self, c: CTerm) -> CTerm: +30 return c
+ +31 +
+[docs] +32 def same_loop(self, c1: CTerm, c2: CTerm) -> bool: +33 return False
+ +34 +
+[docs] +35 def custom_step(self, c: CTerm) -> KCFGExtendResult | None: +36 return None
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/show.html b/pyk/_modules/pyk/kcfg/show.html new file mode 100644 index 00000000000..bb58bcb578f --- /dev/null +++ b/pyk/_modules/pyk/kcfg/show.html @@ -0,0 +1,620 @@ + + + + + + pyk.kcfg.show — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.show

+  1from __future__ import annotations
+  2
+  3import logging
+  4from typing import TYPE_CHECKING
+  5
+  6from graphviz import Digraph
+  7
+  8from ..kast.inner import KApply, KRewrite, top_down
+  9from ..kast.manip import (
+ 10    flatten_label,
+ 11    inline_cell_maps,
+ 12    minimize_rule,
+ 13    minimize_term,
+ 14    ml_pred_to_bool,
+ 15    push_down_rewrites,
+ 16    remove_generated_cells,
+ 17    sort_ac_collections,
+ 18)
+ 19from ..kast.outer import KRule
+ 20from ..prelude.k import DOTS
+ 21from ..prelude.ml import mlAnd
+ 22from ..utils import add_indent, ensure_dir_path
+ 23from .kcfg import KCFG
+ 24
+ 25if TYPE_CHECKING:
+ 26    from collections.abc import Iterable
+ 27    from pathlib import Path
+ 28    from typing import Final
+ 29
+ 30    from ..kast import KInner
+ 31    from ..kast.outer import KFlatModule, KSentence
+ 32    from ..ktool.kprint import KPrint
+ 33    from .kcfg import NodeIdLike
+ 34
+ 35_LOGGER: Final = logging.getLogger(__name__)
+ 36
+ 37
+
+[docs] + 38class NodePrinter: + 39 kprint: KPrint + 40 full_printer: bool + 41 minimize: bool + 42 + 43 def __init__(self, kprint: KPrint, full_printer: bool = False, minimize: bool = False): + 44 self.kprint = kprint + 45 self.full_printer = full_printer + 46 self.minimize = minimize + 47 +
+[docs] + 48 def print_node(self, kcfg: KCFG, node: KCFG.Node) -> list[str]: + 49 attrs = self.node_attrs(kcfg, node) + 50 attr_str = ' (' + ', '.join(attrs) + ')' if attrs else '' + 51 node_strs = [f'{node.id}{attr_str}'] + 52 if self.full_printer: + 53 kast = node.cterm.kast + 54 if self.minimize: + 55 kast = minimize_term(kast) + 56 node_strs.extend(' ' + line for line in self.kprint.pretty_print(kast).split('\n')) + 57 return node_strs
+ + 58 +
+[docs] + 59 def node_attrs(self, kcfg: KCFG, node: KCFG.Node) -> list[str]: + 60 attrs = [] + 61 if kcfg.is_root(node.id): + 62 attrs.append('root') + 63 if kcfg.is_stuck(node.id): + 64 attrs.append('stuck') + 65 if kcfg.is_vacuous(node.id): + 66 attrs.append('vacuous') + 67 if kcfg.is_leaf(node.id): + 68 attrs.append('leaf') + 69 if kcfg.is_split(node.id): + 70 attrs.append('split') + 71 attrs.extend(['@' + alias for alias in sorted(kcfg.aliases(node.id))]) + 72 return attrs
+
+ + 73 + 74 +
+[docs] + 75class KCFGShow: + 76 kprint: KPrint + 77 node_printer: NodePrinter + 78 + 79 def __init__(self, kprint: KPrint, node_printer: NodePrinter | None = None): + 80 self.kprint = kprint + 81 self.node_printer = node_printer if node_printer is not None else NodePrinter(kprint) + 82 +
+[docs] + 83 def node_short_info(self, kcfg: KCFG, node: KCFG.Node) -> list[str]: + 84 return self.node_printer.print_node(kcfg, node)
+ + 85 +
+[docs] + 86 @staticmethod + 87 def hide_cells(term: KInner, omit_cells: Iterable[str]) -> KInner: + 88 def _hide_cells(_k: KInner) -> KInner: + 89 if type(_k) == KApply and _k.label.name in omit_cells: + 90 return DOTS + 91 return _k + 92 + 93 if omit_cells: + 94 return top_down(_hide_cells, term) + 95 return term
+ + 96 +
+[docs] + 97 @staticmethod + 98 def simplify_config(config: KInner, omit_cells: Iterable[str]) -> KInner: + 99 config = inline_cell_maps(config) +100 config = sort_ac_collections(config) +101 config = KCFGShow.hide_cells(config, omit_cells) +102 return config
+ +103 +
+[docs] +104 @staticmethod +105 def make_unique_segments(segments: Iterable[tuple[str, Iterable[str]]]) -> Iterable[tuple[str, Iterable[str]]]: +106 _segments = [] +107 used_ids = [] +108 for id, seg_lines in segments: +109 suffix = '' +110 counter = 0 +111 while f'{id}{suffix}' in used_ids: +112 suffix = f'_{counter}' +113 counter += 1 +114 new_id = f'{id}{suffix}' +115 used_ids.append(new_id) +116 _segments.append((f'{new_id}', [l.rstrip() for l in seg_lines])) +117 return _segments
+ +118 +
+[docs] +119 def pretty_segments(self, kcfg: KCFG, minimize: bool = True) -> Iterable[tuple[str, Iterable[str]]]: +120 """Return a pretty version of the KCFG in segments. +121 +122 Each segment is a tuple of an identifier and a list of lines to be printed for that segment (Tuple[str, Iterable[str]). +123 The identifier tells you whether that segment is for a given node, edge, or just pretty spacing ('unknown'). +124 This is useful for applications which want to pretty print in chunks, so that they can know which printed region corresponds to each node/edge. +125 """ +126 processed_nodes: list[KCFG.Node] = [] +127 ret_lines: list[tuple[str, list[str]]] = [] +128 +129 def _print_node(node: KCFG.Node) -> list[str]: +130 return self.node_short_info(kcfg, node) +131 +132 def _print_edge(edge: KCFG.Edge) -> list[str]: +133 if edge.depth == 1: +134 return ['(' + str(edge.depth) + ' step)'] +135 else: +136 return ['(' + str(edge.depth) + ' steps)'] +137 +138 def _print_cover(cover: KCFG.Cover) -> Iterable[str]: +139 subst_strs = [f'{k} <- {self.kprint.pretty_print(v)}' for k, v in cover.csubst.subst.items()] +140 subst_str = '' +141 if len(subst_strs) == 0: +142 subst_str = '.Subst' +143 if len(subst_strs) == 1: +144 subst_str = subst_strs[0] +145 if len(subst_strs) > 1 and minimize: +146 subst_str = 'OMITTED SUBST' +147 if len(subst_strs) > 1 and not minimize: +148 subst_str = '{\n ' + '\n '.join(subst_strs) + '\n}' +149 constraint_str = self.kprint.pretty_print(ml_pred_to_bool(cover.csubst.constraint, unsafe=True)) +150 if len(constraint_str) > 78: +151 constraint_str = 'OMITTED CONSTRAINT' +152 return [ +153 f'constraint: {constraint_str}', +154 f'subst: {subst_str}', +155 ] +156 +157 def _print_split_edge(split: KCFG.Split, target_id: int) -> list[str]: +158 csubst = split.splits[target_id] +159 ret_split_lines: list[str] = [] +160 substs = csubst.subst.minimize().items() +161 constraints = [ml_pred_to_bool(c, unsafe=True) for c in csubst.constraints] +162 if len(constraints) == 1: +163 first_line, *rest_lines = self.kprint.pretty_print(constraints[0]).split('\n') +164 ret_split_lines.append(f'constraint: {first_line}') +165 ret_split_lines.extend(f' {line}' for line in rest_lines) +166 elif len(constraints) > 1: +167 ret_split_lines.append('constraints:') +168 for constraint in constraints: +169 first_line, *rest_lines = self.kprint.pretty_print(constraint).split('\n') +170 ret_split_lines.append(f' {first_line}') +171 ret_split_lines.extend(f' {line}' for line in rest_lines) +172 if len(substs) == 1: +173 vname, term = list(substs)[0] +174 ret_split_lines.append(f'subst: {vname} <- {self.kprint.pretty_print(term)}') +175 elif len(substs) > 1: +176 ret_split_lines.append('substs:') +177 ret_split_lines.extend(f' {vname} <- {self.kprint.pretty_print(term)}' for vname, term in substs) +178 return ret_split_lines +179 +180 def _print_subgraph(indent: str, curr_node: KCFG.Node, prior_on_trace: list[KCFG.Node]) -> None: +181 processed = curr_node in processed_nodes +182 processed_nodes.append(curr_node) +183 successors = list(kcfg.successors(curr_node.id)) +184 +185 curr_node_strs = _print_node(curr_node) +186 +187 ret_node_lines = [] +188 suffix = [] +189 elbow = '├─' +190 node_indent = '│ ' +191 if kcfg.is_root(curr_node.id): +192 elbow = '┌─' +193 elif processed or not successors: +194 elbow = '└─' +195 node_indent = ' ' +196 if curr_node in prior_on_trace: +197 suffix = ['(looped back)', ''] +198 elif processed and not kcfg.is_leaf(curr_node.id): +199 suffix = ['(continues as previously)', ''] +200 else: +201 suffix = [''] +202 ret_node_lines.append(indent + elbow + ' ' + curr_node_strs[0]) +203 ret_node_lines.extend(add_indent(indent + node_indent, curr_node_strs[1:])) +204 ret_node_lines.extend(add_indent(indent + ' ', suffix)) +205 ret_lines.append((f'node_{curr_node.id}', ret_node_lines)) +206 +207 if processed or not successors: +208 return +209 successor = successors[0] +210 +211 if isinstance(successor, KCFG.MultiEdge): +212 ret_lines.append(('unknown', [f'{indent}┃'])) +213 multiedge_label = '1 step' if type(successor) is KCFG.NDBranch else 'branch' +214 multiedge_id = 'ndbranch' if type(successor) is KCFG.NDBranch else 'split' +215 ret_lines.append(('unknown', [f'{indent}┃ ({multiedge_label})'])) +216 +217 for target in successor.targets[:-1]: +218 if type(successor) is KCFG.Split: +219 ret_edge_lines = _print_split_edge(successor, target.id) +220 ret_edge_lines = [indent + '┣━━┓ ' + ret_edge_lines[0]] + add_indent( +221 indent + '┃ ┃ ', ret_edge_lines[1:] +222 ) +223 elif type(successor) is KCFG.NDBranch: +224 ret_edge_lines = [indent + '┣━━┓ '] +225 else: +226 raise AssertionError() +227 ret_edge_lines.append(indent + '┃ │') +228 ret_lines.append((f'{multiedge_id}_{curr_node.id}_{target.id}', ret_edge_lines)) +229 _print_subgraph(indent + '┃ ', target, prior_on_trace + [curr_node]) +230 target = successor.targets[-1] +231 if type(successor) is KCFG.Split: +232 ret_edge_lines = _print_split_edge(successor, target.id) +233 ret_edge_lines = [indent + '┗━━┓ ' + ret_edge_lines[0]] + add_indent( +234 indent + ' ┃ ', ret_edge_lines[1:] +235 ) +236 elif type(successor) is KCFG.NDBranch: +237 ret_edge_lines = [indent + '┗━━┓ '] +238 else: +239 raise AssertionError() +240 ret_edge_lines.append(indent + ' │') +241 ret_lines.append((f'{multiedge_id}_{curr_node.id}_{target.id}', ret_edge_lines)) +242 _print_subgraph(indent + ' ', target, prior_on_trace + [curr_node]) +243 +244 elif isinstance(successor, KCFG.EdgeLike): +245 ret_lines.append(('unknown', [f'{indent}│'])) +246 +247 if type(successor) is KCFG.Edge: +248 ret_edge_lines = [] +249 ret_edge_lines.extend(add_indent(indent + '│ ', _print_edge(successor))) +250 ret_lines.append((f'edge_{successor.source.id}_{successor.target.id}', ret_edge_lines)) +251 +252 elif type(successor) is KCFG.Cover: +253 ret_edge_lines = [] +254 ret_edge_lines.extend(add_indent(indent + '┊ ', _print_cover(successor))) +255 ret_lines.append((f'cover_{successor.source.id}_{successor.target.id}', ret_edge_lines)) +256 +257 _print_subgraph(indent, successor.target, prior_on_trace + [curr_node]) +258 +259 def _sorted_init_nodes() -> tuple[list[KCFG.Node], list[KCFG.Node]]: +260 sorted_init_nodes = sorted(node for node in kcfg.nodes if node not in processed_nodes) +261 init_nodes = [] +262 init_leaf_nodes = [] +263 remaining_nodes = [] +264 for node in sorted_init_nodes: +265 if kcfg.is_root(node.id): +266 if kcfg.is_leaf(node.id): +267 init_leaf_nodes.append(node) +268 else: +269 init_nodes.append(node) +270 else: +271 remaining_nodes.append(node) +272 return (init_nodes + init_leaf_nodes, remaining_nodes) +273 +274 init, _ = _sorted_init_nodes() +275 while init: +276 ret_lines.append(('unknown', [''])) +277 _print_subgraph('', init[0], []) +278 init, _ = _sorted_init_nodes() +279 _, remaining = _sorted_init_nodes() +280 if remaining: +281 ret_lines.append(('unknown', ['', 'Remaining Nodes:'])) +282 for node in remaining: +283 ret_node_lines = [''] + _print_node(node) +284 ret_lines.append((f'node_{node.id}', ret_node_lines)) +285 +286 return KCFGShow.make_unique_segments(ret_lines)
+ +287 +
+[docs] +288 def pretty( +289 self, +290 kcfg: KCFG, +291 minimize: bool = True, +292 ) -> Iterable[str]: +293 return (line for _, seg_lines in self.pretty_segments(kcfg, minimize=minimize) for line in seg_lines)
+ +294 +
+[docs] +295 def to_module( +296 self, +297 cfg: KCFG, +298 module_name: str | None = None, +299 omit_cells: Iterable[str] = (), +300 parseable_output: bool = True, +301 ) -> KFlatModule: +302 def _process_sentence(sent: KSentence) -> KSentence: +303 if type(sent) is KRule: +304 sent = sent.let(body=KCFGShow.hide_cells(sent.body, omit_cells)) +305 if parseable_output: +306 sent = sent.let(body=remove_generated_cells(sent.body)) +307 sent = minimize_rule(sent) +308 return sent +309 +310 module = cfg.to_module(module_name) +311 return module.let(sentences=[_process_sentence(sent) for sent in module.sentences])
+ +312 +
+[docs] +313 def show( +314 self, +315 cfg: KCFG, +316 nodes: Iterable[NodeIdLike] = (), +317 node_deltas: Iterable[tuple[NodeIdLike, NodeIdLike]] = (), +318 to_module: bool = False, +319 minimize: bool = True, +320 sort_collections: bool = False, +321 omit_cells: Iterable[str] = (), +322 module_name: str | None = None, +323 ) -> list[str]: +324 res_lines: list[str] = [] +325 res_lines += self.pretty(cfg, minimize=minimize) +326 +327 nodes_printed = False +328 +329 for node_id in nodes: +330 nodes_printed = True +331 kast = cfg.node(node_id).cterm.kast +332 kast = KCFGShow.hide_cells(kast, omit_cells) +333 if minimize: +334 kast = minimize_term(kast) +335 res_lines.append('') +336 res_lines.append('') +337 res_lines.append(f'Node {node_id}:') +338 res_lines.append('') +339 res_lines.append(self.kprint.pretty_print(kast, sort_collections=sort_collections)) +340 res_lines.append('') +341 +342 for node_id_1, node_id_2 in node_deltas: +343 nodes_printed = True +344 config_1 = KCFGShow.simplify_config(cfg.node(node_id_1).cterm.config, omit_cells) +345 config_2 = KCFGShow.simplify_config(cfg.node(node_id_2).cterm.config, omit_cells) +346 config_delta = push_down_rewrites(KRewrite(config_1, config_2)) +347 if minimize: +348 config_delta = minimize_term(config_delta) +349 res_lines.append('') +350 res_lines.append('') +351 res_lines.append(f'State Delta {node_id_1} => {node_id_2}:') +352 res_lines.append('') +353 res_lines.append(self.kprint.pretty_print(config_delta, sort_collections=sort_collections)) +354 res_lines.append('') +355 +356 if not (nodes_printed): +357 res_lines.append('') +358 res_lines.append('') +359 res_lines.append('') +360 +361 if to_module: +362 module = self.to_module(cfg, module_name, omit_cells=omit_cells) +363 res_lines.append(self.kprint.pretty_print(module, sort_collections=sort_collections)) +364 +365 return res_lines
+ +366 +
+[docs] +367 def dot(self, kcfg: KCFG) -> Digraph: +368 def _short_label(label: str) -> str: +369 return '\n'.join( +370 [ +371 label_line if len(label_line) < 100 else (label_line[0:100] + ' ...') +372 for label_line in label.split('\n') +373 ] +374 ) +375 +376 graph = Digraph() +377 +378 for node in kcfg.nodes: +379 label = '\n'.join(self.node_short_info(kcfg, node)) +380 class_attrs = ' '.join(self.node_printer.node_attrs(kcfg, node)) +381 attrs = {'class': class_attrs} if class_attrs else {} +382 graph.node(name=node.id, label=label, **attrs) +383 +384 for edge in kcfg.edges(): +385 depth = edge.depth +386 label = f'{depth} steps' +387 graph.edge(tail_name=edge.source.id, head_name=edge.target.id, label=f' {label} ') +388 +389 for cover in kcfg.covers(): +390 label = ', '.join( +391 f'{k} |-> {self.kprint.pretty_print(v)}' for k, v in cover.csubst.subst.minimize().items() +392 ) +393 label = _short_label(label) +394 attrs = {'class': 'abstraction', 'style': 'dashed'} +395 graph.edge(tail_name=cover.source.id, head_name=cover.target.id, label=f' {label} ', **attrs) +396 +397 for split in kcfg.splits(): +398 for target_id, csubst in split.splits.items(): +399 label = '\n#And'.join( +400 f'{self.kprint.pretty_print(v)}' for v in split.source.cterm.constraints + csubst.constraints +401 ) +402 graph.edge(tail_name=split.source.id, head_name=target_id, label=f' {label} ') +403 +404 for ndbranch in kcfg.ndbranches(): +405 for target in ndbranch.target_ids: +406 label = '1 step' +407 graph.edge(tail_name=ndbranch.source.id, head_name=target, label=f' {label} ') +408 +409 return graph
+ +410 +
+[docs] +411 def dump(self, cfgid: str, cfg: KCFG, dump_dir: Path, dot: bool = False) -> None: +412 ensure_dir_path(dump_dir) +413 +414 cfg_file = dump_dir / f'{cfgid}.json' +415 cfg_file.write_text(cfg.to_json()) +416 _LOGGER.info(f'Wrote CFG file {cfgid}: {cfg_file}') +417 +418 if dot: +419 cfg_dot = self.dot(cfg) +420 dot_file = dump_dir / f'{cfgid}.dot' +421 dot_file.write_text(cfg_dot.source) +422 _LOGGER.info(f'Wrote DOT file {cfgid}: {dot_file}') +423 +424 nodes_dir = dump_dir / 'nodes' +425 ensure_dir_path(nodes_dir) +426 for node in cfg.nodes: +427 node_file = nodes_dir / f'config_{node.id}.txt' +428 node_minimized_file = nodes_dir / f'config_minimized_{node.id}.txt' +429 node_constraint_file = nodes_dir / f'constraint_{node.id}.txt' +430 +431 config = node.cterm.config +432 if not node_file.exists(): +433 node_file.write_text(self.kprint.pretty_print(config)) +434 _LOGGER.info(f'Wrote node file {cfgid}: {node_file}') +435 config = minimize_term(config) +436 if not node_minimized_file.exists(): +437 node_minimized_file.write_text(self.kprint.pretty_print(config)) +438 _LOGGER.info(f'Wrote node file {cfgid}: {node_minimized_file}') +439 if not node_constraint_file.exists(): +440 constraint = mlAnd(node.cterm.constraints) +441 node_constraint_file.write_text(self.kprint.pretty_print(constraint)) +442 _LOGGER.info(f'Wrote node file {cfgid}: {node_constraint_file}') +443 +444 edges_dir = dump_dir / 'edges' +445 ensure_dir_path(edges_dir) +446 for edge in cfg.edges(): +447 edge_file = edges_dir / f'config_{edge.source.id}_{edge.target.id}.txt' +448 edge_minimized_file = edges_dir / f'config_minimized_{edge.source.id}_{edge.target.id}.txt' +449 +450 config = push_down_rewrites(KRewrite(edge.source.cterm.config, edge.target.cterm.config)) +451 if not edge_file.exists(): +452 edge_file.write_text(self.kprint.pretty_print(config)) +453 _LOGGER.info(f'Wrote edge file {cfgid}: {edge_file}') +454 config = minimize_term(config) +455 if not edge_minimized_file.exists(): +456 edge_minimized_file.write_text(self.kprint.pretty_print(config)) +457 _LOGGER.info(f'Wrote edge file {cfgid}: {edge_minimized_file}') +458 +459 covers_dir = dump_dir / 'covers' +460 ensure_dir_path(covers_dir) +461 for cover in cfg.covers(): +462 cover_file = covers_dir / f'config_{cover.source.id}_{cover.target.id}.txt' +463 cover_constraint_file = covers_dir / f'constraint_{cover.source.id}_{cover.target.id}.txt' +464 +465 subst_equalities = flatten_label('#And', cover.csubst.subst.ml_pred) +466 +467 if not cover_file.exists(): +468 cover_file.write_text('\n'.join(self.kprint.pretty_print(se) for se in subst_equalities)) +469 _LOGGER.info(f'Wrote cover file {cfgid}: {cover_file}') +470 if not cover_constraint_file.exists(): +471 cover_constraint_file.write_text(self.kprint.pretty_print(cover.csubst.constraint)) +472 _LOGGER.info(f'Wrote cover file {cfgid}: {cover_constraint_file}')
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/store.html b/pyk/_modules/pyk/kcfg/store.html new file mode 100644 index 00000000000..f79a321a944 --- /dev/null +++ b/pyk/_modules/pyk/kcfg/store.html @@ -0,0 +1,242 @@ + + + + + + pyk.kcfg.store — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.store

+  1from __future__ import annotations
+  2
+  3import threading
+  4from abc import ABC, abstractmethod
+  5from collections.abc import Hashable, MutableMapping
+  6from dataclasses import dataclass
+  7from typing import TYPE_CHECKING, Generic, TypeVar, final
+  8
+  9from ..cterm import CTerm
+ 10from ..kast.inner import KApply, KSequence, KToken, KVariable, bottom_up_with_summary
+ 11from .kcfg import KCFG
+ 12
+ 13if TYPE_CHECKING:
+ 14    from collections.abc import Iterator
+ 15
+ 16    from ..kast.inner import KInner, KLabel
+ 17
+ 18
+ 19A = TypeVar('A', bound=Hashable)
+ 20
+ 21
+
+[docs] + 22class OptimizedNodeStore(MutableMapping[int, KCFG.Node]): + 23 _nodes: dict[int, KCFG.Node] + 24 _optimized_terms: _Cache[_OptInner] + 25 _klabels: _Cache[KLabel] + 26 _terms: list[KInner] + 27 + 28 _lock: threading.Lock + 29 + 30 def __init__(self) -> None: + 31 self._nodes = {} + 32 self._optimized_terms = _Cache() + 33 self._klabels = _Cache() + 34 self._terms = [] + 35 + 36 self._lock = threading.Lock() + 37 + 38 def __getitem__(self, key: int) -> KCFG.Node: + 39 return self._nodes[key] + 40 + 41 def __setitem__(self, key: int, node: KCFG.Node) -> None: + 42 old_cterm = node.cterm + 43 new_config = self._optimize(old_cterm.config) + 44 new_constraints = tuple(self._optimize(c) for c in old_cterm.constraints) + 45 new_node = KCFG.Node(node.id, CTerm(new_config, new_constraints), attrs=node.attrs) + 46 self._nodes[key] = new_node + 47 + 48 def __delitem__(self, key: int) -> None: + 49 del self._nodes[key] + 50 + 51 def __iter__(self) -> Iterator[int]: + 52 return iter(self._nodes) + 53 + 54 def __len__(self) -> int: + 55 return len(self._nodes) + 56 + 57 def _optimize(self, term: KInner) -> KInner: + 58 def optimizer(to_optimize: KInner, children: list[int]) -> tuple[KInner, int]: + 59 if isinstance(to_optimize, KToken) or isinstance(to_optimize, KVariable): + 60 optimized_id = self._cache(_OptBasic(to_optimize)) + 61 elif isinstance(to_optimize, KApply): + 62 klabel_id = self._klabels.cache(to_optimize.label) + 63 optimized_id = self._cache(_OptApply(klabel_id, tuple(children))) + 64 elif isinstance(to_optimize, KSequence): + 65 optimized_id = self._cache(_OptKSequence(tuple(children))) + 66 else: + 67 raise ValueError('Unknown term type: ' + str(type(to_optimize))) + 68 return (self._terms[optimized_id], optimized_id) + 69 + 70 with self._lock: + 71 optimized, _ = bottom_up_with_summary(optimizer, term) + 72 return optimized + 73 + 74 def _cache(self, term: _OptInner) -> int: + 75 id = self._optimized_terms.cache(term) + 76 assert id <= len(self._terms) + 77 if id == len(self._terms): + 78 self._terms.append(term.build(self._klabels, self._terms)) + 79 return id
+ + 80 + 81 + 82class _Cache(Generic[A]): + 83 _value_to_id: dict[A, int] + 84 _values: list[A] + 85 + 86 def __init__(self) -> None: + 87 self._value_to_id = {} + 88 self._values = [] + 89 + 90 def cache(self, value: A) -> int: + 91 idx = self._value_to_id.get(value) + 92 if idx is not None: + 93 return idx + 94 idx = len(self._values) + 95 self._value_to_id[value] = idx + 96 self._values.append(value) + 97 return idx + 98 + 99 def get(self, idx: int) -> A: +100 return self._values[idx] +101 +102 +103class _OptInner(ABC): +104 @abstractmethod +105 def build(self, klabels: _Cache[KLabel], terms: list[KInner]) -> KInner: ... +106 +107 +108@final +109@dataclass(eq=True, frozen=True) +110class _OptBasic(_OptInner): +111 term: KInner +112 +113 def build(self, klabels: _Cache[KLabel], terms: list[KInner]) -> KInner: +114 return self.term +115 +116 +117@final +118@dataclass(eq=True, frozen=True) +119class _OptApply(_OptInner): +120 label: int +121 children: tuple[int, ...] +122 +123 def build(self, klabels: _Cache[KLabel], terms: list[KInner]) -> KInner: +124 return KApply(klabels.get(self.label), tuple(terms[child] for child in self.children)) +125 +126 +127@final +128@dataclass(eq=True, frozen=True) +129class _OptKSequence(_OptInner): +130 children: tuple[int, ...] +131 +132 def build(self, klabels: _Cache[KLabel], terms: list[KInner]) -> KInner: +133 return KSequence(tuple(terms[child] for child in self.children)) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcfg/tui.html b/pyk/_modules/pyk/kcfg/tui.html new file mode 100644 index 00000000000..19131110a96 --- /dev/null +++ b/pyk/_modules/pyk/kcfg/tui.html @@ -0,0 +1,705 @@ + + + + + + pyk.kcfg.tui — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcfg.tui

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING, Union
+  4
+  5from textual.app import App
+  6from textual.binding import Binding
+  7from textual.containers import Horizontal, ScrollableContainer, Vertical
+  8from textual.message import Message
+  9from textual.reactive import reactive
+ 10from textual.widget import Widget
+ 11from textual.widgets import Footer, Static
+ 12
+ 13from ..cterm import CTerm
+ 14from ..kast.inner import KApply, KRewrite
+ 15from ..kast.manip import flatten_label, minimize_term, push_down_rewrites
+ 16from ..prelude.kbool import TRUE
+ 17from ..utils import ROOT, shorten_hashes, single
+ 18from .kcfg import KCFG
+ 19from .show import KCFGShow
+ 20
+ 21if TYPE_CHECKING:
+ 22    from collections.abc import Callable, Iterable
+ 23
+ 24    from textual.app import ComposeResult
+ 25    from textual.events import Click
+ 26
+ 27    from ..kast import KInner
+ 28    from ..ktool.kprint import KPrint
+ 29    from .show import NodePrinter
+ 30
+ 31
+ 32KCFGElem = Union[KCFG.Node, KCFG.Successor]
+ 33
+ 34
+
+[docs] + 35class GraphChunk(Static): + 36 _node_text: str + 37 +
+[docs] + 38 class Selected(Message): + 39 chunk_id: str + 40 + 41 def __init__(self, chunk_id: str) -> None: + 42 self.chunk_id = chunk_id + 43 super().__init__()
+ + 44 + 45 def __init__(self, id: str, node_text: Iterable[str] = ()) -> None: + 46 self._node_text = '\n'.join(node_text) + 47 super().__init__(self._node_text, id=id, classes='cfg-node') + 48 +
+[docs] + 49 def on_enter(self) -> None: + 50 self.styles.border_left = ('double', 'red') # type: ignore
+ + 51 +
+[docs] + 52 def on_leave(self) -> None: + 53 self.styles.border_left = None # type: ignore
+ + 54 +
+[docs] + 55 def on_click(self, click: Click) -> None: + 56 self.post_message(GraphChunk.Selected(self.id or '')) + 57 click.stop()
+
+ + 58 + 59 + + + 83 + 84 +
+[docs] + 85class Info(Widget, can_focus=False): + 86 text: reactive[str] = reactive('', init=False) + 87 + 88 def __init__(self) -> None: + 89 super().__init__(id='info') + 90 +
+[docs] + 91 def update(self, text: str) -> None: + 92 self.text = text
+ + 93 +
+[docs] + 94 def compose(self) -> ComposeResult: + 95 yield Static(self.text)
+ + 96 +
+[docs] + 97 def watch_text(self) -> None: + 98 self.query_one(Static).update(self.text)
+
+ + 99 +100 +
+[docs] +101class Status(NavWidget): +102 def __init__(self) -> None: +103 super().__init__(id='status') +104 +
+[docs] +105 def on_click(self, click: Click) -> None: +106 click.stop() +107 self.post_message(Status.Selected())
+
+ +108 +109 +
+[docs] +110class Term(NavWidget): +111 def __init__(self) -> None: +112 super().__init__(id='term') +113 +
+[docs] +114 def on_click(self, click: Click) -> None: +115 click.stop() +116 self.post_message(Term.Selected())
+
+ +117 +118 +
+[docs] +119class Constraint(NavWidget): +120 def __init__(self) -> None: +121 super().__init__(id='constraint') +122 +
+[docs] +123 def on_click(self, click: Click) -> None: +124 click.stop() +125 self.post_message(Constraint.Selected())
+
+ +126 +127 +
+[docs] +128class Custom(NavWidget): +129 def __init__(self) -> None: +130 super().__init__(id='custom') +131 +
+[docs] +132 def on_click(self, click: Click) -> None: +133 click.stop() +134 self.post_message(Custom.Selected())
+
+ +135 +136 +
+[docs] +137class BehaviorView(ScrollableContainer, can_focus=True): +138 _kcfg: KCFG +139 _kprint: KPrint +140 _minimize: bool +141 _node_printer: NodePrinter | None +142 _kcfg_nodes: Iterable[GraphChunk] +143 +
+[docs] +144 class Selected(Message): +145 def __init__(self) -> None: +146 super().__init__()
+ +147 +148 def __init__( +149 self, +150 kcfg: KCFG, +151 kprint: KPrint, +152 minimize: bool = True, +153 node_printer: NodePrinter | None = None, +154 id: str = '', +155 ): +156 super().__init__(id=id) +157 self._kcfg = kcfg +158 self._kprint = kprint +159 self._minimize = minimize +160 self._node_printer = node_printer +161 self._kcfg_nodes = [] +162 kcfg_show = KCFGShow(kprint, node_printer=node_printer) +163 for lseg_id, node_lines in kcfg_show.pretty_segments(self._kcfg, minimize=self._minimize): +164 self._kcfg_nodes.append(GraphChunk(lseg_id, node_lines)) +165 +
+[docs] +166 def compose(self) -> ComposeResult: +167 return self._kcfg_nodes
+ +168 +
+[docs] +169 def on_click(self, click: Click) -> None: +170 click.stop() +171 self.post_message(BehaviorView.Selected())
+
+ +172 +173 +
+[docs] +174class NodeView(Widget): +175 _kprint: KPrint +176 _custom_view: Callable[[KCFGElem], Iterable[str]] | None +177 +178 _element: KCFGElem | None +179 +180 _minimize: bool +181 _term_on: bool +182 _constraint_on: bool +183 _custom_on: bool +184 _status_on: bool +185 _proof_status: str +186 _proof_id: str +187 _exec_time: float +188 +189 def __init__( +190 self, +191 kprint: KPrint, +192 id: str = '', +193 minimize: bool = True, +194 term_on: bool = True, +195 constraint_on: bool = True, +196 custom_on: bool = False, +197 status_on: bool = True, +198 custom_view: Callable[[KCFGElem], Iterable[str]] | None = None, +199 proof_status: str = '', +200 proof_id: str = '', +201 exec_time: float = 0, +202 ): +203 super().__init__(id=id) +204 self._kprint = kprint +205 self._element = None +206 self._minimize = minimize +207 self._term_on = term_on +208 self._constraint_on = constraint_on +209 self._custom_on = custom_on or custom_view is not None +210 self._custom_view = custom_view +211 self._status_on = status_on +212 self._proof_status = proof_status +213 self._proof_id = proof_id +214 self._exec_time = exec_time +215 +216 def _info_text(self) -> str: +217 term_str = '✅' if self._term_on else '❌' +218 constraint_str = '✅' if self._constraint_on else '❌' +219 custom_str = '' if self._custom_view is None else f'{"✅" if self._custom_on else "❌"} Custom View.' +220 minimize_str = '✅' if self._minimize else '❌' +221 status_str = '✅' if self._status_on else '❌' +222 element_str = 'NOTHING' +223 if type(self._element) is KCFG.Node: +224 element_str = f'node({shorten_hashes(self._element.id)})' +225 elif type(self._element) is KCFG.Edge: +226 element_str = f'edge({shorten_hashes(self._element.source.id)},{shorten_hashes(self._element.target.id)})' +227 elif type(self._element) is KCFG.Cover: +228 element_str = f'cover({shorten_hashes(self._element.source.id)},{shorten_hashes(self._element.target.id)})' +229 return f'{element_str} selected. {minimize_str} Minimize Output. {term_str} Term View. {constraint_str} Constraint View. {status_str} Status View. {custom_str}' +230 +231 def _status_text(self) -> str: +232 exec_time = str(round(self._exec_time, 2)) +233 return f'Proof ID: {self._proof_id}. Status: {self._proof_status}. Exec Time: {exec_time}s.' +234 +
+[docs] +235 def compose(self) -> ComposeResult: +236 yield Info() +237 yield Status() +238 yield Term() +239 yield Constraint() +240 if self._custom_view is not None: +241 yield Custom()
+ +242 +
+[docs] +243 def toggle_option(self, field: str) -> bool: +244 assert field in ['minimize', 'term_on', 'constraint_on', 'custom_on', 'status_on'] +245 field_attr = f'_{field}' +246 old_value = getattr(self, field_attr) +247 new_value = not old_value +248 # Do not turn on custom view if it's not available +249 if field == 'custom_on' and self._custom_view is None: +250 new_value = False +251 setattr(self, field_attr, new_value) +252 self._update() +253 return new_value
+ +254 +
+[docs] +255 def toggle_view(self, field: str) -> None: +256 assert field in ['term', 'constraint', 'custom', 'status'] +257 if self.toggle_option(f'{field}_on'): +258 self.query_one(f'#{field}').remove_class('hidden') +259 else: +260 self.query_one(f'#{field}').add_class('hidden')
+ +261 +
+[docs] +262 def update(self, element: KCFGElem) -> None: +263 self._element = element +264 self._update()
+ +265 +
+[docs] +266 def on_mount(self) -> None: +267 self._update()
+ +268 +269 def _update(self) -> None: +270 def _boolify(c: KInner) -> KInner: +271 if type(c) is KApply and c.label.name == '#Equals' and c.args[0] == TRUE: +272 return c.args[1] +273 else: +274 return c +275 +276 def _cterm_text(cterm: CTerm) -> tuple[str, str]: +277 config = cterm.config +278 constraints = map(_boolify, cterm.constraints) +279 if self._minimize: +280 config = minimize_term(config) +281 return (self._kprint.pretty_print(config), '\n'.join(self._kprint.pretty_print(c) for c in constraints)) +282 +283 term_str = 'Term' +284 constraint_str = 'Constraint' +285 custom_str = 'Custom' +286 +287 if self._element is not None: +288 if type(self._element) is KCFG.Node: +289 term_str, constraint_str = _cterm_text(self._element.cterm) +290 +291 elif type(self._element) is KCFG.Edge: +292 config_source, *constraints_source = self._element.source.cterm +293 config_target, *constraints_target = self._element.target.cterm +294 constraints_new = [c for c in constraints_target if c not in constraints_source] +295 config = push_down_rewrites(KRewrite(config_source, config_target)) +296 crewrite = CTerm(config, constraints_new) +297 term_str, constraint_str = _cterm_text(crewrite) +298 +299 elif type(self._element) is KCFG.Cover: +300 subst_equalities = map(_boolify, flatten_label('#And', self._element.csubst.subst.ml_pred)) +301 constraints = map(_boolify, flatten_label('#And', self._element.csubst.constraint)) +302 term_str = '\n'.join(self._kprint.pretty_print(se) for se in subst_equalities) +303 constraint_str = '\n'.join(self._kprint.pretty_print(c) for c in constraints) +304 +305 elif type(self._element) is KCFG.Split: +306 term_strs = [f'split: {shorten_hashes(self._element.source.id)}'] +307 for target_id, csubst in self._element.splits.items(): +308 term_strs.append('') +309 term_strs.append(f' - {shorten_hashes(target_id)}') +310 if len(csubst.subst) > 0: +311 subst_equalities = map(_boolify, flatten_label('#And', csubst.subst.ml_pred)) +312 term_strs.extend(f' {self._kprint.pretty_print(cline)}' for cline in subst_equalities) +313 if len(csubst.constraints) > 0: +314 constraints = map(_boolify, flatten_label('#And', csubst.constraint)) +315 term_strs.extend(f' {self._kprint.pretty_print(cline)}' for cline in constraints) +316 term_str = '\n'.join(term_strs) +317 +318 elif type(self._element) is KCFG.NDBranch: +319 term_strs = [f'ndbranch: {shorten_hashes(self._element.source.id)}'] +320 for target in self._element.targets: +321 term_strs.append('') +322 term_strs.append(f' - {shorten_hashes(target.id)}') +323 term_strs.append(' (1 step)') +324 term_str = '\n'.join(term_strs) +325 +326 if self._custom_view is not None: +327 # To appease the type-checker +328 if type(self._element) is KCFG.Node: +329 custom_str = '\n'.join(self._custom_view(self._element)) +330 elif isinstance(self._element, KCFG.Successor): +331 custom_str = '\n'.join(self._custom_view(self._element)) +332 +333 self.query_one('#info', Info).text = self._info_text() +334 self.query_one('#term', Term).text = term_str +335 self.query_one('#constraint', Constraint).text = constraint_str +336 if self._custom_view is not None: +337 self.query_one('#custom', Custom).text = custom_str +338 self.query_one('#status', Status).text = self._status_text() +339 +
+[docs] +340 def on_behavior_view_selected(self) -> None: +341 self.query_one('#behavior').focus()
+ +342 +
+[docs] +343 def on_term_selected(self) -> None: +344 self.query_one(Term).focus()
+ +345 +
+[docs] +346 def on_constraint_selected(self) -> None: +347 self.query_one(Constraint).focus()
+ +348 +
+[docs] +349 def on_custom_selected(self) -> None: +350 self.query_one(Custom).focus()
+ +351 +
+[docs] +352 def on_status_selected(self) -> None: +353 self.query_one(Status).focus()
+
+ +354 +355 +
+[docs] +356class KCFGViewer(App): +357 CSS_PATH = ROOT / 'kcfg/style.css' +358 +359 _kcfg: KCFG +360 _kprint: KPrint +361 +362 _node_printer: NodePrinter | None +363 _custom_view: Callable[[KCFGElem], Iterable[str]] | None +364 +365 _minimize: bool +366 +367 _hidden_chunks: list[str] +368 _selected_chunk: str | None +369 +370 def __init__( +371 self, +372 kcfg: KCFG, +373 kprint: KPrint, +374 node_printer: NodePrinter | None = None, +375 custom_view: Callable[[KCFGElem], Iterable[str]] | None = None, +376 minimize: bool = True, +377 ) -> None: +378 super().__init__() +379 self._kcfg = kcfg +380 self._kprint = kprint +381 self._node_printer = node_printer +382 self._custom_view = custom_view +383 self._minimize = minimize +384 self._hidden_chunks = [] +385 self._selected_chunk = None +386 if self._custom_view is not None: +387 self.bind('v', 'keystroke("custom")', description='Toggle custom.') +388 +
+[docs] +389 def compose(self) -> ComposeResult: +390 yield Horizontal( +391 Vertical( +392 BehaviorView(self._kcfg, self._kprint, node_printer=self._node_printer, id='behavior'), +393 id='navigation', +394 ), +395 Vertical( +396 NodeView( +397 self._kprint, +398 custom_view=self._custom_view, +399 proof_id=str(self._kcfg._node_id), +400 id='node-view', +401 ), +402 id='display', +403 ), +404 ) +405 yield Footer()
+ +406 +
+[docs] +407 def on_graph_chunk_selected(self, message: GraphChunk.Selected) -> None: +408 self.query_one('#behavior').focus() +409 +410 if message.chunk_id.startswith('node_'): +411 self._selected_chunk = message.chunk_id +412 node, *_ = message.chunk_id[5:].split('_') +413 node_id = int(node) +414 self.query_one('#node-view', NodeView).update(self._kcfg.node(node_id)) +415 +416 elif message.chunk_id.startswith('edge_'): +417 self._selected_chunk = None +418 node_source, node_target, *_ = message.chunk_id[5:].split('_') +419 source_id = int(node_source) +420 target_id = int(node_target) +421 edge = single(self._kcfg.edges(source_id=source_id, target_id=target_id)) +422 self.query_one('#node-view', NodeView).update(edge) +423 +424 elif message.chunk_id.startswith('cover_'): +425 self._selected_chunk = None +426 node_source, node_target, *_ = message.chunk_id[6:].split('_') +427 source_id = int(node_source) +428 target_id = int(node_target) +429 cover = single(self._kcfg.covers(source_id=source_id, target_id=target_id)) +430 self.query_one('#node-view', NodeView).update(cover) +431 +432 elif message.chunk_id.startswith('split_'): +433 self._selected_chunk = None +434 node_source, node_target, *_ = message.chunk_id[6:].split('_') +435 source_id = int(node_source) +436 target_id = int(node_target) +437 split = single(self._kcfg.splits(source_id=source_id, target_id=target_id)) +438 self.query_one('#node-view', NodeView).update(split) +439 +440 elif message.chunk_id.startswith('ndbranch_'): +441 self._selected_chunk = None +442 node_source, node_target, *_ = message.chunk_id[8:].split('_') +443 source_id = int(node_source) +444 target_id = int(node_target) +445 ndbranch = single(self._kcfg.ndbranches(source_id=source_id, target_id=target_id)) +446 self.query_one('#node-view', NodeView).update(ndbranch)
+ +447 +448 BINDINGS = [ +449 ('h', 'keystroke("h")', 'Hide selected node.'), +450 ('H', 'keystroke("H")', 'Unhide all nodes.'), +451 ('t', 'keystroke("term")', 'Toggle term.'), +452 ('c', 'keystroke("constraint")', 'Toggle constraint.'), +453 ('m', 'keystroke("minimize")', 'Toggle minimization.'), +454 ('s', 'keystroke("status")', 'Toggle status.'), +455 Binding('q', 'quit', priority=True), +456 ] +457 +
+[docs] +458 def action_keystroke(self, key: str) -> None: +459 if key == 'h': +460 if self._selected_chunk is not None and self._selected_chunk.startswith('node_'): +461 node_id = self._selected_chunk[5:] +462 self._hidden_chunks.append(self._selected_chunk) +463 self.query_one(f'#{self._selected_chunk}', GraphChunk).add_class('hidden') +464 self.query_one('#info', Info).text = f'HIDDEN: node({shorten_hashes(node_id)})' +465 elif key == 'H': +466 for hc in self._hidden_chunks: +467 self.query_one(f'#{hc}', GraphChunk).remove_class('hidden') +468 node_ids = [nid[5:] for nid in self._hidden_chunks] +469 self.query_one('#info', Info).text = f'UNHIDDEN: nodes({shorten_hashes(node_ids)})' +470 self._hidden_chunks = [] +471 elif key in ['term', 'constraint', 'status']: +472 self.query_one('#node-view', NodeView).toggle_view(key) +473 elif key == 'custom' and self._custom_view is not None: +474 self.query_one('#node-view', NodeView).toggle_view(key) +475 elif key in ['minimize']: +476 self.query_one('#node-view', NodeView).toggle_option(key)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kcovr.html b/pyk/_modules/pyk/kcovr.html new file mode 100644 index 00000000000..58072e9cd0d --- /dev/null +++ b/pyk/_modules/pyk/kcovr.html @@ -0,0 +1,409 @@ + + + + + + pyk.kcovr — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kcovr

+  1from __future__ import annotations
+  2
+  3import os
+  4import sys
+  5import time
+  6from pathlib import Path
+  7from typing import TYPE_CHECKING
+  8
+  9from .cli.utils import dir_path, file_path
+ 10
+ 11if TYPE_CHECKING:
+ 12    from collections.abc import Iterable, Mapping
+ 13    from typing import Final
+ 14
+ 15
+ 16TEMPLATE: Final = """
+ 17<coverage line-rate="{line_rate}" branch-rate="{rule_rate}" version="1.9" timestamp="{timestamp}">
+ 18  <sources>
+ 19    <source>{source_dir}</source>
+ 20  </sources>
+ 21  <packages>
+ 22    <package name="" line-rate="{line_rate}" branch-rate="{rule_rate}" complexity="{num_rules}.0">
+ 23      <classes>
+ 24        {classes_elem}
+ 25      </classes>
+ 26    </package>
+ 27  </packages>
+ 28</coverage>
+ 29"""
+ 30
+ 31CLASS_TEMPLATE: Final = """
+ 32<class name="{filename}" filename="{filename}" line-rate="{line_rate}" branch-rate="{rule_rate}" complexity="{num_rules}.0">
+ 33  <lines>
+ 34    {lines_elem}
+ 35  </lines>
+ 36</class>
+ 37"""
+ 38
+ 39LINE_TEMPLATE_NO_BRANCH: Final = """
+ 40<line number="{line_num}" hits="{hits}" branch="false"/>
+ 41"""
+ 42
+ 43LINE_TEMPLATE_BRANCH: Final = """
+ 44<line number="{line_num}" hits="{hits}" branch="true" condition-coverage="{rule_rate}% ({rules_covered}/{num_rules})">
+ 45  <conditions>
+ 46    <condition number="0" type="jump" coverage="{rule_rate}%"/>
+ 47  </conditions>
+ 48</line>
+ 49"""
+ 50
+ 51
+
+[docs] + 52def main() -> None: + 53 definition_dirs, source_files = parse_args() + 54 xml = render_coverage_xml(definition_dirs, source_files) + 55 print(xml)
+ + 56 + 57 +
+[docs] + 58def parse_args() -> tuple[tuple[Path, ...], tuple[Path, ...]]: + 59 if len(sys.argv) < 4: + 60 print('usage: ' + sys.argv[0] + ' <definition-dir>... -- <source-file>...') + 61 exit(1) + 62 + 63 def split_at_sep(xs: list[str]) -> tuple[list[str], list[str]]: + 64 for i, x in enumerate(xs): + 65 if x == '++': + 66 return xs[:i], xs[i + 1 :] + 67 return xs, [] + 68 + 69 definition_strs, source_strs = split_at_sep(sys.argv[1:]) + 70 definition_dirs = tuple(dir_path(s).resolve() for s in definition_strs) + 71 source_files = tuple(file_path(s).resolve() for s in source_strs) + 72 + 73 return definition_dirs, source_files
+ + 74 + 75 +
+[docs] + 76def render_coverage_xml(definition_dirs: Iterable[Path], source_files: Iterable[Path]) -> str: + 77 rule_map = create_rule_map(definition_dirs) + 78 cover_map = create_cover_map(definition_dirs) + 79 source_dir = Path(os.path.commonprefix([str(source_file) for source_file in source_files])) + 80 + 81 classes = render_classes(rule_map, cover_map, source_files, source_dir) + 82 classes_elem = ''.join(classes) + 83 + 84 num_rules_covered_global = count_rules_covered(cover_map) + 85 num_rules_global = len(rule_map) + 86 rule_rate_global = float(num_rules_covered_global) / num_rules_global + 87 + 88 lines_covered_global = count_lines_covered(rule_map, cover_map) + 89 num_lines_global = count_lines_global(rule_map) + 90 line_rate_global = float(lines_covered_global) / num_lines_global + 91 + 92 timestamp = int(time.time()) + 93 + 94 xml = TEMPLATE.format( + 95 line_rate=line_rate_global, + 96 rule_rate=rule_rate_global, + 97 timestamp=timestamp, + 98 num_rules=num_rules_global, + 99 source_dir=source_dir, +100 classes_elem=classes_elem, +101 ) +102 +103 return xml
+ +104 +105 +
+[docs] +106def render_classes( +107 rule_map: Mapping[str, tuple[str, int, int]], +108 cover_map: Mapping[str, int], +109 source_files: Iterable[Path], +110 source_dir: Path, +111) -> list[str]: +112 classes = [] +113 +114 rule_map_by_file = create_rule_map_by_file(rule_map) +115 for source_file in source_files: +116 source_file_name = str(source_file) +117 if source_file_name not in rule_map_by_file: +118 continue +119 +120 rule_map_file = rule_map_by_file[source_file_name] +121 cover_map_file = {rule: cnt for rule, cnt in cover_map.items() if rule in rule_map_file} +122 +123 num_rules_covered_file = count_rules_covered(cover_map_file) +124 num_rules_file = len(rule_map_file) +125 rule_rate_file = float(num_rules_covered_file) / num_rules_file +126 +127 num_lines_covered_file = count_lines_covered(rule_map, cover_map_file) +128 num_lines_file = count_lines_file(rule_map_file) +129 line_rate_file = float(num_lines_covered_file) / num_lines_file +130 +131 lines = render_lines(rule_map_file, cover_map_file) +132 lines_elem = ''.join(lines) +133 +134 relative_file = source_file.relative_to(source_dir) +135 +136 classes.append( +137 CLASS_TEMPLATE.format( +138 filename=relative_file, +139 line_rate=line_rate_file, +140 rule_rate=rule_rate_file, +141 num_rules=num_rules_file, +142 lines_elem=lines_elem, +143 ) +144 ) +145 +146 return classes
+ +147 +148 +
+[docs] +149def render_lines( +150 rule_map_file: Mapping[str, tuple[int, int]], +151 cover_map_file: Mapping[str, int], +152) -> list[str]: +153 lines = [] +154 +155 rule_map_by_line = create_rule_map_by_line(rule_map_file) +156 for line_num, rules in rule_map_by_line.items(): +157 line_coverage = {rule: cnt for rule, cnt in cover_map_file.items() if rule in rules} +158 hits = sum(line_coverage.values()) +159 num_covered = len(line_coverage) +160 num_rules_line = len(rules) +161 rule_rate_line = float(num_covered) / num_rules_line +162 if num_rules_line == 1: +163 lines.append(LINE_TEMPLATE_NO_BRANCH.format(line_num=line_num, hits=hits)) +164 else: +165 lines.append( +166 LINE_TEMPLATE_BRANCH.format( +167 line_num=line_num, +168 hits=hits, +169 rule_rate=int(rule_rate_line * 100), +170 rules_covered=num_covered, +171 num_rules=num_rules_line, +172 ) +173 ) +174 +175 return lines
+ +176 +177 +
+[docs] +178def create_rule_map(definition_dirs: Iterable[Path]) -> dict[str, tuple[str, int, int]]: +179 all_rules: set[str] = set() +180 +181 for definition_dir in definition_dirs: +182 with (definition_dir / 'allRules.txt').open() as f: +183 all_rules.update(line.strip() for line in f.readlines()) +184 +185 rule_map: dict[str, tuple[str, int, int]] = {} +186 for line in all_rules: +187 parts = line.split(' ') +188 rule_id = parts[0] +189 location = ' '.join(parts[1:]) +190 parts = location.split(':') +191 rule_map[rule_id] = (os.path.abspath(':'.join(parts[:-2])), int(parts[-2]), int(parts[-1])) +192 +193 assert len(all_rules) == len(rule_map) +194 return rule_map
+ +195 +196 +
+[docs] +197def create_cover_map(definition_dirs: Iterable[Path]) -> dict[str, int]: +198 cover_map: dict[str, int] = {} +199 +200 def add_cover(rule_id: str) -> None: +201 if not rule_id in cover_map: +202 cover_map[rule_id] = 0 +203 cover_map[rule_id] += 1 +204 +205 for definition_dir in definition_dirs: +206 with (definition_dir / 'coverage.txt').open() as f: +207 for line in f: +208 rule_id = line.strip() +209 add_cover(rule_id) +210 +211 for path in definition_dir.glob('*_coverage.txt'): +212 with path.open() as f: +213 for line in f: +214 rule_id = line.strip() +215 add_cover(rule_id) +216 +217 return cover_map
+ +218 +219 +
+[docs] +220def create_rule_map_by_file(rule_map: Mapping[str, tuple[str, int, int]]) -> dict[str, dict[str, tuple[int, int]]]: +221 rule_map_by_file: dict[str, dict[str, tuple[int, int]]] = {} +222 +223 for rule_id, (path, line, pos) in rule_map.items(): +224 if not path in rule_map_by_file: +225 rule_map_by_file[path] = {} +226 rule_map_by_file[path][rule_id] = (line, pos) +227 +228 return rule_map_by_file
+ +229 +230 +
+[docs] +231def create_rule_map_by_line(rule_map_file: Mapping[str, tuple[int, int]]) -> dict[int, list[str]]: +232 rule_map_by_line: dict[int, list[str]] = {} +233 +234 for rule_id, (line, _pos) in rule_map_file.items(): +235 if not line in rule_map_by_line: +236 rule_map_by_line[line] = [rule_id] +237 else: +238 rule_map_by_line[line].append(rule_id) +239 +240 return rule_map_by_line
+ +241 +242 +
+[docs] +243def count_lines_file(rule_map_file: Mapping[str, tuple[int, int]]) -> int: +244 return len({(line, pos) for _, (line, pos) in rule_map_file.items()})
+ +245 +246 +
+[docs] +247def count_lines_global(rule_map: Mapping[str, tuple[str, int, int]]) -> int: +248 return len({(src, line) for src, line, _pos in rule_map.values()})
+ +249 +250 +
+[docs] +251def count_lines_covered(rule_map: Mapping[str, tuple[str, int, int]], cover_map: Mapping[str, int]) -> int: +252 covered_lines = set() +253 for rule_id in cover_map: +254 rule = rule_map[rule_id] +255 covered_lines.add((rule[0], rule[1])) +256 return len(covered_lines)
+ +257 +258 +
+[docs] +259def count_rules_covered(cover_map: Mapping[str, int]) -> int: +260 return len(cover_map)
+ +261 +262 +263if __name__ == '__main__': +264 main() +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kdist/api.html b/pyk/_modules/pyk/kdist/api.html new file mode 100644 index 00000000000..4527ca1c600 --- /dev/null +++ b/pyk/_modules/pyk/kdist/api.html @@ -0,0 +1,216 @@ + + + + + + pyk.kdist.api — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kdist.api

+ 1from __future__ import annotations
+ 2
+ 3import re
+ 4from abc import ABC, abstractmethod
+ 5from dataclasses import dataclass
+ 6from typing import TYPE_CHECKING, final
+ 7
+ 8from . import utils
+ 9
+10if TYPE_CHECKING:
+11    from collections.abc import Iterable, Iterator, Mapping
+12    from pathlib import Path
+13    from typing import Any
+14
+15
+16_ID_PATTERN = re.compile('[a-z0-9]+(-[a-z0-9]+)*')
+17
+18
+
+[docs] +19def valid_id(s: str) -> bool: +20 return _ID_PATTERN.fullmatch(s) is not None
+ +21 +22 +
+[docs] +23@final +24@dataclass(frozen=True) +25class TargetId: +26 plugin_name: str +27 target_name: str +28 +29 def __init__(self, plugin_name: str, target_name: str): +30 if not valid_id(plugin_name): +31 raise ValueError(f'Invalid plugin name: {plugin_name!r}') +32 +33 if not valid_id(target_name): +34 raise ValueError(f'Invalid target name: {target_name!r}') +35 +36 object.__setattr__(self, 'plugin_name', plugin_name) +37 object.__setattr__(self, 'target_name', target_name) +38 +39 def __iter__(self) -> Iterator[str]: +40 yield self.plugin_name +41 yield self.target_name +42 +
+[docs] +43 @staticmethod +44 def parse(fqn: str) -> TargetId: +45 segments = fqn.split('.') +46 if len(segments) != 2: +47 raise ValueError(f'Expected fully qualified target name, got: {fqn!r}') +48 +49 plugin_name, target_name = segments +50 return TargetId(plugin_name, target_name)
+ +51 +52 @property +53 def full_name(self) -> str: +54 return f'{self.plugin_name}.{self.target_name}'
+ +55 +56 +
+[docs] +57class Target(ABC): +
+[docs] +58 @abstractmethod +59 def build(self, output_dir: Path, deps: dict[str, Path], args: dict[str, Any], verbose: bool) -> None: ...
+ +60 +
+[docs] +61 def deps(self) -> Iterable[str]: +62 return ()
+ +63 +
+[docs] +64 def source(self) -> Iterable[str | Path]: +65 return ()
+ +66 +
+[docs] +67 def context(self) -> Mapping[str, str]: +68 return {}
+ +69 +
+[docs] +70 @final +71 def manifest(self) -> dict[str, Any]: +72 source = {} +73 package_path = utils.package_path(self) +74 source_files = [file.resolve() for source in self.source() for file in utils.files_for_path(source)] +75 for source_file in source_files: +76 try: +77 file_id = str(source_file.relative_to(package_path)) +78 except ValueError as err: +79 raise ValueError(f'Source file is not within package: {source_file}') from err +80 source[file_id] = utils.timestamp(source_file) +81 +82 context = dict(self.context()) +83 return {'context': context, 'source': source}
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kdist/utils.html b/pyk/_modules/pyk/kdist/utils.html new file mode 100644 index 00000000000..14e36dc29b1 --- /dev/null +++ b/pyk/_modules/pyk/kdist/utils.html @@ -0,0 +1,175 @@ + + + + + + pyk.kdist.utils — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kdist.utils

+ 1from __future__ import annotations
+ 2
+ 3import inspect
+ 4import os
+ 5from contextlib import contextmanager
+ 6from pathlib import Path
+ 7from typing import TYPE_CHECKING
+ 8
+ 9from pyk.utils import check_dir_path
+10
+11if TYPE_CHECKING:
+12    from collections.abc import Iterator
+13    from typing import Any
+14
+15
+
+[docs] +16def package_path(obj: Any) -> Path: +17 module = inspect.getmodule(obj) +18 +19 if not module: +20 raise ValueError(f'Module not found for object: {obj}') +21 +22 if not module.__file__: +23 raise ValueError(f'Path not found for module: {module.__name__}') +24 +25 package_path = Path(module.__file__).parent.resolve() +26 while True: +27 init_file = package_path / '__init__.py' +28 if not init_file.exists(): +29 return package_path +30 if not package_path.parent.exists(): +31 return package_path +32 package_path = package_path.parent
+ +33 +34 +
+[docs] +35def files_for_path(path: str | Path) -> list[Path]: +36 path = Path(path) +37 +38 if not path.exists(): +39 raise ValueError(f'Path does not exist: {path}') +40 +41 if path.is_file(): +42 return [path] +43 +44 return [file for file in path.rglob('*') if file.is_file()]
+ +45 +46 +
+[docs] +47def timestamp(path: Path) -> int: +48 return path.stat().st_mtime_ns
+ +49 +50 +
+[docs] +51@contextmanager +52def cwd(path: Path) -> Iterator[None]: +53 check_dir_path(path) +54 old_cwd = os.getcwd() +55 os.chdir(str(path)) +56 yield +57 os.chdir(old_cwd)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/compiler.html b/pyk/_modules/pyk/kllvm/compiler.html new file mode 100644 index 00000000000..32e3fbfee73 --- /dev/null +++ b/pyk/_modules/pyk/kllvm/compiler.html @@ -0,0 +1,245 @@ + + + + + + pyk.kllvm.compiler — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.compiler

+  1from __future__ import annotations
+  2
+  3import logging
+  4import sys
+  5import sysconfig
+  6from pathlib import Path
+  7from typing import TYPE_CHECKING
+  8
+  9from ..cli.utils import check_dir_path, check_file_path
+ 10from ..utils import run_process
+ 11
+ 12if TYPE_CHECKING:
+ 13    from collections.abc import Iterable
+ 14    from typing import Final
+ 15
+ 16
+ 17_LOGGER: Final = logging.getLogger(__name__)
+ 18PYTHON_EXTENSION_SUFFIX: Final = sysconfig.get_config_var('EXT_SUFFIX')
+ 19
+ 20
+ 21# ------
+ 22# _kllvm
+ 23# ------
+ 24
+ 25KLLVM_MODULE_NAME: Final = '_kllvm'
+ 26KLLVM_MODULE_FILE_NAME: Final = f'{KLLVM_MODULE_NAME}{PYTHON_EXTENSION_SUFFIX}'
+ 27
+ 28
+
+[docs] + 29def compile_kllvm(target_dir: str | Path, *, verbose: bool = False) -> Path: + 30 target_dir = Path(target_dir).resolve() + 31 check_dir_path(target_dir) + 32 + 33 module_file = target_dir / KLLVM_MODULE_FILE_NAME + 34 + 35 args = ['llvm-kompile', 'pythonast', '--python', sys.executable, '--python-output-dir', str(target_dir)] + 36 if verbose: + 37 args += ['--verbose'] + 38 + 39 _LOGGER.info(f'Compiling pythonast extension: {module_file.name}') + 40 run_process(args, logger=_LOGGER) + 41 + 42 assert module_file.is_file() + 43 return module_file
+ + 44 + 45 + 46# -------------- + 47# _kllvm_runtime + 48# -------------- + 49 + 50RUNTIME_MODULE_NAME: Final = '_kllvm_runtime' + 51RUNTIME_MODULE_FILE_NAME: Final = f'{RUNTIME_MODULE_NAME}{PYTHON_EXTENSION_SUFFIX}' + 52 + 53 +
+[docs] + 54def compile_runtime( + 55 definition_dir: str | Path, + 56 target_dir: str | Path | None = None, + 57 *, + 58 ccopts: Iterable[str] = (), + 59 verbose: bool = False, + 60) -> Path: + 61 definition_dir = Path(definition_dir).resolve() + 62 check_dir_path(definition_dir) + 63 + 64 if target_dir is None: + 65 target_dir = definition_dir + 66 else: + 67 target_dir = Path(target_dir).resolve() + 68 check_dir_path(target_dir) + 69 + 70 ccopts = list(ccopts) + 71 + 72 defn_file = definition_dir / 'definition.kore' + 73 check_file_path(defn_file) + 74 + 75 dt_dir = definition_dir / 'dt' + 76 check_dir_path(dt_dir) + 77 + 78 module_file = target_dir / RUNTIME_MODULE_FILE_NAME + 79 + 80 args = ['llvm-kompile', str(defn_file), str(dt_dir), 'python', '--python', sys.executable] + 81 if target_dir: + 82 args += ['--python-output-dir', str(target_dir)] + 83 if verbose: + 84 args += ['--verbose'] + 85 if ccopts: + 86 args += ['--'] + 87 args += ccopts + 88 + 89 _LOGGER.info(f'Compiling python extension: {module_file.name}') + 90 run_process(args, logger=_LOGGER) + 91 + 92 assert module_file.is_file() + 93 return module_file
+ + 94 + 95 + 96# ------------------------------- + 97# utility for generation of hints + 98# ------------------------------- + 99 +100 +
+[docs] +101def generate_hints( +102 definition_dir: str | Path, +103 input_kore_file: str | Path, +104 target_dir: str | Path | None = None, +105 hints_file_name: str = 'hints.bin', +106) -> Path: +107 definition_dir = Path(definition_dir).resolve() +108 check_dir_path(definition_dir) +109 +110 input_kore_file = Path(input_kore_file).resolve() +111 check_file_path(input_kore_file) +112 +113 if target_dir is None: +114 target_dir = definition_dir +115 else: +116 target_dir = Path(target_dir).resolve() +117 check_dir_path(target_dir) +118 +119 interpreter = definition_dir / 'interpreter' +120 check_file_path(interpreter) +121 +122 hints_file = target_dir / hints_file_name +123 +124 args = [str(interpreter), str(input_kore_file), '-1', str(hints_file), '--proof-output'] +125 _LOGGER.info(f'Generating hints: {hints_file.name}') +126 run_process(args, logger=_LOGGER) +127 +128 assert hints_file.is_file() +129 +130 return hints_file
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/convert.html b/pyk/_modules/pyk/kllvm/convert.html new file mode 100644 index 00000000000..b53ae3ba918 --- /dev/null +++ b/pyk/_modules/pyk/kllvm/convert.html @@ -0,0 +1,376 @@ + + + + + + pyk.kllvm.convert — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.convert

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from ..kore.syntax import (
+  6    ML_SYMBOLS,
+  7    AliasDecl,
+  8    App,
+  9    Axiom,
+ 10    Claim,
+ 11    Definition,
+ 12    EVar,
+ 13    Import,
+ 14    MLPattern,
+ 15    Module,
+ 16    SortApp,
+ 17    SortDecl,
+ 18    SortVar,
+ 19    String,
+ 20    SVar,
+ 21    Symbol,
+ 22    SymbolDecl,
+ 23    VarPattern,
+ 24)
+ 25from . import ast as kllvm
+ 26
+ 27if TYPE_CHECKING:
+ 28    from collections.abc import Iterable
+ 29    from typing import Any
+ 30
+ 31    from ..kore.syntax import Pattern, Sentence, Sort
+ 32
+ 33
+ 34# -----------
+ 35# pyk -> llvm
+ 36# -----------
+ 37
+ 38
+
+[docs] + 39def definition_to_llvm(definition: Definition) -> kllvm.Definition: + 40 res = kllvm.Definition() + 41 for mod in definition.modules: + 42 res.add_module(module_to_llvm(mod)) + 43 _add_attributes(res, definition.attrs) + 44 return res
+ + 45 + 46 +
+[docs] + 47def module_to_llvm(module: Module) -> kllvm.Module: + 48 res = kllvm.Module(module.name) + 49 for sentence in module.sentences: + 50 res.add_declaration(sentence_to_llvm(sentence)) + 51 _add_attributes(res, module.attrs) + 52 return res
+ + 53 + 54 +
+[docs] + 55def sentence_to_llvm(sentence: Sentence) -> kllvm.Declaration: + 56 match sentence: + 57 case Import(mod_name, attrs): + 58 res = kllvm.ModuleImportDeclaration(mod_name) + 59 _add_attributes(res, attrs) + 60 return res + 61 case SortDecl(name, vars, attrs, hooked): + 62 res = kllvm.CompositeSortDeclaration(name, hooked) + 63 for var in vars: + 64 res.add_object_sort_variable(sort_to_llvm(var)) + 65 _add_attributes(res, attrs) + 66 return res + 67 case SymbolDecl(symbol, param_sorts, sort, attrs, hooked): + 68 res = kllvm.SymbolDeclaration(symbol.name, hooked) + 69 for var in symbol.vars: + 70 res.add_object_sort_variable(sort_to_llvm(var)) + 71 for param_sort in param_sorts: + 72 res.symbol.add_argument(sort_to_llvm(param_sort)) + 73 res.symbol.add_sort(sort_to_llvm(sort)) + 74 _add_attributes(res, attrs) + 75 return res + 76 case AliasDecl(alias, param_sorts, sort, left, right, attrs): + 77 res = kllvm.AliasDeclaration(alias.name) + 78 for var in alias.vars: + 79 res.add_object_sort_variable(sort_to_llvm(var)) + 80 for param_sort in param_sorts: + 81 res.symbol.add_argument(sort_to_llvm(param_sort)) + 82 res.symbol.add_sort(sort_to_llvm(sort)) + 83 res.add_variables(_composite_pattern(left.symbol, left.sorts, left.args)) + 84 res.add_pattern(pattern_to_llvm(right)) + 85 _add_attributes(res, attrs) + 86 return res + 87 case Axiom(vars, pattern, attrs): + 88 res = kllvm.AxiomDeclaration(False) + 89 for var in vars: + 90 res.add_object_sort_variable(sort_to_llvm(var)) + 91 res.add_pattern(pattern_to_llvm(pattern)) + 92 _add_attributes(res, attrs) + 93 return res + 94 case Claim(vars, pattern, attrs): + 95 res = kllvm.AxiomDeclaration(True) + 96 for var in vars: + 97 res.add_object_sort_variable(sort_to_llvm(var)) + 98 res.add_pattern(pattern_to_llvm(pattern)) + 99 _add_attributes(res, attrs) +100 return res +101 case _: +102 raise AssertionError()
+ +103 +104 +
+[docs] +105def pattern_to_llvm(pattern: Pattern) -> kllvm.Pattern: +106 match pattern: +107 case String(value): +108 return kllvm.StringPattern(value) +109 case VarPattern(name, sort): +110 return kllvm.VariablePattern(name, sort_to_llvm(sort)) +111 case App(symbol, sorts, args): +112 return _composite_pattern(symbol, sorts, args) +113 case MLPattern(): +114 return _composite_pattern(pattern.symbol(), pattern.sorts, pattern.ctor_patterns) +115 case _: +116 raise AssertionError()
+ +117 +118 +
+[docs] +119def sort_to_llvm(sort: Sort) -> kllvm.Sort: +120 match sort: +121 case SortVar(name): +122 return kllvm.SortVariable(name) +123 case SortApp(name, sorts): +124 res = kllvm.CompositeSort(sort.name, kllvm.value_type(kllvm.SortCategory(0))) +125 for subsort in sorts: +126 res.add_argument(sort_to_llvm(subsort)) +127 return res +128 case _: +129 raise AssertionError()
+ +130 +131 +132def _add_attributes(term: Any, attrs: tuple[App, ...]) -> None: +133 for attr in attrs: +134 term.add_attribute(_composite_pattern(attr.symbol, attr.sorts, attr.args)) +135 +136 +137def _composite_pattern(symbol_id: str, sorts: Iterable, patterns: Iterable[Pattern]) -> kllvm.CompositePattern: +138 symbol = kllvm.Symbol(symbol_id) +139 for sort in sorts: +140 symbol.add_formal_argument(sort_to_llvm(sort)) +141 res = kllvm.CompositePattern(symbol) +142 for pattern in patterns: +143 res.add_argument(pattern_to_llvm(pattern)) +144 return res +145 +146 +147# ----------- +148# llvm -> pyk +149# ----------- +150 +151 +
+[docs] +152def llvm_to_definition(definition: kllvm.Definition) -> Definition: +153 modules = (llvm_to_module(mod) for mod in definition.modules) +154 attrs = _attrs(definition.attributes) +155 return Definition(modules, attrs)
+ +156 +157 +
+[docs] +158def llvm_to_module(module: kllvm.Module) -> Module: +159 sentences = (llvm_to_sentence(decl) for decl in module.declarations) +160 attrs = _attrs(module.attributes) +161 return Module(module.name, sentences, attrs)
+ +162 +163 +
+[docs] +164def llvm_to_sentence(decl: kllvm.Declaration) -> Sentence: +165 attrs = _attrs(decl.attributes) +166 vars = tuple(llvm_to_sort_var(var) for var in decl.object_sort_variables) +167 match decl: +168 case kllvm.ModuleImportDeclaration(): # type: ignore +169 return Import(decl.module_name, attrs) +170 case kllvm.CompositeSortDeclaration(): # type: ignore +171 return SortDecl(decl.name, vars, attrs, hooked=decl.is_hooked) +172 case kllvm.SymbolDeclaration(): # type: ignore +173 llvm_to_symbol = decl.symbol +174 symbol = Symbol(llvm_to_symbol.name, vars) +175 param_sorts = (llvm_to_sort(sort) for sort in llvm_to_symbol.arguments) +176 sort = llvm_to_sort(llvm_to_symbol.sort) +177 return SymbolDecl(symbol, param_sorts, sort, attrs, hooked=decl.is_hooked) +178 case kllvm.AliasDeclaration(): # type: ignore +179 llvm_to_symbol = decl.symbol +180 symbol = Symbol(llvm_to_symbol.name, vars) +181 param_sorts = (llvm_to_sort(sort) for sort in llvm_to_symbol.arguments) +182 sort = llvm_to_sort(llvm_to_symbol.sort) +183 left = App(*_unpack_composite_pattern(decl.variables)) +184 right = llvm_to_pattern(decl.pattern) +185 return AliasDecl(symbol, param_sorts, sort, left, right, attrs) +186 case kllvm.AxiomDeclaration(): # type: ignore +187 pattern = llvm_to_pattern(decl.pattern) +188 if decl.is_claim: +189 return Claim(vars, pattern, attrs) +190 else: +191 return Axiom(vars, pattern, attrs) +192 case _: +193 raise AssertionError()
+ +194 +195 +
+[docs] +196def llvm_to_pattern(pattern: kllvm.Pattern) -> Pattern: +197 match pattern: +198 case kllvm.StringPattern(): # type: ignore +199 return String(pattern.contents) +200 case kllvm.VariablePattern(): # type: ignore +201 if pattern.name and pattern.name[0] == '@': +202 return SVar(pattern.name, llvm_to_sort(pattern.sort)) +203 else: +204 return EVar(pattern.name, llvm_to_sort(pattern.sort)) +205 case kllvm.CompositePattern(): # type: ignore +206 symbol, sorts, patterns = _unpack_composite_pattern(pattern) +207 if symbol in ML_SYMBOLS: +208 return MLPattern.of(symbol, sorts, patterns) +209 else: +210 return App(symbol, sorts, patterns) +211 case _: +212 raise AssertionError()
+ +213 +214 +
+[docs] +215def llvm_to_sort(sort: kllvm.Sort) -> Sort: +216 match sort: +217 case kllvm.SortVariable(): # type: ignore +218 return SortVar(sort.name) +219 case kllvm.CompositeSort(): # type: ignore +220 return SortApp(sort.name, (llvm_to_sort(subsort) for subsort in sort.arguments)) +221 case _: +222 raise AssertionError()
+ +223 +224 +
+[docs] +225def llvm_to_sort_var(var: kllvm.SortVariable) -> SortVar: +226 return SortVar(var.name)
+ +227 +228 +229def _attrs(attributes: dict[str, kllvm.CompositePattern]) -> tuple[App, ...]: +230 return tuple(App(*_unpack_composite_pattern(attr)) for _, attr in attributes.items()) +231 +232 +233def _unpack_composite_pattern(pattern: kllvm.CompositePattern) -> tuple[str, tuple[Sort, ...], tuple[Pattern, ...]]: +234 symbol = pattern.constructor.name +235 sorts = tuple(llvm_to_sort(sort) for sort in pattern.constructor.formal_arguments) +236 patterns = tuple(llvm_to_pattern(subpattern) for subpattern in pattern.arguments) +237 return symbol, sorts, patterns +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/hints/prooftrace.html b/pyk/_modules/pyk/kllvm/hints/prooftrace.html new file mode 100644 index 00000000000..99b32aed5a6 --- /dev/null +++ b/pyk/_modules/pyk/kllvm/hints/prooftrace.html @@ -0,0 +1,756 @@ + + + + + + pyk.kllvm.hints.prooftrace — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.hints.prooftrace

+  1from __future__ import annotations
+  2
+  3from abc import ABC, abstractmethod
+  4from typing import TYPE_CHECKING, final
+  5
+  6# isort: off
+  7import pyk.kllvm.load_static  # noqa: F401
+  8from _kllvm.prooftrace import (  # type: ignore  # noqa: F401, TC002
+  9    kore_header,
+ 10    llvm_rewrite_event,
+ 11    llvm_function_event,
+ 12    llvm_hook_event,
+ 13    llvm_rewrite_trace,
+ 14    llvm_rule_event,
+ 15    llvm_side_condition_end_event,
+ 16    llvm_side_condition_event,
+ 17    llvm_step_event,
+ 18    annotated_llvm_event,
+ 19    llvm_rewrite_trace_iterator,
+ 20    EventType,
+ 21)
+ 22from ..ast import Pattern
+ 23
+ 24# isort: on
+ 25
+ 26if TYPE_CHECKING:
+ 27    from collections.abc import Generator
+ 28    from pathlib import Path
+ 29
+ 30    from _kllvm.prooftrace import Argument
+ 31
+ 32
+
+[docs] + 33class LLVMStepEvent(ABC): + 34 """Abstract base class representing an LLVM step event."""
+ + 35 + 36 +
+[docs] + 37class LLVMRewriteEvent(LLVMStepEvent): + 38 """Represents LLVM rewrite event.""" + 39 + 40 @property + 41 @abstractmethod + 42 def rule_ordinal(self) -> int: + 43 """Return the axiom ordinal number of the rewrite rule. + 44 + 45 The rule ordinal represents the `nth` axiom in the kore definition. + 46 """ + 47 ... + 48 + 49 @property + 50 @abstractmethod + 51 def substitution(self) -> dict[str, Pattern]: + 52 """Returns the substitution dictionary used to perform the rewrite represented by this event.""" + 53 ...
+ + 54 + 55 +
+[docs] + 56@final + 57class LLVMRuleEvent(LLVMRewriteEvent): + 58 """Represents an LLVM rule event. + 59 + 60 Attributes: + 61 _rule_event (llvm_rule_event): The underlying LLVM rule event. + 62 """ + 63 + 64 _rule_event: llvm_rule_event + 65 +
+[docs] + 66 def __init__(self, rule_event: llvm_rule_event) -> None: + 67 """Initialize a new instance of the LLVMRuleEvent class. + 68 + 69 Args: + 70 rule_event (llvm_rule_event): The LLVM rule event object. + 71 """ + 72 self._rule_event = rule_event
+ + 73 +
+[docs] + 74 def __repr__(self) -> str: + 75 """Return a string representation of the object. + 76 + 77 Returns: + 78 A string representation of the LLVMRuleEvent object using the AST printing method. + 79 """ + 80 return self._rule_event.__repr__()
+ + 81 + 82 @property + 83 def rule_ordinal(self) -> int: + 84 """Returns the axiom ordinal number of the rule event.""" + 85 return self._rule_event.rule_ordinal + 86 + 87 @property + 88 def substitution(self) -> dict[str, Pattern]: + 89 """Returns the substitution dictionary used to perform the rewrite represented by this rule event.""" + 90 return {k: v[0] for k, v in self._rule_event.substitution.items()}
+ + 91 + 92 +
+[docs] + 93@final + 94class LLVMSideConditionEventEnter(LLVMRewriteEvent): + 95 """Represents an event that enters a side condition in LLVM rewriting. + 96 + 97 This event is used to check the side condition of a rule. Mostly used in ensures/requires clauses. + 98 + 99 Attributes: +100 _side_condition_event (llvm_side_condition_event): The underlying side condition event. +101 """ +102 +103 _side_condition_event: llvm_side_condition_event +104 +
+[docs] +105 def __init__(self, side_condition_event: llvm_side_condition_event) -> None: +106 """Initialize a new instance of the LLVMSideConditionEventEnter class. +107 +108 Args: +109 side_condition_event (llvm_side_condition_event): The LLVM side condition event object. +110 """ +111 self._side_condition_event = side_condition_event
+ +112 +
+[docs] +113 def __repr__(self) -> str: +114 """Return a string representation of the object. +115 +116 Returns: +117 A string representation of the LLVMSideConditionEventEnter object using the AST printing method. +118 """ +119 return self._side_condition_event.__repr__()
+ +120 +121 @property +122 def rule_ordinal(self) -> int: +123 """Returns the axiom ordinal number associated with the side condition event.""" +124 return self._side_condition_event.rule_ordinal +125 +126 @property +127 def substitution(self) -> dict[str, Pattern]: +128 """Returns the substitution dictionary used to perform the rewrite represented by this side condition event.""" +129 return {k: v[0] for k, v in self._side_condition_event.substitution.items()}
+ +130 +131 +
+[docs] +132@final +133class LLVMSideConditionEventExit(LLVMStepEvent): +134 """Represents an LLVM side condition event indicating the exit of a side condition. +135 +136 This event contains the result of the side condition evaluation. +137 +138 Attributes: +139 _side_condition_end_event (llvm_side_condition_end_event): The underlying side condition end event. +140 """ +141 +142 _side_condition_end_event: llvm_side_condition_end_event +143 +
+[docs] +144 def __init__(self, side_condition_end_event: llvm_side_condition_end_event) -> None: +145 """Initialize a new instance of the LLVMSideConditionEventExit class. +146 +147 Args: +148 side_condition_end_event (llvm_side_condition_end_event): The LLVM side condition end event object. +149 """ +150 self._side_condition_end_event = side_condition_end_event
+ +151 +
+[docs] +152 def __repr__(self) -> str: +153 """Return a string representation of the object. +154 +155 Returns: +156 A string representation of the LLVMSideConditionEventExit object using the AST printing method. +157 """ +158 return self._side_condition_end_event.__repr__()
+ +159 +160 @property +161 def rule_ordinal(self) -> int: +162 """Return the axiom ordinal number associated with the side condition event.""" +163 return self._side_condition_end_event.rule_ordinal +164 +165 @property +166 def check_result(self) -> bool: +167 """Return the boolean result of the evaluation of the side condition that corresponds to this event.""" +168 return self._side_condition_end_event.check_result
+ +169 +170 +
+[docs] +171@final +172class LLVMFunctionEvent(LLVMStepEvent): +173 """Represent an LLVM function event in a proof trace. +174 +175 Attributes: +176 _function_event (llvm_function_event): The underlying LLVM function event object. +177 """ +178 +179 _function_event: llvm_function_event +180 +
+[docs] +181 def __init__(self, function_event: llvm_function_event) -> None: +182 """Initialize a new instance of the LLVMFunctionEvent class. +183 +184 Args: +185 function_event (llvm_function_event): The LLVM function event object. +186 """ +187 self._function_event = function_event
+ +188 +
+[docs] +189 def __repr__(self) -> str: +190 """Return a string representation of the object. +191 +192 Returns: +193 A string representation of the LLVMFunctionEvent object using the AST printing method. +194 """ +195 return self._function_event.__repr__()
+ +196 +197 @property +198 def name(self) -> str: +199 """Return the name of the LLVM function as a KORE Symbol Name.""" +200 return self._function_event.name +201 +202 @property +203 def relative_position(self) -> str: +204 """Return the relative position of the LLVM function event in the proof trace. Ex.: (0:0:0:0).""" +205 return self._function_event.relative_position +206 +207 @property +208 def args(self) -> list[LLVMArgument]: +209 """Return a list of LLVMArgument objects representing the arguments of the LLVM function.""" +210 return [LLVMArgument(arg) for arg in self._function_event.args]
+ +211 +212 +
+[docs] +213@final +214class LLVMHookEvent(LLVMStepEvent): +215 """Represents a hook event in LLVM execution. +216 +217 Attributes: +218 _hook_event (llvm_hook_event): The underlying hook event object. +219 """ +220 +221 _hook_event: llvm_hook_event +222 +
+[docs] +223 def __init__(self, hook_event: llvm_hook_event) -> None: +224 """Initialize a new instance of the LLVMHookEvent class. +225 +226 Args: +227 hook_event (llvm_hook_event): The LLVM hook event object. +228 """ +229 self._hook_event = hook_event
+ +230 +
+[docs] +231 def __repr__(self) -> str: +232 """Return a string representation of the object. +233 +234 Returns: +235 A string representation of the LLVMHookEvent object using the AST printing method. +236 """ +237 return self._hook_event.__repr__()
+ +238 +239 @property +240 def name(self) -> str: +241 """Return the attribute name of the hook event. Ex.: "INT.add".""" +242 return self._hook_event.name +243 +244 @property +245 def relative_position(self) -> str: +246 """Return the relative position of the hook event in the proof trace. Ex.: (0:0:0:0).""" +247 return self._hook_event.relative_position +248 +249 @property +250 def args(self) -> list[LLVMArgument]: +251 """Return a list of LLVMArgument objects representing the arguments of the hook event.""" +252 return [LLVMArgument(arg) for arg in self._hook_event.args] +253 +254 @property +255 def result(self) -> Pattern: +256 """Return the result pattern of the hook event evaluation.""" +257 return self._hook_event.result
+ +258 +259 +
+[docs] +260@final +261class LLVMArgument: +262 """Represents an LLVM argument. +263 +264 Attributes: +265 _argument (Argument): The underlying Argument object. An argument is a wrapper object containing either a step +266 event or a KORE pattern. +267 """ +268 +269 _argument: Argument +270 +
+[docs] +271 def __init__(self, argument: Argument) -> None: +272 """Initialize the LLVMArgument object. +273 +274 Args: +275 argument (Argument): The Argument object. +276 """ +277 self._argument = argument
+ +278 +
+[docs] +279 def __repr__(self) -> str: +280 """Return a string representation of the object. +281 +282 Returns: +283 Returns a string representation of the LLVMArgument object using the AST printing method. +284 """ +285 return self._argument.__repr__()
+ +286 +287 @property +288 def step_event(self) -> LLVMStepEvent: +289 """Returns the LLVMStepEvent associated with the argument if any.""" +290 if isinstance(self._argument.step_event, llvm_rule_event): +291 return LLVMRuleEvent(self._argument.step_event) +292 elif isinstance(self._argument.step_event, llvm_side_condition_event): +293 return LLVMSideConditionEventEnter(self._argument.step_event) +294 elif isinstance(self._argument.step_event, llvm_side_condition_end_event): +295 return LLVMSideConditionEventExit(self._argument.step_event) +296 elif isinstance(self._argument.step_event, llvm_function_event): +297 return LLVMFunctionEvent(self._argument.step_event) +298 elif isinstance(self._argument.step_event, llvm_hook_event): +299 return LLVMHookEvent(self._argument.step_event) +300 else: +301 raise AssertionError() +302 +303 @property +304 def kore_pattern(self) -> Pattern: +305 """Return the KORE Pattern associated with the argument if any.""" +306 assert isinstance(self._argument.kore_pattern, Pattern) +307 return self._argument.kore_pattern +308 +
+[docs] +309 def is_kore_pattern(self) -> bool: +310 """Check if the argument is a KORE Pattern.""" +311 return self._argument.is_kore_pattern()
+ +312 +
+[docs] +313 def is_step_event(self) -> bool: +314 """Check if the argument is a step event.""" +315 return self._argument.is_step_event()
+
+ +316 +317 +
+[docs] +318@final +319class LLVMRewriteTrace: +320 """Represents an LLVM rewrite trace. +321 +322 Attributes: +323 _rewrite_trace (llvm_rewrite_trace): The underlying LLVM rewrite trace object. +324 """ +325 +326 _rewrite_trace: llvm_rewrite_trace +327 +
+[docs] +328 def __init__(self, rewrite_trace: llvm_rewrite_trace) -> None: +329 """Initialize a new instance of the LLVMRewriteTrace class. +330 +331 Args: +332 rewrite_trace (llvm_rewrite_trace): The LLVM rewrite trace object. +333 """ +334 self._rewrite_trace = rewrite_trace
+ +335 +
+[docs] +336 def __repr__(self) -> str: +337 """Return a string representation of the object. +338 +339 Returns: +340 A string representation of the LLVMRewriteTrace object using the AST printing method. +341 """ +342 return self._rewrite_trace.__repr__()
+ +343 +344 @property +345 def version(self) -> int: +346 """Returns the version of the binary hints format used by this trace.""" +347 return self._rewrite_trace.version +348 +349 @property +350 def pre_trace(self) -> list[LLVMArgument]: +351 """Returns a list of events that occurred before the initial configuration was constructed.""" +352 return [LLVMArgument(event) for event in self._rewrite_trace.pre_trace] +353 +354 @property +355 def initial_config(self) -> LLVMArgument: +356 """Returns the initial configuration as an LLVMArgument object.""" +357 return LLVMArgument(self._rewrite_trace.initial_config) +358 +359 @property +360 def trace(self) -> list[LLVMArgument]: +361 """Returns the trace. +362 +363 The trace is the list of events that occurred after the initial configurarion was constructed until the end of the +364 proof trace when the final configuration is reached. +365 """ +366 return [LLVMArgument(event) for event in self._rewrite_trace.trace] +367 +
+[docs] +368 @staticmethod +369 def parse(trace: bytes, header: KoreHeader) -> LLVMRewriteTrace: +370 """Parse the given proof hints byte string using the given kore_header object.""" +371 return LLVMRewriteTrace(llvm_rewrite_trace.parse(trace, header._kore_header))
+
+ +372 +373 +
+[docs] +374class KoreHeader: +375 """Represents the Kore header. +376 +377 The Kore header is a file that contains the version of the Binary KORE used to serialize/deserialize the +378 Proof Trace and all the aditional information needed make this process faster the Proof Trace. +379 +380 Attributes: +381 _kore_header (kore_header): The underlying KORE Header object. +382 """ +383 +384 _kore_header: kore_header +385 +
+[docs] +386 def __init__(self, kore_header: kore_header) -> None: +387 """Initialize a new instance of the KoreHeader class. +388 +389 Args: +390 kore_header (kore_header): The KORE Header object. +391 """ +392 self._kore_header = kore_header
+ +393 +
+[docs] +394 @staticmethod +395 def create(header_path: Path) -> KoreHeader: +396 """Create a new KoreHeader object from the given header file path.""" +397 return KoreHeader(kore_header(str(header_path)))
+
+ +398 +399 +
+[docs] +400class LLVMEventType: +401 """Represents an LLVM event type. +402 +403 This works as a wrapper around the EventType enum. +404 It also provides properties to check the type of the event. +405 +406 Attributes: +407 _event_type (EventType): The underlying EventType object. +408 """ +409 +410 _event_type: EventType +411 +
+[docs] +412 def __init__(self, event_type: EventType) -> None: +413 """Initialize a new instance of the LLVMEventType class. +414 +415 Args: +416 event_type (EventType): The EventType object. +417 """ +418 self._event_type = event_type
+ +419 +420 @property +421 def is_pre_trace(self) -> bool: +422 """Checks if the event type is a pre-trace event.""" +423 return self._event_type == EventType.PreTrace +424 +425 @property +426 def is_initial_config(self) -> bool: +427 """Checks if the event type is an initial configuration event.""" +428 return self._event_type == EventType.InitialConfig +429 +430 @property +431 def is_trace(self) -> bool: +432 """Checks if the event type is a trace event.""" +433 return self._event_type == EventType.Trace
+ +434 +435 +
+[docs] +436class LLVMEventAnnotated: +437 """Represents an annotated LLVM event. +438 +439 This class is used to wrap an llvm_event and its corresponding event type. +440 This class is used to iterate over the LLVM rewrite trace events. +441 +442 Attributes: +443 _annotated_llvm_event (annotated_llvm_event): The underlying annotated LLVM event object. +444 """ +445 +446 _annotated_llvm_event: annotated_llvm_event +447 +
+[docs] +448 def __init__(self, annotated_llvm_event: annotated_llvm_event) -> None: +449 """Initialize a new instance of the LLVMEventAnnotated class. +450 +451 Args: +452 annotated_llvm_event (annotated_llvm_event): The annotated LLVM event object. +453 """ +454 self._annotated_llvm_event = annotated_llvm_event
+ +455 +456 @property +457 def type(self) -> LLVMEventType: +458 """Returns the LLVM event type.""" +459 return LLVMEventType(self._annotated_llvm_event.type) +460 +461 @property +462 def event(self) -> LLVMArgument: +463 """Returns the LLVM event as an LLVMArgument object.""" +464 return LLVMArgument(self._annotated_llvm_event.event)
+ +465 +466 +
+[docs] +467class LLVMRewriteTraceIterator: +468 """Represents an LLVM rewrite trace iterator. +469 +470 This class is used to iterate over the LLVM rewrite trace events in the stream parser. +471 +472 Attributes: +473 _rewrite_trace_iterator (llvm_rewrite_trace_iterator): The underlying LLVM rewrite trace iterator object. +474 """ +475 +476 _rewrite_trace_iterator: llvm_rewrite_trace_iterator +477 +
+[docs] +478 def __init__(self, rewrite_trace_iterator: llvm_rewrite_trace_iterator) -> None: +479 """Initialize a new instance of the LLVMRewriteTraceIterator class. +480 +481 Args: +482 rewrite_trace_iterator (llvm_rewrite_trace_iterator): The LLVM rewrite trace iterator object. +483 """ +484 self._rewrite_trace_iterator = rewrite_trace_iterator
+ +485 +
+[docs] +486 def __repr__(self) -> str: +487 """Return a string representation of the object. +488 +489 Returns: +490 A string representation of the LLVMRewriteTraceIterator object using the AST printing method. +491 """ +492 return self._rewrite_trace_iterator.__repr__()
+ +493 +
+[docs] +494 def __iter__(self) -> Generator[LLVMEventAnnotated, None, None]: +495 """Yield LLVMEventAnnotated options. +496 +497 This method is an iterator that yields LLVMEventAnnotated options. +498 It iterates over the events in the trace and returns the next event as an LLVMEventAnnotated object. +499 +500 Yields: +501 LLVMEventAnnotated: The next LLVMEventAnnotated option. +502 """ +503 while True: +504 next_event = self._rewrite_trace_iterator.get_next_event() +505 if next_event is None: +506 return +507 else: +508 yield LLVMEventAnnotated(next_event)
+ +509 +
+[docs] +510 def __next__(self) -> LLVMEventAnnotated: +511 """Yield the next LLVMEventAnnotated object from the iterator. +512 +513 Returns: +514 LLVMEventAnnotated: The next LLVMEventAnnotated object. +515 +516 Raises: +517 StopIteration: If there are no more events in the iterator. +518 """ +519 next_event = self._rewrite_trace_iterator.get_next_event() +520 if next_event is not None: +521 return LLVMEventAnnotated(next_event) +522 else: +523 raise StopIteration
+ +524 +525 @property +526 def version(self) -> int: +527 """Return the version of the HINTS format.""" +528 return self._rewrite_trace_iterator.version +529 +
+[docs] +530 @staticmethod +531 def from_file(trace_path: Path, header: KoreHeader) -> LLVMRewriteTraceIterator: +532 """Create a new LLVMRewriteTraceIterator object from the given trace and header file paths.""" +533 return LLVMRewriteTraceIterator(llvm_rewrite_trace_iterator.from_file(str(trace_path), header._kore_header))
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/importer.html b/pyk/_modules/pyk/kllvm/importer.html new file mode 100644 index 00000000000..60f1633ca40 --- /dev/null +++ b/pyk/_modules/pyk/kllvm/importer.html @@ -0,0 +1,182 @@ + + + + + + pyk.kllvm.importer — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.importer

+ 1from __future__ import annotations
+ 2
+ 3import os
+ 4import sys
+ 5from contextlib import contextmanager
+ 6from importlib.util import module_from_spec, spec_from_file_location
+ 7from pathlib import Path
+ 8from typing import TYPE_CHECKING
+ 9
+10from ..cli.utils import check_dir_path, check_file_path
+11from .compiler import KLLVM_MODULE_FILE_NAME, KLLVM_MODULE_NAME, RUNTIME_MODULE_FILE_NAME, RUNTIME_MODULE_NAME
+12from .runtime import Runtime
+13
+14if TYPE_CHECKING:
+15    from collections.abc import Iterator
+16    from types import ModuleType
+17
+18
+
+[docs] +19@contextmanager +20def rtld_local() -> Iterator[None]: +21 old_flags = sys.getdlopenflags() +22 sys.setdlopenflags(old_flags | os.RTLD_LOCAL) +23 yield +24 sys.setdlopenflags(old_flags)
+ +25 +26 +
+[docs] +27def import_from_file(module_name: str, module_file: str | Path) -> ModuleType: +28 module_file = Path(module_file).resolve() +29 check_file_path(module_file) +30 +31 spec = spec_from_file_location(module_name, module_file) +32 if not spec: +33 raise ValueError('Could not create ModuleSpec') +34 +35 module = module_from_spec(spec) +36 if not module: +37 raise ValueError('Could not create ModuleType') +38 +39 if not spec.loader: +40 raise ValueError('Spec has no loader') +41 +42 spec.loader.exec_module(module) +43 +44 return module
+ +45 +46 +
+[docs] +47def import_kllvm(target_dir: str | Path) -> ModuleType: +48 if '_kllvm' in sys.modules: +49 return sys.modules['_kllvm'] +50 target_dir = Path(target_dir) +51 check_dir_path(target_dir) +52 module_file = target_dir / KLLVM_MODULE_FILE_NAME +53 return import_from_file(KLLVM_MODULE_NAME, module_file)
+ +54 +55 +
+[docs] +56def import_runtime(target_dir: str | Path) -> Runtime: +57 target_dir = Path(target_dir) +58 check_dir_path(target_dir) +59 module_file = target_dir / RUNTIME_MODULE_FILE_NAME +60 +61 with rtld_local(): +62 module = import_from_file(RUNTIME_MODULE_NAME, module_file) +63 +64 return Runtime(module)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/load_static.html b/pyk/_modules/pyk/kllvm/load_static.html new file mode 100644 index 00000000000..65ae11b0ee9 --- /dev/null +++ b/pyk/_modules/pyk/kllvm/load_static.html @@ -0,0 +1,131 @@ + + + + + + pyk.kllvm.load_static — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.load_static

+ 1from __future__ import annotations
+ 2
+ 3from pathlib import Path
+ 4from typing import TYPE_CHECKING
+ 5
+ 6from ..utils import run_process
+ 7from .importer import import_kllvm
+ 8
+ 9if TYPE_CHECKING:
+10    from typing import Final
+11
+12
+
+[docs] +13def get_kllvm() -> Path: +14 args = ['llvm-kompile', '--bindings-path'] +15 proc = run_process(args, pipe_stdout=True) +16 bindings_dir = Path(proc.stdout.rstrip()).resolve() +17 kllvm_dir = bindings_dir / 'kllvm' +18 return kllvm_dir
+ +19 +20 +21KLLVM_MODULE_DIR: Final = get_kllvm() +22KLLVM_MODULE: Final = import_kllvm(KLLVM_MODULE_DIR) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/parser.html b/pyk/_modules/pyk/kllvm/parser.html new file mode 100644 index 00000000000..43f027d8c7e --- /dev/null +++ b/pyk/_modules/pyk/kllvm/parser.html @@ -0,0 +1,165 @@ + + + + + + pyk.kllvm.parser — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.parser

+ 1from __future__ import annotations
+ 2
+ 3from pathlib import Path
+ 4from typing import TYPE_CHECKING
+ 5
+ 6from _kllvm.parser import Parser  # type: ignore
+ 7
+ 8from ..cli.utils import check_file_path
+ 9
+10if TYPE_CHECKING:
+11    from .ast import Definition, Pattern, Sort
+12
+13
+
+[docs] +14def parse_pattern(text: str) -> Pattern: +15 return Parser.from_string(text).pattern()
+ +16 +17 +
+[docs] +18def parse_sort(text: str) -> Sort: +19 return Parser.from_string(text).sort()
+ +20 +21 +
+[docs] +22def parse_definition(text: str) -> Definition: +23 return Parser.from_string(text).definition()
+ +24 +25 +
+[docs] +26def parse_pattern_file(path: str | Path) -> Pattern: +27 return _parser_from_path(path).pattern()
+ +28 +29 +
+[docs] +30def parse_sort_file(path: str | Path) -> Pattern: +31 return _parser_from_path(path).sort()
+ +32 +33 +
+[docs] +34def parse_definition_file(path: str | Path) -> Definition: +35 return _parser_from_path(path).definition()
+ +36 +37 +38def _parser_from_path(path: str | Path) -> Parser: +39 path = Path(path) +40 check_file_path(path) +41 return Parser(str(path)) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/runtime.html b/pyk/_modules/pyk/kllvm/runtime.html new file mode 100644 index 00000000000..f91079308e9 --- /dev/null +++ b/pyk/_modules/pyk/kllvm/runtime.html @@ -0,0 +1,206 @@ + + + + + + pyk.kllvm.runtime — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.runtime

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5if TYPE_CHECKING:
+ 6    from types import ModuleType
+ 7    from typing import Any
+ 8
+ 9    from .ast import Pattern, Sort
+10
+11
+
+[docs] +12class Runtime: +13 _module: ModuleType +14 +15 def __init__(self, module: ModuleType): +16 module.init_static_objects() +17 self._module = module +18 +
+[docs] +19 def term(self, pattern: Pattern) -> Term: +20 return Term(self._module.InternalTerm(pattern))
+ +21 +
+[docs] +22 def deserialize(self, bs: bytes) -> Term | None: +23 block = self._module.InternalTerm.deserialize(bs) +24 if block is None: +25 return None +26 return Term(block)
+ +27 +
+[docs] +28 def step(self, pattern: Pattern, depth: int | None = 1) -> Pattern: +29 term = self.term(pattern) +30 term.step(depth=depth) +31 return term.pattern
+ +32 +
+[docs] +33 def run(self, pattern: Pattern) -> Pattern: +34 return self.step(pattern, depth=None)
+ +35 +
+[docs] +36 def simplify(self, pattern: Pattern, sort: Sort) -> Pattern: +37 res = self._module.simplify_pattern(pattern, sort) +38 self._module.free_all_gc_memory() +39 return res
+ +40 +
+[docs] +41 def simplify_bool(self, pattern: Pattern) -> bool: +42 res = self._module.simplify_bool_pattern(pattern) +43 self._module.free_all_gc_memory() +44 return res
+
+ +45 +46 +
+[docs] +47class Term: +48 _block: Any # module.InternalTerm +49 +50 def __init__(self, block: Any): +51 self._block = block +52 +53 @property +54 def pattern(self) -> Pattern: +55 return self._block.to_pattern() +56 +
+[docs] +57 def serialize(self) -> bytes: +58 return self._block.serialize()
+ +59 +
+[docs] +60 def step(self, depth: int | None = 1) -> None: +61 self._block = self._block.step(depth if depth is not None else -1)
+ +62 +
+[docs] +63 def run(self) -> None: +64 self.step(depth=None)
+ +65 +66 def __str__(self) -> str: +67 return str(self._block)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kllvm/utils.html b/pyk/_modules/pyk/kllvm/utils.html new file mode 100644 index 00000000000..4b2d3b11c4f --- /dev/null +++ b/pyk/_modules/pyk/kllvm/utils.html @@ -0,0 +1,125 @@ + + + + + + pyk.kllvm.utils — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kllvm.utils

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from . import convert
+ 6
+ 7if TYPE_CHECKING:
+ 8    from ..kore.syntax import Axiom, Pattern
+ 9
+10
+
+[docs] +11def get_requires(axiom: Axiom) -> Pattern | None: +12 llvm_axiom = convert.sentence_to_llvm(axiom) +13 llvm_pattern = llvm_axiom.requires +14 if llvm_pattern is None: +15 return None +16 return convert.llvm_to_pattern(llvm_pattern)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/kompiled.html b/pyk/_modules/pyk/kore/kompiled.html new file mode 100644 index 00000000000..5aff049cb62 --- /dev/null +++ b/pyk/_modules/pyk/kore/kompiled.html @@ -0,0 +1,491 @@ + + + + + + pyk.kore.kompiled — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.kompiled

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5from dataclasses import dataclass
+  6from itertools import chain
+  7from pathlib import Path
+  8from typing import TYPE_CHECKING, Final, final
+  9
+ 10from ..utils import POSet, check_dir_path, check_file_path
+ 11from .parser import KoreParser
+ 12from .syntax import (
+ 13    DV,
+ 14    ML_SYMBOL_DECLS,
+ 15    App,
+ 16    MLPattern,
+ 17    MLQuant,
+ 18    Pattern,
+ 19    SortApp,
+ 20    SortVar,
+ 21    Symbol,
+ 22    SymbolDecl,
+ 23    WithSort,
+ 24)
+ 25
+ 26if TYPE_CHECKING:
+ 27    from collections.abc import Iterable
+ 28    from typing import Any
+ 29
+ 30    from ..utils import FrozenDict
+ 31    from .syntax import Definition, Kore, Sort
+ 32
+ 33_LOGGER: Final = logging.getLogger(__name__)
+ 34
+ 35
+ 36_PYK_DEFINITION_NAME: Final = 'pyk-definition.kore.json'
+ 37
+ 38
+
+[docs] + 39@final + 40@dataclass(frozen=True) + 41class KompiledKore: + 42 sort_table: KoreSortTable + 43 symbol_table: KoreSymbolTable + 44 +
+[docs] + 45 @staticmethod + 46 def load(definition_dir: str | Path) -> KompiledKore: + 47 definition_dir = Path(definition_dir) + 48 check_dir_path(definition_dir) + 49 + 50 kore_file = definition_dir / 'definition.kore' + 51 check_file_path(kore_file) + 52 + 53 json_file = definition_dir / _PYK_DEFINITION_NAME + 54 if json_file.exists(): + 55 kore_timestamp = kore_file.stat().st_mtime_ns + 56 json_timestamp = json_file.stat().st_mtime_ns + 57 + 58 if kore_timestamp < json_timestamp: + 59 return KompiledKore.load_from_json(json_file) + 60 + 61 _LOGGER.warning(f'File is out of date: {json_file}') + 62 + 63 return KompiledKore.load_from_kore(kore_file)
+ + 64 +
+[docs] + 65 @staticmethod + 66 def load_from_kore(kore_file: str | Path) -> KompiledKore: + 67 kore_file = Path(kore_file) + 68 check_file_path(kore_file) + 69 + 70 _LOGGER.info(f'Reading KORE definition: {kore_file}') + 71 kore_text = kore_file.read_text() + 72 + 73 _LOGGER.info(f'Parsing KORE definition: {kore_file}') + 74 definition = KoreParser(kore_text).definition() + 75 + 76 return KompiledKore.for_definition(definition)
+ + 77 +
+[docs] + 78 @staticmethod + 79 def load_from_json(json_file: str | Path) -> KompiledKore: + 80 json_file = Path(json_file) + 81 check_file_path(json_file) + 82 _LOGGER.info(f'Reading JSON definition: {json_file}') + 83 with json_file.open() as f: + 84 json_data = json.load(f) + 85 return KompiledKore.from_dict(json_data)
+ + 86 +
+[docs] + 87 @staticmethod + 88 def for_definition(definition: Definition) -> KompiledKore: + 89 return KompiledKore( + 90 sort_table=KoreSortTable.for_definition(definition), + 91 symbol_table=KoreSymbolTable.for_definition(definition), + 92 )
+ + 93 +
+[docs] + 94 @staticmethod + 95 def from_dict(dct: dict[str, Any]) -> KompiledKore: + 96 return KompiledKore( + 97 sort_table=KoreSortTable( + 98 (_sort_from_dict(subsort), _sort_from_dict(supersort)) for subsort, supersort in dct['sorts'] + 99 ), +100 symbol_table=KoreSymbolTable(_symbol_decl_from_dict(symbol_decl) for symbol_decl in dct['symbols']), +101 )
+ +102 +
+[docs] +103 def write(self, definition_dir: str | Path) -> None: +104 definition_dir = Path(definition_dir) +105 check_dir_path(definition_dir) +106 json_data = self.to_dict() +107 json_file = definition_dir / _PYK_DEFINITION_NAME +108 with json_file.open('w') as f: +109 json.dump(json_data, f)
+ +110 +
+[docs] +111 def to_dict(self) -> dict[str, Any]: +112 return { +113 'sorts': [ +114 [_to_dict(subsort), _to_dict(supersort)] +115 for supersort, subsorts in self.sort_table._subsort_table.items() +116 for subsort in subsorts +117 ], +118 'symbols': [_to_dict(symbol_decl) for symbol_decl in self.symbol_table._symbol_table.values()], +119 }
+ +120 +
+[docs] +121 def add_injections(self, pattern: Pattern, sort: Sort | None = None) -> Pattern: +122 if sort is None: +123 sort = SortApp('SortK') +124 +125 stack: list = [pattern, sort, self.symbol_table.pattern_sorts(pattern), pattern.patterns, []] +126 while True: +127 done_patterns = stack[-1] +128 patterns = stack[-2] +129 pattern_sorts = stack[-3] +130 _sort = stack[-4] +131 pattern = stack[-5] +132 +133 idx = len(done_patterns) - len(patterns) +134 if not idx: +135 stack.pop() +136 stack.pop() +137 stack.pop() +138 stack.pop() +139 stack.pop() +140 pattern = pattern.let_patterns(done_patterns) +141 pattern = self._inject(pattern, _sort) +142 if not stack: +143 return pattern +144 stack[-1].append(pattern) +145 else: +146 pattern = patterns[idx] +147 stack.append(pattern) +148 stack.append(pattern_sorts[idx]) +149 stack.append(self.symbol_table.pattern_sorts(pattern)) +150 stack.append(pattern.patterns) +151 stack.append([])
+ +152 +153 def _inject(self, pattern: Pattern, sort: Sort) -> Pattern: +154 actual_sort = self.symbol_table.infer_sort(pattern) +155 +156 if actual_sort == sort: +157 return pattern +158 +159 if self.sort_table.is_subsort(actual_sort, sort): +160 return App('inj', (actual_sort, sort), (pattern,)) +161 +162 raise ValueError(f'Sort {actual_sort.name} is not a subsort of {sort.name}: {pattern}')
+ +163 +164 +165def _to_dict(kore: Kore) -> Any: +166 match kore: +167 case Pattern(): +168 return kore.dict +169 case SortVar(name): +170 return name +171 case SortApp(name, sorts): +172 return {'name': name, 'sorts': [_to_dict(sort) for sort in sorts]} +173 case Symbol(name, vars): +174 return {'name': name, 'vars': [_to_dict(var) for var in vars]} +175 case SymbolDecl(symbol, param_sorts, sort, attrs, hooked): +176 return { +177 'symbol': _to_dict(symbol), +178 'param-sorts': [_to_dict(sort) for sort in param_sorts], +179 'sort': _to_dict(sort), +180 'attrs': [_to_dict(attr) for attr in attrs], +181 'hooked': hooked, +182 } +183 case _: +184 raise AssertionError() +185 +186 +187def _sort_from_dict(obj: Any) -> Sort: +188 if isinstance(obj, str): +189 return SortVar(obj) +190 return SortApp(name=obj['name'], sorts=tuple(_to_dict(sort) for sort in obj['sorts'])) +191 +192 +193def _symbol_decl_from_dict(dct: Any) -> SymbolDecl: +194 return SymbolDecl( +195 symbol=Symbol( +196 name=dct['symbol']['name'], +197 vars=tuple(SortVar(var) for var in dct['symbol']['vars']), +198 ), +199 param_sorts=tuple(_sort_from_dict(sort) for sort in dct['param-sorts']), +200 sort=_sort_from_dict(dct['sort']), +201 attrs=tuple(_app_from_dict(attr) for attr in dct['attrs']), +202 hooked=dct['hooked'], +203 ) +204 +205 +206def _app_from_dict(dct: Any) -> App: +207 app = Pattern.from_dict(dct) +208 assert isinstance(app, App) +209 return app +210 +211 +
+[docs] +212@final +213@dataclass +214class KoreSortTable: +215 _subsort_table: FrozenDict[Sort, frozenset[Sort]] +216 +217 def __init__(self, subsorts: Iterable[tuple[Sort, Sort]]): +218 poset = POSet((y, x) for x, y in subsorts) +219 self._subsort_table = poset.image +220 +
+[docs] +221 @staticmethod +222 def for_definition(definition: Definition) -> KoreSortTable: +223 axioms = (axiom for module in definition for axiom in module.axioms) +224 attrs = (attr for axiom in axioms for attr in axiom.attrs) +225 subsort_attrs = (attr for attr in attrs if attr.symbol == 'subsort') +226 subsort_attr_sorts = (attr.sorts for attr in subsort_attrs) +227 subsorts = ((subsort, supersort) for subsort, supersort in subsort_attr_sorts) +228 return KoreSortTable(subsorts)
+ +229 +
+[docs] +230 def is_subsort(self, sort1: Sort, sort2: Sort) -> bool: +231 if sort1 == sort2: +232 return True +233 +234 if sort2 == SortApp('SortK'): +235 return True +236 +237 if sort1 == SortApp('SortK'): +238 return False +239 +240 return sort1 in self._subsort_table.get(sort2, ())
+ +241 +
+[docs] +242 def meet(self, sort1: Sort, sort2: Sort) -> Sort: +243 if self.is_subsort(sort1, sort2): +244 return sort1 +245 +246 if self.is_subsort(sort2, sort1): +247 return sort2 +248 +249 subsorts1 = set(self._subsort_table.get(sort1, set())).union({sort1}) +250 subsorts2 = set(self._subsort_table.get(sort2, set())).union({sort2}) +251 common_subsorts = subsorts1.intersection(subsorts2) +252 if not common_subsorts: +253 raise ValueError(f'Sorts have no common subsort: {sort1}, {sort2}') +254 nr_subsorts = {sort: len(self._subsort_table.get(sort, {})) for sort in common_subsorts} +255 max_subsort_nr = max(n for _, n in nr_subsorts.items()) +256 max_subsorts = {sort for sort, n in nr_subsorts.items() if n == max_subsort_nr} +257 (subsort,) = max_subsorts +258 return subsort
+
+ +259 +260 +
+[docs] +261@final +262@dataclass +263class KoreSymbolTable: +264 _symbol_table: dict[str, SymbolDecl] +265 +266 def __init__(self, symbol_decls: Iterable[SymbolDecl] = ()): +267 self._symbol_table = {symbol_decl.symbol.name: symbol_decl for symbol_decl in symbol_decls} +268 +
+[docs] +269 @staticmethod +270 def for_definition(definition: Definition, *, with_ml_symbols: bool = True) -> KoreSymbolTable: +271 return KoreSymbolTable( +272 chain( +273 (symbol_decl for module in definition for symbol_decl in module.symbol_decls), +274 ML_SYMBOL_DECLS if with_ml_symbols else (), +275 ) +276 )
+ +277 +
+[docs] +278 def resolve(self, symbol_id: str, sorts: Iterable[Sort] = ()) -> tuple[Sort, tuple[Sort, ...]]: +279 symbol_decl = self._symbol_table.get(symbol_id) +280 if not symbol_decl: +281 raise ValueError(f'Undeclared symbol: {symbol_id}') +282 +283 symbol = symbol_decl.symbol +284 sorts = tuple(sorts) +285 +286 nr_sort_vars = len(symbol.vars) +287 nr_sorts = len(sorts) +288 if nr_sort_vars != nr_sorts: +289 raise ValueError(f'Expected {nr_sort_vars} sort parameters, got {nr_sorts} for: {symbol_id}') +290 +291 sort_table: dict[Sort, Sort] = dict(zip(symbol.vars, sorts, strict=True)) +292 +293 def resolve_sort(sort: Sort) -> Sort: +294 if type(sort) is SortVar: +295 return sort_table.get(sort, sort) +296 return sort +297 +298 sort = resolve_sort(symbol_decl.sort) +299 param_sorts = tuple(resolve_sort(sort) for sort in symbol_decl.param_sorts) +300 +301 return sort, param_sorts
+ +302 +
+[docs] +303 def infer_sort(self, pattern: Pattern) -> Sort: +304 if isinstance(pattern, WithSort): +305 return pattern.sort +306 +307 if type(pattern) is App: +308 sort, _ = self.resolve(pattern.symbol, pattern.sorts) +309 return sort +310 +311 raise ValueError(f'Cannot infer sort: {pattern}')
+ +312 +
+[docs] +313 def pattern_sorts(self, pattern: Pattern) -> tuple[Sort, ...]: +314 sorts: tuple[Sort, ...] +315 if isinstance(pattern, DV): +316 sorts = () +317 +318 elif isinstance(pattern, MLQuant): +319 sorts = (pattern.sort,) +320 +321 elif isinstance(pattern, MLPattern): +322 _, sorts = self.resolve(pattern.symbol(), pattern.sorts) +323 +324 elif isinstance(pattern, App): +325 _, sorts = self.resolve(pattern.symbol, pattern.sorts) +326 +327 else: +328 sorts = () +329 +330 assert len(sorts) == len(pattern.patterns) +331 return sorts
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/lexer.html b/pyk/_modules/pyk/kore/lexer.html new file mode 100644 index 00000000000..4125c8f2456 --- /dev/null +++ b/pyk/_modules/pyk/kore/lexer.html @@ -0,0 +1,371 @@ + + + + + + pyk.kore.lexer — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.lexer

+  1from __future__ import annotations
+  2
+  3from enum import Enum, auto
+  4from typing import TYPE_CHECKING, NamedTuple
+  5
+  6if TYPE_CHECKING:
+  7    from collections.abc import Callable, Iterable, Iterator, Mapping
+  8    from typing import Final
+  9
+ 10
+
+[docs] + 11class TokenType(Enum): + 12 EOF = 0 + 13 COMMA = auto() + 14 COLON = auto() + 15 WALRUS = auto() + 16 LPAREN = auto() + 17 RPAREN = auto() + 18 LBRACE = auto() + 19 RBRACE = auto() + 20 LBRACK = auto() + 21 RBRACK = auto() + 22 STRING = auto() + 23 ID = auto() + 24 SYMBOL_ID = auto() + 25 SET_VAR_ID = auto() + 26 ML_TOP = auto() + 27 ML_BOTTOM = auto() + 28 ML_NOT = auto() + 29 ML_AND = auto() + 30 ML_OR = auto() + 31 ML_IMPLIES = auto() + 32 ML_IFF = auto() + 33 ML_EXISTS = auto() + 34 ML_FORALL = auto() + 35 ML_MU = auto() + 36 ML_NU = auto() + 37 ML_CEIL = auto() + 38 ML_FLOOR = auto() + 39 ML_EQUALS = auto() + 40 ML_IN = auto() + 41 ML_NEXT = auto() + 42 ML_REWRITES = auto() + 43 ML_DV = auto() + 44 ML_LEFT_ASSOC = auto() + 45 ML_RIGHT_ASSOC = auto() + 46 KW_MODULE = auto() + 47 KW_ENDMODULE = auto() + 48 KW_IMPORT = auto() + 49 KW_SORT = auto() + 50 KW_HOOKED_SORT = auto() + 51 KW_SYMBOL = auto() + 52 KW_HOOKED_SYMBOL = auto() + 53 KW_AXIOM = auto() + 54 KW_CLAIM = auto() + 55 KW_ALIAS = auto() + 56 KW_WHERE = auto()
+ + 57 + 58 +
+[docs] + 59class KoreToken(NamedTuple): + 60 text: str + 61 type: TokenType
+ + 62 + 63 + 64_EOF_TOKEN: Final = KoreToken('', TokenType.EOF) + 65_COLON_TOKEN: Final = KoreToken(':', TokenType.COLON) + 66_WALRUS_TOKEN: Final = KoreToken(':=', TokenType.WALRUS) + 67 + 68_ML_SYMBOLS: Final = { + 69 r'\top': KoreToken(r'\top', TokenType.ML_TOP), + 70 r'\bottom': KoreToken(r'\bottom', TokenType.ML_BOTTOM), + 71 r'\not': KoreToken(r'\not', TokenType.ML_NOT), + 72 r'\and': KoreToken(r'\and', TokenType.ML_AND), + 73 r'\or': KoreToken(r'\or', TokenType.ML_OR), + 74 r'\implies': KoreToken(r'\implies', TokenType.ML_IMPLIES), + 75 r'\iff': KoreToken(r'\iff', TokenType.ML_IFF), + 76 r'\exists': KoreToken(r'\exists', TokenType.ML_EXISTS), + 77 r'\forall': KoreToken(r'\forall', TokenType.ML_FORALL), + 78 r'\mu': KoreToken(r'\mu', TokenType.ML_MU), + 79 r'\nu': KoreToken(r'\nu', TokenType.ML_NU), + 80 r'\ceil': KoreToken(r'\ceil', TokenType.ML_CEIL), + 81 r'\floor': KoreToken(r'\floor', TokenType.ML_FLOOR), + 82 r'\equals': KoreToken(r'\equals', TokenType.ML_EQUALS), + 83 r'\in': KoreToken(r'\in', TokenType.ML_IN), + 84 r'\next': KoreToken(r'\next', TokenType.ML_NEXT), + 85 r'\rewrites': KoreToken(r'\rewrites', TokenType.ML_REWRITES), + 86 r'\dv': KoreToken(r'\dv', TokenType.ML_DV), + 87 r'\left-assoc': KoreToken(r'\left-assoc', TokenType.ML_LEFT_ASSOC), + 88 r'\right-assoc': KoreToken(r'\right-assoc', TokenType.ML_RIGHT_ASSOC), + 89} + 90 + 91_KEYWORDS: Final = { + 92 'module': KoreToken('module', TokenType.KW_MODULE), + 93 'endmodule': KoreToken('endmodule', TokenType.KW_ENDMODULE), + 94 'import': KoreToken('import', TokenType.KW_IMPORT), + 95 'sort': KoreToken('sort', TokenType.KW_SORT), + 96 'hooked-sort': KoreToken('hooked-sort', TokenType.KW_HOOKED_SORT), + 97 'symbol': KoreToken('symbol', TokenType.KW_SYMBOL), + 98 'hooked-symbol': KoreToken('hooked-symbol', TokenType.KW_HOOKED_SYMBOL), + 99 'axiom': KoreToken('axiom', TokenType.KW_AXIOM), +100 'claim': KoreToken('claim', TokenType.KW_CLAIM), +101 'alias': KoreToken('alias', TokenType.KW_ALIAS), +102 'where': KoreToken('where', TokenType.KW_WHERE), +103} +104 +105_SIMPLE_CHARS: Final = { +106 ',': KoreToken(',', TokenType.COMMA), +107 '(': KoreToken('(', TokenType.LPAREN), +108 ')': KoreToken(')', TokenType.RPAREN), +109 '{': KoreToken('{', TokenType.LBRACE), +110 '}': KoreToken('}', TokenType.RBRACE), +111 '[': KoreToken('[', TokenType.LBRACK), +112 ']': KoreToken(']', TokenType.RBRACK), +113} +114 +115_WHITESPACE_CHARS: Final = {' ', '\t', '\n', '\r'} +116_ID_FIRST_CHARS: Final = set('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ') +117_ID_CHARS: Final = set("01234567890'-").union(_ID_FIRST_CHARS) +118 +119 +120def _whitespace(la: str, it: Iterator[str]) -> tuple[str, None]: +121 la = next(it, '') +122 while la in _WHITESPACE_CHARS: +123 la = next(it, '') +124 return la, None +125 +126 +127def _comment(la: str, it: Iterator[str]) -> tuple[str, None]: +128 # line comment +129 la = next(it, '') +130 if la == '/': +131 while la and la != '\n': +132 la = next(it, '') +133 if la: +134 la = next(it, '') +135 +136 # block comment +137 elif la == '*': +138 la = next(it) +139 while True: +140 while la != '*': +141 la = next(it) +142 la = next(it) +143 if la == '/': +144 la = next(it, '') +145 break +146 +147 # mismatch +148 else: +149 raise ValueError(f'Expected / or *, got: {la}') +150 +151 return la, None +152 +153 +154def _simple_char(la: str, it: Iterator[str]) -> tuple[str, KoreToken]: +155 return next(it, ''), _SIMPLE_CHARS[la] +156 +157 +158def _colon_or_walrus(la: str, it: Iterator[str]) -> tuple[str, KoreToken]: +159 la = next(it, '') +160 if la == '=': +161 token = _WALRUS_TOKEN +162 la = next(it, '') +163 else: +164 token = _COLON_TOKEN +165 return la, token +166 +167 +168def _id_or_keyword(la: str, it: Iterator[str]) -> tuple[str, KoreToken]: +169 buf = [la] +170 la = next(it, '') +171 while la in _ID_CHARS: +172 buf.append(la) +173 la = next(it, '') +174 name = ''.join(buf) +175 if name in _KEYWORDS: +176 token = _KEYWORDS[name] +177 else: +178 token = KoreToken(name, TokenType.ID) +179 return la, token +180 +181 +182def _symbol_or_ml_conn(la: str, it: Iterator[str]) -> tuple[str, KoreToken]: +183 buf = [la] +184 la = next(it) +185 if la not in _ID_FIRST_CHARS: +186 raise ValueError(f'Expected letter, got: {la}') +187 buf.append(la) +188 la = next(it, '') +189 while la in _ID_CHARS: +190 buf.append(la) +191 la = next(it, '') +192 symbol = ''.join(buf) +193 if symbol in _ML_SYMBOLS: +194 token = _ML_SYMBOLS[symbol] +195 else: +196 token = KoreToken(symbol, TokenType.SYMBOL_ID) +197 return la, token +198 +199 +200def _set_var_id(la: str, it: Iterator[str]) -> tuple[str, KoreToken]: +201 buf = [la] +202 la = next(it) +203 if la not in _ID_FIRST_CHARS: +204 raise ValueError(f'Expected letter, got: {la}') +205 buf.append(la) +206 la = next(it, '') +207 while la in _ID_CHARS: +208 buf.append(la) +209 la = next(it, '') +210 return la, KoreToken(''.join(buf), TokenType.SET_VAR_ID) +211 +212 +213def _string(la: str, it: Iterator[str]) -> tuple[str, KoreToken]: +214 buf = [la] +215 la = next(it) +216 while la != '"': +217 if la == '\\': +218 buf.append(la) +219 la = next(it) +220 buf.append(la) +221 la = next(it) +222 buf.append(la) +223 return next(it, ''), KoreToken(''.join(buf), TokenType.STRING) +224 +225 +226_DISPATCH_TABLE: Final[Mapping[str, Callable[[str, Iterator[str]], tuple[str, KoreToken | None]]]] = { +227 '/': _comment, +228 ':': _colon_or_walrus, +229 '"': _string, +230 '@': _set_var_id, +231 '\\': _symbol_or_ml_conn, +232 **{c: _whitespace for c in _WHITESPACE_CHARS}, +233 **{c: _id_or_keyword for c in _ID_FIRST_CHARS}, +234 **{c: _simple_char for c in _SIMPLE_CHARS}, +235} +236 +237 +
+[docs] +238def kore_lexer(it: Iterable[str]) -> Iterator[KoreToken]: +239 it = iter(it) +240 la = next(it, '') +241 while True: +242 if not la: +243 yield _EOF_TOKEN +244 return +245 +246 try: +247 next_state = _DISPATCH_TABLE[la] +248 except KeyError as err: +249 raise ValueError(f'Unexpected character: {la}') from err +250 +251 try: +252 la, token = next_state(la, it) +253 if token: +254 yield token +255 except StopIteration as err: +256 raise ValueError('Unexpected end of file') from err
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/manip.html b/pyk/_modules/pyk/kore/manip.html new file mode 100644 index 00000000000..3ec284cd64b --- /dev/null +++ b/pyk/_modules/pyk/kore/manip.html @@ -0,0 +1,155 @@ + + + + + + pyk.kore.manip — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.manip

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from .syntax import And, Assoc, EVar, MLQuant, Top
+ 6
+ 7if TYPE_CHECKING:
+ 8    from collections.abc import Collection
+ 9
+10    from .syntax import Pattern
+11
+12
+
+[docs] +13def conjuncts(pattern: Pattern) -> tuple[Pattern, ...]: +14 if isinstance(pattern, Top): +15 return () +16 if isinstance(pattern, And): +17 return tuple(conjunct for op in pattern.ops for conjunct in conjuncts(op)) +18 return (pattern,)
+ +19 +20 +
+[docs] +21def free_occs(pattern: Pattern, *, bound_vars: Collection[str] = ()) -> dict[str, list[EVar]]: +22 occurrences: dict[str, list[EVar]] = {} +23 +24 def collect(pattern: Pattern, bound_vars: set[str]) -> None: +25 if type(pattern) is EVar and pattern.name not in bound_vars: +26 if pattern.name in occurrences: +27 occurrences[pattern.name].append(pattern) +28 else: +29 occurrences[pattern.name] = [pattern] +30 +31 elif isinstance(pattern, Assoc): +32 collect(pattern.app, bound_vars) +33 +34 elif isinstance(pattern, MLQuant): +35 new_bound_vars = {pattern.var.name}.union(bound_vars) +36 collect(pattern.pattern, new_bound_vars) +37 +38 else: +39 for sub_pattern in pattern.patterns: +40 collect(sub_pattern, bound_vars) +41 +42 collect(pattern, set(bound_vars)) +43 return occurrences
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/match.html b/pyk/_modules/pyk/kore/match.html new file mode 100644 index 00000000000..7378ae86448 --- /dev/null +++ b/pyk/_modules/pyk/kore/match.html @@ -0,0 +1,439 @@ + + + + + + pyk.kore.match — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.match

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING, overload
+  4
+  5from ..dequote import bytes_encode
+  6from ..utils import case, check_type
+  7from .prelude import BOOL, BYTES, ID, INT, STRING
+  8from .syntax import DV, App, LeftAssoc
+  9
+ 10if TYPE_CHECKING:
+ 11    from collections.abc import Callable
+ 12    from typing import Any, TypeVar
+ 13
+ 14    from .syntax import Pattern, Sort
+ 15
+ 16    T = TypeVar('T')
+ 17    K = TypeVar('K')
+ 18    V = TypeVar('V')
+ 19
+ 20
+
+[docs] + 21def match_dv(pattern: Pattern, sort: Sort | None = None) -> DV: + 22 dv = check_type(pattern, DV) + 23 if sort and dv.sort != sort: + 24 raise ValueError(f'Expected sort {sort.text}, found: {dv.sort.text}') + 25 return dv
+ + 26 + 27 +
+[docs] + 28def match_symbol(app: App, symbol: str) -> None: + 29 if app.symbol != symbol: + 30 raise ValueError(f'Expected symbol {symbol}, found: {app.symbol}')
+ + 31 + 32 +
+[docs] + 33def match_app(pattern: Pattern, symbol: str | None = None) -> App: + 34 app = check_type(pattern, App) + 35 if symbol is not None: + 36 match_symbol(app, symbol) + 37 return app
+ + 38 + 39 +
+[docs] + 40def match_inj(pattern: Pattern) -> App: + 41 return match_app(pattern, 'inj')
+ + 42 + 43 +
+[docs] + 44def match_left_assoc(pattern: Pattern) -> LeftAssoc: + 45 return check_type(pattern, LeftAssoc)
+ + 46 + 47 +
+[docs] + 48def match_list(pattern: Pattern) -> tuple[Pattern, ...]: + 49 if type(pattern) is App: + 50 match_app(pattern, "Lbl'Stop'List") + 51 return () + 52 + 53 assoc = match_left_assoc(pattern) + 54 cons = match_app(assoc.app, "Lbl'Unds'List'Unds'") + 55 items = (match_app(arg, 'LblListItem') for arg in cons.args) + 56 elems = (item.args[0] for item in items) + 57 return tuple(elems)
+ + 58 + 59 +
+[docs] + 60def match_set(pattern: Pattern) -> tuple[Pattern, ...]: + 61 if type(pattern) is App: + 62 match_app(pattern, "Lbl'Stop'Set") + 63 return () + 64 + 65 assoc = match_left_assoc(pattern) + 66 cons = match_app(assoc.app, "Lbl'Unds'Set'Unds'") + 67 items = (match_app(arg, 'LblSetItem') for arg in cons.args) + 68 elems = (item.args[0] for item in items) + 69 return tuple(elems)
+ + 70 + 71 +
+[docs] + 72def match_map(pattern: Pattern, *, cell: str | None = None) -> tuple[tuple[Pattern, Pattern], ...]: + 73 cell = cell or '' + 74 stop_symbol = f"Lbl'Stop'{cell}Map" + 75 cons_symbol = f"Lbl'Unds'{cell}Map'Unds'" + 76 item_symbol = "Lbl'UndsPipe'-'-GT-Unds'" if not cell else f'Lbl{cell}MapItem' + 77 + 78 if type(pattern) is App: + 79 match_app(pattern, stop_symbol) + 80 return () + 81 + 82 assoc = match_left_assoc(pattern) + 83 cons = match_app(assoc.app, cons_symbol) + 84 items = (match_app(arg, item_symbol) for arg in cons.args) + 85 entries = ((item.args[0], item.args[1]) for item in items) + 86 return tuple(entries)
+ + 87 + 88 +
+[docs] + 89def kore_bool(pattern: Pattern) -> bool: + 90 dv = match_dv(pattern, BOOL) + 91 match dv.value.value: + 92 case 'true': + 93 return True + 94 case 'false': + 95 return False + 96 case _: + 97 raise ValueError(f'Invalid Boolean domain value: {dv.text}')
+ + 98 + 99 +
+[docs] +100def kore_int(pattern: Pattern) -> int: +101 dv = match_dv(pattern, INT) +102 return int(dv.value.value)
+ +103 +104 +
+[docs] +105def kore_bytes(pattern: Pattern) -> bytes: +106 dv = match_dv(pattern, BYTES) +107 return bytes_encode(dv.value.value)
+ +108 +109 +
+[docs] +110def kore_str(pattern: Pattern) -> str: +111 dv = match_dv(pattern, STRING) +112 return dv.value.value
+ +113 +114 +
+[docs] +115def kore_id(pattern: Pattern) -> str: +116 dv = match_dv(pattern, ID) +117 return dv.value.value
+ +118 +119 +120# Higher-order functions +121 +122 +
+[docs] +123def app(symbol: str | None = None) -> Callable[[Pattern], App]: +124 def res(pattern: Pattern) -> App: +125 return match_app(pattern, symbol) +126 +127 return res
+ +128 +129 +130@overload +131def arg(n: int, /) -> Callable[[App], Pattern]: ... +132 +133 +134@overload +135def arg(symbol: str, /) -> Callable[[App], App]: ... +136 +137 +
+[docs] +138def arg(id: int | str) -> Callable[[App], Pattern | App]: +139 def res(app: App) -> Pattern | App: +140 if type(id) is int: +141 if len(app.args) <= id: +142 raise ValueError('Argument index is out of range') +143 +144 return app.args[id] +145 +146 try: +147 arg, *_ = (arg for arg in app.args if type(arg) is App and arg.symbol == id) +148 except ValueError: +149 raise ValueError(f'No matching argument found for symbol: {id}') from None +150 return arg +151 +152 return res
+ +153 +154 +155@overload +156def args() -> Callable[[App], tuple[()]]: ... +157 +158 +159@overload +160def args(n1: int, /) -> Callable[[App], tuple[Pattern]]: ... +161 +162 +163@overload +164def args(n1: int, n2: int, /) -> Callable[[App], tuple[Pattern, Pattern]]: ... +165 +166 +167@overload +168def args(n1: int, n2: int, n3: int, /) -> Callable[[App], tuple[Pattern, Pattern, Pattern]]: ... +169 +170 +171@overload +172def args(n1: int, n2: int, n3: int, n4: int, /) -> Callable[[App], tuple[Pattern, Pattern, Pattern, Pattern]]: ... +173 +174 +175@overload +176def args(*ns: int) -> Callable[[App], tuple[Pattern, ...]]: ... +177 +178 +179@overload +180def args(s1: str, /) -> Callable[[App], tuple[App]]: ... +181 +182 +183@overload +184def args(s1: str, s2: str, /) -> Callable[[App], tuple[App, App]]: ... +185 +186 +187@overload +188def args(s1: str, s2: str, s3: str, /) -> Callable[[App], tuple[App, App, App]]: ... +189 +190 +191@overload +192def args(s1: str, s2: str, s3: str, s4: str, /) -> Callable[[App], tuple[App, App, App, App]]: ... +193 +194 +195@overload +196def args(*ss: str) -> Callable[[App], tuple[App, ...]]: ... +197 +198 +
+[docs] +199def args(*ids: Any) -> Callable[[App], tuple]: +200 def res(app: App) -> tuple[Pattern, ...]: +201 if not ids: +202 return () +203 +204 fst = ids[0] +205 if type(fst) is int: +206 return tuple(arg(n)(app) for n in ids) +207 +208 symbol_match: dict[str, App] = {} +209 symbols = set(ids) +210 +211 for _arg in app.args: +212 if type(_arg) is App and _arg.symbol in symbols and _arg.symbol not in symbol_match: +213 symbol_match[_arg.symbol] = _arg +214 +215 if len(symbol_match) == len(symbols): +216 return tuple(symbol_match[symbol] for symbol in ids) +217 +218 unmatched_symbols = symbols - set(symbol_match) +219 assert unmatched_symbols +220 unmatched_symbol_str = ', '.join(unmatched_symbols) +221 raise ValueError(f'No matching arguments found for symbols: {unmatched_symbol_str}') +222 +223 return res
+ +224 +225 +
+[docs] +226def inj(pattern: Pattern) -> Pattern: +227 return arg(0)(app('inj')(pattern))
+ +228 +229 +
+[docs] +230def kore_list_of(item: Callable[[Pattern], T]) -> Callable[[Pattern], tuple[T, ...]]: +231 def res(pattern: Pattern) -> tuple[T, ...]: +232 return tuple(item(e) for e in match_list(pattern)) +233 +234 return res
+ +235 +236 +
+[docs] +237def kore_set_of(item: Callable[[Pattern], T]) -> Callable[[Pattern], tuple[T, ...]]: +238 def res(pattern: Pattern) -> tuple[T, ...]: +239 return tuple(item(e) for e in match_set(pattern)) +240 +241 return res
+ +242 +243 +
+[docs] +244def kore_map_of( +245 key: Callable[[Pattern], K], +246 value: Callable[[Pattern], V], +247 *, +248 cell: str | None = None, +249) -> Callable[[Pattern], tuple[tuple[K, V], ...]]: +250 def res(pattern: Pattern) -> tuple[tuple[K, V], ...]: +251 return tuple((key(k), value(v)) for k, v in match_map(pattern, cell=cell)) +252 +253 return res
+ +254 +255 +
+[docs] +256def case_symbol( +257 *cases: tuple[str, Callable[[App], T]], +258 default: Callable[[App], T] | None = None, +259) -> Callable[[Pattern], T]: +260 def cond(symbol: str) -> Callable[[App], bool]: +261 return lambda app: app.symbol == symbol +262 +263 def res(pattern: Pattern) -> T: +264 app = match_app(pattern) +265 return case( +266 cases=((cond(symbol), then) for symbol, then in cases), +267 default=default, +268 )(app) +269 +270 return res
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/parser.html b/pyk/_modules/pyk/kore/parser.html new file mode 100644 index 00000000000..520d7aa95e4 --- /dev/null +++ b/pyk/_modules/pyk/kore/parser.html @@ -0,0 +1,785 @@ + + + + + + pyk.kore.parser — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.parser

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from ..dequote import dequote_string
+  6from .lexer import TokenType, kore_lexer
+  7from .syntax import (
+  8    DV,
+  9    AliasDecl,
+ 10    And,
+ 11    App,
+ 12    Axiom,
+ 13    Bottom,
+ 14    Ceil,
+ 15    Claim,
+ 16    Definition,
+ 17    Equals,
+ 18    EVar,
+ 19    Exists,
+ 20    Floor,
+ 21    Forall,
+ 22    Iff,
+ 23    Implies,
+ 24    Import,
+ 25    In,
+ 26    LeftAssoc,
+ 27    Module,
+ 28    Mu,
+ 29    Next,
+ 30    Not,
+ 31    Nu,
+ 32    Or,
+ 33    Rewrites,
+ 34    RightAssoc,
+ 35    SortApp,
+ 36    SortDecl,
+ 37    SortVar,
+ 38    String,
+ 39    SVar,
+ 40    Symbol,
+ 41    SymbolDecl,
+ 42    Top,
+ 43)
+ 44
+ 45if TYPE_CHECKING:
+ 46    from collections.abc import Callable, Iterator
+ 47    from typing import Final, TypeVar, Union
+ 48
+ 49    from .lexer import KoreToken
+ 50    from .syntax import (
+ 51        Assoc,
+ 52        BinaryConn,
+ 53        BinaryPred,
+ 54        MLFixpoint,
+ 55        MLPattern,
+ 56        MLQuant,
+ 57        MultiaryConn,
+ 58        NullaryConn,
+ 59        Pattern,
+ 60        RoundPred,
+ 61        Sentence,
+ 62        Sort,
+ 63        UnaryConn,
+ 64        VarPattern,
+ 65    )
+ 66
+ 67    NC = TypeVar('NC', bound=NullaryConn)
+ 68    UC = TypeVar('UC', bound=Union[UnaryConn, Next])
+ 69    BC = TypeVar('BC', bound=Union[BinaryConn, Rewrites])
+ 70    MC = TypeVar('MC', bound=MultiaryConn)
+ 71    QF = TypeVar('QF', bound=MLQuant)
+ 72    FP = TypeVar('FP', bound=MLFixpoint)
+ 73    RP = TypeVar('RP', bound=RoundPred)
+ 74    BP = TypeVar('BP', bound=BinaryPred)
+ 75    AS = TypeVar('AS', bound=Assoc)
+ 76
+ 77    T = TypeVar('T')
+ 78
+ 79
+
+[docs] + 80class KoreParser: + 81 _ML_SYMBOLS: Final = { + 82 TokenType.ML_TOP: 'top', + 83 TokenType.ML_BOTTOM: 'bottom', + 84 TokenType.ML_NOT: 'nott', + 85 TokenType.ML_AND: 'andd', + 86 TokenType.ML_OR: 'orr', + 87 TokenType.ML_IMPLIES: 'implies', + 88 TokenType.ML_IFF: 'iff', + 89 TokenType.ML_EXISTS: 'exists', + 90 TokenType.ML_FORALL: 'forall', + 91 TokenType.ML_MU: 'mu', + 92 TokenType.ML_NU: 'nu', + 93 TokenType.ML_CEIL: 'ceil', + 94 TokenType.ML_FLOOR: 'floor', + 95 TokenType.ML_EQUALS: 'equals', + 96 TokenType.ML_IN: 'inn', + 97 TokenType.ML_NEXT: 'next', + 98 TokenType.ML_REWRITES: 'rewrites', + 99 TokenType.ML_DV: 'dv', +100 TokenType.ML_LEFT_ASSOC: 'left_assoc', +101 TokenType.ML_RIGHT_ASSOC: 'right_assoc', +102 } +103 +104 _SENTENCE_KWS: Final = { +105 TokenType.KW_IMPORT: 'importt', +106 TokenType.KW_SORT: 'sort_decl', +107 TokenType.KW_HOOKED_SORT: 'hooked_sort_decl', +108 TokenType.KW_SYMBOL: 'symbol_decl', +109 TokenType.KW_HOOKED_SYMBOL: 'hooked_symbol_decl', +110 TokenType.KW_ALIAS: 'alias_decl', +111 TokenType.KW_AXIOM: 'axiom', +112 TokenType.KW_CLAIM: 'claim', +113 } +114 +115 _iter: Iterator[KoreToken] +116 _la: KoreToken +117 +118 def __init__(self, text: str): +119 self._iter = kore_lexer(text) +120 self._la = next(self._iter) +121 +122 @property +123 def eof(self) -> bool: +124 return self._la.type == TokenType.EOF +125 +126 def _consume(self) -> str: +127 text = self._la.text +128 self._la = next(self._iter) +129 return text +130 +131 def _match(self, token_type: TokenType) -> str: +132 if self._la.type != token_type: +133 raise ValueError(f'Expected {token_type.name}, found: {self._la.type.name}') +134 +135 return self._consume() +136 +137 def _delimited_list_of( +138 self, +139 parse: Callable[[], T], +140 ldelim: TokenType, +141 rdelim: TokenType, +142 sep: TokenType = TokenType.COMMA, +143 ) -> list[T]: +144 res: list[T] = [] +145 +146 self._match(ldelim) +147 while self._la.type != rdelim: +148 res.append(parse()) +149 if self._la.type != sep: +150 break +151 self._consume() +152 self._consume() +153 +154 return res +155 +
+[docs] +156 def id(self) -> str: +157 return self._match(TokenType.ID)
+ +158 +
+[docs] +159 def symbol_id(self) -> str: +160 if self._la.type == TokenType.SYMBOL_ID: +161 return self._consume() +162 +163 return self._match(TokenType.ID)
+ +164 +
+[docs] +165 def set_var_id(self) -> str: +166 return self._match(TokenType.SET_VAR_ID)
+ +167 +
+[docs] +168 def sort(self) -> Sort: +169 name = self.id() +170 +171 if self._la.type == TokenType.LBRACE: +172 sorts = self._sort_list() +173 return SortApp(name, sorts) +174 +175 return SortVar(name)
+ +176 +177 def _sort_list(self) -> list[Sort]: +178 return self._delimited_list_of(self.sort, TokenType.LBRACE, TokenType.RBRACE) +179 +
+[docs] +180 def sort_var(self) -> SortVar: +181 name = self._match(TokenType.ID) +182 return SortVar(name)
+ +183 +
+[docs] +184 def sort_app(self) -> SortApp: +185 name = self._match(TokenType.ID) +186 sorts = self._sort_list() +187 return SortApp(name, sorts)
+ +188 +
+[docs] +189 def pattern(self) -> Pattern: +190 if self._la.type == TokenType.STRING: +191 return self.string() +192 +193 if self._la.type in self._ML_SYMBOLS: +194 return self.ml_pattern() +195 +196 if self._la.type == TokenType.SYMBOL_ID: +197 return self.app() +198 +199 if self._la.type == TokenType.SET_VAR_ID: +200 return self.set_var() +201 +202 name = self._match(TokenType.ID) +203 if self._la.type == TokenType.COLON: +204 self._consume() +205 sort = self.sort() +206 return EVar(name, sort) +207 +208 sorts = self._sort_list() +209 patterns = self._pattern_list() +210 return App(name, sorts, patterns)
+ +211 +212 def _pattern_list(self) -> list[Pattern]: +213 return self._delimited_list_of(self.pattern, TokenType.LPAREN, TokenType.RPAREN) +214 +
+[docs] +215 def string(self) -> String: +216 value = self._match(TokenType.STRING) +217 return String(dequote_string(value[1:-1]))
+ +218 +
+[docs] +219 def app(self) -> App: +220 symbol = self.symbol_id() +221 sorts = self._sort_list() +222 patterns = self._pattern_list() +223 return App(symbol, sorts, patterns)
+ +224 +
+[docs] +225 def var_pattern(self) -> VarPattern: +226 if self._la.type == TokenType.SET_VAR_ID: +227 return self.set_var() +228 +229 return self.elem_var()
+ +230 +
+[docs] +231 def set_var(self) -> SVar: +232 name = self._match(TokenType.SET_VAR_ID) +233 self._match(TokenType.COLON) +234 sort = self.sort() +235 return SVar(name, sort)
+ +236 +
+[docs] +237 def elem_var(self) -> EVar: +238 name = self._match(TokenType.ID) +239 self._match(TokenType.COLON) +240 sort = self.sort() +241 return EVar(name, sort)
+ +242 +
+[docs] +243 def ml_pattern(self) -> MLPattern: +244 token_type = self._la.type +245 if token_type not in self._ML_SYMBOLS: +246 raise ValueError(f'Exected matching logic symbol, found: {self._la.text}') +247 parse = getattr(self, self._ML_SYMBOLS[token_type]) +248 return parse()
+ +249 +250 def _nullary(self, token_type: TokenType, cls: type[NC]) -> NC: +251 self._match(token_type) +252 self._match(TokenType.LBRACE) +253 sort = self.sort() +254 self._match(TokenType.RBRACE) +255 self._match(TokenType.LPAREN) +256 self._match(TokenType.RPAREN) +257 # TODO Implement NullaryConn.create(symbol, sort) instead +258 # TODO Consider MLConn.create(symbol, sort, patterns) as well +259 return cls(sort) # type: ignore +260 +
+[docs] +261 def top(self) -> Top: +262 return self._nullary(TokenType.ML_TOP, Top)
+ +263 +
+[docs] +264 def bottom(self) -> Bottom: +265 return self._nullary(TokenType.ML_BOTTOM, Bottom)
+ +266 +267 def _unary(self, token_type: TokenType, cls: type[UC]) -> UC: +268 self._match(token_type) +269 self._match(TokenType.LBRACE) +270 sort = self.sort() +271 self._match(TokenType.RBRACE) +272 self._match(TokenType.LPAREN) +273 pattern = self.pattern() +274 self._match(TokenType.RPAREN) +275 return cls(sort, pattern) # type: ignore +276 +
+[docs] +277 def nott(self) -> Not: +278 return self._unary(TokenType.ML_NOT, Not)
+ +279 +280 def _binary(self, token_type: TokenType, cls: type[BC]) -> BC: +281 self._match(token_type) +282 self._match(TokenType.LBRACE) +283 sort = self.sort() +284 self._match(TokenType.RBRACE) +285 self._match(TokenType.LPAREN) +286 left = self.pattern() +287 self._match(TokenType.COMMA) +288 right = self.pattern() +289 self._match(TokenType.RPAREN) +290 return cls(sort, left, right) # type: ignore +291 +
+[docs] +292 def implies(self) -> Implies: +293 return self._binary(TokenType.ML_IMPLIES, Implies)
+ +294 +
+[docs] +295 def iff(self) -> Iff: +296 return self._binary(TokenType.ML_IFF, Iff)
+ +297 +298 def _multiary(self, token_type: TokenType, cls: type[MC]) -> MC: +299 self._match(token_type) +300 self._match(TokenType.LBRACE) +301 sort = self.sort() +302 self._match(TokenType.RBRACE) +303 ops = self._delimited_list_of(self.pattern, TokenType.LPAREN, TokenType.RPAREN) +304 return cls(sort, ops) # type: ignore +305 +
+[docs] +306 def andd(self) -> And: +307 return self._multiary(TokenType.ML_AND, And)
+ +308 +
+[docs] +309 def orr(self) -> Or: +310 return self._multiary(TokenType.ML_OR, Or)
+ +311 +312 def _quantifier(self, token_type: TokenType, cls: type[QF]) -> QF: +313 self._match(token_type) +314 self._match(TokenType.LBRACE) +315 sort = self.sort() +316 self._match(TokenType.RBRACE) +317 self._match(TokenType.LPAREN) +318 var = self.elem_var() +319 self._match(TokenType.COMMA) +320 pattern = self.pattern() +321 self._match(TokenType.RPAREN) +322 return cls(sort, var, pattern) # type: ignore +323 +
+[docs] +324 def exists(self) -> Exists: +325 return self._quantifier(TokenType.ML_EXISTS, Exists)
+ +326 +
+[docs] +327 def forall(self) -> Forall: +328 return self._quantifier(TokenType.ML_FORALL, Forall)
+ +329 +330 def _fixpoint(self, token_type: TokenType, cls: type[FP]) -> FP: +331 self._match(token_type) +332 self._match(TokenType.LBRACE) +333 self._match(TokenType.RBRACE) +334 self._match(TokenType.LPAREN) +335 var = self.set_var() +336 self._match(TokenType.COMMA) +337 pattern = self.pattern() +338 self._match(TokenType.RPAREN) +339 return cls(var, pattern) # type: ignore +340 +
+[docs] +341 def mu(self) -> Mu: +342 return self._fixpoint(TokenType.ML_MU, Mu)
+ +343 +
+[docs] +344 def nu(self) -> Nu: +345 return self._fixpoint(TokenType.ML_NU, Nu)
+ +346 +347 def _round_pred(self, token_type: TokenType, cls: type[RP]) -> RP: +348 self._match(token_type) +349 self._match(TokenType.LBRACE) +350 op_sort = self.sort() +351 self._match(TokenType.COMMA) +352 sort = self.sort() +353 self._match(TokenType.RBRACE) +354 self._match(TokenType.LPAREN) +355 pattern = self.pattern() +356 self._match(TokenType.RPAREN) +357 return cls(op_sort, sort, pattern) # type: ignore +358 +
+[docs] +359 def ceil(self) -> Ceil: +360 return self._round_pred(TokenType.ML_CEIL, Ceil)
+ +361 +
+[docs] +362 def floor(self) -> Floor: +363 return self._round_pred(TokenType.ML_FLOOR, Floor)
+ +364 +365 def _binary_pred(self, token_type: TokenType, cls: type[BP]) -> BP: +366 self._match(token_type) +367 self._match(TokenType.LBRACE) +368 left_sort = self.sort() +369 self._match(TokenType.COMMA) +370 right_sort = self.sort() +371 self._match(TokenType.RBRACE) +372 self._match(TokenType.LPAREN) +373 left = self.pattern() +374 self._match(TokenType.COMMA) +375 right = self.pattern() +376 self._match(TokenType.RPAREN) +377 return cls(left_sort, right_sort, left, right) # type: ignore +378 +
+[docs] +379 def equals(self) -> Equals: +380 return self._binary_pred(TokenType.ML_EQUALS, Equals)
+ +381 +
+[docs] +382 def inn(self) -> In: +383 return self._binary_pred(TokenType.ML_IN, In)
+ +384 +
+[docs] +385 def next(self) -> Next: +386 return self._unary(TokenType.ML_NEXT, Next)
+ +387 +
+[docs] +388 def rewrites(self) -> Rewrites: +389 return self._binary(TokenType.ML_REWRITES, Rewrites)
+ +390 +
+[docs] +391 def dv(self) -> DV: +392 self._match(TokenType.ML_DV) +393 self._match(TokenType.LBRACE) +394 sort = self.sort() +395 self._match(TokenType.RBRACE) +396 self._match(TokenType.LPAREN) +397 value = self.string() +398 self._match(TokenType.RPAREN) +399 return DV(sort, value)
+ +400 +401 def _assoc(self, token_type: TokenType, cls: type[AS]) -> AS: +402 self._match(token_type) +403 self._match(TokenType.LBRACE) +404 self._match(TokenType.RBRACE) +405 self._match(TokenType.LPAREN) +406 app = self.app() +407 self._match(TokenType.RPAREN) +408 return cls(app) # type: ignore +409 +
+[docs] +410 def left_assoc(self) -> LeftAssoc: +411 return self._assoc(TokenType.ML_LEFT_ASSOC, LeftAssoc)
+ +412 +
+[docs] +413 def right_assoc(self) -> RightAssoc: +414 return self._assoc(TokenType.ML_RIGHT_ASSOC, RightAssoc)
+ +415 +416 def _attr_list(self) -> list[App]: +417 return self._delimited_list_of(self.app, TokenType.LBRACK, TokenType.RBRACK) +418 +
+[docs] +419 def sentence(self) -> Sentence: +420 token_type = self._la.type +421 +422 if token_type not in self._SENTENCE_KWS: +423 raise ValueError(f'Expected {[kw.name for kw in self._SENTENCE_KWS]}, found: {token_type.name}') +424 +425 parse = getattr(self, self._SENTENCE_KWS[token_type]) +426 return parse()
+ +427 +
+[docs] +428 def importt(self) -> Import: +429 self._match(TokenType.KW_IMPORT) +430 module_name = self.id() +431 attrs = self._attr_list() +432 return Import(module_name, attrs)
+ +433 +
+[docs] +434 def sort_decl(self) -> SortDecl: +435 self._match(TokenType.KW_SORT) +436 name = self.id() +437 vars = self._sort_var_list() +438 attrs = self._attr_list() +439 return SortDecl(name, vars, attrs, hooked=False)
+ +440 +
+[docs] +441 def hooked_sort_decl(self) -> SortDecl: +442 self._match(TokenType.KW_HOOKED_SORT) +443 name = self.id() +444 vars = self._sort_var_list() +445 attrs = self._attr_list() +446 return SortDecl(name, vars, attrs, hooked=True)
+ +447 +448 def _sort_var_list(self) -> list[SortVar]: +449 return self._delimited_list_of(self.sort_var, TokenType.LBRACE, TokenType.RBRACE) +450 +
+[docs] +451 def symbol_decl(self) -> SymbolDecl: +452 self._match(TokenType.KW_SYMBOL) +453 symbol = self.symbol() +454 sort_params = self._sort_param_list() +455 self._match(TokenType.COLON) +456 sort = self.sort() +457 attrs = self._attr_list() +458 return SymbolDecl(symbol, sort_params, sort, attrs, hooked=False)
+ +459 +
+[docs] +460 def hooked_symbol_decl(self) -> SymbolDecl: +461 self._match(TokenType.KW_HOOKED_SYMBOL) +462 symbol = self.symbol() +463 sort_params = self._sort_param_list() +464 self._match(TokenType.COLON) +465 sort = self.sort() +466 attrs = self._attr_list() +467 return SymbolDecl(symbol, sort_params, sort, attrs, hooked=True)
+ +468 +
+[docs] +469 def alias_decl(self) -> AliasDecl: +470 self._match(TokenType.KW_ALIAS) +471 symbol = self.symbol() +472 sort_params = self._sort_param_list() +473 self._match(TokenType.COLON) +474 sort = self.sort() +475 self._match(TokenType.KW_WHERE) +476 left = self.app() +477 self._match(TokenType.WALRUS) +478 right = self.pattern() +479 attrs = self._attr_list() +480 return AliasDecl(symbol, sort_params, sort, left, right, attrs)
+ +481 +482 def _sort_param_list(self) -> list[Sort]: +483 return self._delimited_list_of(self.sort, TokenType.LPAREN, TokenType.RPAREN) +484 +485 # TODO remove once \left-assoc{}(\or{...}(...)) is no longer supported +
+[docs] +486 def multi_or(self) -> list[Pattern]: +487 self._match(TokenType.ML_LEFT_ASSOC) +488 self._match(TokenType.LBRACE) +489 self._match(TokenType.RBRACE) +490 self._match(TokenType.LPAREN) +491 self._match(TokenType.ML_OR) +492 self._match(TokenType.LBRACE) +493 self.sort() +494 self._match(TokenType.RBRACE) +495 patterns = self._pattern_list() +496 self._match(TokenType.RPAREN) +497 return patterns
+ +498 +
+[docs] +499 def symbol(self) -> Symbol: +500 name = self.symbol_id() +501 vars = self._sort_var_list() +502 return Symbol(name, vars)
+ +503 +
+[docs] +504 def axiom(self) -> Axiom: +505 self._match(TokenType.KW_AXIOM) +506 vars = self._sort_var_list() +507 pattern = self.pattern() +508 attrs = self._attr_list() +509 return Axiom(vars, pattern, attrs)
+ +510 +
+[docs] +511 def claim(self) -> Claim: +512 self._match(TokenType.KW_CLAIM) +513 vars = self._sort_var_list() +514 pattern = self.pattern() +515 attrs = self._attr_list() +516 return Claim(vars, pattern, attrs)
+ +517 +
+[docs] +518 def module(self) -> Module: +519 self._match(TokenType.KW_MODULE) +520 name = self.id() +521 +522 sentences: list[Sentence] = [] +523 while self._la.type != TokenType.KW_ENDMODULE: +524 sentences.append(self.sentence()) +525 self._consume() +526 +527 attrs = self._attr_list() +528 +529 return Module(name, sentences, attrs)
+ +530 +
+[docs] +531 def definition(self) -> Definition: +532 attrs = self._attr_list() +533 +534 modules: list[Module] = [] +535 while self._la.type != TokenType.EOF: +536 modules.append(self.module()) +537 +538 return Definition(modules, attrs)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/pool.html b/pyk/_modules/pyk/kore/pool.html new file mode 100644 index 00000000000..c175b2acf9b --- /dev/null +++ b/pyk/_modules/pyk/kore/pool.html @@ -0,0 +1,176 @@ + + + + + + pyk.kore.pool — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.pool

+ 1from __future__ import annotations
+ 2
+ 3from concurrent.futures import ThreadPoolExecutor
+ 4from threading import current_thread
+ 5from typing import TYPE_CHECKING, ContextManager
+ 6
+ 7if TYPE_CHECKING:
+ 8    from collections.abc import Callable
+ 9    from concurrent.futures import Executor, Future
+10    from typing import Any, Concatenate, ParamSpec, TypeVar
+11
+12    from .rpc import KoreServer
+13
+14    P = ParamSpec('P')
+15    T = TypeVar('T')
+16
+17
+
+[docs] +18class KoreServerPool(ContextManager['KoreServerPool']): +19 _create_server: Callable[[], KoreServer] +20 _servers: dict[str, KoreServer] +21 _executor: Executor +22 _closed: bool +23 +24 def __init__( +25 self, +26 create_server: Callable[[], KoreServer], +27 *, +28 max_workers: int | None = None, +29 ) -> None: +30 self._create_server = create_server +31 self._servers = {} +32 self._executor = ThreadPoolExecutor(max_workers) +33 self._closed = False +34 +35 def __enter__(self) -> KoreServerPool: +36 return self +37 +38 def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: +39 self.close() +40 +
+[docs] +41 def close(self) -> None: +42 self._executor.shutdown() +43 for server in self._servers.values(): +44 server.close() +45 self._closed = True
+ +46 +
+[docs] +47 def submit(self, fn: Callable[Concatenate[int, P], T], /, *args: P.args, **kwargs: P.kwargs) -> Future[T]: +48 if self._closed: +49 raise ValueError('KoreServerPool has been closed') +50 return self._executor.submit(self._with_port(fn), *args, **kwargs)
+ +51 +52 def _with_port(self, fn: Callable[Concatenate[int, P], T]) -> Callable[P, T]: +53 def execute(*args: P.args, **kwargs: P.kwargs) -> T: +54 thread_name = current_thread().name +55 server = self._servers.get(thread_name) +56 if server is None: +57 server = self._servers.setdefault(thread_name, self._create_server()) +58 server_port = server.port +59 return fn(server_port, *args, **kwargs) +60 +61 return execute
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/prelude.html b/pyk/_modules/pyk/kore/prelude.html new file mode 100644 index 00000000000..19f90bab310 --- /dev/null +++ b/pyk/_modules/pyk/kore/prelude.html @@ -0,0 +1,594 @@ + + + + + + pyk.kore.prelude — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.prelude

+  1from __future__ import annotations
+  2
+  3from itertools import chain
+  4from typing import TYPE_CHECKING
+  5
+  6from ..dequote import bytes_decode
+  7from ..utils import check_type
+  8from .syntax import DV, App, LeftAssoc, RightAssoc, SortApp, String, SymbolId
+  9
+ 10if TYPE_CHECKING:
+ 11    from collections.abc import Iterable, Iterator, Mapping
+ 12    from typing import Any, Final
+ 13
+ 14    from .syntax import EVar, Pattern, Sort
+ 15
+ 16
+ 17# ----------
+ 18# Base types
+ 19# ----------
+ 20
+ 21BOOL: Final = SortApp('SortBool')
+ 22INT: Final = SortApp('SortInt')
+ 23BYTES: Final = SortApp('SortBytes')
+ 24STRING: Final = SortApp('SortString')
+ 25ID: Final = SortApp('SortId')
+ 26
+ 27TRUE: Final = DV(BOOL, String('true'))
+ 28FALSE: Final = DV(BOOL, String('false'))
+ 29
+ 30
+
+[docs] + 31def dv(val: bool | int | bytes | str) -> DV: + 32 if type(val) is bool: + 33 return bool_dv(val) + 34 if type(val) is int: + 35 return int_dv(val) + 36 if type(val) is bytes: + 37 return bytes_dv(val) + 38 if type(val) is str: + 39 return str_dv(val) + 40 raise TypeError(f'Illegal type: {type(val)}')
+ + 41 + 42 +
+[docs] + 43def bool_dv(val: bool) -> DV: + 44 return TRUE if val else FALSE
+ + 45 + 46 +
+[docs] + 47def int_dv(val: int) -> DV: + 48 return DV(INT, String(str(val)))
+ + 49 + 50 +
+[docs] + 51def bytes_dv(val: bytes) -> DV: + 52 return DV(BYTES, String(bytes_decode(val)))
+ + 53 + 54 +
+[docs] + 55def str_dv(val: str) -> DV: + 56 return DV(STRING, String(val))
+ + 57 + 58 + 59# ------------ + 60# Bool + 61# ------------ + 62 + 63LBL_NOT_BOOL: Final = SymbolId("LblnotBool'Unds'") + 64LBL_AND_BOOL: Final = SymbolId("Lbl'Unds'andBool'Unds'") + 65LBL_OR_BOOL: Final = SymbolId("Lbl'Unds'orBool'Unds'") + 66LBL_IMPLIES_BOOL: Final = SymbolId("Lbl'Unds'impliesBool'Unds'") + 67LBL_XOR_BOOL: Final = SymbolId("Lbl'Unds'xorBool'Unds'") + 68LBL_EQ_BOOL: Final = SymbolId("Lbl'UndsEqlsEqls'Bool'Unds'") + 69LBL_NE_BOOL: Final = SymbolId("Lbl'UndsEqlsSlshEqls'Bool'Unds'") + 70 + 71 +
+[docs] + 72def not_bool(pattern: Pattern) -> Pattern: + 73 return App(LBL_NOT_BOOL, (), (pattern,))
+ + 74 + 75 +
+[docs] + 76def and_bool(left: Pattern, right: Pattern) -> Pattern: + 77 return App(LBL_AND_BOOL, (), (left, right))
+ + 78 + 79 +
+[docs] + 80def or_bool(left: Pattern, right: Pattern) -> Pattern: + 81 return App(LBL_OR_BOOL, (), (left, right))
+ + 82 + 83 +
+[docs] + 84def implies_bool(left: Pattern, right: Pattern) -> Pattern: + 85 return App(LBL_IMPLIES_BOOL, (), (left, right))
+ + 86 + 87 +
+[docs] + 88def xor_bool(left: Pattern, right: Pattern) -> Pattern: + 89 return App(LBL_XOR_BOOL, (), (left, right))
+ + 90 + 91 +
+[docs] + 92def eq_bool(left: Pattern, right: Pattern) -> Pattern: + 93 return App(LBL_EQ_BOOL, (), (left, right))
+ + 94 + 95 +
+[docs] + 96def ne_bool(left: Pattern, right: Pattern) -> Pattern: + 97 return App(LBL_NE_BOOL, (), (left, right))
+ + 98 + 99 +100# ------------ +101# Int +102# ------------ +103 +104LBL_EQ_INT: Final = SymbolId("Lbl'UndsEqlsEqls'Int'Unds'") +105LBL_NE_INT: Final = SymbolId("Lbl'UndsEqlsSlshEqls'Int'Unds'") +106LBL_GT_INT: Final = SymbolId("Lbl'Unds-GT-'Int'Unds'") +107LBL_GE_INT: Final = SymbolId("Lbl'Unds-GT-Eqls'Int'Unds'") +108LBL_LT_INT: Final = SymbolId("Lbl'Unds-LT-'Int'Unds'") +109LBL_LE_INT: Final = SymbolId("Lbl'Unds-LT-Eqls'Int'Unds'") +110 +111 +
+[docs] +112def eq_int(left: Pattern, right: Pattern) -> Pattern: +113 return App(LBL_EQ_INT, (), (left, right))
+ +114 +115 +
+[docs] +116def ne_int(left: Pattern, right: Pattern) -> Pattern: +117 return App(LBL_NE_INT, (), (left, right))
+ +118 +119 +
+[docs] +120def gt_int(left: Pattern, right: Pattern) -> Pattern: +121 return App(LBL_GT_INT, (), (left, right))
+ +122 +123 +
+[docs] +124def ge_int(left: Pattern, right: Pattern) -> Pattern: +125 return App(LBL_GE_INT, (), (left, right))
+ +126 +127 +
+[docs] +128def lt_int(left: Pattern, right: Pattern) -> Pattern: +129 return App(LBL_LT_INT, (), (left, right))
+ +130 +131 +
+[docs] +132def le_int(left: Pattern, right: Pattern) -> Pattern: +133 return App(LBL_LE_INT, (), (left, right))
+ +134 +135 +136# ------------ +137# K constructs +138# ------------ +139 +140# TODO auto injections +141 +142SORT_K: Final = SortApp('SortK') +143SORT_K_ITEM: Final = SortApp('SortKItem') +144SORT_K_CONFIG_VAR: Final = SortApp('SortKConfigVar') +145SORT_GENERATED_TOP_CELL: Final = SortApp('SortGeneratedTopCell') +146SORT_GENERATED_COUNTER_CELL: Final = SortApp('SortGeneratedCounterCell') +147 +148LBL_INIT_GENERATED_TOP_CELL: Final = SymbolId('LblinitGeneratedTopCell') +149LBL_GENERATED_TOP: Final = SymbolId("Lbl'-LT-'generatedTop'-GT-'") +150LBL_GENERATED_COUNTER: Final = SymbolId("Lbl'-LT-'generatedCounter'-GT-'") +151LBL_K: Final = SymbolId("Lbl'-LT-'k'-GT-'") +152LBL_ITE: Final = SymbolId('Lblite') +153INJ: Final = SymbolId('inj') +154KSEQ: Final = SymbolId('kseq') +155 +156DOTK: Final = App('dotk', (), ()) +157 +158 +
+[docs] +159def init_generated_top_cell(pattern: Pattern) -> App: +160 return App(LBL_INIT_GENERATED_TOP_CELL, (), (pattern,))
+ +161 +162 +
+[docs] +163def generated_top(patterns: Iterable[Pattern]) -> App: +164 return App(LBL_GENERATED_TOP, (), patterns)
+ +165 +166 +
+[docs] +167def generated_counter(pattern: Pattern) -> App: +168 return App(LBL_GENERATED_COUNTER, (), (pattern,))
+ +169 +170 +
+[docs] +171def k(pattern: Pattern) -> App: +172 return App(LBL_K, (), (pattern,))
+ +173 +174 +
+[docs] +175def inj(sort1: Sort, sort2: Sort, pattern: Pattern) -> App: +176 return App(INJ, (sort1, sort2), (pattern,))
+ +177 +178 +
+[docs] +179def kseq(kitems: Iterable[Pattern], *, dotvar: EVar | None = None) -> Pattern: +180 if dotvar and dotvar.sort != SORT_K: +181 raise ValueError(f'Expected {SORT_K.text} as dotvar sort, got: {dotvar.sort.text}') +182 +183 tail = dotvar or DOTK +184 args = tuple(chain(kitems, (tail,))) +185 +186 if len(args) == 1: +187 return tail +188 +189 app = App(KSEQ, (), args) +190 +191 if len(args) == 2: +192 return app +193 +194 return RightAssoc(app)
+ +195 +196 +
+[docs] +197def k_config_var(var: str) -> DV: +198 return DV(SORT_K_CONFIG_VAR, String(var))
+ +199 +200 +
+[docs] +201def top_cell_initializer(config: Mapping[str, Pattern]) -> App: +202 return init_generated_top_cell( +203 map_pattern( +204 *( +205 ( +206 inj(SORT_K_CONFIG_VAR, SORT_K_ITEM, k_config_var(key)), +207 value, +208 ) +209 for key, value in config.items() +210 ) +211 ) +212 )
+ +213 +214 +215# ----------- +216# Collections +217# ----------- +218 +219STOP_LIST: Final = App("Lbl'Stop'List") +220LBL_LIST: Final = SymbolId("Lbl'Unds'List'Unds'") +221LBL_LIST_ITEM: Final = SymbolId('LblListItem') +222 +223 +
+[docs] +224def list_pattern(*args: Pattern) -> Pattern: +225 if not args: +226 return STOP_LIST +227 return LeftAssoc(App(LBL_LIST, args=(App(LBL_LIST_ITEM, args=(arg,)) for arg in args)))
+ +228 +229 +230STOP_SET: Final = App("Lbl'Stop'Set") +231LBL_SET: Final = SymbolId("Lbl'Unds'Set'Unds'") +232LBL_SET_ITEM: Final = SymbolId('LblSetItem') +233 +234 +
+[docs] +235def set_pattern(*args: Pattern) -> Pattern: +236 if not args: +237 return STOP_SET +238 return LeftAssoc(App(LBL_SET, args=(App(LBL_SET_ITEM, args=(arg,)) for arg in args)))
+ +239 +240 +241STOP_MAP: Final = App("Lbl'Stop'Map") +242LBL_MAP: Final = SymbolId("Lbl'Unds'Map'Unds'") +243LBL_MAP_ITEM: Final = SymbolId("Lbl'UndsPipe'-'-GT-Unds'") +244 +245 +
+[docs] +246def map_pattern(*args: tuple[Pattern, Pattern], cell: str | None = None) -> Pattern: +247 if not args: +248 return App(f"Lbl'Stop'{cell}Map") if cell else STOP_MAP +249 +250 cons_symbol = SymbolId(f"Lbl'Unds'{cell}Map'Unds'") if cell else LBL_MAP +251 item_symbol = SymbolId(f'Lbl{cell}MapItem') if cell else LBL_MAP_ITEM +252 return LeftAssoc(App(cons_symbol, args=(App(item_symbol, args=arg) for arg in args)))
+ +253 +254 +255# ---- +256# JSON +257# ---- +258 +259SORT_JSON: Final = SortApp('SortJSON') +260SORT_JSON_KEY: Final = SortApp('SortJSONKey') +261 +262LBL_JSONS: Final = SymbolId('LblJSONs') +263LBL_JSON_LIST: Final = SymbolId('LblJSONList') +264LBL_JSON_OBJECT: Final = SymbolId('LblJSONObject') +265LBL_JSON_ENTRY: Final = SymbolId('LblJSONEntry') +266 +267JSON_NULL: Final = App('LblJSONnull') +268STOP_JSONS: Final = App("Lbl'Stop'List'LBraQuot'JSONs'QuotRBra'") +269 +270LBL_STRING2JSON: Final = SymbolId('LblString2JSON') +271LBL_JSON2STRING: Final = SymbolId('LblJSON2String') +272 +273 +
+[docs] +274def string2json(pattern: Pattern) -> App: +275 return App(LBL_STRING2JSON, (), (pattern,))
+ +276 +277 +
+[docs] +278def json2string(pattern: Pattern) -> App: +279 return App(LBL_JSON2STRING, (), (pattern,))
+ +280 +281 +
+[docs] +282def json_list(pattern: Pattern) -> App: +283 return App(LBL_JSON_LIST, (), (pattern,))
+ +284 +285 +
+[docs] +286def json_object(pattern: Pattern) -> App: +287 return App(LBL_JSON_OBJECT, (), (pattern,))
+ +288 +289 +
+[docs] +290def jsons(patterns: Iterable[Pattern]) -> RightAssoc: +291 return RightAssoc(App(LBL_JSONS, (), chain(patterns, (STOP_JSONS,))))
+ +292 +293 +
+[docs] +294def json_key(key: str) -> App: +295 return inj(STRING, SORT_JSON_KEY, str_dv(key))
+ +296 +297 +
+[docs] +298def json_entry(key: Pattern, value: Pattern) -> App: +299 return App(LBL_JSON_ENTRY, (), (key, value))
+ +300 +301 +
+[docs] +302def json_to_kore(data: Any) -> Pattern: +303 match data: +304 case None: +305 return JSON_NULL +306 case bool(): +307 return inj(BOOL, SORT_JSON, bool_dv(data)) +308 case int(): +309 return inj(INT, SORT_JSON, int_dv(data)) +310 case str(): +311 return inj(STRING, SORT_JSON, str_dv(data)) +312 case list(): +313 return json_list(jsons(json_to_kore(elem) for elem in data)) +314 case dict(): +315 return json_object( +316 jsons(json_entry(json_key(check_type(key, str)), json_to_kore(value)) for key, value in data.items()) +317 ) +318 case _: +319 raise TypeError(f'Unsupported object of type: {type(data).__name__}: {data}')
+ +320 +321 +322# TODO Eliminate circularity with kore.match +
+[docs] +323def kore_to_json(pattern: Pattern) -> Any: +324 from . import match as km +325 +326 if isinstance(pattern, DV): +327 if pattern.sort == BOOL: +328 return km.kore_bool(pattern) +329 +330 if pattern.sort == INT: +331 return km.kore_int(pattern) +332 +333 if pattern.sort == STRING: +334 return km.kore_str(pattern) +335 +336 if isinstance(pattern, App): +337 if pattern.symbol == JSON_NULL.symbol: +338 return None +339 +340 if pattern.symbol == INJ.value: # can be further refined: arg is DV, ... +341 return kore_to_json(km.inj(pattern)) +342 +343 if pattern.symbol == LBL_JSON_LIST.value: +344 return [kore_to_json(elem) for elem in _iter_json_list(pattern)] +345 +346 if pattern.symbol == LBL_JSON_OBJECT.value: +347 return {key: kore_to_json(value) for key, value in _iter_json_object(pattern)} +348 +349 raise ValueError(f'Not a JSON pattern: {pattern.text}')
+ +350 +351 +352def _iter_json_list(app: App) -> Iterator[Pattern]: +353 from . import match as km +354 +355 km.match_symbol(app, LBL_JSON_LIST.value) +356 curr = km.match_app(app.args[0]) +357 while curr.symbol != STOP_JSONS.symbol: +358 km.match_symbol(curr, LBL_JSONS.value) +359 yield curr.args[0] +360 curr = km.match_app(curr.args[1]) +361 +362 +363def _iter_json_object(app: App) -> Iterator[tuple[str, Pattern]]: +364 from . import match as km +365 +366 km.match_symbol(app, LBL_JSON_OBJECT.value) +367 curr = km.match_app(app.args[0]) +368 while curr.symbol != STOP_JSONS.symbol: +369 km.match_symbol(curr, LBL_JSONS.value) +370 entry = km.match_app(curr.args[0], LBL_JSON_ENTRY.value) +371 key = km.kore_str(km.inj(entry.args[0])) +372 value = entry.args[1] +373 yield key, value +374 curr = km.match_app(curr.args[1]) +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/rpc.html b/pyk/_modules/pyk/kore/rpc.html new file mode 100644 index 00000000000..a4aec982dfc --- /dev/null +++ b/pyk/_modules/pyk/kore/rpc.html @@ -0,0 +1,1802 @@ + + + + + + pyk.kore.rpc — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.rpc

+   1from __future__ import annotations
+   2
+   3import http.client
+   4import json
+   5import logging
+   6import os
+   7import socket
+   8import sys
+   9from abc import ABC, abstractmethod
+  10from dataclasses import dataclass
+  11from datetime import datetime, timedelta
+  12from enum import Enum, auto
+  13from pathlib import Path
+  14from signal import SIGINT
+  15from subprocess import Popen
+  16from time import sleep
+  17from typing import ClassVar  # noqa: TC003
+  18from typing import TYPE_CHECKING, ContextManager, NamedTuple, TypedDict, final
+  19
+  20from psutil import Process
+  21
+  22from ..utils import FrozenDict, check_dir_path, check_file_path, filter_none, run_process
+  23from . import manip
+  24from .prelude import SORT_GENERATED_TOP_CELL
+  25from .syntax import And, Equals, EVar, kore_term
+  26
+  27if TYPE_CHECKING:
+  28    from collections.abc import Iterable, Mapping
+  29    from typing import Any, Final, TextIO, TypeVar
+  30
+  31    from typing_extensions import Required
+  32
+  33    from ..utils import BugReport
+  34    from .syntax import Module, Pattern
+  35
+  36    ER = TypeVar('ER', bound='ExecuteResult')
+  37    RR = TypeVar('RR', bound='RewriteResult')
+  38    LE = TypeVar('LE', bound='LogEntry')
+  39
+  40_LOGGER: Final = logging.getLogger(__name__)
+  41
+  42
+
+[docs] + 43class KoreExecLogFormat(Enum): + 44 STANDARD = 'standard' + 45 ONELINE = 'oneline'
+ + 46 + 47 +
+[docs] + 48@final + 49@dataclass + 50class JsonRpcError(Exception): + 51 def __init__(self, message: str, code: int, data: Any = None): + 52 super().__init__(message) + 53 self.message = message + 54 self.code = code + 55 self.data = data
+ + 56 + 57 +
+[docs] + 58class Transport(ContextManager['Transport'], ABC): +
+[docs] + 59 @abstractmethod + 60 def request(self, req: str) -> str: ...
+ + 61 + 62 def __enter__(self) -> Transport: + 63 return self + 64 + 65 def __exit__(self, *args: Any) -> None: + 66 self.close() + 67 +
+[docs] + 68 @abstractmethod + 69 def close(self) -> None: ...
+ + 70 +
+[docs] + 71 @abstractmethod + 72 def command(self, bug_report_id: str, old_id: int, bug_report_request: str) -> list[str]: ...
+ + 73 +
+[docs] + 74 @abstractmethod + 75 def description(self) -> str: ...
+
+ + 76 + 77 +
+[docs] + 78class TransportType(Enum): + 79 SINGLE_SOCKET = auto() + 80 HTTP = auto()
+ + 81 + 82 +
+[docs] + 83@final + 84class SingleSocketTransport(Transport): + 85 _host: str + 86 _port: int + 87 _sock: socket.socket + 88 _file: TextIO + 89 + 90 def __init__(self, host: str, port: int, *, timeout: int | None = None): + 91 self._host = host + 92 self._port = port + 93 self._sock = self._create_connection(host, port, timeout) + 94 self._file = self._sock.makefile('r') + 95 + 96 @staticmethod + 97 def _create_connection(host: str, port: int, timeout: int | None) -> socket.socket: + 98 if timeout is not None and timeout < 0: + 99 raise ValueError(f'Expected nonnegative timeout value, got: {timeout}') + 100 + 101 _LOGGER.info(f'Connecting to host: {host}:{port}') + 102 + 103 timeout_datetime = datetime.now() + timedelta(milliseconds=timeout) if timeout is not None else None + 104 while timeout_datetime is None or datetime.now() < timeout_datetime: + 105 try: + 106 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) + 107 sock.connect((host, port)) + 108 _LOGGER.info(f'Connected to host: {host}:{port}') + 109 return sock + 110 except ConnectionRefusedError: + 111 sock.close() + 112 sleep(0.1) + 113 + 114 raise RuntimeError(f'Connection timed out: {host}:{port}') + 115 +
+[docs] + 116 def close(self) -> None: + 117 self._file.close() + 118 self._sock.close()
+ + 119 +
+[docs] + 120 def command(self, bug_report_id: str, old_id: int, bug_report_request: str) -> list[str]: + 121 return [ + 122 'cat', + 123 bug_report_request, + 124 '|', + 125 'nc', + 126 '-Nv', + 127 self._host, + 128 str(self._port), + 129 '>', + 130 f'rpc_{bug_report_id}/{old_id:03}_actual.json', + 131 ]
+ + 132 +
+[docs] + 133 def request(self, req: str) -> str: + 134 self._sock.sendall(req.encode()) + 135 server_addr = self.description() + 136 _LOGGER.debug(f'Waiting for response from {server_addr}...') + 137 return self._file.readline().rstrip()
+ + 138 +
+[docs] + 139 def description(self) -> str: + 140 return f'{self._host}:{self._port}'
+
+ + 141 + 142 +
+[docs] + 143@final + 144class HttpTransport(Transport): + 145 _host: str + 146 _port: int + 147 _timeout: int | None + 148 + 149 def __init__(self, host: str, port: int, *, timeout: int | None = None): + 150 self._host = host + 151 self._port = port + 152 self._timeout = timeout + 153 +
+[docs] + 154 def close(self) -> None: + 155 pass
+ + 156 +
+[docs] + 157 def command(self, bug_report_id: str, old_id: int, bug_report_request: str) -> list[str]: + 158 return [ + 159 'curl', + 160 '-X', + 161 'POST', + 162 '-H', + 163 'Content-Type: application/json', + 164 '-d', + 165 '@' + bug_report_request, + 166 'http://' + self._host + ':' + str(self._port), + 167 '>', + 168 f'rpc_{bug_report_id}/{old_id:03}_actual.json', + 169 ]
+ + 170 +
+[docs] + 171 def request(self, req: str) -> str: + 172 connection = http.client.HTTPConnection(self._host, self._port, timeout=self._timeout) + 173 connection.request('POST', '/', body=req, headers={'Content-Type': 'application/json'}) + 174 server_addr = self.description() + 175 _LOGGER.debug(f'Waiting for response from {server_addr}...') + 176 response = connection.getresponse() + 177 if response.status != 200: + 178 raise JsonRpcError('Internal server error', -32603) + 179 return response.read().decode()
+ + 180 +
+[docs] + 181 def description(self) -> str: + 182 return f'{self._host}:{self._port}'
+
+ + 183 + 184 +
+[docs] + 185class JsonRpcClientFacade(ContextManager['JsonRpcClientFacade']): + 186 _JSON_RPC_VERSION: Final = '2.0' + 187 + 188 _clients: dict[str, list[JsonRpcClient]] + 189 _default_client: JsonRpcClient + 190 + 191 def __init__( + 192 self, + 193 default_host: str, + 194 default_port: int, + 195 default_transport: TransportType, + 196 dispatch: dict[str, list[tuple[str, int, TransportType]]], + 197 *, + 198 timeout: int | None = None, + 199 bug_report: BugReport | None = None, + 200 bug_report_id: str | None = None, + 201 ): + 202 client_cache = {} + 203 self._clients = {} + 204 self._default_client = JsonRpcClient( + 205 default_host, + 206 default_port, + 207 timeout=timeout, + 208 bug_report=bug_report, + 209 bug_report_id=bug_report_id, + 210 transport=default_transport, + 211 ) + 212 client_cache[(default_host, default_port)] = self._default_client + 213 for method, servers in dispatch.items(): + 214 for host, port, transport in servers: + 215 if (host, port) in client_cache: + 216 self._update_clients(method, client_cache[(host, port)]) + 217 else: + 218 new_id = None if bug_report_id is None else bug_report_id + '_' + str(transport) + 219 new_client = JsonRpcClient( + 220 host, port, timeout=timeout, bug_report=bug_report, bug_report_id=new_id, transport=transport + 221 ) + 222 self._update_clients(method, new_client) + 223 client_cache[(host, port)] = new_client + 224 + 225 def _update_clients(self, method: str, client: JsonRpcClient) -> None: + 226 clients = self._clients.get(method, []) + 227 self._clients[method] = clients + 228 clients.append(client) + 229 + 230 def __enter__(self) -> JsonRpcClientFacade: + 231 return self + 232 + 233 def __exit__(self, *args: Any) -> None: + 234 self._default_client.__exit__(*args) + 235 for clients in self._clients.values(): + 236 for client in clients: + 237 client.__exit__(*args) + 238 +
+[docs] + 239 def close(self) -> None: + 240 self._default_client.close() + 241 for clients in self._clients.values(): + 242 for client in clients: + 243 client.close()
+ + 244 +
+[docs] + 245 def request(self, method: str, **params: Any) -> dict[str, Any]: + 246 if method in self._clients: + 247 for client in self._clients[method]: + 248 response = client.request(method, **params) + 249 if 'error' in response: + 250 return response + 251 return response + 252 else: + 253 return self._default_client.request(method, **params)
+
+ + 254 + 255 +
+[docs] + 256class JsonRpcClient(ContextManager['JsonRpcClient']): + 257 _JSON_RPC_VERSION: Final = '2.0' + 258 + 259 _transport: Transport + 260 _req_id: int + 261 _bug_report: BugReport | None + 262 _bug_report_id: str + 263 + 264 def __init__( + 265 self, + 266 host: str, + 267 port: int, + 268 *, + 269 timeout: int | None = None, + 270 bug_report: BugReport | None = None, + 271 bug_report_id: str | None = None, + 272 transport: TransportType = TransportType.SINGLE_SOCKET, + 273 ): + 274 if transport is TransportType.SINGLE_SOCKET: + 275 self._transport = SingleSocketTransport(host, port, timeout=timeout) + 276 elif transport is TransportType.HTTP: + 277 self._transport = HttpTransport(host, port, timeout=timeout) + 278 else: + 279 raise AssertionError() + 280 self._req_id = 1 + 281 self._bug_report = bug_report + 282 self._bug_report_id = bug_report_id if bug_report_id is not None else str(id(self)) + 283 + 284 def __enter__(self) -> JsonRpcClient: + 285 return self + 286 + 287 def __exit__(self, *args: Any) -> None: + 288 self._transport.__exit__(*args) + 289 +
+[docs] + 290 def close(self) -> None: + 291 self._transport.close()
+ + 292 +
+[docs] + 293 def request(self, method: str, **params: Any) -> dict[str, Any]: + 294 old_id = self._req_id + 295 self._req_id += 1 + 296 + 297 payload = { + 298 'jsonrpc': self._JSON_RPC_VERSION, + 299 'id': old_id, + 300 'method': method, + 301 'params': params, + 302 } + 303 + 304 server_addr = self._transport.description() + 305 _LOGGER.info(f'Sending request to {server_addr}: {old_id} - {method}') + 306 req = json.dumps(payload) + 307 if self._bug_report: + 308 bug_report_request = f'rpc_{self._bug_report_id}/{old_id:03}_request.json' + 309 self._bug_report.add_file_contents(req, Path(bug_report_request)) + 310 self._bug_report.add_command(self._transport.command(self._bug_report_id, old_id, bug_report_request)) + 311 + 312 _LOGGER.debug(f'Sending request to {server_addr}: {req}') + 313 resp = self._transport.request(req) + 314 if not resp: + 315 raise RuntimeError('Empty response received') + 316 _LOGGER.debug(f'Received response from {server_addr}: {resp}') + 317 + 318 if self._bug_report: + 319 bug_report_response = f'rpc_{self._bug_report_id}/{old_id:03}_response.json' + 320 self._bug_report.add_file_contents(resp, Path(bug_report_response)) + 321 self._bug_report.add_command( + 322 [ + 323 'diff', + 324 '-b', + 325 '-s', + 326 f'rpc_{self._bug_report_id}/{old_id:03}_actual.json', + 327 f'rpc_{self._bug_report_id}/{old_id:03}_response.json', + 328 ] + 329 ) + 330 + 331 data = json.loads(resp) + 332 self._check(data) + 333 assert data['id'] == old_id + 334 + 335 _LOGGER.info(f'Received response from {server_addr}: {old_id} - {method}') + 336 return data['result']
+ + 337 + 338 @staticmethod + 339 def _check(response: Mapping[str, Any]) -> None: + 340 if 'error' not in response: + 341 return + 342 + 343 assert response['error']['code'] not in {-32700, -32600}, 'Malformed JSON-RPC request' + 344 raise JsonRpcError(**response['error'])
+ + 345 + 346 +
+[docs] + 347class KoreClientError(Exception, ABC): + 348 def __init__(self, message: str): + 349 super().__init__(message)
+ + 350 + 351 +
+[docs] + 352@final + 353@dataclass + 354class ParseError(KoreClientError): + 355 error: str + 356 + 357 def __init__(self, error: str): + 358 self.error = error + 359 super().__init__(f'Could not parse pattern: {self.error}')
+ + 360 + 361 +
+[docs] + 362@final + 363@dataclass + 364class PatternError(KoreClientError): + 365 error: str + 366 context: tuple[str, ...] + 367 + 368 def __init__(self, error: str, context: Iterable[str]): + 369 self.error = error + 370 self.context = tuple(context) + 371 context_str = ' ;; '.join(self.context) + 372 super().__init__(f'Could not verify pattern: {self.error} Context: {context_str}')
+ + 373 + 374 +
+[docs] + 375@final + 376@dataclass + 377class UnknownModuleError(KoreClientError): + 378 module_name: str + 379 + 380 def __init__(self, module_name: str): + 381 self.module_name = module_name + 382 super().__init__(f'Could not find module: {self.module_name}')
+ + 383 + 384 +
+[docs] + 385@final + 386@dataclass + 387class InvalidModuleError(KoreClientError): + 388 error: str + 389 context: tuple[str, ...] | None + 390 + 391 def __init__(self, error: str, context: Iterable[str] | None): + 392 self.error = error + 393 self.context = tuple(context) if context else None + 394 context_str = ' Context: ' + ' ;; '.join(self.context) if self.context else '' + 395 super().__init__(f'Could not verify module: {self.error}{context_str}')
+ + 396 + 397 +
+[docs] + 398@final + 399@dataclass + 400class DuplicateModuleError(KoreClientError): + 401 module_name: str + 402 + 403 def __init__(self, module_name: str): + 404 self.module_name = module_name + 405 super().__init__(f'Duplicate module name: {self.module_name}')
+ + 406 + 407 +
+[docs] + 408@final + 409@dataclass + 410class ImplicationError(KoreClientError): + 411 error: str + 412 context: tuple[str, ...] + 413 + 414 def __init__(self, error: str, context: Iterable[str]): + 415 self.error = error + 416 self.context = tuple(context) + 417 context_str = ' ;; '.join(self.context) + 418 super().__init__(f'Implication check error: {self.error} Context: {context_str}')
+ + 419 + 420 +
+[docs] + 421@final + 422@dataclass + 423class SmtSolverError(KoreClientError): + 424 error: str + 425 pattern: Pattern + 426 + 427 def __init__(self, error: str, pattern: Pattern): + 428 self.error = error + 429 self.pattern = pattern + 430 super().__init__(f'SMT solver error: {self.error} Pattern: {self.pattern.text}')
+ + 431 + 432 +
+[docs] + 433@final + 434@dataclass + 435class DefaultError(KoreClientError): + 436 message: str + 437 code: int + 438 data: Any + 439 + 440 def __init__(self, message: str, code: int, data: Any = None): + 441 self.message = message + 442 self.code = code + 443 self.data = data + 444 message = f'{self.message} | code: {self.code}' + (f' | data: {self.data}' if data is not None else '') + 445 super().__init__(message)
+ + 446 + 447 +
+[docs] + 448class StopReason(str, Enum): + 449 STUCK = 'stuck' + 450 DEPTH_BOUND = 'depth-bound' + 451 TIMEOUT = 'timeout' + 452 BRANCHING = 'branching' + 453 CUT_POINT_RULE = 'cut-point-rule' + 454 TERMINAL_RULE = 'terminal-rule' + 455 VACUOUS = 'vacuous' + 456 ABORTED = 'aborted'
+ + 457 + 458 +
+[docs] + 459@final + 460@dataclass(frozen=True) + 461class State: + 462 term: Pattern + 463 substitution: FrozenDict[EVar, Pattern] | None + 464 predicate: Pattern | None + 465 rule_id: str | None + 466 rule_substitution: FrozenDict[EVar, Pattern] | None + 467 rule_predicate: Pattern | None + 468 + 469 def __init__( + 470 self, + 471 term: Pattern, + 472 *, + 473 substitution: Mapping[EVar, Pattern] | None = None, + 474 predicate: Pattern | None = None, + 475 rule_id: str | None = None, + 476 rule_substitution: Mapping[EVar, Pattern] | None = None, + 477 rule_predicate: Pattern | None = None, + 478 ): + 479 substitution = FrozenDict(substitution) if substitution is not None else None + 480 rule_substitution = FrozenDict(rule_substitution) if rule_substitution is not None else None + 481 object.__setattr__(self, 'term', term) + 482 object.__setattr__(self, 'substitution', substitution) + 483 object.__setattr__(self, 'predicate', predicate) + 484 object.__setattr__(self, 'rule_id', rule_id) + 485 object.__setattr__(self, 'rule_substitution', rule_substitution) + 486 object.__setattr__(self, 'rule_predicate', rule_predicate) + 487 +
+[docs] + 488 @staticmethod + 489 def from_dict(dct: Mapping[str, Any]) -> State: + 490 return State( + 491 term=kore_term(dct['term']), + 492 substitution=State._subst_to_dict(kore_term(dct['substitution'])) if 'substitution' in dct else None, + 493 predicate=kore_term(dct['predicate']) if 'predicate' in dct else None, + 494 rule_id=dct.get('rule-id'), + 495 rule_substitution=( + 496 State._subst_to_dict(kore_term(dct['rule-substitution'])) if 'rule-substitution' in dct else None + 497 ), + 498 rule_predicate=kore_term(dct['rule-predicate']) if 'rule-predicate' in dct else None, + 499 )
+ + 500 + 501 @staticmethod + 502 def _subst_to_dict(pattern: Pattern) -> dict[EVar, Pattern]: + 503 def extract_entry(pattern: Pattern) -> tuple[EVar, Pattern]: + 504 if not isinstance(pattern, Equals): + 505 raise ValueError(fr'Expected \equals as substituion entry, got: {pattern.text}') + 506 if pattern.sort != SORT_GENERATED_TOP_CELL: + 507 raise ValueError( + 508 f'Expected {SORT_GENERATED_TOP_CELL.text} as substitution entry sort, got: {pattern.sort.text}' + 509 ) + 510 if not isinstance(pattern.left, EVar): + 511 raise ValueError(f'Expected EVar as substitution entry key, got: {pattern.left.text}') + 512 if pattern.left.sort != pattern.op_sort: + 513 raise ValueError( + 514 f'Mismatch between substitution entry and key sort: {pattern.op_sort.text} and {pattern.left.sort.text}' + 515 ) + 516 return pattern.left, pattern.right + 517 + 518 res: dict[EVar, Pattern] = {} + 519 for conjunct in manip.conjuncts(pattern): + 520 key, value = extract_entry(conjunct) + 521 if key in res: + 522 raise ValueError(f'Duplicate substitution entry key: {key.text} -> {[res[key].text, value.text]}') + 523 res[key] = value + 524 return res + 525 + 526 @staticmethod + 527 def _dict_to_subst(dct: Mapping[EVar, Pattern]) -> And: + 528 return And( + 529 SORT_GENERATED_TOP_CELL, + 530 tuple(Equals(var.sort, SORT_GENERATED_TOP_CELL, var, val) for var, val in dct.items()), + 531 ) + 532 + 533 @property + 534 def kore(self) -> Pattern: + 535 _kore = self.term + 536 if self.substitution is not None: + 537 _kore = And(SORT_GENERATED_TOP_CELL, (_kore,) + self._dict_to_subst(self.substitution).ops) + 538 if self.predicate is not None: + 539 _kore = And(SORT_GENERATED_TOP_CELL, (_kore, self.predicate)) + 540 return _kore
+ + 541 + 542 +
+[docs] + 543class LogEntry(ABC): +
+[docs] + 544 @classmethod + 545 def from_dict(cls: type[LE], dct: Mapping[str, Any]) -> LE: + 546 match dct['tag']: + 547 case 'processing-time': + 548 return LogTiming.from_dict(dct) # type: ignore + 549 case 'rewrite': + 550 return LogRewrite.from_dict(dct) # type: ignore + 551 case _: + 552 raise ValueError(f'Unsupported LogEntry tag: {dct["tag"]!r}')
+ + 553 +
+[docs] + 554 @abstractmethod + 555 def to_dict(self) -> dict[str, Any]: ...
+
+ + 556 + 557 +
+[docs] + 558@final + 559@dataclass(frozen=True) + 560class LogTiming(LogEntry): +
+[docs] + 561 class Component(Enum): + 562 KORE_RPC = 'kore-rpc' + 563 BOOSTER = 'booster' + 564 PROXY = 'proxy'
+ + 565 + 566 time: float + 567 component: Component | None + 568 +
+[docs] + 569 @classmethod + 570 def from_dict(cls, dct: Mapping[str, Any]) -> LogTiming: + 571 return LogTiming( + 572 time=dct['time'], component=LogTiming.Component(dct['component']) if 'component' in dct else None + 573 )
+ + 574 +
+[docs] + 575 def to_dict(self) -> dict[str, Any]: + 576 return {'tag': 'processing-time', 'time': self.time, 'component': self.component}
+
+ + 577 + 578 +
+[docs] + 579@final + 580@dataclass(frozen=True) + 581class LogRewrite(LogEntry): + 582 origin: LogOrigin + 583 result: RewriteResult + 584 +
+[docs] + 585 @classmethod + 586 def from_dict(cls: type[LogRewrite], dct: Mapping[str, Any]) -> LogRewrite: + 587 return LogRewrite( + 588 origin=LogOrigin(dct['origin']), + 589 result=RewriteResult.from_dict(dct['result']), + 590 )
+ + 591 +
+[docs] + 592 def to_dict(self) -> dict[str, Any]: + 593 return {'tag': 'rewrite', 'origin': self.origin.value, 'result': self.result.to_dict()}
+
+ + 594 + 595 +
+[docs] + 596class LogOrigin(str, Enum): + 597 KORE_RPC = 'kore-rpc' + 598 BOOSTER = 'booster' + 599 LLVM = 'llvm'
+ + 600 + 601 +
+[docs] + 602class RewriteResult(ABC): + 603 rule_id: str | None + 604 +
+[docs] + 605 @classmethod + 606 def from_dict(cls: type[RR], dct: Mapping[str, Any]) -> RR: + 607 if dct['tag'] == 'success': + 608 return globals()['RewriteSuccess'].from_dict(dct) + 609 elif dct['tag'] == 'failure': + 610 return globals()['RewriteFailure'].from_dict(dct) + 611 else: + 612 raise ValueError(f"Expected {dct['tag']} as 'success'/'failure'")
+ + 613 +
+[docs] + 614 @abstractmethod + 615 def to_dict(self) -> dict[str, Any]: ...
+
+ + 616 + 617 +
+[docs] + 618@final + 619@dataclass(frozen=True) + 620class RewriteSuccess(RewriteResult): + 621 rule_id: str + 622 rewritten_term: Pattern | None = None + 623 +
+[docs] + 624 @classmethod + 625 def from_dict(cls: type[RewriteSuccess], dct: Mapping[str, Any]) -> RewriteSuccess: + 626 return RewriteSuccess( + 627 rule_id=dct['rule-id'], + 628 rewritten_term=kore_term(dct['rewritten-term']) if 'rewritten-term' in dct else None, + 629 )
+ + 630 +
+[docs] + 631 def to_dict(self) -> dict[str, Any]: + 632 rewritten_term = {'rewritten-term': KoreClient._state(self.rewritten_term)} if self.rewritten_term else {} + 633 return {'tag': 'success', 'rule-id': self.rule_id} | rewritten_term
+
+ + 634 + 635 +
+[docs] + 636@final + 637@dataclass(frozen=True) + 638class RewriteFailure(RewriteResult): + 639 rule_id: str | None + 640 reason: str + 641 +
+[docs] + 642 @classmethod + 643 def from_dict(cls: type[RewriteFailure], dct: Mapping[str, Any]) -> RewriteFailure: + 644 return RewriteFailure(rule_id=dct.get('rule-id'), reason=dct['reason'])
+ + 645 +
+[docs] + 646 def to_dict(self) -> dict[str, Any]: + 647 return {'tag': 'failure', 'rule-id': self.rule_id, 'reason': self.reason}
+
+ + 648 + 649 +
+[docs] + 650class ExecuteResult(ABC): + 651 _TYPES: Mapping[StopReason, str] = { + 652 StopReason.STUCK: 'StuckResult', + 653 StopReason.DEPTH_BOUND: 'DepthBoundResult', + 654 StopReason.TIMEOUT: 'TimeoutResult', + 655 StopReason.BRANCHING: 'BranchingResult', + 656 StopReason.CUT_POINT_RULE: 'CutPointResult', + 657 StopReason.TERMINAL_RULE: 'TerminalResult', + 658 StopReason.VACUOUS: 'VacuousResult', + 659 StopReason.ABORTED: 'AbortedResult', + 660 } + 661 + 662 reason: ClassVar[StopReason] + 663 + 664 state: State + 665 depth: int + 666 next_states: tuple[State, ...] | None + 667 rule: str | None + 668 logs: tuple[LogEntry, ...] + 669 +
+[docs] + 670 @classmethod + 671 def from_dict(cls: type[ER], dct: Mapping[str, Any]) -> ER: + 672 return globals()[ExecuteResult._TYPES[StopReason(dct['reason'])]].from_dict(dct) # type: ignore
+ + 673 + 674 @classmethod + 675 def _check_reason(cls: type[ER], dct: Mapping[str, Any]) -> None: + 676 reason = StopReason(dct['reason']) + 677 if reason is not cls.reason: + 678 raise AssertionError(f"Expected {cls.reason} as 'reason', found: {reason}")
+ + 679 + 680 +
+[docs] + 681@final + 682@dataclass(frozen=True) + 683class StuckResult(ExecuteResult): + 684 # These fields should be Final, but it makes mypy crash + 685 # https://github.com/python/mypy/issues/10090 + 686 reason = StopReason.STUCK + 687 next_states = None + 688 rule = None + 689 + 690 state: State + 691 depth: int + 692 logs: tuple[LogEntry, ...] + 693 +
+[docs] + 694 @classmethod + 695 def from_dict(cls: type[StuckResult], dct: Mapping[str, Any]) -> StuckResult: + 696 cls._check_reason(dct) + 697 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 698 return StuckResult( + 699 state=State.from_dict(dct['state']), + 700 depth=dct['depth'], + 701 logs=logs, + 702 )
+
+ + 703 + 704 +
+[docs] + 705@final + 706@dataclass(frozen=True) + 707class DepthBoundResult(ExecuteResult): + 708 reason = StopReason.DEPTH_BOUND + 709 next_states = None + 710 rule = None + 711 + 712 state: State + 713 depth: int + 714 logs: tuple[LogEntry, ...] + 715 +
+[docs] + 716 @classmethod + 717 def from_dict(cls: type[DepthBoundResult], dct: Mapping[str, Any]) -> DepthBoundResult: + 718 cls._check_reason(dct) + 719 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 720 return DepthBoundResult( + 721 state=State.from_dict(dct['state']), + 722 depth=dct['depth'], + 723 logs=logs, + 724 )
+
+ + 725 + 726 +
+[docs] + 727@final + 728@dataclass(frozen=True) + 729class TimeoutResult(ExecuteResult): + 730 reason = StopReason.TIMEOUT + 731 next_states = None + 732 rule = None + 733 + 734 state: State + 735 depth: int + 736 logs: tuple[LogEntry, ...] + 737 +
+[docs] + 738 @classmethod + 739 def from_dict(cls: type[TimeoutResult], dct: Mapping[str, Any]) -> TimeoutResult: + 740 cls._check_reason(dct) + 741 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 742 return TimeoutResult( + 743 state=State.from_dict(dct['state']), + 744 depth=dct['depth'], + 745 logs=logs, + 746 )
+
+ + 747 + 748 +
+[docs] + 749@final + 750@dataclass(frozen=True) + 751class BranchingResult(ExecuteResult): + 752 reason = StopReason.BRANCHING + 753 rule = None + 754 + 755 state: State + 756 depth: int + 757 next_states: tuple[State, ...] + 758 logs: tuple[LogEntry, ...] + 759 +
+[docs] + 760 @classmethod + 761 def from_dict(cls: type[BranchingResult], dct: Mapping[str, Any]) -> BranchingResult: + 762 cls._check_reason(dct) + 763 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 764 return BranchingResult( + 765 state=State.from_dict(dct['state']), + 766 depth=dct['depth'], + 767 next_states=tuple(State.from_dict(next_state) for next_state in dct['next-states']), + 768 logs=logs, + 769 )
+
+ + 770 + 771 +
+[docs] + 772@final + 773@dataclass(frozen=True) + 774class CutPointResult(ExecuteResult): + 775 reason = StopReason.CUT_POINT_RULE + 776 + 777 state: State + 778 depth: int + 779 next_states: tuple[State, ...] + 780 rule: str + 781 logs: tuple[LogEntry, ...] + 782 +
+[docs] + 783 @classmethod + 784 def from_dict(cls: type[CutPointResult], dct: Mapping[str, Any]) -> CutPointResult: + 785 cls._check_reason(dct) + 786 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 787 return CutPointResult( + 788 state=State.from_dict(dct['state']), + 789 depth=dct['depth'], + 790 next_states=tuple(State.from_dict(next_state) for next_state in dct['next-states']), + 791 rule=dct['rule'], + 792 logs=logs, + 793 )
+
+ + 794 + 795 +
+[docs] + 796@final + 797@dataclass(frozen=True) + 798class TerminalResult(ExecuteResult): + 799 reason = StopReason.TERMINAL_RULE + 800 next_states = None + 801 + 802 state: State + 803 depth: int + 804 rule: str + 805 logs: tuple[LogEntry, ...] + 806 +
+[docs] + 807 @classmethod + 808 def from_dict(cls: type[TerminalResult], dct: Mapping[str, Any]) -> TerminalResult: + 809 cls._check_reason(dct) + 810 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 811 return TerminalResult(state=State.from_dict(dct['state']), depth=dct['depth'], rule=dct['rule'], logs=logs)
+
+ + 812 + 813 +
+[docs] + 814@final + 815@dataclass(frozen=True) + 816class VacuousResult(ExecuteResult): + 817 reason = StopReason.VACUOUS + 818 next_states = None + 819 rule = None + 820 + 821 state: State + 822 depth: int + 823 logs: tuple[LogEntry, ...] + 824 +
+[docs] + 825 @classmethod + 826 def from_dict(cls: type[VacuousResult], dct: Mapping[str, Any]) -> VacuousResult: + 827 cls._check_reason(dct) + 828 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 829 return VacuousResult( + 830 state=State.from_dict(dct['state']), + 831 depth=dct['depth'], + 832 logs=logs, + 833 )
+
+ + 834 + 835 +
+[docs] + 836@final + 837@dataclass(frozen=True) + 838class AbortedResult(ExecuteResult): + 839 reason = StopReason.ABORTED + 840 next_states = None + 841 rule = None + 842 + 843 state: State + 844 depth: int + 845 unknown_predicate: Pattern | None + 846 logs: tuple[LogEntry, ...] + 847 +
+[docs] + 848 @classmethod + 849 def from_dict(cls: type[AbortedResult], dct: Mapping[str, Any]) -> AbortedResult: + 850 cls._check_reason(dct) + 851 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 852 return AbortedResult( + 853 state=State.from_dict(dct['state']), + 854 depth=dct['depth'], + 855 unknown_predicate=kore_term(dct['unknown-predicate']) if dct.get('unknown-predicate') else None, + 856 logs=logs, + 857 )
+
+ + 858 + 859 +
+[docs] + 860@final + 861@dataclass(frozen=True) + 862class ImpliesResult: + 863 valid: bool + 864 implication: Pattern + 865 substitution: Pattern | None + 866 predicate: Pattern | None + 867 logs: tuple[LogEntry, ...] + 868 +
+[docs] + 869 @staticmethod + 870 def from_dict(dct: Mapping[str, Any]) -> ImpliesResult: + 871 substitution = dct.get('condition', {}).get('substitution') + 872 predicate = dct.get('condition', {}).get('predicate') + 873 logs = tuple(LogEntry.from_dict(l) for l in dct['logs']) if 'logs' in dct else () + 874 return ImpliesResult( + 875 valid=dct['valid'], + 876 implication=kore_term(dct['implication']), + 877 substitution=kore_term(substitution) if substitution is not None else None, + 878 predicate=kore_term(predicate) if predicate is not None else None, + 879 logs=logs, + 880 )
+
+ + 881 + 882 +
+[docs] + 883class GetModelResult(ABC): # noqa: B024 +
+[docs] + 884 @staticmethod + 885 def from_dict(dct: Mapping[str, Any]) -> GetModelResult: + 886 status = dct['satisfiable'] + 887 match status: + 888 case 'Unknown': + 889 return UnknownResult() + 890 case 'Unsat': + 891 return UnsatResult() + 892 case 'Sat': + 893 substitution = dct.get('substitution') + 894 return SatResult(model=kore_term(substitution) if substitution else None) + 895 case _: + 896 raise ValueError(f'Unknown status: {status}')
+
+ + 897 + 898 +
+[docs] + 899@final + 900@dataclass(frozen=True) + 901class UnknownResult(GetModelResult): ...
+ + 902 + 903 +
+[docs] + 904@final + 905@dataclass(frozen=True) + 906class UnsatResult(GetModelResult): ...
+ + 907 + 908 +
+[docs] + 909@final + 910@dataclass(frozen=True) + 911class SatResult(GetModelResult): + 912 model: Pattern | None
+ + 913 + 914 +
+[docs] + 915class KoreClient(ContextManager['KoreClient']): + 916 _KORE_JSON_VERSION: Final = 1 + 917 + 918 port: int + 919 _client: JsonRpcClientFacade + 920 + 921 def __init__( + 922 self, + 923 host: str, + 924 port: int, + 925 *, + 926 timeout: int | None = None, + 927 bug_report: BugReport | None = None, + 928 bug_report_id: str | None = None, + 929 transport: TransportType = TransportType.SINGLE_SOCKET, + 930 dispatch: dict[str, list[tuple[str, int, TransportType]]] | None = None, + 931 ): + 932 if dispatch is None: + 933 dispatch = {} + 934 self.port = port + 935 self._client = JsonRpcClientFacade( + 936 host, + 937 port, + 938 transport, + 939 timeout=timeout, + 940 bug_report=bug_report, + 941 bug_report_id=bug_report_id, + 942 dispatch=dispatch, + 943 ) + 944 + 945 def __enter__(self) -> KoreClient: + 946 return self + 947 + 948 def __exit__(self, *args: Any) -> None: + 949 self._client.__exit__(*args) + 950 +
+[docs] + 951 def close(self) -> None: + 952 self._client.close()
+ + 953 + 954 def _request(self, method: str, **params: Any) -> dict[str, Any]: + 955 try: + 956 return self._client.request(method, **params) + 957 except JsonRpcError as err: + 958 raise self._error(err) from err + 959 + 960 def _error(self, err: JsonRpcError) -> KoreClientError: + 961 assert err.code not in {-32601, -32602}, 'Malformed Kore-RPC request' + 962 match err.code: + 963 case 1: + 964 return ParseError(error=err.data) + 965 case 2: + 966 return PatternError(error=err.data['error'], context=err.data['context']) + 967 case 3: + 968 return UnknownModuleError(module_name=err.data) + 969 case 4: + 970 return ImplicationError(error=err.data['error'], context=err.data['context']) + 971 case 5: + 972 return SmtSolverError(error=err.data['error'], pattern=kore_term(err.data['term'])) + 973 case 8: + 974 return InvalidModuleError(error=err.data['error'], context=err.data.get('context')) + 975 case 9: + 976 return DuplicateModuleError(module_name=err.data) + 977 case _: + 978 return DefaultError(message=err.message, code=err.code, data=err.data) + 979 + 980 @staticmethod + 981 def _state(pattern: Pattern) -> dict[str, Any]: + 982 return { + 983 'format': 'KORE', + 984 'version': KoreClient._KORE_JSON_VERSION, + 985 'term': pattern.dict, + 986 } + 987 +
+[docs] + 988 def execute( + 989 self, + 990 pattern: Pattern, + 991 *, + 992 max_depth: int | None = None, + 993 assume_state_defined: bool | None = None, + 994 cut_point_rules: Iterable[str] | None = None, + 995 terminal_rules: Iterable[str] | None = None, + 996 moving_average_step_timeout: bool | None = None, + 997 step_timeout: int | None = None, + 998 module_name: str | None = None, + 999 log_successful_rewrites: bool | None = None, +1000 log_failed_rewrites: bool | None = None, +1001 log_timing: bool | None = None, +1002 ) -> ExecuteResult: +1003 params = filter_none( +1004 { +1005 'max-depth': max_depth, +1006 'assume-state-defined': assume_state_defined, +1007 'cut-point-rules': list(cut_point_rules) if cut_point_rules is not None else None, +1008 'terminal-rules': list(terminal_rules) if terminal_rules is not None else None, +1009 'moving-average-step-timeout': moving_average_step_timeout, +1010 'step-timeout': step_timeout, +1011 'module': module_name, +1012 'state': self._state(pattern), +1013 'log-successful-rewrites': log_successful_rewrites, +1014 'log-failed-rewrites': log_failed_rewrites, +1015 'log-timing': log_timing, +1016 } +1017 ) +1018 +1019 result = self._request('execute', **params) +1020 return ExecuteResult.from_dict(result)
+ +1021 +
+[docs] +1022 def implies( +1023 self, +1024 antecedent: Pattern, +1025 consequent: Pattern, +1026 *, +1027 module_name: str | None = None, +1028 log_timing: bool | None = None, +1029 ) -> ImpliesResult: +1030 params = filter_none( +1031 { +1032 'antecedent': self._state(antecedent), +1033 'consequent': self._state(consequent), +1034 'module': module_name, +1035 'log-timing': log_timing, +1036 } +1037 ) +1038 +1039 result = self._request('implies', **params) +1040 return ImpliesResult.from_dict(result)
+ +1041 +
+[docs] +1042 def simplify( +1043 self, +1044 pattern: Pattern, +1045 *, +1046 module_name: str | None = None, +1047 log_timing: bool | None = None, +1048 ) -> tuple[Pattern, tuple[LogEntry, ...]]: +1049 params = filter_none( +1050 { +1051 'state': self._state(pattern), +1052 'module': module_name, +1053 'log-timing': log_timing, +1054 } +1055 ) +1056 +1057 result = self._request('simplify', **params) +1058 logs = tuple(LogEntry.from_dict(l) for l in result['logs']) if 'logs' in result else () +1059 return kore_term(result['state']), logs
+ +1060 +
+[docs] +1061 def get_model(self, pattern: Pattern, module_name: str | None = None) -> GetModelResult: +1062 params = filter_none( +1063 { +1064 'state': self._state(pattern), +1065 'module': module_name, +1066 } +1067 ) +1068 +1069 result = self._request('get-model', **params) +1070 return GetModelResult.from_dict(result)
+ +1071 +
+[docs] +1072 def add_module(self, module: Module, *, name_as_id: bool | None = None) -> str: +1073 params = filter_none( +1074 { +1075 'module': module.text, +1076 'name-as-id': name_as_id, +1077 } +1078 ) +1079 result = self._request('add-module', **params) +1080 return result['module']
+
+ +1081 +1082 +
+[docs] +1083class KoreServerArgs(TypedDict, total=False): +1084 kompiled_dir: Required[str | Path] +1085 module_name: Required[str] +1086 port: int | None +1087 command: str | Iterable[str] | None +1088 smt_timeout: int | None +1089 smt_retry_limit: int | None +1090 smt_reset_interval: int | None +1091 smt_tactic: str | None +1092 log_axioms_file: Path | None +1093 haskell_log_format: KoreExecLogFormat | None +1094 haskell_log_entries: Iterable[str] | None +1095 bug_report: BugReport | None +1096 haskell_threads: int | None
+ +1097 +1098 +
+[docs] +1099class KoreServerInfo(NamedTuple): +1100 pid: int +1101 host: str +1102 port: int
+ +1103 +1104 +
+[docs] +1105class KoreServer(ContextManager['KoreServer']): +1106 _proc: Popen +1107 _info: KoreServerInfo +1108 +1109 _kompiled_dir: Path +1110 _definition_file: Path +1111 _module_name: str +1112 _port: int +1113 _command: list[str] +1114 _smt_timeout: int | None +1115 _smt_retry_limit: int | None +1116 _smt_reset_interval: int | None +1117 _smt_tactic: str | None +1118 _log_axioms_file: Path | None +1119 _haskell_log_format: KoreExecLogFormat +1120 _haskell_log_entries: list[str] +1121 _haskell_threads: int | None +1122 +1123 _bug_report: BugReport | None +1124 +1125 def __init__(self, args: KoreServerArgs): +1126 self._kompiled_dir = Path(args['kompiled_dir']) +1127 self._definition_file = self._kompiled_dir / 'definition.kore' +1128 self._module_name = args['module_name'] +1129 self._port = args.get('port') or 0 +1130 +1131 if not (command := args.get('command')): +1132 self._command = ['kore-rpc'] +1133 elif type(command) is str: +1134 self._command = command.split() +1135 else: +1136 self._command = list(command) +1137 +1138 self._smt_timeout = args.get('smt_timeout') +1139 self._smt_retry_limit = args.get('smt_retry_limit') +1140 self._smt_reset_interval = args.get('smt_reset_interval') +1141 self._smt_tactic = args.get('smt_tactic') +1142 self._log_axioms_file = args.get('log_axioms_file') +1143 +1144 self._haskell_log_format = args.get('haskell_log_format') or KoreExecLogFormat.ONELINE +1145 +1146 if haskell_log_entries := args.get('haskell_log_entries'): +1147 self._haskell_log_entries = list(haskell_log_entries) +1148 else: +1149 self._haskell_log_entries = [] +1150 +1151 self._haskell_threads = args.get('haskell_threads') or 1 +1152 +1153 self._bug_report = args.get('bug_report') +1154 +1155 self._validate() +1156 self.start() +1157 +1158 @property +1159 def pid(self) -> int: +1160 return self._info.pid +1161 +1162 @property +1163 def host(self) -> str: +1164 return self._info.host +1165 +1166 @property +1167 def port(self) -> int: +1168 return self._info.port +1169 +1170 def __enter__(self) -> KoreServer: +1171 return self +1172 +1173 def __exit__(self, *args: Any) -> None: +1174 self.close() +1175 +
+[docs] +1176 def start(self) -> None: +1177 if self._bug_report: +1178 self._populate_bug_report(self._bug_report) +1179 +1180 cli_args = self._cli_args() +1181 +1182 new_env = os.environ.copy() +1183 new_env['GHCRTS'] = f'-N{self._haskell_threads}' +1184 +1185 _LOGGER.info(f'Starting KoreServer: {" ".join(cli_args)}') +1186 self._proc = Popen(cli_args, env=new_env) +1187 pid = self._proc.pid +1188 host, port = self._get_host_and_port(pid) +1189 if self._port: +1190 assert port == self._port +1191 self._info = KoreServerInfo(pid=pid, host=host, port=port) +1192 _LOGGER.info(f'KoreServer started: {self.host}:{self.port}, pid={self.pid}')
+ +1193 +
+[docs] +1194 def close(self) -> None: +1195 _LOGGER.info(f'Stopping KoreServer: {self.host}:{self.port}, pid={self.pid}') +1196 if '--solver-transcript' in self._command: +1197 self._proc.send_signal(SIGINT) +1198 else: +1199 self._proc.terminate() +1200 self._proc.wait() +1201 _LOGGER.info(f'KoreServer stopped: {self.host}:{self.port}, pid={self.pid}')
+ +1202 +1203 def _validate(self) -> None: +1204 def _check_none_or_positive(n: int | None, param_name: str) -> None: +1205 if n is not None and n <= 0: +1206 raise ValueError(f'Expected positive integer for: {param_name}, got: {n}') +1207 +1208 check_dir_path(self._kompiled_dir) +1209 check_file_path(self._definition_file) +1210 _check_none_or_positive(self._smt_timeout, 'smt_timeout') +1211 _check_none_or_positive(self._smt_retry_limit, 'smt_retry_limit') +1212 _check_none_or_positive(self._smt_reset_interval, 'smt_reset_interval') +1213 +1214 def _cli_args(self) -> list[str]: +1215 server_args = ['--module', self._module_name, '--server-port', str(self._port)] +1216 res = list(self._command) +1217 res += [str(self._definition_file)] +1218 res += server_args +1219 res += self._extra_args() +1220 return res +1221 +1222 def _extra_args(self) -> list[str]: +1223 """Command line arguments that are intended to be included in the bug report.""" +1224 smt_server_args = [] +1225 if self._smt_timeout: +1226 smt_server_args += ['--smt-timeout', str(self._smt_timeout)] +1227 if self._smt_retry_limit: +1228 smt_server_args += ['--smt-retry-limit', str(self._smt_retry_limit)] +1229 if self._smt_reset_interval: +1230 smt_server_args += ['--smt-reset-interval', str(self._smt_reset_interval)] +1231 if self._smt_tactic: +1232 smt_server_args += ['--smt-tactic', self._smt_tactic] +1233 +1234 if self._log_axioms_file: +1235 haskell_log_args = [ +1236 '--log', +1237 str(self._log_axioms_file), +1238 '--log-format', +1239 self._haskell_log_format.value, +1240 '--log-entries', +1241 ','.join(self._haskell_log_entries), +1242 ] +1243 else: +1244 haskell_log_args = [] +1245 +1246 return smt_server_args + haskell_log_args +1247 +1248 def _populate_bug_report(self, bug_report: BugReport) -> None: +1249 prog_name = self._command[0] +1250 bug_report.add_file(self._definition_file, Path('definition.kore')) +1251 version_info = run_process((prog_name, '--version'), pipe_stderr=True, logger=_LOGGER).stdout.strip() +1252 bug_report.add_file_contents(version_info, Path('server_version.txt')) +1253 server_instance = { +1254 'exe': prog_name, +1255 'module': self._module_name, +1256 'extra_args': self._command[1:] + self._extra_args(), +1257 } +1258 bug_report.add_file_contents(json.dumps(server_instance), Path('server_instance.json')) +1259 +1260 @staticmethod +1261 def _get_host_and_port(pid: int) -> tuple[str, int]: +1262 proc = Process(pid) +1263 while not proc.connections(): +1264 sleep(0.01) +1265 conns = proc.connections() +1266 assert len(conns) == 1 +1267 conn = conns[0] +1268 return conn.laddr
+ +1269 +1270 +
+[docs] +1271class FallbackReason(Enum): +1272 BRANCHING = 'Branching' +1273 STUCK = 'Stuck' +1274 ABORTED = 'Aborted'
+ +1275 +1276 +
+[docs] +1277class BoosterServerArgs(KoreServerArgs, total=False): +1278 llvm_kompiled_dir: Required[str | Path] +1279 fallback_on: Iterable[str | FallbackReason] | None +1280 interim_simplification: int | None +1281 no_post_exec_simplify: bool | None +1282 log_context: Iterable[str] | None +1283 not_log_context: Iterable[str] | None
+ +1284 +1285 +
+[docs] +1286class BoosterServer(KoreServer): +1287 _llvm_kompiled_dir: Path +1288 _dylib: Path +1289 _llvm_definition: Path +1290 _llvm_dt: Path +1291 +1292 _fallback_on: list[FallbackReason] | None +1293 _interim_simplification: int | None +1294 _no_post_exec_simplify: bool +1295 _log_context: list[str] +1296 _not_log_context: list[str] +1297 +1298 def __init__(self, args: BoosterServerArgs): +1299 self._llvm_kompiled_dir = Path(args['llvm_kompiled_dir']) +1300 +1301 ext: str +1302 match sys.platform: +1303 case 'linux': +1304 ext = 'so' +1305 case 'darwin': +1306 ext = 'dylib' +1307 case _: +1308 raise ValueError('Unsupported platform: {sys.platform}') +1309 +1310 self._dylib = self._llvm_kompiled_dir / f'interpreter.{ext}' +1311 self._llvm_definition = self._llvm_kompiled_dir / 'definition.kore' +1312 self._llvm_dt = self._llvm_kompiled_dir / 'dt' +1313 +1314 if fallback_on := args.get('fallback_on'): +1315 self._fallback_on = [FallbackReason(reason) for reason in fallback_on] +1316 else: +1317 self._fallback_on = None +1318 +1319 self._interim_simplification = args.get('interim_simplification') +1320 self._no_post_exec_simplify = bool(args.get('no_post_exec_simplify')) +1321 self._log_context = list(args.get('log_context') or []) +1322 self._not_log_context = list(args.get('not_log_context') or []) +1323 +1324 if not args.get('command'): +1325 args['command'] = 'kore-rpc-booster' +1326 +1327 super().__init__(args) +1328 +1329 def _validate(self) -> None: +1330 check_dir_path(self._llvm_kompiled_dir) +1331 check_file_path(self._dylib) +1332 check_file_path(self._llvm_definition) +1333 check_dir_path(self._llvm_dt) +1334 +1335 if self._fallback_on is not None and not self._fallback_on: +1336 raise ValueError("'fallback_on' must not be empty") +1337 +1338 if self._interim_simplification and self._interim_simplification < 0: +1339 raise ValueError(f"'interim_simplification' must not be negative, got: {self._interim_simplification}") +1340 +1341 def _extra_args(self) -> list[str]: +1342 res = super()._extra_args() +1343 res += ['--llvm-backend-library', str(self._dylib)] +1344 if self._fallback_on is not None: +1345 res += ['--fallback-on', ','.join(reason.value for reason in self._fallback_on)] +1346 if self._interim_simplification is not None: +1347 res += ['--interim-simplification', str(self._interim_simplification)] +1348 if self._no_post_exec_simplify: +1349 res += ['--no-post-exec-simplify'] +1350 res += [arg for glob in self._log_context for arg in ['--log-context', glob]] +1351 res += [arg for glob in self._not_log_context for arg in ['--not-log-context', glob]] +1352 return res +1353 +1354 def _populate_bug_report(self, bug_report: BugReport) -> None: +1355 super()._populate_bug_report(bug_report) +1356 bug_report.add_file(self._llvm_definition, Path('llvm_definition/definition.kore')) +1357 llvm_version = run_process('llvm-backend-version', pipe_stderr=True, logger=_LOGGER).stdout.strip() +1358 bug_report.add_file_contents(llvm_version, Path('llvm_version.txt'))
+ +1359 +1360 +
+[docs] +1361def kore_server( +1362 definition_dir: str | Path, +1363 module_name: str, +1364 *, +1365 port: int | None = None, +1366 command: str | Iterable[str] | None = None, +1367 smt_timeout: int | None = None, +1368 smt_retry_limit: int | None = None, +1369 smt_tactic: str | None = None, +1370 log_axioms_file: Path | None = None, +1371 haskell_log_format: KoreExecLogFormat | None = None, +1372 haskell_log_entries: Iterable[str] | None = None, +1373 haskell_threads: int | None = None, +1374 # booster +1375 llvm_definition_dir: Path | None = None, +1376 fallback_on: Iterable[str | FallbackReason] | None = None, +1377 interim_simplification: int | None = None, +1378 no_post_exec_simplify: bool | None = None, +1379 # --- +1380 bug_report: BugReport | None = None, +1381) -> KoreServer: +1382 kore_args: KoreServerArgs = { +1383 'kompiled_dir': definition_dir, +1384 'module_name': module_name, +1385 'port': port, +1386 'command': command, +1387 'smt_timeout': smt_timeout, +1388 'smt_retry_limit': smt_retry_limit, +1389 'log_axioms_file': log_axioms_file, +1390 'smt_tactic': smt_tactic, +1391 'haskell_log_format': haskell_log_format, +1392 'haskell_log_entries': haskell_log_entries, +1393 'haskell_threads': haskell_threads, +1394 'bug_report': bug_report, +1395 } +1396 if llvm_definition_dir: +1397 booster_args: BoosterServerArgs = { +1398 'llvm_kompiled_dir': llvm_definition_dir, +1399 'fallback_on': fallback_on, +1400 'interim_simplification': interim_simplification, +1401 'no_post_exec_simplify': no_post_exec_simplify, +1402 **kore_args, +1403 } +1404 return BoosterServer(booster_args) +1405 return KoreServer(kore_args)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/syntax.html b/pyk/_modules/pyk/kore/syntax.html new file mode 100644 index 00000000000..242a358b456 --- /dev/null +++ b/pyk/_modules/pyk/kore/syntax.html @@ -0,0 +1,2987 @@ + + + + + + pyk.kore.syntax — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.syntax

+   1from __future__ import annotations
+   2
+   3import json
+   4import re
+   5from abc import ABC, abstractmethod
+   6from collections.abc import Iterable
+   7from dataclasses import dataclass
+   8from functools import cached_property
+   9from io import StringIO
+  10from typing import ClassVar  # noqa: TC003
+  11from typing import TYPE_CHECKING, final
+  12
+  13from ..dequote import enquoted
+  14from ..utils import check_type
+  15
+  16if TYPE_CHECKING:
+  17    from collections.abc import Callable, Iterator, Mapping
+  18    from typing import IO, Any, Final, TypeVar
+  19
+  20    T = TypeVar('T', bound='Kore')
+  21    P = TypeVar('P', bound='Pattern')
+  22    WS = TypeVar('WS', bound='WithSort')
+  23    WA = TypeVar('WA', bound='WithAttrs')
+  24    ML = TypeVar('ML', bound='MLPattern')
+  25
+  26
+
+[docs] + 27@final + 28@dataclass(frozen=True) + 29class Id: + 30 value: str + 31 + 32 _PATTERN_STR: ClassVar = "[a-zA-Z][0-9a-zA-Z'-]*" + 33 _PATTERN: ClassVar = re.compile(_PATTERN_STR) + 34 + 35 def __init__(self, value: str): + 36 self._check(value) + 37 object.__setattr__(self, 'value', value) + 38 + 39 @staticmethod + 40 def _check(value: str) -> None: + 41 if not Id._PATTERN.fullmatch(value): + 42 raise ValueError(f'Expected identifier, got: {value}')
+ + 43 + 44 +
+[docs] + 45@final + 46@dataclass(frozen=True) + 47class SymbolId: + 48 value: str + 49 + 50 _PATTERN: ClassVar = re.compile(fr'\\?{Id._PATTERN_STR}') + 51 + 52 def __init__(self, value: str): + 53 self._check(value) + 54 object.__setattr__(self, 'value', value) + 55 + 56 @staticmethod + 57 def _check(value: str) -> None: + 58 if not SymbolId._PATTERN.fullmatch(value): + 59 raise ValueError(f'Expected symbol identifier, got: {value}')
+ + 60 + 61 +
+[docs] + 62@final + 63@dataclass(frozen=True) + 64class SetVarId: + 65 value: str + 66 + 67 _PATTERN: ClassVar = re.compile(f'@{Id._PATTERN_STR}') + 68 + 69 def __init__(self, value: str): + 70 self._check(value) + 71 object.__setattr__(self, 'value', value) + 72 + 73 @staticmethod + 74 def _check(value: str) -> None: + 75 if not SetVarId._PATTERN.fullmatch(value): + 76 raise ValueError(f'Expected set variable identifier, got: {value}')
+ + 77 + 78 + 79# TODO Constructor @overloads + 80 + 81 +
+[docs] + 82class Kore(ABC): + 83 @property + 84 def text(self) -> str: + 85 str_io = StringIO() + 86 self.write(str_io) + 87 return str_io.getvalue() + 88 +
+[docs] + 89 @abstractmethod + 90 def write(self, output: IO[str]) -> None: ...
+
+ + 91 + 92 + 93def _write_sep_by_comma(kores: Iterable[Kore], output: IO[str]) -> None: + 94 first = True + 95 for kore in kores: + 96 if first: + 97 first = False + 98 kore.write(output) + 99 else: + 100 output.write(', ') + 101 kore.write(output) + 102 + 103 +
+[docs] + 104class Sort(Kore): + 105 name: str + 106 + 107 @property + 108 def json(self) -> str: + 109 return json.dumps(self.dict, sort_keys=True) + 110 + 111 @property + 112 @abstractmethod + 113 def dict(self) -> dict[str, Any]: ... + 114 +
+[docs] + 115 @staticmethod + 116 def from_dict(dct: Mapping[str, Any]) -> Sort: + 117 tag = dct['tag'] + 118 match tag: + 119 case 'SortVar': + 120 return SortVar(name=dct['name']) + 121 case 'SortApp': + 122 return SortApp(name=dct['name'], sorts=tuple(Sort.from_dict(arg) for arg in dct['args'])) + 123 case _: + 124 raise ValueError(f'Unknown Sort tag value: {tag!r}')
+ + 125 +
+[docs] + 126 @staticmethod + 127 def from_json(s: str) -> Sort: + 128 return Sort.from_dict(json.loads(s))
+
+ + 129 + 130 +
+[docs] + 131class WithSort(ABC): + 132 sort: Sort + 133 +
+[docs] + 134 @abstractmethod + 135 def let_sort(self: WS, sort: Sort) -> WS: ...
+ + 136 +
+[docs] + 137 def map_sort(self: WS, f: Callable[[Sort], Sort]) -> WS: + 138 return self.let_sort(f(self.sort))
+
+ + 139 + 140 +
+[docs] + 141@final + 142@dataclass(frozen=True) + 143class SortVar(Sort): + 144 name: str + 145 + 146 def __init__(self, name: str | Id): + 147 if isinstance(name, str): + 148 name = Id(name) + 149 + 150 object.__setattr__(self, 'name', name.value) + 151 +
+[docs] + 152 def let(self, *, name: str | Id | None = None) -> SortVar: + 153 name = name if name is not None else self.name + 154 return SortVar(name=name)
+ + 155 + 156 @property + 157 def dict(self) -> dict[str, Any]: + 158 return {'tag': 'SortVar', 'name': self.name} + 159 +
+[docs] + 160 def write(self, output: IO[str]) -> None: + 161 output.write(self.name)
+
+ + 162 + 163 +
+[docs] + 164@final + 165@dataclass(frozen=True) + 166class SortApp(Sort): + 167 name: str + 168 sorts: tuple[Sort, ...] + 169 + 170 def __init__(self, name: str | Id, sorts: Iterable[Sort] = ()): + 171 if isinstance(name, str): + 172 name = Id(name) + 173 + 174 object.__setattr__(self, 'name', name.value) + 175 object.__setattr__(self, 'sorts', tuple(sorts)) + 176 +
+[docs] + 177 def let(self, *, name: str | Id | None = None, sorts: Iterable[Sort] | None = None) -> SortApp: + 178 name = name if name is not None else self.name + 179 sorts = sorts if sorts is not None else self.sorts + 180 return SortApp(name=name, sorts=sorts)
+ + 181 + 182 @property + 183 def dict(self) -> dict[str, Any]: + 184 return {'tag': 'SortApp', 'name': self.name, 'args': [sort.dict for sort in self.sorts]} + 185 +
+[docs] + 186 def write(self, output: IO[str]) -> None: + 187 output.write(self.name) + 188 output.write('{') + 189 _write_sep_by_comma(self.sorts, output) + 190 output.write('}')
+
+ + 191 + 192 +
+[docs] + 193class Pattern(Kore): + 194 _TAGS: Final[dict[str, str | list[str]]] = { + 195 # Helper structure for from_dict(dct) + 196 # keys are Pattern subclass names, which coincides with the tag 'field' in dct + 197 # list value indicates fields in dct that transform to Pattern + 198 # str value indicates a field in dct that transforms to list[Pattern] + 199 'String': [], + 200 'EVar': [], + 201 'SVar': [], + 202 'App': 'args', + 203 'Top': [], + 204 'Bottom': [], + 205 'Not': ['arg'], + 206 'Implies': ['first', 'second'], + 207 'Iff': ['first', 'second'], + 208 'And': 'patterns', + 209 'Or': 'patterns', + 210 'Exists': ['arg'], + 211 'Forall': ['arg'], + 212 'Mu': ['arg'], + 213 'Nu': ['arg'], + 214 'Ceil': ['arg'], + 215 'Floor': ['arg'], + 216 'Equals': ['first', 'second'], + 217 'In': ['first', 'second'], + 218 'Next': ['dest'], + 219 'Rewrites': ['source', 'dest'], + 220 'DV': [], + 221 'LeftAssoc': 'argss', + 222 'RightAssoc': 'argss', + 223 } + 224 +
+[docs] + 225 @staticmethod + 226 def from_dict(dct: Mapping[str, Any]) -> Pattern: + 227 stack: list = [dct, Pattern._extract_dicts(dct), []] + 228 while True: + 229 patterns = stack[-1] + 230 dcts = stack[-2] + 231 dct = stack[-3] + 232 idx = len(patterns) - len(dcts) + 233 if not idx: + 234 stack.pop() + 235 stack.pop() + 236 stack.pop() + 237 cls = globals()[dct['tag']] + 238 pattern = cls._from_dict(dct, patterns) + 239 if not stack: + 240 return pattern + 241 stack[-1].append(pattern) + 242 else: + 243 dct = dcts[idx] + 244 stack.append(dct) + 245 stack.append(Pattern._extract_dicts(dct)) + 246 stack.append([])
+ + 247 + 248 @staticmethod + 249 def _extract_dicts(dct: Mapping[str, Any]) -> list[Mapping[str, Any]]: + 250 keys = Pattern._TAGS[dct['tag']] + 251 return dct[keys] if isinstance(keys, str) else [dct[key] for key in keys] + 252 +
+[docs] + 253 @staticmethod + 254 def from_json(s: str) -> Pattern: + 255 return Pattern.from_dict(json.loads(s))
+ + 256 + 257 @classmethod + 258 @abstractmethod + 259 def _from_dict(cls: type[P], dct: Mapping[str, Any], patterns: list[Pattern]) -> P: ... + 260 + 261 @property + 262 def json(self) -> str: + 263 return json.dumps(self.dict, sort_keys=True) + 264 + 265 @abstractmethod + 266 def _dict(self, dicts: list) -> dict[str, Any]: ... + 267 + 268 @classmethod + 269 @abstractmethod + 270 def _tag(cls) -> str: # TODO This should be an abstract immutable class attribute for efficiency + 271 ... + 272 + 273 @final + 274 @property + 275 def dict(self) -> dict[str, Any]: + 276 stack: list = [ + 277 self, + 278 self.app.args if isinstance(self, Assoc) else self.patterns, + 279 [], + 280 ] + 281 + 282 while True: + 283 dicts = stack[-1] + 284 patterns = stack[-2] + 285 pattern = stack[-3] + 286 idx = len(dicts) - len(patterns) + 287 if not idx: + 288 stack.pop() + 289 stack.pop() + 290 stack.pop() + 291 dct = pattern._dict(dicts) + 292 if not stack: + 293 return dct + 294 stack[-1].append(dct) + 295 else: + 296 pattern = patterns[idx] + 297 stack.append(pattern) + 298 stack.append(pattern.app.args if isinstance(pattern, Assoc) else pattern.patterns) + 299 stack.append([]) + 300 + 301 @property + 302 @abstractmethod + 303 def patterns(self) -> tuple[Pattern, ...]: ... + 304 +
+[docs] + 305 @abstractmethod + 306 def let_patterns(self: P, patterns: Iterable[Pattern]) -> P: ...
+ + 307 +
+[docs] + 308 def map_patterns(self: P, f: Callable[[Pattern], Pattern]) -> P: + 309 return self.let_patterns(patterns=(f(pattern) for pattern in self.patterns))
+ + 310 +
+[docs] + 311 def bottom_up(self, f: Callable[[Pattern], Pattern]) -> Pattern: + 312 stack: list = [self, []] + 313 while True: + 314 patterns = stack[-1] + 315 pattern = stack[-2] + 316 idx = len(patterns) - len(pattern.patterns) + 317 if not idx: + 318 stack.pop() + 319 stack.pop() + 320 pattern = f(pattern.let_patterns(patterns)) + 321 if not stack: + 322 return pattern + 323 stack[-1].append(pattern) + 324 else: + 325 stack.append(pattern.patterns[idx]) + 326 stack.append([])
+ + 327 +
+[docs] + 328 def top_down(self, f: Callable[[Pattern], Pattern]) -> Pattern: + 329 stack: list = [f(self), []] + 330 while True: + 331 patterns = stack[-1] + 332 pattern = stack[-2] + 333 idx = len(patterns) - len(pattern.patterns) + 334 if not idx: + 335 stack.pop() + 336 stack.pop() + 337 pattern = pattern.let_patterns(patterns) + 338 if not stack: + 339 return pattern + 340 stack[-1].append(pattern) + 341 else: + 342 stack.append(f(pattern.patterns[idx])) + 343 stack.append([])
+
+ + 344 + 345 +
+[docs] + 346class VarPattern(Pattern, WithSort): + 347 __match_args__ = ('name', 'sort') + 348 + 349 name: str + 350 sort: Sort + 351 + 352 @property + 353 def patterns(self) -> tuple[()]: + 354 return () + 355 + 356 def _dict(self, dicts: list) -> dict[str, Any]: + 357 assert not dicts + 358 return {'tag': self._tag(), 'name': self.name, 'sort': self.sort.dict} + 359 +
+[docs] + 360 def write(self, output: IO[str]) -> None: + 361 output.write(self.name) + 362 output.write(' : ') + 363 self.sort.write(output)
+
+ + 364 + 365 +
+[docs] + 366@final + 367@dataclass(frozen=True) + 368class EVar(VarPattern): + 369 name: str + 370 sort: Sort + 371 + 372 def __init__(self, name: str | Id, sort: Sort): + 373 if isinstance(name, str): + 374 name = Id(name) + 375 + 376 object.__setattr__(self, 'name', name.value) + 377 object.__setattr__(self, 'sort', sort) + 378 +
+[docs] + 379 def let(self, *, name: str | Id | None = None, sort: Sort | None = None) -> EVar: + 380 name = name if name is not None else self.name + 381 sort = sort if sort is not None else self.sort + 382 return EVar(name=name, sort=sort)
+ + 383 +
+[docs] + 384 def let_sort(self, sort: Sort) -> EVar: + 385 return self.let(sort=sort)
+ + 386 +
+[docs] + 387 def let_patterns(self, patterns: Iterable[Pattern]) -> EVar: + 388 () = patterns + 389 return self
+ + 390 + 391 @classmethod + 392 def _tag(cls) -> str: + 393 return 'EVar' + 394 + 395 @classmethod + 396 def _from_dict(cls: type[EVar], dct: Mapping[str, Any], patterns: list[Pattern]) -> EVar: + 397 assert not patterns + 398 return EVar(name=dct['name'], sort=Sort.from_dict(dct['sort']))
+ + 399 + 400 +
+[docs] + 401@final + 402@dataclass(frozen=True) + 403class SVar(VarPattern): + 404 name: str + 405 sort: Sort + 406 + 407 def __init__(self, name: str | SetVarId, sort: Sort): + 408 if isinstance(name, str): + 409 name = SetVarId(name) + 410 + 411 object.__setattr__(self, 'name', name.value) + 412 object.__setattr__(self, 'sort', sort) + 413 +
+[docs] + 414 def let(self, *, name: str | SetVarId | None = None, sort: Sort | None = None) -> SVar: + 415 name = name if name is not None else self.name + 416 sort = sort if sort is not None else self.sort + 417 return SVar(name=name, sort=sort)
+ + 418 +
+[docs] + 419 def let_sort(self, sort: Sort) -> SVar: + 420 return self.let(sort=sort)
+ + 421 +
+[docs] + 422 def let_patterns(self, patterns: Iterable[Pattern]) -> SVar: + 423 () = patterns + 424 return self
+ + 425 + 426 @classmethod + 427 def _tag(cls) -> str: + 428 return 'SVar' + 429 + 430 @classmethod + 431 def _from_dict(cls: type[SVar], dct: Mapping[str, Any], patterns: list[Pattern]) -> SVar: + 432 assert not patterns + 433 return SVar(name=dct['name'], sort=Sort.from_dict(dct['sort']))
+ + 434 + 435 +
+[docs] + 436@final + 437@dataclass(frozen=True) + 438class String(Pattern): + 439 value: str + 440 +
+[docs] + 441 def let(self, *, value: str | None = None) -> String: + 442 value = value if value is not None else self.value + 443 return String(value=value)
+ + 444 +
+[docs] + 445 def let_patterns(self, patterns: Iterable[Pattern]) -> String: + 446 () = patterns + 447 return self
+ + 448 + 449 @classmethod + 450 def _tag(cls) -> str: + 451 return 'String' + 452 + 453 @classmethod + 454 def _from_dict(cls: type[String], dct: Mapping[str, Any], patterns: list[Pattern]) -> String: + 455 assert not patterns + 456 return String(value=dct['value']) + 457 + 458 @property + 459 def patterns(self) -> tuple[()]: + 460 return () + 461 + 462 def _dict(self, dicts: list) -> dict[str, Any]: + 463 assert not dicts + 464 return {'tag': 'String', 'value': self.value} + 465 +
+[docs] + 466 def write(self, output: IO[str]) -> None: + 467 output.write('"') + 468 for char in enquoted(self.value): + 469 output.write(char) + 470 output.write('"')
+
+ + 471 + 472 +
+[docs] + 473@final + 474@dataclass(frozen=True) + 475class App(Pattern): + 476 symbol: str + 477 sorts: tuple[Sort, ...] + 478 args: tuple[Pattern, ...] + 479 + 480 def __init__(self, symbol: str | SymbolId, sorts: Iterable[Sort] = (), args: Iterable[Pattern] = ()): + 481 if isinstance(symbol, str): + 482 symbol = SymbolId(symbol) + 483 + 484 object.__setattr__(self, 'symbol', symbol.value) + 485 object.__setattr__(self, 'sorts', tuple(sorts)) + 486 object.__setattr__(self, 'args', tuple(args)) + 487 +
+[docs] + 488 def let( + 489 self, + 490 *, + 491 symbol: str | SymbolId | None = None, + 492 sorts: Iterable | None = None, + 493 args: Iterable | None = None, + 494 ) -> App: + 495 symbol = symbol if symbol is not None else self.symbol + 496 sorts = sorts if sorts is not None else self.sorts + 497 args = args if args is not None else self.args + 498 return App(symbol=symbol, sorts=sorts, args=args)
+ + 499 +
+[docs] + 500 def let_patterns(self, patterns: Iterable[Pattern]) -> App: + 501 return self.let(args=patterns)
+ + 502 + 503 @classmethod + 504 def _tag(cls) -> str: + 505 return 'App' + 506 + 507 @classmethod + 508 def _from_dict(cls: type[App], dct: Mapping[str, Any], patterns: list[Pattern]) -> App: + 509 return App( + 510 symbol=dct['name'], + 511 sorts=tuple(Sort.from_dict(sort) for sort in dct['sorts']), + 512 args=patterns, + 513 ) + 514 + 515 @property + 516 def patterns(self) -> tuple[Pattern, ...]: + 517 return self.args + 518 + 519 def _dict(self, dicts: list) -> dict[str, Any]: + 520 return { + 521 'tag': 'App', + 522 'name': self.symbol, + 523 'sorts': [sort.dict for sort in self.sorts], + 524 'args': dicts, + 525 } + 526 +
+[docs] + 527 def write(self, output: IO[str]) -> None: + 528 output.write(self.symbol) + 529 output.write('{') + 530 _write_sep_by_comma(self.sorts, output) + 531 output.write('}(') + 532 _write_sep_by_comma(self.args, output) + 533 output.write(')')
+
+ + 534 + 535 +
+[docs] + 536class MLPattern(Pattern): +
+[docs] + 537 @classmethod + 538 @abstractmethod + 539 def symbol(cls) -> str: ...
+ + 540 +
+[docs] + 541 @classmethod + 542 def of(cls: type[ML], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> ML: + 543 actual_cls = ML_SYMBOLS.get(symbol) + 544 + 545 if not actual_cls: + 546 raise ValueError(f'Invalid MLPattern symbol: {symbol}') + 547 + 548 if not issubclass(actual_cls, cls): + 549 raise ValueError(f'Expected {cls.__name__} symbol, found: {symbol}') + 550 + 551 return actual_cls.of(symbol, sorts, patterns)
+ + 552 + 553 @classmethod + 554 def _check_symbol(cls: type[ML], symbol: str) -> None: + 555 if symbol != cls.symbol(): + 556 raise ValueError(f'Expected "symbol" value: {cls.symbol()}, got: {symbol}') + 557 + 558 @property + 559 @abstractmethod + 560 def sorts(self) -> tuple[Sort, ...]: ... + 561 + 562 @property + 563 def ctor_patterns(self) -> tuple[Pattern, ...]: + 564 """Return patterns used to construct the term with `of`. + 565 + 566 Except for `Assoc`, `DV`, `MLFixpoint` and `MLQuant` this coincides with `patterns`. + 567 """ + 568 return self.patterns + 569 +
+[docs] + 570 def write(self, output: IO[str]) -> None: + 571 output.write(self.symbol()) + 572 output.write('{') + 573 _write_sep_by_comma(self.sorts, output) + 574 output.write('}(') + 575 _write_sep_by_comma(self.ctor_patterns, output) + 576 output.write(')')
+
+ + 577 + 578 +
+[docs] + 579class MLConn(MLPattern, WithSort): + 580 @property + 581 def sorts(self) -> tuple[Sort]: + 582 return (self.sort,)
+ + 583 + 584 +
+[docs] + 585class NullaryConn(MLConn): + 586 def _dict(self, dicts: list) -> dict[str, Any]: + 587 assert not dicts + 588 return {'tag': self._tag(), 'sort': self.sort.dict} + 589 + 590 @property + 591 def patterns(self) -> tuple[()]: + 592 return ()
+ + 593 + 594 +
+[docs] + 595@final + 596@dataclass(frozen=True) + 597class Top(NullaryConn): + 598 sort: Sort + 599 +
+[docs] + 600 def let(self, *, sort: Sort | None = None) -> Top: + 601 sort = sort if sort is not None else self.sort + 602 return Top(sort=sort)
+ + 603 +
+[docs] + 604 def let_sort(self: Top, sort: Sort) -> Top: + 605 return self.let(sort=sort)
+ + 606 +
+[docs] + 607 def let_patterns(self, patterns: Iterable[Pattern]) -> Top: + 608 () = patterns + 609 return self
+ + 610 + 611 @classmethod + 612 def _tag(cls) -> str: + 613 return 'Top' + 614 +
+[docs] + 615 @classmethod + 616 def symbol(cls) -> str: + 617 return '\\top'
+ + 618 +
+[docs] + 619 @classmethod + 620 def of(cls: type[Top], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Top: + 621 cls._check_symbol(symbol) + 622 (sort,) = sorts + 623 () = patterns + 624 return Top(sort=sort)
+ + 625 + 626 @classmethod + 627 def _from_dict(cls: type[Top], dct: Mapping[str, Any], patterns: list[Pattern]) -> Top: + 628 assert not patterns + 629 return Top(sort=Sort.from_dict(dct['sort']))
+ + 630 + 631 +
+[docs] + 632@final + 633@dataclass(frozen=True) + 634class Bottom(NullaryConn): + 635 sort: Sort + 636 +
+[docs] + 637 def let(self, *, sort: Sort | None = None) -> Bottom: + 638 sort = sort if sort is not None else self.sort + 639 return Bottom(sort=sort)
+ + 640 +
+[docs] + 641 def let_sort(self: Bottom, sort: Sort) -> Bottom: + 642 return self.let(sort=sort)
+ + 643 +
+[docs] + 644 def let_patterns(self, patterns: Iterable[Pattern]) -> Bottom: + 645 () = patterns + 646 return self
+ + 647 + 648 @classmethod + 649 def _tag(cls) -> str: + 650 return 'Bottom' + 651 +
+[docs] + 652 @classmethod + 653 def symbol(cls) -> str: + 654 return '\\bottom'
+ + 655 +
+[docs] + 656 @classmethod + 657 def of(cls: type[Bottom], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Bottom: + 658 cls._check_symbol(symbol) + 659 (sort,) = sorts + 660 () = patterns + 661 return Bottom(sort=sort)
+ + 662 + 663 @classmethod + 664 def _from_dict(cls: type[Bottom], dct: Mapping[str, Any], patterns: list[Pattern]) -> Bottom: + 665 assert not patterns + 666 return Bottom(sort=Sort.from_dict(dct['sort']))
+ + 667 + 668 +
+[docs] + 669class UnaryConn(MLConn): + 670 pattern: Pattern + 671 + 672 @property + 673 def patterns(self) -> tuple[Pattern]: + 674 return (self.pattern,) + 675 + 676 def _dict(self, dicts: list) -> dict[str, Any]: + 677 (arg,) = dicts + 678 return {'tag': self._tag(), 'sort': self.sort.dict, 'arg': arg}
+ + 679 + 680 +
+[docs] + 681@final + 682@dataclass(frozen=True) + 683class Not(UnaryConn): + 684 sort: Sort + 685 pattern: Pattern + 686 +
+[docs] + 687 def let(self, *, sort: Sort | None = None, pattern: Pattern | None = None) -> Not: + 688 sort = sort if sort is not None else self.sort + 689 pattern = pattern if pattern is not None else self.pattern + 690 return Not(sort=sort, pattern=pattern)
+ + 691 +
+[docs] + 692 def let_sort(self: Not, sort: Sort) -> Not: + 693 return self.let(sort=sort)
+ + 694 +
+[docs] + 695 def let_patterns(self, patterns: Iterable[Pattern]) -> Not: + 696 (pattern,) = patterns + 697 return self.let(pattern=pattern)
+ + 698 + 699 @classmethod + 700 def _tag(cls) -> str: + 701 return 'Not' + 702 +
+[docs] + 703 @classmethod + 704 def symbol(cls) -> str: + 705 return '\\not'
+ + 706 +
+[docs] + 707 @classmethod + 708 def of(cls: type[Not], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Not: + 709 cls._check_symbol(symbol) + 710 (sort,) = sorts + 711 (pattern,) = patterns + 712 return Not(sort=sort, pattern=pattern)
+ + 713 + 714 @classmethod + 715 def _from_dict(cls: type[Not], dct: Mapping[str, Any], patterns: list[Pattern]) -> Not: + 716 (pattern,) = patterns + 717 return Not(sort=Sort.from_dict(dct['sort']), pattern=pattern)
+ + 718 + 719 +
+[docs] + 720class BinaryConn(MLConn): + 721 left: Pattern + 722 right: Pattern + 723 + 724 def __iter__(self) -> Iterator[Pattern]: + 725 yield self.left + 726 yield self.right + 727 + 728 @property + 729 def patterns(self) -> tuple[Pattern, Pattern]: + 730 return (self.left, self.right) + 731 + 732 def _dict(self, dicts: list) -> dict[str, Any]: + 733 first, second = dicts + 734 return {'tag': self._tag(), 'sort': self.sort.dict, 'first': first, 'second': second}
+ + 735 + 736 +
+[docs] + 737@final + 738@dataclass(frozen=True) + 739class Implies(BinaryConn): + 740 sort: Sort + 741 left: Pattern + 742 right: Pattern + 743 +
+[docs] + 744 def let( + 745 self, + 746 *, + 747 sort: Sort | None = None, + 748 left: Pattern | None = None, + 749 right: Pattern | None = None, + 750 ) -> Implies: + 751 sort = sort if sort is not None else self.sort + 752 left = left if left is not None else self.left + 753 right = right if right is not None else self.right + 754 return Implies(sort=sort, left=left, right=right)
+ + 755 +
+[docs] + 756 def let_sort(self: Implies, sort: Sort) -> Implies: + 757 return self.let(sort=sort)
+ + 758 +
+[docs] + 759 def let_patterns(self, patterns: Iterable[Pattern]) -> Implies: + 760 left, right = patterns + 761 return self.let(left=left, right=right)
+ + 762 + 763 @classmethod + 764 def _tag(cls) -> str: + 765 return 'Implies' + 766 +
+[docs] + 767 @classmethod + 768 def symbol(cls) -> str: + 769 return '\\implies'
+ + 770 +
+[docs] + 771 @classmethod + 772 def of(cls: type[Implies], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Implies: + 773 cls._check_symbol(symbol) + 774 (sort,) = sorts + 775 left, right = patterns + 776 return Implies(sort=sort, left=left, right=right)
+ + 777 + 778 @classmethod + 779 def _from_dict(cls: type[Implies], dct: Mapping[str, Any], patterns: list[Pattern]) -> Implies: + 780 left, right = patterns + 781 return Implies(sort=Sort.from_dict(dct['sort']), left=left, right=right)
+ + 782 + 783 +
+[docs] + 784@final + 785@dataclass(frozen=True) + 786class Iff(BinaryConn): + 787 sort: Sort + 788 left: Pattern + 789 right: Pattern + 790 +
+[docs] + 791 def let( + 792 self, + 793 *, + 794 sort: Sort | None = None, + 795 left: Pattern | None = None, + 796 right: Pattern | None = None, + 797 ) -> Iff: + 798 sort = sort if sort is not None else self.sort + 799 left = left if left is not None else self.left + 800 right = right if right is not None else self.right + 801 return Iff(sort=sort, left=left, right=right)
+ + 802 +
+[docs] + 803 def let_sort(self: Iff, sort: Sort) -> Iff: + 804 return self.let(sort=sort)
+ + 805 +
+[docs] + 806 def let_patterns(self, patterns: Iterable[Pattern]) -> Iff: + 807 left, right = patterns + 808 return self.let(left=left, right=right)
+ + 809 + 810 @classmethod + 811 def _tag(cls) -> str: + 812 return 'Iff' + 813 +
+[docs] + 814 @classmethod + 815 def symbol(cls) -> str: + 816 return '\\iff'
+ + 817 +
+[docs] + 818 @classmethod + 819 def of(cls: type[Iff], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Iff: + 820 cls._check_symbol(symbol) + 821 (sort,) = sorts + 822 left, right = patterns + 823 return Iff(sort=sort, left=left, right=right)
+ + 824 + 825 @classmethod + 826 def _from_dict(cls: type[Iff], dct: Mapping[str, Any], patterns: list[Pattern]) -> Iff: + 827 left, right = patterns + 828 return Iff(sort=Sort.from_dict(dct['sort']), left=left, right=right)
+ + 829 + 830 +
+[docs] + 831class MultiaryConn(MLConn): + 832 ops: tuple[Pattern, ...] + 833 + 834 def __iter__(self) -> Iterator[Pattern]: + 835 return iter(self.ops) + 836 + 837 @property + 838 def patterns(self) -> tuple[Pattern, ...]: + 839 return self.ops + 840 + 841 def _dict(self, dicts: list) -> dict[str, Any]: + 842 return {'tag': self._tag(), 'sort': self.sort.dict, 'patterns': dicts}
+ + 843 + 844 +
+[docs] + 845@final + 846@dataclass(frozen=True) + 847class And(MultiaryConn): + 848 sort: Sort + 849 ops: tuple[Pattern, ...] + 850 + 851 def __init__(self, sort: Sort, ops: Iterable[Pattern] = ()): + 852 object.__setattr__(self, 'sort', sort) + 853 object.__setattr__(self, 'ops', tuple(ops)) + 854 +
+[docs] + 855 def let( + 856 self, + 857 *, + 858 sort: Sort | None = None, + 859 ops: Iterable[Pattern] | None = None, + 860 ) -> And: + 861 sort = sort if sort is not None else self.sort + 862 ops = ops if ops is not None else self.ops + 863 return And(sort=sort, ops=ops)
+ + 864 +
+[docs] + 865 def let_sort(self, sort: Sort) -> And: + 866 return self.let(sort=sort)
+ + 867 +
+[docs] + 868 def let_patterns(self, patterns: Iterable[Pattern]) -> And: + 869 return self.let(ops=patterns)
+ + 870 + 871 @classmethod + 872 def _tag(cls) -> str: + 873 return 'And' + 874 +
+[docs] + 875 @classmethod + 876 def symbol(cls) -> str: + 877 return '\\and'
+ + 878 +
+[docs] + 879 @classmethod + 880 def of(cls: type[And], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> And: + 881 cls._check_symbol(symbol) + 882 (sort,) = sorts + 883 return And(sort=sort, ops=patterns)
+ + 884 + 885 @classmethod + 886 def _from_dict(cls: type[And], dct: Mapping[str, Any], patterns: list[Pattern]) -> And: + 887 return And(sort=Sort.from_dict(dct['sort']), ops=patterns)
+ + 888 + 889 +
+[docs] + 890@final + 891@dataclass(frozen=True) + 892class Or(MultiaryConn): + 893 sort: Sort + 894 ops: tuple[Pattern, ...] + 895 + 896 def __init__(self, sort: Sort, ops: Iterable[Pattern] = ()): + 897 object.__setattr__(self, 'sort', sort) + 898 object.__setattr__(self, 'ops', tuple(ops)) + 899 +
+[docs] + 900 def let( + 901 self, + 902 *, + 903 sort: Sort | None = None, + 904 ops: Iterable[Pattern] | None = None, + 905 ) -> Or: + 906 sort = sort if sort is not None else self.sort + 907 ops = ops if ops is not None else self.ops + 908 return Or(sort=sort, ops=ops)
+ + 909 +
+[docs] + 910 def let_sort(self, sort: Sort) -> Or: + 911 return self.let(sort=sort)
+ + 912 +
+[docs] + 913 def let_patterns(self, patterns: Iterable[Pattern]) -> Or: + 914 return self.let(ops=patterns)
+ + 915 + 916 @classmethod + 917 def _tag(cls) -> str: + 918 return 'Or' + 919 +
+[docs] + 920 @classmethod + 921 def symbol(cls) -> str: + 922 return '\\or'
+ + 923 +
+[docs] + 924 @classmethod + 925 def of(cls: type[Or], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Or: + 926 cls._check_symbol(symbol) + 927 (sort,) = sorts + 928 return Or(sort=sort, ops=patterns)
+ + 929 + 930 @classmethod + 931 def _from_dict(cls: type[Or], dct: Mapping[str, Any], patterns: list[Pattern]) -> Or: + 932 return Or(sort=Sort.from_dict(dct['sort']), ops=patterns)
+ + 933 + 934 +
+[docs] + 935class MLQuant(MLPattern, WithSort): + 936 sort: Sort + 937 var: EVar # TODO Should this be inlined to var_name, var_sort? + 938 pattern: Pattern + 939 + 940 @property + 941 def sorts(self) -> tuple[Sort]: + 942 return (self.sort,) + 943 + 944 @property + 945 def patterns(self) -> tuple[Pattern]: + 946 return (self.pattern,) + 947 + 948 @property + 949 def ctor_patterns(self) -> tuple[EVar, Pattern]: + 950 return (self.var, self.pattern) + 951 + 952 def _dict(self, dicts: list) -> dict[str, Any]: + 953 (arg,) = dicts + 954 return { + 955 'tag': self._tag(), + 956 'sort': self.sort.dict, + 957 'var': self.var.name, + 958 'varSort': self.var.sort.dict, + 959 'arg': arg, + 960 }
+ + 961 + 962 +
+[docs] + 963@final + 964@dataclass(frozen=True) + 965class Exists(MLQuant): + 966 sort: Sort + 967 var: EVar + 968 pattern: Pattern + 969 +
+[docs] + 970 def let( + 971 self, + 972 *, + 973 sort: Sort | None = None, + 974 var: EVar | None = None, + 975 pattern: Pattern | None = None, + 976 ) -> Exists: + 977 sort = sort if sort is not None else self.sort + 978 var = var if var is not None else self.var + 979 pattern = pattern if pattern is not None else self.pattern + 980 return Exists(sort=sort, var=var, pattern=pattern)
+ + 981 +
+[docs] + 982 def let_sort(self, sort: Sort) -> Exists: + 983 return self.let(sort=sort)
+ + 984 +
+[docs] + 985 def let_patterns(self, patterns: Iterable[Pattern]) -> Exists: + 986 (pattern,) = patterns + 987 return self.let(pattern=pattern)
+ + 988 + 989 @classmethod + 990 def _tag(cls) -> str: + 991 return 'Exists' + 992 +
+[docs] + 993 @classmethod + 994 def symbol(cls) -> str: + 995 return '\\exists'
+ + 996 +
+[docs] + 997 @classmethod + 998 def of(cls: type[Exists], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Exists: + 999 cls._check_symbol(symbol) +1000 (sort,) = sorts +1001 var, pattern = patterns +1002 var = check_type(var, EVar) +1003 return Exists(sort=sort, var=var, pattern=pattern)
+ +1004 +1005 @classmethod +1006 def _from_dict(cls: type[Exists], dct: Mapping[str, Any], patterns: list[Pattern]) -> Exists: +1007 (pattern,) = patterns +1008 return Exists( +1009 sort=Sort.from_dict(dct['sort']), +1010 var=EVar(name=dct['var'], sort=Sort.from_dict(dct['varSort'])), +1011 pattern=pattern, +1012 )
+ +1013 +1014 +
+[docs] +1015@final +1016@dataclass(frozen=True) +1017class Forall(MLQuant): +1018 sort: Sort +1019 var: EVar +1020 pattern: Pattern +1021 +
+[docs] +1022 def let( +1023 self, +1024 *, +1025 sort: Sort | None = None, +1026 var: EVar | None = None, +1027 pattern: Pattern | None = None, +1028 ) -> Forall: +1029 sort = sort if sort is not None else self.sort +1030 var = var if var is not None else self.var +1031 pattern = pattern if pattern is not None else self.pattern +1032 return Forall(sort=sort, var=var, pattern=pattern)
+ +1033 +
+[docs] +1034 def let_sort(self, sort: Sort) -> Forall: +1035 return self.let(sort=sort)
+ +1036 +
+[docs] +1037 def let_patterns(self, patterns: Iterable[Pattern]) -> Forall: +1038 (pattern,) = patterns +1039 return self.let(pattern=pattern)
+ +1040 +1041 @classmethod +1042 def _tag(cls) -> str: +1043 return 'Forall' +1044 +
+[docs] +1045 @classmethod +1046 def symbol(cls) -> str: +1047 return '\\forall'
+ +1048 +
+[docs] +1049 @classmethod +1050 def of(cls: type[Forall], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Forall: +1051 cls._check_symbol(symbol) +1052 (sort,) = sorts +1053 var, pattern = patterns +1054 var = check_type(var, EVar) +1055 return Forall(sort=sort, var=var, pattern=pattern)
+ +1056 +1057 @classmethod +1058 def _from_dict(cls: type[Forall], dct: Mapping[str, Any], patterns: list[Pattern]) -> Forall: +1059 (pattern,) = patterns +1060 return Forall( +1061 sort=Sort.from_dict(dct['sort']), +1062 var=EVar(name=dct['var'], sort=Sort.from_dict(dct['varSort'])), +1063 pattern=pattern, +1064 )
+ +1065 +1066 +
+[docs] +1067class MLFixpoint(MLPattern): +1068 var: SVar # TODO Should this be inlined to var_name, var_sort? +1069 pattern: Pattern +1070 +1071 @property +1072 def sorts(self) -> tuple[()]: +1073 return () +1074 +1075 @property +1076 def patterns(self) -> tuple[Pattern]: +1077 return (self.pattern,) +1078 +1079 @property +1080 def ctor_patterns(self) -> tuple[SVar, Pattern]: +1081 return (self.var, self.pattern) +1082 +1083 def _dict(self, dicts: list) -> dict[str, Any]: +1084 (arg,) = dicts +1085 return { +1086 'tag': self._tag(), +1087 'var': self.var.name, +1088 'varSort': self.var.sort.dict, +1089 'arg': arg, +1090 }
+ +1091 +1092 +
+[docs] +1093@final +1094@dataclass(frozen=True) +1095class Mu(MLFixpoint): +1096 var: SVar +1097 pattern: Pattern +1098 +
+[docs] +1099 def let(self, *, var: SVar | None = None, pattern: Pattern | None = None) -> Mu: +1100 var = var if var is not None else self.var +1101 pattern = pattern if pattern is not None else self.pattern +1102 return Mu(var=var, pattern=pattern)
+ +1103 +
+[docs] +1104 def let_patterns(self, patterns: Iterable[Pattern]) -> Mu: +1105 (pattern,) = patterns +1106 return self.let(pattern=pattern)
+ +1107 +1108 @classmethod +1109 def _tag(cls) -> str: +1110 return 'Mu' +1111 +
+[docs] +1112 @classmethod +1113 def symbol(cls) -> str: +1114 return '\\mu'
+ +1115 +
+[docs] +1116 @classmethod +1117 def of(cls: type[Mu], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Mu: +1118 cls._check_symbol(symbol) +1119 () = sorts +1120 var, pattern = patterns +1121 var = check_type(var, SVar) +1122 return Mu(var=var, pattern=pattern)
+ +1123 +1124 @classmethod +1125 def _from_dict(cls: type[Mu], dct: Mapping[str, Any], patterns: list[Pattern]) -> Mu: +1126 (pattern,) = patterns +1127 return Mu( +1128 var=SVar(name=dct['var'], sort=Sort.from_dict(dct['varSort'])), +1129 pattern=pattern, +1130 )
+ +1131 +1132 +
+[docs] +1133@final +1134@dataclass(frozen=True) +1135class Nu(MLFixpoint): +1136 var: SVar +1137 pattern: Pattern +1138 +
+[docs] +1139 def let(self, *, var: SVar | None = None, pattern: Pattern | None = None) -> Nu: +1140 var = var if var is not None else self.var +1141 pattern = pattern if pattern is not None else self.pattern +1142 return Nu(var=var, pattern=pattern)
+ +1143 +
+[docs] +1144 def let_patterns(self, patterns: Iterable[Pattern]) -> Nu: +1145 (pattern,) = patterns +1146 return self.let(pattern=pattern)
+ +1147 +1148 @classmethod +1149 def _tag(cls) -> str: +1150 return 'Nu' +1151 +
+[docs] +1152 @classmethod +1153 def symbol(cls) -> str: +1154 return '\\nu'
+ +1155 +
+[docs] +1156 @classmethod +1157 def of(cls: type[Nu], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Nu: +1158 cls._check_symbol(symbol) +1159 () = sorts +1160 var, pattern = patterns +1161 var = check_type(var, SVar) +1162 return Nu(var=var, pattern=pattern)
+ +1163 +1164 @classmethod +1165 def _from_dict(cls: type[Nu], dct: Mapping[str, Any], patterns: list[Pattern]) -> Nu: +1166 (pattern,) = patterns +1167 return Nu( +1168 var=SVar(name=dct['var'], sort=Sort.from_dict(dct['varSort'])), +1169 pattern=pattern, +1170 )
+ +1171 +1172 +
+[docs] +1173class MLPred(MLPattern, WithSort): +1174 op_sort: Sort
+ +1175 +1176 +
+[docs] +1177class RoundPred(MLPred): +1178 pattern: Pattern +1179 +1180 @property +1181 def sorts(self) -> tuple[Sort, Sort]: +1182 return (self.op_sort, self.sort) +1183 +1184 @property +1185 def patterns(self) -> tuple[Pattern]: +1186 return (self.pattern,) +1187 +1188 def _dict(self, dicts: list) -> dict[str, Any]: +1189 (arg,) = dicts +1190 return { +1191 'tag': self._tag(), +1192 'argSort': self.op_sort.dict, +1193 'sort': self.sort.dict, +1194 'arg': arg, +1195 }
+ +1196 +1197 +
+[docs] +1198@final +1199@dataclass(frozen=True) +1200class Ceil(RoundPred): +1201 op_sort: Sort +1202 sort: Sort +1203 pattern: Pattern +1204 +
+[docs] +1205 def let( +1206 self, +1207 *, +1208 op_sort: Sort | None = None, +1209 sort: Sort | None = None, +1210 pattern: Pattern | None = None, +1211 ) -> Ceil: +1212 op_sort = op_sort if op_sort is not None else self.op_sort +1213 sort = sort if sort is not None else self.sort +1214 pattern = pattern if pattern is not None else self.pattern +1215 return Ceil(op_sort=op_sort, sort=sort, pattern=pattern)
+ +1216 +
+[docs] +1217 def let_sort(self, sort: Sort) -> Ceil: +1218 return self.let(sort=sort)
+ +1219 +
+[docs] +1220 def let_patterns(self, patterns: Iterable[Pattern]) -> Ceil: +1221 (pattern,) = patterns +1222 return self.let(pattern=pattern)
+ +1223 +1224 @classmethod +1225 def _tag(cls) -> str: +1226 return 'Ceil' +1227 +
+[docs] +1228 @classmethod +1229 def symbol(cls) -> str: +1230 return '\\ceil'
+ +1231 +
+[docs] +1232 @classmethod +1233 def of(cls: type[Ceil], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Ceil: +1234 cls._check_symbol(symbol) +1235 op_sort, sort = sorts +1236 (pattern,) = patterns +1237 return Ceil(op_sort=op_sort, sort=sort, pattern=pattern)
+ +1238 +1239 @classmethod +1240 def _from_dict(cls: type[Ceil], dct: Mapping[str, Any], patterns: list[Pattern]) -> Ceil: +1241 (pattern,) = patterns +1242 return Ceil( +1243 op_sort=Sort.from_dict(dct['argSort']), +1244 sort=Sort.from_dict(dct['sort']), +1245 pattern=pattern, +1246 )
+ +1247 +1248 +
+[docs] +1249@final +1250@dataclass(frozen=True) +1251class Floor(RoundPred): +1252 op_sort: Sort +1253 sort: Sort +1254 pattern: Pattern +1255 +
+[docs] +1256 def let( +1257 self, +1258 *, +1259 op_sort: Sort | None = None, +1260 sort: Sort | None = None, +1261 pattern: Pattern | None = None, +1262 ) -> Floor: +1263 op_sort = op_sort if op_sort is not None else self.op_sort +1264 sort = sort if sort is not None else self.sort +1265 pattern = pattern if pattern is not None else self.pattern +1266 return Floor(op_sort=op_sort, sort=sort, pattern=pattern)
+ +1267 +
+[docs] +1268 def let_sort(self, sort: Sort) -> Floor: +1269 return self.let(sort=sort)
+ +1270 +
+[docs] +1271 def let_patterns(self, patterns: Iterable[Pattern]) -> Floor: +1272 (pattern,) = patterns +1273 return self.let(pattern=pattern)
+ +1274 +1275 @classmethod +1276 def _tag(cls) -> str: +1277 return 'Floor' +1278 +
+[docs] +1279 @classmethod +1280 def symbol(cls) -> str: +1281 return '\\floor'
+ +1282 +
+[docs] +1283 @classmethod +1284 def of(cls: type[Floor], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Floor: +1285 cls._check_symbol(symbol) +1286 op_sort, sort = sorts +1287 (pattern,) = patterns +1288 return Floor(op_sort=op_sort, sort=sort, pattern=pattern)
+ +1289 +1290 @classmethod +1291 def _from_dict(cls: type[Floor], dct: Mapping[str, Any], patterns: list[Pattern]) -> Floor: +1292 (pattern,) = patterns +1293 return Floor( +1294 op_sort=Sort.from_dict(dct['argSort']), +1295 sort=Sort.from_dict(dct['sort']), +1296 pattern=pattern, +1297 )
+ +1298 +1299 +
+[docs] +1300class BinaryPred(MLPred): +1301 left: Pattern +1302 right: Pattern +1303 +1304 @property +1305 def sorts(self) -> tuple[Sort, Sort]: +1306 return (self.op_sort, self.sort) +1307 +1308 @property +1309 def patterns(self) -> tuple[Pattern, Pattern]: +1310 return (self.left, self.right) +1311 +1312 def _dict(self, dicts: list) -> dict[str, Any]: +1313 first, second = dicts +1314 return { +1315 'tag': self._tag(), +1316 'argSort': self.op_sort.dict, +1317 'sort': self.sort.dict, +1318 'first': first, +1319 'second': second, +1320 }
+ +1321 +1322 +
+[docs] +1323@final +1324@dataclass(frozen=True) +1325class Equals(BinaryPred): +1326 op_sort: Sort +1327 sort: Sort +1328 left: Pattern +1329 right: Pattern +1330 +
+[docs] +1331 def let( +1332 self, +1333 *, +1334 op_sort: Sort | None = None, +1335 sort: Sort | None = None, +1336 left: Pattern | None = None, +1337 right: Pattern | None = None, +1338 ) -> Equals: +1339 op_sort = op_sort if op_sort is not None else self.op_sort +1340 sort = sort if sort is not None else self.sort +1341 left = left if left is not None else self.left +1342 right = right if right is not None else self.right +1343 return Equals(op_sort=op_sort, sort=sort, left=left, right=right)
+ +1344 +
+[docs] +1345 def let_sort(self, sort: Sort) -> Equals: +1346 return self.let(sort=sort)
+ +1347 +
+[docs] +1348 def let_patterns(self, patterns: Iterable[Pattern]) -> Equals: +1349 left, right = patterns +1350 return self.let(left=left, right=right)
+ +1351 +1352 @classmethod +1353 def _tag(cls) -> str: +1354 return 'Equals' +1355 +
+[docs] +1356 @classmethod +1357 def symbol(cls) -> str: +1358 return '\\equals'
+ +1359 +
+[docs] +1360 @classmethod +1361 def of(cls: type[Equals], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Equals: +1362 cls._check_symbol(symbol) +1363 op_sort, sort = sorts +1364 left, right = patterns +1365 return Equals(op_sort=op_sort, sort=sort, left=left, right=right)
+ +1366 +1367 @classmethod +1368 def _from_dict(cls: type[Equals], dct: Mapping[str, Any], patterns: list[Pattern]) -> Equals: +1369 left, right = patterns +1370 return Equals( +1371 op_sort=Sort.from_dict(dct['argSort']), +1372 sort=Sort.from_dict(dct['sort']), +1373 left=left, +1374 right=right, +1375 )
+ +1376 +1377 +
+[docs] +1378@final +1379@dataclass(frozen=True) +1380class In(BinaryPred): +1381 op_sort: Sort +1382 sort: Sort +1383 left: Pattern +1384 right: Pattern +1385 +
+[docs] +1386 def let( +1387 self, +1388 *, +1389 op_sort: Sort | None = None, +1390 sort: Sort | None = None, +1391 left: Pattern | None = None, +1392 right: Pattern | None = None, +1393 ) -> In: +1394 op_sort = op_sort if op_sort is not None else self.op_sort +1395 sort = sort if sort is not None else self.sort +1396 left = left if left is not None else self.left +1397 right = right if right is not None else self.right +1398 return In(op_sort=op_sort, sort=sort, left=left, right=right)
+ +1399 +
+[docs] +1400 def let_sort(self, sort: Sort) -> In: +1401 return self.let(sort=sort)
+ +1402 +
+[docs] +1403 def let_patterns(self, patterns: Iterable[Pattern]) -> In: +1404 left, right = patterns +1405 return self.let(left=left, right=right)
+ +1406 +1407 @classmethod +1408 def _tag(cls) -> str: +1409 return 'In' +1410 +
+[docs] +1411 @classmethod +1412 def symbol(cls) -> str: +1413 return '\\in'
+ +1414 +
+[docs] +1415 @classmethod +1416 def of(cls: type[In], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> In: +1417 cls._check_symbol(symbol) +1418 op_sort, sort = sorts +1419 left, right = patterns +1420 return In(op_sort=op_sort, sort=sort, left=left, right=right)
+ +1421 +1422 @classmethod +1423 def _from_dict(cls: type[In], dct: Mapping[str, Any], patterns: list[Pattern]) -> In: +1424 left, right = patterns +1425 return In( +1426 op_sort=Sort.from_dict(dct['argSort']), +1427 sort=Sort.from_dict(dct['sort']), +1428 left=left, +1429 right=right, +1430 )
+ +1431 +1432 +
+[docs] +1433class MLRewrite(MLPattern, WithSort): +1434 @property +1435 def sorts(self) -> tuple[Sort]: +1436 return (self.sort,)
+ +1437 +1438 + + +1487 +1488 +
+[docs] +1489@final +1490@dataclass(frozen=True) +1491class Rewrites(MLRewrite): +1492 sort: Sort +1493 left: Pattern +1494 right: Pattern +1495 +
+[docs] +1496 def let( +1497 self, +1498 *, +1499 sort: Sort | None = None, +1500 left: Pattern | None = None, +1501 right: Pattern | None = None, +1502 ) -> Rewrites: +1503 sort = sort if sort is not None else self.sort +1504 left = left if left is not None else self.left +1505 right = right if right is not None else self.right +1506 return Rewrites(sort=sort, left=left, right=right)
+ +1507 +
+[docs] +1508 def let_sort(self, sort: Sort) -> Rewrites: +1509 return self.let(sort=sort)
+ +1510 +
+[docs] +1511 def let_patterns(self, patterns: Iterable[Pattern]) -> Rewrites: +1512 left, right = patterns +1513 return self.let(left=left, right=right)
+ +1514 +1515 @classmethod +1516 def _tag(cls) -> str: +1517 return 'Rewrites' +1518 +
+[docs] +1519 @classmethod +1520 def symbol(cls) -> str: +1521 return '\\rewrites'
+ +1522 +
+[docs] +1523 @classmethod +1524 def of(cls: type[Rewrites], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> Rewrites: +1525 cls._check_symbol(symbol) +1526 (sort,) = sorts +1527 left, right = patterns +1528 return Rewrites(sort=sort, left=left, right=right)
+ +1529 +1530 @classmethod +1531 def _from_dict(cls: type[Rewrites], dct: Mapping[str, Any], patterns: list[Pattern]) -> Rewrites: +1532 left, right = patterns +1533 return Rewrites( +1534 sort=Sort.from_dict(dct['sort']), +1535 left=left, +1536 right=right, +1537 ) +1538 +1539 @property +1540 def patterns(self) -> tuple[Pattern, Pattern]: +1541 return (self.left, self.right) +1542 +1543 def _dict(self, dicts: list) -> dict[str, Any]: +1544 source, dest = dicts +1545 return { +1546 'tag': 'Rewrites', +1547 'sort': self.sort.dict, +1548 'source': source, +1549 'dest': dest, +1550 }
+ +1551 +1552 +
+[docs] +1553@final +1554@dataclass(frozen=True) +1555class DV(MLPattern, WithSort): +1556 sort: Sort +1557 value: String # TODO Should this be changed to str? +1558 +
+[docs] +1559 def let(self, *, sort: Sort | None = None, value: String | None = None) -> DV: +1560 sort = sort if sort is not None else self.sort +1561 value = value if value is not None else self.value +1562 return DV(sort=sort, value=value)
+ +1563 +
+[docs] +1564 def let_sort(self, sort: Sort) -> DV: +1565 return self.let(sort=sort)
+ +1566 +
+[docs] +1567 def let_patterns(self, patterns: Iterable[Pattern]) -> DV: +1568 () = patterns +1569 return self
+ +1570 +1571 @classmethod +1572 def _tag(cls) -> str: +1573 return 'DV' +1574 +
+[docs] +1575 @classmethod +1576 def symbol(cls) -> str: +1577 return '\\dv'
+ +1578 +
+[docs] +1579 @classmethod +1580 def of(cls: type[DV], symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) -> DV: +1581 cls._check_symbol(symbol) +1582 (sort,) = sorts +1583 (value,) = patterns +1584 value = check_type(value, String) +1585 return DV(sort=sort, value=value)
+ +1586 +1587 @classmethod +1588 def _from_dict(cls: type[DV], dct: Mapping[str, Any], patterns: list[Pattern]) -> DV: +1589 assert not patterns +1590 return DV( +1591 sort=Sort.from_dict(dct['sort']), +1592 value=String(dct['value']), +1593 ) +1594 +1595 @property +1596 def sorts(self) -> tuple[Sort]: +1597 return (self.sort,) +1598 +1599 @property +1600 def patterns(self) -> tuple[()]: +1601 return () +1602 +1603 @property +1604 def ctor_patterns(self) -> tuple[String]: +1605 return (self.value,) +1606 +1607 def _dict(self, dicts: list) -> dict[str, Any]: +1608 assert not dicts +1609 return {'tag': 'DV', 'sort': self.sort.dict, 'value': self.value.value}
+ +1610 +1611 +
+[docs] +1612class MLSyntaxSugar(MLPattern): ...
+ +1613 +1614 +1615# TODO AppAssoc, OrAssoc +
+[docs] +1616class Assoc(MLSyntaxSugar): +1617 app: App +1618 +1619 @property +1620 @abstractmethod +1621 def pattern(self) -> Pattern: ... +1622 +1623 @property +1624 def sorts(self) -> tuple[()]: +1625 return () +1626 +1627 @property +1628 def patterns(self) -> tuple[()]: +1629 return () +1630 +1631 @property +1632 def ctor_patterns(self) -> tuple[App]: +1633 return (self.app,) +1634 +1635 def _dict(self, dicts: list) -> dict[str, Any]: +1636 return { +1637 'tag': self._tag(), +1638 'symbol': self.app.symbol, +1639 'sorts': [sort.dict for sort in self.app.sorts], +1640 'argss': dicts, +1641 }
+ +1642 +1643 +
+[docs] +1644@final +1645@dataclass(frozen=True) +1646class LeftAssoc(Assoc): +1647 app: App +1648 +
+[docs] +1649 def let(self, *, app: App | None = None) -> LeftAssoc: +1650 app = app if app is not None else self.app +1651 return LeftAssoc(app=app)
+ +1652 +
+[docs] +1653 def let_patterns(self, patterns: Iterable[Pattern]) -> LeftAssoc: +1654 () = patterns +1655 return self
+ +1656 +1657 @property +1658 def pattern(self) -> Pattern: +1659 if len(self.app.sorts) > 0: +1660 raise ValueError(f'Cannot associate a pattern with sort parameters: {self}') +1661 if len(self.app.args) == 0: +1662 raise ValueError(f'Cannot associate a pattern with no arguments: {self}') +1663 ret = self.app.args[0] +1664 for a in self.app.args[1:]: +1665 ret = App(self.app.symbol, (), (ret, a)) +1666 return ret +1667 +1668 @classmethod +1669 def _tag(cls) -> str: +1670 return 'LeftAssoc' +1671 +
+[docs] +1672 @classmethod +1673 def symbol(cls) -> str: +1674 return '\\left-assoc'
+ +1675 +
+[docs] +1676 @classmethod +1677 def of( +1678 cls: type[LeftAssoc], +1679 symbol: str, +1680 sorts: Iterable[Sort] = (), +1681 patterns: Iterable[Pattern] = (), +1682 ) -> LeftAssoc: +1683 cls._check_symbol(symbol) +1684 () = sorts +1685 (app,) = patterns +1686 app = check_type(app, App) +1687 return LeftAssoc(app=app)
+ +1688 +1689 @classmethod +1690 def _from_dict(cls: type[LeftAssoc], dct: Mapping[str, Any], patterns: list[Pattern]) -> LeftAssoc: +1691 return LeftAssoc( +1692 app=App( +1693 symbol=dct['symbol'], +1694 sorts=tuple(Sort.from_dict(sort) for sort in dct['sorts']), +1695 args=patterns, +1696 ), +1697 )
+ +1698 +1699 +
+[docs] +1700@final +1701@dataclass(frozen=True) +1702class RightAssoc(Assoc): +1703 app: App +1704 +
+[docs] +1705 def let(self, *, app: App | None = None) -> RightAssoc: +1706 app = app if app is not None else self.app +1707 return RightAssoc(app=app)
+ +1708 +
+[docs] +1709 def let_patterns(self, patterns: Iterable[Pattern]) -> RightAssoc: +1710 () = patterns +1711 return self
+ +1712 +1713 @property +1714 def pattern(self) -> Pattern: +1715 if len(self.app.sorts) > 0: +1716 raise ValueError(f'Cannot associate a pattern with sort parameters: {self}') +1717 if len(self.app.args) == 0: +1718 raise ValueError(f'Cannot associate a pattern with no arguments: {self}') +1719 ret = self.app.args[-1] +1720 for a in reversed(self.app.args[:-1]): +1721 ret = App(self.app.symbol, (), (a, ret)) +1722 return ret +1723 +1724 @classmethod +1725 def _tag(cls) -> str: +1726 return 'RightAssoc' +1727 +
+[docs] +1728 @classmethod +1729 def symbol(cls) -> str: +1730 return '\\right-assoc'
+ +1731 +
+[docs] +1732 @classmethod +1733 def of( +1734 cls: type[RightAssoc], +1735 symbol: str, +1736 sorts: Iterable[Sort] = (), +1737 patterns: Iterable[Pattern] = (), +1738 ) -> RightAssoc: +1739 cls._check_symbol(symbol) +1740 () = sorts +1741 (app,) = patterns +1742 app = check_type(app, App) +1743 return RightAssoc(app=app)
+ +1744 +1745 @classmethod +1746 def _from_dict(cls: type[RightAssoc], dct: Mapping[str, Any], patterns: list[Pattern]) -> RightAssoc: +1747 return RightAssoc( +1748 app=App( +1749 symbol=dct['symbol'], +1750 sorts=tuple(Sort.from_dict(sort) for sort in dct['sorts']), +1751 args=patterns, +1752 ), +1753 )
+ +1754 +1755 +1756ML_SYMBOLS: Final = { +1757 r'\top': Top, +1758 r'\bottom': Bottom, +1759 r'\not': Not, +1760 r'\and': And, +1761 r'\or': Or, +1762 r'\implies': Implies, +1763 r'\iff': Iff, +1764 r'\exists': Exists, +1765 r'\forall': Forall, +1766 r'\mu': Mu, +1767 r'\nu': Nu, +1768 r'\ceil': Ceil, +1769 r'\floor': Floor, +1770 r'\equals': Equals, +1771 r'\in': In, +1772 r'\next': Next, +1773 r'\rewrites': Rewrites, +1774 r'\dv': DV, +1775 r'\left-assoc': LeftAssoc, +1776 r'\right-assoc': RightAssoc, +1777} +1778 +1779 +
+[docs] +1780class WithAttrs(ABC): +1781 attrs: tuple[App, ...] +1782 +
+[docs] +1783 @abstractmethod +1784 def let_attrs(self: WA, attrs: Iterable[App]) -> WA: ...
+ +1785 +
+[docs] +1786 def map_attrs(self: WA, f: Callable[[tuple[App, ...]], Iterable[App]]) -> WA: +1787 return self.let_attrs(f(self.attrs))
+
+ +1788 +1789 +
+[docs] +1790class Sentence(Kore, WithAttrs): ...
+ +1791 +1792 +
+[docs] +1793@final +1794@dataclass(frozen=True) +1795class Import(Sentence): +1796 module_name: str +1797 attrs: tuple[App, ...] +1798 +1799 def __init__(self, module_name: str | Id, attrs: Iterable[App] = ()): +1800 if isinstance(module_name, str): +1801 module_name = Id(module_name) +1802 +1803 object.__setattr__(self, 'module_name', module_name.value) +1804 object.__setattr__(self, 'attrs', tuple(attrs)) +1805 +
+[docs] +1806 def let(self, *, module_name: str | Id | None = None, attrs: Iterable[App] | None = None) -> Import: +1807 module_name = module_name if module_name is not None else self.module_name +1808 attrs = attrs if attrs is not None else self.attrs +1809 return Import(module_name=module_name, attrs=attrs)
+ +1810 +
+[docs] +1811 def let_attrs(self: Import, attrs: Iterable[App]) -> Import: +1812 return self.let(attrs=attrs)
+ +1813 +
+[docs] +1814 def write(self, output: IO[str]) -> None: +1815 output.write('import ') +1816 output.write(self.module_name) +1817 output.write(' [') +1818 _write_sep_by_comma(self.attrs, output) +1819 output.write(']')
+
+ +1820 +1821 +
+[docs] +1822@final +1823@dataclass(frozen=True) +1824class SortDecl(Sentence): +1825 name: str +1826 vars: tuple[SortVar, ...] +1827 attrs: tuple[App, ...] +1828 hooked: bool +1829 +1830 def __init__( +1831 self, +1832 name: str | Id, +1833 vars: Iterable[SortVar], +1834 attrs: Iterable[App] = (), +1835 *, +1836 hooked: bool = False, +1837 ): +1838 if isinstance(name, str): +1839 name = Id(name) +1840 +1841 object.__setattr__(self, 'name', name.value) +1842 object.__setattr__(self, 'vars', tuple(vars)) +1843 object.__setattr__(self, 'attrs', tuple(attrs)) +1844 object.__setattr__(self, 'hooked', hooked) +1845 +
+[docs] +1846 def let( +1847 self, +1848 *, +1849 name: str | Id | None = None, +1850 vars: Iterable[SortVar] | None = None, +1851 attrs: Iterable[App] | None = None, +1852 hooked: bool | None = None, +1853 ) -> SortDecl: +1854 name = name if name is not None else self.name +1855 vars = vars if vars is not None else self.vars +1856 attrs = attrs if attrs is not None else self.attrs +1857 hooked = hooked if hooked is not None else self.hooked +1858 return SortDecl(name=name, vars=vars, attrs=attrs, hooked=hooked)
+ +1859 +
+[docs] +1860 def let_attrs(self: SortDecl, attrs: Iterable[App]) -> SortDecl: +1861 return self.let(attrs=attrs)
+ +1862 +
+[docs] +1863 def write(self, output: IO[str]) -> None: +1864 keyword = 'hooked-sort ' if self.hooked else 'sort ' +1865 output.write(keyword) +1866 output.write(self.name) +1867 output.write('{') +1868 _write_sep_by_comma(self.vars, output) +1869 output.write('} [') +1870 _write_sep_by_comma(self.attrs, output) +1871 output.write(']')
+
+ +1872 +1873 +
+[docs] +1874@final +1875@dataclass(frozen=True) +1876class Symbol(Kore): +1877 name: str +1878 vars: tuple[SortVar, ...] +1879 +1880 def __init__(self, name: str | SymbolId, vars: Iterable[SortVar] = ()): +1881 if isinstance(name, str): +1882 name = SymbolId(name) +1883 +1884 object.__setattr__(self, 'name', name.value) +1885 object.__setattr__(self, 'vars', tuple(vars)) +1886 +
+[docs] +1887 def let(self, *, name: str | SymbolId | None = None, vars: Iterable[SortVar] | None = None) -> Symbol: +1888 name = name if name is not None else self.name +1889 vars = vars if vars is not None else self.vars +1890 return Symbol(name=name, vars=vars)
+ +1891 +
+[docs] +1892 def write(self, output: IO[str]) -> None: +1893 output.write(self.name) +1894 output.write('{') +1895 _write_sep_by_comma(self.vars, output) +1896 output.write('}')
+
+ +1897 +1898 +
+[docs] +1899@final +1900@dataclass(frozen=True) +1901class SymbolDecl(Sentence): +1902 symbol: Symbol +1903 param_sorts: tuple[Sort, ...] +1904 sort: Sort +1905 attrs: tuple[App, ...] +1906 hooked: bool +1907 +1908 def __init__( +1909 self, +1910 symbol: Symbol, +1911 param_sorts: Iterable[Sort], +1912 sort: Sort, +1913 attrs: Iterable[App] = (), +1914 *, +1915 hooked: bool = False, +1916 ): +1917 object.__setattr__(self, 'symbol', symbol) +1918 object.__setattr__(self, 'param_sorts', tuple(param_sorts)) +1919 object.__setattr__(self, 'sort', sort) +1920 object.__setattr__(self, 'attrs', tuple(attrs)) +1921 object.__setattr__(self, 'hooked', hooked) +1922 +
+[docs] +1923 def let( +1924 self, +1925 *, +1926 symbol: Symbol | None = None, +1927 param_sorts: Iterable[Sort] | None = None, +1928 sort: Sort | None = None, +1929 attrs: Iterable[App] | None = None, +1930 hooked: bool | None = None, +1931 ) -> SymbolDecl: +1932 symbol = symbol if symbol is not None else self.symbol +1933 param_sorts = param_sorts if param_sorts is not None else self.param_sorts +1934 sort = sort if sort is not None else self.sort +1935 attrs = attrs if attrs is not None else self.attrs +1936 hooked = hooked if hooked is not None else self.hooked +1937 return SymbolDecl(symbol=symbol, param_sorts=param_sorts, sort=sort, attrs=attrs, hooked=hooked)
+ +1938 +
+[docs] +1939 def let_attrs(self: SymbolDecl, attrs: Iterable[App]) -> SymbolDecl: +1940 return self.let(attrs=attrs)
+ +1941 +
+[docs] +1942 def write(self, output: IO[str]) -> None: +1943 keyword = 'hooked-symbol ' if self.hooked else 'symbol ' +1944 output.write(keyword) +1945 self.symbol.write(output) +1946 output.write('(') +1947 _write_sep_by_comma(self.param_sorts, output) +1948 output.write(') : ') +1949 self.sort.write(output) +1950 output.write(' [') +1951 _write_sep_by_comma(self.attrs, output) +1952 output.write(']')
+
+ +1953 +1954 +1955def _ml_symbol_decls() -> tuple[SymbolDecl, ...]: +1956 S = SortVar('S') # noqa: N806 +1957 T = SortVar('T') # noqa: N806 +1958 return ( +1959 SymbolDecl(Symbol(r'\top', (S,)), (), S), +1960 SymbolDecl(Symbol(r'\bottom', (S,)), (), S), +1961 SymbolDecl(Symbol(r'\not', (S,)), (S,), S), +1962 SymbolDecl(Symbol(r'\and', (S,)), (S, S), S), +1963 SymbolDecl(Symbol(r'\or', (S,)), (S, S), S), +1964 SymbolDecl(Symbol(r'\implies', (S,)), (S, S), S), +1965 SymbolDecl(Symbol(r'\iff', (S,)), (S, S), S), +1966 SymbolDecl(Symbol(r'\ceil', (S, T)), (S,), T), +1967 SymbolDecl(Symbol(r'\floor', (S, T)), (S,), T), +1968 SymbolDecl(Symbol(r'\equals', (S, T)), (S, S), T), +1969 SymbolDecl(Symbol(r'\in', (S, T)), (S, S), T), +1970 ) +1971 +1972 +1973ML_SYMBOL_DECLS: Final = _ml_symbol_decls() +1974 +1975 +
+[docs] +1976@final +1977@dataclass(frozen=True) +1978class AliasDecl(Sentence): +1979 alias: Symbol +1980 param_sorts: tuple[Sort, ...] +1981 sort: Sort +1982 left: App +1983 right: Pattern +1984 attrs: tuple[App, ...] +1985 +1986 def __init__( +1987 self, +1988 alias: Symbol, +1989 param_sorts: Iterable[Sort], +1990 sort: Sort, +1991 left: App, +1992 right: Pattern, +1993 attrs: Iterable[App] = (), +1994 ): +1995 object.__setattr__(self, 'alias', alias) +1996 object.__setattr__(self, 'param_sorts', tuple(param_sorts)) +1997 object.__setattr__(self, 'sort', sort) +1998 object.__setattr__(self, 'left', left) +1999 object.__setattr__(self, 'right', right) +2000 object.__setattr__(self, 'attrs', tuple(attrs)) +2001 +
+[docs] +2002 def let( +2003 self, +2004 *, +2005 alias: Symbol | None = None, +2006 param_sorts: Iterable[Sort] | None = None, +2007 sort: Sort | None = None, +2008 left: App | None = None, +2009 right: Pattern | None = None, +2010 attrs: Iterable[App] | None = None, +2011 ) -> AliasDecl: +2012 alias = alias if alias is not None else self.alias +2013 param_sorts = param_sorts if param_sorts is not None else self.param_sorts +2014 sort = sort if sort is not None else self.sort +2015 left = left if left is not None else self.left +2016 right = right if right is not None else self.right +2017 attrs = attrs if attrs is not None else self.attrs +2018 return AliasDecl(alias=alias, param_sorts=param_sorts, sort=sort, left=left, right=right, attrs=attrs)
+ +2019 +
+[docs] +2020 def let_attrs(self: AliasDecl, attrs: Iterable[App]) -> AliasDecl: +2021 return self.let(attrs=attrs)
+ +2022 +
+[docs] +2023 def write(self, output: IO[str]) -> None: +2024 output.write('alias ') +2025 self.alias.write(output) +2026 output.write('(') +2027 _write_sep_by_comma(self.param_sorts, output) +2028 output.write(') : ') +2029 self.sort.write(output) +2030 output.write(' where ') +2031 self.left.write(output) +2032 output.write(' := ') +2033 self.right.write(output) +2034 output.write(' [') +2035 _write_sep_by_comma(self.attrs, output) +2036 output.write(']')
+
+ +2037 +2038 +
+[docs] +2039class AxiomLike(Sentence): +2040 _label: ClassVar[str] +2041 +2042 vars: tuple[SortVar, ...] +2043 pattern: Pattern +2044 +
+[docs] +2045 def write(self, output: IO[str]) -> None: +2046 output.write(self._label) +2047 output.write('{') +2048 _write_sep_by_comma(self.vars, output) +2049 output.write('} ') +2050 self.pattern.write(output) +2051 output.write(' [') +2052 _write_sep_by_comma(self.attrs, output) +2053 output.write(']')
+
+ +2054 +2055 +
+[docs] +2056@final +2057@dataclass(frozen=True) +2058class Axiom(AxiomLike): +2059 _label = 'axiom' +2060 +2061 vars: tuple[SortVar, ...] +2062 pattern: Pattern +2063 attrs: tuple[App, ...] +2064 +2065 def __init__(self, vars: Iterable[SortVar], pattern: Pattern, attrs: Iterable[App] = ()): +2066 object.__setattr__(self, 'vars', tuple(vars)) +2067 object.__setattr__(self, 'pattern', pattern) +2068 object.__setattr__(self, 'attrs', tuple(attrs)) +2069 +
+[docs] +2070 def let( +2071 self, +2072 *, +2073 vars: Iterable[SortVar] | None = None, +2074 pattern: Pattern | None = None, +2075 attrs: Iterable[App] | None = None, +2076 ) -> Axiom: +2077 vars = vars if vars is not None else self.vars +2078 pattern = pattern if pattern is not None else self.pattern +2079 attrs = attrs if attrs is not None else self.attrs +2080 return Axiom(vars=vars, pattern=pattern, attrs=attrs)
+ +2081 +
+[docs] +2082 def let_attrs(self: Axiom, attrs: Iterable[App]) -> Axiom: +2083 return self.let(attrs=attrs)
+
+ +2084 +2085 +
+[docs] +2086@final +2087@dataclass(frozen=True) +2088class Claim(AxiomLike): +2089 _label = 'claim' +2090 +2091 vars: tuple[SortVar, ...] +2092 pattern: Pattern +2093 attrs: tuple[App, ...] +2094 +2095 def __init__(self, vars: Iterable[SortVar], pattern: Pattern, attrs: Iterable[App] = ()): +2096 object.__setattr__(self, 'vars', tuple(vars)) +2097 object.__setattr__(self, 'pattern', pattern) +2098 object.__setattr__(self, 'attrs', tuple(attrs)) +2099 +
+[docs] +2100 def let( +2101 self, +2102 *, +2103 vars: Iterable[SortVar] | None = None, +2104 pattern: Pattern | None = None, +2105 attrs: Iterable[App] | None = None, +2106 ) -> Claim: +2107 vars = vars if vars is not None else self.vars +2108 pattern = pattern if pattern is not None else self.pattern +2109 attrs = attrs if attrs is not None else self.attrs +2110 return Claim(vars=vars, pattern=pattern, attrs=attrs)
+ +2111 +
+[docs] +2112 def let_attrs(self: Claim, attrs: Iterable[App]) -> Claim: +2113 return self.let(attrs=attrs)
+
+ +2114 +2115 +
+[docs] +2116@final +2117@dataclass(frozen=True) +2118class Module(Kore, WithAttrs, Iterable[Sentence]): +2119 name: str +2120 sentences: tuple[Sentence, ...] +2121 attrs: tuple[App, ...] +2122 +2123 def __init__(self, name: str | Id, sentences: Iterable[Sentence] = (), attrs: Iterable[App] = ()): +2124 if isinstance(name, str): +2125 name = Id(name) +2126 +2127 object.__setattr__(self, 'name', name.value) +2128 object.__setattr__(self, 'sentences', tuple(sentences)) +2129 object.__setattr__(self, 'attrs', tuple(attrs)) +2130 +2131 def __iter__(self) -> Iterator[Sentence]: +2132 return iter(self.sentences) +2133 +
+[docs] +2134 def let( +2135 self, +2136 *, +2137 name: str | Id | None = None, +2138 sentences: Iterable[Sentence] | None = None, +2139 attrs: Iterable[App] | None = None, +2140 ) -> Module: +2141 name = name if name is not None else self.name +2142 sentences = sentences if sentences is not None else self.sentences +2143 attrs = attrs if attrs is not None else self.attrs +2144 return Module(name=name, sentences=sentences, attrs=attrs)
+ +2145 +
+[docs] +2146 def let_attrs(self: Module, attrs: Iterable[App]) -> Module: +2147 return self.let(attrs=attrs)
+ +2148 +
+[docs] +2149 def write(self, output: IO[str]) -> None: +2150 output.write('module ') +2151 output.write(self.name) +2152 for sentence in self.sentences: +2153 output.write('\n ') +2154 sentence.write(output) +2155 output.write('\nendmodule [') +2156 _write_sep_by_comma(self.attrs, output) +2157 output.write(']')
+ +2158 +2159 @cached_property +2160 def symbol_decls(self) -> tuple[SymbolDecl, ...]: +2161 return tuple(sentence for sentence in self if type(sentence) is SymbolDecl) +2162 +2163 @cached_property +2164 def axioms(self) -> tuple[Axiom, ...]: +2165 return tuple(sentence for sentence in self if type(sentence) is Axiom)
+ +2166 +2167 +
+[docs] +2168@final +2169@dataclass(frozen=True) +2170class Definition(Kore, WithAttrs, Iterable[Module]): +2171 modules: tuple[Module, ...] +2172 attrs: tuple[App, ...] +2173 +2174 def __init__(self, modules: Iterable[Module] = (), attrs: Iterable[App] = ()): +2175 object.__setattr__(self, 'modules', tuple(modules)) +2176 object.__setattr__(self, 'attrs', tuple(attrs)) +2177 +2178 def __iter__(self) -> Iterator[Module]: +2179 return iter(self.modules) +2180 +
+[docs] +2181 def let(self, *, modules: Iterable[Module] | None = None, attrs: Iterable[App] | None = None) -> Definition: +2182 modules = modules if modules is not None else self.modules +2183 attrs = attrs if attrs is not None else self.attrs +2184 return Definition(modules=modules, attrs=attrs)
+ +2185 +
+[docs] +2186 def let_attrs(self: Definition, attrs: Iterable[App]) -> Definition: +2187 return self.let(attrs=attrs)
+ +2188 +
+[docs] +2189 def write(self, output: IO[str]) -> None: +2190 output.write('[') +2191 _write_sep_by_comma(self.attrs, output) +2192 output.write(']') +2193 for module in self.modules: +2194 output.write('\n\n') +2195 module.write(output)
+ +2196 +2197 @cached_property +2198 def axioms(self) -> tuple[Axiom, ...]: +2199 return tuple(sent for module in self.modules for sent in module if isinstance(sent, Axiom)) +2200 +
+[docs] +2201 def get_axiom_by_ordinal(self, ordinal: int) -> Axiom: +2202 return self.axioms[ordinal]
+ +2203 +
+[docs] +2204 def compute_ordinals(self) -> Definition: +2205 new_modules = [] +2206 rule_ordinal = 0 +2207 for module in self.modules: +2208 new_sentences: list[Sentence] = [] +2209 for sentence in module.sentences: +2210 if type(sentence) is Axiom: +2211 ordinal_attr = App('ordinal', (), [String(str(rule_ordinal))]) +2212 new_sentence = sentence.let_attrs(sentence.attrs + (ordinal_attr,)) +2213 new_sentences.append(new_sentence) +2214 rule_ordinal += 1 +2215 else: +2216 new_sentences.append(sentence) +2217 new_modules.append(module.let(sentences=new_sentences)) +2218 +2219 new_definition = self.let(modules=new_modules) +2220 return new_definition
+
+ +2221 +2222 +
+[docs] +2223def kore_term(dct: Mapping[str, Any]) -> Pattern: +2224 if dct['format'] != 'KORE': +2225 raise ValueError(f"Invalid format: {dct['format']}") +2226 +2227 if dct['version'] != 1: +2228 raise ValueError(f"Invalid version: {dct['version']}") +2229 +2230 return Pattern.from_dict(dct['term'])
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore/tools.html b/pyk/_modules/pyk/kore/tools.html new file mode 100644 index 00000000000..29ad1af70f0 --- /dev/null +++ b/pyk/_modules/pyk/kore/tools.html @@ -0,0 +1,195 @@ + + + + + + pyk.kore.tools — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.kore.tools

+ 1from __future__ import annotations
+ 2
+ 3from enum import Enum
+ 4from pathlib import Path
+ 5from typing import TYPE_CHECKING
+ 6
+ 7from ..cli.utils import check_dir_path, check_file_path
+ 8from ..utils import run_process
+ 9
+10if TYPE_CHECKING:
+11    from .syntax import Pattern
+12
+13
+
+[docs] +14class PrintOutput(Enum): +15 PRETTY = 'pretty' +16 PROGRAM = 'program' +17 KAST = 'kast' +18 BINARY = 'binary' +19 JSON = 'json' +20 LATEX = 'latex' +21 KORE = 'kore' +22 NONE = 'none'
+ +23 +24 +
+[docs] +25def kore_print( +26 pattern: str | Pattern, +27 *, +28 definition_dir: str | Path | None = None, +29 output_file: str | Path | None = None, +30 output: str | PrintOutput | None = None, +31 color: bool | None = None, +32) -> str: +33 input = pattern if isinstance(pattern, str) else pattern.text +34 if output is not None: +35 output = PrintOutput(output) +36 if output is PrintOutput.KORE: +37 return input +38 return _kore_print( +39 '/dev/stdin', +40 definition_dir=definition_dir, +41 output_file=output_file, +42 output=output, +43 color=color, +44 input=input, +45 )
+ +46 +47 +48def _kore_print( +49 input_file: str | Path, +50 *, +51 definition_dir: str | Path | None = None, +52 output_file: str | Path | None = None, +53 output: str | PrintOutput | None = None, +54 color: bool | None = None, +55 # --- +56 input: str | None, +57) -> str: +58 args = ['kore-print'] +59 +60 input_file = Path(input_file) +61 if not input_file.is_char_device(): +62 check_file_path(input_file) +63 args += [str(input_file)] +64 +65 if definition_dir is not None: +66 definition_dir = Path(definition_dir) +67 check_dir_path(definition_dir) +68 args += ['--definition', str(definition_dir)] +69 +70 if output_file is not None: +71 output_file = Path(output_file) +72 check_file_path(output_file) +73 args += ['--output_file', str(output_file)] +74 +75 if output is not None: +76 output = PrintOutput(output) +77 args += ['--output', output.value] +78 +79 if color is not None: +80 args += ['--color', 'on' if color else 'off'] +81 +82 run_res = run_process(args, input=input) +83 return run_res.stdout.strip() +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/kore_exec_covr/kore_exec_covr.html b/pyk/_modules/pyk/kore_exec_covr/kore_exec_covr.html new file mode 100644 index 00000000000..9894eb05f5a --- /dev/null +++ b/pyk/_modules/pyk/kore_exec_covr/kore_exec_covr.html @@ -0,0 +1,222 @@ + + + + + + pyk.kore_exec_covr.kore_exec_covr — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for pyk.kore_exec_covr.kore_exec_covr

+  1from __future__ import annotations
+  2
+  3import logging
+  4import re
+  5from collections import defaultdict
+  6from enum import Enum
+  7from typing import TYPE_CHECKING
+  8
+  9from ..kast import Atts
+ 10
+ 11if TYPE_CHECKING:
+ 12    from pathlib import Path
+ 13    from typing import Final
+ 14
+ 15    from ..kast.outer import KDefinition, KRule
+ 16
+ 17
+ 18_LOG_FORMAT: Final = '%(levelname)s %(name)s - %(message)s'
+ 19_LOGGER: Final = logging.getLogger(__name__)
+ 20
+ 21_HASKELL_LOG_ENTRY_REGEXP: Final = re.compile(r'(kore-exec|kore-rpc): \[\d*\] Debug \(([a-zA-Z]*)\):(.*)')
+ 22
+ 23
+
+[docs] + 24class HaskellLogEntry(Enum): + 25 DEBUG_APPLY_EQUATION = 'DebugApplyEquation' + 26 DEBUG_APPLIED_REWRITE_RULES = 'DebugAppliedRewriteRules'
+ + 27 + 28 +
+[docs] + 29def parse_rule_applications(haskell_backend_oneline_log_file: Path) -> dict[HaskellLogEntry, dict[str, int]]: + 30 """Process a one-line log file produced by K's Haskell backend. + 31 + 32 Extracts information about: + 33 + 34 - Applied rewrites (DebugAppliedRewriteRules). + 35 - Applied simplifications (DEBUG_APPLY_EQUATION). + 36 + 37 Note: + 38 Haskell backend logs often contain rule applications with empty locations. + 39 It seems likely that those are generated projection rules. + 40 We report their applications in bulk with UNKNOWN location. + 41 """ + 42 rewrites: dict[str, int] = defaultdict(int) + 43 simplifications: dict[str, int] = defaultdict(int) + 44 + 45 log_entries = haskell_backend_oneline_log_file.read_text().splitlines() + 46 for log_entry in log_entries: + 47 parsed = _parse_haskell_oneline_log(log_entry) + 48 if parsed: + 49 entry_type, location_str = parsed + 50 else: + 51 _LOGGER.warning(f'Skipping log entry, failed to parse: {log_entry}') + 52 continue + 53 if location_str == '': + 54 location_str = 'UNKNOWN' + 55 if entry_type == HaskellLogEntry.DEBUG_APPLIED_REWRITE_RULES: + 56 rewrites[location_str] += 1 + 57 else: + 58 assert entry_type == HaskellLogEntry.DEBUG_APPLY_EQUATION + 59 simplifications[location_str] += 1 + 60 return { + 61 HaskellLogEntry.DEBUG_APPLIED_REWRITE_RULES: rewrites, + 62 HaskellLogEntry.DEBUG_APPLY_EQUATION: simplifications, + 63 }
+ + 64 + 65 + 66def _parse_haskell_oneline_log(log_entry: str) -> tuple[HaskellLogEntry, str] | None: + 67 """Attempt to parse a one-line log string emmitted by K's Haskell backend.""" + 68 matches = _HASKELL_LOG_ENTRY_REGEXP.match(log_entry) + 69 try: + 70 assert matches + 71 entry = matches.groups()[1] + 72 location_str = matches.groups()[2].strip() + 73 return HaskellLogEntry(entry), location_str + 74 except (AssertionError, KeyError, ValueError): + 75 return None + 76 + 77 +
+[docs] + 78def build_rule_dict( + 79 definition: KDefinition, *, skip_projections: bool = True, skip_initializers: bool = True + 80) -> dict[str, KRule]: + 81 """Traverse the kompiled definition and build a dictionary mapping str(file:location) to KRule.""" + 82 rule_dict: dict[str, KRule] = {} + 83 + 84 for rule in definition.rules: + 85 if skip_projections and Atts.PROJECTION in rule.att: + 86 continue + 87 if skip_initializers and Atts.INITIALIZER in rule.att: + 88 continue + 89 try: + 90 rule_source = rule.att[Atts.SOURCE] + 91 rule_location = rule.att[Atts.LOCATION] + 92 except KeyError: + 93 _LOGGER.warning(f'Skipping rule with no location information {str(rule.body):.100}...<truncated>') + 94 rule_source = None + 95 rule_location = None + 96 continue + 97 if rule_source and rule_location: + 98 rule_dict[f'{rule_source}:{_location_tuple_to_str(rule_location)}'] = rule + 99 else: +100 raise ValueError(str(rule.body)) +101 +102 return rule_dict
+ +103 +104 +105def _location_tuple_to_str(location: tuple[int, int, int, int]) -> str: +106 start_line, start_col, end_line, end_col = location +107 return f'{start_line}:{start_col}-{end_line}:{end_col}' +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/krepl/repl.html b/pyk/_modules/pyk/krepl/repl.html new file mode 100644 index 00000000000..9363dd4c512 --- /dev/null +++ b/pyk/_modules/pyk/krepl/repl.html @@ -0,0 +1,330 @@ + + + + + + pyk.krepl.repl — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.krepl.repl

+  1from __future__ import annotations
+  2
+  3from abc import ABC, abstractmethod
+  4from argparse import ArgumentParser
+  5from dataclasses import dataclass
+  6from functools import cached_property
+  7from typing import TYPE_CHECKING, Generic, TypeVar, final
+  8
+  9from cmd2 import Cmd, with_argparser, with_category
+ 10
+ 11from ..cli.utils import check_dir_path, check_file_path, file_path
+ 12from ..kore.parser import KoreParser
+ 13from ..ktool.kprint import KPrint
+ 14from ..ktool.krun import KRun, KRunOutput, _krun
+ 15
+ 16if TYPE_CHECKING:
+ 17    from argparse import Namespace
+ 18    from collections.abc import Iterator
+ 19    from pathlib import Path
+ 20    from typing import Any, Final
+ 21
+ 22    from ..kore.syntax import Pattern
+ 23
+ 24T = TypeVar('T')
+ 25
+ 26
+
+[docs] + 27class Interpreter(Generic[T], ABC): + 28 def __iter__(self) -> Iterator[T]: + 29 state = self.init_state() + 30 while True: + 31 yield state + 32 state = self.next_state(state) + 33 +
+[docs] + 34 @abstractmethod + 35 def init_state(self) -> T: ...
+ + 36 +
+[docs] + 37 @abstractmethod + 38 def next_state(self, state: T, steps: int | None = None) -> T: ...
+
+ + 39 + 40 +
+[docs] + 41@final + 42@dataclass(frozen=True) + 43class KState: + 44 definition_dir: Path + 45 pattern: Pattern + 46 + 47 def __init__(self, definition_dir: Path, pattern: Pattern): + 48 definition_dir = definition_dir.resolve() + 49 check_dir_path(definition_dir) + 50 object.__setattr__(self, 'pattern', pattern) + 51 object.__setattr__(self, 'definition_dir', definition_dir) + 52 + 53 @cached_property + 54 def pretty(self) -> str: + 55 return KPrint(self.definition_dir).kore_to_pretty(self.pattern) + 56 + 57 def __str__(self) -> str: + 58 return self.pretty
+ + 59 + 60 +
+[docs] + 61class KInterpreter(Interpreter[KState]): + 62 definition_dir: Path + 63 program_file: Path + 64 + 65 def __init__(self, definition_dir: Path, program_file: Path) -> None: + 66 check_dir_path(definition_dir) + 67 check_file_path(program_file) + 68 self.definition_dir = definition_dir + 69 self.program_file = program_file + 70 +
+[docs] + 71 def init_state(self) -> KState: + 72 try: + 73 proc_res = _krun( + 74 input_file=self.program_file, + 75 definition_dir=self.definition_dir, + 76 output=KRunOutput.KORE, + 77 depth=0, + 78 ) + 79 except RuntimeError as err: + 80 raise ReplError('Failed to load program') from err + 81 + 82 pattern = KoreParser(proc_res.stdout).pattern() + 83 return KState(self.definition_dir, pattern)
+ + 84 +
+[docs] + 85 def next_state(self, state: KState, steps: int | None = None) -> KState: + 86 pattern = KRun(self.definition_dir).run_pattern(state.pattern, depth=steps) + 87 return KState(self.definition_dir, pattern)
+
+ + 88 + 89 + 90def _step_parser() -> ArgumentParser: + 91 parser = ArgumentParser(description='Execute steps in the program') + 92 parser.add_argument('steps', type=int, nargs='?', default=1, metavar='STEPS', help='number of steps to take') + 93 return parser + 94 + 95 + 96def _show_parser() -> ArgumentParser: + 97 return ArgumentParser(description='Show the current configuration') + 98 + 99 +
+[docs] +100class ReplError(Exception): ...
+ +101 +102 +
+[docs] +103class BaseRepl(Cmd, Generic[T], ABC): +104 CAT_DEBUG: Final = 'Debugger Commands' +105 CAT_BUILTIN: Final = 'Built-in Commands' +106 +107 prompt = '> ' +108 +109 interpreter: Interpreter[T] | None +110 state: T | None +111 +112 def __init__(self) -> None: +113 super().__init__(allow_cli_args=False) +114 self.default_category = self.CAT_BUILTIN +115 +116 self.interpreter = None +117 self.state = None +118 +
+[docs] +119 @abstractmethod +120 def do_load(self, args: Any) -> bool | None: # Leaky abstraction - make extension mechanism more robust +121 """Set up the interpreter. +122 +123 Subclasses are expected to +124 +125 - Decorate the method with `with_argparser` to ensure the right set of arguments is parsed. +126 - Instantiate an `Interpreter[T]` based on `args`, then set `self.interpreter`. +127 - Set `self.state` to `self.interpreter.init_state()`. +128 """ +129 ...
+ +130 +
+[docs] +131 @with_argparser(_step_parser()) +132 @with_category(CAT_DEBUG) +133 def do_step(self, args: Namespace) -> None: +134 try: +135 interpreter, state = self._check_state() +136 self._check_steps(args.steps) +137 self.state = interpreter.next_state(state, args.steps) +138 except ReplError as err: +139 self.poutput(err)
+ +140 +
+[docs] +141 @with_argparser(_show_parser()) +142 @with_category(CAT_DEBUG) +143 def do_show(self, args: Namespace) -> None: +144 try: +145 _, state = self._check_state() +146 self.poutput(state) +147 except ReplError as err: +148 self.poutput(err)
+ +149 +150 def _check_state(self) -> tuple[Interpreter, T]: +151 if self.interpreter is None: +152 raise ReplError('No program is loaded') +153 assert self.state is not None +154 return self.interpreter, self.state +155 +156 def _check_steps(self, steps: int | None = None) -> None: +157 if steps and steps < 0: +158 raise ReplError('Depth should be non-negative')
+ +159 +160 +161def _load_parser() -> ArgumentParser: +162 parser = ArgumentParser(description='Load a program') +163 parser.add_argument('program', type=file_path, metavar='PROGRAM', help='program to load') +164 return parser +165 +166 +
+[docs] +167class KRepl(BaseRepl[KState]): +168 intro = 'K-REPL Shell\nType "help" or "?" for more information.' +169 +170 def __init__(self, definition_dir: Path): +171 check_dir_path(definition_dir) +172 super().__init__() +173 self.definition_dir = definition_dir +174 +
+[docs] +175 @with_argparser(_load_parser()) +176 @with_category(BaseRepl.CAT_DEBUG) +177 def do_load(self, args: Namespace) -> None: +178 try: +179 self.interpreter = KInterpreter(self.definition_dir, args.program) +180 self.state = self.interpreter.init_state() +181 except ReplError as err: +182 self.poutput(err)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/claim_index.html b/pyk/_modules/pyk/ktool/claim_index.html new file mode 100644 index 00000000000..c88e4a9bbcf --- /dev/null +++ b/pyk/_modules/pyk/ktool/claim_index.html @@ -0,0 +1,309 @@ + + + + + + pyk.ktool.claim_index — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.claim_index

+  1from __future__ import annotations
+  2
+  3from collections.abc import Mapping
+  4from dataclasses import dataclass
+  5from functools import partial
+  6from graphlib import TopologicalSorter
+  7from typing import TYPE_CHECKING
+  8
+  9from ..kast import Atts
+ 10from ..kast.outer import KClaim
+ 11from ..utils import FrozenDict, unique
+ 12
+ 13if TYPE_CHECKING:
+ 14    from collections.abc import Container, Iterable, Iterator
+ 15
+ 16    from ..kast.outer import KFlatModule, KFlatModuleList
+ 17
+ 18
+
+[docs] + 19@dataclass(frozen=True) + 20class ClaimIndex(Mapping[str, KClaim]): + 21 claims: FrozenDict[str, KClaim] + 22 main_module_name: str | None + 23 + 24 def __init__( + 25 self, + 26 claims: Mapping[str, KClaim], + 27 main_module_name: str | None = None, + 28 ): + 29 self._validate(claims) + 30 object.__setattr__(self, 'claims', FrozenDict(claims)) + 31 object.__setattr__(self, 'main_module_name', main_module_name) + 32 +
+[docs] + 33 @staticmethod + 34 def from_module_list(module_list: KFlatModuleList) -> ClaimIndex: + 35 module_list = ClaimIndex._resolve_depends(module_list) + 36 return ClaimIndex( + 37 claims={claim.label: claim for module in module_list.modules for claim in module.claims}, + 38 main_module_name=module_list.main_module, + 39 )
+ + 40 + 41 @staticmethod + 42 def _validate(claims: Mapping[str, KClaim]) -> None: + 43 for label, claim in claims.items(): + 44 if claim.label != label: + 45 raise ValueError(f'Claim label mismatch, expected: {label}, found: {claim.label}') + 46 + 47 for depend in claim.dependencies: + 48 if depend not in claims: + 49 raise ValueError(f'Invalid dependency label: {depend}') + 50 + 51 @staticmethod + 52 def _resolve_depends(module_list: KFlatModuleList) -> KFlatModuleList: + 53 """Resolve each depends value relative to the module the claim belongs to. + 54 + 55 Example: + 56 ``` + 57 module THIS-MODULE + 58 claim ... [depends(foo,OTHER-MODULE.bar)] + 59 endmodule + 60 ``` + 61 + 62 becomes + 63 + 64 ``` + 65 module THIS-MODULE + 66 claim ... [depends(THIS-MODULE.foo,OTHER-MODULE.bar)] + 67 endmodule + 68 ``` + 69 """ + 70 labels = {claim.label for module in module_list.modules for claim in module.claims} + 71 + 72 def resolve_claim_depends(module_name: str, claim: KClaim) -> KClaim: + 73 depends = claim.dependencies + 74 if not depends: + 75 return claim + 76 + 77 resolve = partial(ClaimIndex._resolve_claim_label, labels, module_name) + 78 resolved = [resolve(label) for label in depends] + 79 return claim.let(att=claim.att.update([Atts.DEPENDS(','.join(resolved))])) + 80 + 81 modules: list[KFlatModule] = [] + 82 for module in module_list.modules: + 83 resolve_depends = partial(resolve_claim_depends, module.name) + 84 module = module.map_sentences(resolve_depends, of_type=KClaim) + 85 modules.append(module) + 86 + 87 return module_list.let(modules=modules) + 88 + 89 @staticmethod + 90 def _resolve_claim_label(labels: Container[str], module_name: str | None, label: str) -> str: + 91 """Resolve `label` to a valid label in `labels`, or raise. + 92 + 93 If a `label` is not found and `module_name` is set, the label is tried after qualifying. + 94 """ + 95 if label in labels: + 96 return label + 97 + 98 if module_name is not None: + 99 qualified = f'{module_name}.{label}' +100 if qualified in labels: +101 return qualified +102 +103 raise ValueError(f'Claim label not found: {label}') +104 +105 def __iter__(self) -> Iterator[str]: +106 return iter(self.claims) +107 +108 def __len__(self) -> int: +109 return len(self.claims) +110 +111 def __getitem__(self, label: str) -> KClaim: +112 try: +113 label = self.resolve(label) +114 except ValueError: +115 raise KeyError(f'Claim not found: {label}') from None +116 return self.claims[label] +117 +
+[docs] +118 def resolve(self, label: str) -> str: +119 return self._resolve_claim_label(self.claims, self.main_module_name, label)
+ +120 +
+[docs] +121 def resolve_all(self, labels: Iterable[str]) -> list[str]: +122 return [self.resolve(label) for label in unique(labels)]
+ +123 +
+[docs] +124 def labels( +125 self, +126 *, +127 include: Iterable[str] | None = None, +128 exclude: Iterable[str] | None = None, +129 with_depends: bool = True, +130 ordered: bool = False, +131 ) -> list[str]: +132 """Return a list of labels from the index. +133 +134 Args: +135 include: Labels to include in the result. If `None`, all labels are included. +136 exclude: Labels to exclude from the result. If `None`, no labels are excluded. +137 Takes precedence over `include`. +138 with_depends: If `True`, the result is transitively closed w.r.t. the dependency relation. +139 Labels in `exclude` are pruned, and their dependencies are not considered on the given path. +140 ordered: If `True`, the result is topologically sorted w.r.t. the dependency relation. +141 +142 Returns: +143 A list of labels from the index. +144 +145 Raises: +146 ValueError: If an item in `include` or `exclude` cannot be resolved to a valid label. +147 """ +148 include = self.resolve_all(include) if include is not None else self.claims +149 exclude = self.resolve_all(exclude) if exclude is not None else [] +150 +151 labels: list[str] +152 +153 if with_depends: +154 labels = self._close_dependencies(labels=include, prune=exclude) +155 else: +156 labels = [label for label in include if label not in set(exclude)] +157 +158 if ordered: +159 return self._sort_topologically(labels) +160 +161 return labels
+ +162 +163 def _close_dependencies(self, labels: Iterable[str], prune: Iterable[str]) -> list[str]: +164 res: list[str] = [] +165 +166 pending = list(labels) +167 done = set(prune) +168 +169 while pending: +170 label = pending.pop(0) # BFS +171 +172 if label in done: +173 continue +174 +175 res.append(label) +176 pending += self.claims[label].dependencies +177 done.add(label) +178 +179 return res +180 +181 def _sort_topologically(self, labels: list[str]) -> list[str]: +182 label_set = set(labels) +183 graph = { +184 label: [dep for dep in claim.dependencies if dep in label_set] +185 for label, claim in self.claims.items() +186 if label in labels +187 } +188 return list(TopologicalSorter(graph).static_order())
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/kfuzz.html b/pyk/_modules/pyk/ktool/kfuzz.html new file mode 100644 index 00000000000..e0c697ac8e1 --- /dev/null +++ b/pyk/_modules/pyk/ktool/kfuzz.html @@ -0,0 +1,223 @@ + + + + + + pyk.ktool.kfuzz — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.kfuzz

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from hypothesis import Phase, Verbosity, given, settings
+  6from hypothesis.strategies import builds, fixed_dictionaries, integers
+  7
+  8from ..kast.inner import KSort
+  9from ..konvert import _kast_to_kore
+ 10from ..kore.parser import KoreParser
+ 11from ..kore.syntax import Assoc, EVar
+ 12from ..prelude.k import inj
+ 13from ..prelude.kint import intToken
+ 14from .krun import llvm_interpret_raw
+ 15
+ 16if TYPE_CHECKING:
+ 17    from collections.abc import Callable, Mapping
+ 18    from pathlib import Path
+ 19    from typing import Any
+ 20
+ 21    from hypothesis.strategies import SearchStrategy
+ 22
+ 23    from ..kast.inner import KInner
+ 24    from ..kore.syntax import Pattern
+ 25
+ 26
+
+[docs] + 27def kintegers( + 28 *, + 29 min_value: int | None = None, + 30 max_value: int | None = None, + 31 with_inj: KSort | None = None, + 32) -> SearchStrategy[Pattern]: + 33 """Return a search strategy for K integers. + 34 + 35 Args: + 36 min_value: Minimum value for the generated integers + 37 max_value: Maximum value for the generated integers + 38 with_inj: Return the integer as an injection into this sort + 39 + 40 Returns: + 41 A strategy which generates integer domain values. + 42 """ + 43 + 44 def int_dv(value: int) -> Pattern: + 45 res: KInner = intToken(value) + 46 if with_inj is not None: + 47 res = inj(KSort('Int'), with_inj, res) + 48 return _kast_to_kore(res) + 49 + 50 return builds(int_dv, integers(min_value=min_value, max_value=max_value))
+ + 51 + 52 +
+[docs] + 53def fuzz( + 54 definition_dir: str | Path, + 55 template: Pattern, + 56 subst_strategy: dict[EVar, SearchStrategy[Pattern]], + 57 check_func: Callable[[Pattern], Any] | None = None, + 58 check_exit_code: bool = False, + 59 max_examples: int = 50, + 60) -> None: + 61 """Fuzz a property test with concrete execution over a K term. + 62 + 63 Args: + 64 definition_dir: The location of the K definition to run the interpreter for. + 65 template: The term which will be sent to the interpreter after randomizing inputs. It should contain at least one variable which will be substituted for a value. + 66 subst_strategy: Should have each variable in the template term mapped to a strategy for generating values for it. + 67 check_func: Will be called on the kore output from the interpreter. + 68 Should throw an AssertionError if it determines that the output indicates a test failure. + 69 A RuntimeError will be thrown if this is passed as an argument and check_exit_code is True. + 70 check_exit_code: Check the exit code of the interpreter for a test failure instead of using check_func. + 71 An exit code of 0 indicates a passing test. + 72 A RuntimeError will be thrown if this is True and check_func is also passed as an argument. + 73 max_examples: The number of test cases to run. + 74 + 75 Raises: + 76 RuntimeError: If check_func exists and check_exit_code is set, or check_func doesn't exist and check_exit_code is cleared. + 77 """ + 78 if bool(check_func) == check_exit_code: + 79 raise RuntimeError('Must pass one of check_func or check_exit_code, and not both!') + 80 + 81 def test(subst_case: Mapping[EVar, Pattern]) -> None: + 82 def sub(p: Pattern) -> Pattern: + 83 if isinstance(p, Assoc): + 84 symbol = p.symbol() + 85 args = (arg.top_down(sub) for arg in p.app.args) + 86 return p.of(symbol, patterns=(p.app.let(args=args),)) + 87 if p in subst_case: + 88 assert isinstance(p, EVar) + 89 return subst_case[p] + 90 return p + 91 + 92 test_pattern = template.top_down(sub) + 93 res = llvm_interpret_raw(definition_dir, test_pattern.text) + 94 + 95 if check_exit_code: + 96 assert res.returncode == 0 + 97 else: + 98 assert check_func + 99 res_pattern = KoreParser(res.stdout).pattern() +100 check_func(res_pattern) +101 +102 strat: SearchStrategy = fixed_dictionaries(subst_strategy) +103 +104 given(strat)( +105 settings( +106 deadline=50000, +107 max_examples=max_examples, +108 verbosity=Verbosity.verbose, +109 phases=(Phase.generate, Phase.target, Phase.shrink), +110 )(test) +111 )()
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/kompile.html b/pyk/_modules/pyk/ktool/kompile.html new file mode 100644 index 00000000000..36a8dc9a761 --- /dev/null +++ b/pyk/_modules/pyk/ktool/kompile.html @@ -0,0 +1,772 @@ + + + + + + pyk.ktool.kompile — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.kompile

+  1from __future__ import annotations
+  2
+  3__all__ = ['PykBackend', 'kompile']
+  4
+  5import concurrent.futures
+  6import dataclasses
+  7import logging
+  8import shlex
+  9import shutil
+ 10from abc import ABC, abstractmethod
+ 11from dataclasses import dataclass
+ 12from enum import Enum
+ 13from functools import cached_property
+ 14from pathlib import Path
+ 15from subprocess import CalledProcessError
+ 16from typing import TYPE_CHECKING, final
+ 17
+ 18from ..utils import abs_or_rel_to, check_dir_path, check_file_path, run_process, single
+ 19from . import TypeInferenceMode
+ 20
+ 21if TYPE_CHECKING:
+ 22    from collections.abc import Iterable, Mapping
+ 23    from fractions import Fraction
+ 24    from typing import Any, Final, Literal
+ 25
+ 26    from ..utils import BugReport
+ 27
+ 28_LOGGER: Final = logging.getLogger(__name__)
+ 29
+ 30
+ 31class KompileNotFoundError(RuntimeError):
+ 32    def __init__(self, kompile_command: str):
+ 33        super().__init__(f'Kompile command not found: {str}')
+ 34
+ 35
+
+[docs] + 36class PykBackend(Enum): + 37 LLVM = 'llvm' + 38 HASKELL = 'haskell' + 39 KORE = 'kore' + 40 MAUDE = 'maude' + 41 BOOSTER = 'booster'
+ + 42 + 43 + 44class Warnings(Enum): + 45 ALL = 'all' + 46 NORMAL = 'normal' + 47 NONE = 'none' + 48 + 49 +
+[docs] + 50def kompile( + 51 main_file: str | Path, + 52 *, + 53 backend: str | PykBackend | None = None, + 54 # --- + 55 command: Iterable[str] = ('kompile',), + 56 output_dir: str | Path | None = None, + 57 temp_dir: str | Path | None = None, + 58 type_inference_mode: str | TypeInferenceMode | None = None, + 59 warnings: str | Warnings | None = None, + 60 warnings_to_errors: bool = False, + 61 ignore_warnings: Iterable[str] = (), + 62 no_exc_wrap: bool = False, + 63 # --- + 64 debug: bool = False, + 65 verbose: bool = False, + 66 cwd: Path | None = None, + 67 check: bool = True, + 68 # --- + 69 **kwargs: Any, + 70) -> Path: + 71 kwargs['main_file'] = main_file + 72 + 73 pyk_backend = PykBackend(backend) if backend else None + 74 if pyk_backend is PykBackend.BOOSTER: + 75 return _booster_kompile( + 76 command=command, + 77 output_dir=output_dir, + 78 temp_dir=temp_dir, + 79 type_inference_mode=type_inference_mode, + 80 warnings=warnings, + 81 warnings_to_errors=warnings_to_errors, + 82 ignore_warnings=ignore_warnings, + 83 no_exc_wrap=no_exc_wrap, + 84 debug=debug, + 85 verbose=verbose, + 86 cwd=cwd, + 87 check=check, + 88 kwargs=kwargs, + 89 ) + 90 + 91 kwargs['backend'] = KompileBackend(pyk_backend.value) if pyk_backend else None + 92 + 93 kompiler = Kompile.from_dict(kwargs) + 94 return kompiler( + 95 command=command, + 96 output_dir=output_dir, + 97 temp_dir=temp_dir, + 98 type_inference_mode=type_inference_mode, + 99 warnings=warnings, +100 warnings_to_errors=warnings_to_errors, +101 ignore_warnings=ignore_warnings, +102 no_exc_wrap=no_exc_wrap, +103 debug=debug, +104 verbose=verbose, +105 cwd=cwd, +106 check=check, +107 )
+ +108 +109 +110def _booster_kompile( +111 command: Iterable[str], +112 output_dir: str | Path | None, +113 temp_dir: str | Path | None, +114 type_inference_mode: str | TypeInferenceMode | None, +115 warnings: str | Warnings | None, +116 warnings_to_errors: bool, +117 ignore_warnings: Iterable[str], +118 no_exc_wrap: bool, +119 # --- +120 debug: bool, +121 verbose: bool, +122 cwd: Path | None, +123 check: bool, +124 # --- +125 kwargs: Mapping[str, Any], +126) -> Path: +127 llvm_kt = kwargs.get('llvm_kompile_type') +128 llvm_kt = LLVMKompileType(llvm_kt) if llvm_kt else None +129 if llvm_kt and llvm_kt is not LLVMKompileType.C: +130 raise ValueError(f'Unsupported argument value for Booster kompilation: llvm_kompile_type: {llvm_kt.value}') +131 +132 llvm_args, haskell_args = _group_args(kwargs) +133 +134 llvm_args['backend'] = KompileBackend.LLVM +135 llvm_args['llvm_kompile_type'] = LLVMKompileType.C +136 llvm_kompile = LLVMKompile.from_dict(llvm_args) +137 +138 haskell_args['backend'] = KompileBackend.HASKELL +139 haskell_kompile = HaskellKompile.from_dict(haskell_args) +140 +141 main_file = Path(kwargs['main_file']) +142 output_dir = Path(output_dir) if output_dir else _default_output_dir(main_file) +143 temp_dir = Path(temp_dir) if temp_dir else None +144 +145 def kompile_llvm() -> None: +146 llvm_kompile( +147 command=command, +148 output_dir=output_dir / 'llvm-library', +149 temp_dir=temp_dir / 'llvm-library' if temp_dir else None, +150 type_inference_mode=type_inference_mode, +151 warnings=warnings, +152 warnings_to_errors=warnings_to_errors, +153 ignore_warnings=ignore_warnings, +154 no_exc_wrap=no_exc_wrap, +155 debug=debug, +156 verbose=verbose, +157 cwd=cwd, +158 check=check, +159 ) +160 +161 def kompile_haskell() -> None: +162 haskell_kompile( +163 command=command, +164 output_dir=output_dir, +165 temp_dir=temp_dir, +166 type_inference_mode=type_inference_mode, +167 warnings=warnings, +168 warnings_to_errors=warnings_to_errors, +169 ignore_warnings=ignore_warnings, +170 no_exc_wrap=no_exc_wrap, +171 debug=debug, +172 verbose=verbose, +173 cwd=cwd, +174 check=check, +175 ) +176 +177 with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: +178 futures = [executor.submit(f) for f in [kompile_llvm, kompile_haskell]] +179 for future in concurrent.futures.as_completed(futures): +180 future.result() +181 +182 assert output_dir.is_dir() +183 return output_dir +184 +185 +186def _group_args(args: Mapping[str, Any]) -> tuple[dict[str, Any], dict[str, Any]]: +187 llvm_args = {} +188 haskell_args = {} +189 +190 for arg, value in args.items(): +191 if arg in COMMON_ARGS: +192 llvm_args[arg] = value +193 haskell_args[arg] = value +194 elif arg in KompileBackend.LLVM.args: +195 llvm_args[arg] = value +196 elif arg in KompileBackend.HASKELL.args: +197 haskell_args[arg] = value +198 +199 return llvm_args, haskell_args +200 +201 +202# ----------- +203# kompile CLI +204# ----------- +205 +206 +207class KompileBackend(Enum): +208 LLVM = 'llvm' +209 HASKELL = 'haskell' +210 KORE = 'kore' +211 MAUDE = 'maude' +212 +213 @cached_property +214 def args(self) -> frozenset[str]: +215 match self: +216 case KompileBackend.LLVM: +217 return frozenset(field.name for field in dataclasses.fields(LLVMKompile) if field.name != 'base_args') +218 case KompileBackend.HASKELL: +219 return frozenset( +220 field.name for field in dataclasses.fields(HaskellKompile) if field.name != 'base_args' +221 ) +222 case _: +223 raise ValueError(f'Method not supported for backend: {self.value}') +224 +225 +226class Kompile(ABC): +227 base_args: KompileArgs +228 +229 @staticmethod +230 def default_directory() -> Path: +231 try: +232 return single(Path().glob('*-kompiled')) +233 except ValueError as err: +234 if len(err.args) == 1: +235 raise ValueError('Could not find `*-kompiled` directory, use --definition to specify one.') from err +236 else: +237 _, fst, snd = err.args +238 raise ValueError( +239 f'More than one `*-kompiled` directory found ({fst}, {snd}, ...), use `--definition` to specify one.' +240 ) from err +241 +242 @staticmethod +243 def from_dict(dct: Mapping[str, Any]) -> Kompile: +244 backend = KompileBackend(dct.get('backend') or 'llvm') +245 +246 common_args: dict[str, Any] = {} +247 backend_args: dict[str, Any] = {} +248 for key, value in dct.items(): +249 if key == 'backend': +250 continue +251 elif key in COMMON_ARGS: +252 common_args[key] = value +253 elif key in backend.args: +254 backend_args[key] = value +255 else: +256 raise ValueError(f'Unexpected argument for backend: {backend.value}: {key}={value!r}') +257 +258 base_args = KompileArgs(**common_args) +259 match backend: +260 case KompileBackend.HASKELL: +261 return HaskellKompile(base_args, **backend_args) +262 case KompileBackend.LLVM: +263 return LLVMKompile(base_args, **backend_args) +264 case KompileBackend.MAUDE: +265 return MaudeKompile(base_args, **backend_args) +266 case _: +267 raise ValueError(f'Unsupported backend: {backend.value}') +268 +269 @property +270 @abstractmethod +271 def backend(self) -> KompileBackend: ... +272 +273 def __call__( +274 self, +275 command: Iterable[str] | None = None, +276 *, +277 output_dir: str | Path | None = None, +278 temp_dir: str | Path | None = None, +279 type_inference_mode: str | TypeInferenceMode | None = None, +280 warnings: str | Warnings | None = None, +281 warnings_to_errors: bool = False, +282 ignore_warnings: Iterable[str] = (), +283 no_exc_wrap: bool = False, +284 debug: bool = False, +285 verbose: bool = False, +286 cwd: Path | None = None, +287 check: bool = True, +288 bug_report: BugReport | None = None, +289 outer_parsed_json: bool = False, +290 ) -> Path: +291 check_file_path(abs_or_rel_to(self.base_args.main_file, cwd or Path())) +292 for include_dir in self.base_args.include_dirs: +293 check_dir_path(abs_or_rel_to(include_dir, cwd or Path())) +294 +295 command = list(command) if command is not None else ['kompile'] +296 if not shutil.which(command[0]): +297 raise KompileNotFoundError(command[0]) +298 args = command + self.args() +299 +300 if output_dir is not None: +301 output_dir = Path(output_dir) +302 args += ['--output-definition', str(output_dir)] +303 +304 if temp_dir is not None: +305 temp_dir = Path(temp_dir) +306 args += ['--temp-dir', str(temp_dir)] +307 +308 if type_inference_mode is not None: +309 type_inference_mode = TypeInferenceMode(type_inference_mode) +310 args += ['--type-inference-mode', type_inference_mode.value] +311 +312 if warnings is not None: +313 warnings = Warnings(warnings) +314 args += ['--warnings', warnings.value] +315 +316 if warnings_to_errors: +317 args += ['--warnings-to-errors'] +318 +319 if no_exc_wrap: +320 args += ['--no-exc-wrap'] +321 +322 if debug: +323 args += ['--debug'] +324 +325 if verbose: +326 args += ['--verbose'] +327 +328 if outer_parsed_json: +329 args += ['--outer-parsed-json'] +330 +331 if ignore_warnings: +332 args += ['-Wno', ','.join(ignore_warnings)] +333 +334 try: +335 proc_res = run_process(args, logger=_LOGGER, cwd=cwd, check=check) +336 except CalledProcessError as err: +337 raise RuntimeError( +338 f'Command kompile exited with code {err.returncode} for: {self.base_args.main_file}', +339 err.stdout, +340 err.stderr, +341 err.returncode, +342 err, +343 ) from err +344 +345 if proc_res.stdout: +346 out = proc_res.stdout.rstrip() +347 print(out) +348 if bug_report: +349 bug_report.add_file_contents(out, Path('kompile.log')) +350 +351 definition_dir = output_dir if output_dir else _default_output_dir(self.base_args.main_file) +352 assert definition_dir.is_dir() +353 +354 return definition_dir +355 +356 @abstractmethod +357 def args(self) -> list[str]: ... +358 +359 +360def _default_output_dir(main_file: Path) -> Path: +361 return Path(main_file.stem + '-kompiled') +362 +363 +364@final +365@dataclass(frozen=True) +366class HaskellKompile(Kompile): +367 base_args: KompileArgs +368 concrete_rules: tuple[str, ...] +369 haskell_binary: bool +370 +371 def __init__(self, base_args: KompileArgs, *, concrete_rules: Iterable[str] = (), haskell_binary: bool = True): +372 concrete_rules = tuple(concrete_rules) +373 object.__setattr__(self, 'base_args', base_args) +374 object.__setattr__(self, 'concrete_rules', concrete_rules) +375 object.__setattr__(self, 'haskell_binary', haskell_binary) +376 +377 @property +378 def backend(self) -> Literal[KompileBackend.HASKELL]: +379 return KompileBackend.HASKELL +380 +381 def args(self) -> list[str]: +382 args = self.base_args.args() +383 args += ['--backend', 'haskell'] +384 +385 if self.concrete_rules: +386 args += ['--concrete-rules', ','.join(self.concrete_rules)] +387 +388 if not self.haskell_binary: +389 args += ['--no-haskell-binary'] +390 +391 return args +392 +393 +394@final +395@dataclass(frozen=True) +396class MaudeKompile(Kompile): +397 base_args: KompileArgs +398 +399 def __init__(self, base_args: KompileArgs): +400 object.__setattr__(self, 'base_args', base_args) +401 +402 @property +403 def backend(self) -> Literal[KompileBackend.MAUDE]: +404 return KompileBackend.MAUDE +405 +406 def args(self) -> list[str]: +407 args = self.base_args.args() +408 args += ['--backend', 'maude'] +409 +410 return args +411 +412 +413class LLVMKompileType(Enum): +414 MAIN = 'main' +415 SEARCH = 'search' +416 LIBRARY = 'library' +417 STATIC = 'static' +418 PYTHON = 'python' +419 C = 'c' +420 +421 +422@final +423@dataclass(frozen=True) +424class LLVMKompile(Kompile): +425 base_args: KompileArgs +426 llvm_kompile_type: LLVMKompileType | None +427 llvm_kompile_output: Path | None +428 opt_level: int +429 ccopts: tuple[str, ...] +430 no_llvm_kompile: bool +431 enable_search: bool +432 enable_llvm_debug: bool +433 llvm_proof_hint_instrumentation: bool +434 llvm_proof_hint_debugging: bool +435 llvm_mutable_bytes: bool +436 iterated_threshold: Fraction | None +437 heuristic: str | None +438 +439 def __init__( +440 self, +441 base_args: KompileArgs, +442 *, +443 llvm_kompile_type: str | LLVMKompileType | None = None, +444 llvm_kompile_output: str | Path | None = None, +445 opt_level: int | None = None, +446 ccopts: Iterable[str] = (), +447 no_llvm_kompile: bool = False, +448 enable_search: bool = False, +449 enable_llvm_debug: bool = False, +450 llvm_proof_hint_instrumentation: bool = False, +451 llvm_proof_hint_debugging: bool = False, +452 llvm_mutable_bytes: bool = False, +453 iterated_threshold: Fraction | None = None, +454 heuristic: str | None = None, +455 ): +456 llvm_kompile_type = LLVMKompileType(llvm_kompile_type) if llvm_kompile_type is not None else None +457 llvm_kompile_output = Path(llvm_kompile_output) if llvm_kompile_output is not None else None +458 +459 opt_level = opt_level or 0 +460 if not (0 <= opt_level <= 3): +461 raise ValueError('Invalid optimization level: {opt_level}') +462 +463 ccopts = tuple(ccopts) +464 +465 object.__setattr__(self, 'base_args', base_args) +466 object.__setattr__(self, 'llvm_kompile_type', llvm_kompile_type) +467 object.__setattr__(self, 'llvm_kompile_output', llvm_kompile_output) +468 object.__setattr__(self, 'opt_level', opt_level) +469 object.__setattr__(self, 'ccopts', ccopts) +470 object.__setattr__(self, 'no_llvm_kompile', no_llvm_kompile) +471 object.__setattr__(self, 'enable_search', enable_search) +472 object.__setattr__(self, 'enable_llvm_debug', enable_llvm_debug) +473 object.__setattr__(self, 'llvm_proof_hint_instrumentation', llvm_proof_hint_instrumentation) +474 object.__setattr__(self, 'llvm_proof_hint_debugging', llvm_proof_hint_debugging) +475 object.__setattr__(self, 'llvm_mutable_bytes', llvm_mutable_bytes) +476 object.__setattr__(self, 'iterated_threshold', iterated_threshold) +477 object.__setattr__(self, 'heuristic', heuristic) +478 +479 @property +480 def backend(self) -> Literal[KompileBackend.LLVM]: +481 return KompileBackend.LLVM +482 +483 def args(self) -> list[str]: +484 args = self.base_args.args() +485 args += ['--backend', 'llvm'] +486 +487 if self.llvm_kompile_type: +488 args += ['--llvm-kompile-type', self.llvm_kompile_type.value] +489 +490 if self.llvm_kompile_output is not None: +491 args += ['--llvm-kompile-output', str(self.llvm_kompile_output)] +492 +493 if self.opt_level: +494 args += [f'-O{self.opt_level}'] +495 +496 for ccopt in self.ccopts: +497 args += ['-ccopt', ccopt] +498 +499 if self.no_llvm_kompile: +500 args += ['--no-llvm-kompile'] +501 +502 if self.enable_search: +503 args += ['--enable-search'] +504 +505 if self.enable_llvm_debug: +506 args += ['--enable-llvm-debug'] +507 +508 if self.llvm_proof_hint_instrumentation: +509 args += ['--llvm-proof-hint-instrumentation'] +510 +511 if self.llvm_proof_hint_debugging: +512 args += ['--llvm-proof-hint-debugging'] +513 +514 if self.llvm_mutable_bytes: +515 args += ['--llvm-mutable-bytes'] +516 +517 if self.iterated_threshold: +518 args += ['--iterated-threshold', str(self.iterated_threshold)] +519 +520 if self.heuristic: +521 args += ['--heuristic', self.heuristic] +522 +523 return args +524 +525 +526@final +527@dataclass(frozen=True) +528class KompileArgs: +529 main_file: Path +530 main_module: str | None +531 syntax_module: str | None +532 include_dirs: tuple[Path, ...] +533 md_selector: str | None +534 hook_namespaces: tuple[str, ...] +535 emit_json: bool +536 gen_bison_parser: bool +537 gen_glr_bison_parser: bool +538 bison_parser_library: bool +539 post_process: str | None +540 read_only: bool +541 coverage: bool +542 bison_lists: bool +543 outer_parsed_json: bool +544 +545 def __init__( +546 self, +547 main_file: str | Path, +548 *, +549 main_module: str | None = None, +550 syntax_module: str | None = None, +551 include_dirs: Iterable[str | Path] = (), +552 md_selector: str | None = None, +553 hook_namespaces: Iterable[str] = (), +554 emit_json: bool = True, +555 gen_bison_parser: bool = False, +556 gen_glr_bison_parser: bool = False, +557 bison_parser_library: bool = False, +558 post_process: str | None = None, +559 read_only: bool = False, +560 coverage: bool = False, +561 bison_lists: bool = False, +562 outer_parsed_json: bool = False, +563 ): +564 main_file = Path(main_file) +565 include_dirs = tuple(sorted(Path(include_dir) for include_dir in include_dirs)) +566 hook_namespaces = tuple(hook_namespaces) +567 +568 object.__setattr__(self, 'main_file', main_file) +569 object.__setattr__(self, 'main_module', main_module) +570 object.__setattr__(self, 'syntax_module', syntax_module) +571 object.__setattr__(self, 'include_dirs', include_dirs) +572 object.__setattr__(self, 'md_selector', md_selector) +573 object.__setattr__(self, 'hook_namespaces', hook_namespaces) +574 object.__setattr__(self, 'emit_json', emit_json) +575 object.__setattr__(self, 'gen_bison_parser', gen_bison_parser) +576 object.__setattr__(self, 'gen_glr_bison_parser', gen_glr_bison_parser) +577 object.__setattr__(self, 'bison_parser_library', bison_parser_library) +578 object.__setattr__(self, 'post_process', post_process) +579 object.__setattr__(self, 'read_only', read_only) +580 object.__setattr__(self, 'coverage', coverage) +581 object.__setattr__(self, 'bison_lists', bison_lists) +582 object.__setattr__(self, 'outer_parsed_json', outer_parsed_json) +583 +584 def args(self) -> list[str]: +585 args = [str(self.main_file)] +586 +587 if self.main_module: +588 args += ['--main-module', self.main_module] +589 +590 if self.syntax_module: +591 args += ['--syntax-module', self.syntax_module] +592 +593 for include_dir in self.include_dirs: +594 args += ['-I', str(include_dir)] +595 +596 if self.md_selector: +597 args += ['--md-selector', self.md_selector] +598 +599 if self.hook_namespaces: +600 args += ['--hook-namespaces', ' '.join(self.hook_namespaces)] +601 +602 if self.emit_json: +603 args += ['--emit-json'] +604 +605 if self.gen_bison_parser: +606 args += ['--gen-bison-parser'] +607 +608 if self.gen_glr_bison_parser: +609 args += ['--gen-glr-bison-parser'] +610 +611 if self.bison_parser_library: +612 args += ['--bison-parser-library'] +613 +614 if self.post_process: +615 args += ['--post-process', shlex.quote(self.post_process)] +616 +617 if self.read_only: +618 args += ['--read-only-kompiled-directory'] +619 +620 if self.coverage: +621 args += ['--coverage'] +622 +623 if self.bison_lists: +624 args += ['--bison-lists'] +625 +626 if self.outer_parsed_json: +627 args += ['--outer-parsed-json'] +628 +629 return args +630 +631 +632COMMON_ARGS: Final = frozenset(field.name for field in dataclasses.fields(KompileArgs)) +633 +634 +635@final +636@dataclass(frozen=True) +637class DefinitionInfo: +638 path: Path +639 +640 def __init__(self, path: str | Path): +641 path = Path(path) +642 check_dir_path(path) +643 object.__setattr__(self, 'path', path) +644 +645 @cached_property +646 def backend(self) -> KompileBackend: +647 backend = (self.path / 'backend.txt').read_text() +648 return KompileBackend(backend) +649 +650 @cached_property +651 def main_module_name(self) -> str: +652 return (self.path / 'mainModule.txt').read_text() +653 +654 @cached_property +655 def syntax_module_name(self) -> str: +656 return (self.path / 'mainSyntaxModule.txt').read_text() +657 +658 @cached_property +659 def timestamp(self) -> int: +660 return (self.path / 'timestamp').stat().st_mtime_ns +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/kprint.html b/pyk/_modules/pyk/ktool/kprint.html new file mode 100644 index 00000000000..b0d3b96e562 --- /dev/null +++ b/pyk/_modules/pyk/ktool/kprint.html @@ -0,0 +1,474 @@ + + + + + + pyk.ktool.kprint — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.kprint

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5from contextlib import contextmanager
+  6from enum import Enum
+  7from functools import cached_property
+  8from pathlib import Path
+  9from subprocess import CalledProcessError
+ 10from tempfile import NamedTemporaryFile
+ 11from typing import TYPE_CHECKING
+ 12
+ 13from ..cli.utils import check_dir_path, check_file_path
+ 14from ..kast import KAst, kast_term
+ 15from ..kast.inner import KInner
+ 16from ..kast.outer import read_kast_definition
+ 17from ..kast.pretty import PrettyPrinter
+ 18from ..konvert import kast_to_kore, kore_to_kast
+ 19from ..kore.parser import KoreParser
+ 20from ..kore.syntax import App, SortApp
+ 21from ..kore.tools import PrintOutput, kore_print
+ 22from ..utils import run_process
+ 23from .kompile import DefinitionInfo
+ 24
+ 25if TYPE_CHECKING:
+ 26    from collections.abc import Callable, Iterable, Iterator
+ 27    from subprocess import CompletedProcess
+ 28    from tempfile import _TemporaryFileWrapper
+ 29    from typing import Final
+ 30
+ 31    from ..kast.inner import KSort, KToken
+ 32    from ..kast.outer import KDefinition, KFlatModule
+ 33    from ..kast.pretty import SymbolTable
+ 34    from ..kore.syntax import Pattern
+ 35    from ..utils import BugReport
+ 36
+ 37_LOGGER: Final = logging.getLogger(__name__)
+ 38
+ 39
+
+[docs] + 40class KAstInput(Enum): + 41 PROGRAM = 'program' + 42 BINARY = 'binary' + 43 JSON = 'json' + 44 KAST = 'kast' + 45 KORE = 'kore' + 46 RULE = 'rule'
+ + 47 + 48 +
+[docs] + 49class KAstOutput(Enum): + 50 PRETTY = 'pretty' + 51 PROGRAM = 'program' + 52 KAST = 'kast' + 53 BINARY = 'binary' + 54 JSON = 'json' + 55 LATEX = 'latex' + 56 KORE = 'kore' + 57 NONE = 'none'
+ + 58 + 59 + 60def _kast( + 61 file: str | Path | None = None, + 62 *, + 63 command: str | None = None, + 64 definition_dir: str | Path | None = None, + 65 input: str | KAstInput | None = None, + 66 output: str | KAstOutput | None = None, + 67 expression: str | None = None, + 68 module: str | None = None, + 69 sort: str | None = None, + 70 temp_dir: str | Path | None = None, + 71 gen_glr_parser: bool = False, + 72 # --- + 73 check: bool = True, + 74) -> CompletedProcess: + 75 if file is not None: + 76 file = Path(file) + 77 + 78 if file and not gen_glr_parser: + 79 check_file_path(file) + 80 + 81 if not file and gen_glr_parser: + 82 raise ValueError('No output file specified for --gen-glr-parser') + 83 + 84 if definition_dir is not None: + 85 definition_dir = Path(definition_dir) + 86 check_dir_path(definition_dir) + 87 + 88 if temp_dir is not None: + 89 temp_dir = Path(temp_dir) + 90 + 91 if input is not None: + 92 input = KAstInput(input) + 93 + 94 if output is not None: + 95 output = KAstOutput(output) + 96 + 97 args = _build_arg_list( + 98 file=file, + 99 command=command, +100 definition_dir=definition_dir, +101 input=input, +102 output=output, +103 expression=expression, +104 module=module, +105 sort=sort, +106 temp_dir=temp_dir, +107 gen_glr_parser=gen_glr_parser, +108 ) +109 +110 try: +111 return run_process(args, logger=_LOGGER, check=check) +112 except CalledProcessError as err: +113 raise RuntimeError( +114 f'Command kast exited with code {err.returncode} for: {file}', err.stdout, err.stderr +115 ) from err +116 +117 +
+[docs] +118def gen_glr_parser( +119 parser_file: str | Path, +120 *, +121 command: str | None = None, +122 definition_dir: str | Path | None = None, +123 module: str | None = None, +124 sort: str | None = None, +125 temp_dir: str | Path | None = None, +126) -> Path: +127 parser_file = Path(parser_file) +128 _kast( +129 file=parser_file, +130 command=command, +131 definition_dir=definition_dir, +132 module=module, +133 sort=sort, +134 temp_dir=temp_dir, +135 gen_glr_parser=True, +136 check=True, +137 ) +138 assert parser_file.is_file() +139 return parser_file
+ +140 +141 +142def _build_arg_list( +143 *, +144 file: Path | None, +145 command: str | None, +146 definition_dir: Path | None, +147 input: KAstInput | None, +148 output: KAstOutput | None, +149 expression: str | None, +150 module: str | None, +151 sort: str | None, +152 temp_dir: Path | None, +153 gen_glr_parser: bool, +154) -> list[str]: +155 args = [command if command is not None else 'kast'] +156 if file: +157 args += [str(file)] +158 if definition_dir: +159 args += ['--definition', str(definition_dir)] +160 if input: +161 args += ['--input', input.value] +162 if output: +163 args += ['--output', output.value] +164 if expression: +165 args += ['--expression', expression] +166 if module: +167 args += ['--module', module] +168 if sort: +169 args += ['--sort', sort] +170 if temp_dir: +171 args += ['--temp-dir', str(temp_dir)] +172 if gen_glr_parser: +173 args += ['--gen-glr-parser'] +174 return args +175 +176 +
+[docs] +177class KPrint: +178 definition_dir: Path +179 use_directory: Path | None +180 main_module: str +181 backend: str +182 _extra_unparsing_modules: Iterable[KFlatModule] +183 _patch_symbol_table: Callable[[SymbolTable], None] | None +184 +185 _bug_report: BugReport | None +186 +187 def __init__( +188 self, +189 definition_dir: Path, +190 use_directory: Path | None = None, +191 bug_report: BugReport | None = None, +192 extra_unparsing_modules: Iterable[KFlatModule] = (), +193 patch_symbol_table: Callable[[SymbolTable], None] | None = None, +194 ) -> None: +195 self.definition_dir = definition_dir +196 +197 if use_directory: +198 check_dir_path(use_directory) +199 +200 self.use_directory = use_directory +201 self._definition = None +202 self._symbol_table = None +203 +204 info = DefinitionInfo(self.definition_dir) +205 self.main_module = info.main_module_name +206 self.backend = info.backend.value +207 +208 self._extra_unparsing_modules = extra_unparsing_modules +209 self._patch_symbol_table = patch_symbol_table +210 self._bug_report = bug_report +211 +212 @contextmanager +213 def _temp_file(self, prefix: str | None = None, suffix: str | None = None) -> Iterator[_TemporaryFileWrapper]: +214 with NamedTemporaryFile( +215 'w', +216 dir=self.use_directory, +217 delete=not self.use_directory, +218 prefix=prefix, +219 suffix=suffix, +220 ) as ntf: +221 _LOGGER.info(f'Created temporary file: {ntf.name}') +222 yield ntf +223 +224 @cached_property +225 def definition(self) -> KDefinition: +226 return read_kast_definition(self.definition_dir / 'compiled.json') +227 +228 @property +229 def definition_hash(self) -> str: +230 return self.definition.hash +231 +
+[docs] +232 def parse_token(self, ktoken: KToken, *, as_rule: bool = False) -> KInner: +233 input = KAstInput('rule' if as_rule else 'program') +234 proc_res = self._expression_kast( +235 ktoken.token, +236 input=input, +237 output=KAstOutput.JSON, +238 sort=ktoken.sort.name, +239 ) +240 return KInner.from_dict(kast_term(json.loads(proc_res.stdout)))
+ +241 +
+[docs] +242 def kore_to_pretty(self, pattern: Pattern) -> str: +243 proc_res = self._expression_kast( +244 pattern.text, +245 input=KAstInput.KORE, +246 output=KAstOutput.PRETTY, +247 ) +248 return proc_res.stdout
+ +249 +
+[docs] +250 def kore_to_kast(self, kore: Pattern) -> KInner: +251 try: +252 _LOGGER.info('Invoking kore_to_kast') +253 return kore_to_kast(self.definition, kore) +254 except ValueError as err: +255 _LOGGER.warning(err) +256 +257 _LOGGER.warning(f'Falling back to using `kore-print` for Kore -> Kast: {kore.text}') +258 return KInner.from_dict( +259 kast_term(json.loads(kore_print(kore, definition_dir=self.definition_dir, output=PrintOutput.JSON))) +260 )
+ +261 +
+[docs] +262 def kast_to_kore(self, kast: KInner, sort: KSort | None = None, *, force_kast: bool = False) -> Pattern: +263 if not force_kast: +264 try: +265 _LOGGER.info('Invoking kast_to_kore') +266 return kast_to_kore(self.definition, kast, sort) +267 except ValueError as ve: +268 _LOGGER.warning(ve) +269 +270 _LOGGER.warning(f'Falling back to using `kast` for KAst -> Kore: {kast}') +271 kast_json = {'format': 'KAST', 'version': KAst.version(), 'term': kast.to_dict()} +272 proc_res = self._expression_kast( +273 json.dumps(kast_json), +274 input=KAstInput.JSON, +275 output=KAstOutput.KORE, +276 sort=sort.name if sort is not None else None, +277 ) +278 return KoreParser(proc_res.stdout).pattern()
+ +279 +280 def _add_sort_injection(self, pat: Pattern, isort: KSort, osort: KSort) -> Pattern: +281 if isort == osort: +282 return pat +283 if isort not in self.definition.subsorts(osort): +284 raise ValueError( +285 f'Could not find injection from subsort to supersort {isort} -> {osort} for pattern: {pat}' +286 ) +287 return App('inj', [SortApp('Sort' + isort.name), SortApp('Sort' + osort.name)], [pat]) +288 +
+[docs] +289 def pretty_print( +290 self, kast: KAst, *, in_module: str | None = None, unalias: bool = True, sort_collections: bool = False +291 ) -> str: +292 defn = self.definition.let(main_module_name=in_module) +293 +294 return PrettyPrinter( +295 defn, +296 extra_unparsing_modules=self._extra_unparsing_modules, +297 patch_symbol_table=self._patch_symbol_table, +298 unalias=unalias, +299 sort_collections=sort_collections, +300 ).print(kast)
+ +301 +302 def _expression_kast( +303 self, +304 expression: str, +305 *, +306 command: str | None = None, +307 input: str | KAstInput | None = None, +308 output: str | KAstOutput | None = None, +309 module: str | None = None, +310 sort: str | None = None, +311 # --- +312 check: bool = True, +313 ) -> CompletedProcess: +314 if len(expression) < 128 * 1024: +315 return _kast( +316 expression=expression, +317 command=command, +318 definition_dir=self.definition_dir, +319 input=input, +320 output=output, +321 module=module, +322 sort=sort, +323 temp_dir=self.use_directory, +324 check=check, +325 ) +326 +327 with self._temp_file() as ntf: +328 ntf.write(expression) +329 ntf.flush() +330 +331 return _kast( +332 ntf.name, +333 command=command, +334 definition_dir=self.definition_dir, +335 input=input, +336 output=output, +337 module=module, +338 sort=sort, +339 temp_dir=self.use_directory, +340 check=check, +341 )
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/kprove.html b/pyk/_modules/pyk/ktool/kprove.html new file mode 100644 index 00000000000..b107037f719 --- /dev/null +++ b/pyk/_modules/pyk/ktool/kprove.html @@ -0,0 +1,524 @@ + + + + + + pyk.ktool.kprove — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.kprove

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5import os
+  6import re
+  7from contextlib import contextmanager
+  8from enum import Enum
+  9from itertools import chain
+ 10from pathlib import Path
+ 11from subprocess import CalledProcessError
+ 12from typing import TYPE_CHECKING
+ 13
+ 14from ..cli.utils import check_dir_path, check_file_path
+ 15from ..cterm import CTerm
+ 16from ..kast import kast_term
+ 17from ..kast.inner import KInner
+ 18from ..kast.manip import flatten_label
+ 19from ..kast.outer import KDefinition, KFlatModule, KFlatModuleList, KImport, KRequire
+ 20from ..kore.rpc import KoreExecLogFormat
+ 21from ..prelude.ml import is_top
+ 22from ..utils import gen_file_timestamp, run_process
+ 23from . import TypeInferenceMode
+ 24from .claim_index import ClaimIndex
+ 25from .kprint import KPrint
+ 26
+ 27if TYPE_CHECKING:
+ 28    from collections.abc import Callable, Iterable, Iterator, Mapping
+ 29    from subprocess import CompletedProcess
+ 30    from typing import Final
+ 31
+ 32    from ..kast.outer import KClaim, KRule, KRuleLike
+ 33    from ..kast.pretty import SymbolTable
+ 34    from ..kcfg import KCFGExplore
+ 35    from ..utils import BugReport
+ 36
+ 37_LOGGER: Final = logging.getLogger(__name__)
+ 38
+ 39
+
+[docs] + 40class KProveOutput(Enum): + 41 PRETTY = 'pretty' + 42 PROGAM = 'program' + 43 KAST = 'KAST' + 44 BINARY = 'binary' + 45 JSON = 'json' + 46 LATEX = 'latex' + 47 KORE = 'kore' + 48 NONE = 'none'
+ + 49 + 50 + 51def _kprove( + 52 spec_file: Path, + 53 *, + 54 command: Iterable[str] = ('kprove',), + 55 kompiled_dir: Path | None = None, + 56 spec_module_name: str | None = None, + 57 md_selector: str | None = None, + 58 include_dirs: Iterable[Path] = (), + 59 emit_json_spec: Path | None = None, + 60 output: KProveOutput | None = None, + 61 depth: int | None = None, + 62 claims: Iterable[str] = (), + 63 type_inference_mode: str | TypeInferenceMode | None = None, + 64 temp_dir: Path | None = None, + 65 haskell_backend_command: str | None = None, + 66 dry_run: bool = False, + 67 # -- + 68 args: Iterable[str] = (), + 69 # -- + 70 env: Mapping[str, str] | None = None, + 71 check: bool = True, + 72) -> CompletedProcess: + 73 check_file_path(spec_file) + 74 + 75 for include_dir in include_dirs: + 76 check_dir_path(include_dir) + 77 + 78 if depth is not None and depth < 0: + 79 raise ValueError(f'Argument "depth" must be non-negative, got: {depth}') + 80 + 81 if type_inference_mode is not None: + 82 type_inference_mode = TypeInferenceMode(type_inference_mode) + 83 + 84 typed_args = _build_arg_list( + 85 kompiled_dir=kompiled_dir, + 86 spec_module_name=spec_module_name, + 87 md_selector=md_selector, + 88 include_dirs=include_dirs, + 89 emit_json_spec=emit_json_spec, + 90 output=output, + 91 depth=depth, + 92 claims=claims, + 93 type_inference_mode=type_inference_mode, + 94 temp_dir=temp_dir, + 95 haskell_backend_command=haskell_backend_command, + 96 dry_run=dry_run, + 97 ) + 98 + 99 try: +100 run_args = tuple(chain(command, [str(spec_file)], typed_args, args)) +101 return run_process(run_args, logger=_LOGGER, env=env, check=check) +102 except CalledProcessError as err: +103 raise RuntimeError( +104 f'Command kprove exited with code {err.returncode} for: {spec_file}', err.stdout, err.stderr, err +105 ) from err +106 +107 +108def _build_arg_list( +109 *, +110 kompiled_dir: Path | None, +111 spec_module_name: str | None, +112 md_selector: str | None, +113 include_dirs: Iterable[Path], +114 emit_json_spec: Path | None, +115 output: KProveOutput | None, +116 depth: int | None, +117 claims: Iterable[str], +118 type_inference_mode: TypeInferenceMode | None, +119 temp_dir: Path | None, +120 haskell_backend_command: str | None, +121 dry_run: bool, +122) -> list[str]: +123 args = [] +124 +125 if kompiled_dir: +126 args += ['--definition', str(kompiled_dir)] +127 +128 if spec_module_name: +129 args += ['--spec-module', spec_module_name] +130 +131 if md_selector: +132 args += ['--md-selector', md_selector] +133 +134 for include_dir in include_dirs: +135 args += ['-I', str(include_dir)] +136 +137 if emit_json_spec: +138 args += ['--emit-json-spec', str(emit_json_spec)] +139 +140 if output: +141 args += ['--output', output.value] +142 +143 if claims: +144 args += ['--claims', ','.join(claims)] +145 +146 if type_inference_mode: +147 args += ['--type-inference-mode', type_inference_mode.value] +148 +149 if temp_dir: +150 args += ['--temp-dir', str(temp_dir)] +151 +152 if haskell_backend_command: +153 args += ['--haskell-backend-command', haskell_backend_command] +154 +155 if depth: +156 args += ['--depth', str(depth)] +157 +158 if dry_run: +159 args.append('--dry-run') +160 +161 return args +162 +163 +
+[docs] +164class KProve(KPrint): +165 main_file: Path | None +166 prover: list[str] +167 prover_args: list[str] +168 _kcfg_explore: KCFGExplore | None +169 +170 def __init__( +171 self, +172 definition_dir: Path, +173 main_file: Path | None = None, +174 use_directory: Path | None = None, +175 command: str = 'kprove', +176 bug_report: BugReport | None = None, +177 extra_unparsing_modules: Iterable[KFlatModule] = (), +178 patch_symbol_table: Callable[[SymbolTable], None] | None = None, +179 ): +180 super().__init__( +181 definition_dir, +182 use_directory=use_directory, +183 bug_report=bug_report, +184 extra_unparsing_modules=extra_unparsing_modules, +185 patch_symbol_table=patch_symbol_table, +186 ) +187 # TODO: we should not have to supply main_file, it should be read +188 self.main_file = main_file +189 self.prover = [command] +190 self.prover_args = [] +191 self._kcfg_explore = None +192 +
+[docs] +193 def prove( +194 self, +195 spec_file: Path, +196 spec_module_name: str | None = None, +197 args: Iterable[str] = (), +198 include_dirs: Iterable[Path] = (), +199 md_selector: str | None = None, +200 haskell_args: Iterable[str] = (), +201 depth: int | None = None, +202 ) -> list[CTerm]: +203 log_file = spec_file.with_suffix('.debug-log') +204 if log_file.exists(): +205 log_file.unlink() +206 haskell_log_args = [ +207 '--log', +208 str(log_file), +209 '--log-format', +210 KoreExecLogFormat.ONELINE.value, +211 '--log-entries', +212 'DebugTransition', +213 ] +214 +215 env = os.environ.copy() +216 existing_opts = os.getenv('KORE_EXEC_OPTS') +217 kore_exec_opts = ' '.join(list(haskell_args) + haskell_log_args + ([existing_opts] if existing_opts else [])) +218 _LOGGER.debug(f'export KORE_EXEC_OPTS={kore_exec_opts!r}') +219 env['KORE_EXEC_OPTS'] = kore_exec_opts +220 +221 proc_result = _kprove( +222 spec_file=spec_file, +223 command=self.prover, +224 kompiled_dir=self.definition_dir, +225 spec_module_name=spec_module_name, +226 include_dirs=include_dirs, +227 md_selector=md_selector, +228 output=KProveOutput.JSON, +229 temp_dir=self.use_directory, +230 args=self.prover_args + list(args), +231 env=env, +232 check=False, +233 depth=depth, +234 ) +235 +236 if proc_result.returncode not in (0, 1): +237 raise RuntimeError('kprove failed!') +238 +239 debug_log = _get_rule_log(log_file) +240 final_state = KInner.from_dict(kast_term(json.loads(proc_result.stdout))) +241 if is_top(final_state) and len(debug_log) == 0: +242 raise ValueError(f'Proof took zero steps, likely the LHS is invalid: {spec_file}') +243 return [CTerm.from_kast(disjunct) for disjunct in flatten_label('#Or', final_state)]
+ +244 +
+[docs] +245 def prove_claim( +246 self, +247 claim: KClaim, +248 claim_id: str, +249 lemmas: Iterable[KRule] = (), +250 args: Iterable[str] = (), +251 haskell_args: Iterable[str] = (), +252 depth: int | None = None, +253 ) -> list[CTerm]: +254 with self._tmp_claim_definition(claim, claim_id, lemmas=lemmas) as (claim_path, claim_module_name): +255 return self.prove( +256 claim_path, +257 spec_module_name=claim_module_name, +258 args=args, +259 haskell_args=haskell_args, +260 depth=depth, +261 )
+ +262 +
+[docs] +263 def get_claim_modules( +264 self, +265 spec_file: Path, +266 spec_module_name: str | None = None, +267 include_dirs: Iterable[Path] = (), +268 md_selector: str | None = None, +269 type_inference_mode: TypeInferenceMode | None = None, +270 ) -> KFlatModuleList: +271 with self._temp_file(prefix=f'{spec_file.name}.parsed.json.') as ntf: +272 _kprove( +273 spec_file=spec_file, +274 kompiled_dir=self.definition_dir, +275 spec_module_name=spec_module_name, +276 include_dirs=include_dirs, +277 md_selector=md_selector, +278 output=KProveOutput.JSON, +279 temp_dir=self.use_directory, +280 dry_run=True, +281 type_inference_mode=type_inference_mode, +282 args=['--emit-json-spec', ntf.name], +283 ) +284 json_data = json.loads(Path(ntf.name).read_text()) +285 +286 return KFlatModuleList.from_dict(kast_term(json_data))
+ +287 +
+[docs] +288 def get_claim_index( +289 self, +290 spec_file: Path, +291 spec_module_name: str | None = None, +292 include_dirs: Iterable[Path] = (), +293 md_selector: str | None = None, +294 type_inference_mode: TypeInferenceMode | None = None, +295 ) -> ClaimIndex: +296 module_list = self.get_claim_modules( +297 spec_file=spec_file, +298 spec_module_name=spec_module_name, +299 include_dirs=include_dirs, +300 md_selector=md_selector, +301 type_inference_mode=type_inference_mode, +302 ) +303 return ClaimIndex.from_module_list(module_list)
+ +304 +
+[docs] +305 def get_claims( +306 self, +307 spec_file: Path, +308 spec_module_name: str | None = None, +309 include_dirs: Iterable[Path] = (), +310 md_selector: str | None = None, +311 claim_labels: Iterable[str] | None = None, +312 exclude_claim_labels: Iterable[str] | None = None, +313 include_dependencies: bool = True, +314 type_inference_mode: TypeInferenceMode | None = None, +315 ) -> list[KClaim]: +316 claim_index = self.get_claim_index( +317 spec_file=spec_file, +318 spec_module_name=spec_module_name, +319 include_dirs=include_dirs, +320 md_selector=md_selector, +321 type_inference_mode=type_inference_mode, +322 ) +323 +324 labels = claim_index.labels( +325 include=claim_labels, +326 exclude=exclude_claim_labels, +327 with_depends=include_dependencies, +328 ) +329 +330 return [claim_index[label] for label in labels]
+ +331 +332 @contextmanager +333 def _tmp_claim_definition( +334 self, +335 claim: KClaim, +336 claim_id: str, +337 lemmas: Iterable[KRule] = (), +338 ) -> Iterator[tuple[Path, str]]: +339 with self._temp_file(suffix='-spec.k') as ntf: +340 tmp_claim_file = Path(ntf.name) +341 tmp_module_name = tmp_claim_file.stem.removesuffix('-spec').rstrip('_').replace('_', '-').upper() + '-SPEC' +342 tmp_module_name = re.sub(r'-+', '-', tmp_module_name) +343 +344 sentences: list[KRuleLike] = [] +345 sentences += lemmas +346 sentences += [claim] +347 +348 claim_module = KFlatModule(tmp_module_name, sentences, imports=[KImport(self.main_module, True)]) +349 requires = [KRequire(str(self.main_file))] if self.main_file is not None else [] +350 claim_definition = KDefinition(tmp_module_name, [claim_module], requires=requires) +351 +352 ntf.write(gen_file_timestamp() + '\n') +353 ntf.write(self.pretty_print(claim_definition) + '\n\n') +354 ntf.flush() +355 +356 _LOGGER.info(f'Wrote claim file: {tmp_claim_file}') +357 yield tmp_claim_file, tmp_module_name
+ +358 +359 +360def _get_rule_log(debug_log_file: Path) -> list[list[tuple[str, bool, int]]]: +361 # rule_loc, is_success, ellapsed_time_since_start +362 def _get_rule_line(_line: str) -> tuple[str, bool, int] | None: +363 if _line.startswith('kore-exec: ['): +364 time = int(_line.split('[')[1].split(']')[0]) +365 if _line.find('(DebugTransition): after apply axioms: ') > 0: +366 rule_name = ':'.join(_line.split(':')[-4:]).strip() +367 return (rule_name, True, time) +368 elif _line.find('(DebugAttemptedRewriteRules): ') > 0: +369 rule_name = ':'.join(_line.split(':')[-4:]).strip() +370 return (rule_name, False, time) +371 return None +372 +373 log_lines: list[tuple[str, bool, int]] = [] +374 with open(debug_log_file) as log_file: +375 for line in log_file.read().split('\n'): +376 if processed_line := _get_rule_line(line): +377 log_lines.append(processed_line) +378 +379 # rule_loc, is_success, time_delta +380 axioms: list[list[tuple[str, bool, int]]] = [[]] +381 just_applied = True +382 prev_time = 0 +383 for rule_name, is_application, rule_time in log_lines: +384 rtime = rule_time - prev_time +385 prev_time = rule_time +386 if not is_application: +387 if just_applied: +388 axioms.append([]) +389 just_applied = False +390 else: +391 just_applied = True +392 axioms[-1].append((rule_name, is_application, rtime)) +393 +394 if len(axioms[-1]) == 0: +395 axioms.pop(-1) +396 +397 return axioms +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/krun.html b/pyk/_modules/pyk/ktool/krun.html new file mode 100644 index 00000000000..bc6684a0bde --- /dev/null +++ b/pyk/_modules/pyk/ktool/krun.html @@ -0,0 +1,477 @@ + + + + + + pyk.ktool.krun — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.krun

+  1from __future__ import annotations
+  2
+  3import logging
+  4from enum import Enum
+  5from pathlib import Path
+  6from subprocess import CalledProcessError
+  7from typing import TYPE_CHECKING
+  8
+  9from ..cli.utils import check_dir_path, check_file_path
+ 10from ..kore.parser import KoreParser
+ 11from ..kore.tools import PrintOutput, kore_print
+ 12from ..utils import run_process
+ 13from .kprint import KPrint
+ 14
+ 15if TYPE_CHECKING:
+ 16    from collections.abc import Callable, Iterable, Mapping
+ 17    from logging import Logger
+ 18    from subprocess import CompletedProcess
+ 19    from typing import Final
+ 20
+ 21    from ..kast.inner import KInner
+ 22    from ..kast.outer import KFlatModule
+ 23    from ..kast.pretty import SymbolTable
+ 24    from ..kore.syntax import Pattern
+ 25    from ..utils import BugReport
+ 26
+ 27_LOGGER: Final = logging.getLogger(__name__)
+ 28
+ 29
+
+[docs] + 30class KRunOutput(Enum): + 31 PRETTY = 'pretty' + 32 PROGRAM = 'program' + 33 KAST = 'kast' + 34 BINARY = 'binary' + 35 JSON = 'json' + 36 LATEX = 'latex' + 37 KORE = 'kore' + 38 NONE = 'none'
+ + 39 + 40 +
+[docs] + 41class KRun(KPrint): + 42 command: str + 43 + 44 def __init__( + 45 self, + 46 definition_dir: Path, + 47 use_directory: Path | None = None, + 48 command: str = 'krun', + 49 bug_report: BugReport | None = None, + 50 extra_unparsing_modules: Iterable[KFlatModule] = (), + 51 patch_symbol_table: Callable[[SymbolTable], None] | None = None, + 52 ) -> None: + 53 super().__init__( + 54 definition_dir, + 55 use_directory=use_directory, + 56 bug_report=bug_report, + 57 extra_unparsing_modules=extra_unparsing_modules, + 58 patch_symbol_table=patch_symbol_table, + 59 ) + 60 self.command = command + 61 +
+[docs] + 62 def run_process( + 63 self, + 64 pgm: Pattern, + 65 *, + 66 cmap: Mapping[str, str] | None = None, + 67 pmap: Mapping[str, str] | None = None, + 68 term: bool = False, + 69 depth: int | None = None, + 70 expand_macros: bool = True, + 71 search_final: bool = False, + 72 no_pattern: bool = False, + 73 output: KRunOutput | None = KRunOutput.PRETTY, + 74 pipe_stderr: bool = True, + 75 bug_report: BugReport | None = None, + 76 debugger: bool = False, + 77 ) -> CompletedProcess: + 78 with self._temp_file() as ntf: + 79 pgm.write(ntf) + 80 ntf.flush() + 81 + 82 return _krun( + 83 command=self.command, + 84 input_file=Path(ntf.name), + 85 definition_dir=self.definition_dir, + 86 output=KRunOutput.KORE, + 87 depth=depth, + 88 parser='cat', + 89 cmap=cmap, + 90 pmap=pmap, + 91 term=term, + 92 temp_dir=self.use_directory, + 93 no_expand_macros=not expand_macros, + 94 search_final=search_final, + 95 no_pattern=no_pattern, + 96 bug_report=self._bug_report, + 97 check=False, + 98 pipe_stderr=pipe_stderr, + 99 debugger=debugger, +100 )
+ +101 +
+[docs] +102 def run( +103 self, +104 pgm: Pattern, +105 *, +106 cmap: Mapping[str, str] | None = None, +107 pmap: Mapping[str, str] | None = None, +108 term: bool = False, +109 depth: int | None = None, +110 expand_macros: bool = True, +111 search_final: bool = False, +112 no_pattern: bool = False, +113 output: KRunOutput | None = KRunOutput.PRETTY, +114 check: bool = False, +115 pipe_stderr: bool = True, +116 bug_report: BugReport | None = None, +117 debugger: bool = False, +118 ) -> None: +119 result = self.run_process( +120 pgm, +121 cmap=cmap, +122 pmap=pmap, +123 term=term, +124 depth=depth, +125 expand_macros=expand_macros, +126 search_final=search_final, +127 no_pattern=no_pattern, +128 output=output, +129 pipe_stderr=pipe_stderr, +130 bug_report=bug_report, +131 debugger=debugger, +132 ) +133 +134 if output != KRunOutput.NONE: +135 output_kore = KoreParser(result.stdout).pattern() +136 match output: +137 case KRunOutput.JSON: +138 print(self.kore_to_kast(output_kore).to_json()) +139 case KRunOutput.KORE: +140 print(output_kore.text) +141 case KRunOutput.PRETTY | KRunOutput.PROGRAM | KRunOutput.KAST | KRunOutput.BINARY | KRunOutput.LATEX: +142 print(kore_print(output_kore, definition_dir=self.definition_dir, output=PrintOutput(output.value))) +143 case KRunOutput.NONE: +144 raise AssertionError() +145 +146 if check: +147 result.check_returncode()
+ +148 +
+[docs] +149 def run_pattern( +150 self, +151 pattern: Pattern, +152 *, +153 depth: int | None = None, +154 expand_macros: bool = False, +155 search_final: bool = False, +156 no_pattern: bool = False, +157 pipe_stderr: bool = True, +158 check: bool = False, +159 bug_report: BugReport | None = None, +160 debugger: bool = False, +161 ) -> Pattern: +162 proc_res = self.run_process( +163 pattern, +164 depth=depth, +165 term=True, +166 expand_macros=expand_macros, +167 search_final=search_final, +168 no_pattern=no_pattern, +169 output=KRunOutput.NONE, +170 pipe_stderr=pipe_stderr, +171 bug_report=bug_report, +172 debugger=debugger, +173 ) +174 +175 if check: +176 proc_res.check_returncode() +177 +178 parser = KoreParser(proc_res.stdout) +179 res = parser.pattern() +180 assert parser.eof +181 return res
+ +182 +
+[docs] +183 def krun(self, input_file: Path) -> tuple[int, KInner]: +184 result = _krun(input_file=input_file, definition_dir=self.definition_dir, output=KRunOutput.KORE) +185 kore = KoreParser(result.stdout).pattern() +186 kast = self.kore_to_kast(kore) +187 return (result.returncode, kast)
+
+ +188 +189 +190def _krun( +191 command: str = 'krun', +192 *, +193 input_file: Path | None = None, +194 definition_dir: Path | None = None, +195 output: KRunOutput | None = None, +196 parser: str | None = None, +197 depth: int | None = None, +198 cmap: Mapping[str, str] | None = None, +199 pmap: Mapping[str, str] | None = None, +200 term: bool = False, +201 temp_dir: Path | None = None, +202 no_expand_macros: bool = False, +203 search_final: bool = False, +204 no_pattern: bool = False, +205 # --- +206 check: bool = True, +207 pipe_stderr: bool = True, +208 logger: Logger | None = None, +209 bug_report: BugReport | None = None, +210 debugger: bool = False, +211) -> CompletedProcess: +212 if input_file: +213 check_file_path(input_file) +214 +215 if definition_dir: +216 check_dir_path(definition_dir) +217 +218 if depth and depth < 0: +219 raise ValueError(f'Expected non-negative depth, got: {depth}') +220 +221 if term and (cmap is not None or pmap is not None): +222 raise ValueError('Cannot supply both term and cmap/pmap') +223 +224 args = _build_arg_list( +225 command=command, +226 input_file=input_file, +227 definition_dir=definition_dir, +228 output=output, +229 parser=parser, +230 depth=depth, +231 pmap=pmap, +232 cmap=cmap, +233 term=term, +234 temp_dir=temp_dir, +235 no_expand_macros=no_expand_macros, +236 search_final=search_final, +237 no_pattern=no_pattern, +238 debugger=debugger, +239 ) +240 +241 if bug_report is not None: +242 if input_file is not None: +243 new_input_file = Path(f'krun_inputs/{input_file}') +244 bug_report.add_file(input_file, new_input_file) +245 bug_report.add_command([a if a != str(input_file) else str(new_input_file) for a in args]) +246 else: +247 bug_report.add_command(args) +248 +249 try: +250 return run_process(args, check=check, pipe_stderr=pipe_stderr, logger=logger or _LOGGER, exec_process=debugger) +251 except CalledProcessError as err: +252 raise RuntimeError( +253 f'Command krun exited with code {err.returncode} for: {input_file}', err.stdout, err.stderr +254 ) from err +255 +256 +257def _build_arg_list( +258 *, +259 command: str, +260 input_file: Path | None, +261 definition_dir: Path | None, +262 output: KRunOutput | None, +263 parser: str | None, +264 depth: int | None, +265 pmap: Mapping[str, str] | None, +266 cmap: Mapping[str, str] | None, +267 term: bool, +268 temp_dir: Path | None, +269 no_expand_macros: bool, +270 search_final: bool, +271 no_pattern: bool, +272 debugger: bool, +273) -> list[str]: +274 args = [command] +275 if input_file: +276 args += [str(input_file)] +277 if definition_dir: +278 args += ['--definition', str(definition_dir)] +279 if output: +280 args += ['--output', output.value] +281 if parser: +282 args += ['--parser', parser] +283 if depth is not None: +284 args += ['--depth', str(depth)] +285 for name, value in (pmap or {}).items(): +286 args += [f'-p{name}={value}'] +287 for name, value in (cmap or {}).items(): +288 args += [f'-c{name}={value}'] +289 if term: +290 args += ['--term'] +291 if temp_dir: +292 args += ['--temp-dir', str(temp_dir)] +293 if no_expand_macros: +294 args += ['--no-expand-macros'] +295 if search_final: +296 args += ['--search-final'] +297 if no_pattern: +298 args += ['--no-pattern'] +299 if debugger: +300 args += ['--debugger'] +301 return args +302 +303 +
+[docs] +304def llvm_interpret(definition_dir: str | Path, pattern: Pattern, *, depth: int | None = None) -> Pattern: +305 """Execute the `interpreter` binary generated by the LLVM Backend. +306 +307 Args: +308 definition_dir: Path to the kompiled definition directory. +309 pattern: KORE pattern to start rewriting from. +310 depth: Maximal number of rewrite steps to take. +311 +312 Returns: +313 The pattern resulting from the rewrites. +314 +315 Raises: +316 RuntimeError: If the interpreter fails. +317 """ +318 try: +319 res = llvm_interpret_raw(definition_dir, pattern.text, depth) +320 except CalledProcessError as err: +321 raise RuntimeError(f'Interpreter failed with status {err.returncode}: {err.stderr}') from err +322 +323 return KoreParser(res.stdout).pattern()
+ +324 +325 +
+[docs] +326def llvm_interpret_raw(definition_dir: str | Path, kore: str, depth: int | None = None) -> CompletedProcess: +327 """Execute the `interpreter` binary generated by the LLVM Backend, with no processing of input/output. +328 +329 Args: +330 definition_dir: Path to the kompiled definition directory. +331 pattern: KORE string to start rewriting from. +332 depth: Maximal number of rewrite steps to take. +333 +334 Returns: +335 The CompletedProcess of the interpreter. +336 +337 Raises: +338 CalledProcessError: If the interpreter fails. +339 """ +340 definition_dir = Path(definition_dir) +341 interpreter_file = definition_dir / 'interpreter' +342 check_file_path(interpreter_file) +343 +344 depth = depth if depth is not None else -1 +345 args = [str(interpreter_file), '/dev/stdin', str(depth), '/dev/stdout'] +346 +347 return run_process(args, input=kore, pipe_stderr=True)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/ktool/prove_rpc.html b/pyk/_modules/pyk/ktool/prove_rpc.html new file mode 100644 index 00000000000..74a70dc7674 --- /dev/null +++ b/pyk/_modules/pyk/ktool/prove_rpc.html @@ -0,0 +1,212 @@ + + + + + + pyk.ktool.prove_rpc — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.ktool.prove_rpc

+  1from __future__ import annotations
+  2
+  3import logging
+  4from typing import TYPE_CHECKING
+  5
+  6from ..kast.manip import extract_lhs
+  7from ..kast.outer import KApply
+  8from ..proof import APRProof, APRProver, EqualityProof, ImpliesProver
+  9
+ 10if TYPE_CHECKING:
+ 11    from collections.abc import Callable
+ 12    from pathlib import Path
+ 13    from typing import ContextManager, Final
+ 14
+ 15    from ..cli.pyk import ProveOptions
+ 16    from ..kast.outer import KClaim
+ 17    from ..kcfg import KCFGExplore
+ 18    from ..proof import Proof, Prover
+ 19    from .kprove import KProve
+ 20
+ 21_LOGGER: Final = logging.getLogger(__name__)
+ 22
+ 23
+
+[docs] + 24class ProveRpc: + 25 _kprove: KProve + 26 _explore_context: Callable[[], ContextManager[KCFGExplore]] + 27 + 28 def __init__( + 29 self, + 30 kprove: KProve, + 31 explore_context: Callable[[], ContextManager[KCFGExplore]], + 32 ): + 33 self._kprove = kprove + 34 self._explore_context = explore_context + 35 +
+[docs] + 36 def prove_rpc(self, options: ProveOptions) -> list[Proof]: + 37 all_claims = self._kprove.get_claims( + 38 options.spec_file, + 39 spec_module_name=options.spec_module, + 40 claim_labels=options.claim_labels, + 41 exclude_claim_labels=options.exclude_claim_labels, + 42 type_inference_mode=options.type_inference_mode, + 43 ) + 44 + 45 if all_claims is None: + 46 raise ValueError(f'No claims found in file: {options.spec_file}') + 47 + 48 return [ + 49 self._prove_claim_rpc( + 50 claim, + 51 max_depth=options.max_depth, + 52 save_directory=options.save_directory, + 53 max_iterations=options.max_iterations, + 54 ) + 55 for claim in all_claims + 56 ]
+ + 57 + 58 def _prove_claim_rpc( + 59 self, + 60 claim: KClaim, + 61 max_depth: int | None = None, + 62 save_directory: Path | None = None, + 63 max_iterations: int | None = None, + 64 ) -> Proof: + 65 definition = self._kprove.definition + 66 + 67 proof: Proof + 68 prover: Prover + 69 lhs_top = extract_lhs(claim.body) + 70 is_functional_claim = type(lhs_top) is KApply and definition.symbols[lhs_top.label.name] in definition.functions + 71 + 72 if is_functional_claim: + 73 proof = EqualityProof.from_claim(claim, definition, proof_dir=save_directory) + 74 if save_directory is not None and EqualityProof.proof_data_exists(proof.id, save_directory): + 75 _LOGGER.info(f'Reloading from disk {proof.id}: {save_directory}') + 76 proof = EqualityProof.read_proof_data(save_directory, proof.id) + 77 + 78 else: + 79 proof = APRProof.from_claim(definition, claim, {}, proof_dir=save_directory) + 80 if save_directory is not None and APRProof.proof_data_exists(proof.id, save_directory): + 81 _LOGGER.info(f'Reloading from disk {proof.id}: {save_directory}') + 82 proof = APRProof.read_proof_data(save_directory, proof.id) + 83 + 84 if not proof.passed and (max_iterations is None or max_iterations > 0): + 85 with self._explore_context() as kcfg_explore: + 86 if is_functional_claim: + 87 assert type(proof) is EqualityProof + 88 prover = ImpliesProver(proof, kcfg_explore) + 89 else: + 90 assert type(proof) is APRProof + 91 prover = APRProver(kcfg_explore, execute_depth=max_depth) + 92 prover.advance_proof(proof, max_iterations=max_iterations) + 93 + 94 if proof.passed: + 95 _LOGGER.info(f'Proof passed: {proof.id}') + 96 elif proof.failed: + 97 _LOGGER.info(f'Proof failed: {proof.id}') + 98 else: + 99 _LOGGER.info(f'Proof pending: {proof.id}') +100 return proof
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/bytes.html b/pyk/_modules/pyk/prelude/bytes.html new file mode 100644 index 00000000000..05ef92396b2 --- /dev/null +++ b/pyk/_modules/pyk/prelude/bytes.html @@ -0,0 +1,144 @@ + + + + + + pyk.prelude.bytes — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.bytes

+ 1from typing import Final
+ 2
+ 3from ..dequote import bytes_decode, bytes_encode, dequote_bytes, enquote_bytes
+ 4from ..kast.inner import KSort, KToken
+ 5
+ 6BYTES: Final = KSort('Bytes')
+ 7
+ 8
+
+[docs] + 9def bytesToken_from_str(pretty: str) -> KToken: # noqa: N802 +10 return KToken(f'b"{enquote_bytes(pretty)}"', BYTES)
+ +11 +12 +
+[docs] +13def bytesToken(b: bytes) -> KToken: # noqa: N802 +14 return bytesToken_from_str(bytes_decode(b))
+ +15 +16 +
+[docs] +17def pretty_bytes_str(token: KToken) -> str: +18 if token.sort != BYTES: +19 raise ValueError(f'Expected Bytes token, got: {token}') +20 assert token.token[0:2] == 'b"' +21 assert token.token[-1] == '"' +22 return dequote_bytes(token.token[2:-1])
+ +23 +24 +
+[docs] +25def pretty_bytes(token: KToken) -> bytes: +26 return bytes_encode(pretty_bytes_str(token))
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/collections.html b/pyk/_modules/pyk/prelude/collections.html new file mode 100644 index 00000000000..9f3f88af603 --- /dev/null +++ b/pyk/_modules/pyk/prelude/collections.html @@ -0,0 +1,186 @@ + + + + + + pyk.prelude.collections — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.collections

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from ..kast.inner import KApply, KLabel, KSort, build_assoc
+ 6
+ 7if TYPE_CHECKING:
+ 8    from collections.abc import Iterable
+ 9    from typing import Final
+10
+11    from ..kast import KInner
+12
+13SET: Final = KSort('Set')
+14LIST: Final = KSort('List')
+15MAP: Final = KSort('Map')
+16BAG: Final = KSort('Bag')
+17
+18
+
+[docs] +19def set_empty() -> KInner: +20 return KApply('.Set')
+ +21 +22 +
+[docs] +23def set_item(k: KInner) -> KInner: +24 return KApply('SetItem', [k])
+ +25 +26 +
+[docs] +27def set_of(ks: Iterable[KInner]) -> KInner: +28 return build_assoc(set_empty(), KLabel('_Set_'), map(set_item, ks))
+ +29 +30 +
+[docs] +31def list_empty() -> KInner: +32 return KApply('.List')
+ +33 +34 +
+[docs] +35def list_item(k: KInner) -> KInner: +36 return KApply('ListItem', [k])
+ +37 +38 +
+[docs] +39def list_of(ks: Iterable[KInner]) -> KInner: +40 return build_assoc(list_empty(), KLabel('_List_'), map(list_item, ks))
+ +41 +42 +
+[docs] +43def map_empty() -> KInner: +44 return KApply('.Map')
+ +45 +46 +
+[docs] +47def map_item(k: KInner, v: KInner) -> KInner: +48 return KApply('_|->_', [k, v])
+ +49 +50 +
+[docs] +51def map_of(ks: dict[KInner, KInner] | Iterable[tuple[KInner, KInner]]) -> KInner: +52 ks = dict(ks) +53 return build_assoc(map_empty(), KLabel('_Map_'), (map_item(k, v) for k, v in ks.items()))
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/k.html b/pyk/_modules/pyk/prelude/k.html new file mode 100644 index 00000000000..e2315ecd9b0 --- /dev/null +++ b/pyk/_modules/pyk/prelude/k.html @@ -0,0 +1,130 @@ + + + + + + pyk.prelude.k — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.k

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from ..kast.inner import KApply, KLabel, KSort, KToken
+ 6
+ 7if TYPE_CHECKING:
+ 8    from typing import Final
+ 9
+10    from ..kast import KInner
+11
+12
+13K: Final = KSort('K')
+14K_ITEM: Final = KSort('KItem')
+15GENERATED_TOP_CELL: Final = KSort('GeneratedTopCell')
+16
+17DOTS: Final = KToken('...', K)
+18
+19
+
+[docs] +20def inj(from_sort: KSort, to_sort: KSort, term: KInner) -> KInner: +21 return KApply(KLabel('inj', (from_sort, to_sort)), (term,))
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/kbool.html b/pyk/_modules/pyk/prelude/kbool.html new file mode 100644 index 00000000000..fa4b1a38cf1 --- /dev/null +++ b/pyk/_modules/pyk/prelude/kbool.html @@ -0,0 +1,157 @@ + + + + + + pyk.prelude.kbool — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.kbool

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from ..kast.inner import KApply, KLabel, KSort, KToken, build_assoc
+ 6from ..utils import unique
+ 7
+ 8if TYPE_CHECKING:
+ 9    from collections.abc import Iterable
+10    from typing import Final
+11
+12    from ..kast import KInner
+13
+14BOOL: Final = KSort('Bool')
+15TRUE: Final = KToken('true', BOOL)
+16FALSE: Final = KToken('false', BOOL)
+17
+18
+
+[docs] +19def boolToken(b: bool) -> KToken: # noqa: N802 +20 return TRUE if b else FALSE
+ +21 +22 +
+[docs] +23def andBool(items: Iterable[KInner]) -> KInner: # noqa: N802 +24 return build_assoc(TRUE, KLabel('_andBool_'), unique(items))
+ +25 +26 +
+[docs] +27def orBool(items: Iterable[KInner]) -> KInner: # noqa: N802 +28 return build_assoc(FALSE, KLabel('_orBool_'), unique(items))
+ +29 +30 +
+[docs] +31def notBool(item: KInner) -> KApply: # noqa: N802 +32 return KApply(KLabel('notBool_'), [item])
+ +33 +34 +
+[docs] +35def impliesBool(antecedent: KInner, consequent: KInner) -> KApply: # noqa: N802 +36 return KApply(KLabel('_impliesBool_'), [antecedent, consequent])
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/kint.html b/pyk/_modules/pyk/prelude/kint.html new file mode 100644 index 00000000000..2e1e90362c4 --- /dev/null +++ b/pyk/_modules/pyk/prelude/kint.html @@ -0,0 +1,516 @@ + + + + + + pyk.prelude.kint — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.kint

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from ..kast.inner import KApply, KSort, KToken
+  6
+  7if TYPE_CHECKING:
+  8    from typing import Final
+  9
+ 10    from ..kast import KInner
+ 11
+ 12INT: Final = KSort('Int')
+ 13
+ 14
+
+[docs] + 15def intToken(i: int) -> KToken: # noqa: N802 + 16 r"""Instantiate the KAST term ``#token(i, "Int")``. + 17 + 18 Args: + 19 i: The integer literal. + 20 + 21 Returns: + 22 The KAST term ``#token(i, "Int")``. + 23 """ + 24 return KToken(str(i), INT)
+ + 25 + 26 +
+[docs] + 27def ltInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 + 28 r"""Instantiate the KAST term ```_<Int_`(i1, i2)``. + 29 + 30 Args: + 31 i1: The left operand. + 32 i2: The right operand. + 33 + 34 Returns: + 35 The KAST term ```_<Int_`(i1, i2)``. + 36 """ + 37 return KApply('_<Int_', i1, i2)
+ + 38 + 39 +
+[docs] + 40def leInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 + 41 r"""Instantiate the KAST term ```_<=Int_`(i1, i2)``. + 42 + 43 Args: + 44 i1: The left operand. + 45 i2: The right operand. + 46 + 47 Returns: + 48 The KAST term ```_<=Int_`(i1, i2)``. + 49 """ + 50 return KApply('_<=Int_', i1, i2)
+ + 51 + 52 +
+[docs] + 53def gtInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 + 54 r"""Instantiate the KAST term ```_>Int_`(i1, i2)``. + 55 + 56 Args: + 57 i1: The left operand. + 58 i2: The right operand. + 59 + 60 Returns: + 61 The KAST term ```_>Int_`(i1, i2)``. + 62 """ + 63 return KApply('_>Int_', i1, i2)
+ + 64 + 65 +
+[docs] + 66def geInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 + 67 r"""Instantiate the KAST term ```_>=Int_`(i1, i2)``. + 68 + 69 Args: + 70 i1: The left operand. + 71 i2: The right operand. + 72 + 73 Returns: + 74 The KAST term ```_>=Int_`(i1, i2)``. + 75 """ + 76 return KApply('_>=Int_', i1, i2)
+ + 77 + 78 +
+[docs] + 79def eqInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 + 80 r"""Instantiate the KAST term ```_==Int_`(i1, i2)``. + 81 + 82 Args: + 83 i1: The left operand. + 84 i2: The right operand. + 85 + 86 Returns: + 87 The KAST term ```_==Int_`(i1, i2)``. + 88 """ + 89 return KApply('_==Int_', i1, i2)
+ + 90 + 91 +
+[docs] + 92def neqInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 + 93 r"""Instantiate the KAST term ```_=/=Int_`(i1, i2)``. + 94 + 95 Args: + 96 i1: The left operand. + 97 i2: The right operand. + 98 + 99 Returns: +100 The KAST term ```_=/=Int_`(i1, i2)``. +101 """ +102 return KApply('_=/=Int_', i1, i2)
+ +103 +104 +
+[docs] +105def notInt(i: KInner) -> KApply: # noqa: N802 +106 r"""Instantiate the KAST term ```~Int_`(i)``. +107 +108 Args: +109 i: The integer operand. +110 +111 Returns: +112 The KAST term ```Int_`(i)``. +113 """ +114 return KApply('~Int_', i)
+ +115 +116 +
+[docs] +117def expInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +118 r"""Instantiate the KAST term ```_^Int_`(i1, i2)``. +119 +120 Args: +121 i1: The base. +122 i2: The exponent. +123 +124 Returns: +125 The KAST term ```_^Int_`(i1, i2)``. +126 """ +127 return KApply('_^Int_', i1, i2)
+ +128 +129 +
+[docs] +130def expModInt(i1: KInner, i2: KInner, i3: KInner) -> KApply: # noqa: N802 +131 r"""Instantiate the KAST term ```_^%Int__`(i1, i2, i3)``. +132 +133 Args: +134 i1: The dividend. +135 i2: The divisior. +136 i3: The modulus. +137 +138 Returns: +139 The KAST term ```_^%Int__`(i1, i2, i3)``. +140 """ +141 return KApply('_^%Int__', i1, i2, i3)
+ +142 +143 +
+[docs] +144def mulInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +145 r"""Instantiate the KAST term ```_*Int_`(i1, i2)``. +146 +147 Args: +148 i1: The left operand. +149 i2: The right operand. +150 +151 Returns: +152 The KAST term ```_*Int_`(i1, i2)``. +153 """ +154 return KApply('_*Int_', i1, i2)
+ +155 +156 +
+[docs] +157def divInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +158 r"""Instantiate the KAST term ```_/Int_`(i1, i2)``. +159 +160 Args: +161 i1: The dividend. +162 i2: The divisor. +163 +164 Returns: +165 The KAST term ```_/Int_`(i1, i2)``. +166 """ +167 return KApply('_/Int_', i1, i2)
+ +168 +169 +
+[docs] +170def modInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +171 r"""Instantiate the KAST term ```_%Int_`(i1, i2)``. +172 +173 Args: +174 i1: The dividend. +175 i2: The divisor. +176 +177 Returns: +178 The KAST term ```_%Int_`(i1, i2)``. +179 """ +180 return KApply('_%Int_', i1, i2)
+ +181 +182 +
+[docs] +183def euclidDivInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +184 r"""Instantiate the KAST term ```_divInt_`(i1, i2)``. +185 +186 Args: +187 i1: The dividend. +188 i2: The divisor. +189 +190 Returns: +191 The KAST term ```_divInt_`(i1, i2)``. +192 """ +193 return KApply('_divInt_', i1, i2)
+ +194 +195 +
+[docs] +196def euclidModInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +197 r"""Instantiate the KAST term ```_modInt_`(i1, i2)``. +198 +199 Args: +200 i1: The dividend. +201 i2: The divisor. +202 +203 Returns: +204 The KAST term ```_modInt_`(i1, i2)``. +205 """ +206 return KApply('_modInt_', i1, i2)
+ +207 +208 +
+[docs] +209def addInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +210 r"""Instantiate the KAST term ```_+Int_`(i1, i2)``. +211 +212 Args: +213 i1: The left operand. +214 i2: The right operand. +215 +216 Returns: +217 The KAST term ```_+Int_`(i1, i2)``. +218 """ +219 return KApply('_+Int_', i1, i2)
+ +220 +221 +
+[docs] +222def subInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +223 r"""Instantiate the KAST term ```_-Int_`(i1, i2)``. +224 +225 Args: +226 i1: The left operand. +227 i2: The right operand. +228 +229 Returns: +230 The KAST term ```_-Int_`(i1, i2)``. +231 """ +232 return KApply('_-Int_', i1, i2)
+ +233 +234 +
+[docs] +235def rshiftInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +236 r"""Instantiate the KAST term ```_>>Int_`(i1, i2)``. +237 +238 Args: +239 i1: The left operand. +240 i2: The right operand. +241 +242 Returns: +243 The KAST term ```_>>Int_`(i1, i2)``. +244 """ +245 return KApply('_>>Int_', i1, i2)
+ +246 +247 +
+[docs] +248def lshiftInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +249 r"""Instantiate the KAST term ```_<<Int_`(i1, i2)``. +250 +251 Args: +252 i1: The left operand. +253 i2: The right operand. +254 +255 Returns: +256 The KAST term ```_<<Int_`(i1, i2)``. +257 """ +258 return KApply('_<<Int_', i1, i2)
+ +259 +260 +
+[docs] +261def andInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +262 r"""Instantiate the KAST term ```_&Int_`(i1, i2)``. +263 +264 Args: +265 i1: The left operand. +266 i2: The right operand. +267 +268 Returns: +269 The KAST term ```_&Int_`(i1, i2)``. +270 """ +271 return KApply('_&Int_', i1, i2)
+ +272 +273 +
+[docs] +274def xorInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +275 r"""Instantiate the KAST term ```_xorInt_`(i1, i2)``. +276 +277 Args: +278 i1: The left operand. +279 i2: The right operand. +280 +281 Returns: +282 The KAST term ```_xorInt_`(i1, i2)``. +283 """ +284 return KApply('_xorInt_', i1, i2)
+ +285 +286 +
+[docs] +287def orInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +288 r"""Instantiate the KAST term ```_|Int_`(i1, i2)``. +289 +290 Args: +291 i1: The left operand. +292 i2: The right operand. +293 +294 Returns: +295 The KAST term ```_|Int_`(i1, i2)``. +296 """ +297 return KApply('_|Int_', i1, i2)
+ +298 +299 +
+[docs] +300def minInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +301 r"""Instantiate the KAST term ```minInt`(i1, i2)``. +302 +303 Args: +304 i1: The left operand. +305 i2: The right operand. +306 +307 Returns: +308 The KAST term ```minInt`(i1, i2)``. +309 """ +310 return KApply('minInt', i1, i2)
+ +311 +312 +
+[docs] +313def maxInt(i1: KInner, i2: KInner) -> KApply: # noqa: N802 +314 r"""Instantiate the KAST term ```maxInt`(i1, i2)``. +315 +316 Args: +317 i1: The left operand. +318 i2: The right operand. +319 +320 Returns: +321 The KAST term ```maxInt`(i1, i2)``. +322 """ +323 return KApply('maxInt', i1, i2)
+ +324 +325 +
+[docs] +326def absInt(i: KInner) -> KApply: # noqa: N802 +327 r"""Instantiate the KAST term ```absInt`(i)``. +328 +329 Args: +330 i: The integer operand. +331 +332 Returns: +333 The KAST term ```absInt`(i)``. +334 """ +335 return KApply('absInt', i)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/ml.html b/pyk/_modules/pyk/prelude/ml.html new file mode 100644 index 00000000000..4ad415c27b2 --- /dev/null +++ b/pyk/_modules/pyk/prelude/ml.html @@ -0,0 +1,255 @@ + + + + + + pyk.prelude.ml — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.ml

+  1from __future__ import annotations
+  2
+  3from typing import TYPE_CHECKING
+  4
+  5from pyk.utils import single
+  6
+  7from ..kast.inner import KApply, KLabel, build_assoc, flatten_label
+  8from .k import GENERATED_TOP_CELL, K_ITEM
+  9from .kbool import BOOL, FALSE, TRUE
+ 10
+ 11if TYPE_CHECKING:
+ 12    from collections.abc import Iterable
+ 13    from typing import Final
+ 14
+ 15    from ..kast import KInner
+ 16    from ..kast.inner import KSort, KVariable
+ 17
+ 18
+ 19ML_QUANTIFIERS: Final = {
+ 20    '#Exists',
+ 21    '#Forall',
+ 22}
+ 23
+ 24
+ 25def _is_top(term: KInner) -> bool:
+ 26    return isinstance(term, KApply) and term.label.name == '#Top'
+ 27
+ 28
+
+[docs] + 29def is_top(term: KInner, *, weak: bool = False) -> bool: + 30 if _is_top(term): + 31 return True + 32 if not weak: + 33 return False + 34 flat = flatten_label('#And', term) + 35 if len(flat) == 1: + 36 return is_top(single(flat)) + 37 return all(is_top(term, weak=True) for term in flat)
+ + 38 + 39 + 40def _is_bottom(term: KInner) -> bool: + 41 return isinstance(term, KApply) and term.label.name == '#Bottom' + 42 + 43 +
+[docs] + 44def is_bottom(term: KInner, *, weak: bool = False) -> bool: + 45 if _is_bottom(term): + 46 return True + 47 if not weak: + 48 return False + 49 flat = flatten_label('#And', term) + 50 if len(flat) == 1: + 51 return is_bottom(single(flat)) + 52 return any(is_bottom(term, weak=True) for term in flat)
+ + 53 + 54 +
+[docs] + 55def mlEquals( # noqa: N802 + 56 term1: KInner, + 57 term2: KInner, + 58 arg_sort: str | KSort = GENERATED_TOP_CELL, + 59 sort: str | KSort = GENERATED_TOP_CELL, + 60) -> KApply: + 61 return KLabel('#Equals', arg_sort, sort)(term1, term2)
+ + 62 + 63 +
+[docs] + 64def mlEqualsTrue(term: KInner, sort: str | KSort = GENERATED_TOP_CELL) -> KApply: # noqa: N802 + 65 return mlEquals(TRUE, term, arg_sort=BOOL, sort=sort)
+ + 66 + 67 +
+[docs] + 68def mlEqualsFalse(term: KInner, sort: str | KSort = GENERATED_TOP_CELL) -> KApply: # noqa: N802 + 69 return mlEquals(FALSE, term, arg_sort=BOOL, sort=sort)
+ + 70 + 71 +
+[docs] + 72def mlTop(sort: str | KSort = GENERATED_TOP_CELL) -> KApply: # noqa: N802 + 73 return KLabel('#Top', sort)()
+ + 74 + 75 +
+[docs] + 76def mlBottom(sort: str | KSort = GENERATED_TOP_CELL) -> KApply: # noqa: N802 + 77 return KLabel('#Bottom', sort)()
+ + 78 + 79 +
+[docs] + 80def mlNot(term: KInner, sort: str | KSort = GENERATED_TOP_CELL) -> KApply: # noqa: N802 + 81 return KLabel('#Not', sort)(term)
+ + 82 + 83 +
+[docs] + 84def mlAnd(conjuncts: Iterable[KInner], sort: str | KSort = GENERATED_TOP_CELL) -> KInner: # noqa: N802 + 85 return build_assoc(mlTop(sort), KLabel('#And', sort), filter(lambda x: not is_top(x), conjuncts))
+ + 86 + 87 +
+[docs] + 88def mlOr(disjuncts: Iterable[KInner], sort: str | KSort = GENERATED_TOP_CELL) -> KInner: # noqa: N802 + 89 return build_assoc(mlBottom(sort), KLabel('#Or', sort), filter(lambda x: not is_bottom(x), disjuncts))
+ + 90 + 91 +
+[docs] + 92def mlImplies(antecedent: KInner, consequent: KInner, sort: str | KSort = GENERATED_TOP_CELL) -> KApply: # noqa: N802 + 93 return KLabel('#Implies', sort)(antecedent, consequent)
+ + 94 + 95 +
+[docs] + 96def mlExists( # noqa: N802 + 97 var: KVariable, + 98 body: KInner, + 99 sort1: str | KSort = K_ITEM, +100 sort2: str | KSort = GENERATED_TOP_CELL, +101) -> KApply: +102 return KLabel('#Exists', sort1, sort2)(var, body)
+ +103 +104 +
+[docs] +105def mlCeil( # noqa: N802 +106 term: KInner, +107 arg_sort: str | KSort = GENERATED_TOP_CELL, +108 sort: str | KSort = GENERATED_TOP_CELL, +109) -> KApply: +110 return KLabel('#Ceil', arg_sort, sort)(term)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/string.html b/pyk/_modules/pyk/prelude/string.html new file mode 100644 index 00000000000..eab11ae56fb --- /dev/null +++ b/pyk/_modules/pyk/prelude/string.html @@ -0,0 +1,129 @@ + + + + + + pyk.prelude.string — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.string

+ 1from typing import Final
+ 2
+ 3from ..dequote import dequote_string, enquote_string
+ 4from ..kast.inner import KSort, KToken
+ 5
+ 6STRING: Final = KSort('String')
+ 7
+ 8
+
+[docs] + 9def stringToken(pretty: str) -> KToken: # noqa: N802 +10 return KToken(f'"{enquote_string(pretty)}"', STRING)
+ +11 +12 +
+[docs] +13def pretty_string(token: KToken) -> str: +14 if token.sort != STRING: +15 raise ValueError(f'Expected String token, got: {token}') +16 assert token.token[0] == '"' == token.token[-1] +17 return dequote_string(token.token[1:-1])
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/prelude/utils.html b/pyk/_modules/pyk/prelude/utils.html new file mode 100644 index 00000000000..341d6445af7 --- /dev/null +++ b/pyk/_modules/pyk/prelude/utils.html @@ -0,0 +1,132 @@ + + + + + + pyk.prelude.utils — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.prelude.utils

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from .bytes import bytesToken
+ 6from .kbool import boolToken
+ 7from .kint import intToken
+ 8from .string import stringToken
+ 9
+10if TYPE_CHECKING:
+11    from ..kast.inner import KToken
+12
+13
+
+[docs] +14def token(x: bool | int | str | bytes) -> KToken: +15 if type(x) is bool: +16 return boolToken(x) +17 if type(x) is int: +18 return intToken(x) +19 if type(x) is str: +20 return stringToken(x) +21 if type(x) is bytes: +22 return bytesToken(x) +23 raise AssertionError()
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/proof/implies.html b/pyk/_modules/pyk/proof/implies.html new file mode 100644 index 00000000000..8f3094a2903 --- /dev/null +++ b/pyk/_modules/pyk/proof/implies.html @@ -0,0 +1,648 @@ + + + + + + pyk.proof.implies — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.proof.implies

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5from dataclasses import dataclass
+  6from typing import TYPE_CHECKING, Any, Final
+  7
+  8from ..cterm import CSubst, CTerm, build_claim
+  9from ..kast.inner import KApply, KInner, Subst
+ 10from ..kast.manip import extract_lhs, extract_rhs, flatten_label
+ 11from ..prelude.k import GENERATED_TOP_CELL
+ 12from ..prelude.kbool import BOOL, FALSE, TRUE
+ 13from ..prelude.ml import is_bottom, is_top, mlAnd, mlEquals, mlEqualsFalse, mlEqualsTrue
+ 14from ..utils import ensure_dir_path
+ 15from .proof import FailureInfo, Proof, ProofStatus, ProofSummary, Prover
+ 16
+ 17if TYPE_CHECKING:
+ 18    from collections.abc import Iterable, Mapping
+ 19    from pathlib import Path
+ 20
+ 21    from ..kast.inner import KSort
+ 22    from ..kast.outer import KClaim, KDefinition
+ 23    from ..kcfg import KCFGExplore
+ 24    from ..ktool.kprint import KPrint
+ 25
+ 26_LOGGER: Final = logging.getLogger(__name__)
+ 27
+ 28
+
+[docs] + 29@dataclass(frozen=True) + 30class ImpliesProofStep: + 31 proof: ImpliesProof
+ + 32 + 33 +
+[docs] + 34@dataclass + 35class ImpliesProofResult: + 36 csubst: CSubst | None + 37 simplified_antecedent: KInner | None + 38 simplified_consequent: KInner | None
+ + 39 + 40 +
+[docs] + 41class ImpliesProof(Proof[ImpliesProofStep, ImpliesProofResult]): + 42 antecedent: KInner + 43 consequent: KInner + 44 bind_universally: bool + 45 simplified_antecedent: KInner | None + 46 simplified_consequent: KInner | None + 47 csubst: CSubst | None + 48 + 49 def __init__( + 50 self, + 51 id: str, + 52 antecedent: KInner, + 53 consequent: KInner, + 54 bind_universally: bool = False, + 55 simplified_antecedent: KInner | None = None, + 56 simplified_consequent: KInner | None = None, + 57 csubst: CSubst | None = None, + 58 proof_dir: Path | None = None, + 59 subproof_ids: Iterable[str] = (), + 60 admitted: bool = False, + 61 ): + 62 super().__init__(id=id, proof_dir=proof_dir, subproof_ids=subproof_ids, admitted=admitted) + 63 self.antecedent = antecedent + 64 self.consequent = consequent + 65 self.bind_universally = bind_universally + 66 self.simplified_antecedent = simplified_antecedent + 67 self.simplified_consequent = simplified_consequent + 68 self.csubst = csubst + 69 +
+[docs] + 70 def get_steps(self) -> list[ImpliesProofStep]: + 71 if not self.can_progress: + 72 return [] + 73 return [ImpliesProofStep(self)]
+ + 74 +
+[docs] + 75 def commit(self, result: ImpliesProofResult) -> None: + 76 proof_type = type(self).__name__ + 77 if isinstance(result, ImpliesProofResult): + 78 self.csubst = result.csubst + 79 self.simplified_antecedent = result.simplified_antecedent + 80 self.simplified_consequent = result.simplified_consequent + 81 _LOGGER.info(f'{proof_type} finished {self.id}: {self.status}') + 82 else: + 83 raise ValueError(f'Incorrect result type, expected ImpliesProofResult: {result}')
+ + 84 + 85 @property + 86 def own_status(self) -> ProofStatus: + 87 if self.admitted: + 88 return ProofStatus.PASSED + 89 if self.simplified_antecedent is None or self.simplified_consequent is None: + 90 return ProofStatus.PENDING + 91 if self.csubst is None: + 92 return ProofStatus.FAILED + 93 return ProofStatus.PASSED + 94 + 95 @property + 96 def can_progress(self) -> bool: + 97 return self.simplified_antecedent is None or self.simplified_consequent is None + 98 +
+[docs] + 99 def write_proof_data(self, subproofs: bool = False) -> None: +100 super().write_proof_data() +101 if not self.proof_dir: +102 return +103 ensure_dir_path(self.proof_dir) +104 ensure_dir_path(self.proof_dir / self.id) +105 proof_path = self.proof_dir / self.id / 'proof.json' +106 if not self.up_to_date: +107 proof_json = json.dumps(self.dict) +108 proof_path.write_text(proof_json) +109 _LOGGER.info(f'Updated proof file {self.id}: {proof_path}')
+ +110 +
+[docs] +111 @classmethod +112 def from_dict(cls: type[ImpliesProof], dct: Mapping[str, Any], proof_dir: Path | None = None) -> ImpliesProof: +113 id = dct['id'] +114 antecedent = KInner.from_dict(dct['antecedent']) +115 consequent = KInner.from_dict(dct['consequent']) +116 simplified_antecedent = ( +117 KInner.from_dict(dct['simplified_antecedent']) if 'simplified_antecedent' in dct else None +118 ) +119 simplified_consequent = ( +120 KInner.from_dict(dct['simplified_consequent']) if 'simplified_consequent' in dct else None +121 ) +122 csubst = CSubst.from_dict(dct['csubst']) if 'csubst' in dct else None +123 subproof_ids = dct['subproof_ids'] +124 admitted = dct.get('admitted', False) +125 return ImpliesProof( +126 id, +127 antecedent, +128 consequent, +129 simplified_antecedent=simplified_antecedent, +130 simplified_consequent=simplified_consequent, +131 csubst=csubst, +132 admitted=admitted, +133 subproof_ids=subproof_ids, +134 proof_dir=proof_dir, +135 )
+ +136 +137 @property +138 def dict(self) -> dict[str, Any]: +139 dct = super().dict +140 dct['type'] = 'ImpliesProof' +141 dct['antecedent'] = self.antecedent.to_dict() +142 dct['consequent'] = self.consequent.to_dict() +143 if self.simplified_antecedent is not None: +144 dct['simplified_antecedent'] = self.simplified_antecedent.to_dict() +145 if self.simplified_consequent is not None: +146 dct['simplified_consequent'] = self.simplified_consequent.to_dict() +147 if self.csubst is not None: +148 dct['csubst'] = self.csubst.to_dict() +149 return dct
+ +150 +151 +
+[docs] +152class EqualityProof(ImpliesProof): +153 def __init__( +154 self, +155 id: str, +156 lhs_body: KInner, +157 rhs_body: KInner, +158 sort: KSort, +159 constraints: Iterable[KInner] = (), +160 simplified_constraints: KInner | None = None, +161 simplified_equality: KInner | None = None, +162 csubst: CSubst | None = None, +163 proof_dir: Path | None = None, +164 subproof_ids: Iterable[str] = (), +165 admitted: bool = False, +166 ): +167 antecedent = mlAnd(constraints) +168 consequent = mlEquals(lhs_body, rhs_body, arg_sort=sort, sort=GENERATED_TOP_CELL) +169 super().__init__( +170 id, +171 antecedent, +172 consequent, +173 bind_universally=True, +174 simplified_antecedent=simplified_constraints, +175 simplified_consequent=simplified_equality, +176 csubst=csubst, +177 proof_dir=proof_dir, +178 subproof_ids=subproof_ids, +179 admitted=admitted, +180 ) +181 _LOGGER.warning( +182 'Building an EqualityProof that has known soundness issues: See https://github.com/runtimeverification/haskell-backend/issues/3605.' +183 ) +184 +
+[docs] +185 @staticmethod +186 def read_proof_data(proof_dir: Path, id: str) -> EqualityProof: +187 proof_path = proof_dir / id / 'proof.json' +188 if Proof.proof_data_exists(id, proof_dir): +189 proof_dict = json.loads(proof_path.read_text()) +190 return EqualityProof.from_dict(proof_dict, proof_dir) +191 +192 raise ValueError(f'Could not load Proof from file {id}: {proof_path}')
+ +193 +
+[docs] +194 @staticmethod +195 def from_claim(claim: KClaim, defn: KDefinition, proof_dir: Path | None = None) -> EqualityProof: +196 claim_body = defn.add_sort_params(claim.body) +197 sort = defn.sort_strict(claim_body) +198 lhs_body = extract_lhs(claim_body) +199 rhs_body = extract_rhs(claim_body) +200 if not (claim.ensures is None or claim.ensures == TRUE): +201 raise ValueError(f'Cannot convert claim to EqualityProof due to non-trival ensures clause {claim.ensures}') +202 constraints = [mlEquals(TRUE, c, arg_sort=BOOL) for c in flatten_label('_andBool_', claim.requires)] +203 return EqualityProof(claim.label, lhs_body, rhs_body, sort, constraints=constraints, proof_dir=proof_dir)
+ +204 +205 @property +206 def equality(self) -> KApply: +207 assert type(self.consequent) is KApply +208 return self.consequent +209 +210 @property +211 def lhs_body(self) -> KInner: +212 return self.equality.args[0] +213 +214 @property +215 def rhs_body(self) -> KInner: +216 return self.equality.args[1] +217 +218 @property +219 def sort(self) -> KSort: +220 return self.equality.label.params[0] +221 +222 @property +223 def constraint(self) -> KInner: +224 return self.antecedent +225 +226 @property +227 def constraints(self) -> list[KInner]: +228 return flatten_label('#And', self.constraint) +229 +230 @property +231 def simplified_constraints(self) -> KInner | None: +232 return self.simplified_antecedent +233 +234 @property +235 def simplified_equality(self) -> KInner | None: +236 return self.simplified_consequent +237 +
+[docs] +238 @classmethod +239 def from_dict(cls: type[EqualityProof], dct: Mapping[str, Any], proof_dir: Path | None = None) -> EqualityProof: +240 implies_proof = ImpliesProof.from_dict(dct, proof_dir=proof_dir) +241 assert type(implies_proof.consequent) is KApply +242 return EqualityProof( +243 id=implies_proof.id, +244 lhs_body=implies_proof.consequent.args[0], +245 rhs_body=implies_proof.consequent.args[1], +246 sort=implies_proof.consequent.label.params[0], +247 constraints=flatten_label('#And', implies_proof.antecedent), +248 simplified_constraints=implies_proof.simplified_antecedent, +249 simplified_equality=implies_proof.simplified_consequent, +250 csubst=implies_proof.csubst, +251 proof_dir=implies_proof.proof_dir, +252 subproof_ids=implies_proof.subproof_ids, +253 admitted=implies_proof.admitted, +254 )
+ +255 +256 @property +257 def dict(self) -> dict[str, Any]: +258 dct = super().dict +259 dct['type'] = 'EqualityProof' +260 return dct +261 +
+[docs] +262 def pretty(self, kprint: KPrint) -> Iterable[str]: +263 lines = [ +264 f'LHS: {kprint.pretty_print(self.lhs_body)}', +265 f'RHS: {kprint.pretty_print(self.rhs_body)}', +266 f'Constraints: {kprint.pretty_print(mlAnd(self.constraints))}', +267 f'Equality: {kprint.pretty_print(self.equality)}', +268 ] +269 if self.simplified_constraints: +270 lines.append(f'Simplified constraints: {kprint.pretty_print(self.simplified_constraints)}') +271 if self.simplified_equality: +272 lines.append(f'Simplified equality: {kprint.pretty_print(self.simplified_equality)}') +273 if self.csubst is not None: +274 lines.append(f'Implication csubst: {self.csubst}') +275 lines.append(f'Status: {self.status}') +276 return lines
+ +277 +278 @property +279 def summary(self) -> EqualitySummary: +280 return EqualitySummary(self.id, self.status, self.admitted)
+ +281 +282 +
+[docs] +283@dataclass(frozen=True) +284class EqualitySummary(ProofSummary): +285 id: str +286 status: ProofStatus +287 admitted: bool +288 +289 @property +290 def lines(self) -> list[str]: +291 return [ +292 f'EqualityProof: {self.id}', +293 f' status: {self.status}', +294 f' admitted: {self.admitted}', +295 ]
+ +296 +297 +
+[docs] +298class RefutationProof(ImpliesProof): +299 def __init__( +300 self, +301 id: str, +302 pre_constraints: Iterable[KInner], +303 last_constraint: KInner, +304 simplified_antecedent: KInner | None = None, +305 simplified_consequent: KInner | None = None, +306 csubst: CSubst | None = None, +307 proof_dir: Path | None = None, +308 subproof_ids: Iterable[str] = (), +309 admitted: bool = False, +310 ): +311 antecedent = mlAnd(mlEqualsTrue(c) for c in pre_constraints) +312 consequent = mlEqualsFalse(last_constraint) +313 super().__init__( +314 id, +315 antecedent, +316 consequent, +317 bind_universally=True, +318 simplified_antecedent=simplified_antecedent, +319 simplified_consequent=simplified_consequent, +320 csubst=csubst, +321 subproof_ids=subproof_ids, +322 proof_dir=proof_dir, +323 admitted=admitted, +324 ) +325 _LOGGER.warning( +326 'Building a RefutationProof that has known soundness issues: See https://github.com/runtimeverification/haskell-backend/issues/3605.' +327 ) +328 +
+[docs] +329 @staticmethod +330 def read_proof_data(proof_dir: Path, id: str) -> RefutationProof: +331 proof_path = proof_dir / id / 'proof.json' +332 if Proof.proof_data_exists(id, proof_dir): +333 proof_dict = json.loads(proof_path.read_text()) +334 return RefutationProof.from_dict(proof_dict, proof_dir) +335 +336 raise ValueError(f'Could not load Proof from file {id}: {proof_path}')
+ +337 +338 @property +339 def pre_constraints(self) -> list[KInner]: +340 return flatten_label('#And', self.antecedent) +341 +342 @property +343 def last_constraint(self) -> KInner: +344 assert type(self.consequent) is KApply +345 return self.consequent.args[1] +346 +347 @property +348 def simplified_constraints(self) -> KInner | None: +349 return self.simplified_antecedent +350 +
+[docs] +351 @classmethod +352 def from_dict(cls: type[RefutationProof], dct: Mapping[str, Any], proof_dir: Path | None = None) -> RefutationProof: +353 implies_proof = ImpliesProof.from_dict(dct, proof_dir=proof_dir) +354 assert type(implies_proof.consequent) is KApply +355 return RefutationProof( +356 id=implies_proof.id, +357 pre_constraints=flatten_label('#And', implies_proof.antecedent), +358 last_constraint=implies_proof.consequent.args[1], +359 simplified_antecedent=implies_proof.simplified_antecedent, +360 simplified_consequent=implies_proof.simplified_consequent, +361 csubst=implies_proof.csubst, +362 proof_dir=implies_proof.proof_dir, +363 subproof_ids=implies_proof.subproof_ids, +364 admitted=implies_proof.admitted, +365 )
+ +366 +367 @property +368 def dict(self) -> dict[str, Any]: +369 dct = super().dict +370 dct['type'] = 'RefutationProof' +371 return dct +372 +373 @property +374 def summary(self) -> RefutationSummary: +375 return RefutationSummary(self.id, self.status) +376 +
+[docs] +377 def pretty(self, kprint: KPrint) -> Iterable[str]: +378 lines = [ +379 f'Constraints: {kprint.pretty_print(mlAnd(self.pre_constraints))}', +380 f'Last constraint: {kprint.pretty_print(self.last_constraint)}', +381 ] +382 if self.csubst is not None: +383 lines.append(f'Implication csubst: {self.csubst}') +384 lines.append(f'Status: {self.status}') +385 return lines
+ +386 +
+[docs] +387 def to_claim(self, claim_id: str) -> tuple[KClaim, Subst]: +388 return build_claim( +389 claim_id, +390 init_config=self.last_constraint, +391 final_config=FALSE, +392 init_constraints=self.pre_constraints, +393 final_constraints=[], +394 )
+
+ +395 +396 +
+[docs] +397@dataclass(frozen=True) +398class RefutationSummary(ProofSummary): +399 id: str +400 status: ProofStatus +401 +402 @property +403 def lines(self) -> list[str]: +404 return [ +405 f'RefutationProof: {self.id}', +406 f' status: {self.status}', +407 ]
+ +408 +409 +
+[docs] +410class ImpliesProver(Prover[ImpliesProof, ImpliesProofStep, ImpliesProofResult]): +411 proof: ImpliesProof +412 kcfg_explore: KCFGExplore +413 +
+[docs] +414 def close(self) -> None: +415 self.kcfg_explore.cterm_symbolic._kore_client.close()
+ +416 +417 def __init__(self, proof: ImpliesProof, kcfg_explore: KCFGExplore): +418 self.kcfg_explore = kcfg_explore +419 self.proof = proof +420 +
+[docs] +421 def step_proof(self, step: ImpliesProofStep) -> list[ImpliesProofResult]: +422 proof_type = type(step.proof).__name__ +423 _LOGGER.info(f'Attempting {proof_type} {step.proof.id}') +424 +425 if step.proof.status is not ProofStatus.PENDING: +426 _LOGGER.info(f'{proof_type} finished {step.proof.id}: {step.proof.status}') +427 return [] +428 +429 # to prove the equality, we check the implication of the form `constraints #Implies LHS #Equals RHS`, i.e. +430 # "LHS equals RHS under these constraints" +431 simplified_antecedent, _ = self.kcfg_explore.cterm_symbolic.kast_simplify(step.proof.antecedent) +432 simplified_consequent, _ = self.kcfg_explore.cterm_symbolic.kast_simplify(step.proof.consequent) +433 _LOGGER.debug(f'Simplified antecedent: {self.kcfg_explore.pretty_print(simplified_antecedent)}') +434 _LOGGER.debug(f'Simplified consequent: {self.kcfg_explore.pretty_print(simplified_consequent)}') +435 +436 csubst: CSubst | None = None +437 +438 if is_bottom(simplified_antecedent): +439 _LOGGER.warning(f'Antecedent of implication (proof constraints) simplifies to #Bottom {step.proof.id}') +440 csubst = CSubst(Subst({}), ()) +441 +442 elif is_top(simplified_consequent): +443 _LOGGER.warning(f'Consequent of implication (proof equality) simplifies to #Top {step.proof.id}') +444 csubst = CSubst(Subst({}), ()) +445 +446 else: +447 # TODO: we should not be forced to include the dummy configuration in the antecedent and consequent +448 dummy_config = self.kcfg_explore.cterm_symbolic._definition.empty_config(sort=GENERATED_TOP_CELL) +449 _result = self.kcfg_explore.cterm_symbolic.implies( +450 antecedent=CTerm(config=dummy_config, constraints=[simplified_antecedent]), +451 consequent=CTerm(config=dummy_config, constraints=[simplified_consequent]), +452 bind_universally=step.proof.bind_universally, +453 ) +454 result = _result.csubst +455 if result is not None: +456 csubst = result +457 +458 _LOGGER.info(f'{proof_type} finished {step.proof.id}: {step.proof.status}') +459 return [ +460 ImpliesProofResult( +461 csubst=csubst, simplified_antecedent=simplified_antecedent, simplified_consequent=simplified_consequent +462 ) +463 ]
+ +464 +
+[docs] +465 def init_proof(self, proof: ImpliesProof) -> None: +466 pass
+ +467 +
+[docs] +468 def failure_info(self, proof: ImpliesProof) -> FailureInfo: +469 # TODO add implementation +470 return FailureInfo()
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/proof/proof.html b/pyk/_modules/pyk/proof/proof.html new file mode 100644 index 00000000000..803a1b937e6 --- /dev/null +++ b/pyk/_modules/pyk/proof/proof.html @@ -0,0 +1,714 @@ + + + + + + pyk.proof.proof — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.proof.proof

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5from abc import ABC, abstractmethod
+  6from concurrent.futures import ThreadPoolExecutor, wait
+  7from dataclasses import dataclass
+  8from enum import Enum
+  9from itertools import chain
+ 10from threading import current_thread
+ 11from typing import TYPE_CHECKING, ContextManager, Generic, TypeVar
+ 12
+ 13from ..utils import ensure_dir_path, hash_file, hash_str
+ 14
+ 15if TYPE_CHECKING:
+ 16    from collections.abc import Callable, Hashable, Iterable, Mapping
+ 17    from concurrent.futures import Executor, Future
+ 18    from pathlib import Path
+ 19    from typing import Any, Final
+ 20
+ 21    T = TypeVar('T', bound='Proof')
+ 22
+ 23P = TypeVar('P', bound='Proof')
+ 24PS = TypeVar('PS', bound='Hashable')
+ 25SR = TypeVar('SR')
+ 26
+ 27_LOGGER: Final = logging.getLogger(__name__)
+ 28
+ 29
+
+[docs] + 30class ProofStatus(Enum): + 31 PASSED = 'passed' + 32 FAILED = 'failed' + 33 PENDING = 'pending'
+ + 34 + 35 +
+[docs] + 36class Proof(Generic[PS, SR]): + 37 """Abstract representation of a proof that can be executed in one or more discrete steps. + 38 + 39 Generic type variables: + 40 + 41 - PS: Proof step: data required to perform a step of the proof. + 42 - SR: Step result: data produced by executing a PS with ``Prover.step_proof`` used to update the `Proof`. + 43 """ + 44 + 45 _PROOF_TYPES: Final = {'APRProof', 'EqualityProof', 'RefutationProof'} + 46 + 47 id: str + 48 proof_dir: Path | None + 49 _subproofs: dict[str, Proof] + 50 admitted: bool + 51 failure_info: FailureInfo | None + 52 + 53 @property + 54 def proof_subdir(self) -> Path | None: + 55 if self.proof_dir is None: + 56 return None + 57 return self.proof_dir / self.id + 58 + 59 def __init__( + 60 self, + 61 id: str, + 62 proof_dir: Path | None = None, + 63 subproof_ids: Iterable[str] = (), + 64 admitted: bool = False, + 65 ) -> None: + 66 self.id = id + 67 self.admitted = admitted + 68 self.proof_dir = proof_dir + 69 self._subproofs = {} + 70 if self.proof_dir is None and len(list(subproof_ids)) > 0: + 71 raise ValueError(f'Cannot read subproofs {subproof_ids} of proof {self.id} with no proof_dir') + 72 if len(list(subproof_ids)) > 0: + 73 for proof_id in subproof_ids: + 74 self.fetch_subproof_data(proof_id, force_reread=True) + 75 if proof_dir is not None: + 76 ensure_dir_path(proof_dir) + 77 if self.proof_dir is not None: + 78 ensure_dir_path(self.proof_dir) + 79 +
+[docs] + 80 @abstractmethod + 81 def commit(self, result: SR) -> None: + 82 """Apply the step result of type `SR` to `self`, modifying `self`.""" + 83 ...
+ + 84 +
+[docs] + 85 def admit(self) -> None: + 86 self.admitted = True
+ + 87 + 88 @property + 89 def subproof_ids(self) -> list[str]: + 90 return [sp.id for sp in self._subproofs.values()] + 91 +
+[docs] + 92 def write_proof(self, subproofs: bool = False) -> None: + 93 if not self.proof_dir: + 94 return + 95 proof_path = self.proof_dir / f'{hash_str(self.id)}.json' + 96 if not self.up_to_date: + 97 proof_json = json.dumps(self.dict) + 98 proof_path.write_text(proof_json) + 99 _LOGGER.info(f'Updated proof file {self.id}: {proof_path}') +100 if subproofs: +101 for sp in self.subproofs: +102 sp.write_proof(subproofs=subproofs)
+ +103 +
+[docs] +104 @staticmethod +105 def proof_exists(id: str, proof_dir: Path) -> bool: +106 proof_path = proof_dir / f'{hash_str(id)}.json' +107 return proof_path.exists() and proof_path.is_file()
+ +108 +
+[docs] +109 @staticmethod +110 def proof_data_exists(id: str, proof_dir: Path) -> bool: +111 proof_path = proof_dir / id / 'proof.json' +112 return proof_path.exists() and proof_path.is_file()
+ +113 +114 @property +115 def digest(self) -> str: +116 return hash_str(json.dumps(self.dict)) +117 +118 @property +119 def up_to_date(self) -> bool: +120 """Check that the proof's representation on disk is up-to-date.""" +121 if self.proof_dir is None: +122 raise ValueError(f'Cannot check if proof {self.id} with no proof_dir is up-to-date') +123 proof_path = self.proof_dir / f'{hash_str(id)}.json' +124 if proof_path.exists() and proof_path.is_file(): +125 return self.digest == hash_file(proof_path) +126 else: +127 return False +128 +
+[docs] +129 def read_subproof(self, proof_id: str) -> None: +130 if self.proof_dir is None: +131 raise ValueError(f'Cannot add subproof to the proof {self.id} with no proof_dir') +132 assert self.proof_dir +133 if not Proof.proof_exists(proof_id, self.proof_dir): +134 raise ValueError(f"Cannot find subproof {proof_id} in parent proof's {self.id} proof_dir {self.proof_dir}") +135 self._subproofs[proof_id] = self.fetch_subproof(proof_id, force_reread=True)
+ +136 +
+[docs] +137 def read_subproof_data(self, proof_id: str) -> None: +138 if self.proof_dir is None: +139 raise ValueError(f'Cannot add subproof to the proof {self.id} with no proof_dir') +140 assert self.proof_dir +141 if not Proof.proof_data_exists(proof_id, self.proof_dir): +142 raise ValueError(f"Cannot find subproof {proof_id} in parent proof's {self.id} proof_dir {self.proof_dir}") +143 self._subproofs[proof_id] = self.fetch_subproof_data(proof_id, force_reread=True)
+ +144 +
+[docs] +145 def add_subproof(self, proof: Proof) -> None: +146 self._subproofs[proof.id] = proof
+ +147 +
+[docs] +148 def remove_subproof(self, proof_id: str) -> None: +149 del self._subproofs[proof_id]
+ +150 +
+[docs] +151 def fetch_subproof( +152 self, proof_id: str, force_reread: bool = False, uptodate_check_method: str = 'timestamp' +153 ) -> Proof: +154 """Get a subproof, re-reading from disk if it's not up-to-date.""" +155 if self.proof_dir is not None and (force_reread or not self._subproofs[proof_id].up_to_date): +156 updated_subproof = Proof.read_proof(proof_id, self.proof_dir) +157 self._subproofs[proof_id] = updated_subproof +158 return updated_subproof +159 else: +160 return self._subproofs[proof_id]
+ +161 +
+[docs] +162 def fetch_subproof_data( +163 self, proof_id: str, force_reread: bool = False, uptodate_check_method: str = 'timestamp' +164 ) -> Proof: +165 """Get a subproof, re-reading from disk if it's not up-to-date.""" +166 if self.proof_dir is not None and (force_reread or not self._subproofs[proof_id].up_to_date): +167 updated_subproof = Proof.read_proof_data(self.proof_dir, proof_id) +168 self._subproofs[proof_id] = updated_subproof +169 return updated_subproof +170 else: +171 return self._subproofs[proof_id]
+ +172 +173 @property +174 def subproofs(self) -> Iterable[Proof]: +175 """Return the subproofs, re-reading from disk the ones that changed.""" +176 return self._subproofs.values() +177 +178 @property +179 def subproofs_status(self) -> ProofStatus: +180 if any(p.failed for p in self.subproofs): +181 return ProofStatus.FAILED +182 elif all(p.passed for p in self.subproofs): +183 return ProofStatus.PASSED +184 else: +185 return ProofStatus.PENDING +186 +187 @property +188 @abstractmethod +189 def own_status(self) -> ProofStatus: ... +190 +191 @property +192 def status(self) -> ProofStatus: +193 if self.admitted: +194 return ProofStatus.PASSED +195 if self.own_status == ProofStatus.FAILED or self.subproofs_status == ProofStatus.FAILED: +196 return ProofStatus.FAILED +197 if self.own_status == ProofStatus.PENDING or self.subproofs_status == ProofStatus.PENDING: +198 return ProofStatus.PENDING +199 return ProofStatus.PASSED +200 +201 @property +202 @abstractmethod +203 def can_progress(self) -> bool: ... +204 +205 @property +206 def failed(self) -> bool: +207 return self.status == ProofStatus.FAILED +208 +209 @property +210 def passed(self) -> bool: +211 return self.status == ProofStatus.PASSED +212 +213 @property +214 def dict(self) -> dict[str, Any]: +215 return { +216 'id': self.id, +217 'subproof_ids': self.subproof_ids, +218 'admitted': self.admitted, +219 } +220 +
+[docs] +221 @classmethod +222 @abstractmethod +223 def from_dict(cls: type[Proof], dct: Mapping[str, Any], proof_dir: Path | None = None) -> Proof: ...
+ +224 +
+[docs] +225 @classmethod +226 def read_proof(cls: type[Proof], id: str, proof_dir: Path) -> Proof: +227 # these local imports allow us to call .to_dict() based on the proof type we read from JSON +228 from .implies import EqualityProof, RefutationProof # noqa +229 from .reachability import APRProof # noqa +230 +231 proof_path = proof_dir / f'{hash_str(id)}.json' +232 if Proof.proof_exists(id, proof_dir): +233 proof_dict = json.loads(proof_path.read_text()) +234 proof_type = proof_dict['type'] +235 admitted = proof_dict.get('admitted', False) +236 _LOGGER.info(f'Reading {proof_type} from file {id}: {proof_path}') +237 if proof_type in Proof._PROOF_TYPES: +238 return locals()[proof_type].from_dict(proof_dict, proof_dir) +239 +240 raise ValueError(f'Could not load Proof from file {id}: {proof_path}')
+ +241 +
+[docs] +242 @staticmethod +243 def read_proof_data(proof_dir: Path, id: str) -> Proof: +244 # these local imports allow us to call .to_dict() based on the proof type we read from JSON +245 from .implies import EqualityProof, RefutationProof # noqa +246 from .reachability import APRProof # noqa +247 +248 proof_path = proof_dir / id / 'proof.json' +249 if Proof.proof_data_exists(id, proof_dir): +250 proof_dict = json.loads(proof_path.read_text()) +251 proof_type = proof_dict['type'] +252 admitted = proof_dict.get('admitted', False) +253 _LOGGER.info(f'Reading {proof_type} from file {id}: {proof_path}') +254 if proof_type in Proof._PROOF_TYPES: +255 return locals()[proof_type].read_proof_data(proof_dir, id) +256 +257 raise ValueError(f'Could not load Proof from file {id}: {proof_path}')
+ +258 +
+[docs] +259 @abstractmethod +260 def write_proof_data(self) -> None: +261 for sp in self.subproofs: +262 sp.write_proof_data()
+ +263 +264 @property +265 def json(self) -> str: +266 return json.dumps(self.dict) +267 +268 @property +269 def summary(self) -> ProofSummary: +270 @dataclass +271 class BaseSummary(ProofSummary): +272 id: str +273 status: ProofStatus +274 +275 @property +276 def lines(self) -> list[str]: +277 return [f'Proof: {self.id}', f' status: {self.status}'] +278 +279 subproofs_summaries = [subproof.summary for subproof in self.subproofs] +280 return CompositeSummary([BaseSummary(self.id, self.status), *subproofs_summaries]) +281 +
+[docs] +282 @abstractmethod +283 def get_steps(self) -> Iterable[PS]: +284 """Return all currently available steps associated with this Proof. Should not modify `self`.""" +285 ...
+
+ +286 +287 +
+[docs] +288class ProofSummary(ABC): +289 id: str +290 status: ProofStatus +291 +292 @property +293 @abstractmethod +294 def lines(self) -> list[str]: ... +295 +296 def __str__(self) -> str: +297 return '\n'.join(self.lines)
+ +298 +299 +
+[docs] +300@dataclass +301class CompositeSummary(ProofSummary): +302 summaries: tuple[ProofSummary, ...] +303 +304 def __init__(self, _summaries: Iterable[ProofSummary]): +305 self.summaries = tuple(chain(_summaries)) +306 +307 def __str__(self) -> str: +308 return '\n'.join(str(summary) for summary in self.summaries) +309 +310 @property +311 def lines(self) -> list[str]: +312 return [line for lines in (summary.lines for summary in self.summaries) for line in lines]
+ +313 +314 +
+[docs] +315class FailureInfo: ...
+ +316 +317 +
+[docs] +318def parallel_advance_proof( +319 proof: P, +320 create_prover: Callable[[], Prover[P, PS, SR]], +321 max_iterations: int | None = None, +322 fail_fast: bool = False, +323 max_workers: int = 1, +324) -> None: +325 """Advance proof with multithreaded strategy. +326 +327 `Prover.step_proof()` to a worker thread pool for each step as available, +328 and `Proof.commit()` results as they become available, +329 and get new steps with `Proof.get_steps()` and submit to thread pool. +330 +331 Generic type variables: +332 +333 - P: Type of proof to be advanced in parallel. +334 - PS: Proof step: data required to perform a step of the proof. +335 - SR: Step result: data produced by executing a PS with `Prover.step_proof` used to update the `Proof`. +336 +337 Args: +338 proof: The proof to advance. +339 create_prover: Function which creates a new `Prover`. These provers must not reference any shared +340 data to be written during `parallel_advance_proof`, to avoid race conditions. +341 max_iterations: Maximum number of steps to take. +342 fail_fast: If the proof is failing after finishing a step, +343 halt execution even if there are still available steps. +344 max_workers: Maximum number of worker threads the pool can spawn. +345 """ +346 pending: set[Future[Any]] = set() +347 explored: set[PS] = set() +348 iterations = 0 +349 +350 with create_prover() as main_prover: +351 main_prover.init_proof(proof) +352 +353 with _ProverPool[P, PS, SR](create_prover=create_prover, max_workers=max_workers) as pool: +354 +355 def submit_steps(_steps: Iterable[PS]) -> None: +356 for step in _steps: +357 if step in explored: +358 continue +359 explored.add(step) +360 future: Future[Any] = pool.submit(step) # <-- schedule steps for execution +361 pending.add(future) +362 +363 submit_steps(proof.get_steps()) +364 +365 while True: +366 if not pending: +367 break +368 done, _ = wait(pending, return_when='FIRST_COMPLETED') +369 future = done.pop() +370 proof_results = future.result() +371 for result in proof_results: +372 proof.commit(result) +373 proof.write_proof_data() +374 iterations += 1 +375 if max_iterations is not None and max_iterations <= iterations: +376 break +377 if fail_fast and proof.failed: +378 _LOGGER.warning(f'Terminating proof early because fail_fast is set: {proof.id}') +379 break +380 submit_steps(proof.get_steps()) +381 pending.remove(future) +382 +383 if proof.failed: +384 proof.failure_info = main_prover.failure_info(proof) +385 proof.write_proof_data()
+ +386 +387 +388class _ProverPool(ContextManager['_ProverPool'], Generic[P, PS, SR]): +389 """Wrapper for `ThreadPoolExecutor` which spawns one `Prover` for each worker thread. +390 +391 Generic type variables: +392 +393 - P: Type of proof to be advanced in parallel. +394 - PS: Proof step: data required to perform a step of the proof. +395 - SR: Step result: data produced by executing a PS with `Prover.step_proof` used to update the `Proof`. +396 """ +397 +398 _create_prover: Callable[[], Prover[P, PS, SR]] +399 _provers: dict[str, Prover[P, PS, SR]] +400 _executor: Executor +401 _closed: bool +402 +403 def __init__( +404 self, +405 create_prover: Callable[[], Prover[P, PS, SR]], +406 *, +407 max_workers: int | None = None, +408 ) -> None: +409 """Initialize an instance. +410 +411 Args: +412 create_prover: Function which creates a new `Prover`. These provers must not reference any shared +413 data to be written during `parallel_advance_proof`, to avoid race conditions. +414 max_workers (optional): Maximum number of worker threads the pool can spawn. +415 """ +416 self._create_prover = create_prover +417 self._provers = {} +418 self._executor = ThreadPoolExecutor(max_workers) +419 self._closed = False +420 +421 def __enter__(self) -> _ProverPool[P, PS, SR]: +422 self._executor.__enter__() +423 return self +424 +425 def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: +426 self._executor.__exit__(exc_type, exc_val, exc_tb) +427 self.close() +428 +429 def close(self) -> None: +430 self._closed = True +431 for prover in self._provers.values(): +432 prover.close() +433 +434 def submit(self, proof_step: PS) -> Future[Iterable[SR]]: +435 if self._closed: +436 raise ValueError('ProverPool has been closed') +437 return self._executor.submit(self._with_prover(proof_step)) +438 +439 def _with_prover(self, proof_step: PS) -> Callable[[], Iterable[SR]]: +440 +441 def step() -> Iterable[SR]: +442 thread_name = current_thread().name +443 prover: Prover[P, PS, SR] | None = self._provers.get(thread_name) +444 if prover is None: +445 prover = self._create_prover() +446 self._provers[thread_name] = prover +447 return prover.step_proof(proof_step) +448 +449 return step +450 +451 +
+[docs] +452class Prover(ContextManager['Prover'], Generic[P, PS, SR]): +453 """Abstract class which advances `Proof`s with `init_proof()` and `step_proof()`. +454 +455 Generic type variables: +456 +457 - P: Type of proof this `Prover` operates on. +458 - PS: Proof step: data required to perform a step of the proof. +459 - SR: Step result: data produced by executing a PS with `Prover.step_proof` used to update the `Proof`. +460 """ +461 +462 def __enter__(self) -> Prover[P, PS, SR]: +463 return self +464 +465 def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: +466 self.close() +467 +
+[docs] +468 @abstractmethod +469 def close(self) -> None: ...
+ +470 +
+[docs] +471 @abstractmethod +472 def failure_info(self, proof: P) -> FailureInfo: ...
+ +473 +
+[docs] +474 @abstractmethod +475 def step_proof(self, step: PS) -> Iterable[SR]: +476 """Do the work associated with a `PS`, a proof step. +477 +478 Should not modify a `Proof` or `self`, but may read from `self` as long as +479 those fields are not being modified during `step_proof()`, `get_steps()`, and `commit()`. +480 """ +481 ...
+ +482 +
+[docs] +483 @abstractmethod +484 def init_proof(self, proof: P) -> None: +485 """Perform any initialization steps needed at the beginning of proof execution. +486 +487 For example, for `APRProver`, upload circularity and depends module of the proof +488 to the `KoreServer` via `add_module`. +489 """ +490 ...
+ +491 +
+[docs] +492 def advance_proof(self, proof: P, max_iterations: int | None = None, fail_fast: bool = False) -> None: +493 """Advance a proof. +494 +495 Performs loop `Proof.get_steps()` -> `Prover.step_proof()` -> `Proof.commit()`. +496 +497 Args: +498 proof: proof to advance. +499 max_iterations (optional): Maximum number of steps to take. +500 fail_fast: If the proof is failing after finishing a step, +501 halt execution even if there are still available steps. +502 """ +503 iterations = 0 +504 _LOGGER.info(f'Initializing proof: {proof.id}') +505 self.init_proof(proof) +506 while True: +507 steps = list(proof.get_steps()) +508 _LOGGER.info(f'Found {len(steps)} next steps for proof: {proof.id}') +509 if len(steps) == 0: +510 break +511 for step in steps: +512 if fail_fast and proof.failed: +513 _LOGGER.warning(f'Terminating proof early because fail_fast is set: {proof.id}') +514 proof.failure_info = self.failure_info(proof) +515 return +516 if max_iterations is not None and max_iterations <= iterations: +517 return +518 iterations += 1 +519 results = self.step_proof(step) +520 for result in results: +521 proof.commit(result) +522 proof.write_proof_data() +523 if proof.failed: +524 proof.failure_info = self.failure_info(proof)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/proof/reachability.html b/pyk/_modules/pyk/proof/reachability.html new file mode 100644 index 00000000000..12fc216410b --- /dev/null +++ b/pyk/_modules/pyk/proof/reachability.html @@ -0,0 +1,1162 @@ + + + + + + pyk.proof.reachability — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.proof.reachability

+  1from __future__ import annotations
+  2
+  3import json
+  4import logging
+  5import re
+  6from dataclasses import dataclass, field
+  7from typing import TYPE_CHECKING
+  8
+  9from pyk.kore.rpc import LogEntry
+ 10
+ 11from ..cterm.cterm import remove_useless_constraints
+ 12from ..kast.inner import KInner, Subst
+ 13from ..kast.manip import flatten_label, free_vars, ml_pred_to_bool
+ 14from ..kast.outer import KFlatModule, KImport, KRule
+ 15from ..kcfg import KCFG, KCFGStore
+ 16from ..kcfg.exploration import KCFGExploration
+ 17from ..konvert import kflatmodule_to_kore
+ 18from ..ktool.claim_index import ClaimIndex
+ 19from ..prelude.ml import mlAnd, mlTop
+ 20from ..utils import FrozenDict, ensure_dir_path, hash_str, shorten_hashes, single
+ 21from .implies import ProofSummary, Prover, RefutationProof
+ 22from .proof import CompositeSummary, FailureInfo, Proof, ProofStatus
+ 23
+ 24if TYPE_CHECKING:
+ 25    from collections.abc import Iterable, Mapping
+ 26    from pathlib import Path
+ 27    from typing import Any, Final, TypeVar
+ 28
+ 29    from ..kast.outer import KClaim, KDefinition, KFlatModuleList
+ 30    from ..kcfg import KCFGExplore
+ 31    from ..kcfg.explore import KCFGExtendResult
+ 32    from ..kcfg.kcfg import CSubst, NodeIdLike
+ 33
+ 34    T = TypeVar('T', bound='Proof')
+ 35
+ 36_LOGGER: Final = logging.getLogger(__name__)
+ 37
+ 38
+
+[docs] + 39@dataclass + 40class APRProofResult: + 41 node_id: int + 42 prior_loops_cache_update: tuple[int, ...]
+ + 43 + 44 +
+[docs] + 45@dataclass + 46class APRProofExtendResult(APRProofResult): + 47 extend_result: KCFGExtendResult
+ + 48 + 49 +
+[docs] + 50@dataclass + 51class APRProofSubsumeResult(APRProofResult): + 52 csubst: CSubst
+ + 53 + 54 +
+[docs] + 55@dataclass + 56class APRProofTerminalResult(APRProofResult): ...
+ + 57 + 58 +
+[docs] + 59@dataclass + 60class APRProofBoundedResult(APRProofResult): ...
+ + 61 + 62 +
+[docs] + 63@dataclass(frozen=True) + 64class APRProofStep: + 65 node: KCFG.Node + 66 target: KCFG.Node + 67 proof_id: str + 68 bmc_depth: int | None + 69 module_name: str + 70 shortest_path_to_node: tuple[KCFG.Node, ...] + 71 prior_loops_cache: FrozenDict[int, tuple[int, ...]] = field(compare=False) + 72 circularity: bool + 73 nonzero_depth: bool + 74 circularity_rule_id: str
+ + 75 + 76 +
+[docs] + 77class APRProof(Proof[APRProofStep, APRProofResult], KCFGExploration): + 78 """Represent an all-path reachability proof. + 79 + 80 APRProof and APRProver implement all-path reachability logic, + 81 as introduced by A. Stefanescu and others in their paper 'All-Path Reachability Logic': + 82 https://doi.org/10.23638/LMCS-15(2:5)2019 + 83 + 84 Note that reachability logic formula `phi =>A psi` has *not* the same meaning + 85 as CTL/CTL*'s `phi -> AF psi`, since reachability logic ignores infinite traces. + 86 This implementation extends the above with bounded model checking, allowing the user + 87 to specify an optional loop iteration bound for each loop in execution. + 88 """ + 89 + 90 node_refutations: dict[int, RefutationProof] # TODO _node_refutatations + 91 init: int + 92 target: int + 93 bmc_depth: int | None + 94 _bounded: set[int] + 95 logs: dict[int, tuple[LogEntry, ...]] + 96 circularity: bool + 97 _exec_time: float + 98 error_info: Exception | None + 99 prior_loops_cache: dict[int, tuple[int, ...]] +100 +101 _checked_for_bounded: set[int] +102 +103 def __init__( +104 self, +105 id: str, +106 kcfg: KCFG, +107 terminal: Iterable[int], +108 init: NodeIdLike, +109 target: NodeIdLike, +110 logs: dict[int, tuple[LogEntry, ...]], +111 bmc_depth: int | None = None, +112 bounded: Iterable[int] | None = None, +113 proof_dir: Path | None = None, +114 node_refutations: dict[int, str] | None = None, +115 subproof_ids: Iterable[str] = (), +116 circularity: bool = False, +117 admitted: bool = False, +118 _exec_time: float = 0, +119 error_info: Exception | None = None, +120 prior_loops_cache: dict[int, tuple[int, ...]] | None = None, +121 ): +122 Proof.__init__(self, id, proof_dir=proof_dir, subproof_ids=subproof_ids, admitted=admitted) +123 KCFGExploration.__init__(self, kcfg, terminal) +124 +125 self.failure_info = None +126 self.init = kcfg._resolve(init) +127 self.target = kcfg._resolve(target) +128 self.bmc_depth = bmc_depth +129 self._bounded = set(bounded) if bounded is not None else set() +130 self.logs = logs +131 self.circularity = circularity +132 self.node_refutations = {} +133 self.prior_loops_cache = prior_loops_cache if prior_loops_cache is not None else {} +134 self.kcfg._kcfg_store = KCFGStore(self.proof_subdir / 'kcfg') if self.proof_subdir else None +135 self._exec_time = _exec_time +136 self.error_info = error_info +137 +138 self._checked_for_bounded = set() +139 +140 if self.proof_dir is not None and self.proof_subdir is not None: +141 ensure_dir_path(self.proof_dir) +142 ensure_dir_path(self.proof_subdir) +143 +144 if node_refutations is not None: +145 refutations_not_in_subprroofs = set(node_refutations.values()).difference( +146 set(subproof_ids if subproof_ids else []) +147 ) +148 if refutations_not_in_subprroofs: +149 raise ValueError( +150 f'All node refutations must be included in subproofs, violators are {refutations_not_in_subprroofs}' +151 ) +152 for node_id, proof_id in node_refutations.items(): +153 subproof = self._subproofs[proof_id] +154 assert type(subproof) is RefutationProof +155 self.node_refutations[node_id] = subproof +156 +
+[docs] +157 def get_steps(self) -> list[APRProofStep]: +158 steps: list[APRProofStep] = [] +159 for node in self.pending: +160 +161 shortest_path: list[KCFG.Node] = [] +162 if self.bmc_depth is not None: +163 shortest_path = [] +164 for succ in reversed(self.shortest_path_to(node.id)): +165 if self.kcfg.zero_depth_between(succ.source.id, node.id): +166 ... +167 else: +168 shortest_path.append(succ.source) +169 +170 module_name = self.circularities_module_name if self.nonzero_depth(node) else self.dependencies_module_name +171 +172 steps.append( +173 APRProofStep( +174 bmc_depth=self.bmc_depth, +175 module_name=module_name, +176 node=node, +177 proof_id=self.id, +178 target=self.kcfg.node(self.target), +179 shortest_path_to_node=tuple(shortest_path), +180 prior_loops_cache=FrozenDict(self.prior_loops_cache), +181 circularity=self.circularity, +182 nonzero_depth=self.nonzero_depth(node), +183 circularity_rule_id=f'{self.rule_id}-{self.init}-TO-{self.target}', +184 ) +185 ) +186 return steps
+ +187 +
+[docs] +188 def commit(self, result: APRProofResult) -> None: +189 self.prior_loops_cache[result.node_id] = result.prior_loops_cache_update +190 if isinstance(result, APRProofExtendResult): +191 self.kcfg.extend(result.extend_result, self.kcfg.node(result.node_id), logs=self.logs) +192 elif isinstance(result, APRProofSubsumeResult): +193 self.kcfg.create_cover(result.node_id, self.target, csubst=result.csubst) +194 elif isinstance(result, APRProofTerminalResult): +195 self.add_terminal(result.node_id) +196 elif isinstance(result, APRProofBoundedResult): +197 self.add_bounded(result.node_id) +198 else: +199 raise ValueError(f'Incorrect result type, expected APRProofResult: {result}')
+ +200 +
+[docs] +201 def nonzero_depth(self, node: KCFG.Node) -> bool: +202 return not self.kcfg.zero_depth_between(self.init, node.id)
+ +203 +204 @property +205 def rule_id(self) -> str: +206 return f'APRPROOF-{self.id.upper()}' +207 +208 @property +209 def module_name(self) -> str: +210 return self._make_module_name(self.id) +211 +212 @property +213 def pending(self) -> list[KCFG.Node]: +214 return [node for node in self.explorable if self.is_pending(node.id)] +215 +216 @property +217 def failing(self) -> list[KCFG.Node]: +218 return [nd for nd in self.kcfg.leaves if self.is_failing(nd.id)] +219 +220 @property +221 def bounded(self) -> list[KCFG.Node]: +222 return [nd for nd in self.kcfg.leaves if self.is_bounded(nd.id)] +223 +
+[docs] +224 def is_refuted(self, node_id: NodeIdLike) -> bool: +225 return self.kcfg._resolve(node_id) in self.node_refutations.keys()
+ +226 +
+[docs] +227 def is_pending(self, node_id: NodeIdLike) -> bool: +228 return ( +229 self.is_explorable(node_id) +230 and not self.is_target(node_id) +231 and not self.is_refuted(node_id) +232 and not self.is_bounded(node_id) +233 )
+ +234 +235 @property +236 def circularities_module_name(self) -> str: +237 return self.module_name + '-CIRCULARITIES-MODULE' +238 +239 @property +240 def dependencies_module_name(self) -> str: +241 return self.module_name + '-DEPENDS-MODULE' +242 +
+[docs] +243 def is_init(self, node_id: NodeIdLike) -> bool: +244 return self.kcfg._resolve(node_id) == self.kcfg._resolve(self.init)
+ +245 +
+[docs] +246 def is_target(self, node_id: NodeIdLike) -> bool: +247 return self.kcfg._resolve(node_id) == self.kcfg._resolve(self.target)
+ +248 +
+[docs] +249 def is_failing(self, node_id: NodeIdLike) -> bool: +250 return ( +251 self.kcfg.is_leaf(node_id) +252 and not self.is_explorable(node_id) +253 and not self.is_target(node_id) +254 and not self.is_refuted(node_id) +255 and not self.kcfg.is_vacuous(node_id) +256 and not self.is_bounded(node_id) +257 )
+ +258 +
+[docs] +259 def is_bounded(self, node_id: NodeIdLike) -> bool: +260 return self.kcfg._resolve(node_id) in self._bounded
+ +261 +
+[docs] +262 def add_bounded(self, nid: NodeIdLike) -> None: +263 self._bounded.add(self.kcfg._resolve(nid))
+ +264 +
+[docs] +265 def shortest_path_to(self, node_id: NodeIdLike) -> tuple[KCFG.Successor, ...]: +266 spb = self.kcfg.shortest_path_between(self.init, node_id) +267 assert spb is not None +268 return spb
+ +269 +
+[docs] +270 def prune(self, node_id: NodeIdLike, keep_nodes: Iterable[NodeIdLike] = ()) -> list[int]: +271 pruned_nodes = super().prune(node_id, keep_nodes=list(keep_nodes) + [self.init, self.target]) +272 for nid in pruned_nodes: +273 self._bounded.discard(nid) +274 self.prior_loops_cache = {k: v for (k, v) in self.prior_loops_cache.items() if k != nid} +275 for k, v in self.prior_loops_cache.items(): +276 if nid in v: +277 self.prior_loops_cache[k] = tuple(_nid for _nid in self.prior_loops_cache[k] if _nid != nid) +278 +279 return pruned_nodes
+ +280 +281 @property +282 def exec_time(self) -> float: +283 return self._exec_time +284 +
+[docs] +285 def add_exec_time(self, exec_time: float) -> None: +286 self._exec_time += exec_time
+ +287 +
+[docs] +288 def set_exec_time(self, exec_time: float) -> None: +289 self._exec_time = exec_time
+ +290 +
+[docs] +291 def formatted_exec_time(self) -> str: +292 exec_time = round(self.exec_time) +293 h, remainder = divmod(exec_time, 3600) +294 m, s = divmod(remainder, 60) +295 formatted = [] +296 if h: +297 formatted.append(f'{h}h') +298 if m or h: +299 formatted.append(f'{m}m') +300 formatted.append(f'{s}s') +301 return ' '.join(formatted)
+ +302 +303 @staticmethod +304 def _make_module_name(proof_id: str) -> str: +305 return 'M-' + re.sub( +306 r'[\[\]]|[_%().:,@]+', lambda match: 'bkt' if match.group(0) in ['[', ']'] else '-', proof_id.upper() +307 ) +308 +
+[docs] +309 @staticmethod +310 def read_proof(id: str, proof_dir: Path) -> APRProof: +311 proof_path = proof_dir / f'{hash_str(id)}.json' +312 if APRProof.proof_exists(id, proof_dir): +313 proof_dict = json.loads(proof_path.read_text()) +314 _LOGGER.info(f'Reading APRProof from file {id}: {proof_path}') +315 return APRProof.from_dict(proof_dict, proof_dir=proof_dir) +316 raise ValueError(f'Could not load APRProof from file {id}: {proof_path}')
+ +317 +318 @property +319 def own_status(self) -> ProofStatus: +320 if self.admitted: +321 return ProofStatus.PASSED +322 if len(self.failing) > 0: +323 return ProofStatus.FAILED +324 if len(self.pending) > 0: +325 return ProofStatus.PENDING +326 return ProofStatus.PASSED +327 +328 @property +329 def can_progress(self) -> bool: +330 return len(self.pending) > 0 +331 +
+[docs] +332 @classmethod +333 def from_dict(cls: type[APRProof], dct: Mapping[str, Any], proof_dir: Path | None = None) -> APRProof: +334 kcfg = KCFG.from_dict(dct['kcfg']) +335 terminal = dct['terminal'] +336 init_node = dct['init'] +337 target_node = dct['target'] +338 id = dct['id'] +339 circularity = dct.get('circularity', False) +340 admitted = dct.get('admitted', False) +341 subproof_ids = dct['subproof_ids'] if 'subproof_ids' in dct else [] +342 node_refutations: dict[int, str] = {} +343 if 'node_refutation' in dct: +344 node_refutations = { +345 kcfg._resolve(int(node_id)): proof_id for node_id, proof_id in dct['node_refutations'].items() +346 } +347 if 'logs' in dct: +348 logs = {int(k): tuple(LogEntry.from_dict(l) for l in ls) for k, ls in dct['logs'].items()} +349 else: +350 logs = {} +351 +352 bounded = dct['bounded'] +353 bmc_depth = dct['bmc_depth'] if 'bmc_depth' in dct else None +354 +355 return APRProof( +356 id, +357 kcfg, +358 terminal, +359 init_node, +360 target_node, +361 logs=logs, +362 bmc_depth=bmc_depth, +363 bounded=bounded, +364 circularity=circularity, +365 admitted=admitted, +366 proof_dir=proof_dir, +367 subproof_ids=subproof_ids, +368 node_refutations=node_refutations, +369 )
+ +370 +
+[docs] +371 @staticmethod +372 def from_claim( +373 defn: KDefinition, +374 claim: KClaim, +375 logs: dict[int, tuple[LogEntry, ...]], +376 proof_dir: Path | None = None, +377 bmc_depth: int | None = None, +378 **kwargs: Any, +379 ) -> APRProof: +380 kcfg_dir = proof_dir / claim.label / 'kcfg' if proof_dir is not None else None +381 +382 kcfg, init_node, target_node = KCFG.from_claim(defn, claim, cfg_dir=kcfg_dir) +383 return APRProof( +384 claim.label, +385 kcfg, +386 [], +387 init=init_node, +388 target=target_node, +389 logs=logs, +390 bmc_depth=bmc_depth, +391 proof_dir=proof_dir, +392 circularity=claim.is_circularity, +393 admitted=claim.is_trusted, +394 subproof_ids=claim.dependencies, +395 **kwargs, +396 )
+ +397 +
+[docs] +398 def as_rules(self, priority: int = 20, direct_rule: bool = False) -> list[KRule]: +399 if ( +400 self.circularity +401 or (self.passed and direct_rule) +402 or (self.admitted and not self.kcfg.predecessors(self.target)) +403 ): +404 return [self.as_rule(priority=priority)] +405 _rules = [] +406 for _edge in self.kcfg.edges(): +407 _rule = _edge.to_rule(self.rule_id, priority=priority) +408 assert type(_rule) is KRule +409 _rules.append(_rule) +410 return _rules
+ +411 +
+[docs] +412 def as_rule(self, priority: int = 20) -> KRule: +413 _edge = KCFG.Edge(self.kcfg.node(self.init), self.kcfg.node(self.target), depth=0, rules=()) +414 _rule = _edge.to_rule(self.rule_id, priority=priority) +415 assert type(_rule) is KRule +416 return _rule
+ +417 +
+[docs] +418 @staticmethod +419 def from_spec_modules( +420 defn: KDefinition, +421 spec_modules: KFlatModuleList, +422 logs: dict[int, tuple[LogEntry, ...]], +423 proof_dir: Path | None = None, +424 spec_labels: Iterable[str] | None = None, +425 ) -> list[APRProof]: +426 claim_index = ClaimIndex.from_module_list(spec_modules) +427 spec_labels = claim_index.labels(include=spec_labels, with_depends=True, ordered=True) +428 +429 res: list[APRProof] = [] +430 +431 for label in spec_labels: +432 if proof_dir is not None and Proof.proof_data_exists(label, proof_dir): +433 apr_proof = APRProof.read_proof_data(proof_dir, label) +434 else: +435 _LOGGER.info(f'Building APRProof for claim: {label}') +436 claim = claim_index[label] +437 apr_proof = APRProof.from_claim( +438 defn, +439 claim, +440 logs=logs, +441 proof_dir=proof_dir, +442 ) +443 apr_proof.write_proof_data() +444 res.append(apr_proof) +445 +446 return res
+ +447 +
+[docs] +448 def path_constraints(self, final_node_id: NodeIdLike) -> KInner: +449 path = self.shortest_path_to(final_node_id) +450 curr_constraint: KInner = mlTop() +451 for edge in reversed(path): +452 if type(edge) is KCFG.Split: +453 assert len(edge.targets) == 1 +454 csubst = edge.splits[edge.targets[0].id] +455 curr_constraint = mlAnd([csubst.subst.minimize().ml_pred, csubst.constraint, curr_constraint]) +456 if type(edge) is KCFG.Cover: +457 curr_constraint = mlAnd([edge.csubst.constraint, edge.csubst.subst.apply(curr_constraint)]) +458 return mlAnd(flatten_label('#And', curr_constraint))
+ +459 +460 @property +461 def dict(self) -> dict[str, Any]: +462 # Note: We are relying on the order of inheritance to +463 # access `dict` of `Proof`, since mypy is having issues +464 # with the two correct solutions. +465 dct = super().dict +466 dct['type'] = 'APRProof' +467 dct['kcfg'] = self.kcfg.to_dict() +468 dct['terminal'] = sorted(node.id for node in self.kcfg.nodes if self.is_terminal(node.id)) +469 dct['init'] = self.init +470 dct['target'] = self.target +471 dct['bounded'] = list(self._bounded) +472 if self.bmc_depth is not None: +473 dct['bmc_depth'] = self.bmc_depth +474 dct['node_refutations'] = {node_id: proof.id for (node_id, proof) in self.node_refutations.items()} +475 dct['circularity'] = self.circularity +476 logs = {int(k): [l.to_dict() for l in ls] for k, ls in self.logs.items()} +477 dct['logs'] = logs +478 return dct +479 +480 @property +481 def summary(self) -> CompositeSummary: +482 subproofs_summaries = [subproof.summary for subproof in self.subproofs] +483 return CompositeSummary( +484 [ +485 APRSummary( +486 self.id, +487 self.status, +488 self.admitted, +489 len(self.kcfg.nodes), +490 len(self.pending), +491 len(self.failing), +492 len(self.kcfg.vacuous), +493 len(self.kcfg.stuck), +494 len([node for node in self.kcfg.nodes if self.is_terminal(node.id)]), +495 len(self.node_refutations), +496 self.bmc_depth, +497 len(self._bounded), +498 len(self.subproof_ids), +499 self.formatted_exec_time(), +500 ), +501 *subproofs_summaries, +502 ] +503 ) +504 +
+[docs] +505 def get_refutation_id(self, node_id: int) -> str: +506 return f'{self.id}.node-infeasible-{node_id}'
+ +507 +
+[docs] +508 @staticmethod +509 def read_proof_data(proof_dir: Path, id: str) -> APRProof: +510 proof_subdir = proof_dir / id +511 proof_json = proof_subdir / 'proof.json' +512 proof_dict = json.loads(proof_json.read_text()) +513 cfg_dir = proof_subdir / 'kcfg' +514 kcfg = KCFG.read_cfg_data(cfg_dir) +515 init = int(proof_dict['init']) +516 target = int(proof_dict['target']) +517 bounded = proof_dict['bounded'] +518 bmc_depth = int(proof_dict['bmc_depth']) if 'bmc_depth' in proof_dict else None +519 circularity = bool(proof_dict['circularity']) +520 admitted = bool(proof_dict['admitted']) +521 exec_time = float(proof_dict['execution_time']) if 'execution_time' in proof_dict else 0.0 +522 terminal = proof_dict['terminal'] +523 logs = {int(k): tuple(LogEntry.from_dict(l) for l in ls) for k, ls in proof_dict['logs'].items()} +524 subproof_ids = proof_dict['subproof_ids'] +525 node_refutations = { +526 kcfg._resolve(int(node_id)): proof_id for node_id, proof_id in proof_dict['node_refutations'].items() +527 } +528 +529 prior_loops_cache = {int(k): v for k, v in proof_dict.get('loops_cache', {}).items()} +530 +531 return APRProof( +532 id=id, +533 kcfg=kcfg, +534 terminal=terminal, +535 init=init, +536 target=target, +537 bounded=bounded, +538 bmc_depth=bmc_depth, +539 logs=logs, +540 circularity=circularity, +541 admitted=admitted, +542 proof_dir=proof_dir, +543 subproof_ids=subproof_ids, +544 node_refutations=node_refutations, +545 prior_loops_cache=prior_loops_cache, +546 _exec_time=exec_time, +547 )
+ +548 +
+[docs] +549 def write_proof_data(self) -> None: +550 if self.proof_dir is None or self.proof_subdir is None: +551 _LOGGER.info(f'Skipped saving proof {self.id} since no save dir was specified.') +552 return +553 ensure_dir_path(self.proof_dir) +554 ensure_dir_path(self.proof_subdir) +555 proof_json = self.proof_subdir / 'proof.json' +556 dct: dict[str, Any] = {} +557 +558 dct['id'] = self.id +559 dct['subproof_ids'] = self.subproof_ids +560 dct['admitted'] = self.admitted +561 dct['execution_time'] = self._exec_time +562 dct['type'] = 'APRProof' +563 dct['init'] = self.kcfg._resolve(self.init) +564 dct['target'] = self.kcfg._resolve(self.target) +565 dct['terminal'] = sorted(node.id for node in self.kcfg.nodes if self.is_terminal(node.id)) +566 dct['node_refutations'] = { +567 self.kcfg._resolve(node_id): proof.id for (node_id, proof) in self.node_refutations.items() +568 } +569 dct['circularity'] = self.circularity +570 logs = {int(k): [l.to_dict() for l in ls] for k, ls in self.logs.items()} +571 dct['logs'] = logs +572 +573 dct['bounded'] = sorted(self._bounded) +574 if self.bmc_depth is not None: +575 dct['bmc_depth'] = self.bmc_depth +576 +577 dct['loops_cache'] = self.prior_loops_cache +578 +579 proof_json.write_text(json.dumps(dct)) +580 _LOGGER.info(f'Wrote proof data for {self.id}: {proof_json}') +581 self.kcfg.write_cfg_data()
+ +582 +
+[docs] +583 def refute_node(self, node: KCFG.Node) -> RefutationProof | None: +584 _LOGGER.info(f'Attempting to refute node {node.id}') +585 refutation = self.construct_node_refutation(node) +586 if refutation is None: +587 _LOGGER.error(f'Failed to refute node {node.id}') +588 return None +589 refutation.write_proof_data() +590 +591 self.node_refutations[node.id] = refutation +592 +593 self.write_proof_data() +594 +595 return refutation
+ +596 +
+[docs] +597 def unrefute_node(self, node: KCFG.Node) -> None: +598 self.remove_subproof(self.get_refutation_id(node.id)) +599 del self.node_refutations[node.id] +600 self.write_proof_data() +601 _LOGGER.info(f'Disabled refutation of node {node.id}.')
+ +602 +
+[docs] +603 def construct_node_refutation(self, node: KCFG.Node) -> RefutationProof | None: # TODO put into prover class +604 if len(self.kcfg.successors(node.id)) > 0: +605 _LOGGER.error(f'Cannot refute node {node.id} that already has successors') +606 return None +607 +608 path = single(self.kcfg.paths_between(source_id=self.init, target_id=node.id)) +609 branches_on_path = list(filter(lambda x: type(x) is KCFG.Split or type(x) is KCFG.NDBranch, reversed(path))) +610 if len(branches_on_path) == 0: +611 _LOGGER.error(f'Cannot refute node {node.id} in linear KCFG') +612 return None +613 closest_branch = branches_on_path[0] +614 if type(closest_branch) is KCFG.NDBranch: +615 _LOGGER.error(f'Cannot refute node {node.id} following a non-deterministic branch: not yet implemented') +616 return None +617 +618 assert type(closest_branch) is KCFG.Split +619 refuted_branch_root = closest_branch.targets[0] +620 csubst = closest_branch.splits[refuted_branch_root.id] +621 if not (csubst.subst.is_identity): +622 _LOGGER.error( +623 f'Cannot refute node {node.id}: unexpected non-identity substitution {csubst.subst} in Split from {closest_branch.source.id}' +624 ) +625 return None +626 +627 last_constraint = ml_pred_to_bool(csubst.constraint) +628 relevant_vars = free_vars(last_constraint) +629 pre_split_constraints = [ +630 ml_pred_to_bool(c) +631 for c in remove_useless_constraints(closest_branch.source.cterm.constraints, relevant_vars) +632 ] +633 +634 refutation_id = self.get_refutation_id(node.id) +635 _LOGGER.info(f'Adding refutation proof {refutation_id} as subproof of {self.id}') +636 refutation = RefutationProof( +637 id=refutation_id, +638 pre_constraints=pre_split_constraints, +639 last_constraint=last_constraint, +640 proof_dir=self.proof_dir, +641 ) +642 +643 self.add_subproof(refutation) +644 return refutation
+
+ +645 +646 +
+[docs] +647class APRProver(Prover[APRProof, APRProofStep, APRProofResult]): +648 main_module_name: str +649 execute_depth: int | None +650 cut_point_rules: Iterable[str] +651 terminal_rules: Iterable[str] +652 counterexample_info: bool +653 always_check_subsumption: bool +654 fast_check_subsumption: bool +655 direct_subproof_rules: bool +656 kcfg_explore: KCFGExplore +657 +658 def __init__( +659 self, +660 kcfg_explore: KCFGExplore, +661 execute_depth: int | None = None, +662 cut_point_rules: Iterable[str] = (), +663 terminal_rules: Iterable[str] = (), +664 counterexample_info: bool = False, +665 always_check_subsumption: bool = True, +666 fast_check_subsumption: bool = False, +667 direct_subproof_rules: bool = False, +668 ) -> None: +669 +670 self.kcfg_explore = kcfg_explore +671 self.main_module_name = self.kcfg_explore.cterm_symbolic._definition.main_module_name +672 self.execute_depth = execute_depth +673 self.cut_point_rules = cut_point_rules +674 self.terminal_rules = terminal_rules +675 self.counterexample_info = counterexample_info +676 self.always_check_subsumption = always_check_subsumption +677 self.fast_check_subsumption = fast_check_subsumption +678 self.direct_subproof_rules = direct_subproof_rules +679 +
+[docs] +680 def close(self) -> None: +681 self.kcfg_explore.cterm_symbolic._kore_client.close()
+ +682 +
+[docs] +683 def init_proof(self, proof: APRProof) -> None: +684 def _inject_module(module_name: str, import_name: str, sentences: list[KRule]) -> None: +685 _module = KFlatModule(module_name, sentences, [KImport(import_name)]) +686 _kore_module = kflatmodule_to_kore(self.kcfg_explore.cterm_symbolic._definition, _module) +687 self.kcfg_explore.cterm_symbolic._kore_client.add_module(_kore_module, name_as_id=True) +688 +689 subproofs: list[Proof] = ( +690 [Proof.read_proof_data(proof.proof_dir, i) for i in proof.subproof_ids] +691 if proof.proof_dir is not None +692 else [] +693 ) +694 dependencies_as_rules = [ +695 rule +696 for subproof in subproofs +697 if isinstance(subproof, APRProof) +698 for rule in subproof.as_rules(priority=20, direct_rule=self.direct_subproof_rules) +699 ] +700 circularity_rule = proof.as_rule(priority=20) +701 +702 _inject_module(proof.dependencies_module_name, self.main_module_name, dependencies_as_rules) +703 _inject_module(proof.circularities_module_name, proof.dependencies_module_name, [circularity_rule]) +704 +705 for node_id in [proof.init, proof.target]: +706 if self.kcfg_explore.kcfg_semantics.is_terminal(proof.kcfg.node(node_id).cterm): +707 proof.add_terminal(node_id)
+ +708 +709 def _may_subsume(self, node: KCFG.Node, target_node: KCFG.Node) -> bool: +710 node_k_cell = node.cterm.try_cell('K_CELL') +711 target_k_cell = target_node.cterm.try_cell('K_CELL') +712 if node_k_cell and target_k_cell and not target_k_cell.match(node_k_cell): +713 return False +714 return True +715 +716 def _check_subsume(self, node: KCFG.Node, target_node: KCFG.Node, proof_id: str) -> CSubst | None: +717 target_cterm = target_node.cterm +718 _LOGGER.debug(f'Checking subsumption into target state {proof_id}: {shorten_hashes((node.id, target_cterm))}') +719 if self.fast_check_subsumption and not self._may_subsume(node, target_node): +720 _LOGGER.info(f'Skipping full subsumption check because of fast may subsume check {proof_id}: {node.id}') +721 return None +722 _csubst = self.kcfg_explore.cterm_symbolic.implies(node.cterm, target_cterm) +723 csubst = _csubst.csubst +724 if csubst is not None: +725 _LOGGER.info(f'Subsumed into target node {proof_id}: {shorten_hashes((node.id, target_node.id))}') +726 return csubst +727 +
+[docs] +728 def step_proof(self, step: APRProofStep) -> list[APRProofResult]: +729 prior_loops: tuple[int, ...] = () +730 if step.bmc_depth is not None: +731 for node in step.shortest_path_to_node: +732 if self.kcfg_explore.kcfg_semantics.same_loop(node.cterm, step.node.cterm): +733 if node.id in step.prior_loops_cache: +734 prior_loops = step.prior_loops_cache[node.id] + (node.id,) +735 break +736 +737 _LOGGER.info(f'Prior loop heads for node {step.node.id}: {(step.node.id, prior_loops)}') +738 if len(prior_loops) > step.bmc_depth: +739 _LOGGER.warning(f'Bounded node {step.proof_id}: {step.node.id} at bmc depth {step.bmc_depth}') +740 return [APRProofBoundedResult(node_id=step.node.id, prior_loops_cache_update=prior_loops)] +741 +742 # Terminal checks for current node and target node +743 is_terminal = self.kcfg_explore.kcfg_semantics.is_terminal(step.node.cterm) +744 target_is_terminal = self.kcfg_explore.kcfg_semantics.is_terminal(step.target.cterm) +745 +746 terminal_result: list[APRProofResult] = ( +747 [APRProofTerminalResult(node_id=step.node.id, prior_loops_cache_update=prior_loops)] if is_terminal else [] +748 ) +749 +750 # Subsumption should be checked if and only if the target node +751 # and the current node are either both terminal or both not terminal +752 if is_terminal == target_is_terminal: +753 csubst = self._check_subsume(step.node, step.target, proof_id=step.proof_id) +754 if csubst is not None: +755 # Information about the subsumed node being terminal must be returned +756 # so that the set of terminal nodes is correctly updated +757 return terminal_result + [ +758 APRProofSubsumeResult(csubst=csubst, node_id=step.node.id, prior_loops_cache_update=prior_loops) +759 ] +760 +761 if is_terminal: +762 return terminal_result +763 +764 # Ensure that we cut at applications of circularity, so that subsumption into target state will be checked +765 cut_rules = list(self.cut_point_rules) +766 if step.circularity and step.nonzero_depth: +767 cut_rules.append(step.circularity_rule_id) +768 +769 # Ensure that we record progress ASAP for circularities, so the circularity rule will be included for execution as soon as possible +770 execute_depth = self.execute_depth +771 if step.circularity and not step.nonzero_depth and (execute_depth is None or execute_depth > 1): +772 execute_depth = 1 +773 +774 extend_result = self.kcfg_explore.extend_cterm( +775 step.node.cterm, +776 execute_depth=execute_depth, +777 cut_point_rules=cut_rules, +778 terminal_rules=self.terminal_rules, +779 module_name=step.module_name, +780 node_id=step.node.id, +781 ) +782 return [ +783 APRProofExtendResult( +784 node_id=step.node.id, extend_result=extend_result, prior_loops_cache_update=prior_loops +785 ) +786 ]
+ +787 +
+[docs] +788 def failure_info(self, proof: APRProof) -> FailureInfo: +789 return APRFailureInfo.from_proof(proof, self.kcfg_explore, counterexample_info=self.counterexample_info)
+
+ +790 +791 +
+[docs] +792@dataclass(frozen=True) +793class APRSummary(ProofSummary): +794 id: str +795 status: ProofStatus +796 admitted: bool +797 nodes: int +798 pending: int +799 failing: int +800 vacuous: int +801 stuck: int +802 terminal: int +803 refuted: int +804 bmc_depth: int | None +805 bounded: int +806 subproofs: int +807 formatted_exec_time: str +808 +809 @property +810 def lines(self) -> list[str]: +811 _lines = [ +812 f'APRProof: {self.id}', +813 f' status: {self.status}', +814 f' admitted: {self.admitted}', +815 f' nodes: {self.nodes}', +816 f' pending: {self.pending}', +817 f' failing: {self.failing}', +818 f' vacuous: {self.vacuous}', +819 f' stuck: {self.stuck}', +820 f' terminal: {self.terminal}', +821 f' refuted: {self.refuted}', +822 f' bounded: {self.bounded}', +823 f' execution time: {self.formatted_exec_time}', +824 ] +825 if self.bmc_depth is not None: +826 _lines.append(f' bmc depth: {self.bmc_depth}') +827 _lines.append(f'Subproofs: {self.subproofs}') +828 return _lines
+ +829 +830 +
+[docs] +831@dataclass(frozen=True) +832class APRFailureInfo(FailureInfo): +833 pending_nodes: frozenset[int] +834 failing_nodes: frozenset[int] +835 path_conditions: FrozenDict[int, str] +836 failure_reasons: FrozenDict[int, str] +837 models: FrozenDict[int, frozenset[tuple[str, str]]] +838 +839 def __init__( +840 self, +841 failing_nodes: Iterable[int], +842 pending_nodes: Iterable[int], +843 path_conditions: Mapping[int, str], +844 failure_reasons: Mapping[int, str], +845 models: Mapping[int, Iterable[tuple[str, str]]], +846 ): +847 object.__setattr__(self, 'failing_nodes', frozenset(failing_nodes)) +848 object.__setattr__(self, 'pending_nodes', frozenset(pending_nodes)) +849 object.__setattr__(self, 'path_conditions', FrozenDict(path_conditions)) +850 object.__setattr__(self, 'failure_reasons', FrozenDict(failure_reasons)) +851 object.__setattr__( +852 self, 'models', FrozenDict({node_id: frozenset(model) for (node_id, model) in models.items()}) +853 ) +854 +
+[docs] +855 @staticmethod +856 def from_proof(proof: APRProof, kcfg_explore: KCFGExplore, counterexample_info: bool = False) -> APRFailureInfo: +857 target = proof.kcfg.node(proof.target) +858 pending_nodes = {node.id for node in proof.pending} +859 failing_nodes = {node.id for node in proof.failing} +860 path_conditions = {} +861 failure_reasons = {} +862 models = {} +863 for node in proof.failing: +864 node_cterm, _ = kcfg_explore.cterm_symbolic.simplify(node.cterm) +865 target_cterm, _ = kcfg_explore.cterm_symbolic.simplify(target.cterm) +866 _, reason = kcfg_explore.implication_failure_reason(node_cterm, target_cterm) +867 path_condition = kcfg_explore.pretty_print(proof.path_constraints(node.id)) +868 failure_reasons[node.id] = reason +869 path_conditions[node.id] = path_condition +870 if counterexample_info: +871 model_subst = kcfg_explore.cterm_symbolic.get_model(node.cterm) +872 if type(model_subst) is Subst: +873 model: list[tuple[str, str]] = [] +874 for var, term in model_subst.to_dict().items(): +875 term_kast = KInner.from_dict(term) +876 term_pretty = kcfg_explore.pretty_print(term_kast) +877 model.append((var, term_pretty)) +878 models[node.id] = model +879 return APRFailureInfo( +880 failing_nodes=failing_nodes, +881 pending_nodes=pending_nodes, +882 path_conditions=path_conditions, +883 failure_reasons=failure_reasons, +884 models=models, +885 )
+ +886 +
+[docs] +887 def print(self) -> list[str]: +888 res_lines: list[str] = [] +889 +890 num_pending = len(self.pending_nodes) +891 num_failing = len(self.failing_nodes) +892 res_lines.append( +893 f'{num_pending + num_failing} Failure nodes. ({num_pending} pending and {num_failing} failing)' +894 ) +895 +896 if num_pending > 0: +897 res_lines.append('') +898 res_lines.append(f'Pending nodes: {sorted(self.pending_nodes)}') +899 +900 if num_failing > 0: +901 res_lines.append('') +902 res_lines.append('Failing nodes:') +903 for node_id in self.failing_nodes: +904 reason = self.failure_reasons[node_id] +905 path_condition = self.path_conditions[node_id] +906 res_lines.append('') +907 res_lines.append(f' Node id: {str(node_id)}') +908 +909 res_lines.append(' Failure reason:') +910 res_lines += [f' {line}' for line in reason.split('\n')] +911 +912 res_lines.append(' Path condition:') +913 res_lines += [f' {path_condition}'] +914 +915 if node_id in self.models: +916 res_lines.append(' Model:') +917 for var, term in self.models[node_id]: +918 res_lines.append(f' {var} = {term}') +919 else: +920 res_lines.append(' Failed to generate a model.') +921 +922 res_lines.append('') +923 res_lines.append('Join the Runtime Verification Discord server for support: https://discord.gg/CurfmXNtbN') +924 return res_lines
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/proof/show.html b/pyk/_modules/pyk/proof/show.html new file mode 100644 index 00000000000..dd961d45440 --- /dev/null +++ b/pyk/_modules/pyk/proof/show.html @@ -0,0 +1,243 @@ + + + + + + pyk.proof.show — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.proof.show

+  1from __future__ import annotations
+  2
+  3import logging
+  4from typing import TYPE_CHECKING
+  5
+  6from ..kcfg.show import KCFGShow, NodePrinter
+  7from ..utils import ensure_dir_path
+  8
+  9if TYPE_CHECKING:
+ 10    from collections.abc import Iterable
+ 11    from pathlib import Path
+ 12    from typing import Final
+ 13
+ 14    from graphviz import Digraph
+ 15
+ 16    from ..kcfg import KCFG
+ 17    from ..kcfg.kcfg import NodeIdLike
+ 18    from ..ktool.kprint import KPrint
+ 19    from .reachability import APRProof
+ 20
+ 21_LOGGER: Final = logging.getLogger(__name__)
+ 22
+ 23
+
+[docs] + 24class APRProofNodePrinter(NodePrinter): + 25 proof: APRProof + 26 + 27 def __init__(self, proof: APRProof, kprint: KPrint, full_printer: bool = False, minimize: bool = False): + 28 super().__init__(kprint, full_printer=full_printer, minimize=minimize) + 29 self.proof = proof + 30 +
+[docs] + 31 def node_attrs(self, kcfg: KCFG, node: KCFG.Node) -> list[str]: + 32 attrs = super().node_attrs(kcfg, node) + 33 if self.proof.is_init(node.id): + 34 attrs.append('init') + 35 if self.proof.is_target(node.id): + 36 attrs.append('target') + 37 if self.proof.is_pending(node.id): + 38 attrs.append('pending') + 39 if self.proof.is_refuted(node.id): + 40 attrs.append('refuted') + 41 if self.proof.is_terminal(node.id): + 42 attrs.append('terminal') + 43 if 'stuck' in attrs: + 44 attrs.remove('stuck') + 45 if self.proof.is_bounded(node.id): + 46 attrs.append('bounded') + 47 if 'stuck' in attrs: + 48 attrs.remove('stuck') + 49 return attrs
+
+ + 50 + 51 +
+[docs] + 52class APRProofShow: + 53 kcfg_show: KCFGShow + 54 + 55 def __init__(self, kprint: KPrint, node_printer: NodePrinter | None = None): + 56 self.kcfg_show = KCFGShow(kprint, node_printer=node_printer) + 57 +
+[docs] + 58 def pretty_segments(self, proof: APRProof, minimize: bool = True) -> Iterable[tuple[str, Iterable[str]]]: + 59 ret_lines = list(self.kcfg_show.pretty_segments(proof.kcfg, minimize=minimize)) + 60 if len(proof.pending) > 0: + 61 target_node_lines = ['', 'Target Node:'] + 62 target_node_lines += self.kcfg_show.node_printer.print_node(proof.kcfg, proof.kcfg.node(proof.target)) + 63 ret_lines.append((f'node_{proof.target}', target_node_lines)) + 64 return KCFGShow.make_unique_segments(ret_lines)
+ + 65 +
+[docs] + 66 def pretty(self, proof: APRProof, minimize: bool = True) -> Iterable[str]: + 67 return (line for _, seg_lines in self.pretty_segments(proof, minimize=minimize) for line in seg_lines)
+ + 68 +
+[docs] + 69 def show( + 70 self, + 71 proof: APRProof, + 72 nodes: Iterable[NodeIdLike] = (), + 73 node_deltas: Iterable[tuple[NodeIdLike, NodeIdLike]] = (), + 74 to_module: bool = False, + 75 minimize: bool = True, + 76 sort_collections: bool = False, + 77 omit_cells: Iterable[str] = (), + 78 ) -> list[str]: + 79 res_lines = self.kcfg_show.show( + 80 proof.kcfg, + 81 nodes=nodes, + 82 node_deltas=node_deltas, + 83 to_module=to_module, + 84 minimize=minimize, + 85 sort_collections=sort_collections, + 86 omit_cells=omit_cells, + 87 module_name=f'SUMMARY-{proof.id.upper().replace("_", "-")}', + 88 ) + 89 return res_lines
+ + 90 +
+[docs] + 91 def dot(self, proof: APRProof) -> Digraph: + 92 graph = self.kcfg_show.dot(proof.kcfg) + 93 attrs = {'class': 'target', 'style': 'solid'} + 94 for node in proof.pending: + 95 graph.edge(tail_name=node.id, head_name=proof.target, label=' ???', **attrs) + 96 for node in proof.kcfg.stuck: + 97 graph.edge(tail_name=node.id, head_name=proof.target, label=' false', **attrs) + 98 return graph
+ + 99 +
+[docs] +100 def dump(self, proof: APRProof, dump_dir: Path, dot: bool = False) -> None: +101 ensure_dir_path(dump_dir) +102 +103 proof_file = dump_dir / f'{proof.id}.json' +104 proof_file.write_text(proof.json) +105 _LOGGER.info(f'Wrote CFG file {proof.id}: {proof_file}') +106 +107 if dot: +108 proof_dot = self.dot(proof) +109 dot_file = dump_dir / f'{proof.id}.dot' +110 dot_file.write_text(proof_dot.source) +111 _LOGGER.info(f'Wrote DOT file {proof.id}: {dot_file}') +112 +113 self.kcfg_show.dump(f'{proof.id}_cfg', proof.kcfg, dump_dir, dot=False)
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/proof/tui.html b/pyk/_modules/pyk/proof/tui.html new file mode 100644 index 00000000000..bdd10667fce --- /dev/null +++ b/pyk/_modules/pyk/proof/tui.html @@ -0,0 +1,207 @@ + + + + + + pyk.proof.tui — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.proof.tui

+ 1from __future__ import annotations
+ 2
+ 3from typing import TYPE_CHECKING
+ 4
+ 5from textual.containers import Horizontal, ScrollableContainer, Vertical
+ 6from textual.widgets import Footer
+ 7
+ 8from ..kcfg.tui import GraphChunk, KCFGViewer, NodeView
+ 9from .show import APRProofShow
+10
+11if TYPE_CHECKING:
+12    from collections.abc import Callable, Iterable
+13
+14    from textual.app import ComposeResult
+15
+16    from ..kcfg.show import NodePrinter
+17    from ..kcfg.tui import KCFGElem
+18    from ..ktool.kprint import KPrint
+19    from .reachability import APRProof
+20
+21
+
+[docs] +22class APRProofBehaviorView(ScrollableContainer, can_focus=True): +23 _proof: APRProof +24 _kprint: KPrint +25 _minimize: bool +26 _node_printer: NodePrinter | None +27 _proof_nodes: Iterable[GraphChunk] +28 +29 def __init__( +30 self, +31 proof: APRProof, +32 kprint: KPrint, +33 minimize: bool = True, +34 node_printer: NodePrinter | None = None, +35 id: str = '', +36 ): +37 super().__init__(id=id) +38 self._proof = proof +39 self._kprint = kprint +40 self._minimize = minimize +41 self._node_printer = node_printer +42 self._proof_nodes = [] +43 proof_show = APRProofShow(kprint, node_printer=node_printer) +44 for lseg_id, node_lines in proof_show.pretty_segments(self._proof, minimize=self._minimize): +45 self._proof_nodes.append(GraphChunk(lseg_id, node_lines)) +46 +
+[docs] +47 def compose(self) -> ComposeResult: +48 return self._proof_nodes
+
+ +49 +50 +
+[docs] +51class APRProofViewer(KCFGViewer): +52 _proof: APRProof +53 +54 def __init__( +55 self, +56 proof: APRProof, +57 kprint: KPrint, +58 node_printer: NodePrinter | None = None, +59 custom_view: Callable[[KCFGElem], Iterable[str]] | None = None, +60 minimize: bool = True, +61 ) -> None: +62 super().__init__(proof.kcfg, kprint, node_printer=node_printer, custom_view=custom_view, minimize=minimize) +63 self._proof = proof +64 +
+[docs] +65 def on_mount(self) -> None: +66 self.query_one('#behavior', APRProofBehaviorView).focus(scroll_visible=False)
+ +67 +
+[docs] +68 def compose(self) -> ComposeResult: +69 yield Horizontal( +70 Vertical( +71 APRProofBehaviorView(self._proof, self._kprint, node_printer=self._node_printer, id='behavior'), +72 id='navigation', +73 ), +74 Vertical( +75 NodeView( +76 self._kprint, +77 custom_view=self._custom_view, +78 proof_id=self._proof.id, +79 proof_status=self._proof.status.value, +80 exec_time=self._proof.exec_time, +81 id='node-view', +82 ), +83 id='display', +84 ), +85 ) +86 yield Footer()
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/testing/plugin.html b/pyk/_modules/pyk/testing/plugin.html new file mode 100644 index 00000000000..863bbb94e3a --- /dev/null +++ b/pyk/_modules/pyk/testing/plugin.html @@ -0,0 +1,183 @@ + + + + + + pyk.testing.plugin — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.testing.plugin

+ 1from __future__ import annotations
+ 2
+ 3from pathlib import Path
+ 4from typing import TYPE_CHECKING
+ 5
+ 6import pytest
+ 7
+ 8from ..utils import BugReport, ensure_dir_path
+ 9from ._kompiler import Kompiler, UseServer
+10from ._profiler import Profiler
+11
+12if TYPE_CHECKING:
+13    from pytest import FixtureRequest, Parser, TempPathFactory
+14
+15
+
+[docs] +16def pytest_addoption(parser: Parser) -> None: +17 parser.addoption( +18 '--bug-report', +19 action='store_true', +20 default=False, +21 help='Generate bug reports', +22 ) +23 parser.addoption( +24 '--bug-report-dir', +25 type=ensure_dir_path, +26 help='Directory to store bug reports', +27 ) +28 parser.addoption( +29 '--use-server', +30 type=UseServer, +31 default=UseServer.BOTH, +32 help='KORE RPC server to use for tests', +33 )
+ +34 +35 +
+[docs] +36@pytest.fixture +37def bug_report(request: FixtureRequest, tmp_path: Path) -> BugReport | None: +38 bug_report = request.config.getoption('--bug-report') +39 if not bug_report: +40 return None +41 bug_report_dir = request.config.getoption('--bug-report-dir') +42 if not bug_report_dir: +43 bug_report_dir = tmp_path +44 br_name = request.node.name.replace('[', '/') +45 br_path = Path(bug_report_dir / br_name) +46 ensure_dir_path(br_path.parent) +47 return BugReport(br_path)
+ +48 +49 +
+[docs] +50@pytest.fixture(scope='session') +51def use_server(request: FixtureRequest) -> UseServer: +52 return request.config.getoption('--use-server')
+ +53 +54 +
+[docs] +55@pytest.fixture +56def profile(tmp_path: Path) -> Profiler: +57 return Profiler(tmp_path)
+ +58 +59 +
+[docs] +60@pytest.fixture(scope='session') +61def kompile(tmp_path_factory: TempPathFactory) -> Kompiler: +62 return Kompiler(tmp_path_factory)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_modules/pyk/utils.html b/pyk/_modules/pyk/utils.html new file mode 100644 index 00000000000..e33f779266d --- /dev/null +++ b/pyk/_modules/pyk/utils.html @@ -0,0 +1,788 @@ + + + + + + pyk.utils — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for pyk.utils

+  1from __future__ import annotations
+  2
+  3import hashlib
+  4import logging
+  5import os
+  6import shlex
+  7import string
+  8import subprocess
+  9import sys
+ 10import tarfile
+ 11import time
+ 12from collections.abc import Hashable, Mapping
+ 13from dataclasses import dataclass
+ 14from datetime import datetime
+ 15from pathlib import Path
+ 16from tempfile import NamedTemporaryFile
+ 17from typing import TYPE_CHECKING, Generic, TypeVar, cast, final, overload
+ 18
+ 19if TYPE_CHECKING:
+ 20    from collections.abc import Callable, Iterable, Iterator
+ 21    from logging import Logger
+ 22    from subprocess import CalledProcessError, CompletedProcess
+ 23    from typing import Any, Final
+ 24
+ 25    P1 = TypeVar('P1')
+ 26    P2 = TypeVar('P2')
+ 27    P3 = TypeVar('P3')
+ 28    P4 = TypeVar('P4')
+ 29    Q = TypeVar('Q')
+ 30    R1 = TypeVar('R1')
+ 31    R2 = TypeVar('R2')
+ 32    R3 = TypeVar('R3')
+ 33    R4 = TypeVar('R4')
+ 34    T = TypeVar('T')
+ 35    S = TypeVar('S')
+ 36
+ 37P = TypeVar('P')
+ 38R = TypeVar('R')
+ 39H = TypeVar('H', bound=Hashable)
+ 40K = TypeVar('K', bound=Hashable)
+ 41V = TypeVar('V')
+ 42
+ 43_LOGGER: Final = logging.getLogger(__name__)
+ 44
+ 45ROOT: Final = Path(os.path.dirname(os.path.abspath(__file__)))
+ 46
+ 47
+ 48# Based on: https://stackoverflow.com/a/2704866
+ 49# Perhaps one day: https://peps.python.org/pep-0603/
+
+[docs] + 50class FrozenDict(Mapping[K, V]): + 51 _dict: dict[K, V] + 52 _hash: int | None + 53 + 54 # TODO overload + 55 # TODO try __init__(self: FrozenDict[str, V], **kwargs: V) + 56 def __init__(self, *args: Any, **kwargs: Any): + 57 self._dict = dict(*args, **kwargs) + 58 self._hash = None + 59 + 60 def __iter__(self) -> Iterator[K]: + 61 return iter(self._dict) + 62 + 63 def __len__(self) -> int: + 64 return len(self._dict) + 65 + 66 def __getitem__(self, key: K) -> V: + 67 return self._dict[key] + 68 + 69 def __hash__(self) -> int: + 70 if self._hash is None: + 71 h = 0 + 72 for pair in self.items(): + 73 h ^= hash(pair) + 74 self._hash = h + 75 return self._hash + 76 + 77 def __str__(self) -> str: + 78 return f'FrozenDict({str(self._dict)})' + 79 + 80 def __repr__(self) -> str: + 81 return f'FrozenDict({repr(self._dict)})'
+ + 82 + 83 + 84EMPTY_FROZEN_DICT: Final[FrozenDict] = FrozenDict() + 85 + 86 +
+[docs] + 87@final + 88@dataclass(frozen=True) + 89class POSet(Generic[H]): + 90 image: FrozenDict[H, frozenset[H]] + 91 + 92 def __init__(self, relation: Iterable[tuple[H, H]]): + 93 _image = self._compute_image(relation) + 94 image: FrozenDict[H, frozenset[H]] = FrozenDict({x: frozenset(y) for x, y in _image.items()}) + 95 object.__setattr__(self, 'image', image) + 96 + 97 @staticmethod + 98 def _compute_image(relation: Iterable[tuple[H, H]]) -> dict[H, set[H]]: + 99 image: dict[H, set[H]] = {} +100 +101 for x, y in relation: +102 image.setdefault(x, set()).add(y) +103 +104 domain = set(image) +105 for k in domain: +106 for i in domain: +107 if k not in image[i]: +108 continue +109 for j in image[k]: +110 image[i].add(j) +111 +112 return image
+ +113 +114 +
+[docs] +115def check_type(x: Any, typ: type[T]) -> T: +116 if not isinstance(x, typ): +117 raise ValueError(f'Expected object of type {typ.__name__}, got: {x}') +118 return x
+ +119 +120 +
+[docs] +121def raised(f: Callable, *args: Any, **kwargs: Any) -> BaseException | None: +122 try: +123 f(*args, **kwargs) +124 except Exception as e: +125 return e +126 +127 return None
+ +128 +129 +
+[docs] +130def merge_with(f: Callable[[V, V], V], d1: Mapping[K, V], d2: Mapping[K, V]) -> dict[K, V]: +131 res = dict(d1) +132 for k, v2 in d2.items(): +133 if k in d1: +134 v1 = d1[k] +135 res[k] = f(v1, v2) +136 else: +137 res[k] = v2 +138 return res
+ +139 +140 +
+[docs] +141def not_none(x: T | None) -> T: +142 if x is None: +143 raise ValueError('Expected value other than None') +144 return x
+ +145 +146 +
+[docs] +147def filter_none(mapping: Mapping[K, V]) -> dict[K, V]: +148 return {k: v for k, v in mapping.items() if v is not None}
+ +149 +150 +151# Higher-order functions +152 +153 +
+[docs] +154class Chainable(Generic[P, R]): +155 _f: Callable[[P], R] +156 +157 def __init__(self, f: Callable[[P], R]): +158 self._f = f +159 +160 def __call__(self, p: P) -> R: +161 return self._f(p) +162 +163 def __rshift__(self, other: Callable[[R], Q]) -> Chainable[P, Q]: +164 return Chainable(lambda p: other(self(p)))
+ +165 +166 +167chain: Final[Chainable[Any, Any]] = Chainable(lambda x: x) +168 +169 +
+[docs] +170def none(x: Any) -> None: +171 pass
+ +172 +173 +
+[docs] +174def maybe(f: Callable[[P], R]) -> Callable[[P | None], R | None]: +175 def res(p: P | None) -> R | None: +176 return f(p) if p is not None else None +177 +178 return res
+ +179 +180 +181@overload +182def tuple_of() -> Callable[[tuple[()]], tuple[()]]: ... +183 +184 +185@overload +186def tuple_of( +187 f1: Callable[[P1], R1], +188 /, +189) -> Callable[[tuple[P1]], tuple[R1]]: ... +190 +191 +192@overload +193def tuple_of( +194 f1: Callable[[P1], R1], +195 f2: Callable[[P2], R2], +196 /, +197) -> Callable[[tuple[P1, P2]], tuple[R1, R2]]: ... +198 +199 +200@overload +201def tuple_of( +202 f1: Callable[[P1], R1], +203 f2: Callable[[P2], R2], +204 f3: Callable[[P3], R3], +205 /, +206) -> Callable[[tuple[P1, P2, P3]], tuple[R1, R2, R3]]: ... +207 +208 +209@overload +210def tuple_of( +211 f1: Callable[[P1], R1], +212 f2: Callable[[P2], R2], +213 f3: Callable[[P3], R3], +214 f4: Callable[[P4], R4], +215 /, +216) -> Callable[[tuple[P1, P2, P3, P4]], tuple[R1, R2, R3, R4]]: ... +217 +218 +
+[docs] +219def tuple_of(*args: Callable) -> Callable: +220 def res(t: tuple) -> tuple: +221 return tuple(f(x) for f, x in zip(args, t, strict=True)) +222 +223 return res
+ +224 +225 +
+[docs] +226def case( +227 cases: Iterable[tuple[Callable[[P], bool], Callable[[P], R]]], +228 default: Callable[[P], R] | None = None, +229) -> Callable[[P], R]: +230 def res(p: P) -> R: +231 for cond, then in cases: # noqa: B905 +232 if cond(p): +233 return then(p) +234 +235 if default is not None: +236 return default(p) +237 +238 raise ValueError(f'No match found for: {p}') +239 +240 return res
+ +241 +242 +243# Iterables +244 +245 +
+[docs] +246def find_common_items(l1: Iterable[T], l2: Iterable[T]) -> tuple[list[T], list[T], list[T]]: +247 common = [] +248 for i in l1: +249 if i in l2: +250 common.append(i) +251 new_l1 = [] +252 new_l2 = [] +253 for i in l1: +254 if i not in common: +255 new_l1.append(i) +256 for i in l2: +257 if i not in common: +258 new_l2.append(i) +259 return (common, new_l1, new_l2)
+ +260 +261 +
+[docs] +262def intersperse(iterable: Iterable[T], delimiter: T) -> Iterator[T]: +263 it = iter(iterable) +264 +265 try: +266 yield next(it) +267 except StopIteration: +268 return +269 +270 for x in it: +271 yield delimiter +272 yield x
+ +273 +274 +
+[docs] +275def unique(iterable: Iterable[H]) -> Iterator[H]: +276 elems = set() +277 for elem in iterable: +278 if elem in elems: +279 continue +280 else: +281 elems.add(elem) +282 yield elem
+ +283 +284 +
+[docs] +285def single(iterable: Iterable[T]) -> T: +286 it = iter(iterable) +287 sentinel = object() +288 +289 fst = next(it, sentinel) +290 if fst is sentinel: +291 raise ValueError('Expected a single element, found none') +292 fst = cast('T', fst) +293 +294 snd = next(it, sentinel) +295 if snd is not sentinel: +296 raise ValueError('Expected a single element, found more', fst, snd) +297 +298 return fst
+ +299 +300 +
+[docs] +301def some(iterable: Iterable[T]) -> T | None: +302 return next(iter(iterable), None)
+ +303 +304 +
+[docs] +305def repeat_last(iterable: Iterable[T]) -> Iterator[T]: +306 it = iter(iterable) +307 last: T | None = None +308 while True: +309 try: +310 last = next(it) +311 yield last +312 +313 except StopIteration: +314 if last is None: +315 return +316 +317 yield last
+ +318 +319 +
+[docs] +320def nonempty_str(x: Any) -> str: +321 if x is None: +322 raise ValueError('Expected nonempty string, found: null.') +323 if type(x) is not str: +324 raise TypeError('Expected nonempty string, found: {type(x)}') +325 if x == '': +326 raise ValueError("Expected nonempty string, found: ''") +327 return x
+ +328 +329 +
+[docs] +330def add_indent(indent: str, lines: Iterable[str]) -> list[str]: +331 return [indent + line for line in lines]
+ +332 +333 +
+[docs] +334def is_hexstring(x: str) -> bool: +335 return all(c in string.hexdigits for c in x)
+ +336 +337 +338# Hashes +339 +340 +
+[docs] +341def hash_str(x: Any) -> str: +342 hash = hashlib.sha256() +343 hash.update(str(x).encode('utf-8')) +344 return str(hash.hexdigest())
+ +345 +346 +
+[docs] +347def hash_file(file: Path, chunk_num_blocks: int = 128) -> str: +348 h = hashlib.sha256() +349 with open(str(file), 'rb') as f: +350 while chunk := f.read(chunk_num_blocks * h.block_size): +351 h.update(chunk) +352 return str(h.hexdigest())
+ +353 +354 +
+[docs] +355def is_hash(x: Any) -> bool: +356 # NB! currently only sha256 in hexdec form is detected +357 # 2b9e b7c5 441e 9f7e 97f9 a4e5 fc04 a0f7 9f62 c8e9 605a ad1e 02db e8de 3c21 0422 +358 # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 +359 return type(x) is str and len(x) == 64 and is_hexstring(x)
+ +360 +361 +
+[docs] +362def shorten_hash(h: str, left_chars: int = 6, right_chars: int = 6) -> str: +363 left = h[0:left_chars] if left_chars > 0 else '' +364 right = h[-right_chars:] if right_chars > 0 else '' +365 return left + '..' + right
+ +366 +367 +
+[docs] +368def shorten_hashes(value: Any, left_chars: int = 6, right_chars: int = 6) -> Any: +369 result: Any = None +370 if is_hash(value): +371 result = shorten_hash(value, left_chars, right_chars) +372 elif type(value) is tuple: +373 result = tuple([shorten_hashes(item) for item in value]) +374 elif type(value) is list: +375 result = [shorten_hashes(v) for v in value] +376 elif type(value) is dict: +377 result = {} +378 for k, v in value.items(): +379 result[shorten_hashes(k)] = shorten_hashes(v) +380 elif type(value) is set: +381 result = set() +382 for item in value: +383 result.add(shorten_hashes(item)) +384 else: +385 result = value +386 return result
+ +387 +388 +
+[docs] +389def deconstruct_short_hash(h: str) -> tuple[str, str]: +390 x = h.lower() +391 if is_hash(x): +392 return (x, x) +393 (l, sep, r) = x.partition('..') +394 if sep == '..' and is_hexstring(l) and is_hexstring(r): +395 return (l, r) +396 raise ValueError(f'Bad short hash: {h}')
+ +397 +398 +
+[docs] +399def compare_short_hashes(lhs: str, rhs: str) -> bool: +400 (l0, l1) = deconstruct_short_hash(lhs) +401 (r0, r1) = deconstruct_short_hash(rhs) +402 return (l0.startswith(r0) or r0.startswith(l0)) and (l1.endswith(r1) or r1.endswith(l1))
+ +403 +404 +
+[docs] +405def run_process( +406 args: str | Iterable[str], +407 *, +408 check: bool = True, +409 input: str | None = None, +410 pipe_stdout: bool = True, +411 pipe_stderr: bool = False, +412 cwd: str | Path | None = None, +413 env: Mapping[str, str] | None = None, +414 logger: Logger | None = None, +415 exec_process: bool = False, +416) -> CompletedProcess: +417 if cwd is not None: +418 cwd = Path(cwd) +419 check_dir_path(cwd) +420 +421 if type(args) is str: +422 command = args +423 else: +424 args = tuple(args) +425 command = shlex.join(args) +426 +427 if not logger: +428 logger = _LOGGER +429 +430 stdout = subprocess.PIPE if pipe_stdout else None +431 stderr = subprocess.PIPE if pipe_stderr else None +432 +433 logger.info(f'Running: {command}') +434 +435 if exec_process: +436 sys.stdout.flush() +437 sys.stderr.flush() +438 if type(args) is str: +439 args = shlex.split(args) +440 argslist = list(args) +441 os.execvp(argslist[0], argslist) +442 +443 start_time = time.time() +444 +445 res = subprocess.run(args, input=input, cwd=cwd, env=env, stdout=stdout, stderr=stderr, text=True) +446 +447 delta_time = time.time() - start_time +448 logger.info(f'Completed in {delta_time:.3f}s with status {res.returncode}: {command}') +449 +450 if check: +451 res.check_returncode() +452 +453 return res
+ +454 +455 +
+[docs] +456def exit_with_process_error(err: CalledProcessError) -> None: +457 sys.stderr.write(f'[ERROR] Running process failed with returncode {err.returncode}:\n {shlex.join(err.cmd)}\n') +458 sys.stderr.flush() +459 sys.exit(err.returncode)
+ +460 +461 +
+[docs] +462def gen_file_timestamp(comment: str = '//') -> str: +463 return comment + ' This file generated by: ' + sys.argv[0] + '\n' + comment + ' ' + str(datetime.now()) + '\n'
+ +464 +465 +
+[docs] +466def check_dir_path(path: Path) -> None: +467 path = path.resolve() +468 if not path.exists(): +469 raise ValueError(f'Directory does not exist: {path}') +470 if not path.is_dir(): +471 raise ValueError(f'Path is not a directory: {path}')
+ +472 +473 +
+[docs] +474def check_file_path(path: Path) -> None: +475 path = path.resolve() +476 if not path.exists(): +477 raise ValueError(f'File does not exist: {path}') +478 if not path.is_file(): +479 raise ValueError(f'Path is not a file: {path}')
+ +480 +481 +
+[docs] +482def check_absolute_path(path: Path) -> None: +483 if not path.is_absolute(): +484 raise ValueError(f'Path is not absolute: {path}')
+ +485 +486 +
+[docs] +487def check_relative_path(path: Path) -> None: +488 if path.is_absolute(): +489 raise ValueError(f'Path is not relative: {path}')
+ +490 +491 +
+[docs] +492def ensure_dir_path(path: str | Path) -> Path: +493 path = Path(path) +494 if not path.exists(): +495 _LOGGER.info(f'Making directory: {path}') +496 path.mkdir(parents=True, exist_ok=True) +497 else: +498 check_dir_path(path) +499 return path
+ +500 +501 +502# Implementation because of outdated Python versions: https://github.com/python/cpython/blob/1de4395f62bb140563761ef5cbdf46accef3c550/Lib/pathlib.py#L554 +
+[docs] +503def is_relative_to(_self: Path, other: Path) -> bool: +504 return _self == other or other in _self.parents
+ +505 +506 +
+[docs] +507def abs_or_rel_to(path: Path, base: Path) -> Path: +508 if path.is_absolute(): +509 return path +510 return base / path
+ +511 +512 +
+[docs] +513class BugReport: +514 _bug_report: Path +515 _command_id: int +516 _defn_id: int +517 _file_remap: dict[str, str] +518 +519 def __init__(self, bug_report: Path) -> None: +520 self._bug_report = bug_report.with_suffix('.tar') +521 self._command_id = 0 +522 self._defn_id = 0 +523 self._file_remap = {} +524 if self._bug_report.exists(): +525 _LOGGER.warning(f'Bug report exists, removing: {self._bug_report}') +526 self._bug_report.unlink() +527 +
+[docs] +528 def add_file(self, finput: Path, arcname: Path) -> None: +529 if str(finput) not in self._file_remap: +530 self._file_remap[str(finput)] = str(arcname) +531 with tarfile.open(self._bug_report, 'a') as tar: +532 tar.add(finput, arcname=arcname) +533 _LOGGER.info(f'Added file to bug report {self._bug_report}:{arcname}: {finput}')
+ +534 +
+[docs] +535 def add_file_contents(self, input: str, arcname: Path) -> None: +536 with NamedTemporaryFile('w') as ntf: +537 ntf.write(input) +538 ntf.flush() +539 self.add_file(Path(ntf.name), arcname)
+ +540 +
+[docs] +541 def add_command(self, args: Iterable[str]) -> None: +542 def _remap_arg(_a: str) -> str: +543 if _a in self._file_remap: +544 return self._file_remap[_a] +545 _a_path = Path(_a) +546 for _f in self._file_remap: +547 _f_path = Path(_f) +548 if is_relative_to(_a_path, _f_path): +549 return str(Path(self._file_remap[_f]) / _a_path.relative_to(_f_path)) +550 return _a +551 +552 remapped_args = [_remap_arg(a) for a in args] +553 arcname = Path(f'commands/{self._command_id:03}.sh') +554 shebang = '#!/usr/bin/env bash\nset -euxo pipefail\n' +555 self.add_file_contents(shebang + ' '.join(remapped_args) + '\n', arcname) +556 self._command_id += 1
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/_sources/api/modules.rst.txt b/pyk/_sources/api/modules.rst.txt new file mode 100644 index 00000000000..e727e2e97e6 --- /dev/null +++ b/pyk/_sources/api/modules.rst.txt @@ -0,0 +1,7 @@ +pyk +=== + +.. toctree:: + :maxdepth: 4 + + pyk diff --git a/pyk/_sources/api/pyk.coverage.rst.txt b/pyk/_sources/api/pyk.coverage.rst.txt new file mode 100644 index 00000000000..e6f12eb5f8d --- /dev/null +++ b/pyk/_sources/api/pyk.coverage.rst.txt @@ -0,0 +1,7 @@ +pyk.coverage module +=================== + +.. automodule:: pyk.coverage + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.cterm.cterm.rst.txt b/pyk/_sources/api/pyk.cterm.cterm.rst.txt new file mode 100644 index 00000000000..731bf24559c --- /dev/null +++ b/pyk/_sources/api/pyk.cterm.cterm.rst.txt @@ -0,0 +1,7 @@ +pyk.cterm.cterm module +====================== + +.. automodule:: pyk.cterm.cterm + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.cterm.rst.txt b/pyk/_sources/api/pyk.cterm.rst.txt new file mode 100644 index 00000000000..7291410bce7 --- /dev/null +++ b/pyk/_sources/api/pyk.cterm.rst.txt @@ -0,0 +1,16 @@ +pyk.cterm package +================= + +.. automodule:: pyk.cterm + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.cterm.cterm + pyk.cterm.symbolic diff --git a/pyk/_sources/api/pyk.cterm.symbolic.rst.txt b/pyk/_sources/api/pyk.cterm.symbolic.rst.txt new file mode 100644 index 00000000000..9fb05271bda --- /dev/null +++ b/pyk/_sources/api/pyk.cterm.symbolic.rst.txt @@ -0,0 +1,7 @@ +pyk.cterm.symbolic module +========================= + +.. automodule:: pyk.cterm.symbolic + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.dequote.rst.txt b/pyk/_sources/api/pyk.dequote.rst.txt new file mode 100644 index 00000000000..219814217f3 --- /dev/null +++ b/pyk/_sources/api/pyk.dequote.rst.txt @@ -0,0 +1,7 @@ +pyk.dequote module +================== + +.. automodule:: pyk.dequote + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.att.rst.txt b/pyk/_sources/api/pyk.kast.att.rst.txt new file mode 100644 index 00000000000..10f1f9aa8b9 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.att.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.att module +=================== + +.. automodule:: pyk.kast.att + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.color.rst.txt b/pyk/_sources/api/pyk.kast.color.rst.txt new file mode 100644 index 00000000000..f26198ed5ce --- /dev/null +++ b/pyk/_sources/api/pyk.kast.color.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.color module +===================== + +.. automodule:: pyk.kast.color + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.formatter.rst.txt b/pyk/_sources/api/pyk.kast.formatter.rst.txt new file mode 100644 index 00000000000..690c716cc16 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.formatter.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.formatter module +========================= + +.. automodule:: pyk.kast.formatter + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.inner.rst.txt b/pyk/_sources/api/pyk.kast.inner.rst.txt new file mode 100644 index 00000000000..aab0b2bba87 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.inner.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.inner module +===================== + +.. automodule:: pyk.kast.inner + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.kast.rst.txt b/pyk/_sources/api/pyk.kast.kast.rst.txt new file mode 100644 index 00000000000..00e9dd22d18 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.kast.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.kast module +==================== + +.. automodule:: pyk.kast.kast + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.lexer.rst.txt b/pyk/_sources/api/pyk.kast.lexer.rst.txt new file mode 100644 index 00000000000..70157b5c785 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.lexer.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.lexer module +===================== + +.. automodule:: pyk.kast.lexer + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.manip.rst.txt b/pyk/_sources/api/pyk.kast.manip.rst.txt new file mode 100644 index 00000000000..551a11a01fe --- /dev/null +++ b/pyk/_sources/api/pyk.kast.manip.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.manip module +===================== + +.. automodule:: pyk.kast.manip + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.markdown.rst.txt b/pyk/_sources/api/pyk.kast.markdown.rst.txt new file mode 100644 index 00000000000..7126277a7f8 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.markdown.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.markdown module +======================== + +.. automodule:: pyk.kast.markdown + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.outer.rst.txt b/pyk/_sources/api/pyk.kast.outer.rst.txt new file mode 100644 index 00000000000..34fc8e653f3 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.outer.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.outer module +===================== + +.. automodule:: pyk.kast.outer + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.outer_lexer.rst.txt b/pyk/_sources/api/pyk.kast.outer_lexer.rst.txt new file mode 100644 index 00000000000..14625abce5a --- /dev/null +++ b/pyk/_sources/api/pyk.kast.outer_lexer.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.outer\_lexer module +============================ + +.. automodule:: pyk.kast.outer_lexer + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.outer_parser.rst.txt b/pyk/_sources/api/pyk.kast.outer_parser.rst.txt new file mode 100644 index 00000000000..bf0ee150db8 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.outer_parser.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.outer\_parser module +============================= + +.. automodule:: pyk.kast.outer_parser + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.outer_syntax.rst.txt b/pyk/_sources/api/pyk.kast.outer_syntax.rst.txt new file mode 100644 index 00000000000..2566aea3953 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.outer_syntax.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.outer\_syntax module +============================= + +.. automodule:: pyk.kast.outer_syntax + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.parser.rst.txt b/pyk/_sources/api/pyk.kast.parser.rst.txt new file mode 100644 index 00000000000..46dd70ed074 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.parser.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.parser module +====================== + +.. automodule:: pyk.kast.parser + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.pretty.rst.txt b/pyk/_sources/api/pyk.kast.pretty.rst.txt new file mode 100644 index 00000000000..6e520450980 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.pretty.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.pretty module +====================== + +.. automodule:: pyk.kast.pretty + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.rewrite.rst.txt b/pyk/_sources/api/pyk.kast.rewrite.rst.txt new file mode 100644 index 00000000000..2fa7c1cd3f6 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.rewrite.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.rewrite module +======================= + +.. automodule:: pyk.kast.rewrite + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kast.rst.txt b/pyk/_sources/api/pyk.kast.rst.txt new file mode 100644 index 00000000000..c215d8768bb --- /dev/null +++ b/pyk/_sources/api/pyk.kast.rst.txt @@ -0,0 +1,30 @@ +pyk.kast package +================ + +.. automodule:: pyk.kast + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kast.att + pyk.kast.color + pyk.kast.formatter + pyk.kast.inner + pyk.kast.kast + pyk.kast.lexer + pyk.kast.manip + pyk.kast.markdown + pyk.kast.outer + pyk.kast.outer_lexer + pyk.kast.outer_parser + pyk.kast.outer_syntax + pyk.kast.parser + pyk.kast.pretty + pyk.kast.rewrite + pyk.kast.utils diff --git a/pyk/_sources/api/pyk.kast.utils.rst.txt b/pyk/_sources/api/pyk.kast.utils.rst.txt new file mode 100644 index 00000000000..6dc4febf240 --- /dev/null +++ b/pyk/_sources/api/pyk.kast.utils.rst.txt @@ -0,0 +1,7 @@ +pyk.kast.utils module +===================== + +.. automodule:: pyk.kast.utils + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kbuild.config.rst.txt b/pyk/_sources/api/pyk.kbuild.config.rst.txt new file mode 100644 index 00000000000..91c648a7bd0 --- /dev/null +++ b/pyk/_sources/api/pyk.kbuild.config.rst.txt @@ -0,0 +1,7 @@ +pyk.kbuild.config module +======================== + +.. automodule:: pyk.kbuild.config + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kbuild.kbuild.rst.txt b/pyk/_sources/api/pyk.kbuild.kbuild.rst.txt new file mode 100644 index 00000000000..31a96259502 --- /dev/null +++ b/pyk/_sources/api/pyk.kbuild.kbuild.rst.txt @@ -0,0 +1,7 @@ +pyk.kbuild.kbuild module +======================== + +.. automodule:: pyk.kbuild.kbuild + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kbuild.project.rst.txt b/pyk/_sources/api/pyk.kbuild.project.rst.txt new file mode 100644 index 00000000000..48e1ed372be --- /dev/null +++ b/pyk/_sources/api/pyk.kbuild.project.rst.txt @@ -0,0 +1,7 @@ +pyk.kbuild.project module +========================= + +.. automodule:: pyk.kbuild.project + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kbuild.rst.txt b/pyk/_sources/api/pyk.kbuild.rst.txt new file mode 100644 index 00000000000..99bcfa60b2a --- /dev/null +++ b/pyk/_sources/api/pyk.kbuild.rst.txt @@ -0,0 +1,18 @@ +pyk.kbuild package +================== + +.. automodule:: pyk.kbuild + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kbuild.config + pyk.kbuild.kbuild + pyk.kbuild.project + pyk.kbuild.utils diff --git a/pyk/_sources/api/pyk.kbuild.utils.rst.txt b/pyk/_sources/api/pyk.kbuild.utils.rst.txt new file mode 100644 index 00000000000..d54121dfaf1 --- /dev/null +++ b/pyk/_sources/api/pyk.kbuild.utils.rst.txt @@ -0,0 +1,7 @@ +pyk.kbuild.utils module +======================= + +.. automodule:: pyk.kbuild.utils + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.exploration.rst.txt b/pyk/_sources/api/pyk.kcfg.exploration.rst.txt new file mode 100644 index 00000000000..5f5f4d50c86 --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.exploration.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.exploration module +=========================== + +.. automodule:: pyk.kcfg.exploration + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.explore.rst.txt b/pyk/_sources/api/pyk.kcfg.explore.rst.txt new file mode 100644 index 00000000000..1c5c5b9ca2f --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.explore.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.explore module +======================= + +.. automodule:: pyk.kcfg.explore + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.kcfg.rst.txt b/pyk/_sources/api/pyk.kcfg.kcfg.rst.txt new file mode 100644 index 00000000000..4b4c87b5fbb --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.kcfg.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.kcfg module +==================== + +.. automodule:: pyk.kcfg.kcfg + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.rst.txt b/pyk/_sources/api/pyk.kcfg.rst.txt new file mode 100644 index 00000000000..223bdebe522 --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.rst.txt @@ -0,0 +1,21 @@ +pyk.kcfg package +================ + +.. automodule:: pyk.kcfg + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kcfg.exploration + pyk.kcfg.explore + pyk.kcfg.kcfg + pyk.kcfg.semantics + pyk.kcfg.show + pyk.kcfg.store + pyk.kcfg.tui diff --git a/pyk/_sources/api/pyk.kcfg.semantics.rst.txt b/pyk/_sources/api/pyk.kcfg.semantics.rst.txt new file mode 100644 index 00000000000..baa1b1cb7f6 --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.semantics.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.semantics module +========================= + +.. automodule:: pyk.kcfg.semantics + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.show.rst.txt b/pyk/_sources/api/pyk.kcfg.show.rst.txt new file mode 100644 index 00000000000..d06b0936fbf --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.show.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.show module +==================== + +.. automodule:: pyk.kcfg.show + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.store.rst.txt b/pyk/_sources/api/pyk.kcfg.store.rst.txt new file mode 100644 index 00000000000..99b591c378b --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.store.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.store module +===================== + +.. automodule:: pyk.kcfg.store + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcfg.tui.rst.txt b/pyk/_sources/api/pyk.kcfg.tui.rst.txt new file mode 100644 index 00000000000..8cefe671bd5 --- /dev/null +++ b/pyk/_sources/api/pyk.kcfg.tui.rst.txt @@ -0,0 +1,7 @@ +pyk.kcfg.tui module +=================== + +.. automodule:: pyk.kcfg.tui + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kcovr.rst.txt b/pyk/_sources/api/pyk.kcovr.rst.txt new file mode 100644 index 00000000000..41af42d2e83 --- /dev/null +++ b/pyk/_sources/api/pyk.kcovr.rst.txt @@ -0,0 +1,7 @@ +pyk.kcovr module +================ + +.. automodule:: pyk.kcovr + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kdist.api.rst.txt b/pyk/_sources/api/pyk.kdist.api.rst.txt new file mode 100644 index 00000000000..fe283c0f4ef --- /dev/null +++ b/pyk/_sources/api/pyk.kdist.api.rst.txt @@ -0,0 +1,7 @@ +pyk.kdist.api module +==================== + +.. automodule:: pyk.kdist.api + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kdist.rst.txt b/pyk/_sources/api/pyk.kdist.rst.txt new file mode 100644 index 00000000000..b5ddaf70eef --- /dev/null +++ b/pyk/_sources/api/pyk.kdist.rst.txt @@ -0,0 +1,16 @@ +pyk.kdist package +================= + +.. automodule:: pyk.kdist + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kdist.api + pyk.kdist.utils diff --git a/pyk/_sources/api/pyk.kdist.utils.rst.txt b/pyk/_sources/api/pyk.kdist.utils.rst.txt new file mode 100644 index 00000000000..a39e63139b8 --- /dev/null +++ b/pyk/_sources/api/pyk.kdist.utils.rst.txt @@ -0,0 +1,7 @@ +pyk.kdist.utils module +====================== + +.. automodule:: pyk.kdist.utils + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.ast.rst.txt b/pyk/_sources/api/pyk.kllvm.ast.rst.txt new file mode 100644 index 00000000000..9d40238c850 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.ast.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.ast module +==================== + +.. automodule:: pyk.kllvm.ast + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.compiler.rst.txt b/pyk/_sources/api/pyk.kllvm.compiler.rst.txt new file mode 100644 index 00000000000..f6071320fd8 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.compiler.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.compiler module +========================= + +.. automodule:: pyk.kllvm.compiler + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.convert.rst.txt b/pyk/_sources/api/pyk.kllvm.convert.rst.txt new file mode 100644 index 00000000000..d59c2f7029d --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.convert.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.convert module +======================== + +.. automodule:: pyk.kllvm.convert + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.hints.prooftrace.rst.txt b/pyk/_sources/api/pyk.kllvm.hints.prooftrace.rst.txt new file mode 100644 index 00000000000..b061b4e19b3 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.hints.prooftrace.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.hints.prooftrace module +================================= + +.. automodule:: pyk.kllvm.hints.prooftrace + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.hints.rst.txt b/pyk/_sources/api/pyk.kllvm.hints.rst.txt new file mode 100644 index 00000000000..7466db95bb5 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.hints.rst.txt @@ -0,0 +1,15 @@ +pyk.kllvm.hints package +======================= + +.. automodule:: pyk.kllvm.hints + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kllvm.hints.prooftrace diff --git a/pyk/_sources/api/pyk.kllvm.importer.rst.txt b/pyk/_sources/api/pyk.kllvm.importer.rst.txt new file mode 100644 index 00000000000..26a7dc42f46 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.importer.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.importer module +========================= + +.. automodule:: pyk.kllvm.importer + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.load.rst.txt b/pyk/_sources/api/pyk.kllvm.load.rst.txt new file mode 100644 index 00000000000..0c0127600c8 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.load.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.load module +===================== + +.. automodule:: pyk.kllvm.load + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.load_static.rst.txt b/pyk/_sources/api/pyk.kllvm.load_static.rst.txt new file mode 100644 index 00000000000..a22597334bd --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.load_static.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.load\_static module +============================= + +.. automodule:: pyk.kllvm.load_static + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.parser.rst.txt b/pyk/_sources/api/pyk.kllvm.parser.rst.txt new file mode 100644 index 00000000000..31c1f4f2d73 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.parser.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.parser module +======================= + +.. automodule:: pyk.kllvm.parser + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.rst.txt b/pyk/_sources/api/pyk.kllvm.rst.txt new file mode 100644 index 00000000000..e36a045e0fa --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.rst.txt @@ -0,0 +1,31 @@ +pyk.kllvm package +================= + +.. automodule:: pyk.kllvm + :members: + :undoc-members: + :show-inheritance: + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + pyk.kllvm.hints + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kllvm.ast + pyk.kllvm.compiler + pyk.kllvm.convert + pyk.kllvm.importer + pyk.kllvm.load + pyk.kllvm.load_static + pyk.kllvm.parser + pyk.kllvm.runtime + pyk.kllvm.utils diff --git a/pyk/_sources/api/pyk.kllvm.runtime.rst.txt b/pyk/_sources/api/pyk.kllvm.runtime.rst.txt new file mode 100644 index 00000000000..4f810b2e220 --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.runtime.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.runtime module +======================== + +.. automodule:: pyk.kllvm.runtime + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kllvm.utils.rst.txt b/pyk/_sources/api/pyk.kllvm.utils.rst.txt new file mode 100644 index 00000000000..d7b82fc143a --- /dev/null +++ b/pyk/_sources/api/pyk.kllvm.utils.rst.txt @@ -0,0 +1,7 @@ +pyk.kllvm.utils module +====================== + +.. automodule:: pyk.kllvm.utils + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.konvert.rst.txt b/pyk/_sources/api/pyk.konvert.rst.txt new file mode 100644 index 00000000000..f3ec1f33014 --- /dev/null +++ b/pyk/_sources/api/pyk.konvert.rst.txt @@ -0,0 +1,7 @@ +pyk.konvert package +=================== + +.. automodule:: pyk.konvert + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.kompiled.rst.txt b/pyk/_sources/api/pyk.kore.kompiled.rst.txt new file mode 100644 index 00000000000..0cfcf395d16 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.kompiled.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.kompiled module +======================== + +.. automodule:: pyk.kore.kompiled + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.lexer.rst.txt b/pyk/_sources/api/pyk.kore.lexer.rst.txt new file mode 100644 index 00000000000..52c7d18965d --- /dev/null +++ b/pyk/_sources/api/pyk.kore.lexer.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.lexer module +===================== + +.. automodule:: pyk.kore.lexer + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.manip.rst.txt b/pyk/_sources/api/pyk.kore.manip.rst.txt new file mode 100644 index 00000000000..7be74c43cf4 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.manip.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.manip module +===================== + +.. automodule:: pyk.kore.manip + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.match.rst.txt b/pyk/_sources/api/pyk.kore.match.rst.txt new file mode 100644 index 00000000000..d9990385bf6 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.match.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.match module +===================== + +.. automodule:: pyk.kore.match + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.parser.rst.txt b/pyk/_sources/api/pyk.kore.parser.rst.txt new file mode 100644 index 00000000000..86c138813f9 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.parser.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.parser module +====================== + +.. automodule:: pyk.kore.parser + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.pool.rst.txt b/pyk/_sources/api/pyk.kore.pool.rst.txt new file mode 100644 index 00000000000..ae3e738076d --- /dev/null +++ b/pyk/_sources/api/pyk.kore.pool.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.pool module +==================== + +.. automodule:: pyk.kore.pool + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.prelude.rst.txt b/pyk/_sources/api/pyk.kore.prelude.rst.txt new file mode 100644 index 00000000000..145900acd9b --- /dev/null +++ b/pyk/_sources/api/pyk.kore.prelude.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.prelude module +======================= + +.. automodule:: pyk.kore.prelude + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.rpc.rst.txt b/pyk/_sources/api/pyk.kore.rpc.rst.txt new file mode 100644 index 00000000000..12bba66893f --- /dev/null +++ b/pyk/_sources/api/pyk.kore.rpc.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.rpc module +=================== + +.. automodule:: pyk.kore.rpc + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.rst.txt b/pyk/_sources/api/pyk.kore.rst.txt new file mode 100644 index 00000000000..b5f74e4d896 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.rst.txt @@ -0,0 +1,24 @@ +pyk.kore package +================ + +.. automodule:: pyk.kore + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kore.kompiled + pyk.kore.lexer + pyk.kore.manip + pyk.kore.match + pyk.kore.parser + pyk.kore.pool + pyk.kore.prelude + pyk.kore.rpc + pyk.kore.syntax + pyk.kore.tools diff --git a/pyk/_sources/api/pyk.kore.syntax.rst.txt b/pyk/_sources/api/pyk.kore.syntax.rst.txt new file mode 100644 index 00000000000..16b997c93c1 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.syntax.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.syntax module +====================== + +.. automodule:: pyk.kore.syntax + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore.tools.rst.txt b/pyk/_sources/api/pyk.kore.tools.rst.txt new file mode 100644 index 00000000000..ee01c338556 --- /dev/null +++ b/pyk/_sources/api/pyk.kore.tools.rst.txt @@ -0,0 +1,7 @@ +pyk.kore.tools module +===================== + +.. automodule:: pyk.kore.tools + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore_exec_covr.kore_exec_covr.rst.txt b/pyk/_sources/api/pyk.kore_exec_covr.kore_exec_covr.rst.txt new file mode 100644 index 00000000000..799a41e4ec1 --- /dev/null +++ b/pyk/_sources/api/pyk.kore_exec_covr.kore_exec_covr.rst.txt @@ -0,0 +1,7 @@ +pyk.kore\_exec\_covr.kore\_exec\_covr module +============================================ + +.. automodule:: pyk.kore_exec_covr.kore_exec_covr + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.kore_exec_covr.rst.txt b/pyk/_sources/api/pyk.kore_exec_covr.rst.txt new file mode 100644 index 00000000000..bcf8a9d7698 --- /dev/null +++ b/pyk/_sources/api/pyk.kore_exec_covr.rst.txt @@ -0,0 +1,15 @@ +pyk.kore\_exec\_covr package +============================ + +.. automodule:: pyk.kore_exec_covr + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.kore_exec_covr.kore_exec_covr diff --git a/pyk/_sources/api/pyk.krepl.repl.rst.txt b/pyk/_sources/api/pyk.krepl.repl.rst.txt new file mode 100644 index 00000000000..cb90b48612c --- /dev/null +++ b/pyk/_sources/api/pyk.krepl.repl.rst.txt @@ -0,0 +1,7 @@ +pyk.krepl.repl module +===================== + +.. automodule:: pyk.krepl.repl + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.krepl.rst.txt b/pyk/_sources/api/pyk.krepl.rst.txt new file mode 100644 index 00000000000..a03344a4cda --- /dev/null +++ b/pyk/_sources/api/pyk.krepl.rst.txt @@ -0,0 +1,15 @@ +pyk.krepl package +================= + +.. automodule:: pyk.krepl + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.krepl.repl diff --git a/pyk/_sources/api/pyk.ktool.claim_index.rst.txt b/pyk/_sources/api/pyk.ktool.claim_index.rst.txt new file mode 100644 index 00000000000..a4c0ff1ad38 --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.claim_index.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.claim\_index module +============================= + +.. automodule:: pyk.ktool.claim_index + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.kfuzz.rst.txt b/pyk/_sources/api/pyk.ktool.kfuzz.rst.txt new file mode 100644 index 00000000000..6e602ec46f0 --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.kfuzz.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.kfuzz module +====================== + +.. automodule:: pyk.ktool.kfuzz + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.kompile.rst.txt b/pyk/_sources/api/pyk.ktool.kompile.rst.txt new file mode 100644 index 00000000000..bf4e5653a7e --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.kompile.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.kompile module +======================== + +.. automodule:: pyk.ktool.kompile + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.kprint.rst.txt b/pyk/_sources/api/pyk.ktool.kprint.rst.txt new file mode 100644 index 00000000000..737151764fb --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.kprint.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.kprint module +======================= + +.. automodule:: pyk.ktool.kprint + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.kprove.rst.txt b/pyk/_sources/api/pyk.ktool.kprove.rst.txt new file mode 100644 index 00000000000..4379d5b9a3d --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.kprove.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.kprove module +======================= + +.. automodule:: pyk.ktool.kprove + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.krun.rst.txt b/pyk/_sources/api/pyk.ktool.krun.rst.txt new file mode 100644 index 00000000000..45fbf59b405 --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.krun.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.krun module +===================== + +.. automodule:: pyk.ktool.krun + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.prove_rpc.rst.txt b/pyk/_sources/api/pyk.ktool.prove_rpc.rst.txt new file mode 100644 index 00000000000..b030a136561 --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.prove_rpc.rst.txt @@ -0,0 +1,7 @@ +pyk.ktool.prove\_rpc module +=========================== + +.. automodule:: pyk.ktool.prove_rpc + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.ktool.rst.txt b/pyk/_sources/api/pyk.ktool.rst.txt new file mode 100644 index 00000000000..c0258adbc50 --- /dev/null +++ b/pyk/_sources/api/pyk.ktool.rst.txt @@ -0,0 +1,21 @@ +pyk.ktool package +================= + +.. automodule:: pyk.ktool + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.ktool.claim_index + pyk.ktool.kfuzz + pyk.ktool.kompile + pyk.ktool.kprint + pyk.ktool.kprove + pyk.ktool.krun + pyk.ktool.prove_rpc diff --git a/pyk/_sources/api/pyk.prelude.bytes.rst.txt b/pyk/_sources/api/pyk.prelude.bytes.rst.txt new file mode 100644 index 00000000000..61300d8e0ec --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.bytes.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.bytes module +======================== + +.. automodule:: pyk.prelude.bytes + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.collections.rst.txt b/pyk/_sources/api/pyk.prelude.collections.rst.txt new file mode 100644 index 00000000000..d49515e6811 --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.collections.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.collections module +============================== + +.. automodule:: pyk.prelude.collections + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.k.rst.txt b/pyk/_sources/api/pyk.prelude.k.rst.txt new file mode 100644 index 00000000000..21b42fa13c0 --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.k.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.k module +==================== + +.. automodule:: pyk.prelude.k + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.kbool.rst.txt b/pyk/_sources/api/pyk.prelude.kbool.rst.txt new file mode 100644 index 00000000000..977bf4a269f --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.kbool.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.kbool module +======================== + +.. automodule:: pyk.prelude.kbool + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.kint.rst.txt b/pyk/_sources/api/pyk.prelude.kint.rst.txt new file mode 100644 index 00000000000..7e50e380c29 --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.kint.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.kint module +======================= + +.. automodule:: pyk.prelude.kint + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.ml.rst.txt b/pyk/_sources/api/pyk.prelude.ml.rst.txt new file mode 100644 index 00000000000..3a8afb8503e --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.ml.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.ml module +===================== + +.. automodule:: pyk.prelude.ml + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.rst.txt b/pyk/_sources/api/pyk.prelude.rst.txt new file mode 100644 index 00000000000..60bc8be23fe --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.rst.txt @@ -0,0 +1,22 @@ +pyk.prelude package +=================== + +.. automodule:: pyk.prelude + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.prelude.bytes + pyk.prelude.collections + pyk.prelude.k + pyk.prelude.kbool + pyk.prelude.kint + pyk.prelude.ml + pyk.prelude.string + pyk.prelude.utils diff --git a/pyk/_sources/api/pyk.prelude.string.rst.txt b/pyk/_sources/api/pyk.prelude.string.rst.txt new file mode 100644 index 00000000000..4257f7596a0 --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.string.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.string module +========================= + +.. automodule:: pyk.prelude.string + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.prelude.utils.rst.txt b/pyk/_sources/api/pyk.prelude.utils.rst.txt new file mode 100644 index 00000000000..fd592e6640b --- /dev/null +++ b/pyk/_sources/api/pyk.prelude.utils.rst.txt @@ -0,0 +1,7 @@ +pyk.prelude.utils module +======================== + +.. automodule:: pyk.prelude.utils + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.proof.implies.rst.txt b/pyk/_sources/api/pyk.proof.implies.rst.txt new file mode 100644 index 00000000000..a7e0aeee18a --- /dev/null +++ b/pyk/_sources/api/pyk.proof.implies.rst.txt @@ -0,0 +1,7 @@ +pyk.proof.implies module +======================== + +.. automodule:: pyk.proof.implies + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.proof.proof.rst.txt b/pyk/_sources/api/pyk.proof.proof.rst.txt new file mode 100644 index 00000000000..0eb6a54342b --- /dev/null +++ b/pyk/_sources/api/pyk.proof.proof.rst.txt @@ -0,0 +1,7 @@ +pyk.proof.proof module +====================== + +.. automodule:: pyk.proof.proof + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.proof.reachability.rst.txt b/pyk/_sources/api/pyk.proof.reachability.rst.txt new file mode 100644 index 00000000000..cf9942d34cb --- /dev/null +++ b/pyk/_sources/api/pyk.proof.reachability.rst.txt @@ -0,0 +1,7 @@ +pyk.proof.reachability module +============================= + +.. automodule:: pyk.proof.reachability + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.proof.rst.txt b/pyk/_sources/api/pyk.proof.rst.txt new file mode 100644 index 00000000000..a29b9b8e00a --- /dev/null +++ b/pyk/_sources/api/pyk.proof.rst.txt @@ -0,0 +1,19 @@ +pyk.proof package +================= + +.. automodule:: pyk.proof + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.proof.implies + pyk.proof.proof + pyk.proof.reachability + pyk.proof.show + pyk.proof.tui diff --git a/pyk/_sources/api/pyk.proof.show.rst.txt b/pyk/_sources/api/pyk.proof.show.rst.txt new file mode 100644 index 00000000000..ab669d317eb --- /dev/null +++ b/pyk/_sources/api/pyk.proof.show.rst.txt @@ -0,0 +1,7 @@ +pyk.proof.show module +===================== + +.. automodule:: pyk.proof.show + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.proof.tui.rst.txt b/pyk/_sources/api/pyk.proof.tui.rst.txt new file mode 100644 index 00000000000..6c2e8ce107f --- /dev/null +++ b/pyk/_sources/api/pyk.proof.tui.rst.txt @@ -0,0 +1,7 @@ +pyk.proof.tui module +==================== + +.. automodule:: pyk.proof.tui + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.rst.txt b/pyk/_sources/api/pyk.rst.txt new file mode 100644 index 00000000000..2e3c94a524b --- /dev/null +++ b/pyk/_sources/api/pyk.rst.txt @@ -0,0 +1,39 @@ +pyk package +=========== + +.. automodule:: pyk + :members: + :undoc-members: + :show-inheritance: + +Subpackages +----------- + +.. toctree:: + :maxdepth: 4 + + pyk.cterm + pyk.kast + pyk.kbuild + pyk.kcfg + pyk.kdist + pyk.kllvm + pyk.konvert + pyk.kore + pyk.kore_exec_covr + pyk.krepl + pyk.ktool + pyk.prelude + pyk.proof + pyk.testing + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.coverage + pyk.dequote + pyk.kcovr + pyk.utils diff --git a/pyk/_sources/api/pyk.testing.plugin.rst.txt b/pyk/_sources/api/pyk.testing.plugin.rst.txt new file mode 100644 index 00000000000..9337aa9dbb9 --- /dev/null +++ b/pyk/_sources/api/pyk.testing.plugin.rst.txt @@ -0,0 +1,7 @@ +pyk.testing.plugin module +========================= + +.. automodule:: pyk.testing.plugin + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/api/pyk.testing.rst.txt b/pyk/_sources/api/pyk.testing.rst.txt new file mode 100644 index 00000000000..f657432fbdc --- /dev/null +++ b/pyk/_sources/api/pyk.testing.rst.txt @@ -0,0 +1,15 @@ +pyk.testing package +=================== + +.. automodule:: pyk.testing + :members: + :undoc-members: + :show-inheritance: + +Submodules +---------- + +.. toctree:: + :maxdepth: 4 + + pyk.testing.plugin diff --git a/pyk/_sources/api/pyk.utils.rst.txt b/pyk/_sources/api/pyk.utils.rst.txt new file mode 100644 index 00000000000..a3d145093fe --- /dev/null +++ b/pyk/_sources/api/pyk.utils.rst.txt @@ -0,0 +1,7 @@ +pyk.utils module +================ + +.. automodule:: pyk.utils + :members: + :undoc-members: + :show-inheritance: diff --git a/pyk/_sources/index.rst.txt b/pyk/_sources/index.rst.txt new file mode 100644 index 00000000000..7392a2a50b3 --- /dev/null +++ b/pyk/_sources/index.rst.txt @@ -0,0 +1,21 @@ +.. pyk documentation master file, created by + sphinx-quickstart on Fri Jan 12 09:29:35 2024. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Welcome to pyk's documentation! +=============================== + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + api/modules + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/pyk/_static/_sphinx_javascript_frameworks_compat.js b/pyk/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 00000000000..81415803ec2 --- /dev/null +++ b/pyk/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/pyk/_static/basic.css b/pyk/_static/basic.css new file mode 100644 index 00000000000..f316efcb47b --- /dev/null +++ b/pyk/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/pyk/_static/css/badge_only.css b/pyk/_static/css/badge_only.css new file mode 100644 index 00000000000..c718cee4418 --- /dev/null +++ b/pyk/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/pyk/_static/css/fonts/Roboto-Slab-Bold.woff b/pyk/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 00000000000..6cb60000181 Binary files /dev/null and b/pyk/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/pyk/_static/css/fonts/Roboto-Slab-Bold.woff2 b/pyk/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 00000000000..7059e23142a Binary files /dev/null and b/pyk/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/pyk/_static/css/fonts/Roboto-Slab-Regular.woff b/pyk/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 00000000000..f815f63f99d Binary files /dev/null and b/pyk/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/pyk/_static/css/fonts/Roboto-Slab-Regular.woff2 b/pyk/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 00000000000..f2c76e5bda1 Binary files /dev/null and b/pyk/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/pyk/_static/css/fonts/fontawesome-webfont.eot b/pyk/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 00000000000..e9f60ca953f Binary files /dev/null and b/pyk/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/pyk/_static/css/fonts/fontawesome-webfont.svg b/pyk/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 00000000000..855c845e538 --- /dev/null +++ b/pyk/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/pyk/_static/css/fonts/fontawesome-webfont.ttf b/pyk/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 00000000000..35acda2fa11 Binary files /dev/null and b/pyk/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/pyk/_static/css/fonts/fontawesome-webfont.woff b/pyk/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 00000000000..400014a4b06 Binary files /dev/null and b/pyk/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/pyk/_static/css/fonts/fontawesome-webfont.woff2 b/pyk/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 00000000000..4d13fc60404 Binary files /dev/null and b/pyk/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/pyk/_static/css/fonts/lato-bold-italic.woff b/pyk/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 00000000000..88ad05b9ff4 Binary files /dev/null and b/pyk/_static/css/fonts/lato-bold-italic.woff differ diff --git a/pyk/_static/css/fonts/lato-bold-italic.woff2 b/pyk/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 00000000000..c4e3d804b57 Binary files /dev/null and b/pyk/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/pyk/_static/css/fonts/lato-bold.woff b/pyk/_static/css/fonts/lato-bold.woff new file mode 100644 index 00000000000..c6dff51f063 Binary files /dev/null and b/pyk/_static/css/fonts/lato-bold.woff differ diff --git a/pyk/_static/css/fonts/lato-bold.woff2 b/pyk/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 00000000000..bb195043cfc Binary files /dev/null and b/pyk/_static/css/fonts/lato-bold.woff2 differ diff --git a/pyk/_static/css/fonts/lato-normal-italic.woff b/pyk/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 00000000000..76114bc0336 Binary files /dev/null and b/pyk/_static/css/fonts/lato-normal-italic.woff differ diff --git a/pyk/_static/css/fonts/lato-normal-italic.woff2 b/pyk/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 00000000000..3404f37e2e3 Binary files /dev/null and b/pyk/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/pyk/_static/css/fonts/lato-normal.woff b/pyk/_static/css/fonts/lato-normal.woff new file mode 100644 index 00000000000..ae1307ff5f4 Binary files /dev/null and b/pyk/_static/css/fonts/lato-normal.woff differ diff --git a/pyk/_static/css/fonts/lato-normal.woff2 b/pyk/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 00000000000..3bf9843328a Binary files /dev/null and b/pyk/_static/css/fonts/lato-normal.woff2 differ diff --git a/pyk/_static/css/theme.css b/pyk/_static/css/theme.css new file mode 100644 index 00000000000..19a446a0e70 --- /dev/null +++ b/pyk/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/pyk/_static/doctools.js b/pyk/_static/doctools.js new file mode 100644 index 00000000000..4d67807d17d --- /dev/null +++ b/pyk/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/pyk/_static/documentation_options.js b/pyk/_static/documentation_options.js new file mode 100644 index 00000000000..5dd8a264ebc --- /dev/null +++ b/pyk/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '7.1.35', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/pyk/_static/file.png b/pyk/_static/file.png new file mode 100644 index 00000000000..a858a410e4f Binary files /dev/null and b/pyk/_static/file.png differ diff --git a/pyk/_static/jquery.js b/pyk/_static/jquery.js new file mode 100644 index 00000000000..c4c6022f298 --- /dev/null +++ b/pyk/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/pyk/_static/js/html5shiv.min.js b/pyk/_static/js/html5shiv.min.js new file mode 100644 index 00000000000..cd1c674f5e3 --- /dev/null +++ b/pyk/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/pyk/_static/js/theme.js b/pyk/_static/js/theme.js new file mode 100644 index 00000000000..1fddb6ee4a6 --- /dev/null +++ b/pyk/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/pyk/_static/minus.png b/pyk/_static/minus.png new file mode 100644 index 00000000000..d96755fdaf8 Binary files /dev/null and b/pyk/_static/minus.png differ diff --git a/pyk/_static/plus.png b/pyk/_static/plus.png new file mode 100644 index 00000000000..7107cec93a9 Binary files /dev/null and b/pyk/_static/plus.png differ diff --git a/pyk/_static/pygments.css b/pyk/_static/pygments.css new file mode 100644 index 00000000000..84ab3030a93 --- /dev/null +++ b/pyk/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/pyk/_static/searchtools.js b/pyk/_static/searchtools.js new file mode 100644 index 00000000000..92da3f8b22c --- /dev/null +++ b/pyk/_static/searchtools.js @@ -0,0 +1,619 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms, anchor) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + "Search finished, found ${resultCount} page(s) matching the search query." + ).replace('${resultCount}', resultCount); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; +// Helper function used by query() to order search results. +// Each input is an array of [docname, title, anchor, descr, score, filename]. +// Order the results by score (in opposite order of appearance, since the +// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. +const _orderResultsByScoreThenName = (a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString, anchor) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + for (const removalQuery of [".headerlinks", "script", "style"]) { + htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); + } + if (anchor) { + const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); + if (anchorContent) return anchorContent.textContent; + + console.warn( + `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` + ); + } + + // if anchor not specified or not found, fall back to main content + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent) return docContent.textContent; + + console.warn( + "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + _parseQuery: (query) => { + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; + }, + + /** + * execute search (requires search index to be loaded) + */ + _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // Collect multiple result groups to be sorted separately and then ordered. + // Each is an array of [docname, title, anchor, descr, score, filename]. + const normalResults = []; + const nonMainIndexResults = []; + + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase().trim(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + normalResults.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id, isMain] of foundEntries) { + const score = Math.round(100 * queryLower.length / entry.length); + const result = [ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]; + if (isMain) { + normalResults.push(result); + } else { + nonMainIndexResults.push(result); + } + } + } + } + + // lookup as object + objectTerms.forEach((term) => + normalResults.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) { + normalResults.forEach((item) => (item[4] = Scorer.score(item))); + nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); + } + + // Sort each group of results by score and then alphabetically by name. + normalResults.sort(_orderResultsByScoreThenName); + nonMainIndexResults.sort(_orderResultsByScoreThenName); + + // Combine the result groups in (reverse) order. + // Non-main index entries are typically arbitrary cross-references, + // so display them after other results. + let results = [...nonMainIndexResults, ...normalResults]; + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + return results.reverse(); + }, + + query: (query) => { + const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); + const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + if (!terms.hasOwnProperty(word)) { + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + } + if (!titleTerms.hasOwnProperty(word)) { + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); + }); + } + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (!fileMap.has(file)) fileMap.set(file, [word]); + else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords, anchor) => { + const text = Search.htmlToText(htmlText, anchor); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/pyk/_static/sphinx_highlight.js b/pyk/_static/sphinx_highlight.js new file mode 100644 index 00000000000..8a96c69a194 --- /dev/null +++ b/pyk/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/pyk/api/modules.html b/pyk/api/modules.html new file mode 100644 index 00000000000..75a7dbe8036 --- /dev/null +++ b/pyk/api/modules.html @@ -0,0 +1,260 @@ + + + + + + + pyk — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk

+
+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.coverage.html b/pyk/api/pyk.coverage.html new file mode 100644 index 00000000000..38fc84c5293 --- /dev/null +++ b/pyk/api/pyk.coverage.html @@ -0,0 +1,188 @@ + + + + + + + pyk.coverage module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.coverage module

+
+
+get_rule_by_id(definition: KDefinition, rule_id: str) KRule[source]
+

Get a rule from the definition by coverage rule id.

+
+
Parameters:
+
    +
  • definition – JSON-encoded definition.

  • +
  • rule_id – String of unique rule identifier generated by kompile –coverage.

  • +
+
+
Returns:
+

JSON encoded rule which has identifier rule_id.

+
+
+
+ +
+
+strip_coverage_logger(rule: KRule) KRule[source]
+
+ +
+
+translate_coverage(src_all_rules: Iterable[str], dst_all_rules: Iterable[str], dst_definition: KDefinition, src_rules_list: Iterable[str]) list[str][source]
+

Translate the coverage data from one kompiled definition to another.

+
+
Parameters:
+
    +
  • src_all_rules – Contents of allRules.txt for definition which coverage was generated for.

  • +
  • dst_all_rules – Contents of allRules.txt for definition which you desire coverage for.

  • +
  • dst_definition – JSON encoded definition of dst kompiled definition.

  • +
  • src_rules_list – Actual coverage data produced.

  • +
+
+
Returns:
+

List of non-functional rules applied in dst definition translated from src definition.

+
+
+
+ +
+
+translate_coverage_from_paths(src_kompiled_dir: str, dst_kompiled_dir: str, src_rules_file: PathLike) list[str][source]
+

Translate coverage information given paths to needed files.

+
+
Parameters:
+
    +
  • src_kompiled_dir – Path to kompiled directory of source.

  • +
  • dst_kompiled_dir – Path to kompiled directory of destination.

  • +
  • src_rules_file – Path to generated rules coverage file.

  • +
+
+
Returns:
+

Translated list of rules with non-semantic rules stripped out.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.cterm.cterm.html b/pyk/api/pyk.cterm.cterm.html new file mode 100644 index 00000000000..c7352c83658 --- /dev/null +++ b/pyk/api/pyk.cterm.cterm.html @@ -0,0 +1,444 @@ + + + + + + + pyk.cterm.cterm module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.cterm.cterm module

+
+
+class CSubst(subst: Subst | None = None, constraints: Iterable[KInner] = ())[source]
+

Bases: object

+

Store information about instantiation of a symbolic state (CTerm) to a more specific one.

+

Contains the data: +- subst: assignment to apply to free variables in the state to achieve more specific one +- constraints: additional constraints over the free variables of the original state and the subst to add to the new state

+
+
+__init__(subst: Subst | None = None, constraints: Iterable[KInner] = ()) None[source]
+

Construct a new CSubst given a Subst and set of constraints as KInner, performing basic sanity checks.

+
+ +
+
+__iter__() Iterator[Subst | KInner][source]
+

Return an iterator with the head being the subst and the tail being the constraints.

+
+ +
+
+add_constraint(constraint: KInner) CSubst[source]
+

Return this CSubst with an additional constraint added.

+
+ +
+
+apply(cterm: CTerm) CTerm[source]
+

Apply this CSubst to the given CTerm (instantiating the free variables, and adding the constraints).

+
+ +
+
+property constraint: KInner
+

Return the set of constraints as a single flattened constraint using mlAnd.

+
+ +
+
+constraints: tuple[KInner, ...]
+
+ +
+
+static from_dict(dct: dict[str, Any]) CSubst[source]
+

Deserialize CSubst from a dictionary representation.

+
+ +
+
+subst: Subst
+
+ +
+
+to_dict() dict[str, Any][source]
+

Serialize CSubst to dictionary representation.

+
+ +
+ +
+
+class CTerm(config: KInner, constraints: Iterable[KInner] = ())[source]
+

Bases: object

+

Represent a symbolic program state, obtained and manipulated using symbolic execution.

+

Contains the data: +- config: the _configuration_ (structural component of the state, potentially containing free variabls) +- constraints: conditiions which limit/constraint the free variables from the config

+
+
+__init__(config: KInner, constraints: Iterable[KInner] = ()) None[source]
+

Instantiate a given CTerm, performing basic sanity checks on the config and constraints.

+
+ +
+
+__iter__() Iterator[KInner][source]
+

Return an iterator with the head being the config and the tail being the constraints.

+
+ +
+
+add_constraint(new_constraint: KInner) CTerm[source]
+

Return a new CTerm with the additional constraints.

+
+ +
+
+anti_unify(other: CTerm, keep_values: bool = False, kdef: KDefinition | None = None) tuple[CTerm, CSubst, CSubst][source]
+

Given two CTerm instances, find a more general CTerm which can instantiate to both.

+
+
Parameters:
+
    +
  • other – other CTerm to consider for finding a more general CTerm with this one.

  • +
  • keep_values – do not discard information about abstracted variables in returned result.

  • +
  • kdef (optional) – KDefinition to make analysis more precise.

  • +
+
+
Returns:
+

A tuple (cterm, csubst1, csubst2) where

+
    +
  • cterm: More general CTerm than either self or other.

  • +
  • csubst1: Constrained substitution to apply to cterm to obtain self.

  • +
  • csubst2: Constrained substitution to apply to cterm to obtain other.

  • +
+

+
+
+
+ +
+
+static bottom() CTerm[source]
+

Construct a CTerm representing no possible states.

+
+ +
+
+cell(cell: str) KInner[source]
+

Access the contents of a named cell in the config, die on failure.

+
+ +
+
+property cells: Subst
+

Return key-value store of the contents of each cell in the config.

+
+ +
+
+config: KInner
+
+ +
+
+constraints: tuple[KInner, ...]
+
+ +
+
+property free_vars: frozenset[str]
+

Return the set of free variable names contained in this CTerm.

+
+ +
+
+static from_dict(dct: dict[str, Any]) CTerm[source]
+

Deserialize a CTerm from its dictionary representation.

+
+ +
+
+static from_kast(kast: KInner) CTerm[source]
+

Interpret a given KInner as a CTerm by splitting the config and constraints (see CTerm.kast).

+
+ +
+
+property hash: str
+

Unique hash representing the contents of this CTerm.

+
+ +
+
+property is_bottom: bool
+

Check if a given CTerm is trivially empty.

+
+ +
+
+property kast: KInner
+

Return the unstructured bare KInner representation of a CTerm (see CTerm.from_kast).

+
+ +
+
+match(cterm: CTerm) Subst | None[source]
+

Find Subst instantiating this CTerm to the other, return None if no such Subst exists.

+
+ +
+
+match_with_constraint(cterm: CTerm) CSubst | None[source]
+

Find CSubst instantiating this CTerm to the other, return None if no such CSubst exists.

+
+ +
+
+remove_useless_constraints(keep_vars: Iterable[str] = ()) CTerm[source]
+

Return a new CTerm with constraints over unbound variables removed.

+
+
Parameters:
+

keep_vars – List of variables to keep constraints for even if unbound in the CTerm.

+
+
Returns:
+

A CTerm with the constraints over unbound variables removed.

+
+
+
+ +
+
+to_dict() dict[str, Any][source]
+

Serialize a CTerm to dictionary representation.

+
+ +
+
+static top() CTerm[source]
+

Construct a CTerm representing all possible states.

+
+ +
+
+try_cell(cell: str) KInner | None[source]
+

Access the contents of a named cell in the config, return None on failure.

+
+ +
+ +
+
+anti_unify(state1: KInner, state2: KInner, kdef: KDefinition | None = None) tuple[KInner, Subst, Subst][source]
+

Return a generalized state over the two input states.

+
+
Parameters:
+
    +
  • state1 – State to generalize over, represented as bare KInner.

  • +
  • state2 – State to generalize over, represented as bare KInner.

  • +
  • kdef (optional) – KDefinition to make the analysis more precise.

  • +
+
+
+
+

Note

+

Both state1 and state2 are expected to be bare configurations with no constraints attached.

+
+
+
Returns:
+

A tuple (state, subst1, subst2) such that

+
    +
  • state: A symbolic state represented as KInner which is more general than state1 or state2.

  • +
  • subst1: A Subst which, when applied to state, recovers state1.

  • +
  • subst2: A Subst which, when applied to state, recovers state2.

  • +
+

+
+
+
+ +
+
+cterm_build_claim(claim_id: str, init_cterm: CTerm, final_cterm: CTerm, keep_vars: Iterable[str] = ()) tuple[KClaim, Subst][source]
+

Return a KClaim between the supplied initial and final states.

+
+
Parameters:
+
    +
  • claim_id – Label to give the claim.

  • +
  • init_cterm – State to put on LHS of the rule (constraints interpreted as requires clause).

  • +
  • final_cterm – State to put on RHS of the rule (constraints interpreted as ensures clause).

  • +
  • keep_vars – Variables to leave in the side-conditions even if not bound in the configuration.

  • +
+
+
Returns:
+

A tuple (claim, var_map) where

+
    +
  • claim: A KClaim with variable naming conventions applied +so that it should be parseable by the K Frontend.

  • +
  • var_map: The variable renamings applied to make the claim parseable by the K Frontend +(which can be undone to recover original variables).

  • +
+

+
+
+
+ +
+
+cterm_build_rule(rule_id: str, init_cterm: CTerm, final_cterm: CTerm, priority: int | None = None, keep_vars: Iterable[str] = ()) tuple[KRule, Subst][source]
+

Return a KRule between the supplied initial and final states.

+
+
Parameters:
+
    +
  • rule_id – Label to give the rule.

  • +
  • init_cterm – State to put on LHS of the rule (constraints interpreted as requires clause).

  • +
  • final_cterm – State to put on RHS of the rule (constraints interpreted as ensures clause).

  • +
  • keep_vars – Variables to leave in the side-conditions even if not bound in the configuration.

  • +
+
+
Returns:
+

A tuple (rule, var_map) where

+
    +
  • rule: A KRule with variable naming conventions applied +so that it should be parseable by the K Frontend.

  • +
  • var_map: The variable renamings applied to make the rule parseable by the K Frontend +(which can be undone to recover original variables).

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.cterm.html b/pyk/api/pyk.cterm.html new file mode 100644 index 00000000000..f5e271c1243 --- /dev/null +++ b/pyk/api/pyk.cterm.html @@ -0,0 +1,225 @@ + + + + + + + pyk.cterm package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.cterm.symbolic.html b/pyk/api/pyk.cterm.symbolic.html new file mode 100644 index 00000000000..8a278a5a41a --- /dev/null +++ b/pyk/api/pyk.cterm.symbolic.html @@ -0,0 +1,287 @@ + + + + + + + pyk.cterm.symbolic module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.cterm.symbolic module

+
+
+class CTermExecute(state, next_states, depth, vacuous, logs)[source]
+

Bases: NamedTuple

+
+
+depth: int
+

Alias for field number 2

+
+ +
+
+logs: tuple[LogEntry, ...]
+

Alias for field number 4

+
+ +
+
+next_states: tuple[NextState, ...]
+

Alias for field number 1

+
+ +
+
+state: CTerm
+

Alias for field number 0

+
+ +
+
+vacuous: bool
+

Alias for field number 3

+
+ +
+ +
+
+class CTermImplies(csubst, failing_cells, remaining_implication, logs)[source]
+

Bases: NamedTuple

+
+
+csubst: CSubst | None
+

Alias for field number 0

+
+ +
+
+failing_cells: tuple[tuple[str, KInner], ...]
+

Alias for field number 1

+
+ +
+
+logs: tuple[LogEntry, ...]
+

Alias for field number 3

+
+ +
+
+remaining_implication: KInner | None
+

Alias for field number 2

+
+ +
+ +
+
+final exception CTermSMTError(message: 'str')[source]
+

Bases: Exception

+
+ +
+
+class CTermSymbolic(kore_client: KoreClient, definition: KDefinition, *, trace_rewrites: bool = False)[source]
+

Bases: object

+
+
+assume_defined(cterm: CTerm, module_name: str | None = None) CTerm[source]
+
+ +
+
+execute(cterm: CTerm, depth: int | None = None, cut_point_rules: Iterable[str] | None = None, terminal_rules: Iterable[str] | None = None, module_name: str | None = None) CTermExecute[source]
+
+ +
+
+get_model(cterm: CTerm, module_name: str | None = None) Subst | None[source]
+
+ +
+
+implies(antecedent: CTerm, consequent: CTerm, bind_universally: bool = False, failure_reason: bool = False, module_name: str | None = None) CTermImplies[source]
+
+ +
+
+kast_simplify(kast: KInner, module_name: str | None = None) tuple[KInner, tuple[LogEntry, ...]][source]
+
+ +
+
+kast_to_kore(kinner: KInner) Pattern[source]
+
+ +
+
+kore_to_kast(pattern: Pattern) KInner[source]
+
+ +
+
+minimize_constraints(constraints: tuple[KInner, ...], path_condition: KInner) tuple[KInner, ...][source]
+

Minimize given branching constraints with respect to a given path condition.

+
+ +
+
+simplify(cterm: CTerm, module_name: str | None = None) tuple[CTerm, tuple[LogEntry, ...]][source]
+
+ +
+ +
+
+class NextState(state, condition)[source]
+

Bases: NamedTuple

+
+
+condition: KInner | None
+

Alias for field number 1

+
+ +
+
+state: CTerm
+

Alias for field number 0

+
+ +
+ +
+
+cterm_symbolic(definition: KDefinition, definition_dir: Path, *, id: str | None = None, port: int | None = None, kore_rpc_command: str | Iterable[str] | None = None, llvm_definition_dir: Path | None = None, smt_timeout: int | None = None, smt_retry_limit: int | None = None, smt_tactic: str | None = None, bug_report: BugReport | None = None, haskell_log_format: KoreExecLogFormat = KoreExecLogFormat.ONELINE, haskell_log_entries: Iterable[str] = (), log_axioms_file: Path | None = None, trace_rewrites: bool = False, start_server: bool = True, maude_port: int | None = None, fallback_on: Iterable[FallbackReason] | None = None, interim_simplification: int | None = None, no_post_exec_simplify: bool = False) Iterator[CTermSymbolic][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.dequote.html b/pyk/api/pyk.dequote.html new file mode 100644 index 00000000000..b46b49155b2 --- /dev/null +++ b/pyk/api/pyk.dequote.html @@ -0,0 +1,169 @@ + + + + + + + pyk.dequote module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.dequote module

+
+
+bytes_decode(b: bytes) str[source]
+
+ +
+
+bytes_encode(s: str) bytes[source]
+
+ +
+
+dequote_bytes(s: str) str[source]
+
+ +
+
+dequote_string(s: str) str[source]
+
+ +
+
+dequoted(it: Iterable[str], *, allow_unicode: bool = True) Iterator[str][source]
+
+ +
+
+enquote_bytes(s: str) str[source]
+
+ +
+
+enquote_string(s: str) str[source]
+
+ +
+
+enquoted(it: Iterable[str], *, allow_unicode: bool = True) Iterator[str][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.html b/pyk/api/pyk.html new file mode 100644 index 00000000000..864483c8e02 --- /dev/null +++ b/pyk/api/pyk.html @@ -0,0 +1,1096 @@ + + + + + + + pyk package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk package

+
+

Subpackages

+
+ +
+
+
+

Submodules

+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.att.html b/pyk/api/pyk.kast.att.html new file mode 100644 index 00000000000..231fc48eb5e --- /dev/null +++ b/pyk/api/pyk.kast.att.html @@ -0,0 +1,904 @@ + + + + + + + pyk.kast.att module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.att module

+
+
+class AnyType[source]
+

Bases: AttType[Any]

+
+
+from_dict(obj: Any) Any[source]
+
+ +
+
+parse(text: str) Any[source]
+
+ +
+
+to_dict(value: Any) Any[source]
+
+ +
+
+unparse(value: Any) str[source]
+
+ +
+ +
+
+final class AttEntry(key: 'AttKey[T]', value: 'T')[source]
+

Bases: Generic[T]

+
+
+key: AttKey[T]
+
+ +
+
+value: T
+
+ +
+ +
+
+final class AttKey(name: 'str', *, type: 'AttType[T]')[source]
+

Bases: Generic[T]

+
+
+name: str
+
+ +
+
+type: AttType[T]
+
+ +
+ +
+
+class AttType[source]
+

Bases: Generic[T], ABC

+
+
+abstract from_dict(obj: Any) T[source]
+
+ +
+
+abstract parse(text: str) T[source]
+
+ +
+
+abstract to_dict(value: T) Any[source]
+
+ +
+
+abstract unparse(value: T) str | None[source]
+
+ +
+ +
+
+class Atts[source]
+

Bases: object

+
+
+ALIAS: Final = AttKey(name='alias')
+
+ +
+
+ALIAS_REC: Final = AttKey(name='alias-rec')
+
+ +
+
+ANYWHERE: Final = AttKey(name='anywhere')
+
+ +
+
+ASSOC: Final = AttKey(name='assoc')
+
+ +
+
+BRACKET: Final = AttKey(name='bracket')
+
+ +
+
+BRACKET_LABEL: Final = AttKey(name='bracketLabel')
+
+ +
+
+CELL: Final = AttKey(name='cell')
+
+ +
+
+CELL_COLLECTION: Final = AttKey(name='cellCollection')
+
+ +
+
+CELL_FRAGMENT: Final = AttKey(name='cellFragment')
+
+ +
+
+CELL_NAME: Final = AttKey(name='cellName')
+
+ +
+
+CELL_OPT_ABSENT: Final = AttKey(name='cellOptAbsent')
+
+ +
+
+CIRCULARITY: Final = AttKey(name='circularity')
+
+ +
+
+COLOR: Final = AttKey(name='color')
+
+ +
+
+COLORS: Final = AttKey(name='colors')
+
+ +
+
+COMM: Final = AttKey(name='comm')
+
+ +
+
+CONCAT: Final = AttKey(name='concat')
+
+ +
+
+CONCRETE: Final = AttKey(name='concrete')
+
+ +
+
+CONSTRUCTOR: Final = AttKey(name='constructor')
+
+ +
+
+DEPENDS: Final = AttKey(name='depends')
+
+ +
+
+DIGEST: Final = AttKey(name='digest')
+
+ +
+
+ELEMENT: Final = AttKey(name='element')
+
+ +
+
+FORMAT: Final = AttKey(name='format')
+
+ +
+
+FRESH_GENERATOR: Final = AttKey(name='freshGenerator')
+
+ +
+
+FUNCTION: Final = AttKey(name='function')
+
+ +
+
+FUNCTIONAL: Final = AttKey(name='functional')
+
+ +
+
+GROUP: Final = AttKey(name='group')
+
+ +
+
+HAS_DOMAIN_VALUES: Final = AttKey(name='hasDomainValues')
+
+ +
+
+HOOK: Final = AttKey(name='hook')
+
+ +
+
+IDEM: Final = AttKey(name='idem')
+
+ +
+
+IMPURE: Final = AttKey(name='impure')
+
+ +
+
+INDEX: Final = AttKey(name='index')
+
+ +
+
+INITIALIZER: Final = AttKey(name='initializer')
+
+ +
+
+INJECTIVE: Final = AttKey(name='injective')
+
+ +
+
+KLABEL: Final = AttKey(name='klabel')
+
+ +
+
+LABEL: Final = AttKey(name='label')
+
+ +
+
+LEFT: Final = AttKey(name='left')
+
+ +
+
+LOCATION: Final = AttKey(name='org.kframework.attributes.Location')
+
+ +
+
+MACRO: Final = AttKey(name='macro')
+
+ +
+
+MACRO_REC: Final = AttKey(name='macro-rec')
+
+ +
+
+MAINCELL: Final = AttKey(name='maincell')
+
+ +
+
+OVERLOAD: Final = AttKey(name='overload')
+
+ +
+
+OWISE: Final = AttKey(name='owise')
+
+ +
+
+PREDICATE: Final = AttKey(name='predicate')
+
+ +
+
+PREFER: Final = AttKey(name='prefer')
+
+ +
+
+PRIORITIES: Final = AttKey(name='priorities')
+
+ +
+
+PRIORITY: Final = AttKey(name='priority')
+
+ +
+
+PRIVATE: Final = AttKey(name='private')
+
+ +
+
+PRODUCTION: Final = AttKey(name='org.kframework.definition.Production')
+
+ +
+
+PROJECTION: Final = AttKey(name='projection')
+
+ +
+
+RIGHT: Final = AttKey(name='right')
+
+ +
+
+SEQSTRICT: Final = AttKey(name='seqstrict')
+
+ +
+
+SIMPLIFICATION: Final = AttKey(name='simplification')
+
+ +
+
+SORT: Final = AttKey(name='org.kframework.kore.Sort')
+
+ +
+
+SOURCE: Final = AttKey(name='org.kframework.attributes.Source')
+
+ +
+
+STRICT: Final = AttKey(name='strict')
+
+ +
+
+SYMBOL: Final = AttKey(name='symbol')
+
+ +
+
+SYNTAX_MODULE: Final = AttKey(name='syntaxModule')
+
+ +
+
+TERMINALS: Final = AttKey(name='terminals')
+
+ +
+
+TOKEN: Final = AttKey(name='token')
+
+ +
+
+TOTAL: Final = AttKey(name='total')
+
+ +
+
+TRUSTED: Final = AttKey(name='trusted')
+
+ +
+
+UNIQUE_ID: Final = AttKey(name='UNIQUE_ID')
+
+ +
+
+UNIT: Final = AttKey(name='unit')
+
+ +
+
+UNPARSE_AVOID: Final = AttKey(name='unparseAvoid')
+
+ +
+
+USER_LIST: Final = AttKey(name='userList')
+
+ +
+
+WRAP_ELEMENT: Final = AttKey(name='wrapElement')
+
+ +
+
+classmethod keys() FrozenDict[str, AttKey][source]
+
+ +
+ +
+
+class ColorType[source]
+

Bases: AttType[Color]

+
+
+from_dict(obj: Any) Color[source]
+
+ +
+
+parse(text: str) Color[source]
+
+ +
+
+to_dict(value: Color) str[source]
+
+ +
+
+unparse(value: Color) str[source]
+
+ +
+ +
+
+class ColorsType[source]
+

Bases: AttType[tuple[Color, …]]

+
+
+from_dict(obj: Any) tuple[Color, ...][source]
+
+ +
+
+parse(text: str) tuple[Color, ...][source]
+
+ +
+
+to_dict(value: tuple[Color, ...]) str[source]
+
+ +
+
+unparse(value: tuple[Color, ...]) str[source]
+
+ +
+ +
+
+final class Format(tokens: 'Iterable[str]' = ())[source]
+

Bases: object

+
+
+classmethod parse(s: str) Format[source]
+
+ +
+
+tokens: tuple[str, ...]
+
+ +
+
+unparse() str[source]
+
+ +
+ +
+
+class FormatType[source]
+

Bases: AttType[Format]

+
+
+from_dict(obj: Any) Format[source]
+
+ +
+
+parse(text: str) Format[source]
+
+ +
+
+to_dict(value: Format) Any[source]
+
+ +
+
+unparse(value: Format) str[source]
+
+ +
+ +
+
+class IntType[source]
+

Bases: AttType[int]

+
+
+from_dict(obj: Any) int[source]
+
+ +
+
+parse(text: str) int[source]
+
+ +
+
+to_dict(value: int) str[source]
+
+ +
+
+unparse(value: int) str[source]
+
+ +
+ +
+
+final class KAtt(entries: 'Iterable[AttEntry]' = ())[source]
+

Bases: KAst, Mapping[AttKey, Any]

+
+
+atts: FrozenDict[AttKey, Any]
+
+ +
+
+discard(keys: Container[AttKey]) KAtt[source]
+
+ +
+
+drop_source() KAtt[source]
+
+ +
+
+entries() Iterator[AttEntry][source]
+
+ +
+
+classmethod from_dict(d: Mapping[str, Any]) KAtt[source]
+
+ +
+
+get(key: AttKey[T], /) T | None[source]
+
+get(key: AttKey[T], /, default: U) T | U
+
+ +
+
+classmethod parse(d: Mapping[str, str]) KAtt[source]
+
+ +
+
+property pretty: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+update(entries: Iterable[AttEntry]) KAtt[source]
+
+ +
+ +
+
+class LocationType[source]
+

Bases: AttType[tuple[int, int, int, int]]

+
+
+from_dict(obj: Any) tuple[int, int, int, int][source]
+
+ +
+
+parse(text: str) tuple[int, int, int, int][source]
+
+ +
+
+to_dict(value: tuple[int, int, int, int]) Any[source]
+
+ +
+
+unparse(value: tuple[int, int, int, int]) str[source]
+
+ +
+ +
+
+class NoneType[source]
+

Bases: AttType[None]

+
+
+from_dict(obj: Any) None[source]
+
+ +
+
+parse(text: str) None[source]
+
+ +
+
+to_dict(value: None) Any[source]
+
+ +
+
+unparse(value: None) None[source]
+
+ +
+ +
+
+class OptionalType(value_type: AttType[T])[source]
+

Bases: Generic[T], AttType[T | None]

+
+
+from_dict(obj: Any) T | None[source]
+
+ +
+
+parse(text: str) T | None[source]
+
+ +
+
+to_dict(value: T | None) Any[source]
+
+ +
+
+unparse(value: T | None) str | None[source]
+
+ +
+ +
+
+class PathType[source]
+

Bases: AttType[Path]

+
+
+from_dict(obj: Any) Path[source]
+
+ +
+
+parse(text: str) Path[source]
+
+ +
+
+to_dict(value: Path) Any[source]
+
+ +
+
+unparse(value: Path) str[source]
+
+ +
+ +
+
+class StrType[source]
+

Bases: AttType[str]

+
+
+from_dict(obj: Any) str[source]
+
+ +
+
+parse(text: str) str[source]
+
+ +
+
+to_dict(value: str) Any[source]
+
+ +
+
+unparse(value: str) str[source]
+
+ +
+ +
+
+class WithKAtt[source]
+

Bases: ABC

+
+
+att: KAtt
+
+ +
+
+abstract let_att(att: KAtt) W[source]
+
+ +
+
+map_att(f: Callable[[KAtt], KAtt]) W[source]
+
+ +
+
+update_atts(entries: Iterable[AttEntry]) W[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.color.html b/pyk/api/pyk.kast.color.html new file mode 100644 index 00000000000..58cc5197502 --- /dev/null +++ b/pyk/api/pyk.kast.color.html @@ -0,0 +1,1072 @@ + + + + + + + pyk.kast.color module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.color module

+
+
+class Color(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+ALICE_BLUE = 'AliceBlue'
+
+ +
+
+ANTIQUE_WHITE = 'AntiqueWhite'
+
+ +
+
+APRICOT = 'Apricot'
+
+ +
+
+AQUA = 'Aqua'
+
+ +
+
+AQUAMARINE = 'Aquamarine'
+
+ +
+
+AZURE = 'Azure'
+
+ +
+
+BEIGE = 'Beige'
+
+ +
+
+BISQUE = 'Bisque'
+
+ +
+
+BITTERSWEET = 'Bittersweet'
+
+ +
+
+BLACK = 'black'
+
+ +
+
+BLANCHED_ALMOND = 'BlanchedAlmond'
+
+ +
+
+BLUE = 'blue'
+
+ +
+
+BLUE_GREEN = 'BlueGreen'
+
+ +
+
+BLUE_VIOLET = 'BlueViolet'
+
+ +
+
+BRICK_RED = 'BrickRed'
+
+ +
+
+BROWN = 'brown'
+
+ +
+
+BURLY_WOOD = 'BurlyWood'
+
+ +
+
+BURNT_ORANGE = 'BurntOrange'
+
+ +
+
+CADET_BLUE = 'CadetBlue'
+
+ +
+
+CARNATION_PINK = 'CarnationPink'
+
+ +
+
+CERULEAN = 'Cerulean'
+
+ +
+
+CHARTREUSE = 'Chartreuse'
+
+ +
+
+CHOCOLATE = 'Chocolate'
+
+ +
+
+CORAL = 'Coral'
+
+ +
+
+CORNFLOWER_BLUE = 'CornflowerBlue'
+
+ +
+
+CORNSILK = 'Cornsilk'
+
+ +
+
+CRIMSON = 'Crimson'
+
+ +
+
+CYAN = 'cyan'
+
+ +
+
+DANDELION = 'Dandelion'
+
+ +
+
+DARKGRAY = 'darkgray'
+
+ +
+
+DARK_BLUE = 'DarkBlue'
+
+ +
+
+DARK_CYAN = 'DarkCyan'
+
+ +
+
+DARK_GOLDENROD = 'DarkGoldenrod'
+
+ +
+
+DARK_GRAY = 'DarkGray'
+
+ +
+
+DARK_GREEN = 'DarkGreen'
+
+ +
+
+DARK_GREY = 'DarkGrey'
+
+ +
+
+DARK_KHAKI = 'DarkKhaki'
+
+ +
+
+DARK_MAGENTA = 'DarkMagenta'
+
+ +
+
+DARK_OLIVE_GREEN = 'DarkOliveGreen'
+
+ +
+
+DARK_ORANGE = 'DarkOrange'
+
+ +
+
+DARK_ORCHID = 'DarkOrchid'
+
+ +
+
+DARK_RED = 'DarkRed'
+
+ +
+
+DARK_SALMON = 'DarkSalmon'
+
+ +
+
+DARK_SEA_GREEN = 'DarkSeaGreen'
+
+ +
+
+DARK_SLATE_BLUE = 'DarkSlateBlue'
+
+ +
+
+DARK_SLATE_GRAY = 'DarkSlateGray'
+
+ +
+
+DARK_SLATE_GREY = 'DarkSlateGrey'
+
+ +
+
+DARK_TURQUOISE = 'DarkTurquoise'
+
+ +
+
+DARK_VIOLET = 'DarkViolet'
+
+ +
+
+DEEP_PINK = 'DeepPink'
+
+ +
+
+DEEP_SKY_BLUE = 'DeepSkyBlue'
+
+ +
+
+DIM_GRAY = 'DimGray'
+
+ +
+
+DIM_GREY = 'DimGrey'
+
+ +
+
+DODGER_BLUE = 'DodgerBlue'
+
+ +
+
+EMERALD = 'Emerald'
+
+ +
+
+FIRE_BRICK = 'FireBrick'
+
+ +
+
+FLORAL_WHITE = 'FloralWhite'
+
+ +
+
+FOREST_GREEN = 'ForestGreen'
+
+ +
+
+FUCHSIA = 'Fuchsia'
+
+ +
+
+GAINSBORO = 'Gainsboro'
+
+ +
+
+GHOST_WHITE = 'GhostWhite'
+
+ +
+
+GOLD = 'Gold'
+
+ +
+
+GOLDENROD = 'Goldenrod'
+
+ +
+
+GRAY = 'gray'
+
+ +
+
+GREEN = 'green'
+
+ +
+
+GREEN_YELLOW = 'GreenYellow'
+
+ +
+
+GREY = 'Grey'
+
+ +
+
+HONEYDEW = 'Honeydew'
+
+ +
+
+HOT_PINK = 'HotPink'
+
+ +
+
+INDIAN_RED = 'IndianRed'
+
+ +
+
+INDIGO = 'Indigo'
+
+ +
+
+IVORY = 'Ivory'
+
+ +
+
+JUNGLE_GREEN = 'JungleGreen'
+
+ +
+
+KHAKI = 'Khaki'
+
+ +
+
+LAVENDER = 'Lavender'
+
+ +
+
+LAVENDER_BLUSH = 'LavenderBlush'
+
+ +
+
+LAWN_GREEN = 'LawnGreen'
+
+ +
+
+LEMON_CHIFFON = 'LemonChiffon'
+
+ +
+
+LIGHTGRAY = 'lightgray'
+
+ +
+
+LIGHT_BLUE = 'LightBlue'
+
+ +
+
+LIGHT_CORAL = 'LightCoral'
+
+ +
+
+LIGHT_CYAN = 'LightCyan'
+
+ +
+
+LIGHT_GOLDENROD = 'LightGoldenrod'
+
+ +
+
+LIGHT_GOLDENROD_YELLOW = 'LightGoldenrodYellow'
+
+ +
+
+LIGHT_GRAY = 'LightGray'
+
+ +
+
+LIGHT_GREEN = 'LightGreen'
+
+ +
+
+LIGHT_GREY = 'LightGrey'
+
+ +
+
+LIGHT_PINK = 'LightPink'
+
+ +
+
+LIGHT_SALMON = 'LightSalmon'
+
+ +
+
+LIGHT_SEA_GREEN = 'LightSeaGreen'
+
+ +
+
+LIGHT_SKY_BLUE = 'LightSkyBlue'
+
+ +
+
+LIGHT_SLATE_BLUE = 'LightSlateBlue'
+
+ +
+
+LIGHT_SLATE_GRAY = 'LightSlateGray'
+
+ +
+
+LIGHT_SLATE_GREY = 'LightSlateGrey'
+
+ +
+
+LIGHT_STEEL_BLUE = 'LightSteelBlue'
+
+ +
+
+LIGHT_YELLOW = 'LightYellow'
+
+ +
+
+LIME = 'lime'
+
+ +
+
+LIME_GREEN = 'LimeGreen'
+
+ +
+
+LINEN = 'Linen'
+
+ +
+
+MAGENTA = 'magenta'
+
+ +
+
+MAHOGANY = 'Mahogany'
+
+ +
+
+MAROON = 'Maroon'
+
+ +
+
+MEDIUM_AQUAMARINE = 'MediumAquamarine'
+
+ +
+
+MEDIUM_BLUE = 'MediumBlue'
+
+ +
+
+MEDIUM_ORCHID = 'MediumOrchid'
+
+ +
+
+MEDIUM_PURPLE = 'MediumPurple'
+
+ +
+
+MEDIUM_SEA_GREEN = 'MediumSeaGreen'
+
+ +
+
+MEDIUM_SLATE_BLUE = 'MediumSlateBlue'
+
+ +
+
+MEDIUM_SPRING_GREEN = 'MediumSpringGreen'
+
+ +
+
+MEDIUM_TURQUOISE = 'MediumTurquoise'
+
+ +
+
+MEDIUM_VIOLET_RED = 'MediumVioletRed'
+
+ +
+
+MELON = 'Melon'
+
+ +
+
+MIDNIGHT_BLUE = 'MidnightBlue'
+
+ +
+
+MINT_CREAM = 'MintCream'
+
+ +
+
+MISTY_ROSE = 'MistyRose'
+
+ +
+
+MOCCASIN = 'Moccasin'
+
+ +
+
+MULBERRY = 'Mulberry'
+
+ +
+
+NAVAJO_WHITE = 'NavajoWhite'
+
+ +
+
+NAVY = 'Navy'
+
+ +
+
+NAVY_BLUE = 'NavyBlue'
+
+ +
+
+OLD_LACE = 'OldLace'
+
+ +
+
+OLIVE = 'olive'
+
+ +
+
+OLIVE_DRAB = 'OliveDrab'
+
+ +
+
+OLIVE_GREEN = 'OliveGreen'
+
+ +
+
+ORANGE = 'orange'
+
+ +
+
+ORANGE_RED = 'OrangeRed'
+
+ +
+
+ORCHID = 'Orchid'
+
+ +
+
+PALE_GOLDENROD = 'PaleGoldenrod'
+
+ +
+
+PALE_GREEN = 'PaleGreen'
+
+ +
+
+PALE_TURQUOISE = 'PaleTurquoise'
+
+ +
+
+PALE_VIOLET_RED = 'PaleVioletRed'
+
+ +
+
+PAPAYA_WHIP = 'PapayaWhip'
+
+ +
+
+PEACH = 'Peach'
+
+ +
+
+PEACH_PUFF = 'PeachPuff'
+
+ +
+
+PERIWINKLE = 'Periwinkle'
+
+ +
+
+PERU = 'Peru'
+
+ +
+
+PINE_GREEN = 'PineGreen'
+
+ +
+
+PINK = 'pink'
+
+ +
+
+PLUM = 'Plum'
+
+ +
+
+POWDER_BLUE = 'PowderBlue'
+
+ +
+
+PROCESS_BLUE = 'ProcessBlue'
+
+ +
+
+PURPLE = 'purple'
+
+ +
+
+RAW_SIENNA = 'RawSienna'
+
+ +
+
+RED = 'red'
+
+ +
+
+RED_ORANGE = 'RedOrange'
+
+ +
+
+RED_VIOLET = 'RedViolet'
+
+ +
+
+RHODAMINE = 'Rhodamine'
+
+ +
+
+ROSY_BROWN = 'RosyBrown'
+
+ +
+
+ROYAL_BLUE = 'RoyalBlue'
+
+ +
+
+ROYAL_PURPLE = 'RoyalPurple'
+
+ +
+
+RUBINE_RED = 'RubineRed'
+
+ +
+
+SADDLE_BROWN = 'SaddleBrown'
+
+ +
+
+SALMON = 'Salmon'
+
+ +
+
+SANDY_BROWN = 'SandyBrown'
+
+ +
+
+SEASHELL = 'Seashell'
+
+ +
+
+SEA_GREEN = 'SeaGreen'
+
+ +
+
+SEPIA = 'Sepia'
+
+ +
+
+SIENNA = 'Sienna'
+
+ +
+
+SILVER = 'Silver'
+
+ +
+
+SKY_BLUE = 'SkyBlue'
+
+ +
+
+SLATE_BLUE = 'SlateBlue'
+
+ +
+
+SLATE_GRAY = 'SlateGray'
+
+ +
+
+SLATE_GREY = 'SlateGrey'
+
+ +
+
+SNOW = 'Snow'
+
+ +
+
+SPRING_GREEN = 'SpringGreen'
+
+ +
+
+STEEL_BLUE = 'SteelBlue'
+
+ +
+
+TAN = 'Tan'
+
+ +
+
+TEAL = 'teal'
+
+ +
+
+TEAL_BLUE = 'TealBlue'
+
+ +
+
+THISTLE = 'Thistle'
+
+ +
+
+TOMATO = 'Tomato'
+
+ +
+
+TURQUOISE = 'Turquoise'
+
+ +
+
+VIOLET = 'violet'
+
+ +
+
+VIOLET_RED = 'VioletRed'
+
+ +
+
+WHEAT = 'Wheat'
+
+ +
+
+WHITE = 'white'
+
+ +
+
+WHITE_SMOKE = 'WhiteSmoke'
+
+ +
+
+WILD_STRAWBERRY = 'WildStrawberry'
+
+ +
+
+YELLOW = 'yellow'
+
+ +
+
+YELLOW_GREEN = 'YellowGreen'
+
+ +
+
+YELLOW_ORANGE = 'YellowOrange'
+
+ +
+
+property ansi_code: str
+
+ +
+
+static reset(*, file: IO[str] = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>) None[source]
+
+ +
+
+static reset_code() str[source]
+
+ +
+
+set(*, file: IO[str] = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>) None[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.formatter.html b/pyk/api/pyk.kast.formatter.html new file mode 100644 index 00000000000..ad2a0713a29 --- /dev/null +++ b/pyk/api/pyk.kast.formatter.html @@ -0,0 +1,161 @@ + + + + + + + pyk.kast.formatter module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.formatter module

+
+
+class Formatter(definition: KDefinition, *, indent: int = 0, brackets: bool = True)[source]
+

Bases: object

+
+
+definition: KDefinition
+
+ +
+
+format(term: KInner) str[source]
+
+ +
+ +
+
+add_brackets(definition: KDefinition, term: KInner) KInner[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.html b/pyk/api/pyk.kast.html new file mode 100644 index 00000000000..3c616992b62 --- /dev/null +++ b/pyk/api/pyk.kast.html @@ -0,0 +1,1312 @@ + + + + + + + pyk.kast package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast package

+
+

Submodules

+
+ +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.inner.html b/pyk/api/pyk.kast.inner.html new file mode 100644 index 00000000000..7a9bbab5945 --- /dev/null +++ b/pyk/api/pyk.kast.inner.html @@ -0,0 +1,871 @@ + + + + + + + pyk.kast.inner module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.inner module

+
+
+final class KApply(label: str | KLabel, args: Iterable[KInner])[source]
+
+final class KApply(label: str | KLabel, *args: KInner)
+

Bases: KInner

+

Represent the application of a KLabel in a K AST to arguments.

+
+
+__init__(label: str | KLabel, args: Iterable[KInner])[source]
+
+__init__(label: str | KLabel, *args: KInner)
+

Construct a new KApply given the input KLabel or str, applied to arguments.

+
+ +
+
+args: tuple[KInner, ...]
+
+ +
+
+property arity: int
+

Return the count of the arguments.

+
+ +
+
+property is_cell: bool
+

Return whether this is a cell-label application (based on heuristic about label names).

+
+ +
+
+label: KLabel
+
+ +
+
+let(*, label: str | KLabel | None = None, args: Iterable[KInner] | None = None) KApply[source]
+

Return a copy of this KApply with either the label or the arguments updated.

+
+ +
+
+let_terms(terms: Iterable[KInner]) KApply[source]
+
+ +
+
+match(term: KInner) Subst | None[source]
+
+ +
+
+property terms: tuple[KInner, ...]
+
+ +
+ +
+
+final class KAs(pattern: KInner, alias: KInner)[source]
+

Bases: KInner

+

Represent a K #as pattern in the K AST format, with the original pattern and the variabl alias.

+
+
+__init__(pattern: KInner, alias: KInner)[source]
+

Construct a new KAs given the original pattern and the alias.

+
+ +
+
+alias: KInner
+
+ +
+
+let(*, pattern: KInner | None = None, alias: KInner | None = None) KAs[source]
+

Return a copy of this KAs with potentially the pattern or alias updated.

+
+ +
+
+let_terms(terms: Iterable[KInner]) KAs[source]
+
+ +
+
+match(term: KInner) Subst | None[source]
+
+ +
+
+pattern: KInner
+
+ +
+
+property terms: tuple[KInner, KInner]
+
+ +
+ +
+
+class KInner[source]
+

Bases: KAst

+

Represent the AST of a given K inner term.

+

This class represents the AST of a given term. +The nodes in the AST should be coming from a given KDefinition, so that they can be checked for well-typedness.

+
+
+static from_dict(dct: Mapping[str, Any]) KInner[source]
+

Deserialize a given KInner into a more specific type from a dictionary.

+
+ +
+
+static from_json(s: str) KInner[source]
+
+ +
+
+abstract let_terms(terms: Iterable[KInner]) KI[source]
+

Set children of this given KInner.

+
+ +
+
+final map_inner(f: Callable[[KInner], KInner]) KI[source]
+

Apply a transformation to all children of this given KInner.

+
+ +
+
+abstract match(term: KInner) Subst | None[source]
+

Perform syntactic pattern matching and return the substitution.

+
+
Parameters:
+

term – Term to match.

+
+
Returns:
+

A substitution instantiating self to term if one exists, None otherwise.

+
+
+
+ +
+
+abstract property terms: tuple[KInner, ...]
+

Returns the children of this given KInner.

+
+ +
+
+final to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KLabel(name: str, params: Iterable[str | KSort])[source]
+
+final class KLabel(name: str, *params: str | KSort)
+

Bases: KAst

+

Represents a symbol that can be applied in a K AST, potentially with sort parameters.

+
+
+__init__(name: str, params: Iterable[str | KSort])[source]
+
+__init__(name: str, *params: str | KSort)
+

Construct a new KLabel, with optional sort parameters.

+
+ +
+
+__iter__() Iterator[str | KSort][source]
+

Return this symbol as iterator with the name as the head and the parameters as the tail.

+
+ +
+
+apply(args: Iterable[KInner]) KApply[source]
+
+apply(*args: KInner) KApply
+

Construct a KApply with this KLabel as the AST head and the supplied parameters as the arguments.

+
+ +
+
+static from_dict(d: Mapping[str, Any]) KLabel[source]
+
+ +
+
+let(*, name: str | None = None, params: Iterable[str | KSort] | None = None) KLabel[source]
+

Return a copy of this KLabel with potentially the name or sort parameters updated.

+
+ +
+
+name: str
+
+ +
+
+params: tuple[KSort, ...]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KRewrite(lhs: KInner, rhs: KInner)[source]
+

Bases: KInner

+

Represent a K rewrite in the K AST.

+
+
+__init__(lhs: KInner, rhs: KInner)[source]
+

Construct a KRewrite given the LHS (left-hand-side) and RHS (right-hand-side) to use.

+
+ +
+
+__iter__() Iterator[KInner][source]
+

Return a two-element iterator with the LHS first and RHS second.

+
+ +
+
+apply(term: KInner) KInner[source]
+

Attempt rewriting once at every position in a term bottom-up.

+
+
Parameters:
+

term – Term to rewrite.

+
+
Returns:
+

The term with rewrites applied at every node once starting from the bottom.

+
+
+
+ +
+
+apply_top(term: KInner) KInner[source]
+

Rewrite a given term at the top.

+
+
Parameters:
+

term – Term to rewrite.

+
+
Returns:
+

The term with the rewrite applied once at the top.

+
+
+
+ +
+
+let(*, lhs: KInner | None = None, rhs: KInner | None = None) KRewrite[source]
+

Return a copy of this KRewrite with potentially the LHS or RHS updated.

+
+ +
+
+let_terms(terms: Iterable[KInner]) KRewrite[source]
+
+ +
+
+lhs: KInner
+
+ +
+
+match(term: KInner) Subst | None[source]
+
+ +
+
+replace(term: KInner) KInner[source]
+

Similar to apply but using exact syntactic matching instead of pattern matching.

+
+ +
+
+replace_top(term: KInner) KInner[source]
+

Similar to apply_top but using exact syntactic matching instead of pattern matching.

+
+ +
+
+rhs: KInner
+
+ +
+
+property terms: tuple[KInner, KInner]
+
+ +
+ +
+
+final class KSequence(items: Iterable[KInner])[source]
+
+final class KSequence(*items: KInner)
+

Bases: KInner, Sequence[KInner]

+

Represent a associative list of K as a cons-list of KItem for sequencing computation in K AST format.

+
+
+__init__(items: Iterable[KInner])[source]
+
+__init__(*items: KInner)
+

Construct a new KSequence given the arguments.

+
+ +
+
+property arity: int
+

Return the count of KSequence items.

+
+ +
+
+items: tuple[KInner, ...]
+
+ +
+
+let(*, items: Iterable[KInner] | None = None) KSequence[source]
+

Return a copy of this KSequence with the items potentially updated.

+
+ +
+
+let_terms(terms: Iterable[KInner]) KSequence[source]
+
+ +
+
+match(term: KInner) Subst | None[source]
+
+ +
+
+property terms: tuple[KInner, ...]
+
+ +
+ +
+
+final class KSort(name: str)[source]
+

Bases: KAst

+

Store a simple sort name.

+
+
+__init__(name: str)[source]
+

Construct a new sort given the name.

+
+ +
+
+static from_dict(d: Mapping[str, Any]) KSort[source]
+
+ +
+
+let(*, name: str | None = None) KSort[source]
+

Return a new KSort with the name potentially updated.

+
+ +
+
+name: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KToken(token: str, sort: str | KSort)[source]
+

Bases: KInner

+

Represent a domain-value in K AST.

+
+
+__init__(token: str, sort: str | KSort)[source]
+

Construct a new KToken with a given string representation in the supplied sort.

+
+ +
+
+let(*, token: str | None = None, sort: str | KSort | None = None) KToken[source]
+

Return a copy of the KToken with the token or sort potentially updated.

+
+ +
+
+let_terms(terms: Iterable[KInner]) KToken[source]
+
+ +
+
+match(term: KInner) Subst | None[source]
+
+ +
+
+sort: KSort
+
+ +
+
+property terms: tuple[()]
+
+ +
+
+token: str
+
+ +
+ +
+
+final class KVariable(name: str, sort: str | KSort | None = None)[source]
+

Bases: KInner

+

Represent a logical variable in a K AST, with a name and optionally a sort.

+
+
+__init__(name: str, sort: str | KSort | None = None)[source]
+

Construct a new KVariable with a given name and optional sort.

+
+ +
+
+__lt__(other: Any) bool[source]
+

Lexicographic comparison of KVariable based on name for sorting.

+
+ +
+
+let(*, name: str | None = None, sort: str | KSort | None = None) KVariable[source]
+

Return a copy of this KVariable with potentially the name or sort updated.

+
+ +
+
+let_sort(sort: KSort | None) KVariable[source]
+

Return a copy of this KVariable with just the sort updated.

+
+ +
+
+let_terms(terms: Iterable[KInner]) KVariable[source]
+
+ +
+
+match(term: KInner) Subst[source]
+
+ +
+
+name: str
+
+ +
+
+sort: KSort | None
+
+ +
+
+property terms: tuple[()]
+
+ +
+ +
+
+class Subst(subst: Mapping[str, KInner] = FrozenDict({}))[source]
+

Bases: Mapping[str, KInner]

+

Represents a substitution, which is a binding of variables to values of KInner.

+
+
+__call__(term: KInner) KInner[source]
+

Overload for Subst.apply.

+
+ +
+
+__getitem__(key: str) KInner[source]
+

Get the KInner associated with the given variable name from the underlying Subst mapping.

+
+ +
+
+__init__(subst: Mapping[str, KInner] = FrozenDict({}))[source]
+

Construct a new Subst given a mapping fo variable names to KInner.

+
+ +
+
+__iter__() Iterator[str][source]
+

Return the underlying Subst mapping as an iterator.

+
+ +
+
+__len__() int[source]
+

Return the length of the underlying Subst mapping.

+
+ +
+
+__mul__(other: Subst) Subst[source]
+

Overload for Subst.compose.

+
+ +
+
+apply(term: KInner) KInner[source]
+

Apply the given substitution to KInner, replacing free variable occurances with their valuations defined in this Subst.

+
+ +
+
+compose(other: Subst) Subst[source]
+

Union two substitutions together, preferring the assignments in self if present in both.

+
+ +
+
+static from_dict(d: Mapping[str, Any]) Subst[source]
+

Deserialize a Subst from a given dictionary representing it.

+
+ +
+
+static from_pred(pred: KInner) Subst[source]
+

Given a generic matching logic predicate, attempt to extract a Subst from it.

+
+ +
+
+property is_identity: bool
+
+ +
+
+minimize() Subst[source]
+

Return a new substitution with any identity items removed.

+
+ +
+
+property ml_pred: KInner
+

Turn this Subst into a matching logic predicate using {_#Equals_} operator.

+
+ +
+
+property pred: KInner
+

Turn this Subst into a boolean predicate using _==K_ operator.

+
+ +
+
+to_dict() dict[str, Any][source]
+

Serialize a Subst to a dictionary representation.

+
+ +
+
+unapply(term: KInner) KInner[source]
+

Replace occurances of valuations from this Subst with the variables that they are assigned to.

+
+ +
+
+union(other: Subst) Subst | None[source]
+

Union two substitutions together, failing with None if there are conflicting assignments.

+
+ +
+ +
+
+bottom_up(f: Callable[[KInner], KInner], kinner: KInner) KInner[source]
+

Transform a term from the bottom moving upward.

+
+
Parameters:
+
    +
  • f – Function to apply to each node in the term.

  • +
  • kinner – Original term to transform.

  • +
+
+
Returns:
+

The transformed term.

+
+
+
+ +
+
+bottom_up_with_summary(f: Callable[[KInner, list[A]], tuple[KInner, A]], kinner: KInner) tuple[KInner, A][source]
+

Traverse a term from the bottom moving upward, collecting information about it.

+
+
Parameters:
+
    +
  • f – Function to apply at each AST node to transform it and collect summary.

  • +
  • kinner – Term to apply this transformation to.

  • +
+
+
Returns:
+

A tuple of the transformed term and the summarized results.

+
+
+
+ +
+
+build_assoc(unit: KInner, label: str | KLabel, terms: Iterable[KInner]) KInner[source]
+

Build an associative list.

+
+
Parameters:
+
    +
  • unit – The empty variant of the given list type.

  • +
  • label – The associative list join operator.

  • +
  • terms – List (potentially empty) of terms to join in an associative list.

  • +
+
+
Returns:
+

The list of terms joined using the supplied label, or the unit element in the case of no terms.

+
+
+
+ +
+
+build_cons(unit: KInner, label: str | KLabel, terms: Iterable[KInner]) KInner[source]
+

Build a cons list.

+
+
Parameters:
+
    +
  • unit – The empty variant of the given list type.

  • +
  • label – The associative list join operator.

  • +
  • terms – List (potentially empty) of terms to join in an associative list.

  • +
+
+
Returns:
+

The list of terms joined using the supplied label, terminated with the unit element.

+
+
+
+ +
+
+collect(callback: Callable[[KInner], None], kinner: KInner) None[source]
+

Collect information about a given term traversing it bottom-up using a function with side effects.

+
+
Parameters:
+
    +
  • callback – Function with the side effect of collecting desired information at each AST node.

  • +
  • kinner – The term to traverse.

  • +
+
+
+
+ +
+
+flatten_label(label: str, kast: KInner) list[KInner][source]
+

Given a cons list, return a flat Python list of the elements.

+
+
Parameters:
+
    +
  • label – The cons operator.

  • +
  • kast – The cons list to flatten.

  • +
+
+
Returns:
+

Items of cons list.

+
+
+
+ +
+
+top_down(f: Callable[[KInner], KInner], kinner: KInner) KInner[source]
+

Transform a term from the top moving downward.

+
+
Parameters:
+
    +
  • f – Function to apply to each node in the term.

  • +
  • kinner – Original term to transform.

  • +
+
+
Returns:
+

The transformed term.

+
+
+
+ +
+
+var_occurrences(term: KInner) dict[str, list[KVariable]][source]
+

Collect the list of occurrences of each variable in a given term.

+
+
Parameters:
+

term – Term to collect variables from.

+
+
Returns:
+

A dictionary with variable names as keys and the list of all occurrences of the variable as values.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.kast.html b/pyk/api/pyk.kast.kast.html new file mode 100644 index 00000000000..c5c1384296c --- /dev/null +++ b/pyk/api/pyk.kast.kast.html @@ -0,0 +1,171 @@ + + + + + + + pyk.kast.kast module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.kast module

+
+
+class KAst[source]
+

Bases: ABC

+
+
+property hash: str
+
+ +
+
+abstract to_dict() dict[str, Any][source]
+
+ +
+
+final to_json() str[source]
+
+ +
+
+static version() int[source]
+
+ +
+ +
+
+kast_term(dct: Mapping[str, Any]) Mapping[str, Any][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.lexer.html b/pyk/api/pyk.kast.lexer.html new file mode 100644 index 00000000000..5fb733cf721 --- /dev/null +++ b/pyk/api/pyk.kast.lexer.html @@ -0,0 +1,257 @@ + + + + + + + pyk.kast.lexer module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.lexer module

+
+
+class State(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+DEFAULT = 1
+
+ +
+
+SORT = 2
+
+ +
+ +
+
+class Token(text, type)[source]
+

Bases: NamedTuple

+
+
+text: str
+

Alias for field number 0

+
+ +
+
+type: TokenType
+

Alias for field number 1

+
+ +
+ +
+
+class TokenType(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+COLON = 5
+
+ +
+
+COMMA = 4
+
+ +
+
+DOTK = 7
+
+ +
+
+DOTKLIST = 8
+
+ +
+
+EOF = 1
+
+ +
+
+ID = 10
+
+ +
+
+KLABEL = 13
+
+ +
+
+KSEQ = 6
+
+ +
+
+LPAREN = 2
+
+ +
+
+RPAREN = 3
+
+ +
+
+SORT = 12
+
+ +
+
+STRING = 14
+
+ +
+
+TOKEN = 9
+
+ +
+
+VARIABLE = 11
+
+ +
+ +
+
+lexer(text: Iterable[str]) Iterator[Token][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.manip.html b/pyk/api/pyk.kast.manip.html new file mode 100644 index 00000000000..85d73c5d557 --- /dev/null +++ b/pyk/api/pyk.kast.manip.html @@ -0,0 +1,525 @@ + + + + + + + pyk.kast.manip module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.manip module

+
+
+abstract_term_safely(kast: KInner, base_name: str = 'V', sort: KSort | None = None, existing_var_names: set[str] | None = None) KVariable[source]
+
+ +
+
+apply_existential_substitutions(state: KInner, constraints: Iterable[KInner]) tuple[KInner, Iterable[KInner]][source]
+
+ +
+
+bool_to_ml_pred(kast: KInner) KInner[source]
+
+ +
+
+build_claim(claim_id: str, init_config: KInner, final_config: KInner, init_constraints: Iterable[KInner] = (), final_constraints: Iterable[KInner] = (), keep_vars: Iterable[str] = ()) tuple[KClaim, Subst][source]
+

Return a KClaim between the supplied initial and final states.

+
+
Parameters:
+
    +
  • claim_id – Label to give the claim.

  • +
  • init_config – State to put on LHS of the rule.

  • +
  • final_config – State to put on RHS of the rule.

  • +
  • init_constraints – Constraints to use as requires clause.

  • +
  • final_constraints – Constraints to use as ensures clause.

  • +
  • keep_vars – Variables to leave in the side-conditions even if not bound in the configuration.

  • +
+
+
Returns:
+

A tuple (claim, var_map) where

+
    +
  • claim: A KClaim with variable naming conventions applied +so that it should be parseable by the K Frontend.

  • +
  • var_map: The variable renamings applied to make the claim parseable by the K Frontend +(which can be undone to recover the original variables).

  • +
+

+
+
+
+ +
+
+build_rule(rule_id: str, init_config: KInner, final_config: KInner, init_constraints: Iterable[KInner] = (), final_constraints: Iterable[KInner] = (), priority: int | None = None, keep_vars: Iterable[str] = ()) tuple[KRule, Subst][source]
+

Return a KRule between the supplied initial and final states.

+
+
Parameters:
+
    +
  • rule_id – Label to give the rule.

  • +
  • init_config – State to put on LHS of the rule.

  • +
  • final_config – State to put on RHS of the rule.

  • +
  • init_constraints – Constraints to use as requires clause.

  • +
  • final_constraints – Constraints to use as ensures clause.

  • +
  • keep_vars – Variables to leave in the side-conditions even if not bound in the configuration.

  • +
+
+
Returns:
+

A tuple (rule, var_map) where

+
    +
  • rule: A KRule with variable naming conventions applied +so that it should be parseable by the K Frontend.

  • +
  • var_map: The variable renamings applied to make the rule parseable by the K Frontend +(which can be undone to recover the original variables).

  • +
+

+
+
+
+ +
+
+cell_label_to_var_name(label: str) str[source]
+

Return a variable name based on a cell label.

+
+ +
+
+collapse_dots(kast: KInner) KInner[source]
+

Given a configuration with structural frames , minimize the structural frames needed.

+
+
Parameters:
+

kast – A configuration, potentially with structural frames.

+
+
Returns:
+

The same configuration, with the amount of structural framing minimized.

+
+
+
+ +
+
+count_vars(term: KInner) Counter[str][source]
+
+ +
+
+extract_cells(kast: KInner, keep_cells: Collection[str]) KInner[source]
+
+ +
+
+extract_lhs(term: KInner) KInner[source]
+
+ +
+
+extract_rhs(term: KInner) KInner[source]
+
+ +
+
+extract_subst(term: KInner) tuple[Subst, KInner][source]
+
+ +
+
+free_vars(kast: KInner) frozenset[str][source]
+
+ +
+
+if_ktype(ktype: type[KI], then: Callable[[KI], KInner]) Callable[[KInner], KInner][source]
+
+ +
+
+inline_cell_maps(kast: KInner) KInner[source]
+

Ensure that cell map collections are printed nicely, not as Maps.

+
+
Parameters:
+

kast – A KAST term.

+
+
Returns:
+

The KAST term with cell maps inlined.

+
+
+
+ +
+
+is_anon_var(kast: KInner) bool[source]
+
+ +
+
+is_spurious_constraint(term: KInner) bool[source]
+
+ +
+
+is_term_like(kast: KInner) bool[source]
+
+ +
+
+labels_to_dots(kast: KInner, labels: Collection[str]) KInner[source]
+

Abstract specific labels for printing.

+
+
Parameters:
+
    +
  • kast – A term.

  • +
  • labels – List of labels to abstract.

  • +
+
+
+
+
Returns

The term with labels abstracted.

+
+
+
+ +
+
+minimize_rule(rule: RL, keep_vars: Iterable[str] = ()) RL[source]
+

Minimize a K rule or claim for pretty-printing.

+
    +
  • Variables only used once will be removed.

  • +
  • Unused cells will be abstracted.

  • +
  • Useless side-conditions will be attempted to be removed.

  • +
+
+
Parameters:
+

rule – A K rule or claim.

+
+
Returns:
+

The rule or claim, minimized.

+
+
+
+ +
+
+minimize_term(term: KInner, keep_vars: Iterable[str] = (), abstract_labels: Collection[str] = (), keep_cells: Collection[str] = ()) KInner[source]
+

Minimize a K term for pretty-printing.

+
    +
  • Variables only used once will be removed.

  • +
  • Unused cells will be abstracted.

  • +
  • Useless conditions will be attempted to be removed.

  • +
+
+
Parameters:
+

kast – A term.

+
+
Returns:
+

The term, minimized.

+
+
+
+ +
+
+ml_pred_to_bool(kast: KInner, unsafe: bool = False) KInner[source]
+
+ +
+
+no_cell_rewrite_to_dots(term: KInner) KInner[source]
+

Transform a given term by replacing the contents of each cell with dots if the LHS and RHS are the same.

+

This function recursively traverses the cells in a term. +When it finds a cell whose left-hand side (LHS) is identical to its right-hand side (RHS), +it replaces the cell’s contents with a predefined DOTS.

+
+
Parameters:
+

term – The term to be transformed.

+
+
Returns:
+

The transformed term, where specific cell contents have been replaced with dots.

+
+
+
+ +
+
+normalize_constraints(constraints: Iterable[KInner]) tuple[KInner, ...][source]
+
+ +
+
+normalize_ml_pred(pred: KInner) KInner[source]
+
+ +
+
+on_attributes(kast: W, f: Callable[[KAtt], KAtt]) W[source]
+
+ +
+
+propagate_up_constraints(k: KInner) KInner[source]
+
+ +
+
+push_down_rewrites(kast: KInner) KInner[source]
+
+ +
+
+remove_attrs(term: KInner) KInner[source]
+
+ +
+
+remove_generated_cells(term: KInner) KInner[source]
+

Remove <generatedTop> and <generatedCounter> from a configuration.

+
+
Parameters:
+

term – A term.

+
+
Returns:
+

The term with those cells removed.

+
+
+
+ +
+
+remove_semantic_casts(kast: KInner) KInner[source]
+

Remove injected #SemanticCast* nodes in AST.

+
+
Parameters:
+

kast – A term (possibly) containing automatically injected #SemanticCast* KApply nodes.

+
+
Returns:
+

The term without the #SemanticCast* nodes.

+
+
+
+ +
+
+remove_source_map(definition: KDefinition) KDefinition[source]
+
+ +
+
+remove_useless_constraints(constraints: Iterable[KInner], initial_vars: Iterable[str]) list[KInner][source]
+

Remove constraints that do not depend on a given iterable of variables (directly or indirectly).

+
+
Parameters:
+
    +
  • constraints – Iterable of constraints to filter.

  • +
  • initial_vars – Initial iterable of variables to keep constraints for.

  • +
+
+
Returns:
+

A list of constraints with only those constraints that contain the initial variables, +or variables that depend on those through other constraints in the list.

+
+
+
+ +
+
+rename_generated_vars(term: KInner) KInner[source]
+
+ +
+
+replace_rewrites_with_implies(kast: KInner) KInner[source]
+
+ +
+
+set_cell(constrained_term: KInner, cell_variable: str, cell_value: KInner) KInner[source]
+
+ +
+
+simplify_bool(k: KInner) KInner[source]
+
+ +
+
+sort_ac_collections(kast: KInner) KInner[source]
+
+ +
+
+sort_assoc_label(label: str, kast: KInner) KInner[source]
+
+ +
+
+split_config_and_constraints(kast: KInner) tuple[KInner, KInner][source]
+
+ +
+
+split_config_from(configuration: KInner) tuple[KInner, dict[str, KInner]][source]
+

Split the substitution from a given configuration.

+

Given an input configuration config, will return a tuple (symbolic_config, subst), where:

+
+
    +
  1. config == substitute(symbolic_config, subst)

  2. +
  3. symbolic_config is the same configuration structure, but where the contents of leaf cells is replaced with a fresh KVariable.

  4. +
  5. subst is the substitution for the generated KVariables back to the original configuration contents.

  6. +
+
+
+ +
+
+undo_aliases(definition: KDefinition, kast: KInner) KInner[source]
+
+ +
+
+useless_vars_to_dots(kast: KInner, keep_vars: Iterable[str] = ()) KInner[source]
+

Structurally abstract away useless variables.

+
+
Parameters:
+
    +
  • kast – A term.

  • +
  • keep_vars – Iterable of variables to keep.

  • +
+
+
Returns:
+

The term with the useless varables structurally abstracted.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.markdown.html b/pyk/api/pyk.kast.markdown.html new file mode 100644 index 00000000000..ad42600ebaf --- /dev/null +++ b/pyk/api/pyk.kast.markdown.html @@ -0,0 +1,264 @@ + + + + + + + pyk.kast.markdown module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.markdown module

+
+
+final class And(ops: 'tuple[Selector, ...]')[source]
+

Bases: Selector

+
+
+eval(atoms: Container[str]) bool[source]
+
+ +
+
+ops: tuple[Selector, ...]
+
+ +
+ +
+
+final class Atom(name: 'str')[source]
+

Bases: Selector

+
+
+eval(atoms: Container[str]) bool[source]
+
+ +
+
+name: str
+
+ +
+ +
+
+class CodeBlock(info, code)[source]
+

Bases: NamedTuple

+
+
+code: str
+

Alias for field number 1

+
+ +
+
+info: str
+

Alias for field number 0

+
+ +
+ +
+
+final class Not(op: 'Selector')[source]
+

Bases: Selector

+
+
+eval(atoms: Container[str]) bool[source]
+
+ +
+
+op: Selector
+
+ +
+ +
+
+final class Or(ops: 'tuple[Selector, ...]')[source]
+

Bases: Selector

+
+
+eval(atoms: Container[str]) bool[source]
+
+ +
+
+ops: tuple[Selector, ...]
+
+ +
+ +
+
+class Selector[source]
+

Bases: ABC

+
+
+abstract eval(atoms: Container[str]) bool[source]
+
+ +
+ +
+
+class SelectorParser(selector: str)[source]
+

Bases: object

+
+
+parse() Selector[source]
+
+ +
+ +
+
+code_blocks(text: str) Iterator[CodeBlock][source]
+
+ +
+
+parse_tags(text: str) set[str][source]
+
+ +
+
+select_code_blocks(text: str, selector: str | None = None) str[source]
+
+ +
+
+selector_lexer(it: Iterable[str]) Iterator[str][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.outer.html b/pyk/api/pyk.kast.outer.html new file mode 100644 index 00000000000..6850b879bce --- /dev/null +++ b/pyk/api/pyk.kast.outer.html @@ -0,0 +1,1240 @@ + + + + + + + pyk.kast.outer module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.outer module

+
+
+class KAssoc(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+LEFT = 'Left'
+
+ +
+
+NON_ASSOC = 'NonAssoc'
+
+ +
+
+RIGHT = 'Right'
+
+ +
+ +
+
+final class KBubble(sentence_type: str, contents: str, att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents an unparsed chunk of AST in user-defined syntax.

+
+
+att: KAtt
+
+ +
+
+contents: str
+
+ +
+
+let(*, sentence_type: str | None = None, contents: str | None = None, att: KAtt | None = None) KBubble[source]
+
+ +
+
+let_att(att: KAtt) KBubble[source]
+
+ +
+
+sentence_type: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KClaim(body: KInner, requires: KInner = KToken(token='true', sort=KSort(name='Bool')), ensures: KInner = KToken(token='true', sort=KSort(name='Bool')), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KRuleLike

+

Represents a K claim, typically a transition with pre/post-conditions.

+
+
+att: KAtt
+
+ +
+
+body: KInner
+
+ +
+
+property dependencies: list[str]
+

Return the dependencies of this claim (list of other claims needed to help prove this one or speed up this ones proof).

+
+ +
+
+ensures: KInner
+
+ +
+
+property is_circularity: bool
+

Return whether this claim is a circularity (must be used coinductively to prove itself).

+
+ +
+
+property is_trusted: bool
+

Return whether this claim is trusted (does not need to be proven to be considered true).

+
+ +
+
+let(*, body: KInner | None = None, requires: KInner | None = None, ensures: KInner | None = None, att: KAtt | None = None) KClaim[source]
+
+ +
+
+let_att(att: KAtt) KClaim[source]
+
+ +
+
+requires: KInner
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KContext(body: KInner, requires: KInner = KToken(token='true', sort=KSort(name='Bool')), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a K evaluation context, used for isolating chunks of computation and focusing on them.

+
+
+att: KAtt
+
+ +
+
+body: KInner
+
+ +
+
+let(*, body: KInner | None = None, requires: KInner | None = None, att: KAtt | None = None) KContext[source]
+
+ +
+
+let_att(att: KAtt) KContext[source]
+
+ +
+
+requires: KInner
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KDefinition(main_module_name: str, all_modules: Iterable[KFlatModule], requires: Iterable[KRequire] = (), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KOuter, WithKAtt, Iterable[KFlatModule]

+

Represents an entire K definition, with file imports and modules in place, and a given module called out as main module.

+
+
+add_cell_map_items(kast: KInner) KInner[source]
+

Wrap cell-map items in the syntactical wrapper that the frontend generates for them (see KDefinition.remove_cell_map_items).

+
+ +
+
+add_ksequence_under_k_productions(kast: KInner) KInner[source]
+

Inject a KSequence under the given term if it’s a subsort of K and is being used somewhere that sort K is expected (determined by inspecting the definition).

+
+ +
+
+add_sort_params(kast: KInner) KInner[source]
+

Return a given term with the sort parameters on the KLabel filled in (which may be missing because of how the frontend works), best effort.

+
+ +
+
+property alias_rules: tuple[KRule, ...]
+

Returns the KRule sentences which are alias transitively imported by the main module of this definition.

+
+ +
+
+property all_module_names: tuple[str, ...]
+

Return the name of all modules in this KDefinition.

+
+ +
+
+all_modules: tuple[KFlatModule, ...]
+
+ +
+
+property all_modules_dict: dict[str, KFlatModule]
+

Returns a dictionary of all the modules (with names as keys) defined in this definition.

+
+ +
+
+att: KAtt
+
+ +
+
+property brackets: FrozenDict[KSort, KProduction]
+
+ +
+
+property cell_collection_productions: tuple[KProduction, ...]
+

Returns the KProduction which are cell collection declarations transitively imported by the main module of this definition.

+
+ +
+
+property constructors: tuple[KProduction, ...]
+

Returns the KProduction which are constructor declarations transitively imported by the main module of this definition.

+
+ +
+
+empty_config(sort: KSort) KInner[source]
+

Given a cell-sort, compute an “empty” configuration for it (all the constructor structure of the configuration in place, but variables in cell positions).

+
+ +
+
+static from_dict(d: Mapping[str, Any]) KDefinition[source]
+
+ +
+
+property functions: tuple[KProduction, ...]
+

Returns the KProduction which are function declarations transitively imported by the main module of this definition.

+
+ +
+
+greatest_common_subsort(sort1: KSort, sort2: KSort) KSort | None[source]
+

Compute the greatest-lower-bound of two sorts in the sort lattice using very simple approach, returning None on failure (not necessarily meaning there isn’t a glb).

+
+ +
+
+init_config(sort: KSort) KInner[source]
+

Return an initialized configuration as the user declares it in the semantics, complete with configuration variables in place.

+
+ +
+
+instantiate_cell_vars(term: KInner) KInner[source]
+

Given a partially-complete configuration, find positions where there could be more cell structure but instead there are variables and instantiate more cell structure.

+
+ +
+
+least_common_supersort(sort1: KSort, sort2: KSort) KSort | None[source]
+

Compute the lowest-upper-bound of two sorts in the sort lattice using very simple approach, returning None on failure (not necessarily meaning there isn’t a lub).

+
+ +
+
+property left_assocs: FrozenDict[str, frozenset[str]]
+
+ +
+
+let(*, main_module_name: str | None = None, all_modules: Iterable[KFlatModule] | None = None, requires: Iterable[KRequire] | None = None, att: KAtt | None = None) KDefinition[source]
+
+ +
+
+let_att(att: KAtt) KDefinition[source]
+
+ +
+
+property macro_rules: tuple[KRule, ...]
+

Returns the KRule sentences which are alias or macro transitively imported by the main module of this definition.

+
+ +
+
+main_module: InitVar[KFlatModule]
+
+ +
+
+main_module_name: str
+
+ +
+
+module(name: str) KFlatModule[source]
+

Return the module associated with a given name.

+
+ +
+
+property module_names: tuple[str, ...]
+

Return the list of module names transitively imported by the main module of this definition.

+
+ +
+
+property modules: tuple[KFlatModule, ...]
+

Returns the list of modules transitively imported by th emain module of this definition.

+
+ +
+
+property overloads: FrozenDict[str, frozenset[str]]
+

Return a mapping from symbols to the sets of symbols that overload them.

+
+ +
+
+property priorities: FrozenDict[str, frozenset[str]]
+

Return a mapping from symbols to the sets of symbols with lower priority.

+
+ +
+
+production_for_cell_sort(sort: KSort) KProduction[source]
+

Return the production for a given cell-declaration syntax from the cell’s declared sort.

+
+ +
+
+property productions: tuple[KProduction, ...]
+

Returns the KProduction transitively imported by the main module of this definition.

+
+ +
+
+remove_cell_map_items(kast: KInner) KInner[source]
+

Remove cell-map syntactical wrapper items that the frontend generates (see KDefinition.add_cell_map_items).

+
+ +
+
+requires: tuple[KRequire, ...]
+
+ +
+
+resolve_sorts(label: KLabel) tuple[KSort, tuple[KSort, ...]][source]
+

Compute the result and argument sorts for a given production based on a KLabel.

+
+ +
+
+property right_assocs: FrozenDict[str, frozenset[str]]
+
+ +
+
+property rules: tuple[KRule, ...]
+

Returns the KRule sentences transitively imported by the main module of this definition.

+
+ +
+
+property semantic_rules: tuple[KRule, ...]
+

Returns the KRule sentences which are topmost transitively imported by the main module of this definition.

+
+ +
+
+property sentence_by_unique_id: dict[str, KSentence]
+
+ +
+
+sort(kast: KInner) KSort | None[source]
+

Compute the sort of a given term using best-effort simple sorting algorithm, returns None on algorithm failure.

+
+ +
+
+sort_strict(kast: KInner) KSort[source]
+

Compute the sort of a given term using best-effort simple sorting algorithm, dies on algorithm failure.

+
+ +
+
+sort_vars(kast: KInner, sort: KSort | None = None) KInner[source]
+

Return the original term with all the variables having there sorts added or specialized, failing if recieving conflicting sorts for a given variable.

+
+ +
+
+property subsort_table: FrozenDict[KSort, frozenset[KSort]]
+

Return a mapping from sorts to all their proper subsorts.

+
+ +
+
+subsorts(sort: KSort) frozenset[KSort][source]
+

Return all subsorts of a given KSort by inspecting the definition.

+
+ +
+
+property symbols: FrozenDict[str, KProduction]
+
+ +
+
+property syntax_productions: tuple[KProduction, ...]
+

Returns the KProduction which are syntax declarations transitively imported by the main module of this definition.

+
+ +
+
+property syntax_symbols: FrozenDict[str, KProduction]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KFlatModule(name: str, sentences: Iterable[KSentence] = (), imports: Iterable[KImport] = (), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KOuter, WithKAtt, Iterable[KSentence]

+

Represents a K module, with a name, list of imports, and list of sentences.

+
+
+att: KAtt
+
+ +
+
+property cell_collection_productions: tuple[KProduction, ...]
+

Return all the KProduction sentences from this module that are cell collection declarations.

+
+ +
+
+property claims: tuple[KClaim, ...]
+

Return all the KClaim declared in this module.

+
+ +
+
+property constructors: tuple[KProduction, ...]
+

Return all the KProduction sentences from this module that are constructor declarations.

+
+ +
+
+static from_dict(d: Mapping[str, Any]) KFlatModule[source]
+
+ +
+
+property functions: tuple[KProduction, ...]
+

Return all the KProduction sentences from this module that are function declarations.

+
+ +
+
+imports: tuple[KImport, ...]
+
+ +
+
+let(*, name: str | None = None, sentences: Iterable[KSentence] | None = None, imports: Iterable[KImport] | None = None, att: KAtt | None = None) KFlatModule[source]
+
+ +
+
+let_att(att: KAtt) KFlatModule[source]
+
+ +
+
+map_sentences(f: Callable[[S], S], *, of_type: type[S]) KFlatModule[source]
+
+map_sentences(f: Callable[[KSentence], KSentence], *, of_type: None = None) KFlatModule
+
+ +
+
+name: str
+
+ +
+
+property productions: tuple[KProduction, ...]
+

Return all the KProduction sentences from this module.

+
+ +
+
+property rules: tuple[KRule, ...]
+

Return all the KRule declared in this module.

+
+ +
+
+property sentence_by_unique_id: dict[str, KSentence]
+
+ +
+
+sentences: tuple[KSentence, ...]
+
+ +
+
+property syntax_productions: tuple[KProduction, ...]
+

Return all the KProduction sentences from this module that contain KLabel (are EBNF syntax declarations).

+
+ +
+
+property syntax_sorts: tuple[KSyntaxSort, ...]
+

Return all the KSyntaxSort sentences from this module.

+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KFlatModuleList(main_module: str, modules: Iterable[KFlatModule])[source]
+

Bases: KOuter

+

Represents a list of K modules, as returned by the prover parser for example, with a given module called out as the main module.

+
+
+static from_dict(d: Mapping[str, Any]) KFlatModuleList[source]
+
+ +
+
+let(*, main_module: str | None = None, modules: Iterable[KFlatModule] | None = None) KFlatModuleList[source]
+
+ +
+
+main_module: str
+
+ +
+
+modules: tuple[KFlatModule, ...]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KImport(name: str, public: bool = True)[source]
+

Bases: KOuter

+

Represents a K module import, used for inheriting all the sentences of the imported module into this one.

+
+
+static from_dict(d: Mapping[str, Any]) KImport[source]
+
+ +
+
+let(*, name: str | None = None, public: bool | None = None) KImport[source]
+
+ +
+
+name: str
+
+ +
+
+public: bool
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KNonTerminal(sort: KSort, name: str | None = None)[source]
+

Bases: KProductionItem

+

Represents a non-terminal of a given sort in EBNF productions, for defining arguments to to production.

+
+
+let(*, sort: KSort | None = None, name: str | None = None) KNonTerminal[source]
+
+ +
+
+name: str | None
+
+ +
+
+sort: KSort
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+class KOuter[source]
+

Bases: KAst

+

Represents K definitions in KAST format.

+

Outer syntax is K specific datastructures, including modules, definitions, imports, user-syntax declarations, rules, contexts, and claims.

+
+ +
+
+final class KProduction(sort: str | KSort, items: Iterable[KProductionItem] = (), params: Iterable[str | KSort] = (), klabel: str | KLabel | None = None, att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a production in K’s EBNF grammar definitions, as a sequence of ProductionItem.

+
+
+property argument_sorts: list[KSort]
+

Return the sorts of the non-terminal positions of the productions.

+
+ +
+
+property as_subsort: tuple[KSort, KSort] | None
+

Return a pair (supersort, subsort) if self is a subsort production, and None otherwise.

+
+ +
+
+att: KAtt
+
+ +
+
+property default_format: Format
+
+ +
+
+property is_prefix: bool
+

The production is of the form t* "(" (n ("," n)*)? ")".

+

Here, t is a terminal other than "(", "," or ")", and n a non-terminal.

+

Example: syntax Int ::= "mul" "(" Int "," Int ")"

+
+ +
+
+property is_record: bool
+

The production is prefix with labelled nonterminals.

+
+ +
+
+items: tuple[KProductionItem, ...]
+
+ +
+
+klabel: KLabel | None
+
+ +
+
+let(*, sort: str | KSort | None = None, items: Iterable[KProductionItem] | None = None, params: Iterable[str | KSort] | None = None, klabel: str | KLabel | None = None, att: KAtt | None = None) KProduction[source]
+
+ +
+
+let_att(att: KAtt) KProduction[source]
+
+ +
+
+property non_terminals: tuple[KNonTerminal, ...]
+

Return the non-terminals of the production.

+
+ +
+
+params: tuple[KSort, ...]
+
+ +
+
+sort: KSort
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+class KProductionItem[source]
+

Bases: KOuter

+

Represents the elements used to declare components of productions in EBNF style.

+
+
+static from_dict(d: Mapping[str, Any]) KProductionItem[source]
+
+ +
+ +
+
+final class KRegexTerminal(regex: str)[source]
+

Bases: KProductionItem

+

Represents a regular-expression terminal in EBNF production, to be matched against input text.

+
+
+let(*, regex: str | None = None) KRegexTerminal[source]
+
+ +
+
+regex: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KRequire(require: str)[source]
+

Bases: KOuter

+

Represents a K file import of another file.

+
+
+static from_dict(d: Mapping[str, Any]) KRequire[source]
+
+ +
+
+let(*, require: str | None = None) KRequire[source]
+
+ +
+
+require: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KRule(body: KInner, requires: KInner = KToken(token='true', sort=KSort(name='Bool')), ensures: KInner = KToken(token='true', sort=KSort(name='Bool')), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KRuleLike

+

Represents a K rule definition, typically a conditional rewrite/transition.

+
+
+att: KAtt
+
+ +
+
+body: KInner
+
+ +
+
+ensures: KInner
+
+ +
+
+let(*, body: KInner | None = None, requires: KInner | None = None, ensures: KInner | None = None, att: KAtt | None = None) KRule[source]
+
+ +
+
+let_att(att: KAtt) KRule[source]
+
+ +
+
+property priority: int
+
+ +
+
+requires: KInner
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+class KRuleLike[source]
+

Bases: KSentence

+

Represents something with rule-like structure (with body, requires, and ensures clauses).

+
+
+body: KInner
+
+ +
+
+ensures: KInner
+
+ +
+
+abstract let(*, body: KInner | None = None, requires: KInner | None = None, ensures: KInner | None = None, att: KAtt | None = None) RL[source]
+
+ +
+
+requires: KInner
+
+ +
+ +
+
+class KSentence[source]
+

Bases: KOuter, WithKAtt

+

Represents an individual declaration in a K module.

+
+
+static from_dict(d: Mapping[str, Any]) KSentence[source]
+
+ +
+
+property label: str
+

Return a (hopefully) unique label associated with the given KSentence.

+
+
Returns:
+

Unique label for the given sentence, either (in order): +- User supplied label attribute (or supplied in rule label),or +- Unique identifier computed and inserted by the frontend.

+
+
+
+ +
+
+property source: str | None
+

Return the source assigned to this sentence, or None.

+
+ +
+
+property unique_id: str | None
+

Return the unique ID assigned to this sentence, or None.

+
+ +
+ +
+
+final class KSortSynonym(new_sort: KSort, old_sort: KSort, att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a sort synonym, allowing declaring a new name for a given sort.

+
+
+att: KAtt
+
+ +
+
+let(*, old_sort: KSort | None = None, new_sort: KSort | None = None, att: KAtt | None = None) KSortSynonym[source]
+
+ +
+
+let_att(att: KAtt) KSortSynonym[source]
+
+ +
+
+new_sort: KSort
+
+ +
+
+old_sort: KSort
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KSyntaxAssociativity(assoc: KAssoc, tags: Iterable[str] = frozenset({}), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a standalone declaration of operator associativity for tagged productions.

+
+
+assoc: KAssoc
+
+ +
+
+att: KAtt
+
+ +
+
+let(*, assoc: KAssoc | None = None, tags: Iterable[str] | None = None, att: KAtt | None = None) KSyntaxAssociativity[source]
+
+ +
+
+let_att(att: KAtt) KSyntaxAssociativity[source]
+
+ +
+
+tags: frozenset[str]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KSyntaxLexical(name: str, regex: str, att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a named piece of lexical syntax, definable as a regular expression.

+
+
+att: KAtt
+
+ +
+
+let(*, name: str | None = None, regex: str | None = None, att: KAtt | None = None) KSyntaxLexical[source]
+
+ +
+
+let_att(att: KAtt) KSyntaxLexical[source]
+
+ +
+
+name: str
+
+ +
+
+regex: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KSyntaxPriority(priorities: Iterable[Iterable[str]] = (), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a standalone declaration of syntax priorities, using productions tags.

+
+
+att: KAtt
+
+ +
+
+let(*, priorities: Iterable[Iterable[str]] | None = None, att: KAtt | None = None) KSyntaxPriority[source]
+
+ +
+
+let_att(att: KAtt) KSyntaxPriority[source]
+
+ +
+
+priorities: tuple[frozenset[str], ...]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KSyntaxSort(sort: KSort, params: Iterable[str | KSort] = (), att: KAtt = KAtt(atts=FrozenDict({})))[source]
+

Bases: KSentence

+

Represents a sort declaration, potentially parametric.

+
+
+att: KAtt
+
+ +
+
+let(*, sort: KSort | None = None, params: Iterable[str | KSort] | None = None, att: KAtt | None = None) KSyntaxSort[source]
+
+ +
+
+let_att(att: KAtt) KSyntaxSort[source]
+
+ +
+
+params: tuple[KSort, ...]
+
+ +
+
+sort: KSort
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class KTerminal(value: str)[source]
+

Bases: KProductionItem

+

Represents a string literal component of a production in EBNF grammar.

+
+
+let(*, value: str | None = None) KTerminal[source]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+value: str
+
+ +
+ +
+
+read_kast_definition(path: str | PathLike) KDefinition[source]
+

Read a KDefinition from disk, failing if it’s not actually a KDefinition.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.outer_lexer.html b/pyk/api/pyk.kast.outer_lexer.html new file mode 100644 index 00000000000..e820c078ef6 --- /dev/null +++ b/pyk/api/pyk.kast.outer_lexer.html @@ -0,0 +1,482 @@ + + + + + + + pyk.kast.outer_lexer module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.outer_lexer module

+
+
+class Loc(line, col)[source]
+

Bases: NamedTuple

+
+
+col: int
+

Alias for field number 1

+
+ +
+
+line: int
+

Alias for field number 0

+
+ +
+ +
+
+class LocationIterator(text: Iterable[str], line: int = 1, col: int = 0)[source]
+

Bases: Iterator[str]

+

A string iterator which tracks the line and column information of the characters in the string.

+
+
+property loc: Loc
+

Return the (line, column) of the last character returned by the iterator.

+

If no character has been returned yet, it will be the location that this +iterator was initialized with. The default is (1,0), which is the only +time the column will be 0.

+
+ +
+ +
+
+class State(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+ATTR = 6
+
+ +
+
+BUBBLE = 4
+
+ +
+
+CONTEXT = 5
+
+ +
+
+DEFAULT = 1
+
+ +
+
+KLABEL = 3
+
+ +
+
+MODNAME = 7
+
+ +
+
+SYNTAX = 2
+
+ +
+ +
+
+class Token(text, type, loc)[source]
+

Bases: NamedTuple

+
+
+let(*, text: str | None = None, type: TokenType | None = None, loc: Loc | None = None) Token[source]
+
+ +
+
+loc: Loc
+

Alias for field number 2

+
+ +
+
+text: str
+

Alias for field number 0

+
+ +
+
+type: TokenType
+

Alias for field number 1

+
+ +
+ +
+
+class TokenType(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+ATTR_CONTENT = 43
+
+ +
+
+ATTR_KEY = 42
+
+ +
+
+BUBBLE = 44
+
+ +
+
+COLON = 15
+
+ +
+
+COMMA = 1
+
+ +
+
+DCOLONEQ = 16
+
+ +
+
+EOF = 0
+
+ +
+
+EQ = 9
+
+ +
+
+GT = 10
+
+ +
+
+ID_LOWER = 37
+
+ +
+
+ID_UPPER = 38
+
+ +
+
+KLABEL = 40
+
+ +
+
+KW_ALIAS = 17
+
+ +
+
+KW_CLAIM = 18
+
+ +
+
+KW_CONFIG = 19
+
+ +
+
+KW_CONTEXT = 20
+
+ +
+
+KW_ENDMODULE = 21
+
+ +
+
+KW_IMPORTS = 22
+
+ +
+
+KW_LEFT = 23
+
+ +
+
+KW_LEXICAL = 24
+
+ +
+
+KW_MODULE = 25
+
+ +
+
+KW_NONASSOC = 26
+
+ +
+
+KW_PRIORITY = 27
+
+ +
+
+KW_PRIVATE = 28
+
+ +
+
+KW_PUBLIC = 29
+
+ +
+
+KW_REQUIRES = 30
+
+ +
+
+KW_RIGHT = 31
+
+ +
+
+KW_RULE = 32
+
+ +
+
+KW_SYNTAX = 33
+
+ +
+
+LBRACE = 4
+
+ +
+
+LBRACK = 6
+
+ +
+
+LPAREN = 2
+
+ +
+
+MODNAME = 39
+
+ +
+
+NAT = 34
+
+ +
+
+PLUS = 11
+
+ +
+
+QUESTION = 13
+
+ +
+
+RBRACE = 5
+
+ +
+
+RBRACK = 7
+
+ +
+
+REGEX = 36
+
+ +
+
+RPAREN = 3
+
+ +
+
+RULE_LABEL = 41
+
+ +
+
+STRING = 35
+
+ +
+
+TILDE = 14
+
+ +
+
+TIMES = 12
+
+ +
+
+VBAR = 8
+
+ +
+ +
+
+outer_lexer(it: Iterable[str]) Iterator[Token][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.outer_parser.html b/pyk/api/pyk.kast.outer_parser.html new file mode 100644 index 00000000000..abbbd35f493 --- /dev/null +++ b/pyk/api/pyk.kast.outer_parser.html @@ -0,0 +1,181 @@ + + + + + + + pyk.kast.outer_parser module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.outer_parser module

+
+
+class OuterParser(it: Iterable[str], source: Path | None = None)[source]
+

Bases: object

+
+
+definition() Definition[source]
+
+ +
+
+importt() Import[source]
+
+ +
+
+module() Module[source]
+
+ +
+
+require() Require[source]
+
+ +
+
+sentence() Sentence[source]
+
+ +
+
+string_sentence() StringSentence[source]
+
+ +
+
+syntax_sentence() SyntaxSentence[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.outer_syntax.html b/pyk/api/pyk.kast.outer_syntax.html new file mode 100644 index 00000000000..6afa03e81b3 --- /dev/null +++ b/pyk/api/pyk.kast.outer_syntax.html @@ -0,0 +1,642 @@ + + + + + + + pyk.kast.outer_syntax module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.outer_syntax module

+
+
+class AST(*, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: ABC

+
+
+location: tuple[int, int, int, int] | None = None
+
+ +
+
+source: Path | None = None
+
+ +
+ +
+
+final class Alias(bubble: 'str', label: 'str' = '', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: StringSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+bubble: str
+
+ +
+
+label: str = ''
+
+ +
+ +
+
+class Assoc(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+LEFT = 'left'
+
+ +
+
+NON_ASSOC = 'non-assoc'
+
+ +
+
+RIGHT = 'right'
+
+ +
+ +
+
+final class Att(items: 'Iterable[tuple[str, str]]' = ())[source]
+

Bases: AST, Sequence[tuple[str, str]]

+
+
+items: tuple[tuple[str, str], ...]
+
+ +
+ +
+
+final class Claim(bubble: 'str', label: 'str' = '', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: StringSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+bubble: str
+
+ +
+
+label: str = ''
+
+ +
+ +
+
+final class Config(bubble: 'str', label: 'str' = '', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: StringSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+bubble: str
+
+ +
+
+label: str = ''
+
+ +
+ +
+
+final class Context(bubble: 'str', label: 'str' = '', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: StringSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+bubble: str
+
+ +
+
+label: str = ''
+
+ +
+ +
+
+final class Definition(modules: 'Iterable[Module]' = (), requires: 'Iterable[Require]' = ())[source]
+

Bases: AST

+
+
+modules: tuple[Module, ...]
+
+ +
+
+requires: tuple[Require, ...]
+
+ +
+ +
+
+final class Import(module_name: 'str', *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None, public: 'bool' = True)[source]
+

Bases: AST

+
+
+module_name: str
+
+ +
+
+public: bool = True
+
+ +
+ +
+
+final class Lexical(regex: 'str', *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: ProductionItem

+
+
+regex: str
+
+ +
+ +
+
+final class Module(name: 'str', sentences: 'Iterable[Sentence]' = (), imports: 'Iterable[Import]' = (), att: 'Att' = Att(source=None, location=None, items=()), source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: AST

+
+
+att: Att
+
+ +
+
+imports: tuple[Import, ...]
+
+ +
+
+name: str
+
+ +
+
+sentences: tuple[Sentence, ...]
+
+ +
+ +
+
+final class NonTerminal(sort: 'Sort', name: 'str' = '', *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: ProductionItem

+
+
+name: str = ''
+
+ +
+
+sort: Sort
+
+ +
+ +
+
+final class PriorityBlock(productions: 'Iterable[ProductionLike]', assoc: 'Assoc | None' = None)[source]
+

Bases: AST

+
+
+assoc: Assoc | None
+
+ +
+
+productions: tuple[ProductionLike, ...]
+
+ +
+ +
+
+final class Production(items: 'Iterable[ProductionItem]', att: 'Att' = Att(source=None, location=None, items=()))[source]
+

Bases: ProductionLike

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+items: tuple[ProductionItem, ...]
+
+ +
+ +
+
+class ProductionItem(*, source: Path | None = None, location: tuple[int, int, int, int] | None = None)[source]
+

Bases: AST, ABC

+
+ +
+
+class ProductionLike(*, source: Path | None = None, location: tuple[int, int, int, int] | None = None)[source]
+

Bases: AST, ABC

+
+
+att: Att
+
+ +
+ +
+
+final class Require(path: 'str', *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: AST

+
+
+path: str
+
+ +
+ +
+
+final class Rule(bubble: 'str', label: 'str' = '', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: StringSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+bubble: str
+
+ +
+
+label: str = ''
+
+ +
+ +
+
+class Sentence(*, source: Path | None = None, location: tuple[int, int, int, int] | None = None)[source]
+

Bases: AST, ABC

+
+ +
+
+final class Sort(name: 'str', args: 'Iterable[int | str]' = ())[source]
+

Bases: AST

+
+
+args: tuple[int | str, ...]
+
+ +
+
+name: str
+
+ +
+ +
+
+final class SortDecl(name: 'str', params: 'Iterable[str]' = (), args: 'Iterable[str]' = ())[source]
+

Bases: AST

+
+
+args: tuple[str, ...]
+
+ +
+
+name: str
+
+ +
+
+params: tuple[str, ...]
+
+ +
+ +
+
+class StringSentence(*, source: Path | None = None, location: tuple[int, int, int, int] | None = None)[source]
+

Bases: Sentence, ABC

+
+
+att: Att
+
+ +
+
+bubble: str
+
+ +
+
+label: str
+
+ +
+ +
+
+final class SyntaxAssoc(assoc: 'Assoc', klabels: 'Iterable[str]')[source]
+

Bases: SyntaxSentence

+
+
+assoc: Assoc
+
+ +
+
+klabels: tuple[str, ...]
+
+ +
+ +
+
+final class SyntaxDecl(decl: 'SortDecl', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: SyntaxSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+decl: SortDecl
+
+ +
+ +
+
+final class SyntaxDefn(decl: 'SortDecl', blocks: 'Iterable[PriorityBlock]' = ())[source]
+

Bases: SyntaxSentence

+
+
+blocks: tuple[PriorityBlock, ...]
+
+ +
+
+decl: SortDecl
+
+ +
+ +
+
+final class SyntaxLexical(name: 'str', regex: 'str', *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: SyntaxSentence

+
+
+name: str
+
+ +
+
+regex: str
+
+ +
+ +
+
+final class SyntaxPriority(groups: 'Iterable[Iterable[str]]')[source]
+

Bases: SyntaxSentence

+
+
+groups: tuple[tuple[str, ...], ...]
+
+ +
+ +
+
+class SyntaxSentence(*, source: Path | None = None, location: tuple[int, int, int, int] | None = None)[source]
+

Bases: Sentence, ABC

+
+ +
+
+final class SyntaxSynonym(new: 'SortDecl', old: 'Sort', att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: SyntaxSentence

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+new: SortDecl
+
+ +
+
+old: Sort
+
+ +
+ +
+
+final class Terminal(value: 'str', *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: ProductionItem

+
+
+value: str
+
+ +
+ +
+
+final class UserList(sort: 'str', sep: 'str', non_empty: 'bool' = False, att: 'Att' = Att(source=None, location=None, items=()), *, source: 'Path | None' = None, location: 'tuple[int, int, int, int] | None' = None)[source]
+

Bases: ProductionLike

+
+
+att: Att = Att(source=None, location=None, items=())
+
+ +
+
+non_empty: bool = False
+
+ +
+
+sep: str
+
+ +
+
+sort: str
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.parser.html b/pyk/api/pyk.kast.parser.html new file mode 100644 index 00000000000..4f43e6109ae --- /dev/null +++ b/pyk/api/pyk.kast.parser.html @@ -0,0 +1,171 @@ + + + + + + + pyk.kast.parser module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.parser module

+
+
+class KAstParser(it: Iterable[str])[source]
+

Bases: object

+
+
+eof() bool[source]
+
+ +
+
+k() KInner[source]
+
+ +
+
+kitem() KInner[source]
+
+ +
+
+klabel() KLabel[source]
+
+ +
+
+klist() list[KInner][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.pretty.html b/pyk/api/pyk.kast.pretty.html new file mode 100644 index 00000000000..608f01d95c7 --- /dev/null +++ b/pyk/api/pyk.kast.pretty.html @@ -0,0 +1,204 @@ + + + + + + + pyk.kast.pretty module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.pretty module

+
+
+class PrettyPrinter(definition: KDefinition, extra_unparsing_modules: Iterable[KFlatModule] = (), patch_symbol_table: Callable[[SymbolTable], None] | None = None, unalias: bool = True, sort_collections: bool = False)[source]
+

Bases: object

+
+
+definition: KDefinition
+
+ +
+
+print(kast: KAst) str[source]
+

Print out KAST terms/outer syntax.

+
+
Parameters:
+

kast – KAST term to print.

+
+
Returns:
+

Best-effort string representation of KAST term.

+
+
+
+ +
+
+property symbol_table: dict[str, Callable[[...], str]]
+
+ +
+ +
+
+assoc_with_unit(assoc_join: str, unit: str) Callable[[...], str][source]
+
+ +
+
+build_symbol_table(definition: KDefinition, extra_modules: Iterable[KFlatModule] = (), opinionated: bool = False) SymbolTable[source]
+

Build the unparsing symbol table given a JSON encoded definition.

+
+
Parameters:
+

definition – JSON encoded K definition.

+
+
Returns:
+

Python dictionary mapping klabels to automatically generated unparsers.

+
+
+
+ +
+
+indent(text: str, size: int = 2) str[source]
+
+ +
+
+paren(printer: Callable[[...], str]) Callable[[...], str][source]
+
+ +
+
+unparser_for_production(prod: KProduction) Callable[[...], str][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.rewrite.html b/pyk/api/pyk.kast.rewrite.html new file mode 100644 index 00000000000..a86817477df --- /dev/null +++ b/pyk/api/pyk.kast.rewrite.html @@ -0,0 +1,145 @@ + + + + + + + pyk.kast.rewrite module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.rewrite module

+
+
+indexed_rewrite(kast: KInner, rewrites: Iterable[KRewrite]) KInner[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kast.utils.html b/pyk/api/pyk.kast.utils.html new file mode 100644 index 00000000000..f12628a06c1 --- /dev/null +++ b/pyk/api/pyk.kast.utils.html @@ -0,0 +1,150 @@ + + + + + + + pyk.kast.utils module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kast.utils module

+
+
+parse_outer(definition_file: str | Path, main_module: str, *, include_dirs: Iterable[str | Path] = (), md_selector: str = 'k', include_source: bool = True) KDefinition[source]
+
+ +
+
+slurp_definitions(main_file: str | Path, *, include_dirs: Iterable[str | Path] = (), md_selector: str = 'k', include_source: bool = True) dict[Path, Definition][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kbuild.config.html b/pyk/api/pyk.kbuild.config.html new file mode 100644 index 00000000000..f21075f3070 --- /dev/null +++ b/pyk/api/pyk.kbuild.config.html @@ -0,0 +1,140 @@ + + + + + + + pyk.kbuild.config module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kbuild.config module

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kbuild.html b/pyk/api/pyk.kbuild.html new file mode 100644 index 00000000000..44a9f6b5e56 --- /dev/null +++ b/pyk/api/pyk.kbuild.html @@ -0,0 +1,231 @@ + + + + + + + pyk.kbuild package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kbuild.kbuild.html b/pyk/api/pyk.kbuild.kbuild.html new file mode 100644 index 00000000000..82ba5cdf4c6 --- /dev/null +++ b/pyk/api/pyk.kbuild.kbuild.html @@ -0,0 +1,202 @@ + + + + + + + pyk.kbuild.kbuild module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kbuild.kbuild module

+
+
+final class KBuild(kdist_dir: 'str | Path')[source]
+

Bases: object

+
+
+definition_dir(project: Project, target_name: str) Path[source]
+
+ +
+
+property k_version: str
+
+ +
+
+kdist_dir: Path
+
+ +
+
+kompile(project: Project, target_name: str, *, debug: bool = False) Path[source]
+
+ +
+
+up_to_date(project: Project, target_name: str) bool[source]
+
+ +
+ +
+
+final class KBuildEnv(project: 'Project', path: 'str | Path')[source]
+

Bases: object

+
+
+static create_temp(project: Project) Iterator[KBuildEnv][source]
+
+ +
+
+kompile(target_name: str, output_dir: Path, *, debug: bool = False) None[source]
+
+ +
+
+path: Path
+
+ +
+
+project: Project
+
+ +
+
+sync() None[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kbuild.project.html b/pyk/api/pyk.kbuild.project.html new file mode 100644 index 00000000000..0d0f9b4fa56 --- /dev/null +++ b/pyk/api/pyk.kbuild.project.html @@ -0,0 +1,295 @@ + + + + + + + pyk.kbuild.project module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kbuild.project module

+
+
+final class PackageSource(package: 'str')[source]
+

Bases: Source

+
+
+package: str
+
+ +
+
+resolve(project_path: Path) Path[source]
+
+ +
+ +
+
+final class PathSource(path: 'Path')[source]
+

Bases: Source

+
+
+path: Path
+
+ +
+
+resolve(project_path: Path) Path[source]
+
+ +
+ +
+
+final class Project(*, path: 'str | Path', name: 'str', version: 'str', source_dir: 'str | Path', resources: 'Mapping[str, str | Path] | None' = None, dependencies: 'Iterable[Project]' = (), targets: 'Iterable[Target]' = ())[source]
+

Bases: object

+
+
+property all_files: list[Path]
+
+ +
+
+dependencies: tuple[Project, ...]
+
+ +
+
+get_target(target_name: str) Target[source]
+
+ +
+
+static load(project_file: str | Path) Project[source]
+
+ +
+
+static load_from_dir(project_dir: str | Path) Project[source]
+
+ +
+
+name: str
+
+ +
+
+path: Path
+
+ +
+
+property project_file: Path
+
+ +
+
+property resource_file_names: dict[str, list[str]]
+
+ +
+
+property resource_files: dict[str, list[Path]]
+
+ +
+
+resources: FrozenDict[str, Path]
+
+ +
+
+source_dir: Path
+
+ +
+
+property source_file_names: list[str]
+
+ +
+
+property source_files: list[Path]
+
+ +
+
+property sub_projects: tuple[Project, ...]
+
+ +
+
+targets: tuple[Target, ...]
+
+ +
+
+version: str
+
+ +
+ +
+
+class Source[source]
+

Bases: ABC

+
+
+static from_dict(dct: Mapping[str, Any]) Source[source]
+
+ +
+
+abstract resolve(project_path: Path) Path[source]
+
+ +
+ +
+
+final class Target(*, name: 'str', args: 'Mapping[str, Any]')[source]
+

Bases: object

+
+
+args: dict[str, Any]
+
+ +
+
+name: str
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kbuild.utils.html b/pyk/api/pyk.kbuild.utils.html new file mode 100644 index 00000000000..a0993825f99 --- /dev/null +++ b/pyk/api/pyk.kbuild.utils.html @@ -0,0 +1,217 @@ + + + + + + + pyk.kbuild.utils module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kbuild.utils module

+
+
+final class KVersion(major: 'int', minor: 'int', patch: 'int', git: 'Git | None')[source]
+

Bases: object

+
+
+final class Git(ahead: 'int', rev: 'str', dirty: 'bool')[source]
+

Bases: object

+
+
+ahead: int
+
+ +
+
+dirty: bool
+
+ +
+
+rev: str
+
+ +
+ +
+
+PATTERN: ClassVar = re.compile('v(?P<major>[1-9]+)\\.(?P<minor>[0-9]+)\\.(?P<patch>[0-9]+)(?P<git>-(?P<ahead>[0-9]+)-g(?P<rev>[0-9a-f]{10})(?P<dirty>-dirty)?)?')
+
+ +
+
+git: Git | None
+
+ +
+
+major: int
+
+ +
+
+minor: int
+
+ +
+
+static parse(text: str) KVersion[source]
+
+ +
+
+patch: int
+
+ +
+
+property text: str
+
+ +
+ +
+
+find_file_upwards(file_name: str, start_dir: Path) Path[source]
+
+ +
+
+k_version() KVersion[source]
+
+ +
+
+sync_files(source_dir: Path, target_dir: Path, file_names: Iterable[str]) list[Path][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.exploration.html b/pyk/api/pyk.kcfg.exploration.html new file mode 100644 index 00000000000..bc7075aa88b --- /dev/null +++ b/pyk/api/pyk.kcfg.exploration.html @@ -0,0 +1,222 @@ + + + + + + + pyk.kcfg.exploration module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.exploration module

+
+
+class KCFGExploration(kcfg: KCFG, terminal: Iterable[NodeIdLike] | None = None)[source]
+

Bases: object

+
+
+add_terminal(node_id: NodeIdLike) None[source]
+
+ +
+
+property explorable: list[Node]
+
+ +
+
+static from_dict(dct: Mapping[str, Any]) KCFGExploration[source]
+
+ +
+
+is_explorable(node_id: NodeIdLike) bool[source]
+
+ +
+
+is_terminal(node_id: NodeIdLike) bool[source]
+
+ +
+
+kcfg: KCFG
+
+ +
+
+minimize_kcfg() None[source]
+
+ +
+
+prune(node_id: NodeIdLike, keep_nodes: Iterable[NodeIdLike] = ()) list[int][source]
+
+ +
+
+remove_node(node_id: NodeIdLike) None[source]
+
+ +
+
+remove_terminal(node_id: int) None[source]
+
+ +
+
+property terminal: list[Node]
+
+ +
+
+property terminal_ids: set[int]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+class KCFGExplorationNodeAttr(value: str)[source]
+

Bases: NodeAttr

+
+
+TERMINAL = NodeAttr(value='terminal')
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.explore.html b/pyk/api/pyk.kcfg.explore.html new file mode 100644 index 00000000000..6c862586110 --- /dev/null +++ b/pyk/api/pyk.kcfg.explore.html @@ -0,0 +1,196 @@ + + + + + + + pyk.kcfg.explore module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.explore module

+
+
+class KCFGExplore(cterm_symbolic: CTermSymbolic, *, kcfg_semantics: KCFGSemantics | None = None, id: str | None = None)[source]
+

Bases: object

+
+
+check_extendable(kcfg_exploration: KCFGExploration, node: KCFG.Node) None[source]
+
+ +
+
+cterm_symbolic: CTermSymbolic
+
+ +
+
+extend_cterm(_cterm: CTerm, node_id: int, *, execute_depth: int | None = None, cut_point_rules: Iterable[str] = (), terminal_rules: Iterable[str] = (), module_name: str | None = None) KCFGExtendResult[source]
+
+ +
+
+id: str
+
+ +
+
+implication_failure_reason(antecedent: CTerm, consequent: CTerm) tuple[bool, str][source]
+
+ +
+
+kcfg_semantics: KCFGSemantics
+
+ +
+
+pretty_print(kinner: KInner) str[source]
+
+ +
+
+section_edge(cfg: KCFG, source_id: NodeIdLike, target_id: NodeIdLike, logs: dict[int, tuple[LogEntry, ...]], sections: int = 2) tuple[int, ...][source]
+
+ +
+
+simplify(cfg: KCFG, logs: dict[int, tuple[LogEntry, ...]]) None[source]
+
+ +
+
+step(cfg: KCFG, node_id: NodeIdLike, logs: dict[int, tuple[LogEntry, ...]], depth: int = 1, module_name: str | None = None) int[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.html b/pyk/api/pyk.kcfg.html new file mode 100644 index 00000000000..1ab4ad92ac5 --- /dev/null +++ b/pyk/api/pyk.kcfg.html @@ -0,0 +1,553 @@ + + + + + + + pyk.kcfg package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg package

+
+

Submodules

+
+ +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.kcfg.html b/pyk/api/pyk.kcfg.kcfg.html new file mode 100644 index 00000000000..b31716899ca --- /dev/null +++ b/pyk/api/pyk.kcfg.kcfg.html @@ -0,0 +1,1102 @@ + + + + + + + pyk.kcfg.kcfg module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.kcfg module

+
+
+final class Abstract(cterm: 'CTerm')[source]
+

Bases: KCFGExtendResult

+
+
+cterm: CTerm
+
+ +
+ +
+
+final class Branch(constraints: 'Iterable[KInner]', *, heuristic: 'bool' = False)[source]
+

Bases: KCFGExtendResult

+
+
+constraints: tuple[KInner, ...]
+
+ +
+
+heuristic: bool
+
+ +
+ +
+
+class KCFG(cfg_dir: Path | None = None, optimize_memory: bool = True)[source]
+

Bases: Container[KCFG.Node | KCFG.Successor]

+
+
+final class Cover(source: 'KCFG.Node', target: 'KCFG.Node', csubst: 'CSubst')[source]
+

Bases: EdgeLike

+
+
+csubst: CSubst
+
+ +
+
+static from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) KCFG.Cover[source]
+
+ +
+
+replace_source(node: Node) Cover[source]
+
+ +
+
+replace_target(node: Node) Cover[source]
+
+ +
+
+source: Node
+
+ +
+
+target: Node
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class Edge(source: 'KCFG.Node', target: 'KCFG.Node', depth: 'int', rules: 'tuple[str, ...]')[source]
+

Bases: EdgeLike

+
+
+depth: int
+
+ +
+
+static from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) KCFG.Edge[source]
+
+ +
+
+replace_source(node: Node) Edge[source]
+
+ +
+
+replace_target(node: Node) Edge[source]
+
+ +
+
+rules: tuple[str, ...]
+
+ +
+
+source: Node
+
+ +
+
+target: Node
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+to_rule(label: str, claim: bool = False, priority: int | None = None) KRuleLike[source]
+
+ +
+ +
+
+class EdgeLike[source]
+

Bases: Successor

+
+
+source: Node
+
+ +
+
+target: Node
+
+ +
+
+property targets: tuple[Node, ...]
+
+ +
+ +
+
+class MultiEdge(source: 'KCFG.Node')[source]
+

Bases: Successor

+
+
+source: Node
+
+ +
+
+abstract with_single_target(target: Node) MultiEdge[source]
+
+ +
+ +
+
+final class NDBranch(source: 'KCFG.Node', _targets: 'Iterable[KCFG.Node]', rules: 'tuple[str, ...]')[source]
+

Bases: MultiEdge

+
+
+property edges: tuple[Edge, ...]
+
+ +
+
+static from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) KCFG.NDBranch[source]
+
+ +
+
+replace_source(node: Node) NDBranch[source]
+
+ +
+
+replace_target(node: Node) NDBranch[source]
+
+ +
+
+rules: tuple[str, ...]
+
+ +
+
+source: Node
+
+ +
+
+property targets: tuple[Node, ...]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+with_single_target(target: Node) NDBranch[source]
+
+ +
+ +
+
+final class Node(id: 'int', cterm: 'CTerm', attrs: 'Iterable[NodeAttr]' = ())[source]
+

Bases: object

+
+
+add_attr(attr: NodeAttr) Node[source]
+
+ +
+
+attrs: frozenset[NodeAttr]
+
+ +
+
+cterm: CTerm
+
+ +
+
+discard_attr(attr: NodeAttr) Node[source]
+
+ +
+
+property free_vars: frozenset[str]
+
+ +
+
+static from_dict(dct: dict[str, Any]) KCFG.Node[source]
+
+ +
+
+id: int
+
+ +
+
+let(cterm: CTerm | None = None, attrs: Iterable[KCFGNodeAttr] | None = None) KCFG.Node[source]
+
+ +
+
+remove_attr(attr: NodeAttr) Node[source]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class Split(source: 'KCFG.Node', _targets: 'Iterable[tuple[KCFG.Node, CSubst]]')[source]
+

Bases: MultiEdge

+
+
+property covers: tuple[Cover, ...]
+
+ +
+
+static from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) KCFG.Split[source]
+
+ +
+
+replace_source(node: Node) Split[source]
+
+ +
+
+replace_target(node: Node) Split[source]
+
+ +
+
+source: Node
+
+ +
+
+property splits: dict[int, CSubst]
+
+ +
+
+property targets: tuple[Node, ...]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+with_single_target(target: Node) Split[source]
+
+ +
+ +
+
+class Successor[source]
+

Bases: ABC

+
+
+abstract static from_dict(dct: dict[str, Any], nodes: Mapping[int, KCFG.Node]) KCFG.Successor[source]
+
+ +
+
+abstract replace_source(node: Node) Successor[source]
+
+ +
+
+abstract replace_target(node: Node) Successor[source]
+
+ +
+
+source: Node
+
+ +
+
+property source_vars: frozenset[str]
+
+ +
+
+property target_ids: list[int]
+
+ +
+
+property target_vars: frozenset[str]
+
+ +
+
+abstract property targets: tuple[Node, ...]
+
+ +
+
+abstract to_dict() dict[str, Any][source]
+
+ +
+ +
+
+add_alias(alias: str, node_id: int | str) None[source]
+
+ +
+
+add_attr(node_id: int | str, attr: NodeAttr) None[source]
+
+ +
+
+add_node(node: Node) None[source]
+
+ +
+
+add_stuck(node_id: int | str) None[source]
+
+ +
+
+add_successor(succ: Successor) None[source]
+
+ +
+
+add_vacuous(node_id: int | str) None[source]
+
+ +
+
+aliases(node_id: int | str) list[str][source]
+
+ +
+
+contains_cover(cover: Cover) bool[source]
+
+ +
+
+contains_edge(edge: Edge) bool[source]
+
+ +
+
+contains_ndbranch(ndbranch: NDBranch) bool[source]
+
+ +
+
+contains_node(node: Node) bool[source]
+
+ +
+
+contains_split(split: Split) bool[source]
+
+ +
+
+cover(source_id: NodeIdLike, target_id: NodeIdLike) Cover | None[source]
+
+ +
+
+property covered: list[Node]
+
+ +
+
+covers(*, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) list[Cover][source]
+
+ +
+
+create_cover(source_id: NodeIdLike, target_id: NodeIdLike, csubst: CSubst | None = None) Cover[source]
+
+ +
+
+create_edge(source_id: NodeIdLike, target_id: NodeIdLike, depth: int, rules: Iterable[str] = ()) Edge[source]
+
+ +
+
+create_ndbranch(source_id: NodeIdLike, ndbranches: Iterable[NodeIdLike], rules: Iterable[str] = ()) KCFG.NDBranch[source]
+
+ +
+
+create_node(cterm: CTerm) Node[source]
+
+ +
+
+create_split(source_id: NodeIdLike, splits: Iterable[tuple[NodeIdLike, CSubst]]) KCFG.Split[source]
+
+ +
+
+discard_attr(node_id: int | str, attr: NodeAttr) None[source]
+
+ +
+
+discard_stuck(node_id: int | str) None[source]
+
+ +
+
+discard_vacuous(node_id: int | str) None[source]
+
+ +
+
+edge(source_id: NodeIdLike, target_id: NodeIdLike) Edge | None[source]
+
+ +
+
+edge_likes(*, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) list[EdgeLike][source]
+
+ +
+
+edges(*, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) list[Edge][source]
+
+ +
+
+extend(extend_result: KCFGExtendResult, node: KCFG.Node, logs: dict[int, tuple[LogEntry, ...]]) None[source]
+
+ +
+
+static from_claim(defn: KDefinition, claim: KClaim, cfg_dir: Path | None = None, optimize_memory: bool = True) tuple[KCFG, NodeIdLike, NodeIdLike][source]
+
+ +
+
+static from_dict(dct: Mapping[str, Any], optimize_memory: bool = True) KCFG[source]
+
+ +
+
+static from_json(s: str, optimize_memory: bool = True) KCFG[source]
+
+ +
+
+get_node(node_id: int | str) Node | None[source]
+
+ +
+
+is_covered(node_id: int | str) bool[source]
+
+ +
+
+is_leaf(node_id: int | str) bool[source]
+
+ +
+
+is_ndbranch(node_id: int | str) bool[source]
+
+ +
+
+is_root(node_id: int | str) bool[source]
+
+ +
+
+is_split(node_id: int | str) bool[source]
+
+ +
+
+is_stuck(node_id: int | str) bool[source]
+
+ +
+
+is_vacuous(node_id: int | str) bool[source]
+
+ +
+
+property leaves: list[Node]
+
+ +
+
+let_node(node_id: NodeIdLike, cterm: CTerm | None = None, attrs: Iterable[KCFGNodeAttr] | None = None) None[source]
+
+ +
+
+lift_edge(b_id: int | str) None[source]
+

Lift an edge up another edge directly preceding it.

+

A –M steps–> B –N steps–> C becomes A –(M + N) steps–> C. Node B is removed.

+
+
Parameters:
+

b_id – the identifier of the central node B of a sequence of edges A –> B –> C.

+
+
Raises:
+

AssertionError – If the edges in question are not in place.

+
+
+
+ +
+
+lift_edges() bool[source]
+

Perform all possible edge lifts across the KCFG.

+

The KCFG is transformed to an equivalent in which no further edge lifts are possible.

+

Given the KCFG design, it is not possible for one edge lift to either disallow another or +allow another that was not previously possible. Therefore, this function is guaranteed to +lift all possible edges without having to loop.

+
+
Returns:
+

An indicator of whether or not at least one edge lift was performed.

+
+
+
+ +
+
+lift_split_edge(b_id: int | str) None[source]
+

Lift a split up an edge directly preceding it.

+

A –M steps–> B –[cond_1, …, cond_N]–> [C_1, …, C_N] becomes +A –[cond_1, …, cond_N]–> [A #And cond_1 –M steps–> C_1, …, A #And cond_N –M steps–> C_N]. +Node B is removed.

+
+
Parameters:
+

b_id – The identifier of the central node B of the structure A –> B –> [C_1, …, C_N].

+
+
Raises:
+
    +
  • AssertionError – If the structure in question is not in place.

  • +
  • AssertionError – If any of the cond_i contain variables not present in A.

  • +
+
+
+
+ +
+
+lift_split_split(b_id: int | str) None[source]
+

Lift a split up a split directly preceding it, joining them into a single split.

+

A –[…, cond_B, …]–> […, B, …] with B –[cond_1, …, cond_N]–> [C_1, …, C_N] becomes +A –[…, cond_B #And cond_1, …, cond_B #And cond_N, …]–> […, C_1, …, C_N, …]. +Node B is removed.

+
+
Parameters:
+

b_id – the identifier of the node B of the structure +A –[…, cond_B, …]–> […, B, …] with B –[cond_1, …, cond_N]–> [C_1, …, C_N].

+
+
Raises:
+

AssertionError – If the structure in question is not in place.

+
+
+
+ +
+
+lift_splits() bool[source]
+

Perform all possible split liftings.

+

The KCFG is transformed to an equivalent in which no further split lifts are possible.

+
+
Returns:
+

An indicator of whether or not at least one split lift was performed.

+
+
+
+ +
+
+minimize() None[source]
+

Minimize KCFG by repeatedly performing the lifting transformations.

+

The KCFG is transformed to an equivalent in which no further lifting transformations are possible. +The loop is designed so that each transformation is performed once in each iteration.

+
+ +
+
+ndbranches(*, source_id: int | str | None = None, target_id: int | str | None = None) list[NDBranch][source]
+
+ +
+
+node(node_id: int | str) Node[source]
+
+ +
+
+property nodes: list[Node]
+
+ +
+
+static path_length(_path: Iterable[KCFG.Successor]) int[source]
+
+ +
+
+paths_between(source_id: NodeIdLike, target_id: NodeIdLike) list[tuple[Successor, ...]][source]
+
+ +
+
+predecessors(target_id: NodeIdLike) list[Successor][source]
+
+ +
+
+prune(node_id: NodeIdLike, keep_nodes: Iterable[NodeIdLike] = ()) list[int][source]
+
+ +
+
+reachable_nodes(source_id: int | str, *, reverse: bool = False) set[Node][source]
+
+ +
+
+static read_cfg_data(cfg_dir: Path) KCFG[source]
+
+ +
+
+static read_node_data(cfg_dir: Path, node_id: int) KCFG.Node[source]
+
+ +
+
+remove_alias(alias: str) None[source]
+
+ +
+
+remove_attr(node_id: int | str, attr: NodeAttr) None[source]
+
+ +
+
+remove_cover(source_id: int | str, target_id: int | str) None[source]
+
+ +
+
+remove_edge(source_id: int | str, target_id: int | str) None[source]
+
+ +
+
+remove_node(node_id: int | str) None[source]
+
+ +
+
+remove_stuck(node_id: int | str) None[source]
+
+ +
+
+remove_vacuous(node_id: int | str) None[source]
+
+ +
+
+replace_node(node: Node) None[source]
+
+ +
+
+property root: list[Node]
+
+ +
+
+shortest_distance_between(node_1_id: int | str, node_2_id: int | str) int | None[source]
+
+ +
+
+shortest_path_between(source_node_id: NodeIdLike, target_node_id: NodeIdLike) tuple[Successor, ...] | None[source]
+
+ +
+
+split_on_constraints(source_id: NodeIdLike, constraints: Iterable[KInner]) list[int][source]
+
+ +
+
+splits(*, source_id: NodeIdLike | None = None, target_id: NodeIdLike | None = None) list[Split][source]
+
+ +
+
+property stuck: list[Node]
+
+ +
+
+successors(source_id: NodeIdLike) list[Successor][source]
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+to_json() str[source]
+
+ +
+
+to_module(module_name: str | None = None, imports: Iterable[KImport] = (), priority: int = 20, att: KAtt = KAtt(atts=FrozenDict({}))) KFlatModule[source]
+
+ +
+
+to_rules(priority: int = 20, id: str | None = None) list[KRuleLike][source]
+
+ +
+
+property uncovered: list[Node]
+
+ +
+
+property vacuous: list[Node]
+
+ +
+
+write_cfg_data() None[source]
+
+ +
+
+zero_depth_between(node_1_id: int | str, node_2_id: int | str) bool[source]
+
+ +
+ +
+
+class KCFGExtendResult[source]
+

Bases: ABC

+
+ +
+
+class KCFGNodeAttr(value: str)[source]
+

Bases: NodeAttr

+
+
+STUCK = NodeAttr(value='stuck')
+
+ +
+
+VACUOUS = NodeAttr(value='vacuous')
+
+ +
+ +
+
+class KCFGStore(store_path: Path)[source]
+

Bases: object

+
+
+property kcfg_json_path: Path
+
+ +
+
+property kcfg_node_dir: Path
+
+ +
+
+kcfg_node_path(node_id: int) Path[source]
+
+ +
+
+read_cfg_data() dict[str, Any][source]
+
+ +
+
+read_node_data(node_id: int) dict[str, Any][source]
+
+ +
+
+store_path: Path
+
+ +
+
+write_cfg_data(dct: dict[str, Any], deleted_nodes: Iterable[int] = (), created_nodes: Iterable[int] = ()) None[source]
+
+ +
+ +
+
+final class NDBranch(cterms: 'Iterable[CTerm]', logs: 'Iterable[LogEntry,]', rule_labels: 'Iterable[str]')[source]
+

Bases: KCFGExtendResult

+
+
+cterms: tuple[CTerm, ...]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+rule_labels: tuple[str, ...]
+
+ +
+ +
+
+class NodeAttr(value: 'str')[source]
+

Bases: object

+
+
+value: str
+
+ +
+ +
+
+final class Step(cterm: 'CTerm', depth: 'int', logs: 'tuple[LogEntry, ...]', rule_labels: 'list[str]', cut: 'bool' = False)[source]
+

Bases: KCFGExtendResult

+
+
+cterm: CTerm
+
+ +
+
+cut: bool = False
+
+ +
+
+depth: int
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+rule_labels: list[str]
+
+ +
+ +
+
+final class Stuck[source]
+

Bases: KCFGExtendResult

+
+ +
+
+final class Vacuous[source]
+

Bases: KCFGExtendResult

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.semantics.html b/pyk/api/pyk.kcfg.semantics.html new file mode 100644 index 00000000000..b287ccf60c5 --- /dev/null +++ b/pyk/api/pyk.kcfg.semantics.html @@ -0,0 +1,192 @@ + + + + + + + pyk.kcfg.semantics module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.semantics module

+
+
+class DefaultSemantics[source]
+

Bases: KCFGSemantics

+
+
+abstract_node(c: CTerm) CTerm[source]
+
+ +
+
+custom_step(c: CTerm) KCFGExtendResult | None[source]
+
+ +
+
+is_terminal(c: CTerm) bool[source]
+
+ +
+
+same_loop(c1: CTerm, c2: CTerm) bool[source]
+
+ +
+ +
+
+class KCFGSemantics[source]
+

Bases: ABC

+
+
+abstract abstract_node(c: CTerm) CTerm[source]
+
+ +
+
+abstract custom_step(c: CTerm) KCFGExtendResult | None[source]
+
+ +
+
+abstract is_terminal(c: CTerm) bool[source]
+
+ +
+
+abstract same_loop(c1: CTerm, c2: CTerm) bool[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.show.html b/pyk/api/pyk.kcfg.show.html new file mode 100644 index 00000000000..7a766a9c67d --- /dev/null +++ b/pyk/api/pyk.kcfg.show.html @@ -0,0 +1,241 @@ + + + + + + + pyk.kcfg.show module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.show module

+
+
+class KCFGShow(kprint: KPrint, node_printer: NodePrinter | None = None)[source]
+

Bases: object

+
+
+dot(kcfg: KCFG) Digraph[source]
+
+ +
+
+dump(cfgid: str, cfg: KCFG, dump_dir: Path, dot: bool = False) None[source]
+
+ +
+
+static hide_cells(term: KInner, omit_cells: Iterable[str]) KInner[source]
+
+ +
+
+kprint: KPrint
+
+ +
+
+static make_unique_segments(segments: Iterable[tuple[str, Iterable[str]]]) Iterable[tuple[str, Iterable[str]]][source]
+
+ +
+
+node_printer: NodePrinter
+
+ +
+
+node_short_info(kcfg: KCFG, node: Node) list[str][source]
+
+ +
+
+pretty(kcfg: KCFG, minimize: bool = True) Iterable[str][source]
+
+ +
+
+pretty_segments(kcfg: KCFG, minimize: bool = True) Iterable[tuple[str, Iterable[str]]][source]
+

Return a pretty version of the KCFG in segments.

+

Each segment is a tuple of an identifier and a list of lines to be printed for that segment (Tuple[str, Iterable[str]). +The identifier tells you whether that segment is for a given node, edge, or just pretty spacing (‘unknown’). +This is useful for applications which want to pretty print in chunks, so that they can know which printed region corresponds to each node/edge.

+
+ +
+
+show(cfg: KCFG, nodes: Iterable[NodeIdLike] = (), node_deltas: Iterable[tuple[NodeIdLike, NodeIdLike]] = (), to_module: bool = False, minimize: bool = True, sort_collections: bool = False, omit_cells: Iterable[str] = (), module_name: str | None = None) list[str][source]
+
+ +
+
+static simplify_config(config: KInner, omit_cells: Iterable[str]) KInner[source]
+
+ +
+
+to_module(cfg: KCFG, module_name: str | None = None, omit_cells: Iterable[str] = (), parseable_output: bool = True) KFlatModule[source]
+
+ +
+ +
+
+class NodePrinter(kprint: KPrint, full_printer: bool = False, minimize: bool = False)[source]
+

Bases: object

+
+
+full_printer: bool
+
+ +
+
+kprint: KPrint
+
+ +
+
+minimize: bool
+
+ +
+
+node_attrs(kcfg: KCFG, node: Node) list[str][source]
+
+ +
+
+print_node(kcfg: KCFG, node: Node) list[str][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.store.html b/pyk/api/pyk.kcfg.store.html new file mode 100644 index 00000000000..c09eb45c96e --- /dev/null +++ b/pyk/api/pyk.kcfg.store.html @@ -0,0 +1,146 @@ + + + + + + + pyk.kcfg.store module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.store module

+
+
+class OptimizedNodeStore[source]
+

Bases: MutableMapping[int, Node]

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcfg.tui.html b/pyk/api/pyk.kcfg.tui.html new file mode 100644 index 00000000000..f453f2bbfbe --- /dev/null +++ b/pyk/api/pyk.kcfg.tui.html @@ -0,0 +1,612 @@ + + + + + + + pyk.kcfg.tui module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcfg.tui module

+
+
+class BehaviorView(kcfg: KCFG, kprint: KPrint, minimize: bool = True, node_printer: NodePrinter | None = None, id: str = '')[source]
+

Bases: ScrollableContainer

+
+
+class Selected[source]
+

Bases: Message

+
+
+bubble: ClassVar[bool] = True
+
+ +
+
+handler_name: ClassVar[str] = 'on_behavior_view_selected'
+

Name of the default message handler.

+
+ +
+
+no_dispatch: ClassVar[bool] = False
+
+ +
+
+time
+
+ +
+
+verbose: ClassVar[bool] = False
+
+ +
+ +
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+compose() ComposeResult[source]
+
+ +
+
+on_click(click: Click) None[source]
+
+ +
+ +
+
+class Constraint[source]
+

Bases: NavWidget

+
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+on_click(click: Click) None[source]
+
+ +
+ +
+
+class Custom[source]
+

Bases: NavWidget

+
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+on_click(click: Click) None[source]
+
+ +
+ +
+
+class GraphChunk(id: str, node_text: Iterable[str] = ())[source]
+

Bases: Static

+
+
+class Selected(chunk_id: str)[source]
+

Bases: Message

+
+
+bubble: ClassVar[bool] = True
+
+ +
+
+chunk_id: str
+
+ +
+
+handler_name: ClassVar[str] = 'on_graph_chunk_selected'
+

Name of the default message handler.

+
+ +
+
+no_dispatch: ClassVar[bool] = False
+
+ +
+
+time
+
+ +
+
+verbose: ClassVar[bool] = False
+
+ +
+ +
+
+can_focus: bool = False
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+on_click(click: Click) None[source]
+
+ +
+
+on_enter() None[source]
+
+ +
+
+on_leave() None[source]
+
+ +
+ +
+
+class Info[source]
+

Bases: Widget

+
+
+can_focus: bool = False
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+compose() ComposeResult[source]
+
+ +
+
+text: reactive[str]
+

Create a reactive attribute.

+
+
Parameters:
+
    +
  • default – A default value or callable that returns a default.

  • +
  • layout – Perform a layout on change.

  • +
  • repaint – Perform a repaint on change.

  • +
  • init – Call watchers on initialize (post mount).

  • +
  • always_update – Call watchers even when the new value equals the old value.

  • +
+
+
+
+ +
+
+update(text: str) None[source]
+
+ +
+
+watch_text() None[source]
+
+ +
+ +
+
+class KCFGViewer(kcfg: KCFG, kprint: KPrint, node_printer: NodePrinter | None = None, custom_view: Callable[[KCFGElem], Iterable[str]] | None = None, minimize: bool = True)[source]
+

Bases: App

+
+
+BINDINGS: ClassVar[list[BindingType]] = [('h', 'keystroke("h")', 'Hide selected node.'), ('H', 'keystroke("H")', 'Unhide all nodes.'), ('t', 'keystroke("term")', 'Toggle term.'), ('c', 'keystroke("constraint")', 'Toggle constraint.'), ('m', 'keystroke("minimize")', 'Toggle minimization.'), ('s', 'keystroke("status")', 'Toggle status.'), Binding(key='q', action='quit', description='', show=True, key_display=None, priority=True)]
+
+ +
+
+CSS_PATH: ClassVar[CSSPathType | None] = PosixPath('/home/user/src/pyk/kcfg/style.css')
+

File paths to load CSS from.

+
+ +
+
+action_keystroke(key: str) None[source]
+
+ +
+
+compose() ComposeResult[source]
+
+ +
+
+on_graph_chunk_selected(message: Selected) None[source]
+
+ +
+ +
+
+class NavWidget(id: str)[source]
+

Bases: ScrollableContainer

+
+
+BINDINGS: ClassVar[list[BindingType]] = [('g', 'scroll_home', 'Go to vert start'), ('G', 'scroll_end', 'Go to vert end')]
+

Keyboard bindings for scrollable containers.

+
+
Key(s) | Description |
+
:- | :- |
+
up | Scroll up, if vertical scrolling is available. |
+
down | Scroll down, if vertical scrolling is available. |
+
left | Scroll left, if horizontal scrolling is available. |
+
right | Scroll right, if horizontal scrolling is available. |
+
home | Scroll to the home position, if scrolling is available. |
+
end | Scroll to the end position, if scrolling is available. |
+
pageup | Scroll up one page, if vertical scrolling is available. |
+
pagedown | Scroll down one page, if vertical scrolling is available. |
+
+
+ +
+
+class Selected[source]
+

Bases: Message

+
+
+bubble: ClassVar[bool] = True
+
+ +
+
+handler_name: ClassVar[str] = 'on_nav_widget_selected'
+

Name of the default message handler.

+
+ +
+
+no_dispatch: ClassVar[bool] = False
+
+ +
+
+time
+
+ +
+
+verbose: ClassVar[bool] = False
+
+ +
+ +
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+compose() ComposeResult[source]
+
+ +
+
+text: reactive[str]
+

Create a reactive attribute.

+
+
Parameters:
+
    +
  • default – A default value or callable that returns a default.

  • +
  • layout – Perform a layout on change.

  • +
  • repaint – Perform a repaint on change.

  • +
  • init – Call watchers on initialize (post mount).

  • +
  • always_update – Call watchers even when the new value equals the old value.

  • +
+
+
+
+ +
+
+update(text: str) None[source]
+
+ +
+
+watch_text() None[source]
+
+ +
+ +
+
+class NodeView(kprint: KPrint, id: str = '', minimize: bool = True, term_on: bool = True, constraint_on: bool = True, custom_on: bool = False, status_on: bool = True, custom_view: Callable[[KCFGElem], Iterable[str]] | None = None, proof_status: str = '', proof_id: str = '', exec_time: float = 0)[source]
+

Bases: Widget

+
+
+can_focus: bool = False
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+compose() ComposeResult[source]
+
+ +
+
+on_behavior_view_selected() None[source]
+
+ +
+
+on_constraint_selected() None[source]
+
+ +
+
+on_custom_selected() None[source]
+
+ +
+
+on_mount() None[source]
+
+ +
+
+on_status_selected() None[source]
+
+ +
+
+on_term_selected() None[source]
+
+ +
+
+toggle_option(field: str) bool[source]
+
+ +
+
+toggle_view(field: str) None[source]
+
+ +
+
+update(element: Node | Successor) None[source]
+
+ +
+ +
+
+class Status[source]
+

Bases: NavWidget

+
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+on_click(click: Click) None[source]
+
+ +
+ +
+
+class Term[source]
+

Bases: NavWidget

+
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+on_click(click: Click) None[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kcovr.html b/pyk/api/pyk.kcovr.html new file mode 100644 index 00000000000..dcfd5b05a74 --- /dev/null +++ b/pyk/api/pyk.kcovr.html @@ -0,0 +1,194 @@ + + + + + + + pyk.kcovr module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kcovr module

+
+
+count_lines_covered(rule_map: Mapping[str, tuple[str, int, int]], cover_map: Mapping[str, int]) int[source]
+
+ +
+
+count_lines_file(rule_map_file: Mapping[str, tuple[int, int]]) int[source]
+
+ +
+
+count_lines_global(rule_map: Mapping[str, tuple[str, int, int]]) int[source]
+
+ +
+
+count_rules_covered(cover_map: Mapping[str, int]) int[source]
+
+ +
+
+create_cover_map(definition_dirs: Iterable[Path]) dict[str, int][source]
+
+ +
+
+create_rule_map(definition_dirs: Iterable[Path]) dict[str, tuple[str, int, int]][source]
+
+ +
+
+create_rule_map_by_file(rule_map: Mapping[str, tuple[str, int, int]]) dict[str, dict[str, tuple[int, int]]][source]
+
+ +
+
+create_rule_map_by_line(rule_map_file: Mapping[str, tuple[int, int]]) dict[int, list[str]][source]
+
+ +
+
+main() None[source]
+
+ +
+
+parse_args() tuple[tuple[Path, ...], tuple[Path, ...]][source]
+
+ +
+
+render_classes(rule_map: Mapping[str, tuple[str, int, int]], cover_map: Mapping[str, int], source_files: Iterable[Path], source_dir: Path) list[str][source]
+
+ +
+
+render_coverage_xml(definition_dirs: Iterable[Path], source_files: Iterable[Path]) str[source]
+
+ +
+
+render_lines(rule_map_file: Mapping[str, tuple[int, int]], cover_map_file: Mapping[str, int]) list[str][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kdist.api.html b/pyk/api/pyk.kdist.api.html new file mode 100644 index 00000000000..7ea00aa1df4 --- /dev/null +++ b/pyk/api/pyk.kdist.api.html @@ -0,0 +1,202 @@ + + + + + + + pyk.kdist.api module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kdist.api module

+
+
+class Target[source]
+

Bases: ABC

+
+
+abstract build(output_dir: Path, deps: dict[str, Path], args: dict[str, Any], verbose: bool) None[source]
+
+ +
+
+context() Mapping[str, str][source]
+
+ +
+
+deps() Iterable[str][source]
+
+ +
+
+final manifest() dict[str, Any][source]
+
+ +
+
+source() Iterable[str | Path][source]
+
+ +
+ +
+
+final class TargetId(plugin_name: 'str', target_name: 'str')[source]
+

Bases: object

+
+
+property full_name: str
+
+ +
+
+static parse(fqn: str) TargetId[source]
+
+ +
+
+plugin_name: str
+
+ +
+
+target_name: str
+
+ +
+ +
+
+valid_id(s: str) bool[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kdist.html b/pyk/api/pyk.kdist.html new file mode 100644 index 00000000000..0be7ac6c01d --- /dev/null +++ b/pyk/api/pyk.kdist.html @@ -0,0 +1,172 @@ + + + + + + + pyk.kdist package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/pyk/api/pyk.kdist.utils.html b/pyk/api/pyk.kdist.utils.html new file mode 100644 index 00000000000..481d4f5ec2f --- /dev/null +++ b/pyk/api/pyk.kdist.utils.html @@ -0,0 +1,160 @@ + + + + + + + pyk.kdist.utils module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kdist.utils module

+
+
+cwd(path: Path) Iterator[None][source]
+
+ +
+
+files_for_path(path: str | Path) list[Path][source]
+
+ +
+
+package_path(obj: Any) Path[source]
+
+ +
+
+timestamp(path: Path) int[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.ast.html b/pyk/api/pyk.kllvm.ast.html new file mode 100644 index 00000000000..9bcefaa6505 --- /dev/null +++ b/pyk/api/pyk.kllvm.ast.html @@ -0,0 +1,140 @@ + + + + + + + pyk.kllvm.ast module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.ast module

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.compiler.html b/pyk/api/pyk.kllvm.compiler.html new file mode 100644 index 00000000000..41cd83e7e6d --- /dev/null +++ b/pyk/api/pyk.kllvm.compiler.html @@ -0,0 +1,155 @@ + + + + + + + pyk.kllvm.compiler module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.compiler module

+
+
+compile_kllvm(target_dir: str | Path, *, verbose: bool = False) Path[source]
+
+ +
+
+compile_runtime(definition_dir: str | Path, target_dir: str | Path | None = None, *, ccopts: Iterable[str] = (), verbose: bool = False) Path[source]
+
+ +
+
+generate_hints(definition_dir: str | Path, input_kore_file: str | Path, target_dir: str | Path | None = None, hints_file_name: str = 'hints.bin') Path[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.convert.html b/pyk/api/pyk.kllvm.convert.html new file mode 100644 index 00000000000..7042522c3ed --- /dev/null +++ b/pyk/api/pyk.kllvm.convert.html @@ -0,0 +1,195 @@ + + + + + + + pyk.kllvm.convert module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.convert module

+
+
+definition_to_llvm(definition: Definition) Definition[source]
+
+ +
+
+llvm_to_definition(definition: Definition) Definition[source]
+
+ +
+
+llvm_to_module(module: Module) Module[source]
+
+ +
+
+llvm_to_pattern(pattern: kllvm.Pattern) Pattern[source]
+
+ +
+
+llvm_to_sentence(decl: kllvm.Declaration) Sentence[source]
+
+ +
+
+llvm_to_sort(sort: kllvm.Sort) Sort[source]
+
+ +
+
+llvm_to_sort_var(var: SortVariable) SortVar[source]
+
+ +
+
+module_to_llvm(module: Module) Module[source]
+
+ +
+
+pattern_to_llvm(pattern: Pattern) kllvm.Pattern[source]
+
+ +
+
+sentence_to_llvm(sentence: Sentence) kllvm.Declaration[source]
+
+ +
+
+sort_to_llvm(sort: Sort) kllvm.Sort[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.hints.html b/pyk/api/pyk.kllvm.hints.html new file mode 100644 index 00000000000..66416bd4281 --- /dev/null +++ b/pyk/api/pyk.kllvm.hints.html @@ -0,0 +1,251 @@ + + + + + + + pyk.kllvm.hints package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.hints package

+
+

Submodules

+
+ +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.hints.prooftrace.html b/pyk/api/pyk.kllvm.hints.prooftrace.html new file mode 100644 index 00000000000..bc457c7f53b --- /dev/null +++ b/pyk/api/pyk.kllvm.hints.prooftrace.html @@ -0,0 +1,822 @@ + + + + + + + pyk.kllvm.hints.prooftrace module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.hints.prooftrace module

+
+
+class KoreHeader(kore_header: kore_header)[source]
+

Bases: object

+

Represents the Kore header.

+

The Kore header is a file that contains the version of the Binary KORE used to serialize/deserialize the +Proof Trace and all the aditional information needed make this process faster the Proof Trace.

+
+
+_kore_header
+

The underlying KORE Header object.

+
+
Type:
+

kore_header

+
+
+
+ +
+
+__init__(kore_header: kore_header) None[source]
+

Initialize a new instance of the KoreHeader class.

+
+
Parameters:
+

kore_header (kore_header) – The KORE Header object.

+
+
+
+ +
+
+static create(header_path: Path) KoreHeader[source]
+

Create a new KoreHeader object from the given header file path.

+
+ +
+ +
+
+final class LLVMArgument(argument: Argument)[source]
+

Bases: object

+

Represents an LLVM argument.

+
+
+_argument
+

The underlying Argument object. An argument is a wrapper object containing either a step

+
+
Type:
+

Argument

+
+
+
+ +
+
+event or a KORE pattern.
+
+ +
+
+__init__(argument: Argument) None[source]
+

Initialize the LLVMArgument object.

+
+
Parameters:
+

argument (Argument) – The Argument object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

Returns a string representation of the LLVMArgument object using the AST printing method.

+
+
+
+ +
+
+is_kore_pattern() bool[source]
+

Check if the argument is a KORE Pattern.

+
+ +
+
+is_step_event() bool[source]
+

Check if the argument is a step event.

+
+ +
+
+property kore_pattern: Pattern
+

Return the KORE Pattern associated with the argument if any.

+
+ +
+
+property step_event: LLVMStepEvent
+

Returns the LLVMStepEvent associated with the argument if any.

+
+ +
+ +
+
+class LLVMEventAnnotated(annotated_llvm_event: annotated_llvm_event)[source]
+

Bases: object

+

Represents an annotated LLVM event.

+

This class is used to wrap an llvm_event and its corresponding event type. +This class is used to iterate over the LLVM rewrite trace events.

+
+
+_annotated_llvm_event
+

The underlying annotated LLVM event object.

+
+
Type:
+

annotated_llvm_event

+
+
+
+ +
+
+__init__(annotated_llvm_event: annotated_llvm_event) None[source]
+

Initialize a new instance of the LLVMEventAnnotated class.

+
+
Parameters:
+

annotated_llvm_event (annotated_llvm_event) – The annotated LLVM event object.

+
+
+
+ +
+
+property event: LLVMArgument
+

Returns the LLVM event as an LLVMArgument object.

+
+ +
+
+property type: LLVMEventType
+

Returns the LLVM event type.

+
+ +
+ +
+
+class LLVMEventType(event_type: EventType)[source]
+

Bases: object

+

Represents an LLVM event type.

+

This works as a wrapper around the EventType enum. +It also provides properties to check the type of the event.

+
+
+_event_type
+

The underlying EventType object.

+
+
Type:
+

EventType

+
+
+
+ +
+
+__init__(event_type: EventType) None[source]
+

Initialize a new instance of the LLVMEventType class.

+
+
Parameters:
+

event_type (EventType) – The EventType object.

+
+
+
+ +
+
+property is_initial_config: bool
+

Checks if the event type is an initial configuration event.

+
+ +
+
+property is_pre_trace: bool
+

Checks if the event type is a pre-trace event.

+
+ +
+
+property is_trace: bool
+

Checks if the event type is a trace event.

+
+ +
+ +
+
+final class LLVMFunctionEvent(function_event: llvm_function_event)[source]
+

Bases: LLVMStepEvent

+

Represent an LLVM function event in a proof trace.

+
+
+_function_event
+

The underlying LLVM function event object.

+
+
Type:
+

llvm_function_event

+
+
+
+ +
+
+__init__(function_event: llvm_function_event) None[source]
+

Initialize a new instance of the LLVMFunctionEvent class.

+
+
Parameters:
+

function_event (llvm_function_event) – The LLVM function event object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMFunctionEvent object using the AST printing method.

+
+
+
+ +
+
+property args: list[LLVMArgument]
+

Return a list of LLVMArgument objects representing the arguments of the LLVM function.

+
+ +
+
+property name: str
+

Return the name of the LLVM function as a KORE Symbol Name.

+
+ +
+
+property relative_position: str
+

0:0:0).

+
+
Type:
+

Return the relative position of the LLVM function event in the proof trace. Ex.

+
+
Type:
+

(0

+
+
+
+ +
+ +
+
+final class LLVMHookEvent(hook_event: llvm_hook_event)[source]
+

Bases: LLVMStepEvent

+

Represents a hook event in LLVM execution.

+
+
+_hook_event
+

The underlying hook event object.

+
+
Type:
+

llvm_hook_event

+
+
+
+ +
+
+__init__(hook_event: llvm_hook_event) None[source]
+

Initialize a new instance of the LLVMHookEvent class.

+
+
Parameters:
+

hook_event (llvm_hook_event) – The LLVM hook event object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMHookEvent object using the AST printing method.

+
+
+
+ +
+
+property args: list[LLVMArgument]
+

Return a list of LLVMArgument objects representing the arguments of the hook event.

+
+ +
+
+property name: str
+

“INT.add”.

+
+
Type:
+

Return the attribute name of the hook event. Ex.

+
+
+
+ +
+
+property relative_position: str
+

0:0:0).

+
+
Type:
+

Return the relative position of the hook event in the proof trace. Ex.

+
+
Type:
+

(0

+
+
+
+ +
+
+property result: Pattern
+

Return the result pattern of the hook event evaluation.

+
+ +
+ +
+
+class LLVMRewriteEvent[source]
+

Bases: LLVMStepEvent

+

Represents LLVM rewrite event.

+
+
+abstract property rule_ordinal: int
+

Return the axiom ordinal number of the rewrite rule.

+

The rule ordinal represents the nth axiom in the kore definition.

+
+ +
+
+abstract property substitution: dict[str, Pattern]
+

Returns the substitution dictionary used to perform the rewrite represented by this event.

+
+ +
+ +
+
+final class LLVMRewriteTrace(rewrite_trace: llvm_rewrite_trace)[source]
+

Bases: object

+

Represents an LLVM rewrite trace.

+
+
+_rewrite_trace
+

The underlying LLVM rewrite trace object.

+
+
Type:
+

llvm_rewrite_trace

+
+
+
+ +
+
+__init__(rewrite_trace: llvm_rewrite_trace) None[source]
+

Initialize a new instance of the LLVMRewriteTrace class.

+
+
Parameters:
+

rewrite_trace (llvm_rewrite_trace) – The LLVM rewrite trace object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMRewriteTrace object using the AST printing method.

+
+
+
+ +
+
+property initial_config: LLVMArgument
+

Returns the initial configuration as an LLVMArgument object.

+
+ +
+
+static parse(trace: bytes, header: KoreHeader) LLVMRewriteTrace[source]
+

Parse the given proof hints byte string using the given kore_header object.

+
+ +
+
+property pre_trace: list[LLVMArgument]
+

Returns a list of events that occurred before the initial configuration was constructed.

+
+ +
+
+property trace: list[LLVMArgument]
+

Returns the trace.

+

The trace is the list of events that occurred after the initial configurarion was constructed until the end of the +proof trace when the final configuration is reached.

+
+ +
+
+property version: int
+

Returns the version of the binary hints format used by this trace.

+
+ +
+ +
+
+class LLVMRewriteTraceIterator(rewrite_trace_iterator: llvm_rewrite_trace_iterator)[source]
+

Bases: object

+

Represents an LLVM rewrite trace iterator.

+

This class is used to iterate over the LLVM rewrite trace events in the stream parser.

+
+
+_rewrite_trace_iterator
+

The underlying LLVM rewrite trace iterator object.

+
+
Type:
+

llvm_rewrite_trace_iterator

+
+
+
+ +
+
+__init__(rewrite_trace_iterator: llvm_rewrite_trace_iterator) None[source]
+

Initialize a new instance of the LLVMRewriteTraceIterator class.

+
+
Parameters:
+

rewrite_trace_iterator (llvm_rewrite_trace_iterator) – The LLVM rewrite trace iterator object.

+
+
+
+ +
+
+__iter__() Generator[LLVMEventAnnotated, None, None][source]
+

Yield LLVMEventAnnotated options.

+

This method is an iterator that yields LLVMEventAnnotated options. +It iterates over the events in the trace and returns the next event as an LLVMEventAnnotated object.

+
+
Yields:
+

LLVMEventAnnotated – The next LLVMEventAnnotated option.

+
+
+
+ +
+
+__next__() LLVMEventAnnotated[source]
+

Yield the next LLVMEventAnnotated object from the iterator.

+
+
Returns:
+

The next LLVMEventAnnotated object.

+
+
Return type:
+

LLVMEventAnnotated

+
+
Raises:
+

StopIteration – If there are no more events in the iterator.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMRewriteTraceIterator object using the AST printing method.

+
+
+
+ +
+
+static from_file(trace_path: Path, header: KoreHeader) LLVMRewriteTraceIterator[source]
+

Create a new LLVMRewriteTraceIterator object from the given trace and header file paths.

+
+ +
+
+property version: int
+

Return the version of the HINTS format.

+
+ +
+ +
+
+final class LLVMRuleEvent(rule_event: llvm_rule_event)[source]
+

Bases: LLVMRewriteEvent

+

Represents an LLVM rule event.

+
+
+_rule_event
+

The underlying LLVM rule event.

+
+
Type:
+

llvm_rule_event

+
+
+
+ +
+
+__init__(rule_event: llvm_rule_event) None[source]
+

Initialize a new instance of the LLVMRuleEvent class.

+
+
Parameters:
+

rule_event (llvm_rule_event) – The LLVM rule event object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMRuleEvent object using the AST printing method.

+
+
+
+ +
+
+property rule_ordinal: int
+

Returns the axiom ordinal number of the rule event.

+
+ +
+
+property substitution: dict[str, Pattern]
+

Returns the substitution dictionary used to perform the rewrite represented by this rule event.

+
+ +
+ +
+
+final class LLVMSideConditionEventEnter(side_condition_event: llvm_side_condition_event)[source]
+

Bases: LLVMRewriteEvent

+

Represents an event that enters a side condition in LLVM rewriting.

+

This event is used to check the side condition of a rule. Mostly used in ensures/requires clauses.

+
+
+_side_condition_event
+

The underlying side condition event.

+
+
Type:
+

llvm_side_condition_event

+
+
+
+ +
+
+__init__(side_condition_event: llvm_side_condition_event) None[source]
+

Initialize a new instance of the LLVMSideConditionEventEnter class.

+
+
Parameters:
+

side_condition_event (llvm_side_condition_event) – The LLVM side condition event object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMSideConditionEventEnter object using the AST printing method.

+
+
+
+ +
+
+property rule_ordinal: int
+

Returns the axiom ordinal number associated with the side condition event.

+
+ +
+
+property substitution: dict[str, Pattern]
+

Returns the substitution dictionary used to perform the rewrite represented by this side condition event.

+
+ +
+ +
+
+final class LLVMSideConditionEventExit(side_condition_end_event: llvm_side_condition_end_event)[source]
+

Bases: LLVMStepEvent

+

Represents an LLVM side condition event indicating the exit of a side condition.

+

This event contains the result of the side condition evaluation.

+
+
+_side_condition_end_event
+

The underlying side condition end event.

+
+
Type:
+

llvm_side_condition_end_event

+
+
+
+ +
+
+__init__(side_condition_end_event: llvm_side_condition_end_event) None[source]
+

Initialize a new instance of the LLVMSideConditionEventExit class.

+
+
Parameters:
+

side_condition_end_event (llvm_side_condition_end_event) – The LLVM side condition end event object.

+
+
+
+ +
+
+__repr__() str[source]
+

Return a string representation of the object.

+
+
Returns:
+

A string representation of the LLVMSideConditionEventExit object using the AST printing method.

+
+
+
+ +
+
+property check_result: bool
+

Return the boolean result of the evaluation of the side condition that corresponds to this event.

+
+ +
+
+property rule_ordinal: int
+

Return the axiom ordinal number associated with the side condition event.

+
+ +
+ +
+
+class LLVMStepEvent[source]
+

Bases: ABC

+

Abstract base class representing an LLVM step event.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.html b/pyk/api/pyk.kllvm.html new file mode 100644 index 00000000000..89a5aef4ed9 --- /dev/null +++ b/pyk/api/pyk.kllvm.html @@ -0,0 +1,240 @@ + + + + + + + pyk.kllvm package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.importer.html b/pyk/api/pyk.kllvm.importer.html new file mode 100644 index 00000000000..5ca0cfffd13 --- /dev/null +++ b/pyk/api/pyk.kllvm.importer.html @@ -0,0 +1,160 @@ + + + + + + + pyk.kllvm.importer module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.importer module

+
+
+import_from_file(module_name: str, module_file: str | Path) ModuleType[source]
+
+ +
+
+import_kllvm(target_dir: str | Path) ModuleType[source]
+
+ +
+
+import_runtime(target_dir: str | Path) Runtime[source]
+
+ +
+
+rtld_local() Iterator[None][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.load.html b/pyk/api/pyk.kllvm.load.html new file mode 100644 index 00000000000..289ef726d2a --- /dev/null +++ b/pyk/api/pyk.kllvm.load.html @@ -0,0 +1,140 @@ + + + + + + + pyk.kllvm.load module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.load module

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.load_static.html b/pyk/api/pyk.kllvm.load_static.html new file mode 100644 index 00000000000..7862b21ddaa --- /dev/null +++ b/pyk/api/pyk.kllvm.load_static.html @@ -0,0 +1,145 @@ + + + + + + + pyk.kllvm.load_static module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.load_static module

+
+
+get_kllvm() Path[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.parser.html b/pyk/api/pyk.kllvm.parser.html new file mode 100644 index 00000000000..1443460afc2 --- /dev/null +++ b/pyk/api/pyk.kllvm.parser.html @@ -0,0 +1,170 @@ + + + + + + + pyk.kllvm.parser module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.parser module

+
+
+parse_definition(text: str) Definition[source]
+
+ +
+
+parse_definition_file(path: str | Path) Definition[source]
+
+ +
+
+parse_pattern(text: str) Pattern[source]
+
+ +
+
+parse_pattern_file(path: str | Path) Pattern[source]
+
+ +
+
+parse_sort(text: str) Sort[source]
+
+ +
+
+parse_sort_file(path: str | Path) Pattern[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.runtime.html b/pyk/api/pyk.kllvm.runtime.html new file mode 100644 index 00000000000..d6562734558 --- /dev/null +++ b/pyk/api/pyk.kllvm.runtime.html @@ -0,0 +1,202 @@ + + + + + + + pyk.kllvm.runtime module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.runtime module

+
+
+class Runtime(module: ModuleType)[source]
+

Bases: object

+
+
+deserialize(bs: bytes) Term | None[source]
+
+ +
+
+run(pattern: Pattern) Pattern[source]
+
+ +
+
+simplify(pattern: Pattern, sort: Sort) Pattern[source]
+
+ +
+
+simplify_bool(pattern: Pattern) bool[source]
+
+ +
+
+step(pattern: Pattern, depth: int | None = 1) Pattern[source]
+
+ +
+
+term(pattern: Pattern) Term[source]
+
+ +
+ +
+
+class Term(block: Any)[source]
+

Bases: object

+
+
+property pattern: Pattern
+
+ +
+
+run() None[source]
+
+ +
+
+serialize() bytes[source]
+
+ +
+
+step(depth: int | None = 1) None[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kllvm.utils.html b/pyk/api/pyk.kllvm.utils.html new file mode 100644 index 00000000000..a66c08b4653 --- /dev/null +++ b/pyk/api/pyk.kllvm.utils.html @@ -0,0 +1,145 @@ + + + + + + + pyk.kllvm.utils module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kllvm.utils module

+
+
+get_requires(axiom: Axiom) Pattern | None[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.konvert.html b/pyk/api/pyk.konvert.html new file mode 100644 index 00000000000..76c185970df --- /dev/null +++ b/pyk/api/pyk.konvert.html @@ -0,0 +1,139 @@ + + + + + + + pyk.konvert package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.konvert package

+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.html b/pyk/api/pyk.kore.html new file mode 100644 index 00000000000..1b355e52dfb --- /dev/null +++ b/pyk/api/pyk.kore.html @@ -0,0 +1,1208 @@ + + + + + + + pyk.kore package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore package

+
+

Submodules

+
+ +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.kompiled.html b/pyk/api/pyk.kore.kompiled.html new file mode 100644 index 00000000000..c90c6fef8f8 --- /dev/null +++ b/pyk/api/pyk.kore.kompiled.html @@ -0,0 +1,243 @@ + + + + + + + pyk.kore.kompiled module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.kompiled module

+
+
+final class KompiledKore(sort_table: 'KoreSortTable', symbol_table: 'KoreSymbolTable')[source]
+

Bases: object

+
+
+add_injections(pattern: Pattern, sort: Sort | None = None) Pattern[source]
+
+ +
+
+static for_definition(definition: Definition) KompiledKore[source]
+
+ +
+
+static from_dict(dct: dict[str, Any]) KompiledKore[source]
+
+ +
+
+static load(definition_dir: str | Path) KompiledKore[source]
+
+ +
+
+static load_from_json(json_file: str | Path) KompiledKore[source]
+
+ +
+
+static load_from_kore(kore_file: str | Path) KompiledKore[source]
+
+ +
+
+sort_table: KoreSortTable
+
+ +
+
+symbol_table: KoreSymbolTable
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+
+write(definition_dir: str | Path) None[source]
+
+ +
+ +
+
+final class KoreSortTable(subsorts: 'Iterable[tuple[Sort, Sort]]')[source]
+

Bases: object

+
+
+static for_definition(definition: Definition) KoreSortTable[source]
+
+ +
+
+is_subsort(sort1: Sort, sort2: Sort) bool[source]
+
+ +
+
+meet(sort1: Sort, sort2: Sort) Sort[source]
+
+ +
+ +
+
+final class KoreSymbolTable(symbol_decls: 'Iterable[SymbolDecl]' = ())[source]
+

Bases: object

+
+
+static for_definition(definition: Definition, *, with_ml_symbols: bool = True) KoreSymbolTable[source]
+
+ +
+
+infer_sort(pattern: Pattern) Sort[source]
+
+ +
+
+pattern_sorts(pattern: Pattern) tuple[Sort, ...][source]
+
+ +
+
+resolve(symbol_id: str, sorts: Iterable[Sort] = ()) tuple[Sort, tuple[Sort, ...]][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.lexer.html b/pyk/api/pyk.kore.lexer.html new file mode 100644 index 00000000000..c3c510f270d --- /dev/null +++ b/pyk/api/pyk.kore.lexer.html @@ -0,0 +1,395 @@ + + + + + + + pyk.kore.lexer module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.lexer module

+
+
+class KoreToken(text, type)[source]
+

Bases: NamedTuple

+
+
+text: str
+

Alias for field number 0

+
+ +
+
+type: TokenType
+

Alias for field number 1

+
+ +
+ +
+
+class TokenType(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+COLON = 2
+
+ +
+
+COMMA = 1
+
+ +
+
+EOF = 0
+
+ +
+
+ID = 11
+
+ +
+
+KW_ALIAS = 43
+
+ +
+
+KW_AXIOM = 41
+
+ +
+
+KW_CLAIM = 42
+
+ +
+
+KW_ENDMODULE = 35
+
+ +
+
+KW_HOOKED_SORT = 38
+
+ +
+
+KW_HOOKED_SYMBOL = 40
+
+ +
+
+KW_IMPORT = 36
+
+ +
+
+KW_MODULE = 34
+
+ +
+
+KW_SORT = 37
+
+ +
+
+KW_SYMBOL = 39
+
+ +
+
+KW_WHERE = 44
+
+ +
+
+LBRACE = 6
+
+ +
+
+LBRACK = 8
+
+ +
+
+LPAREN = 4
+
+ +
+
+ML_AND = 17
+
+ +
+
+ML_BOTTOM = 15
+
+ +
+
+ML_CEIL = 25
+
+ +
+
+ML_DV = 31
+
+ +
+
+ML_EQUALS = 27
+
+ +
+
+ML_EXISTS = 21
+
+ +
+
+ML_FLOOR = 26
+
+ +
+
+ML_FORALL = 22
+
+ +
+
+ML_IFF = 20
+
+ +
+
+ML_IMPLIES = 19
+
+ +
+
+ML_IN = 28
+
+ +
+
+ML_LEFT_ASSOC = 32
+
+ +
+
+ML_MU = 23
+
+ +
+
+ML_NEXT = 29
+
+ +
+
+ML_NOT = 16
+
+ +
+
+ML_NU = 24
+
+ +
+
+ML_OR = 18
+
+ +
+
+ML_REWRITES = 30
+
+ +
+
+ML_RIGHT_ASSOC = 33
+
+ +
+
+ML_TOP = 14
+
+ +
+
+RBRACE = 7
+
+ +
+
+RBRACK = 9
+
+ +
+
+RPAREN = 5
+
+ +
+
+SET_VAR_ID = 13
+
+ +
+
+STRING = 10
+
+ +
+
+SYMBOL_ID = 12
+
+ +
+
+WALRUS = 3
+
+ +
+ +
+
+kore_lexer(it: Iterable[str]) Iterator[KoreToken][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.manip.html b/pyk/api/pyk.kore.manip.html new file mode 100644 index 00000000000..c9b7e830680 --- /dev/null +++ b/pyk/api/pyk.kore.manip.html @@ -0,0 +1,150 @@ + + + + + + + pyk.kore.manip module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.manip module

+
+
+conjuncts(pattern: Pattern) tuple[Pattern, ...][source]
+
+ +
+
+free_occs(pattern: Pattern, *, bound_vars: Collection[str] = ()) dict[str, list[EVar]][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.match.html b/pyk/api/pyk.kore.match.html new file mode 100644 index 00000000000..7f2c34d7bed --- /dev/null +++ b/pyk/api/pyk.kore.match.html @@ -0,0 +1,267 @@ + + + + + + + pyk.kore.match module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.match module

+
+
+app(symbol: str | None = None) Callable[[Pattern], App][source]
+
+ +
+
+arg(n: int, /) Callable[[App], Pattern][source]
+
+arg(symbol: str, /) Callable[[App], App]
+
+ +
+
+args() Callable[[App], tuple[()]][source]
+
+args(n1: int, /) Callable[[App], tuple[Pattern]]
+
+args(n1: int, n2: int, /) Callable[[App], tuple[Pattern, Pattern]]
+
+args(n1: int, n2: int, n3: int, /) Callable[[App], tuple[Pattern, Pattern, Pattern]]
+
+args(n1: int, n2: int, n3: int, n4: int, /) Callable[[App], tuple[Pattern, Pattern, Pattern, Pattern]]
+
+args(*ns: int) Callable[[App], tuple[Pattern, ...]]
+
+args(s1: str, /) Callable[[App], tuple[App]]
+
+args(s1: str, s2: str, /) Callable[[App], tuple[App, App]]
+
+args(s1: str, s2: str, s3: str, /) Callable[[App], tuple[App, App, App]]
+
+args(s1: str, s2: str, s3: str, s4: str, /) Callable[[App], tuple[App, App, App, App]]
+
+args(*ss: str) Callable[[App], tuple[App, ...]]
+
+ +
+
+case_symbol(*cases: tuple[str, Callable[[App], T]], default: Callable[[App], T] | None = None) Callable[[Pattern], T][source]
+
+ +
+
+inj(pattern: Pattern) Pattern[source]
+
+ +
+
+kore_bool(pattern: Pattern) bool[source]
+
+ +
+
+kore_bytes(pattern: Pattern) bytes[source]
+
+ +
+
+kore_id(pattern: Pattern) str[source]
+
+ +
+
+kore_int(pattern: Pattern) int[source]
+
+ +
+
+kore_list_of(item: Callable[[Pattern], T]) Callable[[Pattern], tuple[T, ...]][source]
+
+ +
+
+kore_map_of(key: Callable[[Pattern], K], value: Callable[[Pattern], V], *, cell: str | None = None) Callable[[Pattern], tuple[tuple[K, V], ...]][source]
+
+ +
+
+kore_set_of(item: Callable[[Pattern], T]) Callable[[Pattern], tuple[T, ...]][source]
+
+ +
+
+kore_str(pattern: Pattern) str[source]
+
+ +
+
+match_app(pattern: Pattern, symbol: str | None = None) App[source]
+
+ +
+
+match_dv(pattern: Pattern, sort: Sort | None = None) DV[source]
+
+ +
+
+match_inj(pattern: Pattern) App[source]
+
+ +
+
+match_left_assoc(pattern: Pattern) LeftAssoc[source]
+
+ +
+
+match_list(pattern: Pattern) tuple[Pattern, ...][source]
+
+ +
+
+match_map(pattern: Pattern, *, cell: str | None = None) tuple[tuple[Pattern, Pattern], ...][source]
+
+ +
+
+match_set(pattern: Pattern) tuple[Pattern, ...][source]
+
+ +
+
+match_symbol(app: App, symbol: str) None[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.parser.html b/pyk/api/pyk.kore.parser.html new file mode 100644 index 00000000000..688a8c4152b --- /dev/null +++ b/pyk/api/pyk.kore.parser.html @@ -0,0 +1,381 @@ + + + + + + + pyk.kore.parser module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.parser module

+
+
+class KoreParser(text: str)[source]
+

Bases: object

+
+
+alias_decl() AliasDecl[source]
+
+ +
+
+andd() And[source]
+
+ +
+
+app() App[source]
+
+ +
+
+axiom() Axiom[source]
+
+ +
+
+bottom() Bottom[source]
+
+ +
+
+ceil() Ceil[source]
+
+ +
+
+claim() Claim[source]
+
+ +
+
+definition() Definition[source]
+
+ +
+
+dv() DV[source]
+
+ +
+
+elem_var() EVar[source]
+
+ +
+
+property eof: bool
+
+ +
+
+equals() Equals[source]
+
+ +
+
+exists() Exists[source]
+
+ +
+
+floor() Floor[source]
+
+ +
+
+forall() Forall[source]
+
+ +
+
+hooked_sort_decl() SortDecl[source]
+
+ +
+
+hooked_symbol_decl() SymbolDecl[source]
+
+ +
+
+id() str[source]
+
+ +
+
+iff() Iff[source]
+
+ +
+
+implies() Implies[source]
+
+ +
+
+importt() Import[source]
+
+ +
+
+inn() In[source]
+
+ +
+
+left_assoc() LeftAssoc[source]
+
+ +
+
+ml_pattern() MLPattern[source]
+
+ +
+
+module() Module[source]
+
+ +
+
+mu() Mu[source]
+
+ +
+
+multi_or() list[Pattern][source]
+
+ +
+
+next() Next[source]
+
+ +
+
+nott() Not[source]
+
+ +
+
+nu() Nu[source]
+
+ +
+
+orr() Or[source]
+
+ +
+
+pattern() Pattern[source]
+
+ +
+
+rewrites() Rewrites[source]
+
+ +
+
+right_assoc() RightAssoc[source]
+
+ +
+
+sentence() Sentence[source]
+
+ +
+
+set_var() SVar[source]
+
+ +
+
+set_var_id() str[source]
+
+ +
+
+sort() Sort[source]
+
+ +
+
+sort_app() SortApp[source]
+
+ +
+
+sort_decl() SortDecl[source]
+
+ +
+
+sort_var() SortVar[source]
+
+ +
+
+string() String[source]
+
+ +
+
+symbol() Symbol[source]
+
+ +
+
+symbol_decl() SymbolDecl[source]
+
+ +
+
+symbol_id() str[source]
+
+ +
+
+top() Top[source]
+
+ +
+
+var_pattern() VarPattern[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.pool.html b/pyk/api/pyk.kore.pool.html new file mode 100644 index 00000000000..a36ac5a679c --- /dev/null +++ b/pyk/api/pyk.kore.pool.html @@ -0,0 +1,156 @@ + + + + + + + pyk.kore.pool module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.pool module

+
+
+class KoreServerPool(create_server: Callable[[], KoreServer], *, max_workers: int | None = None)[source]
+

Bases: ContextManager[KoreServerPool]

+
+
+close() None[source]
+
+ +
+
+submit(fn: Callable[Concatenate[int, P], T], /, *args: P.args, **kwargs: P.kwargs) Future[T][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.prelude.html b/pyk/api/pyk.kore.prelude.html new file mode 100644 index 00000000000..9ba2431e03d --- /dev/null +++ b/pyk/api/pyk.kore.prelude.html @@ -0,0 +1,330 @@ + + + + + + + pyk.kore.prelude module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.prelude module

+
+
+and_bool(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+bool_dv(val: bool) DV[source]
+
+ +
+
+bytes_dv(val: bytes) DV[source]
+
+ +
+
+dv(val: bool | int | bytes | str) DV[source]
+
+ +
+
+eq_bool(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+eq_int(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+ge_int(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+generated_counter(pattern: Pattern) App[source]
+
+ +
+
+generated_top(patterns: Iterable[Pattern]) App[source]
+
+ +
+
+gt_int(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+implies_bool(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+init_generated_top_cell(pattern: Pattern) App[source]
+
+ +
+
+inj(sort1: Sort, sort2: Sort, pattern: Pattern) App[source]
+
+ +
+
+int_dv(val: int) DV[source]
+
+ +
+
+json2string(pattern: Pattern) App[source]
+
+ +
+
+json_entry(key: Pattern, value: Pattern) App[source]
+
+ +
+
+json_key(key: str) App[source]
+
+ +
+
+json_list(pattern: Pattern) App[source]
+
+ +
+
+json_object(pattern: Pattern) App[source]
+
+ +
+
+json_to_kore(data: Any) Pattern[source]
+
+ +
+
+jsons(patterns: Iterable[Pattern]) RightAssoc[source]
+
+ +
+
+k(pattern: Pattern) App[source]
+
+ +
+
+k_config_var(var: str) DV[source]
+
+ +
+
+kore_to_json(pattern: Pattern) Any[source]
+
+ +
+
+kseq(kitems: Iterable[Pattern], *, dotvar: EVar | None = None) Pattern[source]
+
+ +
+
+le_int(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+list_pattern(*args: Pattern) Pattern[source]
+
+ +
+
+lt_int(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+map_pattern(*args: tuple[Pattern, Pattern], cell: str | None = None) Pattern[source]
+
+ +
+
+ne_bool(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+ne_int(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+not_bool(pattern: Pattern) Pattern[source]
+
+ +
+
+or_bool(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+
+set_pattern(*args: Pattern) Pattern[source]
+
+ +
+
+str_dv(val: str) DV[source]
+
+ +
+
+string2json(pattern: Pattern) App[source]
+
+ +
+
+top_cell_initializer(config: Mapping[str, Pattern]) App[source]
+
+ +
+
+xor_bool(left: Pattern, right: Pattern) Pattern[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.rpc.html b/pyk/api/pyk.kore.rpc.html new file mode 100644 index 00000000000..00d8994e693 --- /dev/null +++ b/pyk/api/pyk.kore.rpc.html @@ -0,0 +1,1449 @@ + + + + + + + pyk.kore.rpc module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.rpc module

+
+
+final class AbortedResult(state: 'State', depth: 'int', unknown_predicate: 'Pattern | None', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) AbortedResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None = None
+
+ +
+
+reason: ClassVar[StopReason] = 'aborted'
+
+ +
+
+rule: str | None = None
+
+ +
+
+state: State
+
+ +
+
+unknown_predicate: Pattern | None
+
+ +
+ +
+
+class BoosterServer(args: BoosterServerArgs)[source]
+

Bases: KoreServer

+
+ +
+
+class BoosterServerArgs[source]
+

Bases: dict

+
+
+bug_report: BugReport | None
+
+ +
+
+command: str | Iterable[str] | None
+
+ +
+
+fallback_on: Iterable[str | FallbackReason] | None
+
+ +
+
+haskell_log_entries: Iterable[str] | None
+
+ +
+
+haskell_log_format: KoreExecLogFormat | None
+
+ +
+
+haskell_threads: int | None
+
+ +
+
+interim_simplification: int | None
+
+ +
+
+kompiled_dir: Required[str | Path]
+
+ +
+
+llvm_kompiled_dir: Required[str | Path]
+
+ +
+
+log_axioms_file: Path | None
+
+ +
+
+log_context: Iterable[str] | None
+
+ +
+
+module_name: Required[str]
+
+ +
+
+no_post_exec_simplify: bool | None
+
+ +
+
+not_log_context: Iterable[str] | None
+
+ +
+
+port: int | None
+
+ +
+
+smt_reset_interval: int | None
+
+ +
+
+smt_retry_limit: int | None
+
+ +
+
+smt_tactic: str | None
+
+ +
+
+smt_timeout: int | None
+
+ +
+ +
+
+final class BranchingResult(state: 'State', depth: 'int', next_states: 'tuple[State, ...]', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) BranchingResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...]
+
+ +
+
+reason: ClassVar[StopReason] = 'branching'
+
+ +
+
+rule: str | None = None
+
+ +
+
+state: State
+
+ +
+ +
+
+final class CutPointResult(state: 'State', depth: 'int', next_states: 'tuple[State, ...]', rule: 'str', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) CutPointResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...]
+
+ +
+
+reason: ClassVar[StopReason] = 'cut-point-rule'
+
+ +
+
+rule: str
+
+ +
+
+state: State
+
+ +
+ +
+
+final exception DefaultError(message: 'str', code: 'int', data: 'Any' = None)[source]
+

Bases: KoreClientError

+
+
+code: int
+
+ +
+
+data: Any
+
+ +
+
+message: str
+
+ +
+ +
+
+final class DepthBoundResult(state: 'State', depth: 'int', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) DepthBoundResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None = None
+
+ +
+
+reason: ClassVar[StopReason] = 'depth-bound'
+
+ +
+
+rule: str | None = None
+
+ +
+
+state: State
+
+ +
+ +
+
+final exception DuplicateModuleError(module_name: 'str')[source]
+

Bases: KoreClientError

+
+
+module_name: str
+
+ +
+ +
+
+class ExecuteResult[source]
+

Bases: ABC

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) ER[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None
+
+ +
+
+reason: ClassVar[StopReason]
+
+ +
+
+rule: str | None
+
+ +
+
+state: State
+
+ +
+ +
+
+class FallbackReason(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+ABORTED = 'Aborted'
+
+ +
+
+BRANCHING = 'Branching'
+
+ +
+
+STUCK = 'Stuck'
+
+ +
+ +
+
+class GetModelResult[source]
+

Bases: ABC

+
+
+static from_dict(dct: Mapping[str, Any]) GetModelResult[source]
+
+ +
+ +
+
+final class HttpTransport(host: str, port: int, *, timeout: int | None = None)[source]
+

Bases: Transport

+
+
+close() None[source]
+
+ +
+
+command(bug_report_id: str, old_id: int, bug_report_request: str) list[str][source]
+
+ +
+
+description() str[source]
+
+ +
+
+request(req: str) str[source]
+
+ +
+ +
+
+final exception ImplicationError(error: 'str', context: 'Iterable[str]')[source]
+

Bases: KoreClientError

+
+
+context: tuple[str, ...]
+
+ +
+
+error: str
+
+ +
+ +
+
+final class ImpliesResult(valid: 'bool', implication: 'Pattern', substitution: 'Pattern | None', predicate: 'Pattern | None', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: object

+
+
+static from_dict(dct: Mapping[str, Any]) ImpliesResult[source]
+
+ +
+
+implication: Pattern
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+predicate: Pattern | None
+
+ +
+
+substitution: Pattern | None
+
+ +
+
+valid: bool
+
+ +
+ +
+
+final exception InvalidModuleError(error: 'str', context: 'Iterable[str] | None')[source]
+

Bases: KoreClientError

+
+
+context: tuple[str, ...] | None
+
+ +
+
+error: str
+
+ +
+ +
+
+class JsonRpcClient(host: str, port: int, *, timeout: int | None = None, bug_report: BugReport | None = None, bug_report_id: str | None = None, transport: TransportType = TransportType.SINGLE_SOCKET)[source]
+

Bases: ContextManager[JsonRpcClient]

+
+
+close() None[source]
+
+ +
+
+request(method: str, **params: Any) dict[str, Any][source]
+
+ +
+ +
+
+class JsonRpcClientFacade(default_host: str, default_port: int, default_transport: TransportType, dispatch: dict[str, list[tuple[str, int, TransportType]]], *, timeout: int | None = None, bug_report: BugReport | None = None, bug_report_id: str | None = None)[source]
+

Bases: ContextManager[JsonRpcClientFacade]

+
+
+close() None[source]
+
+ +
+
+request(method: str, **params: Any) dict[str, Any][source]
+
+ +
+ +
+
+final exception JsonRpcError(message: 'str', code: 'int', data: 'Any' = None)[source]
+

Bases: Exception

+
+ +
+
+class KoreClient(host: str, port: int, *, timeout: int | None = None, bug_report: BugReport | None = None, bug_report_id: str | None = None, transport: TransportType = TransportType.SINGLE_SOCKET, dispatch: dict[str, list[tuple[str, int, TransportType]]] | None = None)[source]
+

Bases: ContextManager[KoreClient]

+
+
+add_module(module: Module, *, name_as_id: bool | None = None) str[source]
+
+ +
+
+close() None[source]
+
+ +
+
+execute(pattern: Pattern, *, max_depth: int | None = None, assume_state_defined: bool | None = None, cut_point_rules: Iterable[str] | None = None, terminal_rules: Iterable[str] | None = None, moving_average_step_timeout: bool | None = None, step_timeout: int | None = None, module_name: str | None = None, log_successful_rewrites: bool | None = None, log_failed_rewrites: bool | None = None, log_timing: bool | None = None) ExecuteResult[source]
+
+ +
+
+get_model(pattern: Pattern, module_name: str | None = None) GetModelResult[source]
+
+ +
+
+implies(antecedent: Pattern, consequent: Pattern, *, module_name: str | None = None, log_timing: bool | None = None) ImpliesResult[source]
+
+ +
+
+port: int
+
+ +
+
+simplify(pattern: Pattern, *, module_name: str | None = None, log_timing: bool | None = None) tuple[Pattern, tuple[LogEntry, ...]][source]
+
+ +
+ +
+
+exception KoreClientError(message: str)[source]
+

Bases: Exception, ABC

+
+ +
+
+class KoreExecLogFormat(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+ONELINE = 'oneline'
+
+ +
+
+STANDARD = 'standard'
+
+ +
+ +
+
+class KoreServer(args: KoreServerArgs)[source]
+

Bases: ContextManager[KoreServer]

+
+
+close() None[source]
+
+ +
+
+property host: str
+
+ +
+
+property pid: int
+
+ +
+
+property port: int
+
+ +
+
+start() None[source]
+
+ +
+ +
+
+class KoreServerArgs[source]
+

Bases: TypedDict

+
+
+bug_report: BugReport | None
+
+ +
+
+command: str | Iterable[str] | None
+
+ +
+
+haskell_log_entries: Iterable[str] | None
+
+ +
+
+haskell_log_format: KoreExecLogFormat | None
+
+ +
+
+haskell_threads: int | None
+
+ +
+
+kompiled_dir: Required[str | Path]
+
+ +
+
+log_axioms_file: Path | None
+
+ +
+
+module_name: Required[str]
+
+ +
+
+port: int | None
+
+ +
+
+smt_reset_interval: int | None
+
+ +
+
+smt_retry_limit: int | None
+
+ +
+
+smt_tactic: str | None
+
+ +
+
+smt_timeout: int | None
+
+ +
+ +
+
+class KoreServerInfo(pid, host, port)[source]
+

Bases: NamedTuple

+
+
+host: str
+

Alias for field number 1

+
+ +
+
+pid: int
+

Alias for field number 0

+
+ +
+
+port: int
+

Alias for field number 2

+
+ +
+ +
+
+class LogEntry[source]
+

Bases: ABC

+
+
+classmethod from_dict(dct: Mapping[str, Any]) LE[source]
+
+ +
+
+abstract to_dict() dict[str, Any][source]
+
+ +
+ +
+
+class LogOrigin(value)[source]
+

Bases: str, Enum

+

An enumeration.

+
+
+BOOSTER = 'booster'
+
+ +
+
+KORE_RPC = 'kore-rpc'
+
+ +
+
+LLVM = 'llvm'
+
+ +
+
+__format__(format_spec)
+

Returns format using actual value type unless __str__ has been overridden.

+
+ +
+ +
+
+final class LogRewrite(origin: 'LogOrigin', result: 'RewriteResult')[source]
+

Bases: LogEntry

+
+
+classmethod from_dict(dct: Mapping[str, Any]) LogRewrite[source]
+
+ +
+
+origin: LogOrigin
+
+ +
+
+result: RewriteResult
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class LogTiming(time: 'float', component: 'Component | None')[source]
+

Bases: LogEntry

+
+
+class Component(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BOOSTER = 'booster'
+
+ +
+
+KORE_RPC = 'kore-rpc'
+
+ +
+
+PROXY = 'proxy'
+
+ +
+ +
+
+component: Component | None
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) LogTiming[source]
+
+ +
+
+time: float
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final exception ParseError(error: 'str')[source]
+

Bases: KoreClientError

+
+
+error: str
+
+ +
+ +
+
+final exception PatternError(error: 'str', context: 'Iterable[str]')[source]
+

Bases: KoreClientError

+
+
+context: tuple[str, ...]
+
+ +
+
+error: str
+
+ +
+ +
+
+final class RewriteFailure(rule_id: 'str | None', reason: 'str')[source]
+

Bases: RewriteResult

+
+
+classmethod from_dict(dct: Mapping[str, Any]) RewriteFailure[source]
+
+ +
+
+reason: str
+
+ +
+
+rule_id: str | None
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+class RewriteResult[source]
+

Bases: ABC

+
+
+classmethod from_dict(dct: Mapping[str, Any]) RR[source]
+
+ +
+
+rule_id: str | None
+
+ +
+
+abstract to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class RewriteSuccess(rule_id: 'str', rewritten_term: 'Pattern | None' = None)[source]
+

Bases: RewriteResult

+
+
+classmethod from_dict(dct: Mapping[str, Any]) RewriteSuccess[source]
+
+ +
+
+rewritten_term: Pattern | None = None
+
+ +
+
+rule_id: str
+
+ +
+
+to_dict() dict[str, Any][source]
+
+ +
+ +
+
+final class SatResult(model: 'Pattern | None')[source]
+

Bases: GetModelResult

+
+
+model: Pattern | None
+
+ +
+ +
+
+final class SingleSocketTransport(host: str, port: int, *, timeout: int | None = None)[source]
+

Bases: Transport

+
+
+close() None[source]
+
+ +
+
+command(bug_report_id: str, old_id: int, bug_report_request: str) list[str][source]
+
+ +
+
+description() str[source]
+
+ +
+
+request(req: str) str[source]
+
+ +
+ +
+
+final exception SmtSolverError(error: 'str', pattern: 'Pattern')[source]
+

Bases: KoreClientError

+
+
+error: str
+
+ +
+
+pattern: Pattern
+
+ +
+ +
+
+final class State(term: 'Pattern', *, substitution: 'Mapping[EVar, Pattern] | None' = None, predicate: 'Pattern | None' = None, rule_id: 'str | None' = None, rule_substitution: 'Mapping[EVar, Pattern] | None' = None, rule_predicate: 'Pattern | None' = None)[source]
+

Bases: object

+
+
+static from_dict(dct: Mapping[str, Any]) State[source]
+
+ +
+
+property kore: Pattern
+
+ +
+
+predicate: Pattern | None
+
+ +
+
+rule_id: str | None
+
+ +
+
+rule_predicate: Pattern | None
+
+ +
+
+rule_substitution: FrozenDict[EVar, Pattern] | None
+
+ +
+
+substitution: FrozenDict[EVar, Pattern] | None
+
+ +
+
+term: Pattern
+
+ +
+ +
+
+class StopReason(value)[source]
+

Bases: str, Enum

+

An enumeration.

+
+
+ABORTED = 'aborted'
+
+ +
+
+BRANCHING = 'branching'
+
+ +
+
+CUT_POINT_RULE = 'cut-point-rule'
+
+ +
+
+DEPTH_BOUND = 'depth-bound'
+
+ +
+
+STUCK = 'stuck'
+
+ +
+
+TERMINAL_RULE = 'terminal-rule'
+
+ +
+
+TIMEOUT = 'timeout'
+
+ +
+
+VACUOUS = 'vacuous'
+
+ +
+
+__format__(format_spec)
+

Returns format using actual value type unless __str__ has been overridden.

+
+ +
+ +
+
+final class StuckResult(state: 'State', depth: 'int', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) StuckResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None = None
+
+ +
+
+reason: ClassVar[StopReason] = 'stuck'
+
+ +
+
+rule: str | None = None
+
+ +
+
+state: State
+
+ +
+ +
+
+final class TerminalResult(state: 'State', depth: 'int', rule: 'str', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) TerminalResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None = None
+
+ +
+
+reason: ClassVar[StopReason] = 'terminal-rule'
+
+ +
+
+rule: str
+
+ +
+
+state: State
+
+ +
+ +
+
+final class TimeoutResult(state: 'State', depth: 'int', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) TimeoutResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None = None
+
+ +
+
+reason: ClassVar[StopReason] = 'timeout'
+
+ +
+
+rule: str | None = None
+
+ +
+
+state: State
+
+ +
+ +
+
+class Transport[source]
+

Bases: ContextManager[Transport], ABC

+
+
+abstract close() None[source]
+
+ +
+
+abstract command(bug_report_id: str, old_id: int, bug_report_request: str) list[str][source]
+
+ +
+
+abstract description() str[source]
+
+ +
+
+abstract request(req: str) str[source]
+
+ +
+ +
+
+class TransportType(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+HTTP = 2
+
+ +
+
+SINGLE_SOCKET = 1
+
+ +
+ +
+
+final exception UnknownModuleError(module_name: 'str')[source]
+

Bases: KoreClientError

+
+
+module_name: str
+
+ +
+ +
+
+final class UnknownResult[source]
+

Bases: GetModelResult

+
+ +
+
+final class UnsatResult[source]
+

Bases: GetModelResult

+
+ +
+
+final class VacuousResult(state: 'State', depth: 'int', logs: 'tuple[LogEntry, ...]')[source]
+

Bases: ExecuteResult

+
+
+depth: int
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any]) VacuousResult[source]
+
+ +
+
+logs: tuple[LogEntry, ...]
+
+ +
+
+next_states: tuple[State, ...] | None = None
+
+ +
+
+reason: ClassVar[StopReason] = 'vacuous'
+
+ +
+
+rule: str | None = None
+
+ +
+
+state: State
+
+ +
+ +
+
+kore_server(definition_dir: str | Path, module_name: str, *, port: int | None = None, command: str | Iterable[str] | None = None, smt_timeout: int | None = None, smt_retry_limit: int | None = None, smt_tactic: str | None = None, log_axioms_file: Path | None = None, haskell_log_format: KoreExecLogFormat | None = None, haskell_log_entries: Iterable[str] | None = None, haskell_threads: int | None = None, llvm_definition_dir: Path | None = None, fallback_on: Iterable[str | FallbackReason] | None = None, interim_simplification: int | None = None, no_post_exec_simplify: bool | None = None, bug_report: BugReport | None = None) KoreServer[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.syntax.html b/pyk/api/pyk.kore.syntax.html new file mode 100644 index 00000000000..4945192d716 --- /dev/null +++ b/pyk/api/pyk.kore.syntax.html @@ -0,0 +1,2062 @@ + + + + + + + pyk.kore.syntax module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.syntax module

+
+
+final class AliasDecl(alias: 'Symbol', param_sorts: 'Iterable[Sort]', sort: 'Sort', left: 'App', right: 'Pattern', attrs: 'Iterable[App]' = ())[source]
+

Bases: Sentence

+
+
+alias: Symbol
+
+ +
+
+attrs: tuple[App, ...]
+
+ +
+
+left: App
+
+ +
+
+let(*, alias: Symbol | None = None, param_sorts: Iterable[Sort] | None = None, sort: Sort | None = None, left: App | None = None, right: Pattern | None = None, attrs: Iterable[App] | None = None) AliasDecl[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) AliasDecl[source]
+
+ +
+
+param_sorts: tuple[Sort, ...]
+
+ +
+
+right: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class And(sort: 'Sort', ops: 'Iterable[Pattern]' = ())[source]
+

Bases: MultiaryConn

+
+
+let(*, sort: Sort | None = None, ops: Iterable[Pattern] | None = None) And[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) And[source]
+
+ +
+
+let_sort(sort: Sort) And[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) And[source]
+
+ +
+
+ops: tuple[Pattern, ...]
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class App(symbol: 'str | SymbolId', sorts: 'Iterable[Sort]' = (), args: 'Iterable[Pattern]' = ())[source]
+

Bases: Pattern

+
+
+args: tuple[Pattern, ...]
+
+ +
+
+let(*, symbol: str | SymbolId | None = None, sorts: Iterable | None = None, args: Iterable | None = None) App[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) App[source]
+
+ +
+
+property patterns: tuple[Pattern, ...]
+
+ +
+
+sorts: tuple[Sort, ...]
+
+ +
+
+symbol: str
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+class Assoc[source]
+

Bases: MLSyntaxSugar

+
+
+app: App
+
+ +
+
+property ctor_patterns: tuple[App]
+
+ +
+
+abstract property pattern: Pattern
+
+ +
+
+property patterns: tuple[()]
+
+ +
+
+property sorts: tuple[()]
+
+ +
+ +
+
+final class Axiom(vars: 'Iterable[SortVar]', pattern: 'Pattern', attrs: 'Iterable[App]' = ())[source]
+

Bases: AxiomLike

+
+
+attrs: tuple[App, ...]
+
+ +
+
+let(*, vars: Iterable[SortVar] | None = None, pattern: Pattern | None = None, attrs: Iterable[App] | None = None) Axiom[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) Axiom[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+vars: tuple[SortVar, ...]
+
+ +
+ +
+
+class AxiomLike[source]
+

Bases: Sentence

+
+
+pattern: Pattern
+
+ +
+
+vars: tuple[SortVar, ...]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+class BinaryConn[source]
+

Bases: MLConn

+
+
+left: Pattern
+
+ +
+
+property patterns: tuple[Pattern, Pattern]
+
+ +
+
+right: Pattern
+
+ +
+ +
+
+class BinaryPred[source]
+

Bases: MLPred

+
+
+left: Pattern
+
+ +
+
+property patterns: tuple[Pattern, Pattern]
+
+ +
+
+right: Pattern
+
+ +
+
+property sorts: tuple[Sort, Sort]
+
+ +
+ +
+
+final class Bottom(sort: 'Sort')[source]
+

Bases: NullaryConn

+
+
+let(*, sort: Sort | None = None) Bottom[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Bottom[source]
+
+ +
+
+let_sort(sort: Sort) Bottom[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Bottom[source]
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Ceil(op_sort: 'Sort', sort: 'Sort', pattern: 'Pattern')[source]
+

Bases: RoundPred

+
+
+let(*, op_sort: Sort | None = None, sort: Sort | None = None, pattern: Pattern | None = None) Ceil[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Ceil[source]
+
+ +
+
+let_sort(sort: Sort) Ceil[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Ceil[source]
+
+ +
+
+op_sort: Sort
+
+ +
+
+pattern: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Claim(vars: 'Iterable[SortVar]', pattern: 'Pattern', attrs: 'Iterable[App]' = ())[source]
+

Bases: AxiomLike

+
+
+attrs: tuple[App, ...]
+
+ +
+
+let(*, vars: Iterable[SortVar] | None = None, pattern: Pattern | None = None, attrs: Iterable[App] | None = None) Claim[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) Claim[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+vars: tuple[SortVar, ...]
+
+ +
+ +
+
+final class DV(sort: 'Sort', value: 'String')[source]
+

Bases: MLPattern, WithSort

+
+
+property ctor_patterns: tuple[String]
+
+ +
+
+let(*, sort: Sort | None = None, value: String | None = None) DV[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) DV[source]
+
+ +
+
+let_sort(sort: Sort) DV[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) DV[source]
+
+ +
+
+property patterns: tuple[()]
+
+ +
+
+sort: Sort
+
+ +
+
+property sorts: tuple[Sort]
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+
+value: String
+
+ +
+ +
+
+final class Definition(modules: 'Iterable[Module]' = (), attrs: 'Iterable[App]' = ())[source]
+

Bases: Kore, WithAttrs, Iterable[Module]

+
+
+attrs: tuple[App, ...]
+
+ +
+
+property axioms: tuple[Axiom, ...]
+
+ +
+
+compute_ordinals() Definition[source]
+
+ +
+
+get_axiom_by_ordinal(ordinal: int) Axiom[source]
+
+ +
+
+let(*, modules: Iterable[Module] | None = None, attrs: Iterable[App] | None = None) Definition[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) Definition[source]
+
+ +
+
+modules: tuple[Module, ...]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class EVar(name: 'str | Id', sort: 'Sort')[source]
+

Bases: VarPattern

+
+
+let(*, name: str | Id | None = None, sort: Sort | None = None) EVar[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) EVar[source]
+
+ +
+
+let_sort(sort: Sort) EVar[source]
+
+ +
+
+name: str
+
+ +
+
+sort: Sort
+
+ +
+ +
+
+final class Equals(op_sort: 'Sort', sort: 'Sort', left: 'Pattern', right: 'Pattern')[source]
+

Bases: BinaryPred

+
+
+left: Pattern
+
+ +
+
+let(*, op_sort: Sort | None = None, sort: Sort | None = None, left: Pattern | None = None, right: Pattern | None = None) Equals[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Equals[source]
+
+ +
+
+let_sort(sort: Sort) Equals[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Equals[source]
+
+ +
+
+op_sort: Sort
+
+ +
+
+right: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Exists(sort: 'Sort', var: 'EVar', pattern: 'Pattern')[source]
+

Bases: MLQuant

+
+
+let(*, sort: Sort | None = None, var: EVar | None = None, pattern: Pattern | None = None) Exists[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Exists[source]
+
+ +
+
+let_sort(sort: Sort) Exists[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Exists[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+
+var: EVar
+
+ +
+ +
+
+final class Floor(op_sort: 'Sort', sort: 'Sort', pattern: 'Pattern')[source]
+

Bases: RoundPred

+
+
+let(*, op_sort: Sort | None = None, sort: Sort | None = None, pattern: Pattern | None = None) Floor[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Floor[source]
+
+ +
+
+let_sort(sort: Sort) Floor[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Floor[source]
+
+ +
+
+op_sort: Sort
+
+ +
+
+pattern: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Forall(sort: 'Sort', var: 'EVar', pattern: 'Pattern')[source]
+

Bases: MLQuant

+
+
+let(*, sort: Sort | None = None, var: EVar | None = None, pattern: Pattern | None = None) Forall[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Forall[source]
+
+ +
+
+let_sort(sort: Sort) Forall[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Forall[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+
+var: EVar
+
+ +
+ +
+
+final class Id(value: 'str')[source]
+

Bases: object

+
+
+value: str
+
+ +
+ +
+
+final class Iff(sort: 'Sort', left: 'Pattern', right: 'Pattern')[source]
+

Bases: BinaryConn

+
+
+left: Pattern
+
+ +
+
+let(*, sort: Sort | None = None, left: Pattern | None = None, right: Pattern | None = None) Iff[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Iff[source]
+
+ +
+
+let_sort(sort: Sort) Iff[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Iff[source]
+
+ +
+
+right: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Implies(sort: 'Sort', left: 'Pattern', right: 'Pattern')[source]
+

Bases: BinaryConn

+
+
+left: Pattern
+
+ +
+
+let(*, sort: Sort | None = None, left: Pattern | None = None, right: Pattern | None = None) Implies[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Implies[source]
+
+ +
+
+let_sort(sort: Sort) Implies[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Implies[source]
+
+ +
+
+right: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Import(module_name: 'str | Id', attrs: 'Iterable[App]' = ())[source]
+

Bases: Sentence

+
+
+attrs: tuple[App, ...]
+
+ +
+
+let(*, module_name: str | Id | None = None, attrs: Iterable[App] | None = None) Import[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) Import[source]
+
+ +
+
+module_name: str
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class In(op_sort: 'Sort', sort: 'Sort', left: 'Pattern', right: 'Pattern')[source]
+

Bases: BinaryPred

+
+
+left: Pattern
+
+ +
+
+let(*, op_sort: Sort | None = None, sort: Sort | None = None, left: Pattern | None = None, right: Pattern | None = None) In[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) In[source]
+
+ +
+
+let_sort(sort: Sort) In[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) In[source]
+
+ +
+
+op_sort: Sort
+
+ +
+
+right: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+class Kore[source]
+

Bases: ABC

+
+
+property text: str
+
+ +
+
+abstract write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class LeftAssoc(app: 'App')[source]
+

Bases: Assoc

+
+
+app: App
+
+ +
+
+let(*, app: App | None = None) LeftAssoc[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) LeftAssoc[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) LeftAssoc[source]
+
+ +
+
+property pattern: Pattern
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+class MLConn[source]
+

Bases: MLPattern, WithSort

+
+
+property sorts: tuple[Sort]
+
+ +
+ +
+
+class MLFixpoint[source]
+

Bases: MLPattern

+
+
+property ctor_patterns: tuple[SVar, Pattern]
+
+ +
+
+pattern: Pattern
+
+ +
+
+property patterns: tuple[Pattern]
+
+ +
+
+property sorts: tuple[()]
+
+ +
+
+var: SVar
+
+ +
+ +
+
+class MLPattern[source]
+

Bases: Pattern

+
+
+property ctor_patterns: tuple[Pattern, ...]
+

Return patterns used to construct the term with of.

+

Except for Assoc, DV, MLFixpoint and MLQuant this coincides with patterns.

+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) ML[source]
+
+ +
+
+abstract property sorts: tuple[Sort, ...]
+
+ +
+
+abstract classmethod symbol() str[source]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+class MLPred[source]
+

Bases: MLPattern, WithSort

+
+
+op_sort: Sort
+
+ +
+ +
+
+class MLQuant[source]
+

Bases: MLPattern, WithSort

+
+
+property ctor_patterns: tuple[EVar, Pattern]
+
+ +
+
+pattern: Pattern
+
+ +
+
+property patterns: tuple[Pattern]
+
+ +
+
+sort: Sort
+
+ +
+
+property sorts: tuple[Sort]
+
+ +
+
+var: EVar
+
+ +
+ +
+
+class MLRewrite[source]
+

Bases: MLPattern, WithSort

+
+
+property sorts: tuple[Sort]
+
+ +
+ +
+
+class MLSyntaxSugar[source]
+

Bases: MLPattern

+
+ +
+
+final class Module(name: 'str | Id', sentences: 'Iterable[Sentence]' = (), attrs: 'Iterable[App]' = ())[source]
+

Bases: Kore, WithAttrs, Iterable[Sentence]

+
+
+attrs: tuple[App, ...]
+
+ +
+
+property axioms: tuple[Axiom, ...]
+
+ +
+
+let(*, name: str | Id | None = None, sentences: Iterable[Sentence] | None = None, attrs: Iterable[App] | None = None) Module[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) Module[source]
+
+ +
+
+name: str
+
+ +
+
+sentences: tuple[Sentence, ...]
+
+ +
+
+property symbol_decls: tuple[SymbolDecl, ...]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class Mu(var: 'SVar', pattern: 'Pattern')[source]
+

Bases: MLFixpoint

+
+
+let(*, var: SVar | None = None, pattern: Pattern | None = None) Mu[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Mu[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Mu[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+
+var: SVar
+
+ +
+ +
+
+class MultiaryConn[source]
+

Bases: MLConn

+
+
+ops: tuple[Pattern, ...]
+
+ +
+
+property patterns: tuple[Pattern, ...]
+
+ +
+ +
+
+final class Next(sort: 'Sort', pattern: 'Pattern')[source]
+

Bases: MLRewrite

+
+
+let(*, sort: Sort | None = None, pattern: Pattern | None = None) Next[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Next[source]
+
+ +
+
+let_sort(sort: Sort) Next[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Next[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+property patterns: tuple[Pattern]
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Not(sort: 'Sort', pattern: 'Pattern')[source]
+

Bases: UnaryConn

+
+
+let(*, sort: Sort | None = None, pattern: Pattern | None = None) Not[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Not[source]
+
+ +
+
+let_sort(sort: Sort) Not[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Not[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class Nu(var: 'SVar', pattern: 'Pattern')[source]
+

Bases: MLFixpoint

+
+
+let(*, var: SVar | None = None, pattern: Pattern | None = None) Nu[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Nu[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Nu[source]
+
+ +
+
+pattern: Pattern
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+
+var: SVar
+
+ +
+ +
+
+class NullaryConn[source]
+

Bases: MLConn

+
+
+property patterns: tuple[()]
+
+ +
+ +
+
+final class Or(sort: 'Sort', ops: 'Iterable[Pattern]' = ())[source]
+

Bases: MultiaryConn

+
+
+let(*, sort: Sort | None = None, ops: Iterable[Pattern] | None = None) Or[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Or[source]
+
+ +
+
+let_sort(sort: Sort) Or[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Or[source]
+
+ +
+
+ops: tuple[Pattern, ...]
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+class Pattern[source]
+

Bases: Kore

+
+
+bottom_up(f: Callable[[Pattern], Pattern]) Pattern[source]
+
+ +
+
+property dict: dict[str, Any]
+
+ +
+
+static from_dict(dct: Mapping[str, Any]) Pattern[source]
+
+ +
+
+static from_json(s: str) Pattern[source]
+
+ +
+
+property json: str
+
+ +
+
+abstract let_patterns(patterns: Iterable[Pattern]) P[source]
+
+ +
+
+map_patterns(f: Callable[[Pattern], Pattern]) P[source]
+
+ +
+
+abstract property patterns: tuple[Pattern, ...]
+
+ +
+
+top_down(f: Callable[[Pattern], Pattern]) Pattern[source]
+
+ +
+ +
+
+final class Rewrites(sort: 'Sort', left: 'Pattern', right: 'Pattern')[source]
+

Bases: MLRewrite

+
+
+left: Pattern
+
+ +
+
+let(*, sort: Sort | None = None, left: Pattern | None = None, right: Pattern | None = None) Rewrites[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Rewrites[source]
+
+ +
+
+let_sort(sort: Sort) Rewrites[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Rewrites[source]
+
+ +
+
+property patterns: tuple[Pattern, Pattern]
+
+ +
+
+right: Pattern
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+final class RightAssoc(app: 'App')[source]
+

Bases: Assoc

+
+
+app: App
+
+ +
+
+let(*, app: App | None = None) RightAssoc[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) RightAssoc[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) RightAssoc[source]
+
+ +
+
+property pattern: Pattern
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+class RoundPred[source]
+

Bases: MLPred

+
+
+pattern: Pattern
+
+ +
+
+property patterns: tuple[Pattern]
+
+ +
+
+property sorts: tuple[Sort, Sort]
+
+ +
+ +
+
+final class SVar(name: 'str | SetVarId', sort: 'Sort')[source]
+

Bases: VarPattern

+
+
+let(*, name: str | SetVarId | None = None, sort: Sort | None = None) SVar[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) SVar[source]
+
+ +
+
+let_sort(sort: Sort) SVar[source]
+
+ +
+
+name: str
+
+ +
+
+sort: Sort
+
+ +
+ +
+
+class Sentence[source]
+

Bases: Kore, WithAttrs

+
+ +
+
+final class SetVarId(value: 'str')[source]
+

Bases: object

+
+
+value: str
+
+ +
+ +
+
+class Sort[source]
+

Bases: Kore

+
+
+abstract property dict: dict[str, Any]
+
+ +
+
+static from_dict(dct: Mapping[str, Any]) Sort[source]
+
+ +
+
+static from_json(s: str) Sort[source]
+
+ +
+
+property json: str
+
+ +
+
+name: str
+
+ +
+ +
+
+final class SortApp(name: 'str | Id', sorts: 'Iterable[Sort]' = ())[source]
+

Bases: Sort

+
+
+property dict: dict[str, Any]
+
+ +
+
+let(*, name: str | Id | None = None, sorts: Iterable[Sort] | None = None) SortApp[source]
+
+ +
+
+name: str
+
+ +
+
+sorts: tuple[Sort, ...]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class SortDecl(name: 'str | Id', vars: 'Iterable[SortVar]', attrs: 'Iterable[App]' = (), *, hooked: 'bool' = False)[source]
+

Bases: Sentence

+
+
+attrs: tuple[App, ...]
+
+ +
+
+hooked: bool
+
+ +
+
+let(*, name: str | Id | None = None, vars: Iterable[SortVar] | None = None, attrs: Iterable[App] | None = None, hooked: bool | None = None) SortDecl[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) SortDecl[source]
+
+ +
+
+name: str
+
+ +
+
+vars: tuple[SortVar, ...]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class SortVar(name: 'str | Id')[source]
+

Bases: Sort

+
+
+property dict: dict[str, Any]
+
+ +
+
+let(*, name: str | Id | None = None) SortVar[source]
+
+ +
+
+name: str
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class String(value: 'str')[source]
+

Bases: Pattern

+
+
+let(*, value: str | None = None) String[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) String[source]
+
+ +
+
+property patterns: tuple[()]
+
+ +
+
+value: str
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class Symbol(name: 'str | SymbolId', vars: 'Iterable[SortVar]' = ())[source]
+

Bases: Kore

+
+
+let(*, name: str | SymbolId | None = None, vars: Iterable[SortVar] | None = None) Symbol[source]
+
+ +
+
+name: str
+
+ +
+
+vars: tuple[SortVar, ...]
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class SymbolDecl(symbol: 'Symbol', param_sorts: 'Iterable[Sort]', sort: 'Sort', attrs: 'Iterable[App]' = (), *, hooked: 'bool' = False)[source]
+

Bases: Sentence

+
+
+attrs: tuple[App, ...]
+
+ +
+
+hooked: bool
+
+ +
+
+let(*, symbol: Symbol | None = None, param_sorts: Iterable[Sort] | None = None, sort: Sort | None = None, attrs: Iterable[App] | None = None, hooked: bool | None = None) SymbolDecl[source]
+
+ +
+
+let_attrs(attrs: Iterable[App]) SymbolDecl[source]
+
+ +
+
+param_sorts: tuple[Sort, ...]
+
+ +
+
+sort: Sort
+
+ +
+
+symbol: Symbol
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+final class SymbolId(value: 'str')[source]
+

Bases: object

+
+
+value: str
+
+ +
+ +
+
+final class Top(sort: 'Sort')[source]
+

Bases: NullaryConn

+
+
+let(*, sort: Sort | None = None) Top[source]
+
+ +
+
+let_patterns(patterns: Iterable[Pattern]) Top[source]
+
+ +
+
+let_sort(sort: Sort) Top[source]
+
+ +
+
+classmethod of(symbol: str, sorts: Iterable[Sort] = (), patterns: Iterable[Pattern] = ()) Top[source]
+
+ +
+
+sort: Sort
+
+ +
+
+classmethod symbol() str[source]
+
+ +
+ +
+
+class UnaryConn[source]
+

Bases: MLConn

+
+
+pattern: Pattern
+
+ +
+
+property patterns: tuple[Pattern]
+
+ +
+ +
+
+class VarPattern[source]
+

Bases: Pattern, WithSort

+
+
+name: str
+
+ +
+
+property patterns: tuple[()]
+
+ +
+
+sort: Sort
+
+ +
+
+write(output: IO[str]) None[source]
+
+ +
+ +
+
+class WithAttrs[source]
+

Bases: ABC

+
+
+attrs: tuple[App, ...]
+
+ +
+
+abstract let_attrs(attrs: Iterable[App]) WA[source]
+
+ +
+
+map_attrs(f: Callable[[tuple[App, ...]], Iterable[App]]) WA[source]
+
+ +
+ +
+
+class WithSort[source]
+

Bases: ABC

+
+
+abstract let_sort(sort: Sort) WS[source]
+
+ +
+
+map_sort(f: Callable[[Sort], Sort]) WS[source]
+
+ +
+
+sort: Sort
+
+ +
+ +
+
+kore_term(dct: Mapping[str, Any]) Pattern[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore.tools.html b/pyk/api/pyk.kore.tools.html new file mode 100644 index 00000000000..4e0ce3b4bba --- /dev/null +++ b/pyk/api/pyk.kore.tools.html @@ -0,0 +1,192 @@ + + + + + + + pyk.kore.tools module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore.tools module

+
+
+class PrintOutput(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BINARY = 'binary'
+
+ +
+
+JSON = 'json'
+
+ +
+
+KAST = 'kast'
+
+ +
+
+KORE = 'kore'
+
+ +
+
+LATEX = 'latex'
+
+ +
+
+NONE = 'none'
+
+ +
+
+PRETTY = 'pretty'
+
+ +
+
+PROGRAM = 'program'
+
+ +
+ +
+
+kore_print(pattern: str | Pattern, *, definition_dir: str | Path | None = None, output_file: str | Path | None = None, output: str | PrintOutput | None = None, color: bool | None = None) str[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore_exec_covr.html b/pyk/api/pyk.kore_exec_covr.html new file mode 100644 index 00000000000..26bdd46e1b7 --- /dev/null +++ b/pyk/api/pyk.kore_exec_covr.html @@ -0,0 +1,156 @@ + + + + + + + pyk.kore_exec_covr package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.kore_exec_covr.kore_exec_covr.html b/pyk/api/pyk.kore_exec_covr.kore_exec_covr.html new file mode 100644 index 00000000000..e620a3984db --- /dev/null +++ b/pyk/api/pyk.kore_exec_covr.kore_exec_covr.html @@ -0,0 +1,180 @@ + + + + + + + pyk.kore_exec_covr.kore_exec_covr module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.kore_exec_covr.kore_exec_covr module

+
+
+class HaskellLogEntry(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+DEBUG_APPLIED_REWRITE_RULES = 'DebugAppliedRewriteRules'
+
+ +
+
+DEBUG_APPLY_EQUATION = 'DebugApplyEquation'
+
+ +
+ +
+
+build_rule_dict(definition: KDefinition, *, skip_projections: bool = True, skip_initializers: bool = True) dict[str, KRule][source]
+

Traverse the kompiled definition and build a dictionary mapping str(file:location) to KRule.

+
+ +
+
+parse_rule_applications(haskell_backend_oneline_log_file: Path) dict[HaskellLogEntry, dict[str, int]][source]
+

Process a one-line log file produced by K’s Haskell backend.

+

Extracts information about:

+
    +
  • Applied rewrites (DebugAppliedRewriteRules).

  • +
  • Applied simplifications (DEBUG_APPLY_EQUATION).

  • +
+
+

Note

+

Haskell backend logs often contain rule applications with empty locations. +It seems likely that those are generated projection rules. +We report their applications in bulk with UNKNOWN location.

+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.krepl.html b/pyk/api/pyk.krepl.html new file mode 100644 index 00000000000..e1d0b0d4080 --- /dev/null +++ b/pyk/api/pyk.krepl.html @@ -0,0 +1,184 @@ + + + + + + + pyk.krepl package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/pyk/api/pyk.krepl.repl.html b/pyk/api/pyk.krepl.repl.html new file mode 100644 index 00000000000..6f192ec0c67 --- /dev/null +++ b/pyk/api/pyk.krepl.repl.html @@ -0,0 +1,281 @@ + + + + + + + pyk.krepl.repl module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.krepl.repl module

+
+
+class BaseRepl[source]
+

Bases: Cmd, Generic[T], ABC

+
+
+CAT_BUILTIN: Final = 'Built-in Commands'
+
+ +
+
+CAT_DEBUG: Final = 'Debugger Commands'
+
+ +
+
+abstract do_load(args: Any) bool | None[source]
+

Set up the interpreter.

+

Subclasses are expected to

+
    +
  • Decorate the method with with_argparser to ensure the right set of arguments is parsed.

  • +
  • Instantiate an Interpreter[T] based on args, then set self.interpreter.

  • +
  • Set self.state to self.interpreter.init_state().

  • +
+
+ +
+
+do_show(args: Namespace) None[source]
+

Show the current configuration

+
+ +
+
+do_step(args: Namespace) None[source]
+

Execute steps in the program

+
+ +
+
+interpreter: Interpreter[T] | None
+
+ +
+
+prompt = '> '
+
+ +
+
+state: T | None
+
+ +
+ +
+
+class Interpreter[source]
+

Bases: Generic[T], ABC

+
+
+abstract init_state() T[source]
+
+ +
+
+abstract next_state(state: T, steps: int | None = None) T[source]
+
+ +
+ +
+
+class KInterpreter(definition_dir: Path, program_file: Path)[source]
+

Bases: Interpreter[KState]

+
+
+definition_dir: Path
+
+ +
+
+init_state() KState[source]
+
+ +
+
+next_state(state: KState, steps: int | None = None) KState[source]
+
+ +
+
+program_file: Path
+
+ +
+ +
+
+class KRepl(definition_dir: Path)[source]
+

Bases: BaseRepl[KState]

+
+
+do_load(args: Namespace) None[source]
+

Load a program

+
+ +
+
+intro = 'K-REPL Shell\nType "help" or "?" for more information.'
+
+ +
+ +
+
+final class KState(definition_dir: 'Path', pattern: 'Pattern')[source]
+

Bases: object

+
+
+definition_dir: Path
+
+ +
+
+pattern: Pattern
+
+ +
+
+property pretty: str
+
+ +
+ +
+
+exception ReplError[source]
+

Bases: Exception

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.claim_index.html b/pyk/api/pyk.ktool.claim_index.html new file mode 100644 index 00000000000..da8093312a1 --- /dev/null +++ b/pyk/api/pyk.ktool.claim_index.html @@ -0,0 +1,195 @@ + + + + + + + pyk.ktool.claim_index module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.claim_index module

+
+
+class ClaimIndex(claims: 'Mapping[str, KClaim]', main_module_name: 'str | None' = None)[source]
+

Bases: Mapping[str, KClaim]

+
+
+claims: FrozenDict[str, KClaim]
+
+ +
+
+static from_module_list(module_list: KFlatModuleList) ClaimIndex[source]
+
+ +
+
+labels(*, include: Iterable[str] | None = None, exclude: Iterable[str] | None = None, with_depends: bool = True, ordered: bool = False) list[str][source]
+

Return a list of labels from the index.

+
+
Parameters:
+
    +
  • include – Labels to include in the result. If None, all labels are included.

  • +
  • exclude – Labels to exclude from the result. If None, no labels are excluded. +Takes precedence over include.

  • +
  • with_depends – If True, the result is transitively closed w.r.t. the dependency relation. +Labels in exclude are pruned, and their dependencies are not considered on the given path.

  • +
  • ordered – If True, the result is topologically sorted w.r.t. the dependency relation.

  • +
+
+
Returns:
+

A list of labels from the index.

+
+
Raises:
+

ValueError – If an item in include or exclude cannot be resolved to a valid label.

+
+
+
+ +
+
+main_module_name: str | None
+
+ +
+
+resolve(label: str) str[source]
+
+ +
+
+resolve_all(labels: Iterable[str]) list[str][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.html b/pyk/api/pyk.ktool.html new file mode 100644 index 00000000000..074795acb20 --- /dev/null +++ b/pyk/api/pyk.ktool.html @@ -0,0 +1,269 @@ + + + + + + + pyk.ktool package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool package

+
+

Submodules

+
+ +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.kfuzz.html b/pyk/api/pyk.ktool.kfuzz.html new file mode 100644 index 00000000000..a7d7c54d99f --- /dev/null +++ b/pyk/api/pyk.ktool.kfuzz.html @@ -0,0 +1,183 @@ + + + + + + + pyk.ktool.kfuzz module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.kfuzz module

+
+
+fuzz(definition_dir: str | Path, template: Pattern, subst_strategy: dict[EVar, SearchStrategy[Pattern]], check_func: Callable[[Pattern], Any] | None = None, check_exit_code: bool = False, max_examples: int = 50) None[source]
+

Fuzz a property test with concrete execution over a K term.

+
+
Parameters:
+
    +
  • definition_dir – The location of the K definition to run the interpreter for.

  • +
  • template – The term which will be sent to the interpreter after randomizing inputs. It should contain at least one variable which will be substituted for a value.

  • +
  • subst_strategy – Should have each variable in the template term mapped to a strategy for generating values for it.

  • +
  • check_func – Will be called on the kore output from the interpreter. +Should throw an AssertionError if it determines that the output indicates a test failure. +A RuntimeError will be thrown if this is passed as an argument and check_exit_code is True.

  • +
  • check_exit_code – Check the exit code of the interpreter for a test failure instead of using check_func. +An exit code of 0 indicates a passing test. +A RuntimeError will be thrown if this is True and check_func is also passed as an argument.

  • +
  • max_examples – The number of test cases to run.

  • +
+
+
Raises:
+

RuntimeError – If check_func exists and check_exit_code is set, or check_func doesn’t exist and check_exit_code is cleared.

+
+
+
+ +
+
+kintegers(*, min_value: int | None = None, max_value: int | None = None, with_inj: KSort | None = None) SearchStrategy[Pattern][source]
+

Return a search strategy for K integers.

+
+
Parameters:
+
    +
  • min_value – Minimum value for the generated integers

  • +
  • max_value – Maximum value for the generated integers

  • +
  • with_inj – Return the integer as an injection into this sort

  • +
+
+
Returns:
+

A strategy which generates integer domain values.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.kompile.html b/pyk/api/pyk.ktool.kompile.html new file mode 100644 index 00000000000..a277a1fb453 --- /dev/null +++ b/pyk/api/pyk.ktool.kompile.html @@ -0,0 +1,177 @@ + + + + + + + pyk.ktool.kompile module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.kompile module

+
+
+class PykBackend(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BOOSTER = 'booster'
+
+ +
+
+HASKELL = 'haskell'
+
+ +
+
+KORE = 'kore'
+
+ +
+
+LLVM = 'llvm'
+
+ +
+
+MAUDE = 'maude'
+
+ +
+ +
+
+kompile(main_file: str | Path, *, backend: str | PykBackend | None = None, command: Iterable[str] = ('kompile',), output_dir: str | Path | None = None, temp_dir: str | Path | None = None, type_inference_mode: str | TypeInferenceMode | None = None, warnings: str | Warnings | None = None, warnings_to_errors: bool = False, ignore_warnings: Iterable[str] = (), no_exc_wrap: bool = False, debug: bool = False, verbose: bool = False, cwd: Path | None = None, check: bool = True, **kwargs: Any) Path[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.kprint.html b/pyk/api/pyk.ktool.kprint.html new file mode 100644 index 00000000000..4d4c12985fd --- /dev/null +++ b/pyk/api/pyk.ktool.kprint.html @@ -0,0 +1,290 @@ + + + + + + + pyk.ktool.kprint module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.kprint module

+
+
+class KAstInput(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BINARY = 'binary'
+
+ +
+
+JSON = 'json'
+
+ +
+
+KAST = 'kast'
+
+ +
+
+KORE = 'kore'
+
+ +
+
+PROGRAM = 'program'
+
+ +
+
+RULE = 'rule'
+
+ +
+ +
+
+class KAstOutput(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BINARY = 'binary'
+
+ +
+
+JSON = 'json'
+
+ +
+
+KAST = 'kast'
+
+ +
+
+KORE = 'kore'
+
+ +
+
+LATEX = 'latex'
+
+ +
+
+NONE = 'none'
+
+ +
+
+PRETTY = 'pretty'
+
+ +
+
+PROGRAM = 'program'
+
+ +
+ +
+
+class KPrint(definition_dir: Path, use_directory: Path | None = None, bug_report: BugReport | None = None, extra_unparsing_modules: Iterable[KFlatModule] = (), patch_symbol_table: Callable[[SymbolTable], None] | None = None)[source]
+

Bases: object

+
+
+backend: str
+
+ +
+
+property definition: KDefinition
+
+ +
+
+definition_dir: Path
+
+ +
+
+property definition_hash: str
+
+ +
+
+kast_to_kore(kast: KInner, sort: KSort | None = None, *, force_kast: bool = False) Pattern[source]
+
+ +
+
+kore_to_kast(kore: Pattern) KInner[source]
+
+ +
+
+kore_to_pretty(pattern: Pattern) str[source]
+
+ +
+
+main_module: str
+
+ +
+
+parse_token(ktoken: KToken, *, as_rule: bool = False) KInner[source]
+
+ +
+
+pretty_print(kast: KAst, *, in_module: str | None = None, unalias: bool = True, sort_collections: bool = False) str[source]
+
+ +
+
+use_directory: Path | None
+
+ +
+ +
+
+gen_glr_parser(parser_file: str | Path, *, command: str | None = None, definition_dir: str | Path | None = None, module: str | None = None, sort: str | None = None, temp_dir: str | Path | None = None) Path[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.kprove.html b/pyk/api/pyk.ktool.kprove.html new file mode 100644 index 00000000000..365c0440514 --- /dev/null +++ b/pyk/api/pyk.ktool.kprove.html @@ -0,0 +1,233 @@ + + + + + + + pyk.ktool.kprove module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.kprove module

+
+
+class KProve(definition_dir: Path, main_file: Path | None = None, use_directory: Path | None = None, command: str = 'kprove', bug_report: BugReport | None = None, extra_unparsing_modules: Iterable[KFlatModule] = (), patch_symbol_table: Callable[[SymbolTable], None] | None = None)[source]
+

Bases: KPrint

+
+
+get_claim_index(spec_file: Path, spec_module_name: str | None = None, include_dirs: Iterable[Path] = (), md_selector: str | None = None, type_inference_mode: TypeInferenceMode | None = None) ClaimIndex[source]
+
+ +
+
+get_claim_modules(spec_file: Path, spec_module_name: str | None = None, include_dirs: Iterable[Path] = (), md_selector: str | None = None, type_inference_mode: TypeInferenceMode | None = None) KFlatModuleList[source]
+
+ +
+
+get_claims(spec_file: Path, spec_module_name: str | None = None, include_dirs: Iterable[Path] = (), md_selector: str | None = None, claim_labels: Iterable[str] | None = None, exclude_claim_labels: Iterable[str] | None = None, include_dependencies: bool = True, type_inference_mode: TypeInferenceMode | None = None) list[KClaim][source]
+
+ +
+
+main_file: Path | None
+
+ +
+
+prove(spec_file: Path, spec_module_name: str | None = None, args: Iterable[str] = (), include_dirs: Iterable[Path] = (), md_selector: str | None = None, haskell_args: Iterable[str] = (), depth: int | None = None) list[CTerm][source]
+
+ +
+
+prove_claim(claim: KClaim, claim_id: str, lemmas: Iterable[KRule] = (), args: Iterable[str] = (), haskell_args: Iterable[str] = (), depth: int | None = None) list[CTerm][source]
+
+ +
+
+prover: list[str]
+
+ +
+
+prover_args: list[str]
+
+ +
+ +
+
+class KProveOutput(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BINARY = 'binary'
+
+ +
+
+JSON = 'json'
+
+ +
+
+KAST = 'KAST'
+
+ +
+
+KORE = 'kore'
+
+ +
+
+LATEX = 'latex'
+
+ +
+
+NONE = 'none'
+
+ +
+
+PRETTY = 'pretty'
+
+ +
+
+PROGAM = 'program'
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.krun.html b/pyk/api/pyk.ktool.krun.html new file mode 100644 index 00000000000..5464ef2a69a --- /dev/null +++ b/pyk/api/pyk.ktool.krun.html @@ -0,0 +1,260 @@ + + + + + + + pyk.ktool.krun module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.krun module

+
+
+class KRun(definition_dir: Path, use_directory: Path | None = None, command: str = 'krun', bug_report: BugReport | None = None, extra_unparsing_modules: Iterable[KFlatModule] = (), patch_symbol_table: Callable[[SymbolTable], None] | None = None)[source]
+

Bases: KPrint

+
+
+command: str
+
+ +
+
+krun(input_file: Path) tuple[int, KInner][source]
+
+ +
+
+run(pgm: Pattern, *, cmap: Mapping[str, str] | None = None, pmap: Mapping[str, str] | None = None, term: bool = False, depth: int | None = None, expand_macros: bool = True, search_final: bool = False, no_pattern: bool = False, output: KRunOutput | None = KRunOutput.PRETTY, check: bool = False, pipe_stderr: bool = True, bug_report: BugReport | None = None, debugger: bool = False) None[source]
+
+ +
+
+run_pattern(pattern: Pattern, *, depth: int | None = None, expand_macros: bool = False, search_final: bool = False, no_pattern: bool = False, pipe_stderr: bool = True, check: bool = False, bug_report: BugReport | None = None, debugger: bool = False) Pattern[source]
+
+ +
+
+run_process(pgm: Pattern, *, cmap: Mapping[str, str] | None = None, pmap: Mapping[str, str] | None = None, term: bool = False, depth: int | None = None, expand_macros: bool = True, search_final: bool = False, no_pattern: bool = False, output: KRunOutput | None = KRunOutput.PRETTY, pipe_stderr: bool = True, bug_report: BugReport | None = None, debugger: bool = False) CompletedProcess[source]
+
+ +
+ +
+
+class KRunOutput(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+BINARY = 'binary'
+
+ +
+
+JSON = 'json'
+
+ +
+
+KAST = 'kast'
+
+ +
+
+KORE = 'kore'
+
+ +
+
+LATEX = 'latex'
+
+ +
+
+NONE = 'none'
+
+ +
+
+PRETTY = 'pretty'
+
+ +
+
+PROGRAM = 'program'
+
+ +
+ +
+
+llvm_interpret(definition_dir: str | Path, pattern: Pattern, *, depth: int | None = None) Pattern[source]
+

Execute the interpreter binary generated by the LLVM Backend.

+
+
Parameters:
+
    +
  • definition_dir – Path to the kompiled definition directory.

  • +
  • pattern – KORE pattern to start rewriting from.

  • +
  • depth – Maximal number of rewrite steps to take.

  • +
+
+
Returns:
+

The pattern resulting from the rewrites.

+
+
Raises:
+

RuntimeError – If the interpreter fails.

+
+
+
+ +
+
+llvm_interpret_raw(definition_dir: str | Path, kore: str, depth: int | None = None) CompletedProcess[source]
+

Execute the interpreter binary generated by the LLVM Backend, with no processing of input/output.

+
+
Parameters:
+
    +
  • definition_dir – Path to the kompiled definition directory.

  • +
  • pattern – KORE string to start rewriting from.

  • +
  • depth – Maximal number of rewrite steps to take.

  • +
+
+
Returns:
+

The CompletedProcess of the interpreter.

+
+
Raises:
+

CalledProcessError – If the interpreter fails.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.ktool.prove_rpc.html b/pyk/api/pyk.ktool.prove_rpc.html new file mode 100644 index 00000000000..3df7eb5de60 --- /dev/null +++ b/pyk/api/pyk.ktool.prove_rpc.html @@ -0,0 +1,151 @@ + + + + + + + pyk.ktool.prove_rpc module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.ktool.prove_rpc module

+
+
+class ProveRpc(kprove: KProve, explore_context: Callable[[], ContextManager[KCFGExplore]])[source]
+

Bases: object

+
+
+prove_rpc(options: ProveOptions) list[Proof][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.bytes.html b/pyk/api/pyk.prelude.bytes.html new file mode 100644 index 00000000000..45132c07aba --- /dev/null +++ b/pyk/api/pyk.prelude.bytes.html @@ -0,0 +1,160 @@ + + + + + + + pyk.prelude.bytes module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.bytes module

+
+
+bytesToken(b: bytes) KToken[source]
+
+ +
+
+bytesToken_from_str(pretty: str) KToken[source]
+
+ +
+
+pretty_bytes(token: KToken) bytes[source]
+
+ +
+
+pretty_bytes_str(token: KToken) str[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.collections.html b/pyk/api/pyk.prelude.collections.html new file mode 100644 index 00000000000..7490ee8536b --- /dev/null +++ b/pyk/api/pyk.prelude.collections.html @@ -0,0 +1,185 @@ + + + + + + + pyk.prelude.collections module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.collections module

+
+
+list_empty() KInner[source]
+
+ +
+
+list_item(k: KInner) KInner[source]
+
+ +
+
+list_of(ks: Iterable[KInner]) KInner[source]
+
+ +
+
+map_empty() KInner[source]
+
+ +
+
+map_item(k: KInner, v: KInner) KInner[source]
+
+ +
+
+map_of(ks: dict[KInner, KInner] | Iterable[tuple[KInner, KInner]]) KInner[source]
+
+ +
+
+set_empty() KInner[source]
+
+ +
+
+set_item(k: KInner) KInner[source]
+
+ +
+
+set_of(ks: Iterable[KInner]) KInner[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.html b/pyk/api/pyk.prelude.html new file mode 100644 index 00000000000..ac4db9dfe37 --- /dev/null +++ b/pyk/api/pyk.prelude.html @@ -0,0 +1,230 @@ + + + + + + + pyk.prelude package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.k.html b/pyk/api/pyk.prelude.k.html new file mode 100644 index 00000000000..e7d7f703387 --- /dev/null +++ b/pyk/api/pyk.prelude.k.html @@ -0,0 +1,145 @@ + + + + + + + pyk.prelude.k module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.k module

+
+
+inj(from_sort: KSort, to_sort: KSort, term: KInner) KInner[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.kbool.html b/pyk/api/pyk.prelude.kbool.html new file mode 100644 index 00000000000..803dbfaa7d7 --- /dev/null +++ b/pyk/api/pyk.prelude.kbool.html @@ -0,0 +1,165 @@ + + + + + + + pyk.prelude.kbool module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.kbool module

+
+
+andBool(items: Iterable[KInner]) KInner[source]
+
+ +
+
+boolToken(b: bool) KToken[source]
+
+ +
+
+impliesBool(antecedent: KInner, consequent: KInner) KApply[source]
+
+ +
+
+notBool(item: KInner) KApply[source]
+
+ +
+
+orBool(items: Iterable[KInner]) KInner[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.kint.html b/pyk/api/pyk.prelude.kint.html new file mode 100644 index 00000000000..0b523836e57 --- /dev/null +++ b/pyk/api/pyk.prelude.kint.html @@ -0,0 +1,557 @@ + + + + + + + pyk.prelude.kint module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.kint module

+
+
+absInt(i: KInner) KApply[source]
+

Instantiate the KAST term `absInt`(i).

+
+
Parameters:
+

i – The integer operand.

+
+
Returns:
+

The KAST term `absInt`(i).

+
+
+
+ +
+
+addInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_+Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_+Int_`(i1, i2).

+
+
+
+ +
+
+andInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_&Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_&Int_`(i1, i2).

+
+
+
+ +
+
+divInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_/Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The dividend.

  • +
  • i2 – The divisor.

  • +
+
+
Returns:
+

The KAST term `_/Int_`(i1, i2).

+
+
+
+ +
+
+eqInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_==Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_==Int_`(i1, i2).

+
+
+
+ +
+
+euclidDivInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_divInt_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The dividend.

  • +
  • i2 – The divisor.

  • +
+
+
Returns:
+

The KAST term `_divInt_`(i1, i2).

+
+
+
+ +
+
+euclidModInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_modInt_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The dividend.

  • +
  • i2 – The divisor.

  • +
+
+
Returns:
+

The KAST term `_modInt_`(i1, i2).

+
+
+
+ +
+
+expInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_^Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The base.

  • +
  • i2 – The exponent.

  • +
+
+
Returns:
+

The KAST term `_^Int_`(i1, i2).

+
+
+
+ +
+
+expModInt(i1: KInner, i2: KInner, i3: KInner) KApply[source]
+

Instantiate the KAST term `_^%Int__`(i1, i2, i3).

+
+
Parameters:
+
    +
  • i1 – The dividend.

  • +
  • i2 – The divisior.

  • +
  • i3 – The modulus.

  • +
+
+
Returns:
+

The KAST term `_^%Int__`(i1, i2, i3).

+
+
+
+ +
+
+geInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_>=Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_>=Int_`(i1, i2).

+
+
+
+ +
+
+gtInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_>Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_>Int_`(i1, i2).

+
+
+
+ +
+
+intToken(i: int) KToken[source]
+

Instantiate the KAST term #token(i, "Int").

+
+
Parameters:
+

i – The integer literal.

+
+
Returns:
+

The KAST term #token(i, "Int").

+
+
+
+ +
+
+leInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_<=Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_<=Int_`(i1, i2).

+
+
+
+ +
+
+lshiftInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_<<Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_<<Int_`(i1, i2).

+
+
+
+ +
+
+ltInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_<Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_<Int_`(i1, i2).

+
+
+
+ +
+
+maxInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `maxInt`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `maxInt`(i1, i2).

+
+
+
+ +
+
+minInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `minInt`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `minInt`(i1, i2).

+
+
+
+ +
+
+modInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_%Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The dividend.

  • +
  • i2 – The divisor.

  • +
+
+
Returns:
+

The KAST term `_%Int_`(i1, i2).

+
+
+
+ +
+
+mulInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_*Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_*Int_`(i1, i2).

+
+
+
+ +
+
+neqInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_=/=Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_=/=Int_`(i1, i2).

+
+
+
+ +
+
+notInt(i: KInner) KApply[source]
+

Instantiate the KAST term `~Int_`(i).

+
+
Parameters:
+

i – The integer operand.

+
+
Returns:
+

The KAST term `Int_`(i).

+
+
+
+ +
+
+orInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_|Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_|Int_`(i1, i2).

+
+
+
+ +
+
+rshiftInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_>>Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_>>Int_`(i1, i2).

+
+
+
+ +
+
+subInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_-Int_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_-Int_`(i1, i2).

+
+
+
+ +
+
+xorInt(i1: KInner, i2: KInner) KApply[source]
+

Instantiate the KAST term `_xorInt_`(i1, i2).

+
+
Parameters:
+
    +
  • i1 – The left operand.

  • +
  • i2 – The right operand.

  • +
+
+
Returns:
+

The KAST term `_xorInt_`(i1, i2).

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.ml.html b/pyk/api/pyk.prelude.ml.html new file mode 100644 index 00000000000..105a9e54bcf --- /dev/null +++ b/pyk/api/pyk.prelude.ml.html @@ -0,0 +1,205 @@ + + + + + + + pyk.prelude.ml module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.ml module

+
+
+is_bottom(term: KInner, *, weak: bool = False) bool[source]
+
+ +
+
+is_top(term: KInner, *, weak: bool = False) bool[source]
+
+ +
+
+mlAnd(conjuncts: Iterable[KInner], sort: str | KSort = KSort(name='GeneratedTopCell')) KInner[source]
+
+ +
+
+mlBottom(sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlCeil(term: KInner, arg_sort: str | KSort = KSort(name='GeneratedTopCell'), sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlEquals(term1: KInner, term2: KInner, arg_sort: str | KSort = KSort(name='GeneratedTopCell'), sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlEqualsFalse(term: KInner, sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlEqualsTrue(term: KInner, sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlExists(var: KVariable, body: KInner, sort1: str | KSort = KSort(name='KItem'), sort2: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlImplies(antecedent: KInner, consequent: KInner, sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlNot(term: KInner, sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+
+mlOr(disjuncts: Iterable[KInner], sort: str | KSort = KSort(name='GeneratedTopCell')) KInner[source]
+
+ +
+
+mlTop(sort: str | KSort = KSort(name='GeneratedTopCell')) KApply[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.string.html b/pyk/api/pyk.prelude.string.html new file mode 100644 index 00000000000..3e618b805b8 --- /dev/null +++ b/pyk/api/pyk.prelude.string.html @@ -0,0 +1,150 @@ + + + + + + + pyk.prelude.string module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.string module

+
+
+pretty_string(token: KToken) str[source]
+
+ +
+
+stringToken(pretty: str) KToken[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.prelude.utils.html b/pyk/api/pyk.prelude.utils.html new file mode 100644 index 00000000000..5583a535b65 --- /dev/null +++ b/pyk/api/pyk.prelude.utils.html @@ -0,0 +1,145 @@ + + + + + + + pyk.prelude.utils module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.prelude.utils module

+
+
+token(x: bool | int | str | bytes) KToken[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.proof.html b/pyk/api/pyk.proof.html new file mode 100644 index 00000000000..c4b14713d2a --- /dev/null +++ b/pyk/api/pyk.proof.html @@ -0,0 +1,450 @@ + + + + + + + pyk.proof package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.proof package

+
+

Submodules

+
+ +
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.proof.implies.html b/pyk/api/pyk.proof.implies.html new file mode 100644 index 00000000000..babbb35c174 --- /dev/null +++ b/pyk/api/pyk.proof.implies.html @@ -0,0 +1,453 @@ + + + + + + + pyk.proof.implies module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.proof.implies module

+
+
+class EqualityProof(id: str, lhs_body: KInner, rhs_body: KInner, sort: KSort, constraints: Iterable[KInner] = (), simplified_constraints: KInner | None = None, simplified_equality: KInner | None = None, csubst: CSubst | None = None, proof_dir: Path | None = None, subproof_ids: Iterable[str] = (), admitted: bool = False)[source]
+

Bases: ImpliesProof

+
+
+property constraint: KInner
+
+ +
+
+property constraints: list[KInner]
+
+ +
+
+property dict: dict[str, Any]
+
+ +
+
+property equality: KApply
+
+ +
+
+static from_claim(claim: KClaim, defn: KDefinition, proof_dir: Path | None = None) EqualityProof[source]
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any], proof_dir: Path | None = None) EqualityProof[source]
+
+ +
+
+property lhs_body: KInner
+
+ +
+
+pretty(kprint: KPrint) Iterable[str][source]
+
+ +
+
+static read_proof_data(proof_dir: Path, id: str) EqualityProof[source]
+
+ +
+
+property rhs_body: KInner
+
+ +
+
+property simplified_constraints: KInner | None
+
+ +
+
+property simplified_equality: KInner | None
+
+ +
+
+property sort: KSort
+
+ +
+
+property summary: EqualitySummary
+
+ +
+ +
+
+class EqualitySummary(id: 'str', status: 'ProofStatus', admitted: 'bool')[source]
+

Bases: ProofSummary

+
+
+admitted: bool
+
+ +
+
+id: str
+
+ +
+
+property lines: list[str]
+
+ +
+
+status: ProofStatus
+
+ +
+ +
+
+class ImpliesProof(id: str, antecedent: KInner, consequent: KInner, bind_universally: bool = False, simplified_antecedent: KInner | None = None, simplified_consequent: KInner | None = None, csubst: CSubst | None = None, proof_dir: Path | None = None, subproof_ids: Iterable[str] = (), admitted: bool = False)[source]
+

Bases: Proof[ImpliesProofStep, ImpliesProofResult]

+
+
+antecedent: KInner
+
+ +
+
+bind_universally: bool
+
+ +
+
+property can_progress: bool
+
+ +
+
+commit(result: ImpliesProofResult) None[source]
+
+ +
+
+consequent: KInner
+
+ +
+
+csubst: CSubst | None
+
+ +
+
+property dict: dict[str, Any]
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any], proof_dir: Path | None = None) ImpliesProof[source]
+
+ +
+
+get_steps() list[ImpliesProofStep][source]
+
+ +
+
+property own_status: ProofStatus
+
+ +
+
+simplified_antecedent: KInner | None
+
+ +
+
+simplified_consequent: KInner | None
+
+ +
+
+write_proof_data(subproofs: bool = False) None[source]
+
+ +
+ +
+
+class ImpliesProofResult(csubst: 'CSubst | None', simplified_antecedent: 'KInner | None', simplified_consequent: 'KInner | None')[source]
+

Bases: object

+
+
+csubst: CSubst | None
+
+ +
+
+simplified_antecedent: KInner | None
+
+ +
+
+simplified_consequent: KInner | None
+
+ +
+ +
+
+class ImpliesProofStep(proof: 'ImpliesProof')[source]
+

Bases: object

+
+
+proof: ImpliesProof
+
+ +
+ +
+
+class ImpliesProver(proof: ImpliesProof, kcfg_explore: KCFGExplore)[source]
+

Bases: Prover[ImpliesProof, ImpliesProofStep, ImpliesProofResult]

+
+
+close() None[source]
+
+ +
+
+failure_info(proof: ImpliesProof) FailureInfo[source]
+
+ +
+
+init_proof(proof: ImpliesProof) None[source]
+
+ +
+
+kcfg_explore: KCFGExplore
+
+ +
+
+proof: ImpliesProof
+
+ +
+
+step_proof(step: ImpliesProofStep) list[ImpliesProofResult][source]
+
+ +
+ +
+
+class RefutationProof(id: str, pre_constraints: Iterable[KInner], last_constraint: KInner, simplified_antecedent: KInner | None = None, simplified_consequent: KInner | None = None, csubst: CSubst | None = None, proof_dir: Path | None = None, subproof_ids: Iterable[str] = (), admitted: bool = False)[source]
+

Bases: ImpliesProof

+
+
+property dict: dict[str, Any]
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any], proof_dir: Path | None = None) RefutationProof[source]
+
+ +
+
+property last_constraint: KInner
+
+ +
+
+property pre_constraints: list[KInner]
+
+ +
+
+pretty(kprint: KPrint) Iterable[str][source]
+
+ +
+
+static read_proof_data(proof_dir: Path, id: str) RefutationProof[source]
+
+ +
+
+property simplified_constraints: KInner | None
+
+ +
+
+property summary: RefutationSummary
+
+ +
+
+to_claim(claim_id: str) tuple[KClaim, Subst][source]
+
+ +
+ +
+
+class RefutationSummary(id: 'str', status: 'ProofStatus')[source]
+

Bases: ProofSummary

+
+
+id: str
+
+ +
+
+property lines: list[str]
+
+ +
+
+status: ProofStatus
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.proof.proof.html b/pyk/api/pyk.proof.proof.html new file mode 100644 index 00000000000..adf13ed5352 --- /dev/null +++ b/pyk/api/pyk.proof.proof.html @@ -0,0 +1,477 @@ + + + + + + + pyk.proof.proof module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.proof.proof module

+
+
+class CompositeSummary(_summaries: 'Iterable[ProofSummary]')[source]
+

Bases: ProofSummary

+
+
+property lines: list[str]
+
+ +
+
+summaries: tuple[ProofSummary, ...]
+
+ +
+ +
+
+class FailureInfo[source]
+

Bases: object

+
+ +
+
+class Proof(id: str, proof_dir: Path | None = None, subproof_ids: Iterable[str] = (), admitted: bool = False)[source]
+

Bases: Generic[PS, SR]

+

Abstract representation of a proof that can be executed in one or more discrete steps.

+

Generic type variables:

+
    +
  • PS: Proof step: data required to perform a step of the proof.

  • +
  • SR: Step result: data produced by executing a PS with Prover.step_proof used to update the Proof.

  • +
+
+
+add_subproof(proof: Proof) None[source]
+
+ +
+
+admit() None[source]
+
+ +
+
+admitted: bool
+
+ +
+
+abstract property can_progress: bool
+
+ +
+
+abstract commit(result: SR) None[source]
+

Apply the step result of type SR to self, modifying self.

+
+ +
+
+property dict: dict[str, Any]
+
+ +
+
+property digest: str
+
+ +
+
+property failed: bool
+
+ +
+
+failure_info: FailureInfo | None
+
+ +
+
+fetch_subproof(proof_id: str, force_reread: bool = False, uptodate_check_method: str = 'timestamp') Proof[source]
+

Get a subproof, re-reading from disk if it’s not up-to-date.

+
+ +
+
+fetch_subproof_data(proof_id: str, force_reread: bool = False, uptodate_check_method: str = 'timestamp') Proof[source]
+

Get a subproof, re-reading from disk if it’s not up-to-date.

+
+ +
+
+abstract classmethod from_dict(dct: Mapping[str, Any], proof_dir: Path | None = None) Proof[source]
+
+ +
+
+abstract get_steps() Iterable[PS][source]
+

Return all currently available steps associated with this Proof. Should not modify self.

+
+ +
+
+id: str
+
+ +
+
+property json: str
+
+ +
+
+abstract property own_status: ProofStatus
+
+ +
+
+property passed: bool
+
+ +
+
+static proof_data_exists(id: str, proof_dir: Path) bool[source]
+
+ +
+
+proof_dir: Path | None
+
+ +
+
+static proof_exists(id: str, proof_dir: Path) bool[source]
+
+ +
+
+property proof_subdir: Path | None
+
+ +
+
+classmethod read_proof(id: str, proof_dir: Path) Proof[source]
+
+ +
+
+static read_proof_data(proof_dir: Path, id: str) Proof[source]
+
+ +
+
+read_subproof(proof_id: str) None[source]
+
+ +
+
+read_subproof_data(proof_id: str) None[source]
+
+ +
+
+remove_subproof(proof_id: str) None[source]
+
+ +
+
+property status: ProofStatus
+
+ +
+
+property subproof_ids: list[str]
+
+ +
+
+property subproofs: Iterable[Proof]
+

Return the subproofs, re-reading from disk the ones that changed.

+
+ +
+
+property subproofs_status: ProofStatus
+
+ +
+
+property summary: ProofSummary
+
+ +
+
+property up_to_date: bool
+

Check that the proof’s representation on disk is up-to-date.

+
+ +
+
+write_proof(subproofs: bool = False) None[source]
+
+ +
+
+abstract write_proof_data() None[source]
+
+ +
+ +
+
+class ProofStatus(value)[source]
+

Bases: Enum

+

An enumeration.

+
+
+FAILED = 'failed'
+
+ +
+
+PASSED = 'passed'
+
+ +
+
+PENDING = 'pending'
+
+ +
+ +
+
+class ProofSummary[source]
+

Bases: ABC

+
+
+id: str
+
+ +
+
+abstract property lines: list[str]
+
+ +
+
+status: ProofStatus
+
+ +
+ +
+
+class Prover[source]
+

Bases: ContextManager[Prover], Generic[P, PS, SR]

+

Abstract class which advances Proof`s with `init_proof() and step_proof().

+

Generic type variables:

+
    +
  • P: Type of proof this Prover operates on.

  • +
  • PS: Proof step: data required to perform a step of the proof.

  • +
  • SR: Step result: data produced by executing a PS with Prover.step_proof used to update the Proof.

  • +
+
+
+advance_proof(proof: P, max_iterations: int | None = None, fail_fast: bool = False) None[source]
+

Advance a proof.

+

Performs loop Proof.get_steps() -> Prover.step_proof() -> Proof.commit().

+
+
Parameters:
+
    +
  • proof – proof to advance.

  • +
  • max_iterations (optional) – Maximum number of steps to take.

  • +
  • fail_fast – If the proof is failing after finishing a step, +halt execution even if there are still available steps.

  • +
+
+
+
+ +
+
+abstract close() None[source]
+
+ +
+
+abstract failure_info(proof: P) FailureInfo[source]
+
+ +
+
+abstract init_proof(proof: P) None[source]
+

Perform any initialization steps needed at the beginning of proof execution.

+

For example, for APRProver, upload circularity and depends module of the proof +to the KoreServer via add_module.

+
+ +
+
+abstract step_proof(step: PS) Iterable[SR][source]
+

Do the work associated with a PS, a proof step.

+

Should not modify a Proof or self, but may read from self as long as +those fields are not being modified during step_proof(), get_steps(), and commit().

+
+ +
+ +
+
+parallel_advance_proof(proof: P, create_prover: Callable[[], Prover[P, PS, SR]], max_iterations: int | None = None, fail_fast: bool = False, max_workers: int = 1) None[source]
+

Advance proof with multithreaded strategy.

+

Prover.step_proof() to a worker thread pool for each step as available, +and Proof.commit() results as they become available, +and get new steps with Proof.get_steps() and submit to thread pool.

+

Generic type variables:

+
    +
  • P: Type of proof to be advanced in parallel.

  • +
  • PS: Proof step: data required to perform a step of the proof.

  • +
  • SR: Step result: data produced by executing a PS with Prover.step_proof used to update the Proof.

  • +
+
+
Parameters:
+
    +
  • proof – The proof to advance.

  • +
  • create_prover – Function which creates a new Prover. These provers must not reference any shared +data to be written during parallel_advance_proof, to avoid race conditions.

  • +
  • max_iterations – Maximum number of steps to take.

  • +
  • fail_fast – If the proof is failing after finishing a step, +halt execution even if there are still available steps.

  • +
  • max_workers – Maximum number of worker threads the pool can spawn.

  • +
+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.proof.reachability.html b/pyk/api/pyk.proof.reachability.html new file mode 100644 index 00000000000..d831806d56c --- /dev/null +++ b/pyk/api/pyk.proof.reachability.html @@ -0,0 +1,693 @@ + + + + + + + pyk.proof.reachability module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.proof.reachability module

+
+
+class APRFailureInfo(failing_nodes: 'Iterable[int]', pending_nodes: 'Iterable[int]', path_conditions: 'Mapping[int, str]', failure_reasons: 'Mapping[int, str]', models: 'Mapping[int, Iterable[tuple[str, str]]]')[source]
+

Bases: FailureInfo

+
+
+failing_nodes: frozenset[int]
+
+ +
+
+failure_reasons: FrozenDict[int, str]
+
+ +
+
+static from_proof(proof: APRProof, kcfg_explore: KCFGExplore, counterexample_info: bool = False) APRFailureInfo[source]
+
+ +
+
+models: FrozenDict[int, frozenset[tuple[str, str]]]
+
+ +
+
+path_conditions: FrozenDict[int, str]
+
+ +
+
+pending_nodes: frozenset[int]
+
+ +
+
+print() list[str][source]
+
+ +
+ +
+
+class APRProof(id: str, kcfg: KCFG, terminal: Iterable[int], init: NodeIdLike, target: NodeIdLike, logs: dict[int, tuple[LogEntry, ...]], bmc_depth: int | None = None, bounded: Iterable[int] | None = None, proof_dir: Path | None = None, node_refutations: dict[int, str] | None = None, subproof_ids: Iterable[str] = (), circularity: bool = False, admitted: bool = False, _exec_time: float = 0, error_info: Exception | None = None, prior_loops_cache: dict[int, tuple[int, ...]] | None = None)[source]
+

Bases: Proof[APRProofStep, APRProofResult], KCFGExploration

+

Represent an all-path reachability proof.

+

APRProof and APRProver implement all-path reachability logic, +as introduced by A. Stefanescu and others in their paper ‘All-Path Reachability Logic’: +https://doi.org/10.23638/LMCS-15(2:5)2019

+

Note that reachability logic formula phi =>A psi has not the same meaning +as CTL/CTL*’s phi -> AF psi, since reachability logic ignores infinite traces. +This implementation extends the above with bounded model checking, allowing the user +to specify an optional loop iteration bound for each loop in execution.

+
+
+add_bounded(nid: NodeIdLike) None[source]
+
+ +
+
+add_exec_time(exec_time: float) None[source]
+
+ +
+
+as_rule(priority: int = 20) KRule[source]
+
+ +
+
+as_rules(priority: int = 20, direct_rule: bool = False) list[KRule][source]
+
+ +
+
+bmc_depth: int | None
+
+ +
+
+property bounded: list[Node]
+
+ +
+
+property can_progress: bool
+
+ +
+
+property circularities_module_name: str
+
+ +
+
+circularity: bool
+
+ +
+
+commit(result: APRProofResult) None[source]
+
+ +
+
+construct_node_refutation(node: Node) RefutationProof | None[source]
+
+ +
+
+property dependencies_module_name: str
+
+ +
+
+property dict: dict[str, Any]
+
+ +
+
+error_info: Exception | None
+
+ +
+
+property exec_time: float
+
+ +
+
+property failing: list[Node]
+
+ +
+
+formatted_exec_time() str[source]
+
+ +
+
+static from_claim(defn: KDefinition, claim: KClaim, logs: dict[int, tuple[LogEntry, ...]], proof_dir: Path | None = None, bmc_depth: int | None = None, **kwargs: Any) APRProof[source]
+
+ +
+
+classmethod from_dict(dct: Mapping[str, Any], proof_dir: Path | None = None) APRProof[source]
+
+ +
+
+static from_spec_modules(defn: KDefinition, spec_modules: KFlatModuleList, logs: dict[int, tuple[LogEntry, ...]], proof_dir: Path | None = None, spec_labels: Iterable[str] | None = None) list[APRProof][source]
+
+ +
+
+get_refutation_id(node_id: int) str[source]
+
+ +
+
+get_steps() list[APRProofStep][source]
+
+ +
+
+init: int
+
+ +
+
+is_bounded(node_id: NodeIdLike) bool[source]
+
+ +
+
+is_failing(node_id: NodeIdLike) bool[source]
+
+ +
+
+is_init(node_id: NodeIdLike) bool[source]
+
+ +
+
+is_pending(node_id: NodeIdLike) bool[source]
+
+ +
+
+is_refuted(node_id: NodeIdLike) bool[source]
+
+ +
+
+is_target(node_id: NodeIdLike) bool[source]
+
+ +
+
+logs: dict[int, tuple[LogEntry, ...]]
+
+ +
+
+property module_name: str
+
+ +
+
+node_refutations: dict[int, RefutationProof]
+
+ +
+
+nonzero_depth(node: Node) bool[source]
+
+ +
+
+property own_status: ProofStatus
+
+ +
+
+path_constraints(final_node_id: NodeIdLike) KInner[source]
+
+ +
+
+property pending: list[Node]
+
+ +
+
+prior_loops_cache: dict[int, tuple[int, ...]]
+
+ +
+
+prune(node_id: NodeIdLike, keep_nodes: Iterable[NodeIdLike] = ()) list[int][source]
+
+ +
+
+static read_proof(id: str, proof_dir: Path) APRProof[source]
+
+ +
+
+static read_proof_data(proof_dir: Path, id: str) APRProof[source]
+
+ +
+
+refute_node(node: Node) RefutationProof | None[source]
+
+ +
+
+property rule_id: str
+
+ +
+
+set_exec_time(exec_time: float) None[source]
+
+ +
+
+shortest_path_to(node_id: NodeIdLike) tuple[KCFG.Successor, ...][source]
+
+ +
+
+property summary: CompositeSummary
+
+ +
+
+target: int
+
+ +
+
+unrefute_node(node: Node) None[source]
+
+ +
+
+write_proof_data() None[source]
+
+ +
+ +
+
+class APRProofBoundedResult(node_id: 'int', prior_loops_cache_update: 'tuple[int, ...]')[source]
+

Bases: APRProofResult

+
+ +
+
+class APRProofExtendResult(node_id: 'int', prior_loops_cache_update: 'tuple[int, ...]', extend_result: 'KCFGExtendResult')[source]
+

Bases: APRProofResult

+
+
+extend_result: KCFGExtendResult
+
+ +
+ +
+
+class APRProofResult(node_id: 'int', prior_loops_cache_update: 'tuple[int, ...]')[source]
+

Bases: object

+
+
+node_id: int
+
+ +
+
+prior_loops_cache_update: tuple[int, ...]
+
+ +
+ +
+
+class APRProofStep(node: 'KCFG.Node', target: 'KCFG.Node', proof_id: 'str', bmc_depth: 'int | None', module_name: 'str', shortest_path_to_node: 'tuple[KCFG.Node, ...]', prior_loops_cache: 'FrozenDict[int, tuple[int, ...]]', circularity: 'bool', nonzero_depth: 'bool', circularity_rule_id: 'str')[source]
+

Bases: object

+
+
+bmc_depth: int | None
+
+ +
+
+circularity: bool
+
+ +
+
+circularity_rule_id: str
+
+ +
+
+module_name: str
+
+ +
+
+node: Node
+
+ +
+
+nonzero_depth: bool
+
+ +
+
+prior_loops_cache: FrozenDict[int, tuple[int, ...]]
+
+ +
+
+proof_id: str
+
+ +
+
+shortest_path_to_node: tuple[Node, ...]
+
+ +
+
+target: Node
+
+ +
+ +
+
+class APRProofSubsumeResult(node_id: 'int', prior_loops_cache_update: 'tuple[int, ...]', csubst: 'CSubst')[source]
+

Bases: APRProofResult

+
+
+csubst: CSubst
+
+ +
+ +
+
+class APRProofTerminalResult(node_id: 'int', prior_loops_cache_update: 'tuple[int, ...]')[source]
+

Bases: APRProofResult

+
+ +
+
+class APRProver(kcfg_explore: KCFGExplore, execute_depth: int | None = None, cut_point_rules: Iterable[str] = (), terminal_rules: Iterable[str] = (), counterexample_info: bool = False, always_check_subsumption: bool = True, fast_check_subsumption: bool = False, direct_subproof_rules: bool = False)[source]
+

Bases: Prover[APRProof, APRProofStep, APRProofResult]

+
+
+always_check_subsumption: bool
+
+ +
+
+close() None[source]
+
+ +
+
+counterexample_info: bool
+
+ +
+
+cut_point_rules: Iterable[str]
+
+ +
+
+direct_subproof_rules: bool
+
+ +
+
+execute_depth: int | None
+
+ +
+
+failure_info(proof: APRProof) FailureInfo[source]
+
+ +
+
+fast_check_subsumption: bool
+
+ +
+
+init_proof(proof: APRProof) None[source]
+
+ +
+
+kcfg_explore: KCFGExplore
+
+ +
+
+main_module_name: str
+
+ +
+
+step_proof(step: APRProofStep) list[APRProofResult][source]
+
+ +
+
+terminal_rules: Iterable[str]
+
+ +
+ +
+
+class APRSummary(id: 'str', status: 'ProofStatus', admitted: 'bool', nodes: 'int', pending: 'int', failing: 'int', vacuous: 'int', stuck: 'int', terminal: 'int', refuted: 'int', bmc_depth: 'int | None', bounded: 'int', subproofs: 'int', formatted_exec_time: 'str')[source]
+

Bases: ProofSummary

+
+
+admitted: bool
+
+ +
+
+bmc_depth: int | None
+
+ +
+
+bounded: int
+
+ +
+
+failing: int
+
+ +
+
+formatted_exec_time: str
+
+ +
+
+id: str
+
+ +
+
+property lines: list[str]
+
+ +
+
+nodes: int
+
+ +
+
+pending: int
+
+ +
+
+refuted: int
+
+ +
+
+status: ProofStatus
+
+ +
+
+stuck: int
+
+ +
+
+subproofs: int
+
+ +
+
+terminal: int
+
+ +
+
+vacuous: int
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.proof.show.html b/pyk/api/pyk.proof.show.html new file mode 100644 index 00000000000..34fd692d76d --- /dev/null +++ b/pyk/api/pyk.proof.show.html @@ -0,0 +1,192 @@ + + + + + + + pyk.proof.show module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.proof.show module

+
+
+class APRProofNodePrinter(proof: APRProof, kprint: KPrint, full_printer: bool = False, minimize: bool = False)[source]
+

Bases: NodePrinter

+
+
+node_attrs(kcfg: KCFG, node: KCFG.Node) list[str][source]
+
+ +
+
+proof: APRProof
+
+ +
+ +
+
+class APRProofShow(kprint: KPrint, node_printer: NodePrinter | None = None)[source]
+

Bases: object

+
+
+dot(proof: APRProof) Digraph[source]
+
+ +
+
+dump(proof: APRProof, dump_dir: Path, dot: bool = False) None[source]
+
+ +
+
+kcfg_show: KCFGShow
+
+ +
+
+pretty(proof: APRProof, minimize: bool = True) Iterable[str][source]
+
+ +
+
+pretty_segments(proof: APRProof, minimize: bool = True) Iterable[tuple[str, Iterable[str]]][source]
+
+ +
+
+show(proof: APRProof, nodes: Iterable[NodeIdLike] = (), node_deltas: Iterable[tuple[NodeIdLike, NodeIdLike]] = (), to_module: bool = False, minimize: bool = True, sort_collections: bool = False, omit_cells: Iterable[str] = ()) list[str][source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.proof.tui.html b/pyk/api/pyk.proof.tui.html new file mode 100644 index 00000000000..4ad9c2efd27 --- /dev/null +++ b/pyk/api/pyk.proof.tui.html @@ -0,0 +1,179 @@ + + + + + + + pyk.proof.tui module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.proof.tui module

+
+
+class APRProofBehaviorView(proof: APRProof, kprint: KPrint, minimize: bool = True, node_printer: NodePrinter | None = None, id: str = '')[source]
+

Bases: ScrollableContainer

+
+
+can_focus: bool = True
+

Widget may receive focus.

+
+ +
+
+can_focus_children: bool = True
+

Widget’s children may receive focus.

+
+ +
+
+compose() ComposeResult[source]
+
+ +
+ +
+
+class APRProofViewer(proof: APRProof, kprint: KPrint, node_printer: NodePrinter | None = None, custom_view: Callable[[KCFGElem], Iterable[str]] | None = None, minimize: bool = True)[source]
+

Bases: KCFGViewer

+
+
+compose() ComposeResult[source]
+
+ +
+
+on_mount() None[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.testing.html b/pyk/api/pyk.testing.html new file mode 100644 index 00000000000..057c3504999 --- /dev/null +++ b/pyk/api/pyk.testing.html @@ -0,0 +1,154 @@ + + + + + + + pyk.testing package — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.testing package

+
+

Submodules

+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.testing.plugin.html b/pyk/api/pyk.testing.plugin.html new file mode 100644 index 00000000000..a1829cf1095 --- /dev/null +++ b/pyk/api/pyk.testing.plugin.html @@ -0,0 +1,165 @@ + + + + + + + pyk.testing.plugin module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.testing.plugin module

+
+
+bug_report(request: FixtureRequest, tmp_path: Path) BugReport | None[source]
+
+ +
+
+kompile(tmp_path_factory: TempPathFactory) Kompiler[source]
+
+ +
+
+profile(tmp_path: Path) Profiler[source]
+
+ +
+
+pytest_addoption(parser: Parser) None[source]
+
+ +
+
+use_server(request: FixtureRequest) UseServer[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/api/pyk.utils.html b/pyk/api/pyk.utils.html new file mode 100644 index 00000000000..4c3bacb42fa --- /dev/null +++ b/pyk/api/pyk.utils.html @@ -0,0 +1,354 @@ + + + + + + + pyk.utils module — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

pyk.utils module

+
+
+class BugReport(bug_report: Path)[source]
+

Bases: object

+
+
+add_command(args: Iterable[str]) None[source]
+
+ +
+
+add_file(finput: Path, arcname: Path) None[source]
+
+ +
+
+add_file_contents(input: str, arcname: Path) None[source]
+
+ +
+ +
+
+class Chainable(f: Callable[[P], R])[source]
+

Bases: Generic[P, R]

+
+ +
+
+class FrozenDict(*args: Any, **kwargs: Any)[source]
+

Bases: Mapping[K, V]

+
+ +
+
+final class POSet(relation: 'Iterable[tuple[H, H]]')[source]
+

Bases: Generic[H]

+
+
+image: FrozenDict[H, frozenset[H]]
+
+ +
+ +
+
+abs_or_rel_to(path: Path, base: Path) Path[source]
+
+ +
+
+add_indent(indent: str, lines: Iterable[str]) list[str][source]
+
+ +
+
+case(cases: Iterable[tuple[Callable[[P], bool], Callable[[P], R]]], default: Callable[[P], R] | None = None) Callable[[P], R][source]
+
+ +
+
+check_absolute_path(path: Path) None[source]
+
+ +
+
+check_dir_path(path: Path) None[source]
+
+ +
+
+check_file_path(path: Path) None[source]
+
+ +
+
+check_relative_path(path: Path) None[source]
+
+ +
+
+check_type(x: Any, typ: type[T]) T[source]
+
+ +
+
+compare_short_hashes(lhs: str, rhs: str) bool[source]
+
+ +
+
+deconstruct_short_hash(h: str) tuple[str, str][source]
+
+ +
+
+ensure_dir_path(path: str | Path) Path[source]
+
+ +
+
+exit_with_process_error(err: CalledProcessError) None[source]
+
+ +
+
+filter_none(mapping: Mapping[K, V]) dict[K, V][source]
+
+ +
+
+find_common_items(l1: Iterable[T], l2: Iterable[T]) tuple[list[T], list[T], list[T]][source]
+
+ +
+
+gen_file_timestamp(comment: str = '//') str[source]
+
+ +
+
+hash_file(file: Path, chunk_num_blocks: int = 128) str[source]
+
+ +
+
+hash_str(x: Any) str[source]
+
+ +
+
+intersperse(iterable: Iterable[T], delimiter: T) Iterator[T][source]
+
+ +
+
+is_hash(x: Any) bool[source]
+
+ +
+
+is_hexstring(x: str) bool[source]
+
+ +
+
+is_relative_to(_self: Path, other: Path) bool[source]
+
+ +
+
+maybe(f: Callable[[P], R]) Callable[[P | None], R | None][source]
+
+ +
+
+merge_with(f: Callable[[V, V], V], d1: Mapping[K, V], d2: Mapping[K, V]) dict[K, V][source]
+
+ +
+
+none(x: Any) None[source]
+
+ +
+
+nonempty_str(x: Any) str[source]
+
+ +
+
+not_none(x: T | None) T[source]
+
+ +
+
+raised(f: Callable, *args: Any, **kwargs: Any) BaseException | None[source]
+
+ +
+
+repeat_last(iterable: Iterable[T]) Iterator[T][source]
+
+ +
+
+run_process(args: str | Iterable[str], *, check: bool = True, input: str | None = None, pipe_stdout: bool = True, pipe_stderr: bool = False, cwd: str | Path | None = None, env: Mapping[str, str] | None = None, logger: Logger | None = None, exec_process: bool = False) CompletedProcess[source]
+
+ +
+
+shorten_hash(h: str, left_chars: int = 6, right_chars: int = 6) str[source]
+
+ +
+
+shorten_hashes(value: Any, left_chars: int = 6, right_chars: int = 6) Any[source]
+
+ +
+
+single(iterable: Iterable[T]) T[source]
+
+ +
+
+some(iterable: Iterable[T]) T | None[source]
+
+ +
+
+tuple_of() Callable[[tuple[()]], tuple[()]][source]
+
+tuple_of(f1: Callable[[P1], R1], /) Callable[[tuple[P1]], tuple[R1]]
+
+tuple_of(f1: Callable[[P1], R1], f2: Callable[[P2], R2], /) Callable[[tuple[P1, P2]], tuple[R1, R2]]
+
+tuple_of(f1: Callable[[P1], R1], f2: Callable[[P2], R2], f3: Callable[[P3], R3], /) Callable[[tuple[P1, P2, P3]], tuple[R1, R2, R3]]
+
+tuple_of(f1: Callable[[P1], R1], f2: Callable[[P2], R2], f3: Callable[[P3], R3], f4: Callable[[P4], R4], /) Callable[[tuple[P1, P2, P3, P4]], tuple[R1, R2, R3, R4]]
+
+ +
+
+unique(iterable: Iterable[H]) Iterator[H][source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/genindex.html b/pyk/genindex.html new file mode 100644 index 00000000000..9bb81848255 --- /dev/null +++ b/pyk/genindex.html @@ -0,0 +1,7244 @@ + + + + + + Index — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ _ + | A + | B + | C + | D + | E + | F + | G + | H + | I + | J + | K + | L + | M + | N + | O + | P + | Q + | R + | S + | T + | U + | V + | W + | X + | Y + | Z + +
+

_

+ + + +
+ +

A

+ + + +
+ +

B

+ + + +
+ +

C

+ + + +
+ +

D

+ + + +
+ +

E

+ + + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

H

+ + + +
+ +

I

+ + + +
+ +

J

+ + + +
+ +

K

+ + + +
+ +

L

+ + + +
+ +

M

+ + + +
+ +

N

+ + + +
+ +

O

+ + + +
+ +

P

+ + + +
+ +

Q

+ + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

U

+ + + +
+ +

V

+ + + +
+ +

W

+ + + +
+ +

X

+ + + +
+ +

Y

+ + + +
+ +

Z

+ + +
+ + + +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/index.html b/pyk/index.html new file mode 100644 index 00000000000..c5a0ee07321 --- /dev/null +++ b/pyk/index.html @@ -0,0 +1,129 @@ + + + + + + + Welcome to pyk’s documentation! — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Welcome to pyk’s documentation!

+
+

Contents:

+ +
+
+
+

Indices and tables

+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/objects.inv b/pyk/objects.inv new file mode 100644 index 00000000000..cf95f0ba41a Binary files /dev/null and b/pyk/objects.inv differ diff --git a/pyk/py-modindex.html b/pyk/py-modindex.html new file mode 100644 index 00000000000..3bc9a1b4ddb --- /dev/null +++ b/pyk/py-modindex.html @@ -0,0 +1,590 @@ + + + + + + Python Module Index — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ p +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ p
+ pyk +
    + pyk.coverage +
    + pyk.cterm +
    + pyk.cterm.cterm +
    + pyk.cterm.symbolic +
    + pyk.dequote +
    + pyk.kast +
    + pyk.kast.att +
    + pyk.kast.color +
    + pyk.kast.formatter +
    + pyk.kast.inner +
    + pyk.kast.kast +
    + pyk.kast.lexer +
    + pyk.kast.manip +
    + pyk.kast.markdown +
    + pyk.kast.outer +
    + pyk.kast.outer_lexer +
    + pyk.kast.outer_parser +
    + pyk.kast.outer_syntax +
    + pyk.kast.parser +
    + pyk.kast.pretty +
    + pyk.kast.rewrite +
    + pyk.kast.utils +
    + pyk.kbuild +
    + pyk.kbuild.config +
    + pyk.kbuild.kbuild +
    + pyk.kbuild.project +
    + pyk.kbuild.utils +
    + pyk.kcfg +
    + pyk.kcfg.exploration +
    + pyk.kcfg.explore +
    + pyk.kcfg.kcfg +
    + pyk.kcfg.semantics +
    + pyk.kcfg.show +
    + pyk.kcfg.store +
    + pyk.kcfg.tui +
    + pyk.kcovr +
    + pyk.kdist +
    + pyk.kdist.api +
    + pyk.kdist.utils +
    + pyk.kllvm +
    + pyk.kllvm.ast +
    + pyk.kllvm.compiler +
    + pyk.kllvm.convert +
    + pyk.kllvm.hints +
    + pyk.kllvm.hints.prooftrace +
    + pyk.kllvm.importer +
    + pyk.kllvm.load +
    + pyk.kllvm.load_static +
    + pyk.kllvm.parser +
    + pyk.kllvm.runtime +
    + pyk.kllvm.utils +
    + pyk.konvert +
    + pyk.kore +
    + pyk.kore.kompiled +
    + pyk.kore.lexer +
    + pyk.kore.manip +
    + pyk.kore.match +
    + pyk.kore.parser +
    + pyk.kore.pool +
    + pyk.kore.prelude +
    + pyk.kore.rpc +
    + pyk.kore.syntax +
    + pyk.kore.tools +
    + pyk.kore_exec_covr +
    + pyk.kore_exec_covr.kore_exec_covr +
    + pyk.krepl +
    + pyk.krepl.repl +
    + pyk.ktool +
    + pyk.ktool.claim_index +
    + pyk.ktool.kfuzz +
    + pyk.ktool.kompile +
    + pyk.ktool.kprint +
    + pyk.ktool.kprove +
    + pyk.ktool.krun +
    + pyk.ktool.prove_rpc +
    + pyk.prelude +
    + pyk.prelude.bytes +
    + pyk.prelude.collections +
    + pyk.prelude.k +
    + pyk.prelude.kbool +
    + pyk.prelude.kint +
    + pyk.prelude.ml +
    + pyk.prelude.string +
    + pyk.prelude.utils +
    + pyk.proof +
    + pyk.proof.implies +
    + pyk.proof.proof +
    + pyk.proof.reachability +
    + pyk.proof.show +
    + pyk.proof.tui +
    + pyk.testing +
    + pyk.testing.plugin +
    + pyk.utils +
+ + +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/pyk/search.html b/pyk/search.html new file mode 100644 index 00000000000..d9c4b4467c3 --- /dev/null +++ b/pyk/search.html @@ -0,0 +1,125 @@ + + + + + + Search — pyk 7.1.35 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2024, Runtime Verification, Inc.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/pyk/searchindex.js b/pyk/searchindex.js new file mode 100644 index 00000000000..9cce5379584 --- /dev/null +++ b/pyk/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"alltitles": {"Contents:": [[95, null]], "Indices and tables": [[95, "indices-and-tables"]], "Submodules": [[1, "submodules"], [3, "submodules"], [7, "submodules"], [24, "submodules"], [29, "submodules"], [38, "submodules"], [41, "submodules"], [45, "submodules"], [54, "submodules"], [65, "submodules"], [67, "submodules"], [69, "submodules"], [77, "submodules"], [86, "submodules"], [92, "submodules"]], "Subpackages": [[1, "subpackages"], [41, "subpackages"]], "Welcome to pyk\u2019s documentation!": [[95, "welcome-to-pyk-s-documentation"]], "pyk": [[0, "pyk"]], "pyk package": [[1, "module-pyk"]], "pyk.coverage module": [[2, "module-pyk.coverage"]], "pyk.cterm package": [[3, "module-pyk.cterm"]], "pyk.cterm.cterm module": [[4, "module-pyk.cterm.cterm"]], "pyk.cterm.symbolic module": [[5, "module-pyk.cterm.symbolic"]], "pyk.dequote module": [[6, "module-pyk.dequote"]], "pyk.kast package": [[7, "module-pyk.kast"]], "pyk.kast.att module": [[8, "module-pyk.kast.att"]], "pyk.kast.color module": [[9, "module-pyk.kast.color"]], "pyk.kast.formatter module": [[10, "module-pyk.kast.formatter"]], "pyk.kast.inner module": [[11, "module-pyk.kast.inner"]], "pyk.kast.kast module": [[12, "module-pyk.kast.kast"]], "pyk.kast.lexer module": [[13, "module-pyk.kast.lexer"]], "pyk.kast.manip module": [[14, "module-pyk.kast.manip"]], "pyk.kast.markdown module": [[15, "module-pyk.kast.markdown"]], "pyk.kast.outer module": [[16, "module-pyk.kast.outer"]], "pyk.kast.outer_lexer module": [[17, "module-pyk.kast.outer_lexer"]], "pyk.kast.outer_parser module": [[18, "module-pyk.kast.outer_parser"]], "pyk.kast.outer_syntax module": [[19, "module-pyk.kast.outer_syntax"]], "pyk.kast.parser module": [[20, "module-pyk.kast.parser"]], "pyk.kast.pretty module": [[21, "module-pyk.kast.pretty"]], "pyk.kast.rewrite module": [[22, "module-pyk.kast.rewrite"]], "pyk.kast.utils module": [[23, "module-pyk.kast.utils"]], "pyk.kbuild package": [[24, "module-pyk.kbuild"]], "pyk.kbuild.config module": [[25, "module-pyk.kbuild.config"]], "pyk.kbuild.kbuild module": [[26, "module-pyk.kbuild.kbuild"]], "pyk.kbuild.project module": [[27, "module-pyk.kbuild.project"]], "pyk.kbuild.utils module": [[28, "module-pyk.kbuild.utils"]], "pyk.kcfg package": [[29, "module-pyk.kcfg"]], "pyk.kcfg.exploration module": [[30, "module-pyk.kcfg.exploration"]], "pyk.kcfg.explore module": [[31, "module-pyk.kcfg.explore"]], "pyk.kcfg.kcfg module": [[32, "module-pyk.kcfg.kcfg"]], "pyk.kcfg.semantics module": [[33, "module-pyk.kcfg.semantics"]], "pyk.kcfg.show module": [[34, "module-pyk.kcfg.show"]], "pyk.kcfg.store module": [[35, "module-pyk.kcfg.store"]], "pyk.kcfg.tui module": [[36, "module-pyk.kcfg.tui"]], "pyk.kcovr module": [[37, "module-pyk.kcovr"]], "pyk.kdist package": [[38, "module-pyk.kdist"]], "pyk.kdist.api module": [[39, "module-pyk.kdist.api"]], "pyk.kdist.utils module": [[40, "module-pyk.kdist.utils"]], "pyk.kllvm package": [[41, "module-pyk.kllvm"]], "pyk.kllvm.ast module": [[42, "module-pyk.kllvm.ast"]], "pyk.kllvm.compiler module": [[43, "module-pyk.kllvm.compiler"]], "pyk.kllvm.convert module": [[44, "module-pyk.kllvm.convert"]], "pyk.kllvm.hints package": [[45, "module-pyk.kllvm.hints"]], "pyk.kllvm.hints.prooftrace module": [[46, "module-pyk.kllvm.hints.prooftrace"]], "pyk.kllvm.importer module": [[47, "module-pyk.kllvm.importer"]], "pyk.kllvm.load module": [[48, "module-pyk.kllvm.load"]], "pyk.kllvm.load_static module": [[49, "module-pyk.kllvm.load_static"]], "pyk.kllvm.parser module": [[50, "module-pyk.kllvm.parser"]], "pyk.kllvm.runtime module": [[51, "module-pyk.kllvm.runtime"]], "pyk.kllvm.utils module": [[52, "module-pyk.kllvm.utils"]], "pyk.konvert package": [[53, "module-pyk.konvert"]], "pyk.kore package": [[54, "module-pyk.kore"]], "pyk.kore.kompiled module": [[55, "module-pyk.kore.kompiled"]], "pyk.kore.lexer module": [[56, "module-pyk.kore.lexer"]], "pyk.kore.manip module": [[57, "module-pyk.kore.manip"]], "pyk.kore.match module": [[58, "module-pyk.kore.match"]], "pyk.kore.parser module": [[59, "module-pyk.kore.parser"]], "pyk.kore.pool module": [[60, "module-pyk.kore.pool"]], "pyk.kore.prelude module": [[61, "module-pyk.kore.prelude"]], "pyk.kore.rpc module": [[62, "module-pyk.kore.rpc"]], "pyk.kore.syntax module": [[63, "module-pyk.kore.syntax"]], "pyk.kore.tools module": [[64, "module-pyk.kore.tools"]], "pyk.kore_exec_covr package": [[65, "module-pyk.kore_exec_covr"]], "pyk.kore_exec_covr.kore_exec_covr module": [[66, "module-pyk.kore_exec_covr.kore_exec_covr"]], "pyk.krepl package": [[67, "module-pyk.krepl"]], "pyk.krepl.repl module": [[68, "module-pyk.krepl.repl"]], "pyk.ktool package": [[69, "module-pyk.ktool"]], "pyk.ktool.claim_index module": [[70, "module-pyk.ktool.claim_index"]], "pyk.ktool.kfuzz module": [[71, "module-pyk.ktool.kfuzz"]], "pyk.ktool.kompile module": [[72, "module-pyk.ktool.kompile"]], "pyk.ktool.kprint module": [[73, "module-pyk.ktool.kprint"]], "pyk.ktool.kprove module": [[74, "module-pyk.ktool.kprove"]], "pyk.ktool.krun module": [[75, "module-pyk.ktool.krun"]], "pyk.ktool.prove_rpc module": [[76, "module-pyk.ktool.prove_rpc"]], "pyk.prelude package": [[77, "module-pyk.prelude"]], "pyk.prelude.bytes module": [[78, "module-pyk.prelude.bytes"]], "pyk.prelude.collections module": [[79, "module-pyk.prelude.collections"]], "pyk.prelude.k module": [[80, "module-pyk.prelude.k"]], "pyk.prelude.kbool module": [[81, "module-pyk.prelude.kbool"]], "pyk.prelude.kint module": [[82, "module-pyk.prelude.kint"]], "pyk.prelude.ml module": [[83, "module-pyk.prelude.ml"]], "pyk.prelude.string module": [[84, "module-pyk.prelude.string"]], "pyk.prelude.utils module": [[85, "module-pyk.prelude.utils"]], "pyk.proof package": [[86, "module-pyk.proof"]], "pyk.proof.implies module": [[87, "module-pyk.proof.implies"]], "pyk.proof.proof module": [[88, "module-pyk.proof.proof"]], "pyk.proof.reachability module": [[89, "module-pyk.proof.reachability"]], "pyk.proof.show module": [[90, "module-pyk.proof.show"]], "pyk.proof.tui module": [[91, "module-pyk.proof.tui"]], "pyk.testing package": [[92, "module-pyk.testing"]], "pyk.testing.plugin module": [[93, "module-pyk.testing.plugin"]], "pyk.utils module": [[94, "module-pyk.utils"]]}, "docnames": ["api/modules", "api/pyk", "api/pyk.coverage", "api/pyk.cterm", "api/pyk.cterm.cterm", "api/pyk.cterm.symbolic", "api/pyk.dequote", "api/pyk.kast", "api/pyk.kast.att", "api/pyk.kast.color", "api/pyk.kast.formatter", "api/pyk.kast.inner", "api/pyk.kast.kast", "api/pyk.kast.lexer", "api/pyk.kast.manip", "api/pyk.kast.markdown", "api/pyk.kast.outer", "api/pyk.kast.outer_lexer", "api/pyk.kast.outer_parser", "api/pyk.kast.outer_syntax", "api/pyk.kast.parser", "api/pyk.kast.pretty", "api/pyk.kast.rewrite", "api/pyk.kast.utils", "api/pyk.kbuild", "api/pyk.kbuild.config", "api/pyk.kbuild.kbuild", "api/pyk.kbuild.project", "api/pyk.kbuild.utils", "api/pyk.kcfg", "api/pyk.kcfg.exploration", "api/pyk.kcfg.explore", "api/pyk.kcfg.kcfg", "api/pyk.kcfg.semantics", "api/pyk.kcfg.show", "api/pyk.kcfg.store", "api/pyk.kcfg.tui", "api/pyk.kcovr", "api/pyk.kdist", "api/pyk.kdist.api", "api/pyk.kdist.utils", "api/pyk.kllvm", "api/pyk.kllvm.ast", "api/pyk.kllvm.compiler", "api/pyk.kllvm.convert", "api/pyk.kllvm.hints", "api/pyk.kllvm.hints.prooftrace", "api/pyk.kllvm.importer", "api/pyk.kllvm.load", "api/pyk.kllvm.load_static", "api/pyk.kllvm.parser", "api/pyk.kllvm.runtime", "api/pyk.kllvm.utils", "api/pyk.konvert", "api/pyk.kore", "api/pyk.kore.kompiled", "api/pyk.kore.lexer", "api/pyk.kore.manip", "api/pyk.kore.match", "api/pyk.kore.parser", "api/pyk.kore.pool", "api/pyk.kore.prelude", "api/pyk.kore.rpc", "api/pyk.kore.syntax", "api/pyk.kore.tools", "api/pyk.kore_exec_covr", "api/pyk.kore_exec_covr.kore_exec_covr", "api/pyk.krepl", "api/pyk.krepl.repl", "api/pyk.ktool", "api/pyk.ktool.claim_index", "api/pyk.ktool.kfuzz", "api/pyk.ktool.kompile", "api/pyk.ktool.kprint", "api/pyk.ktool.kprove", "api/pyk.ktool.krun", "api/pyk.ktool.prove_rpc", "api/pyk.prelude", "api/pyk.prelude.bytes", "api/pyk.prelude.collections", "api/pyk.prelude.k", "api/pyk.prelude.kbool", "api/pyk.prelude.kint", "api/pyk.prelude.ml", "api/pyk.prelude.string", "api/pyk.prelude.utils", "api/pyk.proof", "api/pyk.proof.implies", "api/pyk.proof.proof", "api/pyk.proof.reachability", "api/pyk.proof.show", "api/pyk.proof.tui", "api/pyk.testing", "api/pyk.testing.plugin", "api/pyk.utils", "index"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/modules.rst", "api/pyk.rst", "api/pyk.coverage.rst", "api/pyk.cterm.rst", "api/pyk.cterm.cterm.rst", "api/pyk.cterm.symbolic.rst", "api/pyk.dequote.rst", "api/pyk.kast.rst", "api/pyk.kast.att.rst", "api/pyk.kast.color.rst", "api/pyk.kast.formatter.rst", "api/pyk.kast.inner.rst", "api/pyk.kast.kast.rst", "api/pyk.kast.lexer.rst", "api/pyk.kast.manip.rst", "api/pyk.kast.markdown.rst", "api/pyk.kast.outer.rst", "api/pyk.kast.outer_lexer.rst", "api/pyk.kast.outer_parser.rst", "api/pyk.kast.outer_syntax.rst", "api/pyk.kast.parser.rst", "api/pyk.kast.pretty.rst", "api/pyk.kast.rewrite.rst", "api/pyk.kast.utils.rst", "api/pyk.kbuild.rst", "api/pyk.kbuild.config.rst", "api/pyk.kbuild.kbuild.rst", "api/pyk.kbuild.project.rst", "api/pyk.kbuild.utils.rst", "api/pyk.kcfg.rst", "api/pyk.kcfg.exploration.rst", "api/pyk.kcfg.explore.rst", "api/pyk.kcfg.kcfg.rst", "api/pyk.kcfg.semantics.rst", "api/pyk.kcfg.show.rst", "api/pyk.kcfg.store.rst", "api/pyk.kcfg.tui.rst", "api/pyk.kcovr.rst", "api/pyk.kdist.rst", "api/pyk.kdist.api.rst", "api/pyk.kdist.utils.rst", "api/pyk.kllvm.rst", "api/pyk.kllvm.ast.rst", "api/pyk.kllvm.compiler.rst", "api/pyk.kllvm.convert.rst", "api/pyk.kllvm.hints.rst", "api/pyk.kllvm.hints.prooftrace.rst", "api/pyk.kllvm.importer.rst", "api/pyk.kllvm.load.rst", "api/pyk.kllvm.load_static.rst", "api/pyk.kllvm.parser.rst", "api/pyk.kllvm.runtime.rst", "api/pyk.kllvm.utils.rst", "api/pyk.konvert.rst", "api/pyk.kore.rst", "api/pyk.kore.kompiled.rst", "api/pyk.kore.lexer.rst", "api/pyk.kore.manip.rst", "api/pyk.kore.match.rst", "api/pyk.kore.parser.rst", "api/pyk.kore.pool.rst", "api/pyk.kore.prelude.rst", "api/pyk.kore.rpc.rst", "api/pyk.kore.syntax.rst", "api/pyk.kore.tools.rst", "api/pyk.kore_exec_covr.rst", "api/pyk.kore_exec_covr.kore_exec_covr.rst", "api/pyk.krepl.rst", "api/pyk.krepl.repl.rst", "api/pyk.ktool.rst", "api/pyk.ktool.claim_index.rst", "api/pyk.ktool.kfuzz.rst", "api/pyk.ktool.kompile.rst", "api/pyk.ktool.kprint.rst", "api/pyk.ktool.kprove.rst", "api/pyk.ktool.krun.rst", "api/pyk.ktool.prove_rpc.rst", "api/pyk.prelude.rst", "api/pyk.prelude.bytes.rst", "api/pyk.prelude.collections.rst", "api/pyk.prelude.k.rst", "api/pyk.prelude.kbool.rst", "api/pyk.prelude.kint.rst", "api/pyk.prelude.ml.rst", "api/pyk.prelude.string.rst", "api/pyk.prelude.utils.rst", "api/pyk.proof.rst", "api/pyk.proof.implies.rst", "api/pyk.proof.proof.rst", "api/pyk.proof.reachability.rst", "api/pyk.proof.show.rst", "api/pyk.proof.tui.rst", "api/pyk.testing.rst", "api/pyk.testing.plugin.rst", "api/pyk.utils.rst", "index.rst"], "indexentries": {"__call__() (subst method)": [[11, "pyk.kast.inner.Subst.__call__", false]], "__format__() (logorigin method)": [[62, "pyk.kore.rpc.LogOrigin.__format__", false]], "__format__() (stopreason method)": [[62, "pyk.kore.rpc.StopReason.__format__", false]], "__getitem__() (subst method)": [[11, "pyk.kast.inner.Subst.__getitem__", false]], "__init__() (csubst method)": [[4, "pyk.cterm.cterm.CSubst.__init__", false]], "__init__() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.__init__", false]], "__init__() (kapply method)": [[11, "pyk.kast.inner.KApply.__init__", false]], "__init__() (kas method)": [[11, "pyk.kast.inner.KAs.__init__", false]], "__init__() (klabel method)": [[11, "pyk.kast.inner.KLabel.__init__", false]], "__init__() (koreheader method)": [[46, "pyk.kllvm.hints.prooftrace.KoreHeader.__init__", false]], "__init__() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.__init__", false]], "__init__() (ksequence method)": [[11, "pyk.kast.inner.KSequence.__init__", false]], "__init__() (ksort method)": [[11, "pyk.kast.inner.KSort.__init__", false]], "__init__() (ktoken method)": [[11, "pyk.kast.inner.KToken.__init__", false]], "__init__() (kvariable method)": [[11, "pyk.kast.inner.KVariable.__init__", false]], "__init__() (llvmargument method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument.__init__", false]], "__init__() (llvmeventannotated method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventAnnotated.__init__", false]], "__init__() (llvmeventtype method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventType.__init__", false]], "__init__() (llvmfunctionevent method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent.__init__", false]], "__init__() (llvmhookevent method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent.__init__", false]], "__init__() (llvmrewritetrace method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.__init__", false]], "__init__() (llvmrewritetraceiterator method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator.__init__", false]], "__init__() (llvmruleevent method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRuleEvent.__init__", false]], "__init__() (llvmsideconditionevententer method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter.__init__", false]], "__init__() (llvmsideconditioneventexit method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit.__init__", false]], "__init__() (subst method)": [[11, "pyk.kast.inner.Subst.__init__", false]], "__iter__() (csubst method)": [[4, "pyk.cterm.cterm.CSubst.__iter__", false]], "__iter__() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.__iter__", false]], "__iter__() (klabel method)": [[11, "pyk.kast.inner.KLabel.__iter__", false]], "__iter__() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.__iter__", false]], "__iter__() (llvmrewritetraceiterator method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator.__iter__", false]], "__iter__() (subst method)": [[11, "pyk.kast.inner.Subst.__iter__", false]], "__len__() (subst method)": [[11, "pyk.kast.inner.Subst.__len__", false]], "__lt__() (kvariable method)": [[11, "pyk.kast.inner.KVariable.__lt__", false]], "__mul__() (subst method)": [[11, "pyk.kast.inner.Subst.__mul__", false]], "__next__() (llvmrewritetraceiterator method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator.__next__", false]], "__repr__() (llvmargument method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument.__repr__", false]], "__repr__() (llvmfunctionevent method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent.__repr__", false]], "__repr__() (llvmhookevent method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent.__repr__", false]], "__repr__() (llvmrewritetrace method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.__repr__", false]], "__repr__() (llvmrewritetraceiterator method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator.__repr__", false]], "__repr__() (llvmruleevent method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRuleEvent.__repr__", false]], "__repr__() (llvmsideconditionevententer method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter.__repr__", false]], "__repr__() (llvmsideconditioneventexit method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit.__repr__", false]], "_annotated_llvm_event (llvmeventannotated attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventAnnotated._annotated_llvm_event", false]], "_argument (llvmargument attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument._argument", false]], "_event_type (llvmeventtype attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventType._event_type", false]], "_function_event (llvmfunctionevent attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent._function_event", false]], "_hook_event (llvmhookevent attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent._hook_event", false]], "_kore_header (koreheader attribute)": [[46, "pyk.kllvm.hints.prooftrace.KoreHeader._kore_header", false]], "_rewrite_trace (llvmrewritetrace attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace._rewrite_trace", false]], "_rewrite_trace_iterator (llvmrewritetraceiterator attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator._rewrite_trace_iterator", false]], "_rule_event (llvmruleevent attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRuleEvent._rule_event", false]], "_side_condition_end_event (llvmsideconditioneventexit attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit._side_condition_end_event", false]], "_side_condition_event (llvmsideconditionevententer attribute)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter._side_condition_event", false]], "aborted (fallbackreason attribute)": [[62, "pyk.kore.rpc.FallbackReason.ABORTED", false]], "aborted (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.ABORTED", false]], "abortedresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.AbortedResult", false]], "abs_or_rel_to() (in module pyk.utils)": [[94, "pyk.utils.abs_or_rel_to", false]], "absint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.absInt", false]], "abstract (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.Abstract", false]], "abstract_node() (defaultsemantics method)": [[33, "pyk.kcfg.semantics.DefaultSemantics.abstract_node", false]], "abstract_node() (kcfgsemantics method)": [[33, "pyk.kcfg.semantics.KCFGSemantics.abstract_node", false]], "abstract_term_safely() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.abstract_term_safely", false]], "action_keystroke() (kcfgviewer method)": [[36, "pyk.kcfg.tui.KCFGViewer.action_keystroke", false]], "add_alias() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.add_alias", false]], "add_attr() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.add_attr", false]], "add_attr() (kcfg.node method)": [[32, "pyk.kcfg.kcfg.KCFG.Node.add_attr", false]], "add_bounded() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.add_bounded", false]], "add_brackets() (in module pyk.kast.formatter)": [[10, "pyk.kast.formatter.add_brackets", false]], "add_cell_map_items() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.add_cell_map_items", false]], "add_command() (bugreport method)": [[94, "pyk.utils.BugReport.add_command", false]], "add_constraint() (csubst method)": [[4, "pyk.cterm.cterm.CSubst.add_constraint", false]], "add_constraint() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.add_constraint", false]], "add_exec_time() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.add_exec_time", false]], "add_file() (bugreport method)": [[94, "pyk.utils.BugReport.add_file", false]], "add_file_contents() (bugreport method)": [[94, "pyk.utils.BugReport.add_file_contents", false]], "add_indent() (in module pyk.utils)": [[94, "pyk.utils.add_indent", false]], "add_injections() (kompiledkore method)": [[55, "pyk.kore.kompiled.KompiledKore.add_injections", false]], "add_ksequence_under_k_productions() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.add_ksequence_under_k_productions", false]], "add_module() (koreclient method)": [[62, "pyk.kore.rpc.KoreClient.add_module", false]], "add_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.add_node", false]], "add_sort_params() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.add_sort_params", false]], "add_stuck() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.add_stuck", false]], "add_subproof() (proof method)": [[88, "pyk.proof.proof.Proof.add_subproof", false]], "add_successor() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.add_successor", false]], "add_terminal() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.add_terminal", false]], "add_vacuous() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.add_vacuous", false]], "addint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.addInt", false]], "admit() (proof method)": [[88, "pyk.proof.proof.Proof.admit", false]], "admitted (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.admitted", false]], "admitted (equalitysummary attribute)": [[87, "pyk.proof.implies.EqualitySummary.admitted", false]], "admitted (proof attribute)": [[88, "pyk.proof.proof.Proof.admitted", false]], "advance_proof() (prover method)": [[88, "pyk.proof.proof.Prover.advance_proof", false]], "ahead (kversion.git attribute)": [[28, "pyk.kbuild.utils.KVersion.Git.ahead", false]], "alias (aliasdecl attribute)": [[63, "pyk.kore.syntax.AliasDecl.alias", false]], "alias (atts attribute)": [[8, "pyk.kast.att.Atts.ALIAS", false]], "alias (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Alias", false]], "alias (kas attribute)": [[11, "pyk.kast.inner.KAs.alias", false]], "alias_decl() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.alias_decl", false]], "alias_rec (atts attribute)": [[8, "pyk.kast.att.Atts.ALIAS_REC", false]], "alias_rules (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.alias_rules", false]], "aliasdecl (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.AliasDecl", false]], "aliases() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.aliases", false]], "alice_blue (color attribute)": [[9, "pyk.kast.color.Color.ALICE_BLUE", false]], "all_files (project property)": [[27, "pyk.kbuild.project.Project.all_files", false]], "all_module_names (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.all_module_names", false]], "all_modules (kdefinition attribute)": [[16, "pyk.kast.outer.KDefinition.all_modules", false]], "all_modules_dict (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.all_modules_dict", false]], "always_check_subsumption (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.always_check_subsumption", false]], "and (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.And", false]], "and (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.And", false]], "and_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.and_bool", false]], "andbool() (in module pyk.prelude.kbool)": [[81, "pyk.prelude.kbool.andBool", false]], "andd() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.andd", false]], "andint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.andInt", false]], "ansi_code (color property)": [[9, "pyk.kast.color.Color.ansi_code", false]], "antecedent (impliesproof attribute)": [[87, "pyk.proof.implies.ImpliesProof.antecedent", false]], "anti_unify() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.anti_unify", false]], "anti_unify() (in module pyk.cterm.cterm)": [[4, "pyk.cterm.cterm.anti_unify", false]], "antique_white (color attribute)": [[9, "pyk.kast.color.Color.ANTIQUE_WHITE", false]], "anytype (class in pyk.kast.att)": [[8, "pyk.kast.att.AnyType", false]], "anywhere (atts attribute)": [[8, "pyk.kast.att.Atts.ANYWHERE", false]], "app (assoc attribute)": [[63, "pyk.kore.syntax.Assoc.app", false]], "app (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.App", false]], "app (leftassoc attribute)": [[63, "pyk.kore.syntax.LeftAssoc.app", false]], "app (rightassoc attribute)": [[63, "pyk.kore.syntax.RightAssoc.app", false]], "app() (in module pyk.kore.match)": [[58, "pyk.kore.match.app", false]], "app() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.app", false]], "apply() (csubst method)": [[4, "pyk.cterm.cterm.CSubst.apply", false]], "apply() (klabel method)": [[11, "pyk.kast.inner.KLabel.apply", false]], "apply() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.apply", false]], "apply() (subst method)": [[11, "pyk.kast.inner.Subst.apply", false]], "apply_existential_substitutions() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.apply_existential_substitutions", false]], "apply_top() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.apply_top", false]], "aprfailureinfo (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRFailureInfo", false]], "apricot (color attribute)": [[9, "pyk.kast.color.Color.APRICOT", false]], "aprproof (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProof", false]], "aprproofbehaviorview (class in pyk.proof.tui)": [[91, "pyk.proof.tui.APRProofBehaviorView", false]], "aprproofboundedresult (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProofBoundedResult", false]], "aprproofextendresult (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProofExtendResult", false]], "aprproofnodeprinter (class in pyk.proof.show)": [[90, "pyk.proof.show.APRProofNodePrinter", false]], "aprproofresult (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProofResult", false]], "aprproofshow (class in pyk.proof.show)": [[90, "pyk.proof.show.APRProofShow", false]], "aprproofstep (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProofStep", false]], "aprproofsubsumeresult (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProofSubsumeResult", false]], "aprproofterminalresult (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProofTerminalResult", false]], "aprproofviewer (class in pyk.proof.tui)": [[91, "pyk.proof.tui.APRProofViewer", false]], "aprprover (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRProver", false]], "aprsummary (class in pyk.proof.reachability)": [[89, "pyk.proof.reachability.APRSummary", false]], "aqua (color attribute)": [[9, "pyk.kast.color.Color.AQUA", false]], "aquamarine (color attribute)": [[9, "pyk.kast.color.Color.AQUAMARINE", false]], "arg() (in module pyk.kore.match)": [[58, "pyk.kore.match.arg", false]], "args (app attribute)": [[63, "pyk.kore.syntax.App.args", false]], "args (kapply attribute)": [[11, "pyk.kast.inner.KApply.args", false]], "args (llvmfunctionevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent.args", false]], "args (llvmhookevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent.args", false]], "args (sort attribute)": [[19, "pyk.kast.outer_syntax.Sort.args", false]], "args (sortdecl attribute)": [[19, "pyk.kast.outer_syntax.SortDecl.args", false]], "args (target attribute)": [[27, "pyk.kbuild.project.Target.args", false]], "args() (in module pyk.kore.match)": [[58, "pyk.kore.match.args", false]], "argument_sorts (kproduction property)": [[16, "pyk.kast.outer.KProduction.argument_sorts", false]], "arity (kapply property)": [[11, "pyk.kast.inner.KApply.arity", false]], "arity (ksequence property)": [[11, "pyk.kast.inner.KSequence.arity", false]], "as_rule() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.as_rule", false]], "as_rules() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.as_rules", false]], "as_subsort (kproduction property)": [[16, "pyk.kast.outer.KProduction.as_subsort", false]], "assoc (atts attribute)": [[8, "pyk.kast.att.Atts.ASSOC", false]], "assoc (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Assoc", false]], "assoc (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Assoc", false]], "assoc (ksyntaxassociativity attribute)": [[16, "pyk.kast.outer.KSyntaxAssociativity.assoc", false]], "assoc (priorityblock attribute)": [[19, "pyk.kast.outer_syntax.PriorityBlock.assoc", false]], "assoc (syntaxassoc attribute)": [[19, "pyk.kast.outer_syntax.SyntaxAssoc.assoc", false]], "assoc_with_unit() (in module pyk.kast.pretty)": [[21, "pyk.kast.pretty.assoc_with_unit", false]], "assume_defined() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.assume_defined", false]], "ast (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.AST", false]], "atom (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.Atom", false]], "att (alias attribute)": [[19, "pyk.kast.outer_syntax.Alias.att", false]], "att (claim attribute)": [[19, "pyk.kast.outer_syntax.Claim.att", false]], "att (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Att", false]], "att (config attribute)": [[19, "pyk.kast.outer_syntax.Config.att", false]], "att (context attribute)": [[19, "pyk.kast.outer_syntax.Context.att", false]], "att (kbubble attribute)": [[16, "pyk.kast.outer.KBubble.att", false]], "att (kclaim attribute)": [[16, "pyk.kast.outer.KClaim.att", false]], "att (kcontext attribute)": [[16, "pyk.kast.outer.KContext.att", false]], "att (kdefinition attribute)": [[16, "pyk.kast.outer.KDefinition.att", false]], "att (kflatmodule attribute)": [[16, "pyk.kast.outer.KFlatModule.att", false]], "att (kproduction attribute)": [[16, "pyk.kast.outer.KProduction.att", false]], "att (krule attribute)": [[16, "pyk.kast.outer.KRule.att", false]], "att (ksortsynonym attribute)": [[16, "pyk.kast.outer.KSortSynonym.att", false]], "att (ksyntaxassociativity attribute)": [[16, "pyk.kast.outer.KSyntaxAssociativity.att", false]], "att (ksyntaxlexical attribute)": [[16, "pyk.kast.outer.KSyntaxLexical.att", false]], "att (ksyntaxpriority attribute)": [[16, "pyk.kast.outer.KSyntaxPriority.att", false]], "att (ksyntaxsort attribute)": [[16, "pyk.kast.outer.KSyntaxSort.att", false]], "att (module attribute)": [[19, "pyk.kast.outer_syntax.Module.att", false]], "att (production attribute)": [[19, "pyk.kast.outer_syntax.Production.att", false]], "att (productionlike attribute)": [[19, "pyk.kast.outer_syntax.ProductionLike.att", false]], "att (rule attribute)": [[19, "pyk.kast.outer_syntax.Rule.att", false]], "att (stringsentence attribute)": [[19, "pyk.kast.outer_syntax.StringSentence.att", false]], "att (syntaxdecl attribute)": [[19, "pyk.kast.outer_syntax.SyntaxDecl.att", false]], "att (syntaxsynonym attribute)": [[19, "pyk.kast.outer_syntax.SyntaxSynonym.att", false]], "att (userlist attribute)": [[19, "pyk.kast.outer_syntax.UserList.att", false]], "att (withkatt attribute)": [[8, "pyk.kast.att.WithKAtt.att", false]], "attentry (class in pyk.kast.att)": [[8, "pyk.kast.att.AttEntry", false]], "attkey (class in pyk.kast.att)": [[8, "pyk.kast.att.AttKey", false]], "attr (state attribute)": [[17, "pyk.kast.outer_lexer.State.ATTR", false]], "attr_content (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.ATTR_CONTENT", false]], "attr_key (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.ATTR_KEY", false]], "attrs (aliasdecl attribute)": [[63, "pyk.kore.syntax.AliasDecl.attrs", false]], "attrs (axiom attribute)": [[63, "pyk.kore.syntax.Axiom.attrs", false]], "attrs (claim attribute)": [[63, "pyk.kore.syntax.Claim.attrs", false]], "attrs (definition attribute)": [[63, "pyk.kore.syntax.Definition.attrs", false]], "attrs (import attribute)": [[63, "pyk.kore.syntax.Import.attrs", false]], "attrs (kcfg.node attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Node.attrs", false]], "attrs (module attribute)": [[63, "pyk.kore.syntax.Module.attrs", false]], "attrs (sortdecl attribute)": [[63, "pyk.kore.syntax.SortDecl.attrs", false]], "attrs (symboldecl attribute)": [[63, "pyk.kore.syntax.SymbolDecl.attrs", false]], "attrs (withattrs attribute)": [[63, "pyk.kore.syntax.WithAttrs.attrs", false]], "atts (class in pyk.kast.att)": [[8, "pyk.kast.att.Atts", false]], "atts (katt attribute)": [[8, "pyk.kast.att.KAtt.atts", false]], "atttype (class in pyk.kast.att)": [[8, "pyk.kast.att.AttType", false]], "axiom (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Axiom", false]], "axiom() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.axiom", false]], "axiomlike (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.AxiomLike", false]], "axioms (definition property)": [[63, "pyk.kore.syntax.Definition.axioms", false]], "axioms (module property)": [[63, "pyk.kore.syntax.Module.axioms", false]], "azure (color attribute)": [[9, "pyk.kast.color.Color.AZURE", false]], "backend (kprint attribute)": [[73, "pyk.ktool.kprint.KPrint.backend", false]], "baserepl (class in pyk.krepl.repl)": [[68, "pyk.krepl.repl.BaseRepl", false]], "behaviorview (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.BehaviorView", false]], "behaviorview.selected (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.BehaviorView.Selected", false]], "beige (color attribute)": [[9, "pyk.kast.color.Color.BEIGE", false]], "binary (kastinput attribute)": [[73, "pyk.ktool.kprint.KAstInput.BINARY", false]], "binary (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.BINARY", false]], "binary (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.BINARY", false]], "binary (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.BINARY", false]], "binary (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.BINARY", false]], "binaryconn (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.BinaryConn", false]], "binarypred (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.BinaryPred", false]], "bind_universally (impliesproof attribute)": [[87, "pyk.proof.implies.ImpliesProof.bind_universally", false]], "bindings (kcfgviewer attribute)": [[36, "pyk.kcfg.tui.KCFGViewer.BINDINGS", false]], "bindings (navwidget attribute)": [[36, "pyk.kcfg.tui.NavWidget.BINDINGS", false]], "bisque (color attribute)": [[9, "pyk.kast.color.Color.BISQUE", false]], "bittersweet (color attribute)": [[9, "pyk.kast.color.Color.BITTERSWEET", false]], "black (color attribute)": [[9, "pyk.kast.color.Color.BLACK", false]], "blanched_almond (color attribute)": [[9, "pyk.kast.color.Color.BLANCHED_ALMOND", false]], "blocks (syntaxdefn attribute)": [[19, "pyk.kast.outer_syntax.SyntaxDefn.blocks", false]], "blue (color attribute)": [[9, "pyk.kast.color.Color.BLUE", false]], "blue_green (color attribute)": [[9, "pyk.kast.color.Color.BLUE_GREEN", false]], "blue_violet (color attribute)": [[9, "pyk.kast.color.Color.BLUE_VIOLET", false]], "bmc_depth (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.bmc_depth", false]], "bmc_depth (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.bmc_depth", false]], "bmc_depth (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.bmc_depth", false]], "body (kclaim attribute)": [[16, "pyk.kast.outer.KClaim.body", false]], "body (kcontext attribute)": [[16, "pyk.kast.outer.KContext.body", false]], "body (krule attribute)": [[16, "pyk.kast.outer.KRule.body", false]], "body (krulelike attribute)": [[16, "pyk.kast.outer.KRuleLike.body", false]], "bool_dv() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.bool_dv", false]], "bool_to_ml_pred() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.bool_to_ml_pred", false]], "booltoken() (in module pyk.prelude.kbool)": [[81, "pyk.prelude.kbool.boolToken", false]], "booster (logorigin attribute)": [[62, "pyk.kore.rpc.LogOrigin.BOOSTER", false]], "booster (logtiming.component attribute)": [[62, "pyk.kore.rpc.LogTiming.Component.BOOSTER", false]], "booster (pykbackend attribute)": [[72, "pyk.ktool.kompile.PykBackend.BOOSTER", false]], "boosterserver (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.BoosterServer", false]], "boosterserverargs (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.BoosterServerArgs", false]], "bottom (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Bottom", false]], "bottom() (cterm static method)": [[4, "pyk.cterm.cterm.CTerm.bottom", false]], "bottom() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.bottom", false]], "bottom_up() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.bottom_up", false]], "bottom_up() (pattern method)": [[63, "pyk.kore.syntax.Pattern.bottom_up", false]], "bottom_up_with_summary() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.bottom_up_with_summary", false]], "bounded (aprproof property)": [[89, "pyk.proof.reachability.APRProof.bounded", false]], "bounded (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.bounded", false]], "bracket (atts attribute)": [[8, "pyk.kast.att.Atts.BRACKET", false]], "bracket_label (atts attribute)": [[8, "pyk.kast.att.Atts.BRACKET_LABEL", false]], "brackets (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.brackets", false]], "branch (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.Branch", false]], "branching (fallbackreason attribute)": [[62, "pyk.kore.rpc.FallbackReason.BRANCHING", false]], "branching (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.BRANCHING", false]], "branchingresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.BranchingResult", false]], "brick_red (color attribute)": [[9, "pyk.kast.color.Color.BRICK_RED", false]], "brown (color attribute)": [[9, "pyk.kast.color.Color.BROWN", false]], "bubble (alias attribute)": [[19, "pyk.kast.outer_syntax.Alias.bubble", false]], "bubble (behaviorview.selected attribute)": [[36, "pyk.kcfg.tui.BehaviorView.Selected.bubble", false]], "bubble (claim attribute)": [[19, "pyk.kast.outer_syntax.Claim.bubble", false]], "bubble (config attribute)": [[19, "pyk.kast.outer_syntax.Config.bubble", false]], "bubble (context attribute)": [[19, "pyk.kast.outer_syntax.Context.bubble", false]], "bubble (graphchunk.selected attribute)": [[36, "pyk.kcfg.tui.GraphChunk.Selected.bubble", false]], "bubble (navwidget.selected attribute)": [[36, "pyk.kcfg.tui.NavWidget.Selected.bubble", false]], "bubble (rule attribute)": [[19, "pyk.kast.outer_syntax.Rule.bubble", false]], "bubble (state attribute)": [[17, "pyk.kast.outer_lexer.State.BUBBLE", false]], "bubble (stringsentence attribute)": [[19, "pyk.kast.outer_syntax.StringSentence.bubble", false]], "bubble (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.BUBBLE", false]], "bug_report (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.bug_report", false]], "bug_report (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.bug_report", false]], "bug_report() (in module pyk.testing.plugin)": [[93, "pyk.testing.plugin.bug_report", false]], "bugreport (class in pyk.utils)": [[94, "pyk.utils.BugReport", false]], "build() (target method)": [[39, "pyk.kdist.api.Target.build", false]], "build_assoc() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.build_assoc", false]], "build_claim() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.build_claim", false]], "build_cons() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.build_cons", false]], "build_rule() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.build_rule", false]], "build_rule_dict() (in module pyk.kore_exec_covr.kore_exec_covr)": [[66, "pyk.kore_exec_covr.kore_exec_covr.build_rule_dict", false]], "build_symbol_table() (in module pyk.kast.pretty)": [[21, "pyk.kast.pretty.build_symbol_table", false]], "burly_wood (color attribute)": [[9, "pyk.kast.color.Color.BURLY_WOOD", false]], "burnt_orange (color attribute)": [[9, "pyk.kast.color.Color.BURNT_ORANGE", false]], "bytes_decode() (in module pyk.dequote)": [[6, "pyk.dequote.bytes_decode", false]], "bytes_dv() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.bytes_dv", false]], "bytes_encode() (in module pyk.dequote)": [[6, "pyk.dequote.bytes_encode", false]], "bytestoken() (in module pyk.prelude.bytes)": [[78, "pyk.prelude.bytes.bytesToken", false]], "bytestoken_from_str() (in module pyk.prelude.bytes)": [[78, "pyk.prelude.bytes.bytesToken_from_str", false]], "cadet_blue (color attribute)": [[9, "pyk.kast.color.Color.CADET_BLUE", false]], "can_focus (aprproofbehaviorview attribute)": [[91, "pyk.proof.tui.APRProofBehaviorView.can_focus", false]], "can_focus (behaviorview attribute)": [[36, "pyk.kcfg.tui.BehaviorView.can_focus", false]], "can_focus (constraint attribute)": [[36, "pyk.kcfg.tui.Constraint.can_focus", false]], "can_focus (custom attribute)": [[36, "pyk.kcfg.tui.Custom.can_focus", false]], "can_focus (graphchunk attribute)": [[36, "pyk.kcfg.tui.GraphChunk.can_focus", false]], "can_focus (info attribute)": [[36, "pyk.kcfg.tui.Info.can_focus", false]], "can_focus (navwidget attribute)": [[36, "pyk.kcfg.tui.NavWidget.can_focus", false]], "can_focus (nodeview attribute)": [[36, "pyk.kcfg.tui.NodeView.can_focus", false]], "can_focus (status attribute)": [[36, "pyk.kcfg.tui.Status.can_focus", false]], "can_focus (term attribute)": [[36, "pyk.kcfg.tui.Term.can_focus", false]], "can_focus_children (aprproofbehaviorview attribute)": [[91, "pyk.proof.tui.APRProofBehaviorView.can_focus_children", false]], "can_focus_children (behaviorview attribute)": [[36, "pyk.kcfg.tui.BehaviorView.can_focus_children", false]], "can_focus_children (constraint attribute)": [[36, "pyk.kcfg.tui.Constraint.can_focus_children", false]], "can_focus_children (custom attribute)": [[36, "pyk.kcfg.tui.Custom.can_focus_children", false]], "can_focus_children (graphchunk attribute)": [[36, "pyk.kcfg.tui.GraphChunk.can_focus_children", false]], "can_focus_children (info attribute)": [[36, "pyk.kcfg.tui.Info.can_focus_children", false]], "can_focus_children (navwidget attribute)": [[36, "pyk.kcfg.tui.NavWidget.can_focus_children", false]], "can_focus_children (nodeview attribute)": [[36, "pyk.kcfg.tui.NodeView.can_focus_children", false]], "can_focus_children (status attribute)": [[36, "pyk.kcfg.tui.Status.can_focus_children", false]], "can_focus_children (term attribute)": [[36, "pyk.kcfg.tui.Term.can_focus_children", false]], "can_progress (aprproof property)": [[89, "pyk.proof.reachability.APRProof.can_progress", false]], "can_progress (impliesproof property)": [[87, "pyk.proof.implies.ImpliesProof.can_progress", false]], "can_progress (proof property)": [[88, "pyk.proof.proof.Proof.can_progress", false]], "carnation_pink (color attribute)": [[9, "pyk.kast.color.Color.CARNATION_PINK", false]], "case() (in module pyk.utils)": [[94, "pyk.utils.case", false]], "case_symbol() (in module pyk.kore.match)": [[58, "pyk.kore.match.case_symbol", false]], "cat_builtin (baserepl attribute)": [[68, "pyk.krepl.repl.BaseRepl.CAT_BUILTIN", false]], "cat_debug (baserepl attribute)": [[68, "pyk.krepl.repl.BaseRepl.CAT_DEBUG", false]], "ceil (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Ceil", false]], "ceil() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.ceil", false]], "cell (atts attribute)": [[8, "pyk.kast.att.Atts.CELL", false]], "cell() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.cell", false]], "cell_collection (atts attribute)": [[8, "pyk.kast.att.Atts.CELL_COLLECTION", false]], "cell_collection_productions (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.cell_collection_productions", false]], "cell_collection_productions (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.cell_collection_productions", false]], "cell_fragment (atts attribute)": [[8, "pyk.kast.att.Atts.CELL_FRAGMENT", false]], "cell_label_to_var_name() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.cell_label_to_var_name", false]], "cell_name (atts attribute)": [[8, "pyk.kast.att.Atts.CELL_NAME", false]], "cell_opt_absent (atts attribute)": [[8, "pyk.kast.att.Atts.CELL_OPT_ABSENT", false]], "cells (cterm property)": [[4, "pyk.cterm.cterm.CTerm.cells", false]], "cerulean (color attribute)": [[9, "pyk.kast.color.Color.CERULEAN", false]], "chainable (class in pyk.utils)": [[94, "pyk.utils.Chainable", false]], "chartreuse (color attribute)": [[9, "pyk.kast.color.Color.CHARTREUSE", false]], "check_absolute_path() (in module pyk.utils)": [[94, "pyk.utils.check_absolute_path", false]], "check_dir_path() (in module pyk.utils)": [[94, "pyk.utils.check_dir_path", false]], "check_extendable() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.check_extendable", false]], "check_file_path() (in module pyk.utils)": [[94, "pyk.utils.check_file_path", false]], "check_relative_path() (in module pyk.utils)": [[94, "pyk.utils.check_relative_path", false]], "check_result (llvmsideconditioneventexit property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit.check_result", false]], "check_type() (in module pyk.utils)": [[94, "pyk.utils.check_type", false]], "chocolate (color attribute)": [[9, "pyk.kast.color.Color.CHOCOLATE", false]], "chunk_id (graphchunk.selected attribute)": [[36, "pyk.kcfg.tui.GraphChunk.Selected.chunk_id", false]], "circularities_module_name (aprproof property)": [[89, "pyk.proof.reachability.APRProof.circularities_module_name", false]], "circularity (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.circularity", false]], "circularity (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.circularity", false]], "circularity (atts attribute)": [[8, "pyk.kast.att.Atts.CIRCULARITY", false]], "circularity_rule_id (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.circularity_rule_id", false]], "claim (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Claim", false]], "claim (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Claim", false]], "claim() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.claim", false]], "claimindex (class in pyk.ktool.claim_index)": [[70, "pyk.ktool.claim_index.ClaimIndex", false]], "claims (claimindex attribute)": [[70, "pyk.ktool.claim_index.ClaimIndex.claims", false]], "claims (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.claims", false]], "close() (aprprover method)": [[89, "pyk.proof.reachability.APRProver.close", false]], "close() (httptransport method)": [[62, "pyk.kore.rpc.HttpTransport.close", false]], "close() (impliesprover method)": [[87, "pyk.proof.implies.ImpliesProver.close", false]], "close() (jsonrpcclient method)": [[62, "pyk.kore.rpc.JsonRpcClient.close", false]], "close() (jsonrpcclientfacade method)": [[62, "pyk.kore.rpc.JsonRpcClientFacade.close", false]], "close() (koreclient method)": [[62, "pyk.kore.rpc.KoreClient.close", false]], "close() (koreserver method)": [[62, "pyk.kore.rpc.KoreServer.close", false]], "close() (koreserverpool method)": [[60, "pyk.kore.pool.KoreServerPool.close", false]], "close() (prover method)": [[88, "pyk.proof.proof.Prover.close", false]], "close() (singlesockettransport method)": [[62, "pyk.kore.rpc.SingleSocketTransport.close", false]], "close() (transport method)": [[62, "pyk.kore.rpc.Transport.close", false]], "code (codeblock attribute)": [[15, "pyk.kast.markdown.CodeBlock.code", false]], "code (defaulterror attribute)": [[62, "pyk.kore.rpc.DefaultError.code", false]], "code_blocks() (in module pyk.kast.markdown)": [[15, "pyk.kast.markdown.code_blocks", false]], "codeblock (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.CodeBlock", false]], "col (loc attribute)": [[17, "pyk.kast.outer_lexer.Loc.col", false]], "collapse_dots() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.collapse_dots", false]], "collect() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.collect", false]], "colon (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.COLON", false], [17, "pyk.kast.outer_lexer.TokenType.COLON", false], [56, "pyk.kore.lexer.TokenType.COLON", false]], "color (atts attribute)": [[8, "pyk.kast.att.Atts.COLOR", false]], "color (class in pyk.kast.color)": [[9, "pyk.kast.color.Color", false]], "colors (atts attribute)": [[8, "pyk.kast.att.Atts.COLORS", false]], "colorstype (class in pyk.kast.att)": [[8, "pyk.kast.att.ColorsType", false]], "colortype (class in pyk.kast.att)": [[8, "pyk.kast.att.ColorType", false]], "comm (atts attribute)": [[8, "pyk.kast.att.Atts.COMM", false]], "comma (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.COMMA", false], [17, "pyk.kast.outer_lexer.TokenType.COMMA", false], [56, "pyk.kore.lexer.TokenType.COMMA", false]], "command (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.command", false]], "command (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.command", false]], "command (krun attribute)": [[75, "pyk.ktool.krun.KRun.command", false]], "command() (httptransport method)": [[62, "pyk.kore.rpc.HttpTransport.command", false]], "command() (singlesockettransport method)": [[62, "pyk.kore.rpc.SingleSocketTransport.command", false]], "command() (transport method)": [[62, "pyk.kore.rpc.Transport.command", false]], "commit() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.commit", false]], "commit() (impliesproof method)": [[87, "pyk.proof.implies.ImpliesProof.commit", false]], "commit() (proof method)": [[88, "pyk.proof.proof.Proof.commit", false]], "compare_short_hashes() (in module pyk.utils)": [[94, "pyk.utils.compare_short_hashes", false]], "compile_kllvm() (in module pyk.kllvm.compiler)": [[43, "pyk.kllvm.compiler.compile_kllvm", false]], "compile_runtime() (in module pyk.kllvm.compiler)": [[43, "pyk.kllvm.compiler.compile_runtime", false]], "component (logtiming attribute)": [[62, "pyk.kore.rpc.LogTiming.component", false]], "compose() (aprproofbehaviorview method)": [[91, "pyk.proof.tui.APRProofBehaviorView.compose", false]], "compose() (aprproofviewer method)": [[91, "pyk.proof.tui.APRProofViewer.compose", false]], "compose() (behaviorview method)": [[36, "pyk.kcfg.tui.BehaviorView.compose", false]], "compose() (info method)": [[36, "pyk.kcfg.tui.Info.compose", false]], "compose() (kcfgviewer method)": [[36, "pyk.kcfg.tui.KCFGViewer.compose", false]], "compose() (navwidget method)": [[36, "pyk.kcfg.tui.NavWidget.compose", false]], "compose() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.compose", false]], "compose() (subst method)": [[11, "pyk.kast.inner.Subst.compose", false]], "compositesummary (class in pyk.proof.proof)": [[88, "pyk.proof.proof.CompositeSummary", false]], "compute_ordinals() (definition method)": [[63, "pyk.kore.syntax.Definition.compute_ordinals", false]], "concat (atts attribute)": [[8, "pyk.kast.att.Atts.CONCAT", false]], "concrete (atts attribute)": [[8, "pyk.kast.att.Atts.CONCRETE", false]], "condition (nextstate attribute)": [[5, "pyk.cterm.symbolic.NextState.condition", false]], "config (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Config", false]], "config (cterm attribute)": [[4, "pyk.cterm.cterm.CTerm.config", false]], "conjuncts() (in module pyk.kore.manip)": [[57, "pyk.kore.manip.conjuncts", false]], "consequent (impliesproof attribute)": [[87, "pyk.proof.implies.ImpliesProof.consequent", false]], "constraint (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.Constraint", false]], "constraint (csubst property)": [[4, "pyk.cterm.cterm.CSubst.constraint", false]], "constraint (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.constraint", false]], "constraints (branch attribute)": [[32, "pyk.kcfg.kcfg.Branch.constraints", false]], "constraints (csubst attribute)": [[4, "pyk.cterm.cterm.CSubst.constraints", false]], "constraints (cterm attribute)": [[4, "pyk.cterm.cterm.CTerm.constraints", false]], "constraints (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.constraints", false]], "construct_node_refutation() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.construct_node_refutation", false]], "constructor (atts attribute)": [[8, "pyk.kast.att.Atts.CONSTRUCTOR", false]], "constructors (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.constructors", false]], "constructors (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.constructors", false]], "contains_cover() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.contains_cover", false]], "contains_edge() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.contains_edge", false]], "contains_ndbranch() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.contains_ndbranch", false]], "contains_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.contains_node", false]], "contains_split() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.contains_split", false]], "contents (kbubble attribute)": [[16, "pyk.kast.outer.KBubble.contents", false]], "context (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Context", false]], "context (implicationerror attribute)": [[62, "pyk.kore.rpc.ImplicationError.context", false]], "context (invalidmoduleerror attribute)": [[62, "pyk.kore.rpc.InvalidModuleError.context", false]], "context (patternerror attribute)": [[62, "pyk.kore.rpc.PatternError.context", false]], "context (state attribute)": [[17, "pyk.kast.outer_lexer.State.CONTEXT", false]], "context() (target method)": [[39, "pyk.kdist.api.Target.context", false]], "coral (color attribute)": [[9, "pyk.kast.color.Color.CORAL", false]], "cornflower_blue (color attribute)": [[9, "pyk.kast.color.Color.CORNFLOWER_BLUE", false]], "cornsilk (color attribute)": [[9, "pyk.kast.color.Color.CORNSILK", false]], "count_lines_covered() (in module pyk.kcovr)": [[37, "pyk.kcovr.count_lines_covered", false]], "count_lines_file() (in module pyk.kcovr)": [[37, "pyk.kcovr.count_lines_file", false]], "count_lines_global() (in module pyk.kcovr)": [[37, "pyk.kcovr.count_lines_global", false]], "count_rules_covered() (in module pyk.kcovr)": [[37, "pyk.kcovr.count_rules_covered", false]], "count_vars() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.count_vars", false]], "counterexample_info (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.counterexample_info", false]], "cover() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.cover", false]], "covered (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.covered", false]], "covers (kcfg.split property)": [[32, "pyk.kcfg.kcfg.KCFG.Split.covers", false]], "covers() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.covers", false]], "create() (koreheader static method)": [[46, "pyk.kllvm.hints.prooftrace.KoreHeader.create", false]], "create_cover() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.create_cover", false]], "create_cover_map() (in module pyk.kcovr)": [[37, "pyk.kcovr.create_cover_map", false]], "create_edge() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.create_edge", false]], "create_ndbranch() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.create_ndbranch", false]], "create_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.create_node", false]], "create_rule_map() (in module pyk.kcovr)": [[37, "pyk.kcovr.create_rule_map", false]], "create_rule_map_by_file() (in module pyk.kcovr)": [[37, "pyk.kcovr.create_rule_map_by_file", false]], "create_rule_map_by_line() (in module pyk.kcovr)": [[37, "pyk.kcovr.create_rule_map_by_line", false]], "create_split() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.create_split", false]], "create_temp() (kbuildenv static method)": [[26, "pyk.kbuild.kbuild.KBuildEnv.create_temp", false]], "crimson (color attribute)": [[9, "pyk.kast.color.Color.CRIMSON", false]], "css_path (kcfgviewer attribute)": [[36, "pyk.kcfg.tui.KCFGViewer.CSS_PATH", false]], "csubst (aprproofsubsumeresult attribute)": [[89, "pyk.proof.reachability.APRProofSubsumeResult.csubst", false]], "csubst (class in pyk.cterm.cterm)": [[4, "pyk.cterm.cterm.CSubst", false]], "csubst (ctermimplies attribute)": [[5, "pyk.cterm.symbolic.CTermImplies.csubst", false]], "csubst (impliesproof attribute)": [[87, "pyk.proof.implies.ImpliesProof.csubst", false]], "csubst (impliesproofresult attribute)": [[87, "pyk.proof.implies.ImpliesProofResult.csubst", false]], "csubst (kcfg.cover attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.csubst", false]], "cterm (abstract attribute)": [[32, "pyk.kcfg.kcfg.Abstract.cterm", false]], "cterm (class in pyk.cterm.cterm)": [[4, "pyk.cterm.cterm.CTerm", false]], "cterm (kcfg.node attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Node.cterm", false]], "cterm (step attribute)": [[32, "pyk.kcfg.kcfg.Step.cterm", false]], "cterm_build_claim() (in module pyk.cterm.cterm)": [[4, "pyk.cterm.cterm.cterm_build_claim", false]], "cterm_build_rule() (in module pyk.cterm.cterm)": [[4, "pyk.cterm.cterm.cterm_build_rule", false]], "cterm_symbolic (kcfgexplore attribute)": [[31, "pyk.kcfg.explore.KCFGExplore.cterm_symbolic", false]], "cterm_symbolic() (in module pyk.cterm.symbolic)": [[5, "pyk.cterm.symbolic.cterm_symbolic", false]], "ctermexecute (class in pyk.cterm.symbolic)": [[5, "pyk.cterm.symbolic.CTermExecute", false]], "ctermimplies (class in pyk.cterm.symbolic)": [[5, "pyk.cterm.symbolic.CTermImplies", false]], "cterms (ndbranch attribute)": [[32, "pyk.kcfg.kcfg.NDBranch.cterms", false]], "ctermsmterror": [[5, "pyk.cterm.symbolic.CTermSMTError", false]], "ctermsymbolic (class in pyk.cterm.symbolic)": [[5, "pyk.cterm.symbolic.CTermSymbolic", false]], "ctor_patterns (assoc property)": [[63, "pyk.kore.syntax.Assoc.ctor_patterns", false]], "ctor_patterns (dv property)": [[63, "pyk.kore.syntax.DV.ctor_patterns", false]], "ctor_patterns (mlfixpoint property)": [[63, "pyk.kore.syntax.MLFixpoint.ctor_patterns", false]], "ctor_patterns (mlpattern property)": [[63, "pyk.kore.syntax.MLPattern.ctor_patterns", false]], "ctor_patterns (mlquant property)": [[63, "pyk.kore.syntax.MLQuant.ctor_patterns", false]], "custom (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.Custom", false]], "custom_step() (defaultsemantics method)": [[33, "pyk.kcfg.semantics.DefaultSemantics.custom_step", false]], "custom_step() (kcfgsemantics method)": [[33, "pyk.kcfg.semantics.KCFGSemantics.custom_step", false]], "cut (step attribute)": [[32, "pyk.kcfg.kcfg.Step.cut", false]], "cut_point_rule (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.CUT_POINT_RULE", false]], "cut_point_rules (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.cut_point_rules", false]], "cutpointresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.CutPointResult", false]], "cwd() (in module pyk.kdist.utils)": [[40, "pyk.kdist.utils.cwd", false]], "cyan (color attribute)": [[9, "pyk.kast.color.Color.CYAN", false]], "dandelion (color attribute)": [[9, "pyk.kast.color.Color.DANDELION", false]], "dark_blue (color attribute)": [[9, "pyk.kast.color.Color.DARK_BLUE", false]], "dark_cyan (color attribute)": [[9, "pyk.kast.color.Color.DARK_CYAN", false]], "dark_goldenrod (color attribute)": [[9, "pyk.kast.color.Color.DARK_GOLDENROD", false]], "dark_gray (color attribute)": [[9, "pyk.kast.color.Color.DARK_GRAY", false]], "dark_green (color attribute)": [[9, "pyk.kast.color.Color.DARK_GREEN", false]], "dark_grey (color attribute)": [[9, "pyk.kast.color.Color.DARK_GREY", false]], "dark_khaki (color attribute)": [[9, "pyk.kast.color.Color.DARK_KHAKI", false]], "dark_magenta (color attribute)": [[9, "pyk.kast.color.Color.DARK_MAGENTA", false]], "dark_olive_green (color attribute)": [[9, "pyk.kast.color.Color.DARK_OLIVE_GREEN", false]], "dark_orange (color attribute)": [[9, "pyk.kast.color.Color.DARK_ORANGE", false]], "dark_orchid (color attribute)": [[9, "pyk.kast.color.Color.DARK_ORCHID", false]], "dark_red (color attribute)": [[9, "pyk.kast.color.Color.DARK_RED", false]], "dark_salmon (color attribute)": [[9, "pyk.kast.color.Color.DARK_SALMON", false]], "dark_sea_green (color attribute)": [[9, "pyk.kast.color.Color.DARK_SEA_GREEN", false]], "dark_slate_blue (color attribute)": [[9, "pyk.kast.color.Color.DARK_SLATE_BLUE", false]], "dark_slate_gray (color attribute)": [[9, "pyk.kast.color.Color.DARK_SLATE_GRAY", false]], "dark_slate_grey (color attribute)": [[9, "pyk.kast.color.Color.DARK_SLATE_GREY", false]], "dark_turquoise (color attribute)": [[9, "pyk.kast.color.Color.DARK_TURQUOISE", false]], "dark_violet (color attribute)": [[9, "pyk.kast.color.Color.DARK_VIOLET", false]], "darkgray (color attribute)": [[9, "pyk.kast.color.Color.DARKGRAY", false]], "data (defaulterror attribute)": [[62, "pyk.kore.rpc.DefaultError.data", false]], "dcoloneq (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.DCOLONEQ", false]], "debug_applied_rewrite_rules (haskelllogentry attribute)": [[66, "pyk.kore_exec_covr.kore_exec_covr.HaskellLogEntry.DEBUG_APPLIED_REWRITE_RULES", false]], "debug_apply_equation (haskelllogentry attribute)": [[66, "pyk.kore_exec_covr.kore_exec_covr.HaskellLogEntry.DEBUG_APPLY_EQUATION", false]], "decl (syntaxdecl attribute)": [[19, "pyk.kast.outer_syntax.SyntaxDecl.decl", false]], "decl (syntaxdefn attribute)": [[19, "pyk.kast.outer_syntax.SyntaxDefn.decl", false]], "deconstruct_short_hash() (in module pyk.utils)": [[94, "pyk.utils.deconstruct_short_hash", false]], "deep_pink (color attribute)": [[9, "pyk.kast.color.Color.DEEP_PINK", false]], "deep_sky_blue (color attribute)": [[9, "pyk.kast.color.Color.DEEP_SKY_BLUE", false]], "default (state attribute)": [[13, "pyk.kast.lexer.State.DEFAULT", false], [17, "pyk.kast.outer_lexer.State.DEFAULT", false]], "default_format (kproduction property)": [[16, "pyk.kast.outer.KProduction.default_format", false]], "defaulterror": [[62, "pyk.kore.rpc.DefaultError", false]], "defaultsemantics (class in pyk.kcfg.semantics)": [[33, "pyk.kcfg.semantics.DefaultSemantics", false]], "definition (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Definition", false]], "definition (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Definition", false]], "definition (formatter attribute)": [[10, "pyk.kast.formatter.Formatter.definition", false]], "definition (kprint property)": [[73, "pyk.ktool.kprint.KPrint.definition", false]], "definition (prettyprinter attribute)": [[21, "pyk.kast.pretty.PrettyPrinter.definition", false]], "definition() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.definition", false]], "definition() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.definition", false]], "definition_dir (kinterpreter attribute)": [[68, "pyk.krepl.repl.KInterpreter.definition_dir", false]], "definition_dir (kprint attribute)": [[73, "pyk.ktool.kprint.KPrint.definition_dir", false]], "definition_dir (kstate attribute)": [[68, "pyk.krepl.repl.KState.definition_dir", false]], "definition_dir() (kbuild method)": [[26, "pyk.kbuild.kbuild.KBuild.definition_dir", false]], "definition_hash (kprint property)": [[73, "pyk.ktool.kprint.KPrint.definition_hash", false]], "definition_to_llvm() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.definition_to_llvm", false]], "dependencies (kclaim property)": [[16, "pyk.kast.outer.KClaim.dependencies", false]], "dependencies (project attribute)": [[27, "pyk.kbuild.project.Project.dependencies", false]], "dependencies_module_name (aprproof property)": [[89, "pyk.proof.reachability.APRProof.dependencies_module_name", false]], "depends (atts attribute)": [[8, "pyk.kast.att.Atts.DEPENDS", false]], "deps() (target method)": [[39, "pyk.kdist.api.Target.deps", false]], "depth (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.depth", false]], "depth (branchingresult attribute)": [[62, "pyk.kore.rpc.BranchingResult.depth", false]], "depth (ctermexecute attribute)": [[5, "pyk.cterm.symbolic.CTermExecute.depth", false]], "depth (cutpointresult attribute)": [[62, "pyk.kore.rpc.CutPointResult.depth", false]], "depth (depthboundresult attribute)": [[62, "pyk.kore.rpc.DepthBoundResult.depth", false]], "depth (executeresult attribute)": [[62, "pyk.kore.rpc.ExecuteResult.depth", false]], "depth (kcfg.edge attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.depth", false]], "depth (step attribute)": [[32, "pyk.kcfg.kcfg.Step.depth", false]], "depth (stuckresult attribute)": [[62, "pyk.kore.rpc.StuckResult.depth", false]], "depth (terminalresult attribute)": [[62, "pyk.kore.rpc.TerminalResult.depth", false]], "depth (timeoutresult attribute)": [[62, "pyk.kore.rpc.TimeoutResult.depth", false]], "depth (vacuousresult attribute)": [[62, "pyk.kore.rpc.VacuousResult.depth", false]], "depth_bound (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.DEPTH_BOUND", false]], "depthboundresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.DepthBoundResult", false]], "dequote_bytes() (in module pyk.dequote)": [[6, "pyk.dequote.dequote_bytes", false]], "dequote_string() (in module pyk.dequote)": [[6, "pyk.dequote.dequote_string", false]], "dequoted() (in module pyk.dequote)": [[6, "pyk.dequote.dequoted", false]], "description() (httptransport method)": [[62, "pyk.kore.rpc.HttpTransport.description", false]], "description() (singlesockettransport method)": [[62, "pyk.kore.rpc.SingleSocketTransport.description", false]], "description() (transport method)": [[62, "pyk.kore.rpc.Transport.description", false]], "deserialize() (runtime method)": [[51, "pyk.kllvm.runtime.Runtime.deserialize", false]], "dict (aprproof property)": [[89, "pyk.proof.reachability.APRProof.dict", false]], "dict (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.dict", false]], "dict (impliesproof property)": [[87, "pyk.proof.implies.ImpliesProof.dict", false]], "dict (pattern property)": [[63, "pyk.kore.syntax.Pattern.dict", false]], "dict (proof property)": [[88, "pyk.proof.proof.Proof.dict", false]], "dict (refutationproof property)": [[87, "pyk.proof.implies.RefutationProof.dict", false]], "dict (sort property)": [[63, "pyk.kore.syntax.Sort.dict", false]], "dict (sortapp property)": [[63, "pyk.kore.syntax.SortApp.dict", false]], "dict (sortvar property)": [[63, "pyk.kore.syntax.SortVar.dict", false]], "digest (atts attribute)": [[8, "pyk.kast.att.Atts.DIGEST", false]], "digest (proof property)": [[88, "pyk.proof.proof.Proof.digest", false]], "dim_gray (color attribute)": [[9, "pyk.kast.color.Color.DIM_GRAY", false]], "dim_grey (color attribute)": [[9, "pyk.kast.color.Color.DIM_GREY", false]], "direct_subproof_rules (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.direct_subproof_rules", false]], "dirty (kversion.git attribute)": [[28, "pyk.kbuild.utils.KVersion.Git.dirty", false]], "discard() (katt method)": [[8, "pyk.kast.att.KAtt.discard", false]], "discard_attr() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.discard_attr", false]], "discard_attr() (kcfg.node method)": [[32, "pyk.kcfg.kcfg.KCFG.Node.discard_attr", false]], "discard_stuck() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.discard_stuck", false]], "discard_vacuous() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.discard_vacuous", false]], "divint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.divInt", false]], "do_load() (baserepl method)": [[68, "pyk.krepl.repl.BaseRepl.do_load", false]], "do_load() (krepl method)": [[68, "pyk.krepl.repl.KRepl.do_load", false]], "do_show() (baserepl method)": [[68, "pyk.krepl.repl.BaseRepl.do_show", false]], "do_step() (baserepl method)": [[68, "pyk.krepl.repl.BaseRepl.do_step", false]], "dodger_blue (color attribute)": [[9, "pyk.kast.color.Color.DODGER_BLUE", false]], "dot() (aprproofshow method)": [[90, "pyk.proof.show.APRProofShow.dot", false]], "dot() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.dot", false]], "dotk (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.DOTK", false]], "dotklist (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.DOTKLIST", false]], "drop_source() (katt method)": [[8, "pyk.kast.att.KAtt.drop_source", false]], "dump() (aprproofshow method)": [[90, "pyk.proof.show.APRProofShow.dump", false]], "dump() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.dump", false]], "duplicatemoduleerror": [[62, "pyk.kore.rpc.DuplicateModuleError", false]], "dv (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.DV", false]], "dv() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.dv", false]], "dv() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.dv", false]], "edge() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.edge", false]], "edge_likes() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.edge_likes", false]], "edges (kcfg.ndbranch property)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.edges", false]], "edges() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.edges", false]], "elem_var() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.elem_var", false]], "element (atts attribute)": [[8, "pyk.kast.att.Atts.ELEMENT", false]], "emerald (color attribute)": [[9, "pyk.kast.color.Color.EMERALD", false]], "empty_config() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.empty_config", false]], "enquote_bytes() (in module pyk.dequote)": [[6, "pyk.dequote.enquote_bytes", false]], "enquote_string() (in module pyk.dequote)": [[6, "pyk.dequote.enquote_string", false]], "enquoted() (in module pyk.dequote)": [[6, "pyk.dequote.enquoted", false]], "ensure_dir_path() (in module pyk.utils)": [[94, "pyk.utils.ensure_dir_path", false]], "ensures (kclaim attribute)": [[16, "pyk.kast.outer.KClaim.ensures", false]], "ensures (krule attribute)": [[16, "pyk.kast.outer.KRule.ensures", false]], "ensures (krulelike attribute)": [[16, "pyk.kast.outer.KRuleLike.ensures", false]], "entries() (katt method)": [[8, "pyk.kast.att.KAtt.entries", false]], "eof (koreparser property)": [[59, "pyk.kore.parser.KoreParser.eof", false]], "eof (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.EOF", false], [17, "pyk.kast.outer_lexer.TokenType.EOF", false], [56, "pyk.kore.lexer.TokenType.EOF", false]], "eof() (kastparser method)": [[20, "pyk.kast.parser.KAstParser.eof", false]], "eq (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.EQ", false]], "eq_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.eq_bool", false]], "eq_int() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.eq_int", false]], "eqint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.eqInt", false]], "equality (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.equality", false]], "equalityproof (class in pyk.proof.implies)": [[87, "pyk.proof.implies.EqualityProof", false]], "equalitysummary (class in pyk.proof.implies)": [[87, "pyk.proof.implies.EqualitySummary", false]], "equals (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Equals", false]], "equals() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.equals", false]], "error (implicationerror attribute)": [[62, "pyk.kore.rpc.ImplicationError.error", false]], "error (invalidmoduleerror attribute)": [[62, "pyk.kore.rpc.InvalidModuleError.error", false]], "error (parseerror attribute)": [[62, "pyk.kore.rpc.ParseError.error", false]], "error (patternerror attribute)": [[62, "pyk.kore.rpc.PatternError.error", false]], "error (smtsolvererror attribute)": [[62, "pyk.kore.rpc.SmtSolverError.error", false]], "error_info (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.error_info", false]], "eucliddivint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.euclidDivInt", false]], "euclidmodint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.euclidModInt", false]], "eval() (and method)": [[15, "pyk.kast.markdown.And.eval", false]], "eval() (atom method)": [[15, "pyk.kast.markdown.Atom.eval", false]], "eval() (not method)": [[15, "pyk.kast.markdown.Not.eval", false]], "eval() (or method)": [[15, "pyk.kast.markdown.Or.eval", false]], "eval() (selector method)": [[15, "pyk.kast.markdown.Selector.eval", false]], "evar (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.EVar", false]], "event (llvmeventannotated property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventAnnotated.event", false]], "exec_time (aprproof property)": [[89, "pyk.proof.reachability.APRProof.exec_time", false]], "execute() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.execute", false]], "execute() (koreclient method)": [[62, "pyk.kore.rpc.KoreClient.execute", false]], "execute_depth (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.execute_depth", false]], "executeresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.ExecuteResult", false]], "exists (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Exists", false]], "exists() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.exists", false]], "exit_with_process_error() (in module pyk.utils)": [[94, "pyk.utils.exit_with_process_error", false]], "expint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.expInt", false]], "explorable (kcfgexploration property)": [[30, "pyk.kcfg.exploration.KCFGExploration.explorable", false]], "expmodint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.expModInt", false]], "extend() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.extend", false]], "extend_cterm() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.extend_cterm", false]], "extend_result (aprproofextendresult attribute)": [[89, "pyk.proof.reachability.APRProofExtendResult.extend_result", false]], "extract_cells() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.extract_cells", false]], "extract_lhs() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.extract_lhs", false]], "extract_rhs() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.extract_rhs", false]], "extract_subst() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.extract_subst", false]], "failed (proof property)": [[88, "pyk.proof.proof.Proof.failed", false]], "failed (proofstatus attribute)": [[88, "pyk.proof.proof.ProofStatus.FAILED", false]], "failing (aprproof property)": [[89, "pyk.proof.reachability.APRProof.failing", false]], "failing (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.failing", false]], "failing_cells (ctermimplies attribute)": [[5, "pyk.cterm.symbolic.CTermImplies.failing_cells", false]], "failing_nodes (aprfailureinfo attribute)": [[89, "pyk.proof.reachability.APRFailureInfo.failing_nodes", false]], "failure_info (proof attribute)": [[88, "pyk.proof.proof.Proof.failure_info", false]], "failure_info() (aprprover method)": [[89, "pyk.proof.reachability.APRProver.failure_info", false]], "failure_info() (impliesprover method)": [[87, "pyk.proof.implies.ImpliesProver.failure_info", false]], "failure_info() (prover method)": [[88, "pyk.proof.proof.Prover.failure_info", false]], "failure_reasons (aprfailureinfo attribute)": [[89, "pyk.proof.reachability.APRFailureInfo.failure_reasons", false]], "failureinfo (class in pyk.proof.proof)": [[88, "pyk.proof.proof.FailureInfo", false]], "fallback_on (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.fallback_on", false]], "fallbackreason (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.FallbackReason", false]], "fast_check_subsumption (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.fast_check_subsumption", false]], "fetch_subproof() (proof method)": [[88, "pyk.proof.proof.Proof.fetch_subproof", false]], "fetch_subproof_data() (proof method)": [[88, "pyk.proof.proof.Proof.fetch_subproof_data", false]], "files_for_path() (in module pyk.kdist.utils)": [[40, "pyk.kdist.utils.files_for_path", false]], "filter_none() (in module pyk.utils)": [[94, "pyk.utils.filter_none", false]], "find_common_items() (in module pyk.utils)": [[94, "pyk.utils.find_common_items", false]], "find_file_upwards() (in module pyk.kbuild.utils)": [[28, "pyk.kbuild.utils.find_file_upwards", false]], "fire_brick (color attribute)": [[9, "pyk.kast.color.Color.FIRE_BRICK", false]], "flatten_label() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.flatten_label", false]], "floor (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Floor", false]], "floor() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.floor", false]], "floral_white (color attribute)": [[9, "pyk.kast.color.Color.FLORAL_WHITE", false]], "for_definition() (kompiledkore static method)": [[55, "pyk.kore.kompiled.KompiledKore.for_definition", false]], "for_definition() (koresorttable static method)": [[55, "pyk.kore.kompiled.KoreSortTable.for_definition", false]], "for_definition() (koresymboltable static method)": [[55, "pyk.kore.kompiled.KoreSymbolTable.for_definition", false]], "forall (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Forall", false]], "forall() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.forall", false]], "forest_green (color attribute)": [[9, "pyk.kast.color.Color.FOREST_GREEN", false]], "format (atts attribute)": [[8, "pyk.kast.att.Atts.FORMAT", false]], "format (class in pyk.kast.att)": [[8, "pyk.kast.att.Format", false]], "format() (formatter method)": [[10, "pyk.kast.formatter.Formatter.format", false]], "formatted_exec_time (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.formatted_exec_time", false]], "formatted_exec_time() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.formatted_exec_time", false]], "formatter (class in pyk.kast.formatter)": [[10, "pyk.kast.formatter.Formatter", false]], "formattype (class in pyk.kast.att)": [[8, "pyk.kast.att.FormatType", false]], "free_occs() (in module pyk.kore.manip)": [[57, "pyk.kore.manip.free_occs", false]], "free_vars (cterm property)": [[4, "pyk.cterm.cterm.CTerm.free_vars", false]], "free_vars (kcfg.node property)": [[32, "pyk.kcfg.kcfg.KCFG.Node.free_vars", false]], "free_vars() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.free_vars", false]], "fresh_generator (atts attribute)": [[8, "pyk.kast.att.Atts.FRESH_GENERATOR", false]], "from_claim() (aprproof static method)": [[89, "pyk.proof.reachability.APRProof.from_claim", false]], "from_claim() (equalityproof static method)": [[87, "pyk.proof.implies.EqualityProof.from_claim", false]], "from_claim() (kcfg static method)": [[32, "pyk.kcfg.kcfg.KCFG.from_claim", false]], "from_dict() (abortedresult class method)": [[62, "pyk.kore.rpc.AbortedResult.from_dict", false]], "from_dict() (anytype method)": [[8, "pyk.kast.att.AnyType.from_dict", false]], "from_dict() (aprproof class method)": [[89, "pyk.proof.reachability.APRProof.from_dict", false]], "from_dict() (atttype method)": [[8, "pyk.kast.att.AttType.from_dict", false]], "from_dict() (branchingresult class method)": [[62, "pyk.kore.rpc.BranchingResult.from_dict", false]], "from_dict() (colorstype method)": [[8, "pyk.kast.att.ColorsType.from_dict", false]], "from_dict() (colortype method)": [[8, "pyk.kast.att.ColorType.from_dict", false]], "from_dict() (csubst static method)": [[4, "pyk.cterm.cterm.CSubst.from_dict", false]], "from_dict() (cterm static method)": [[4, "pyk.cterm.cterm.CTerm.from_dict", false]], "from_dict() (cutpointresult class method)": [[62, "pyk.kore.rpc.CutPointResult.from_dict", false]], "from_dict() (depthboundresult class method)": [[62, "pyk.kore.rpc.DepthBoundResult.from_dict", false]], "from_dict() (equalityproof class method)": [[87, "pyk.proof.implies.EqualityProof.from_dict", false]], "from_dict() (executeresult class method)": [[62, "pyk.kore.rpc.ExecuteResult.from_dict", false]], "from_dict() (formattype method)": [[8, "pyk.kast.att.FormatType.from_dict", false]], "from_dict() (getmodelresult static method)": [[62, "pyk.kore.rpc.GetModelResult.from_dict", false]], "from_dict() (impliesproof class method)": [[87, "pyk.proof.implies.ImpliesProof.from_dict", false]], "from_dict() (impliesresult static method)": [[62, "pyk.kore.rpc.ImpliesResult.from_dict", false]], "from_dict() (inttype method)": [[8, "pyk.kast.att.IntType.from_dict", false]], "from_dict() (katt class method)": [[8, "pyk.kast.att.KAtt.from_dict", false]], "from_dict() (kcfg static method)": [[32, "pyk.kcfg.kcfg.KCFG.from_dict", false]], "from_dict() (kcfg.cover static method)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.from_dict", false]], "from_dict() (kcfg.edge static method)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.from_dict", false]], "from_dict() (kcfg.ndbranch static method)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.from_dict", false]], "from_dict() (kcfg.node static method)": [[32, "pyk.kcfg.kcfg.KCFG.Node.from_dict", false]], "from_dict() (kcfg.split static method)": [[32, "pyk.kcfg.kcfg.KCFG.Split.from_dict", false]], "from_dict() (kcfg.successor static method)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.from_dict", false]], "from_dict() (kcfgexploration static method)": [[30, "pyk.kcfg.exploration.KCFGExploration.from_dict", false]], "from_dict() (kdefinition static method)": [[16, "pyk.kast.outer.KDefinition.from_dict", false]], "from_dict() (kflatmodule static method)": [[16, "pyk.kast.outer.KFlatModule.from_dict", false]], "from_dict() (kflatmodulelist static method)": [[16, "pyk.kast.outer.KFlatModuleList.from_dict", false]], "from_dict() (kimport static method)": [[16, "pyk.kast.outer.KImport.from_dict", false]], "from_dict() (kinner static method)": [[11, "pyk.kast.inner.KInner.from_dict", false]], "from_dict() (klabel static method)": [[11, "pyk.kast.inner.KLabel.from_dict", false]], "from_dict() (kompiledkore static method)": [[55, "pyk.kore.kompiled.KompiledKore.from_dict", false]], "from_dict() (kproductionitem static method)": [[16, "pyk.kast.outer.KProductionItem.from_dict", false]], "from_dict() (krequire static method)": [[16, "pyk.kast.outer.KRequire.from_dict", false]], "from_dict() (ksentence static method)": [[16, "pyk.kast.outer.KSentence.from_dict", false]], "from_dict() (ksort static method)": [[11, "pyk.kast.inner.KSort.from_dict", false]], "from_dict() (locationtype method)": [[8, "pyk.kast.att.LocationType.from_dict", false]], "from_dict() (logentry class method)": [[62, "pyk.kore.rpc.LogEntry.from_dict", false]], "from_dict() (logrewrite class method)": [[62, "pyk.kore.rpc.LogRewrite.from_dict", false]], "from_dict() (logtiming class method)": [[62, "pyk.kore.rpc.LogTiming.from_dict", false]], "from_dict() (nonetype method)": [[8, "pyk.kast.att.NoneType.from_dict", false]], "from_dict() (optionaltype method)": [[8, "pyk.kast.att.OptionalType.from_dict", false]], "from_dict() (pathtype method)": [[8, "pyk.kast.att.PathType.from_dict", false]], "from_dict() (pattern static method)": [[63, "pyk.kore.syntax.Pattern.from_dict", false]], "from_dict() (proof class method)": [[88, "pyk.proof.proof.Proof.from_dict", false]], "from_dict() (refutationproof class method)": [[87, "pyk.proof.implies.RefutationProof.from_dict", false]], "from_dict() (rewritefailure class method)": [[62, "pyk.kore.rpc.RewriteFailure.from_dict", false]], "from_dict() (rewriteresult class method)": [[62, "pyk.kore.rpc.RewriteResult.from_dict", false]], "from_dict() (rewritesuccess class method)": [[62, "pyk.kore.rpc.RewriteSuccess.from_dict", false]], "from_dict() (sort static method)": [[63, "pyk.kore.syntax.Sort.from_dict", false]], "from_dict() (source static method)": [[27, "pyk.kbuild.project.Source.from_dict", false]], "from_dict() (state static method)": [[62, "pyk.kore.rpc.State.from_dict", false]], "from_dict() (strtype method)": [[8, "pyk.kast.att.StrType.from_dict", false]], "from_dict() (stuckresult class method)": [[62, "pyk.kore.rpc.StuckResult.from_dict", false]], "from_dict() (subst static method)": [[11, "pyk.kast.inner.Subst.from_dict", false]], "from_dict() (terminalresult class method)": [[62, "pyk.kore.rpc.TerminalResult.from_dict", false]], "from_dict() (timeoutresult class method)": [[62, "pyk.kore.rpc.TimeoutResult.from_dict", false]], "from_dict() (vacuousresult class method)": [[62, "pyk.kore.rpc.VacuousResult.from_dict", false]], "from_file() (llvmrewritetraceiterator static method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator.from_file", false]], "from_json() (kcfg static method)": [[32, "pyk.kcfg.kcfg.KCFG.from_json", false]], "from_json() (kinner static method)": [[11, "pyk.kast.inner.KInner.from_json", false]], "from_json() (pattern static method)": [[63, "pyk.kore.syntax.Pattern.from_json", false]], "from_json() (sort static method)": [[63, "pyk.kore.syntax.Sort.from_json", false]], "from_kast() (cterm static method)": [[4, "pyk.cterm.cterm.CTerm.from_kast", false]], "from_module_list() (claimindex static method)": [[70, "pyk.ktool.claim_index.ClaimIndex.from_module_list", false]], "from_pred() (subst static method)": [[11, "pyk.kast.inner.Subst.from_pred", false]], "from_proof() (aprfailureinfo static method)": [[89, "pyk.proof.reachability.APRFailureInfo.from_proof", false]], "from_spec_modules() (aprproof static method)": [[89, "pyk.proof.reachability.APRProof.from_spec_modules", false]], "frozendict (class in pyk.utils)": [[94, "pyk.utils.FrozenDict", false]], "fuchsia (color attribute)": [[9, "pyk.kast.color.Color.FUCHSIA", false]], "full_name (targetid property)": [[39, "pyk.kdist.api.TargetId.full_name", false]], "full_printer (nodeprinter attribute)": [[34, "pyk.kcfg.show.NodePrinter.full_printer", false]], "function (atts attribute)": [[8, "pyk.kast.att.Atts.FUNCTION", false]], "functional (atts attribute)": [[8, "pyk.kast.att.Atts.FUNCTIONAL", false]], "functions (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.functions", false]], "functions (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.functions", false]], "fuzz() (in module pyk.ktool.kfuzz)": [[71, "pyk.ktool.kfuzz.fuzz", false]], "gainsboro (color attribute)": [[9, "pyk.kast.color.Color.GAINSBORO", false]], "ge_int() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.ge_int", false]], "geint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.geInt", false]], "gen_file_timestamp() (in module pyk.utils)": [[94, "pyk.utils.gen_file_timestamp", false]], "gen_glr_parser() (in module pyk.ktool.kprint)": [[73, "pyk.ktool.kprint.gen_glr_parser", false]], "generate_hints() (in module pyk.kllvm.compiler)": [[43, "pyk.kllvm.compiler.generate_hints", false]], "generated_counter() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.generated_counter", false]], "generated_top() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.generated_top", false]], "get() (katt method)": [[8, "pyk.kast.att.KAtt.get", false]], "get_axiom_by_ordinal() (definition method)": [[63, "pyk.kore.syntax.Definition.get_axiom_by_ordinal", false]], "get_claim_index() (kprove method)": [[74, "pyk.ktool.kprove.KProve.get_claim_index", false]], "get_claim_modules() (kprove method)": [[74, "pyk.ktool.kprove.KProve.get_claim_modules", false]], "get_claims() (kprove method)": [[74, "pyk.ktool.kprove.KProve.get_claims", false]], "get_kllvm() (in module pyk.kllvm.load_static)": [[49, "pyk.kllvm.load_static.get_kllvm", false]], "get_model() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.get_model", false]], "get_model() (koreclient method)": [[62, "pyk.kore.rpc.KoreClient.get_model", false]], "get_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.get_node", false]], "get_refutation_id() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.get_refutation_id", false]], "get_requires() (in module pyk.kllvm.utils)": [[52, "pyk.kllvm.utils.get_requires", false]], "get_rule_by_id() (in module pyk.coverage)": [[2, "pyk.coverage.get_rule_by_id", false]], "get_steps() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.get_steps", false]], "get_steps() (impliesproof method)": [[87, "pyk.proof.implies.ImpliesProof.get_steps", false]], "get_steps() (proof method)": [[88, "pyk.proof.proof.Proof.get_steps", false]], "get_target() (project method)": [[27, "pyk.kbuild.project.Project.get_target", false]], "getmodelresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.GetModelResult", false]], "ghost_white (color attribute)": [[9, "pyk.kast.color.Color.GHOST_WHITE", false]], "git (kversion attribute)": [[28, "pyk.kbuild.utils.KVersion.git", false]], "gold (color attribute)": [[9, "pyk.kast.color.Color.GOLD", false]], "goldenrod (color attribute)": [[9, "pyk.kast.color.Color.GOLDENROD", false]], "graphchunk (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.GraphChunk", false]], "graphchunk.selected (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.GraphChunk.Selected", false]], "gray (color attribute)": [[9, "pyk.kast.color.Color.GRAY", false]], "greatest_common_subsort() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.greatest_common_subsort", false]], "green (color attribute)": [[9, "pyk.kast.color.Color.GREEN", false]], "green_yellow (color attribute)": [[9, "pyk.kast.color.Color.GREEN_YELLOW", false]], "grey (color attribute)": [[9, "pyk.kast.color.Color.GREY", false]], "group (atts attribute)": [[8, "pyk.kast.att.Atts.GROUP", false]], "groups (syntaxpriority attribute)": [[19, "pyk.kast.outer_syntax.SyntaxPriority.groups", false]], "gt (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.GT", false]], "gt_int() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.gt_int", false]], "gtint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.gtInt", false]], "handler_name (behaviorview.selected attribute)": [[36, "pyk.kcfg.tui.BehaviorView.Selected.handler_name", false]], "handler_name (graphchunk.selected attribute)": [[36, "pyk.kcfg.tui.GraphChunk.Selected.handler_name", false]], "handler_name (navwidget.selected attribute)": [[36, "pyk.kcfg.tui.NavWidget.Selected.handler_name", false]], "has_domain_values (atts attribute)": [[8, "pyk.kast.att.Atts.HAS_DOMAIN_VALUES", false]], "hash (cterm property)": [[4, "pyk.cterm.cterm.CTerm.hash", false]], "hash (kast property)": [[12, "pyk.kast.kast.KAst.hash", false]], "hash_file() (in module pyk.utils)": [[94, "pyk.utils.hash_file", false]], "hash_str() (in module pyk.utils)": [[94, "pyk.utils.hash_str", false]], "haskell (pykbackend attribute)": [[72, "pyk.ktool.kompile.PykBackend.HASKELL", false]], "haskell_log_entries (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.haskell_log_entries", false]], "haskell_log_entries (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.haskell_log_entries", false]], "haskell_log_format (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.haskell_log_format", false]], "haskell_log_format (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.haskell_log_format", false]], "haskell_threads (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.haskell_threads", false]], "haskell_threads (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.haskell_threads", false]], "haskelllogentry (class in pyk.kore_exec_covr.kore_exec_covr)": [[66, "pyk.kore_exec_covr.kore_exec_covr.HaskellLogEntry", false]], "heuristic (branch attribute)": [[32, "pyk.kcfg.kcfg.Branch.heuristic", false]], "hide_cells() (kcfgshow static method)": [[34, "pyk.kcfg.show.KCFGShow.hide_cells", false]], "honeydew (color attribute)": [[9, "pyk.kast.color.Color.HONEYDEW", false]], "hook (atts attribute)": [[8, "pyk.kast.att.Atts.HOOK", false]], "hooked (sortdecl attribute)": [[63, "pyk.kore.syntax.SortDecl.hooked", false]], "hooked (symboldecl attribute)": [[63, "pyk.kore.syntax.SymbolDecl.hooked", false]], "hooked_sort_decl() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.hooked_sort_decl", false]], "hooked_symbol_decl() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.hooked_symbol_decl", false]], "host (koreserver property)": [[62, "pyk.kore.rpc.KoreServer.host", false]], "host (koreserverinfo attribute)": [[62, "pyk.kore.rpc.KoreServerInfo.host", false]], "hot_pink (color attribute)": [[9, "pyk.kast.color.Color.HOT_PINK", false]], "http (transporttype attribute)": [[62, "pyk.kore.rpc.TransportType.HTTP", false]], "httptransport (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.HttpTransport", false]], "id (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.id", false]], "id (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Id", false]], "id (equalitysummary attribute)": [[87, "pyk.proof.implies.EqualitySummary.id", false]], "id (kcfg.node attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Node.id", false]], "id (kcfgexplore attribute)": [[31, "pyk.kcfg.explore.KCFGExplore.id", false]], "id (proof attribute)": [[88, "pyk.proof.proof.Proof.id", false]], "id (proofsummary attribute)": [[88, "pyk.proof.proof.ProofSummary.id", false]], "id (refutationsummary attribute)": [[87, "pyk.proof.implies.RefutationSummary.id", false]], "id (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.ID", false], [56, "pyk.kore.lexer.TokenType.ID", false]], "id() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.id", false]], "id_lower (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.ID_LOWER", false]], "id_upper (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.ID_UPPER", false]], "idem (atts attribute)": [[8, "pyk.kast.att.Atts.IDEM", false]], "if_ktype() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.if_ktype", false]], "iff (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Iff", false]], "iff() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.iff", false]], "image (poset attribute)": [[94, "pyk.utils.POSet.image", false]], "implication (impliesresult attribute)": [[62, "pyk.kore.rpc.ImpliesResult.implication", false]], "implication_failure_reason() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.implication_failure_reason", false]], "implicationerror": [[62, "pyk.kore.rpc.ImplicationError", false]], "implies (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Implies", false]], "implies() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.implies", false]], "implies() (koreclient method)": [[62, "pyk.kore.rpc.KoreClient.implies", false]], "implies() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.implies", false]], "implies_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.implies_bool", false]], "impliesbool() (in module pyk.prelude.kbool)": [[81, "pyk.prelude.kbool.impliesBool", false]], "impliesproof (class in pyk.proof.implies)": [[87, "pyk.proof.implies.ImpliesProof", false]], "impliesproofresult (class in pyk.proof.implies)": [[87, "pyk.proof.implies.ImpliesProofResult", false]], "impliesproofstep (class in pyk.proof.implies)": [[87, "pyk.proof.implies.ImpliesProofStep", false]], "impliesprover (class in pyk.proof.implies)": [[87, "pyk.proof.implies.ImpliesProver", false]], "impliesresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.ImpliesResult", false]], "import (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Import", false]], "import (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Import", false]], "import_from_file() (in module pyk.kllvm.importer)": [[47, "pyk.kllvm.importer.import_from_file", false]], "import_kllvm() (in module pyk.kllvm.importer)": [[47, "pyk.kllvm.importer.import_kllvm", false]], "import_runtime() (in module pyk.kllvm.importer)": [[47, "pyk.kllvm.importer.import_runtime", false]], "imports (kflatmodule attribute)": [[16, "pyk.kast.outer.KFlatModule.imports", false]], "imports (module attribute)": [[19, "pyk.kast.outer_syntax.Module.imports", false]], "importt() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.importt", false]], "importt() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.importt", false]], "impure (atts attribute)": [[8, "pyk.kast.att.Atts.IMPURE", false]], "in (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.In", false]], "indent() (in module pyk.kast.pretty)": [[21, "pyk.kast.pretty.indent", false]], "index (atts attribute)": [[8, "pyk.kast.att.Atts.INDEX", false]], "indexed_rewrite() (in module pyk.kast.rewrite)": [[22, "pyk.kast.rewrite.indexed_rewrite", false]], "indian_red (color attribute)": [[9, "pyk.kast.color.Color.INDIAN_RED", false]], "indigo (color attribute)": [[9, "pyk.kast.color.Color.INDIGO", false]], "infer_sort() (koresymboltable method)": [[55, "pyk.kore.kompiled.KoreSymbolTable.infer_sort", false]], "info (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.Info", false]], "info (codeblock attribute)": [[15, "pyk.kast.markdown.CodeBlock.info", false]], "init (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.init", false]], "init_config() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.init_config", false]], "init_generated_top_cell() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.init_generated_top_cell", false]], "init_proof() (aprprover method)": [[89, "pyk.proof.reachability.APRProver.init_proof", false]], "init_proof() (impliesprover method)": [[87, "pyk.proof.implies.ImpliesProver.init_proof", false]], "init_proof() (prover method)": [[88, "pyk.proof.proof.Prover.init_proof", false]], "init_state() (interpreter method)": [[68, "pyk.krepl.repl.Interpreter.init_state", false]], "init_state() (kinterpreter method)": [[68, "pyk.krepl.repl.KInterpreter.init_state", false]], "initial_config (llvmrewritetrace property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.initial_config", false]], "initializer (atts attribute)": [[8, "pyk.kast.att.Atts.INITIALIZER", false]], "inj() (in module pyk.kore.match)": [[58, "pyk.kore.match.inj", false]], "inj() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.inj", false]], "inj() (in module pyk.prelude.k)": [[80, "pyk.prelude.k.inj", false]], "injective (atts attribute)": [[8, "pyk.kast.att.Atts.INJECTIVE", false]], "inline_cell_maps() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.inline_cell_maps", false]], "inn() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.inn", false]], "instantiate_cell_vars() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.instantiate_cell_vars", false]], "int_dv() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.int_dv", false]], "interim_simplification (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.interim_simplification", false]], "interpreter (baserepl attribute)": [[68, "pyk.krepl.repl.BaseRepl.interpreter", false]], "interpreter (class in pyk.krepl.repl)": [[68, "pyk.krepl.repl.Interpreter", false]], "intersperse() (in module pyk.utils)": [[94, "pyk.utils.intersperse", false]], "intro (krepl attribute)": [[68, "pyk.krepl.repl.KRepl.intro", false]], "inttoken() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.intToken", false]], "inttype (class in pyk.kast.att)": [[8, "pyk.kast.att.IntType", false]], "invalidmoduleerror": [[62, "pyk.kore.rpc.InvalidModuleError", false]], "is_anon_var() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.is_anon_var", false]], "is_bottom (cterm property)": [[4, "pyk.cterm.cterm.CTerm.is_bottom", false]], "is_bottom() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.is_bottom", false]], "is_bounded() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.is_bounded", false]], "is_cell (kapply property)": [[11, "pyk.kast.inner.KApply.is_cell", false]], "is_circularity (kclaim property)": [[16, "pyk.kast.outer.KClaim.is_circularity", false]], "is_covered() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_covered", false]], "is_explorable() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.is_explorable", false]], "is_failing() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.is_failing", false]], "is_hash() (in module pyk.utils)": [[94, "pyk.utils.is_hash", false]], "is_hexstring() (in module pyk.utils)": [[94, "pyk.utils.is_hexstring", false]], "is_identity (subst property)": [[11, "pyk.kast.inner.Subst.is_identity", false]], "is_init() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.is_init", false]], "is_initial_config (llvmeventtype property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventType.is_initial_config", false]], "is_kore_pattern() (llvmargument method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument.is_kore_pattern", false]], "is_leaf() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_leaf", false]], "is_ndbranch() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_ndbranch", false]], "is_pending() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.is_pending", false]], "is_pre_trace (llvmeventtype property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventType.is_pre_trace", false]], "is_prefix (kproduction property)": [[16, "pyk.kast.outer.KProduction.is_prefix", false]], "is_record (kproduction property)": [[16, "pyk.kast.outer.KProduction.is_record", false]], "is_refuted() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.is_refuted", false]], "is_relative_to() (in module pyk.utils)": [[94, "pyk.utils.is_relative_to", false]], "is_root() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_root", false]], "is_split() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_split", false]], "is_spurious_constraint() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.is_spurious_constraint", false]], "is_step_event() (llvmargument method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument.is_step_event", false]], "is_stuck() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_stuck", false]], "is_subsort() (koresorttable method)": [[55, "pyk.kore.kompiled.KoreSortTable.is_subsort", false]], "is_target() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.is_target", false]], "is_term_like() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.is_term_like", false]], "is_terminal() (defaultsemantics method)": [[33, "pyk.kcfg.semantics.DefaultSemantics.is_terminal", false]], "is_terminal() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.is_terminal", false]], "is_terminal() (kcfgsemantics method)": [[33, "pyk.kcfg.semantics.KCFGSemantics.is_terminal", false]], "is_top() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.is_top", false]], "is_trace (llvmeventtype property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventType.is_trace", false]], "is_trusted (kclaim property)": [[16, "pyk.kast.outer.KClaim.is_trusted", false]], "is_vacuous() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.is_vacuous", false]], "items (att attribute)": [[19, "pyk.kast.outer_syntax.Att.items", false]], "items (kproduction attribute)": [[16, "pyk.kast.outer.KProduction.items", false]], "items (ksequence attribute)": [[11, "pyk.kast.inner.KSequence.items", false]], "items (production attribute)": [[19, "pyk.kast.outer_syntax.Production.items", false]], "ivory (color attribute)": [[9, "pyk.kast.color.Color.IVORY", false]], "json (kastinput attribute)": [[73, "pyk.ktool.kprint.KAstInput.JSON", false]], "json (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.JSON", false]], "json (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.JSON", false]], "json (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.JSON", false]], "json (pattern property)": [[63, "pyk.kore.syntax.Pattern.json", false]], "json (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.JSON", false]], "json (proof property)": [[88, "pyk.proof.proof.Proof.json", false]], "json (sort property)": [[63, "pyk.kore.syntax.Sort.json", false]], "json2string() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.json2string", false]], "json_entry() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.json_entry", false]], "json_key() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.json_key", false]], "json_list() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.json_list", false]], "json_object() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.json_object", false]], "json_to_kore() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.json_to_kore", false]], "jsonrpcclient (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.JsonRpcClient", false]], "jsonrpcclientfacade (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.JsonRpcClientFacade", false]], "jsonrpcerror": [[62, "pyk.kore.rpc.JsonRpcError", false]], "jsons() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.jsons", false]], "jungle_green (color attribute)": [[9, "pyk.kast.color.Color.JUNGLE_GREEN", false]], "k() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.k", false]], "k() (kastparser method)": [[20, "pyk.kast.parser.KAstParser.k", false]], "k_config_var() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.k_config_var", false]], "k_version (kbuild property)": [[26, "pyk.kbuild.kbuild.KBuild.k_version", false]], "k_version() (in module pyk.kbuild.utils)": [[28, "pyk.kbuild.utils.k_version", false]], "kapply (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KApply", false]], "kas (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KAs", false]], "kassoc (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KAssoc", false]], "kast (class in pyk.kast.kast)": [[12, "pyk.kast.kast.KAst", false]], "kast (cterm property)": [[4, "pyk.cterm.cterm.CTerm.kast", false]], "kast (kastinput attribute)": [[73, "pyk.ktool.kprint.KAstInput.KAST", false]], "kast (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.KAST", false]], "kast (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.KAST", false]], "kast (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.KAST", false]], "kast (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.KAST", false]], "kast_simplify() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.kast_simplify", false]], "kast_term() (in module pyk.kast.kast)": [[12, "pyk.kast.kast.kast_term", false]], "kast_to_kore() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.kast_to_kore", false]], "kast_to_kore() (kprint method)": [[73, "pyk.ktool.kprint.KPrint.kast_to_kore", false]], "kastinput (class in pyk.ktool.kprint)": [[73, "pyk.ktool.kprint.KAstInput", false]], "kastoutput (class in pyk.ktool.kprint)": [[73, "pyk.ktool.kprint.KAstOutput", false]], "kastparser (class in pyk.kast.parser)": [[20, "pyk.kast.parser.KAstParser", false]], "katt (class in pyk.kast.att)": [[8, "pyk.kast.att.KAtt", false]], "kbubble (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KBubble", false]], "kbuild (class in pyk.kbuild.kbuild)": [[26, "pyk.kbuild.kbuild.KBuild", false]], "kbuildenv (class in pyk.kbuild.kbuild)": [[26, "pyk.kbuild.kbuild.KBuildEnv", false]], "kcfg (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG", false]], "kcfg (kcfgexploration attribute)": [[30, "pyk.kcfg.exploration.KCFGExploration.kcfg", false]], "kcfg.cover (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.Cover", false]], "kcfg.edge (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.Edge", false]], "kcfg.edgelike (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.EdgeLike", false]], "kcfg.multiedge (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.MultiEdge", false]], "kcfg.ndbranch (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch", false]], "kcfg.node (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.Node", false]], "kcfg.split (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.Split", false]], "kcfg.successor (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFG.Successor", false]], "kcfg_explore (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.kcfg_explore", false]], "kcfg_explore (impliesprover attribute)": [[87, "pyk.proof.implies.ImpliesProver.kcfg_explore", false]], "kcfg_json_path (kcfgstore property)": [[32, "pyk.kcfg.kcfg.KCFGStore.kcfg_json_path", false]], "kcfg_node_dir (kcfgstore property)": [[32, "pyk.kcfg.kcfg.KCFGStore.kcfg_node_dir", false]], "kcfg_node_path() (kcfgstore method)": [[32, "pyk.kcfg.kcfg.KCFGStore.kcfg_node_path", false]], "kcfg_semantics (kcfgexplore attribute)": [[31, "pyk.kcfg.explore.KCFGExplore.kcfg_semantics", false]], "kcfg_show (aprproofshow attribute)": [[90, "pyk.proof.show.APRProofShow.kcfg_show", false]], "kcfgexploration (class in pyk.kcfg.exploration)": [[30, "pyk.kcfg.exploration.KCFGExploration", false]], "kcfgexplorationnodeattr (class in pyk.kcfg.exploration)": [[30, "pyk.kcfg.exploration.KCFGExplorationNodeAttr", false]], "kcfgexplore (class in pyk.kcfg.explore)": [[31, "pyk.kcfg.explore.KCFGExplore", false]], "kcfgextendresult (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFGExtendResult", false]], "kcfgnodeattr (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFGNodeAttr", false]], "kcfgsemantics (class in pyk.kcfg.semantics)": [[33, "pyk.kcfg.semantics.KCFGSemantics", false]], "kcfgshow (class in pyk.kcfg.show)": [[34, "pyk.kcfg.show.KCFGShow", false]], "kcfgstore (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.KCFGStore", false]], "kcfgviewer (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.KCFGViewer", false]], "kclaim (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KClaim", false]], "kcontext (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KContext", false]], "kdefinition (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KDefinition", false]], "kdist_dir (kbuild attribute)": [[26, "pyk.kbuild.kbuild.KBuild.kdist_dir", false]], "key (attentry attribute)": [[8, "pyk.kast.att.AttEntry.key", false]], "keys() (atts class method)": [[8, "pyk.kast.att.Atts.keys", false]], "kflatmodule (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KFlatModule", false]], "kflatmodulelist (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KFlatModuleList", false]], "khaki (color attribute)": [[9, "pyk.kast.color.Color.KHAKI", false]], "kimport (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KImport", false]], "kinner (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KInner", false]], "kintegers() (in module pyk.ktool.kfuzz)": [[71, "pyk.ktool.kfuzz.kintegers", false]], "kinterpreter (class in pyk.krepl.repl)": [[68, "pyk.krepl.repl.KInterpreter", false]], "kitem() (kastparser method)": [[20, "pyk.kast.parser.KAstParser.kitem", false]], "klabel (atts attribute)": [[8, "pyk.kast.att.Atts.KLABEL", false]], "klabel (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KLabel", false]], "klabel (kproduction attribute)": [[16, "pyk.kast.outer.KProduction.klabel", false]], "klabel (state attribute)": [[17, "pyk.kast.outer_lexer.State.KLABEL", false]], "klabel (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.KLABEL", false], [17, "pyk.kast.outer_lexer.TokenType.KLABEL", false]], "klabel() (kastparser method)": [[20, "pyk.kast.parser.KAstParser.klabel", false]], "klabels (syntaxassoc attribute)": [[19, "pyk.kast.outer_syntax.SyntaxAssoc.klabels", false]], "klist() (kastparser method)": [[20, "pyk.kast.parser.KAstParser.klist", false]], "knonterminal (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KNonTerminal", false]], "kompile() (in module pyk.ktool.kompile)": [[72, "pyk.ktool.kompile.kompile", false]], "kompile() (in module pyk.testing.plugin)": [[93, "pyk.testing.plugin.kompile", false]], "kompile() (kbuild method)": [[26, "pyk.kbuild.kbuild.KBuild.kompile", false]], "kompile() (kbuildenv method)": [[26, "pyk.kbuild.kbuild.KBuildEnv.kompile", false]], "kompiled_dir (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.kompiled_dir", false]], "kompiled_dir (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.kompiled_dir", false]], "kompiledkore (class in pyk.kore.kompiled)": [[55, "pyk.kore.kompiled.KompiledKore", false]], "kore (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Kore", false]], "kore (kastinput attribute)": [[73, "pyk.ktool.kprint.KAstInput.KORE", false]], "kore (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.KORE", false]], "kore (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.KORE", false]], "kore (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.KORE", false]], "kore (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.KORE", false]], "kore (pykbackend attribute)": [[72, "pyk.ktool.kompile.PykBackend.KORE", false]], "kore (state property)": [[62, "pyk.kore.rpc.State.kore", false]], "kore_bool() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_bool", false]], "kore_bytes() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_bytes", false]], "kore_id() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_id", false]], "kore_int() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_int", false]], "kore_lexer() (in module pyk.kore.lexer)": [[56, "pyk.kore.lexer.kore_lexer", false]], "kore_list_of() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_list_of", false]], "kore_map_of() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_map_of", false]], "kore_pattern (llvmargument property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument.kore_pattern", false]], "kore_print() (in module pyk.kore.tools)": [[64, "pyk.kore.tools.kore_print", false]], "kore_rpc (logorigin attribute)": [[62, "pyk.kore.rpc.LogOrigin.KORE_RPC", false]], "kore_rpc (logtiming.component attribute)": [[62, "pyk.kore.rpc.LogTiming.Component.KORE_RPC", false]], "kore_server() (in module pyk.kore.rpc)": [[62, "pyk.kore.rpc.kore_server", false]], "kore_set_of() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_set_of", false]], "kore_str() (in module pyk.kore.match)": [[58, "pyk.kore.match.kore_str", false]], "kore_term() (in module pyk.kore.syntax)": [[63, "pyk.kore.syntax.kore_term", false]], "kore_to_json() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.kore_to_json", false]], "kore_to_kast() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.kore_to_kast", false]], "kore_to_kast() (kprint method)": [[73, "pyk.ktool.kprint.KPrint.kore_to_kast", false]], "kore_to_pretty() (kprint method)": [[73, "pyk.ktool.kprint.KPrint.kore_to_pretty", false]], "koreclient (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.KoreClient", false]], "koreclienterror": [[62, "pyk.kore.rpc.KoreClientError", false]], "koreexeclogformat (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.KoreExecLogFormat", false]], "koreheader (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.KoreHeader", false]], "koreparser (class in pyk.kore.parser)": [[59, "pyk.kore.parser.KoreParser", false]], "koreserver (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.KoreServer", false]], "koreserverargs (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.KoreServerArgs", false]], "koreserverinfo (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.KoreServerInfo", false]], "koreserverpool (class in pyk.kore.pool)": [[60, "pyk.kore.pool.KoreServerPool", false]], "koresorttable (class in pyk.kore.kompiled)": [[55, "pyk.kore.kompiled.KoreSortTable", false]], "koresymboltable (class in pyk.kore.kompiled)": [[55, "pyk.kore.kompiled.KoreSymbolTable", false]], "koretoken (class in pyk.kore.lexer)": [[56, "pyk.kore.lexer.KoreToken", false]], "kouter (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KOuter", false]], "kprint (class in pyk.ktool.kprint)": [[73, "pyk.ktool.kprint.KPrint", false]], "kprint (kcfgshow attribute)": [[34, "pyk.kcfg.show.KCFGShow.kprint", false]], "kprint (nodeprinter attribute)": [[34, "pyk.kcfg.show.NodePrinter.kprint", false]], "kproduction (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KProduction", false]], "kproductionitem (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KProductionItem", false]], "kprove (class in pyk.ktool.kprove)": [[74, "pyk.ktool.kprove.KProve", false]], "kproveoutput (class in pyk.ktool.kprove)": [[74, "pyk.ktool.kprove.KProveOutput", false]], "kregexterminal (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KRegexTerminal", false]], "krepl (class in pyk.krepl.repl)": [[68, "pyk.krepl.repl.KRepl", false]], "krequire (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KRequire", false]], "krewrite (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KRewrite", false]], "krule (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KRule", false]], "krulelike (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KRuleLike", false]], "krun (class in pyk.ktool.krun)": [[75, "pyk.ktool.krun.KRun", false]], "krun() (krun method)": [[75, "pyk.ktool.krun.KRun.krun", false]], "krunoutput (class in pyk.ktool.krun)": [[75, "pyk.ktool.krun.KRunOutput", false]], "ksentence (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KSentence", false]], "kseq (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.KSEQ", false]], "kseq() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.kseq", false]], "ksequence (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KSequence", false]], "ksort (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KSort", false]], "ksortsynonym (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KSortSynonym", false]], "kstate (class in pyk.krepl.repl)": [[68, "pyk.krepl.repl.KState", false]], "ksyntaxassociativity (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KSyntaxAssociativity", false]], "ksyntaxlexical (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KSyntaxLexical", false]], "ksyntaxpriority (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KSyntaxPriority", false]], "ksyntaxsort (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KSyntaxSort", false]], "kterminal (class in pyk.kast.outer)": [[16, "pyk.kast.outer.KTerminal", false]], "ktoken (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KToken", false]], "kvariable (class in pyk.kast.inner)": [[11, "pyk.kast.inner.KVariable", false]], "kversion (class in pyk.kbuild.utils)": [[28, "pyk.kbuild.utils.KVersion", false]], "kversion.git (class in pyk.kbuild.utils)": [[28, "pyk.kbuild.utils.KVersion.Git", false]], "kw_alias (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_ALIAS", false], [56, "pyk.kore.lexer.TokenType.KW_ALIAS", false]], "kw_axiom (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_AXIOM", false]], "kw_claim (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_CLAIM", false], [56, "pyk.kore.lexer.TokenType.KW_CLAIM", false]], "kw_config (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_CONFIG", false]], "kw_context (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_CONTEXT", false]], "kw_endmodule (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_ENDMODULE", false], [56, "pyk.kore.lexer.TokenType.KW_ENDMODULE", false]], "kw_hooked_sort (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_HOOKED_SORT", false]], "kw_hooked_symbol (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_HOOKED_SYMBOL", false]], "kw_import (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_IMPORT", false]], "kw_imports (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_IMPORTS", false]], "kw_left (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_LEFT", false]], "kw_lexical (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_LEXICAL", false]], "kw_module (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_MODULE", false], [56, "pyk.kore.lexer.TokenType.KW_MODULE", false]], "kw_nonassoc (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_NONASSOC", false]], "kw_priority (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_PRIORITY", false]], "kw_private (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_PRIVATE", false]], "kw_public (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_PUBLIC", false]], "kw_requires (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_REQUIRES", false]], "kw_right (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_RIGHT", false]], "kw_rule (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_RULE", false]], "kw_sort (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_SORT", false]], "kw_symbol (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_SYMBOL", false]], "kw_syntax (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.KW_SYNTAX", false]], "kw_where (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.KW_WHERE", false]], "label (alias attribute)": [[19, "pyk.kast.outer_syntax.Alias.label", false]], "label (atts attribute)": [[8, "pyk.kast.att.Atts.LABEL", false]], "label (claim attribute)": [[19, "pyk.kast.outer_syntax.Claim.label", false]], "label (config attribute)": [[19, "pyk.kast.outer_syntax.Config.label", false]], "label (context attribute)": [[19, "pyk.kast.outer_syntax.Context.label", false]], "label (kapply attribute)": [[11, "pyk.kast.inner.KApply.label", false]], "label (ksentence property)": [[16, "pyk.kast.outer.KSentence.label", false]], "label (rule attribute)": [[19, "pyk.kast.outer_syntax.Rule.label", false]], "label (stringsentence attribute)": [[19, "pyk.kast.outer_syntax.StringSentence.label", false]], "labels() (claimindex method)": [[70, "pyk.ktool.claim_index.ClaimIndex.labels", false]], "labels_to_dots() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.labels_to_dots", false]], "last_constraint (refutationproof property)": [[87, "pyk.proof.implies.RefutationProof.last_constraint", false]], "latex (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.LATEX", false]], "latex (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.LATEX", false]], "latex (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.LATEX", false]], "latex (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.LATEX", false]], "lavender (color attribute)": [[9, "pyk.kast.color.Color.LAVENDER", false]], "lavender_blush (color attribute)": [[9, "pyk.kast.color.Color.LAVENDER_BLUSH", false]], "lawn_green (color attribute)": [[9, "pyk.kast.color.Color.LAWN_GREEN", false]], "lbrace (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.LBRACE", false], [56, "pyk.kore.lexer.TokenType.LBRACE", false]], "lbrack (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.LBRACK", false], [56, "pyk.kore.lexer.TokenType.LBRACK", false]], "le_int() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.le_int", false]], "least_common_supersort() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.least_common_supersort", false]], "leaves (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.leaves", false]], "left (aliasdecl attribute)": [[63, "pyk.kore.syntax.AliasDecl.left", false]], "left (assoc attribute)": [[19, "pyk.kast.outer_syntax.Assoc.LEFT", false]], "left (atts attribute)": [[8, "pyk.kast.att.Atts.LEFT", false]], "left (binaryconn attribute)": [[63, "pyk.kore.syntax.BinaryConn.left", false]], "left (binarypred attribute)": [[63, "pyk.kore.syntax.BinaryPred.left", false]], "left (equals attribute)": [[63, "pyk.kore.syntax.Equals.left", false]], "left (iff attribute)": [[63, "pyk.kore.syntax.Iff.left", false]], "left (implies attribute)": [[63, "pyk.kore.syntax.Implies.left", false]], "left (in attribute)": [[63, "pyk.kore.syntax.In.left", false]], "left (kassoc attribute)": [[16, "pyk.kast.outer.KAssoc.LEFT", false]], "left (rewrites attribute)": [[63, "pyk.kore.syntax.Rewrites.left", false]], "left_assoc() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.left_assoc", false]], "left_assocs (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.left_assocs", false]], "leftassoc (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.LeftAssoc", false]], "leint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.leInt", false]], "lemon_chiffon (color attribute)": [[9, "pyk.kast.color.Color.LEMON_CHIFFON", false]], "let() (aliasdecl method)": [[63, "pyk.kore.syntax.AliasDecl.let", false]], "let() (and method)": [[63, "pyk.kore.syntax.And.let", false]], "let() (app method)": [[63, "pyk.kore.syntax.App.let", false]], "let() (axiom method)": [[63, "pyk.kore.syntax.Axiom.let", false]], "let() (bottom method)": [[63, "pyk.kore.syntax.Bottom.let", false]], "let() (ceil method)": [[63, "pyk.kore.syntax.Ceil.let", false]], "let() (claim method)": [[63, "pyk.kore.syntax.Claim.let", false]], "let() (definition method)": [[63, "pyk.kore.syntax.Definition.let", false]], "let() (dv method)": [[63, "pyk.kore.syntax.DV.let", false]], "let() (equals method)": [[63, "pyk.kore.syntax.Equals.let", false]], "let() (evar method)": [[63, "pyk.kore.syntax.EVar.let", false]], "let() (exists method)": [[63, "pyk.kore.syntax.Exists.let", false]], "let() (floor method)": [[63, "pyk.kore.syntax.Floor.let", false]], "let() (forall method)": [[63, "pyk.kore.syntax.Forall.let", false]], "let() (iff method)": [[63, "pyk.kore.syntax.Iff.let", false]], "let() (implies method)": [[63, "pyk.kore.syntax.Implies.let", false]], "let() (import method)": [[63, "pyk.kore.syntax.Import.let", false]], "let() (in method)": [[63, "pyk.kore.syntax.In.let", false]], "let() (kapply method)": [[11, "pyk.kast.inner.KApply.let", false]], "let() (kas method)": [[11, "pyk.kast.inner.KAs.let", false]], "let() (kbubble method)": [[16, "pyk.kast.outer.KBubble.let", false]], "let() (kcfg.node method)": [[32, "pyk.kcfg.kcfg.KCFG.Node.let", false]], "let() (kclaim method)": [[16, "pyk.kast.outer.KClaim.let", false]], "let() (kcontext method)": [[16, "pyk.kast.outer.KContext.let", false]], "let() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.let", false]], "let() (kflatmodule method)": [[16, "pyk.kast.outer.KFlatModule.let", false]], "let() (kflatmodulelist method)": [[16, "pyk.kast.outer.KFlatModuleList.let", false]], "let() (kimport method)": [[16, "pyk.kast.outer.KImport.let", false]], "let() (klabel method)": [[11, "pyk.kast.inner.KLabel.let", false]], "let() (knonterminal method)": [[16, "pyk.kast.outer.KNonTerminal.let", false]], "let() (kproduction method)": [[16, "pyk.kast.outer.KProduction.let", false]], "let() (kregexterminal method)": [[16, "pyk.kast.outer.KRegexTerminal.let", false]], "let() (krequire method)": [[16, "pyk.kast.outer.KRequire.let", false]], "let() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.let", false]], "let() (krule method)": [[16, "pyk.kast.outer.KRule.let", false]], "let() (krulelike method)": [[16, "pyk.kast.outer.KRuleLike.let", false]], "let() (ksequence method)": [[11, "pyk.kast.inner.KSequence.let", false]], "let() (ksort method)": [[11, "pyk.kast.inner.KSort.let", false]], "let() (ksortsynonym method)": [[16, "pyk.kast.outer.KSortSynonym.let", false]], "let() (ksyntaxassociativity method)": [[16, "pyk.kast.outer.KSyntaxAssociativity.let", false]], "let() (ksyntaxlexical method)": [[16, "pyk.kast.outer.KSyntaxLexical.let", false]], "let() (ksyntaxpriority method)": [[16, "pyk.kast.outer.KSyntaxPriority.let", false]], "let() (ksyntaxsort method)": [[16, "pyk.kast.outer.KSyntaxSort.let", false]], "let() (kterminal method)": [[16, "pyk.kast.outer.KTerminal.let", false]], "let() (ktoken method)": [[11, "pyk.kast.inner.KToken.let", false]], "let() (kvariable method)": [[11, "pyk.kast.inner.KVariable.let", false]], "let() (leftassoc method)": [[63, "pyk.kore.syntax.LeftAssoc.let", false]], "let() (module method)": [[63, "pyk.kore.syntax.Module.let", false]], "let() (mu method)": [[63, "pyk.kore.syntax.Mu.let", false]], "let() (next method)": [[63, "pyk.kore.syntax.Next.let", false]], "let() (not method)": [[63, "pyk.kore.syntax.Not.let", false]], "let() (nu method)": [[63, "pyk.kore.syntax.Nu.let", false]], "let() (or method)": [[63, "pyk.kore.syntax.Or.let", false]], "let() (rewrites method)": [[63, "pyk.kore.syntax.Rewrites.let", false]], "let() (rightassoc method)": [[63, "pyk.kore.syntax.RightAssoc.let", false]], "let() (sortapp method)": [[63, "pyk.kore.syntax.SortApp.let", false]], "let() (sortdecl method)": [[63, "pyk.kore.syntax.SortDecl.let", false]], "let() (sortvar method)": [[63, "pyk.kore.syntax.SortVar.let", false]], "let() (string method)": [[63, "pyk.kore.syntax.String.let", false]], "let() (svar method)": [[63, "pyk.kore.syntax.SVar.let", false]], "let() (symbol method)": [[63, "pyk.kore.syntax.Symbol.let", false]], "let() (symboldecl method)": [[63, "pyk.kore.syntax.SymbolDecl.let", false]], "let() (token method)": [[17, "pyk.kast.outer_lexer.Token.let", false]], "let() (top method)": [[63, "pyk.kore.syntax.Top.let", false]], "let_att() (kbubble method)": [[16, "pyk.kast.outer.KBubble.let_att", false]], "let_att() (kclaim method)": [[16, "pyk.kast.outer.KClaim.let_att", false]], "let_att() (kcontext method)": [[16, "pyk.kast.outer.KContext.let_att", false]], "let_att() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.let_att", false]], "let_att() (kflatmodule method)": [[16, "pyk.kast.outer.KFlatModule.let_att", false]], "let_att() (kproduction method)": [[16, "pyk.kast.outer.KProduction.let_att", false]], "let_att() (krule method)": [[16, "pyk.kast.outer.KRule.let_att", false]], "let_att() (ksortsynonym method)": [[16, "pyk.kast.outer.KSortSynonym.let_att", false]], "let_att() (ksyntaxassociativity method)": [[16, "pyk.kast.outer.KSyntaxAssociativity.let_att", false]], "let_att() (ksyntaxlexical method)": [[16, "pyk.kast.outer.KSyntaxLexical.let_att", false]], "let_att() (ksyntaxpriority method)": [[16, "pyk.kast.outer.KSyntaxPriority.let_att", false]], "let_att() (ksyntaxsort method)": [[16, "pyk.kast.outer.KSyntaxSort.let_att", false]], "let_att() (withkatt method)": [[8, "pyk.kast.att.WithKAtt.let_att", false]], "let_attrs() (aliasdecl method)": [[63, "pyk.kore.syntax.AliasDecl.let_attrs", false]], "let_attrs() (axiom method)": [[63, "pyk.kore.syntax.Axiom.let_attrs", false]], "let_attrs() (claim method)": [[63, "pyk.kore.syntax.Claim.let_attrs", false]], "let_attrs() (definition method)": [[63, "pyk.kore.syntax.Definition.let_attrs", false]], "let_attrs() (import method)": [[63, "pyk.kore.syntax.Import.let_attrs", false]], "let_attrs() (module method)": [[63, "pyk.kore.syntax.Module.let_attrs", false]], "let_attrs() (sortdecl method)": [[63, "pyk.kore.syntax.SortDecl.let_attrs", false]], "let_attrs() (symboldecl method)": [[63, "pyk.kore.syntax.SymbolDecl.let_attrs", false]], "let_attrs() (withattrs method)": [[63, "pyk.kore.syntax.WithAttrs.let_attrs", false]], "let_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.let_node", false]], "let_patterns() (and method)": [[63, "pyk.kore.syntax.And.let_patterns", false]], "let_patterns() (app method)": [[63, "pyk.kore.syntax.App.let_patterns", false]], "let_patterns() (bottom method)": [[63, "pyk.kore.syntax.Bottom.let_patterns", false]], "let_patterns() (ceil method)": [[63, "pyk.kore.syntax.Ceil.let_patterns", false]], "let_patterns() (dv method)": [[63, "pyk.kore.syntax.DV.let_patterns", false]], "let_patterns() (equals method)": [[63, "pyk.kore.syntax.Equals.let_patterns", false]], "let_patterns() (evar method)": [[63, "pyk.kore.syntax.EVar.let_patterns", false]], "let_patterns() (exists method)": [[63, "pyk.kore.syntax.Exists.let_patterns", false]], "let_patterns() (floor method)": [[63, "pyk.kore.syntax.Floor.let_patterns", false]], "let_patterns() (forall method)": [[63, "pyk.kore.syntax.Forall.let_patterns", false]], "let_patterns() (iff method)": [[63, "pyk.kore.syntax.Iff.let_patterns", false]], "let_patterns() (implies method)": [[63, "pyk.kore.syntax.Implies.let_patterns", false]], "let_patterns() (in method)": [[63, "pyk.kore.syntax.In.let_patterns", false]], "let_patterns() (leftassoc method)": [[63, "pyk.kore.syntax.LeftAssoc.let_patterns", false]], "let_patterns() (mu method)": [[63, "pyk.kore.syntax.Mu.let_patterns", false]], "let_patterns() (next method)": [[63, "pyk.kore.syntax.Next.let_patterns", false]], "let_patterns() (not method)": [[63, "pyk.kore.syntax.Not.let_patterns", false]], "let_patterns() (nu method)": [[63, "pyk.kore.syntax.Nu.let_patterns", false]], "let_patterns() (or method)": [[63, "pyk.kore.syntax.Or.let_patterns", false]], "let_patterns() (pattern method)": [[63, "pyk.kore.syntax.Pattern.let_patterns", false]], "let_patterns() (rewrites method)": [[63, "pyk.kore.syntax.Rewrites.let_patterns", false]], "let_patterns() (rightassoc method)": [[63, "pyk.kore.syntax.RightAssoc.let_patterns", false]], "let_patterns() (string method)": [[63, "pyk.kore.syntax.String.let_patterns", false]], "let_patterns() (svar method)": [[63, "pyk.kore.syntax.SVar.let_patterns", false]], "let_patterns() (top method)": [[63, "pyk.kore.syntax.Top.let_patterns", false]], "let_sort() (and method)": [[63, "pyk.kore.syntax.And.let_sort", false]], "let_sort() (bottom method)": [[63, "pyk.kore.syntax.Bottom.let_sort", false]], "let_sort() (ceil method)": [[63, "pyk.kore.syntax.Ceil.let_sort", false]], "let_sort() (dv method)": [[63, "pyk.kore.syntax.DV.let_sort", false]], "let_sort() (equals method)": [[63, "pyk.kore.syntax.Equals.let_sort", false]], "let_sort() (evar method)": [[63, "pyk.kore.syntax.EVar.let_sort", false]], "let_sort() (exists method)": [[63, "pyk.kore.syntax.Exists.let_sort", false]], "let_sort() (floor method)": [[63, "pyk.kore.syntax.Floor.let_sort", false]], "let_sort() (forall method)": [[63, "pyk.kore.syntax.Forall.let_sort", false]], "let_sort() (iff method)": [[63, "pyk.kore.syntax.Iff.let_sort", false]], "let_sort() (implies method)": [[63, "pyk.kore.syntax.Implies.let_sort", false]], "let_sort() (in method)": [[63, "pyk.kore.syntax.In.let_sort", false]], "let_sort() (kvariable method)": [[11, "pyk.kast.inner.KVariable.let_sort", false]], "let_sort() (next method)": [[63, "pyk.kore.syntax.Next.let_sort", false]], "let_sort() (not method)": [[63, "pyk.kore.syntax.Not.let_sort", false]], "let_sort() (or method)": [[63, "pyk.kore.syntax.Or.let_sort", false]], "let_sort() (rewrites method)": [[63, "pyk.kore.syntax.Rewrites.let_sort", false]], "let_sort() (svar method)": [[63, "pyk.kore.syntax.SVar.let_sort", false]], "let_sort() (top method)": [[63, "pyk.kore.syntax.Top.let_sort", false]], "let_sort() (withsort method)": [[63, "pyk.kore.syntax.WithSort.let_sort", false]], "let_terms() (kapply method)": [[11, "pyk.kast.inner.KApply.let_terms", false]], "let_terms() (kas method)": [[11, "pyk.kast.inner.KAs.let_terms", false]], "let_terms() (kinner method)": [[11, "pyk.kast.inner.KInner.let_terms", false]], "let_terms() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.let_terms", false]], "let_terms() (ksequence method)": [[11, "pyk.kast.inner.KSequence.let_terms", false]], "let_terms() (ktoken method)": [[11, "pyk.kast.inner.KToken.let_terms", false]], "let_terms() (kvariable method)": [[11, "pyk.kast.inner.KVariable.let_terms", false]], "lexer() (in module pyk.kast.lexer)": [[13, "pyk.kast.lexer.lexer", false]], "lexical (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Lexical", false]], "lhs (krewrite attribute)": [[11, "pyk.kast.inner.KRewrite.lhs", false]], "lhs_body (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.lhs_body", false]], "lift_edge() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.lift_edge", false]], "lift_edges() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.lift_edges", false]], "lift_split_edge() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.lift_split_edge", false]], "lift_split_split() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.lift_split_split", false]], "lift_splits() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.lift_splits", false]], "light_blue (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_BLUE", false]], "light_coral (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_CORAL", false]], "light_cyan (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_CYAN", false]], "light_goldenrod (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_GOLDENROD", false]], "light_goldenrod_yellow (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_GOLDENROD_YELLOW", false]], "light_gray (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_GRAY", false]], "light_green (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_GREEN", false]], "light_grey (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_GREY", false]], "light_pink (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_PINK", false]], "light_salmon (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_SALMON", false]], "light_sea_green (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_SEA_GREEN", false]], "light_sky_blue (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_SKY_BLUE", false]], "light_slate_blue (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_SLATE_BLUE", false]], "light_slate_gray (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_SLATE_GRAY", false]], "light_slate_grey (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_SLATE_GREY", false]], "light_steel_blue (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_STEEL_BLUE", false]], "light_yellow (color attribute)": [[9, "pyk.kast.color.Color.LIGHT_YELLOW", false]], "lightgray (color attribute)": [[9, "pyk.kast.color.Color.LIGHTGRAY", false]], "lime (color attribute)": [[9, "pyk.kast.color.Color.LIME", false]], "lime_green (color attribute)": [[9, "pyk.kast.color.Color.LIME_GREEN", false]], "line (loc attribute)": [[17, "pyk.kast.outer_lexer.Loc.line", false]], "linen (color attribute)": [[9, "pyk.kast.color.Color.LINEN", false]], "lines (aprsummary property)": [[89, "pyk.proof.reachability.APRSummary.lines", false]], "lines (compositesummary property)": [[88, "pyk.proof.proof.CompositeSummary.lines", false]], "lines (equalitysummary property)": [[87, "pyk.proof.implies.EqualitySummary.lines", false]], "lines (proofsummary property)": [[88, "pyk.proof.proof.ProofSummary.lines", false]], "lines (refutationsummary property)": [[87, "pyk.proof.implies.RefutationSummary.lines", false]], "list_empty() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.list_empty", false]], "list_item() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.list_item", false]], "list_of() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.list_of", false]], "list_pattern() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.list_pattern", false]], "llvm (logorigin attribute)": [[62, "pyk.kore.rpc.LogOrigin.LLVM", false]], "llvm (pykbackend attribute)": [[72, "pyk.ktool.kompile.PykBackend.LLVM", false]], "llvm_interpret() (in module pyk.ktool.krun)": [[75, "pyk.ktool.krun.llvm_interpret", false]], "llvm_interpret_raw() (in module pyk.ktool.krun)": [[75, "pyk.ktool.krun.llvm_interpret_raw", false]], "llvm_kompiled_dir (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.llvm_kompiled_dir", false]], "llvm_to_definition() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.llvm_to_definition", false]], "llvm_to_module() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.llvm_to_module", false]], "llvm_to_pattern() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.llvm_to_pattern", false]], "llvm_to_sentence() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.llvm_to_sentence", false]], "llvm_to_sort() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.llvm_to_sort", false]], "llvm_to_sort_var() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.llvm_to_sort_var", false]], "llvmargument (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument", false]], "llvmeventannotated (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventAnnotated", false]], "llvmeventtype (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventType", false]], "llvmfunctionevent (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent", false]], "llvmhookevent (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent", false]], "llvmrewriteevent (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteEvent", false]], "llvmrewritetrace (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace", false]], "llvmrewritetraceiterator (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator", false]], "llvmruleevent (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRuleEvent", false]], "llvmsideconditionevententer (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter", false]], "llvmsideconditioneventexit (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit", false]], "llvmstepevent (class in pyk.kllvm.hints.prooftrace)": [[46, "pyk.kllvm.hints.prooftrace.LLVMStepEvent", false]], "load() (kompiledkore static method)": [[55, "pyk.kore.kompiled.KompiledKore.load", false]], "load() (project static method)": [[27, "pyk.kbuild.project.Project.load", false]], "load_from_dir() (project static method)": [[27, "pyk.kbuild.project.Project.load_from_dir", false]], "load_from_json() (kompiledkore static method)": [[55, "pyk.kore.kompiled.KompiledKore.load_from_json", false]], "load_from_kore() (kompiledkore static method)": [[55, "pyk.kore.kompiled.KompiledKore.load_from_kore", false]], "loc (class in pyk.kast.outer_lexer)": [[17, "pyk.kast.outer_lexer.Loc", false]], "loc (locationiterator property)": [[17, "pyk.kast.outer_lexer.LocationIterator.loc", false]], "loc (token attribute)": [[17, "pyk.kast.outer_lexer.Token.loc", false]], "location (ast attribute)": [[19, "pyk.kast.outer_syntax.AST.location", false]], "location (atts attribute)": [[8, "pyk.kast.att.Atts.LOCATION", false]], "locationiterator (class in pyk.kast.outer_lexer)": [[17, "pyk.kast.outer_lexer.LocationIterator", false]], "locationtype (class in pyk.kast.att)": [[8, "pyk.kast.att.LocationType", false]], "log_axioms_file (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.log_axioms_file", false]], "log_axioms_file (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.log_axioms_file", false]], "log_context (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.log_context", false]], "logentry (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.LogEntry", false]], "logorigin (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.LogOrigin", false]], "logrewrite (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.LogRewrite", false]], "logs (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.logs", false]], "logs (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.logs", false]], "logs (branchingresult attribute)": [[62, "pyk.kore.rpc.BranchingResult.logs", false]], "logs (ctermexecute attribute)": [[5, "pyk.cterm.symbolic.CTermExecute.logs", false]], "logs (ctermimplies attribute)": [[5, "pyk.cterm.symbolic.CTermImplies.logs", false]], "logs (cutpointresult attribute)": [[62, "pyk.kore.rpc.CutPointResult.logs", false]], "logs (depthboundresult attribute)": [[62, "pyk.kore.rpc.DepthBoundResult.logs", false]], "logs (executeresult attribute)": [[62, "pyk.kore.rpc.ExecuteResult.logs", false]], "logs (impliesresult attribute)": [[62, "pyk.kore.rpc.ImpliesResult.logs", false]], "logs (ndbranch attribute)": [[32, "pyk.kcfg.kcfg.NDBranch.logs", false]], "logs (step attribute)": [[32, "pyk.kcfg.kcfg.Step.logs", false]], "logs (stuckresult attribute)": [[62, "pyk.kore.rpc.StuckResult.logs", false]], "logs (terminalresult attribute)": [[62, "pyk.kore.rpc.TerminalResult.logs", false]], "logs (timeoutresult attribute)": [[62, "pyk.kore.rpc.TimeoutResult.logs", false]], "logs (vacuousresult attribute)": [[62, "pyk.kore.rpc.VacuousResult.logs", false]], "logtiming (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.LogTiming", false]], "logtiming.component (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.LogTiming.Component", false]], "lparen (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.LPAREN", false], [17, "pyk.kast.outer_lexer.TokenType.LPAREN", false], [56, "pyk.kore.lexer.TokenType.LPAREN", false]], "lshiftint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.lshiftInt", false]], "lt_int() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.lt_int", false]], "ltint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.ltInt", false]], "macro (atts attribute)": [[8, "pyk.kast.att.Atts.MACRO", false]], "macro_rec (atts attribute)": [[8, "pyk.kast.att.Atts.MACRO_REC", false]], "macro_rules (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.macro_rules", false]], "magenta (color attribute)": [[9, "pyk.kast.color.Color.MAGENTA", false]], "mahogany (color attribute)": [[9, "pyk.kast.color.Color.MAHOGANY", false]], "main() (in module pyk.kcovr)": [[37, "pyk.kcovr.main", false]], "main_file (kprove attribute)": [[74, "pyk.ktool.kprove.KProve.main_file", false]], "main_module (kdefinition attribute)": [[16, "pyk.kast.outer.KDefinition.main_module", false]], "main_module (kflatmodulelist attribute)": [[16, "pyk.kast.outer.KFlatModuleList.main_module", false]], "main_module (kprint attribute)": [[73, "pyk.ktool.kprint.KPrint.main_module", false]], "main_module_name (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.main_module_name", false]], "main_module_name (claimindex attribute)": [[70, "pyk.ktool.claim_index.ClaimIndex.main_module_name", false]], "main_module_name (kdefinition attribute)": [[16, "pyk.kast.outer.KDefinition.main_module_name", false]], "maincell (atts attribute)": [[8, "pyk.kast.att.Atts.MAINCELL", false]], "major (kversion attribute)": [[28, "pyk.kbuild.utils.KVersion.major", false]], "make_unique_segments() (kcfgshow static method)": [[34, "pyk.kcfg.show.KCFGShow.make_unique_segments", false]], "manifest() (target method)": [[39, "pyk.kdist.api.Target.manifest", false]], "map_att() (withkatt method)": [[8, "pyk.kast.att.WithKAtt.map_att", false]], "map_attrs() (withattrs method)": [[63, "pyk.kore.syntax.WithAttrs.map_attrs", false]], "map_empty() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.map_empty", false]], "map_inner() (kinner method)": [[11, "pyk.kast.inner.KInner.map_inner", false]], "map_item() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.map_item", false]], "map_of() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.map_of", false]], "map_pattern() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.map_pattern", false]], "map_patterns() (pattern method)": [[63, "pyk.kore.syntax.Pattern.map_patterns", false]], "map_sentences() (kflatmodule method)": [[16, "pyk.kast.outer.KFlatModule.map_sentences", false]], "map_sort() (withsort method)": [[63, "pyk.kore.syntax.WithSort.map_sort", false]], "maroon (color attribute)": [[9, "pyk.kast.color.Color.MAROON", false]], "match() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.match", false]], "match() (kapply method)": [[11, "pyk.kast.inner.KApply.match", false]], "match() (kas method)": [[11, "pyk.kast.inner.KAs.match", false]], "match() (kinner method)": [[11, "pyk.kast.inner.KInner.match", false]], "match() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.match", false]], "match() (ksequence method)": [[11, "pyk.kast.inner.KSequence.match", false]], "match() (ktoken method)": [[11, "pyk.kast.inner.KToken.match", false]], "match() (kvariable method)": [[11, "pyk.kast.inner.KVariable.match", false]], "match_app() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_app", false]], "match_dv() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_dv", false]], "match_inj() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_inj", false]], "match_left_assoc() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_left_assoc", false]], "match_list() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_list", false]], "match_map() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_map", false]], "match_set() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_set", false]], "match_symbol() (in module pyk.kore.match)": [[58, "pyk.kore.match.match_symbol", false]], "match_with_constraint() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.match_with_constraint", false]], "maude (pykbackend attribute)": [[72, "pyk.ktool.kompile.PykBackend.MAUDE", false]], "maxint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.maxInt", false]], "maybe() (in module pyk.utils)": [[94, "pyk.utils.maybe", false]], "medium_aquamarine (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_AQUAMARINE", false]], "medium_blue (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_BLUE", false]], "medium_orchid (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_ORCHID", false]], "medium_purple (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_PURPLE", false]], "medium_sea_green (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_SEA_GREEN", false]], "medium_slate_blue (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_SLATE_BLUE", false]], "medium_spring_green (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_SPRING_GREEN", false]], "medium_turquoise (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_TURQUOISE", false]], "medium_violet_red (color attribute)": [[9, "pyk.kast.color.Color.MEDIUM_VIOLET_RED", false]], "meet() (koresorttable method)": [[55, "pyk.kore.kompiled.KoreSortTable.meet", false]], "melon (color attribute)": [[9, "pyk.kast.color.Color.MELON", false]], "merge_with() (in module pyk.utils)": [[94, "pyk.utils.merge_with", false]], "message (defaulterror attribute)": [[62, "pyk.kore.rpc.DefaultError.message", false]], "midnight_blue (color attribute)": [[9, "pyk.kast.color.Color.MIDNIGHT_BLUE", false]], "minimize (nodeprinter attribute)": [[34, "pyk.kcfg.show.NodePrinter.minimize", false]], "minimize() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.minimize", false]], "minimize() (subst method)": [[11, "pyk.kast.inner.Subst.minimize", false]], "minimize_constraints() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.minimize_constraints", false]], "minimize_kcfg() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.minimize_kcfg", false]], "minimize_rule() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.minimize_rule", false]], "minimize_term() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.minimize_term", false]], "minint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.minInt", false]], "minor (kversion attribute)": [[28, "pyk.kbuild.utils.KVersion.minor", false]], "mint_cream (color attribute)": [[9, "pyk.kast.color.Color.MINT_CREAM", false]], "misty_rose (color attribute)": [[9, "pyk.kast.color.Color.MISTY_ROSE", false]], "ml_and (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_AND", false]], "ml_bottom (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_BOTTOM", false]], "ml_ceil (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_CEIL", false]], "ml_dv (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_DV", false]], "ml_equals (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_EQUALS", false]], "ml_exists (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_EXISTS", false]], "ml_floor (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_FLOOR", false]], "ml_forall (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_FORALL", false]], "ml_iff (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_IFF", false]], "ml_implies (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_IMPLIES", false]], "ml_in (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_IN", false]], "ml_left_assoc (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_LEFT_ASSOC", false]], "ml_mu (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_MU", false]], "ml_next (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_NEXT", false]], "ml_not (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_NOT", false]], "ml_nu (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_NU", false]], "ml_or (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_OR", false]], "ml_pattern() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.ml_pattern", false]], "ml_pred (subst property)": [[11, "pyk.kast.inner.Subst.ml_pred", false]], "ml_pred_to_bool() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.ml_pred_to_bool", false]], "ml_rewrites (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_REWRITES", false]], "ml_right_assoc (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_RIGHT_ASSOC", false]], "ml_top (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.ML_TOP", false]], "mland() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlAnd", false]], "mlbottom() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlBottom", false]], "mlceil() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlCeil", false]], "mlconn (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLConn", false]], "mlequals() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlEquals", false]], "mlequalsfalse() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlEqualsFalse", false]], "mlequalstrue() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlEqualsTrue", false]], "mlexists() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlExists", false]], "mlfixpoint (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLFixpoint", false]], "mlimplies() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlImplies", false]], "mlnot() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlNot", false]], "mlor() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlOr", false]], "mlpattern (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLPattern", false]], "mlpred (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLPred", false]], "mlquant (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLQuant", false]], "mlrewrite (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLRewrite", false]], "mlsyntaxsugar (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MLSyntaxSugar", false]], "mltop() (in module pyk.prelude.ml)": [[83, "pyk.prelude.ml.mlTop", false]], "moccasin (color attribute)": [[9, "pyk.kast.color.Color.MOCCASIN", false]], "model (satresult attribute)": [[62, "pyk.kore.rpc.SatResult.model", false]], "models (aprfailureinfo attribute)": [[89, "pyk.proof.reachability.APRFailureInfo.models", false]], "modint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.modInt", false]], "modname (state attribute)": [[17, "pyk.kast.outer_lexer.State.MODNAME", false]], "modname (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.MODNAME", false]], "module": [[1, "module-pyk", false], [2, "module-pyk.coverage", false], [3, "module-pyk.cterm", false], [4, "module-pyk.cterm.cterm", false], [5, "module-pyk.cterm.symbolic", false], [6, "module-pyk.dequote", false], [7, "module-pyk.kast", false], [8, "module-pyk.kast.att", false], [9, "module-pyk.kast.color", false], [10, "module-pyk.kast.formatter", false], [11, "module-pyk.kast.inner", false], [12, "module-pyk.kast.kast", false], [13, "module-pyk.kast.lexer", false], [14, "module-pyk.kast.manip", false], [15, "module-pyk.kast.markdown", false], [16, "module-pyk.kast.outer", false], [17, "module-pyk.kast.outer_lexer", false], [18, "module-pyk.kast.outer_parser", false], [19, "module-pyk.kast.outer_syntax", false], [20, "module-pyk.kast.parser", false], [21, "module-pyk.kast.pretty", false], [22, "module-pyk.kast.rewrite", false], [23, "module-pyk.kast.utils", false], [24, "module-pyk.kbuild", false], [25, "module-pyk.kbuild.config", false], [26, "module-pyk.kbuild.kbuild", false], [27, "module-pyk.kbuild.project", false], [28, "module-pyk.kbuild.utils", false], [29, "module-pyk.kcfg", false], [30, "module-pyk.kcfg.exploration", false], [31, "module-pyk.kcfg.explore", false], [32, "module-pyk.kcfg.kcfg", false], [33, "module-pyk.kcfg.semantics", false], [34, "module-pyk.kcfg.show", false], [35, "module-pyk.kcfg.store", false], [36, "module-pyk.kcfg.tui", false], [37, "module-pyk.kcovr", false], [38, "module-pyk.kdist", false], [39, "module-pyk.kdist.api", false], [40, "module-pyk.kdist.utils", false], [41, "module-pyk.kllvm", false], [42, "module-pyk.kllvm.ast", false], [43, "module-pyk.kllvm.compiler", false], [44, "module-pyk.kllvm.convert", false], [45, "module-pyk.kllvm.hints", false], [46, "module-pyk.kllvm.hints.prooftrace", false], [47, "module-pyk.kllvm.importer", false], [48, "module-pyk.kllvm.load", false], [49, "module-pyk.kllvm.load_static", false], [50, "module-pyk.kllvm.parser", false], [51, "module-pyk.kllvm.runtime", false], [52, "module-pyk.kllvm.utils", false], [53, "module-pyk.konvert", false], [54, "module-pyk.kore", false], [55, "module-pyk.kore.kompiled", false], [56, "module-pyk.kore.lexer", false], [57, "module-pyk.kore.manip", false], [58, "module-pyk.kore.match", false], [59, "module-pyk.kore.parser", false], [60, "module-pyk.kore.pool", false], [61, "module-pyk.kore.prelude", false], [62, "module-pyk.kore.rpc", false], [63, "module-pyk.kore.syntax", false], [64, "module-pyk.kore.tools", false], [65, "module-pyk.kore_exec_covr", false], [66, "module-pyk.kore_exec_covr.kore_exec_covr", false], [67, "module-pyk.krepl", false], [68, "module-pyk.krepl.repl", false], [69, "module-pyk.ktool", false], [70, "module-pyk.ktool.claim_index", false], [71, "module-pyk.ktool.kfuzz", false], [72, "module-pyk.ktool.kompile", false], [73, "module-pyk.ktool.kprint", false], [74, "module-pyk.ktool.kprove", false], [75, "module-pyk.ktool.krun", false], [76, "module-pyk.ktool.prove_rpc", false], [77, "module-pyk.prelude", false], [78, "module-pyk.prelude.bytes", false], [79, "module-pyk.prelude.collections", false], [80, "module-pyk.prelude.k", false], [81, "module-pyk.prelude.kbool", false], [82, "module-pyk.prelude.kint", false], [83, "module-pyk.prelude.ml", false], [84, "module-pyk.prelude.string", false], [85, "module-pyk.prelude.utils", false], [86, "module-pyk.proof", false], [87, "module-pyk.proof.implies", false], [88, "module-pyk.proof.proof", false], [89, "module-pyk.proof.reachability", false], [90, "module-pyk.proof.show", false], [91, "module-pyk.proof.tui", false], [92, "module-pyk.testing", false], [93, "module-pyk.testing.plugin", false], [94, "module-pyk.utils", false]], "module (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Module", false]], "module (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Module", false]], "module() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.module", false]], "module() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.module", false]], "module() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.module", false]], "module_name (aprproof property)": [[89, "pyk.proof.reachability.APRProof.module_name", false]], "module_name (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.module_name", false]], "module_name (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.module_name", false]], "module_name (duplicatemoduleerror attribute)": [[62, "pyk.kore.rpc.DuplicateModuleError.module_name", false]], "module_name (import attribute)": [[19, "pyk.kast.outer_syntax.Import.module_name", false], [63, "pyk.kore.syntax.Import.module_name", false]], "module_name (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.module_name", false]], "module_name (unknownmoduleerror attribute)": [[62, "pyk.kore.rpc.UnknownModuleError.module_name", false]], "module_names (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.module_names", false]], "module_to_llvm() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.module_to_llvm", false]], "modules (definition attribute)": [[19, "pyk.kast.outer_syntax.Definition.modules", false], [63, "pyk.kore.syntax.Definition.modules", false]], "modules (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.modules", false]], "modules (kflatmodulelist attribute)": [[16, "pyk.kast.outer.KFlatModuleList.modules", false]], "mu (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Mu", false]], "mu() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.mu", false]], "mulberry (color attribute)": [[9, "pyk.kast.color.Color.MULBERRY", false]], "mulint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.mulInt", false]], "multi_or() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.multi_or", false]], "multiaryconn (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.MultiaryConn", false]], "name (atom attribute)": [[15, "pyk.kast.markdown.Atom.name", false]], "name (attkey attribute)": [[8, "pyk.kast.att.AttKey.name", false]], "name (evar attribute)": [[63, "pyk.kore.syntax.EVar.name", false]], "name (kflatmodule attribute)": [[16, "pyk.kast.outer.KFlatModule.name", false]], "name (kimport attribute)": [[16, "pyk.kast.outer.KImport.name", false]], "name (klabel attribute)": [[11, "pyk.kast.inner.KLabel.name", false]], "name (knonterminal attribute)": [[16, "pyk.kast.outer.KNonTerminal.name", false]], "name (ksort attribute)": [[11, "pyk.kast.inner.KSort.name", false]], "name (ksyntaxlexical attribute)": [[16, "pyk.kast.outer.KSyntaxLexical.name", false]], "name (kvariable attribute)": [[11, "pyk.kast.inner.KVariable.name", false]], "name (llvmfunctionevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent.name", false]], "name (llvmhookevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent.name", false]], "name (module attribute)": [[19, "pyk.kast.outer_syntax.Module.name", false], [63, "pyk.kore.syntax.Module.name", false]], "name (nonterminal attribute)": [[19, "pyk.kast.outer_syntax.NonTerminal.name", false]], "name (project attribute)": [[27, "pyk.kbuild.project.Project.name", false]], "name (sort attribute)": [[19, "pyk.kast.outer_syntax.Sort.name", false], [63, "pyk.kore.syntax.Sort.name", false]], "name (sortapp attribute)": [[63, "pyk.kore.syntax.SortApp.name", false]], "name (sortdecl attribute)": [[19, "pyk.kast.outer_syntax.SortDecl.name", false], [63, "pyk.kore.syntax.SortDecl.name", false]], "name (sortvar attribute)": [[63, "pyk.kore.syntax.SortVar.name", false]], "name (svar attribute)": [[63, "pyk.kore.syntax.SVar.name", false]], "name (symbol attribute)": [[63, "pyk.kore.syntax.Symbol.name", false]], "name (syntaxlexical attribute)": [[19, "pyk.kast.outer_syntax.SyntaxLexical.name", false]], "name (target attribute)": [[27, "pyk.kbuild.project.Target.name", false]], "name (varpattern attribute)": [[63, "pyk.kore.syntax.VarPattern.name", false]], "nat (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.NAT", false]], "navajo_white (color attribute)": [[9, "pyk.kast.color.Color.NAVAJO_WHITE", false]], "navwidget (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.NavWidget", false]], "navwidget.selected (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.NavWidget.Selected", false]], "navy (color attribute)": [[9, "pyk.kast.color.Color.NAVY", false]], "navy_blue (color attribute)": [[9, "pyk.kast.color.Color.NAVY_BLUE", false]], "ndbranch (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.NDBranch", false]], "ndbranches() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.ndbranches", false]], "ne_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.ne_bool", false]], "ne_int() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.ne_int", false]], "neqint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.neqInt", false]], "new (syntaxsynonym attribute)": [[19, "pyk.kast.outer_syntax.SyntaxSynonym.new", false]], "new_sort (ksortsynonym attribute)": [[16, "pyk.kast.outer.KSortSynonym.new_sort", false]], "next (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Next", false]], "next() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.next", false]], "next_state() (interpreter method)": [[68, "pyk.krepl.repl.Interpreter.next_state", false]], "next_state() (kinterpreter method)": [[68, "pyk.krepl.repl.KInterpreter.next_state", false]], "next_states (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.next_states", false]], "next_states (branchingresult attribute)": [[62, "pyk.kore.rpc.BranchingResult.next_states", false]], "next_states (ctermexecute attribute)": [[5, "pyk.cterm.symbolic.CTermExecute.next_states", false]], "next_states (cutpointresult attribute)": [[62, "pyk.kore.rpc.CutPointResult.next_states", false]], "next_states (depthboundresult attribute)": [[62, "pyk.kore.rpc.DepthBoundResult.next_states", false]], "next_states (executeresult attribute)": [[62, "pyk.kore.rpc.ExecuteResult.next_states", false]], "next_states (stuckresult attribute)": [[62, "pyk.kore.rpc.StuckResult.next_states", false]], "next_states (terminalresult attribute)": [[62, "pyk.kore.rpc.TerminalResult.next_states", false]], "next_states (timeoutresult attribute)": [[62, "pyk.kore.rpc.TimeoutResult.next_states", false]], "next_states (vacuousresult attribute)": [[62, "pyk.kore.rpc.VacuousResult.next_states", false]], "nextstate (class in pyk.cterm.symbolic)": [[5, "pyk.cterm.symbolic.NextState", false]], "no_cell_rewrite_to_dots() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.no_cell_rewrite_to_dots", false]], "no_dispatch (behaviorview.selected attribute)": [[36, "pyk.kcfg.tui.BehaviorView.Selected.no_dispatch", false]], "no_dispatch (graphchunk.selected attribute)": [[36, "pyk.kcfg.tui.GraphChunk.Selected.no_dispatch", false]], "no_dispatch (navwidget.selected attribute)": [[36, "pyk.kcfg.tui.NavWidget.Selected.no_dispatch", false]], "no_post_exec_simplify (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.no_post_exec_simplify", false]], "node (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.node", false]], "node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.node", false]], "node_attrs() (aprproofnodeprinter method)": [[90, "pyk.proof.show.APRProofNodePrinter.node_attrs", false]], "node_attrs() (nodeprinter method)": [[34, "pyk.kcfg.show.NodePrinter.node_attrs", false]], "node_id (aprproofresult attribute)": [[89, "pyk.proof.reachability.APRProofResult.node_id", false]], "node_printer (kcfgshow attribute)": [[34, "pyk.kcfg.show.KCFGShow.node_printer", false]], "node_refutations (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.node_refutations", false]], "node_short_info() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.node_short_info", false]], "nodeattr (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.NodeAttr", false]], "nodeprinter (class in pyk.kcfg.show)": [[34, "pyk.kcfg.show.NodePrinter", false]], "nodes (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.nodes", false]], "nodes (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.nodes", false]], "nodeview (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.NodeView", false]], "non_assoc (assoc attribute)": [[19, "pyk.kast.outer_syntax.Assoc.NON_ASSOC", false]], "non_assoc (kassoc attribute)": [[16, "pyk.kast.outer.KAssoc.NON_ASSOC", false]], "non_empty (userlist attribute)": [[19, "pyk.kast.outer_syntax.UserList.non_empty", false]], "non_terminals (kproduction property)": [[16, "pyk.kast.outer.KProduction.non_terminals", false]], "none (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.NONE", false]], "none (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.NONE", false]], "none (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.NONE", false]], "none (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.NONE", false]], "none() (in module pyk.utils)": [[94, "pyk.utils.none", false]], "nonempty_str() (in module pyk.utils)": [[94, "pyk.utils.nonempty_str", false]], "nonetype (class in pyk.kast.att)": [[8, "pyk.kast.att.NoneType", false]], "nonterminal (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.NonTerminal", false]], "nonzero_depth (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.nonzero_depth", false]], "nonzero_depth() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.nonzero_depth", false]], "normalize_constraints() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.normalize_constraints", false]], "normalize_ml_pred() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.normalize_ml_pred", false]], "not (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.Not", false]], "not (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Not", false]], "not_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.not_bool", false]], "not_log_context (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.not_log_context", false]], "not_none() (in module pyk.utils)": [[94, "pyk.utils.not_none", false]], "notbool() (in module pyk.prelude.kbool)": [[81, "pyk.prelude.kbool.notBool", false]], "notint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.notInt", false]], "nott() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.nott", false]], "nu (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Nu", false]], "nu() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.nu", false]], "nullaryconn (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.NullaryConn", false]], "of() (and class method)": [[63, "pyk.kore.syntax.And.of", false]], "of() (bottom class method)": [[63, "pyk.kore.syntax.Bottom.of", false]], "of() (ceil class method)": [[63, "pyk.kore.syntax.Ceil.of", false]], "of() (dv class method)": [[63, "pyk.kore.syntax.DV.of", false]], "of() (equals class method)": [[63, "pyk.kore.syntax.Equals.of", false]], "of() (exists class method)": [[63, "pyk.kore.syntax.Exists.of", false]], "of() (floor class method)": [[63, "pyk.kore.syntax.Floor.of", false]], "of() (forall class method)": [[63, "pyk.kore.syntax.Forall.of", false]], "of() (iff class method)": [[63, "pyk.kore.syntax.Iff.of", false]], "of() (implies class method)": [[63, "pyk.kore.syntax.Implies.of", false]], "of() (in class method)": [[63, "pyk.kore.syntax.In.of", false]], "of() (leftassoc class method)": [[63, "pyk.kore.syntax.LeftAssoc.of", false]], "of() (mlpattern class method)": [[63, "pyk.kore.syntax.MLPattern.of", false]], "of() (mu class method)": [[63, "pyk.kore.syntax.Mu.of", false]], "of() (next class method)": [[63, "pyk.kore.syntax.Next.of", false]], "of() (not class method)": [[63, "pyk.kore.syntax.Not.of", false]], "of() (nu class method)": [[63, "pyk.kore.syntax.Nu.of", false]], "of() (or class method)": [[63, "pyk.kore.syntax.Or.of", false]], "of() (rewrites class method)": [[63, "pyk.kore.syntax.Rewrites.of", false]], "of() (rightassoc class method)": [[63, "pyk.kore.syntax.RightAssoc.of", false]], "of() (top class method)": [[63, "pyk.kore.syntax.Top.of", false]], "old (syntaxsynonym attribute)": [[19, "pyk.kast.outer_syntax.SyntaxSynonym.old", false]], "old_lace (color attribute)": [[9, "pyk.kast.color.Color.OLD_LACE", false]], "old_sort (ksortsynonym attribute)": [[16, "pyk.kast.outer.KSortSynonym.old_sort", false]], "olive (color attribute)": [[9, "pyk.kast.color.Color.OLIVE", false]], "olive_drab (color attribute)": [[9, "pyk.kast.color.Color.OLIVE_DRAB", false]], "olive_green (color attribute)": [[9, "pyk.kast.color.Color.OLIVE_GREEN", false]], "on_attributes() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.on_attributes", false]], "on_behavior_view_selected() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.on_behavior_view_selected", false]], "on_click() (behaviorview method)": [[36, "pyk.kcfg.tui.BehaviorView.on_click", false]], "on_click() (constraint method)": [[36, "pyk.kcfg.tui.Constraint.on_click", false]], "on_click() (custom method)": [[36, "pyk.kcfg.tui.Custom.on_click", false]], "on_click() (graphchunk method)": [[36, "pyk.kcfg.tui.GraphChunk.on_click", false]], "on_click() (status method)": [[36, "pyk.kcfg.tui.Status.on_click", false]], "on_click() (term method)": [[36, "pyk.kcfg.tui.Term.on_click", false]], "on_constraint_selected() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.on_constraint_selected", false]], "on_custom_selected() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.on_custom_selected", false]], "on_enter() (graphchunk method)": [[36, "pyk.kcfg.tui.GraphChunk.on_enter", false]], "on_graph_chunk_selected() (kcfgviewer method)": [[36, "pyk.kcfg.tui.KCFGViewer.on_graph_chunk_selected", false]], "on_leave() (graphchunk method)": [[36, "pyk.kcfg.tui.GraphChunk.on_leave", false]], "on_mount() (aprproofviewer method)": [[91, "pyk.proof.tui.APRProofViewer.on_mount", false]], "on_mount() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.on_mount", false]], "on_status_selected() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.on_status_selected", false]], "on_term_selected() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.on_term_selected", false]], "oneline (koreexeclogformat attribute)": [[62, "pyk.kore.rpc.KoreExecLogFormat.ONELINE", false]], "op (not attribute)": [[15, "pyk.kast.markdown.Not.op", false]], "op_sort (ceil attribute)": [[63, "pyk.kore.syntax.Ceil.op_sort", false]], "op_sort (equals attribute)": [[63, "pyk.kore.syntax.Equals.op_sort", false]], "op_sort (floor attribute)": [[63, "pyk.kore.syntax.Floor.op_sort", false]], "op_sort (in attribute)": [[63, "pyk.kore.syntax.In.op_sort", false]], "op_sort (mlpred attribute)": [[63, "pyk.kore.syntax.MLPred.op_sort", false]], "ops (and attribute)": [[15, "pyk.kast.markdown.And.ops", false], [63, "pyk.kore.syntax.And.ops", false]], "ops (multiaryconn attribute)": [[63, "pyk.kore.syntax.MultiaryConn.ops", false]], "ops (or attribute)": [[15, "pyk.kast.markdown.Or.ops", false], [63, "pyk.kore.syntax.Or.ops", false]], "optimizednodestore (class in pyk.kcfg.store)": [[35, "pyk.kcfg.store.OptimizedNodeStore", false]], "optionaltype (class in pyk.kast.att)": [[8, "pyk.kast.att.OptionalType", false]], "or (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.Or", false]], "or (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Or", false]], "or_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.or_bool", false]], "orange (color attribute)": [[9, "pyk.kast.color.Color.ORANGE", false]], "orange_red (color attribute)": [[9, "pyk.kast.color.Color.ORANGE_RED", false]], "orbool() (in module pyk.prelude.kbool)": [[81, "pyk.prelude.kbool.orBool", false]], "orchid (color attribute)": [[9, "pyk.kast.color.Color.ORCHID", false]], "origin (logrewrite attribute)": [[62, "pyk.kore.rpc.LogRewrite.origin", false]], "orint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.orInt", false]], "orr() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.orr", false]], "outer_lexer() (in module pyk.kast.outer_lexer)": [[17, "pyk.kast.outer_lexer.outer_lexer", false]], "outerparser (class in pyk.kast.outer_parser)": [[18, "pyk.kast.outer_parser.OuterParser", false]], "overload (atts attribute)": [[8, "pyk.kast.att.Atts.OVERLOAD", false]], "overloads (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.overloads", false]], "owise (atts attribute)": [[8, "pyk.kast.att.Atts.OWISE", false]], "own_status (aprproof property)": [[89, "pyk.proof.reachability.APRProof.own_status", false]], "own_status (impliesproof property)": [[87, "pyk.proof.implies.ImpliesProof.own_status", false]], "own_status (proof property)": [[88, "pyk.proof.proof.Proof.own_status", false]], "package (packagesource attribute)": [[27, "pyk.kbuild.project.PackageSource.package", false]], "package_path() (in module pyk.kdist.utils)": [[40, "pyk.kdist.utils.package_path", false]], "packagesource (class in pyk.kbuild.project)": [[27, "pyk.kbuild.project.PackageSource", false]], "pale_goldenrod (color attribute)": [[9, "pyk.kast.color.Color.PALE_GOLDENROD", false]], "pale_green (color attribute)": [[9, "pyk.kast.color.Color.PALE_GREEN", false]], "pale_turquoise (color attribute)": [[9, "pyk.kast.color.Color.PALE_TURQUOISE", false]], "pale_violet_red (color attribute)": [[9, "pyk.kast.color.Color.PALE_VIOLET_RED", false]], "papaya_whip (color attribute)": [[9, "pyk.kast.color.Color.PAPAYA_WHIP", false]], "parallel_advance_proof() (in module pyk.proof.proof)": [[88, "pyk.proof.proof.parallel_advance_proof", false]], "param_sorts (aliasdecl attribute)": [[63, "pyk.kore.syntax.AliasDecl.param_sorts", false]], "param_sorts (symboldecl attribute)": [[63, "pyk.kore.syntax.SymbolDecl.param_sorts", false]], "params (klabel attribute)": [[11, "pyk.kast.inner.KLabel.params", false]], "params (kproduction attribute)": [[16, "pyk.kast.outer.KProduction.params", false]], "params (ksyntaxsort attribute)": [[16, "pyk.kast.outer.KSyntaxSort.params", false]], "params (sortdecl attribute)": [[19, "pyk.kast.outer_syntax.SortDecl.params", false]], "paren() (in module pyk.kast.pretty)": [[21, "pyk.kast.pretty.paren", false]], "parse() (anytype method)": [[8, "pyk.kast.att.AnyType.parse", false]], "parse() (atttype method)": [[8, "pyk.kast.att.AttType.parse", false]], "parse() (colorstype method)": [[8, "pyk.kast.att.ColorsType.parse", false]], "parse() (colortype method)": [[8, "pyk.kast.att.ColorType.parse", false]], "parse() (format class method)": [[8, "pyk.kast.att.Format.parse", false]], "parse() (formattype method)": [[8, "pyk.kast.att.FormatType.parse", false]], "parse() (inttype method)": [[8, "pyk.kast.att.IntType.parse", false]], "parse() (katt class method)": [[8, "pyk.kast.att.KAtt.parse", false]], "parse() (kversion static method)": [[28, "pyk.kbuild.utils.KVersion.parse", false]], "parse() (llvmrewritetrace static method)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.parse", false]], "parse() (locationtype method)": [[8, "pyk.kast.att.LocationType.parse", false]], "parse() (nonetype method)": [[8, "pyk.kast.att.NoneType.parse", false]], "parse() (optionaltype method)": [[8, "pyk.kast.att.OptionalType.parse", false]], "parse() (pathtype method)": [[8, "pyk.kast.att.PathType.parse", false]], "parse() (selectorparser method)": [[15, "pyk.kast.markdown.SelectorParser.parse", false]], "parse() (strtype method)": [[8, "pyk.kast.att.StrType.parse", false]], "parse() (targetid static method)": [[39, "pyk.kdist.api.TargetId.parse", false]], "parse_args() (in module pyk.kcovr)": [[37, "pyk.kcovr.parse_args", false]], "parse_definition() (in module pyk.kllvm.parser)": [[50, "pyk.kllvm.parser.parse_definition", false]], "parse_definition_file() (in module pyk.kllvm.parser)": [[50, "pyk.kllvm.parser.parse_definition_file", false]], "parse_outer() (in module pyk.kast.utils)": [[23, "pyk.kast.utils.parse_outer", false]], "parse_pattern() (in module pyk.kllvm.parser)": [[50, "pyk.kllvm.parser.parse_pattern", false]], "parse_pattern_file() (in module pyk.kllvm.parser)": [[50, "pyk.kllvm.parser.parse_pattern_file", false]], "parse_rule_applications() (in module pyk.kore_exec_covr.kore_exec_covr)": [[66, "pyk.kore_exec_covr.kore_exec_covr.parse_rule_applications", false]], "parse_sort() (in module pyk.kllvm.parser)": [[50, "pyk.kllvm.parser.parse_sort", false]], "parse_sort_file() (in module pyk.kllvm.parser)": [[50, "pyk.kllvm.parser.parse_sort_file", false]], "parse_tags() (in module pyk.kast.markdown)": [[15, "pyk.kast.markdown.parse_tags", false]], "parse_token() (kprint method)": [[73, "pyk.ktool.kprint.KPrint.parse_token", false]], "parseerror": [[62, "pyk.kore.rpc.ParseError", false]], "passed (proof property)": [[88, "pyk.proof.proof.Proof.passed", false]], "passed (proofstatus attribute)": [[88, "pyk.proof.proof.ProofStatus.PASSED", false]], "patch (kversion attribute)": [[28, "pyk.kbuild.utils.KVersion.patch", false]], "path (kbuildenv attribute)": [[26, "pyk.kbuild.kbuild.KBuildEnv.path", false]], "path (pathsource attribute)": [[27, "pyk.kbuild.project.PathSource.path", false]], "path (project attribute)": [[27, "pyk.kbuild.project.Project.path", false]], "path (require attribute)": [[19, "pyk.kast.outer_syntax.Require.path", false]], "path_conditions (aprfailureinfo attribute)": [[89, "pyk.proof.reachability.APRFailureInfo.path_conditions", false]], "path_constraints() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.path_constraints", false]], "path_length() (kcfg static method)": [[32, "pyk.kcfg.kcfg.KCFG.path_length", false]], "paths_between() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.paths_between", false]], "pathsource (class in pyk.kbuild.project)": [[27, "pyk.kbuild.project.PathSource", false]], "pathtype (class in pyk.kast.att)": [[8, "pyk.kast.att.PathType", false]], "pattern (assoc property)": [[63, "pyk.kore.syntax.Assoc.pattern", false]], "pattern (axiom attribute)": [[63, "pyk.kore.syntax.Axiom.pattern", false]], "pattern (axiomlike attribute)": [[63, "pyk.kore.syntax.AxiomLike.pattern", false]], "pattern (ceil attribute)": [[63, "pyk.kore.syntax.Ceil.pattern", false]], "pattern (claim attribute)": [[63, "pyk.kore.syntax.Claim.pattern", false]], "pattern (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Pattern", false]], "pattern (exists attribute)": [[63, "pyk.kore.syntax.Exists.pattern", false]], "pattern (floor attribute)": [[63, "pyk.kore.syntax.Floor.pattern", false]], "pattern (forall attribute)": [[63, "pyk.kore.syntax.Forall.pattern", false]], "pattern (kas attribute)": [[11, "pyk.kast.inner.KAs.pattern", false]], "pattern (kstate attribute)": [[68, "pyk.krepl.repl.KState.pattern", false]], "pattern (kversion attribute)": [[28, "pyk.kbuild.utils.KVersion.PATTERN", false]], "pattern (leftassoc property)": [[63, "pyk.kore.syntax.LeftAssoc.pattern", false]], "pattern (mlfixpoint attribute)": [[63, "pyk.kore.syntax.MLFixpoint.pattern", false]], "pattern (mlquant attribute)": [[63, "pyk.kore.syntax.MLQuant.pattern", false]], "pattern (mu attribute)": [[63, "pyk.kore.syntax.Mu.pattern", false]], "pattern (next attribute)": [[63, "pyk.kore.syntax.Next.pattern", false]], "pattern (not attribute)": [[63, "pyk.kore.syntax.Not.pattern", false]], "pattern (nu attribute)": [[63, "pyk.kore.syntax.Nu.pattern", false]], "pattern (rightassoc property)": [[63, "pyk.kore.syntax.RightAssoc.pattern", false]], "pattern (roundpred attribute)": [[63, "pyk.kore.syntax.RoundPred.pattern", false]], "pattern (smtsolvererror attribute)": [[62, "pyk.kore.rpc.SmtSolverError.pattern", false]], "pattern (term property)": [[51, "pyk.kllvm.runtime.Term.pattern", false]], "pattern (unaryconn attribute)": [[63, "pyk.kore.syntax.UnaryConn.pattern", false]], "pattern() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.pattern", false]], "pattern_sorts() (koresymboltable method)": [[55, "pyk.kore.kompiled.KoreSymbolTable.pattern_sorts", false]], "pattern_to_llvm() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.pattern_to_llvm", false]], "patternerror": [[62, "pyk.kore.rpc.PatternError", false]], "patterns (app property)": [[63, "pyk.kore.syntax.App.patterns", false]], "patterns (assoc property)": [[63, "pyk.kore.syntax.Assoc.patterns", false]], "patterns (binaryconn property)": [[63, "pyk.kore.syntax.BinaryConn.patterns", false]], "patterns (binarypred property)": [[63, "pyk.kore.syntax.BinaryPred.patterns", false]], "patterns (dv property)": [[63, "pyk.kore.syntax.DV.patterns", false]], "patterns (mlfixpoint property)": [[63, "pyk.kore.syntax.MLFixpoint.patterns", false]], "patterns (mlquant property)": [[63, "pyk.kore.syntax.MLQuant.patterns", false]], "patterns (multiaryconn property)": [[63, "pyk.kore.syntax.MultiaryConn.patterns", false]], "patterns (next property)": [[63, "pyk.kore.syntax.Next.patterns", false]], "patterns (nullaryconn property)": [[63, "pyk.kore.syntax.NullaryConn.patterns", false]], "patterns (pattern property)": [[63, "pyk.kore.syntax.Pattern.patterns", false]], "patterns (rewrites property)": [[63, "pyk.kore.syntax.Rewrites.patterns", false]], "patterns (roundpred property)": [[63, "pyk.kore.syntax.RoundPred.patterns", false]], "patterns (string property)": [[63, "pyk.kore.syntax.String.patterns", false]], "patterns (unaryconn property)": [[63, "pyk.kore.syntax.UnaryConn.patterns", false]], "patterns (varpattern property)": [[63, "pyk.kore.syntax.VarPattern.patterns", false]], "peach (color attribute)": [[9, "pyk.kast.color.Color.PEACH", false]], "peach_puff (color attribute)": [[9, "pyk.kast.color.Color.PEACH_PUFF", false]], "pending (aprproof property)": [[89, "pyk.proof.reachability.APRProof.pending", false]], "pending (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.pending", false]], "pending (proofstatus attribute)": [[88, "pyk.proof.proof.ProofStatus.PENDING", false]], "pending_nodes (aprfailureinfo attribute)": [[89, "pyk.proof.reachability.APRFailureInfo.pending_nodes", false]], "periwinkle (color attribute)": [[9, "pyk.kast.color.Color.PERIWINKLE", false]], "peru (color attribute)": [[9, "pyk.kast.color.Color.PERU", false]], "pid (koreserver property)": [[62, "pyk.kore.rpc.KoreServer.pid", false]], "pid (koreserverinfo attribute)": [[62, "pyk.kore.rpc.KoreServerInfo.pid", false]], "pine_green (color attribute)": [[9, "pyk.kast.color.Color.PINE_GREEN", false]], "pink (color attribute)": [[9, "pyk.kast.color.Color.PINK", false]], "plugin_name (targetid attribute)": [[39, "pyk.kdist.api.TargetId.plugin_name", false]], "plum (color attribute)": [[9, "pyk.kast.color.Color.PLUM", false]], "plus (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.PLUS", false]], "port (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.port", false]], "port (koreclient attribute)": [[62, "pyk.kore.rpc.KoreClient.port", false]], "port (koreserver property)": [[62, "pyk.kore.rpc.KoreServer.port", false]], "port (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.port", false]], "port (koreserverinfo attribute)": [[62, "pyk.kore.rpc.KoreServerInfo.port", false]], "poset (class in pyk.utils)": [[94, "pyk.utils.POSet", false]], "powder_blue (color attribute)": [[9, "pyk.kast.color.Color.POWDER_BLUE", false]], "pre_constraints (refutationproof property)": [[87, "pyk.proof.implies.RefutationProof.pre_constraints", false]], "pre_trace (llvmrewritetrace property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.pre_trace", false]], "pred (subst property)": [[11, "pyk.kast.inner.Subst.pred", false]], "predecessors() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.predecessors", false]], "predicate (atts attribute)": [[8, "pyk.kast.att.Atts.PREDICATE", false]], "predicate (impliesresult attribute)": [[62, "pyk.kore.rpc.ImpliesResult.predicate", false]], "predicate (state attribute)": [[62, "pyk.kore.rpc.State.predicate", false]], "prefer (atts attribute)": [[8, "pyk.kast.att.Atts.PREFER", false]], "pretty (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.PRETTY", false]], "pretty (katt property)": [[8, "pyk.kast.att.KAtt.pretty", false]], "pretty (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.PRETTY", false]], "pretty (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.PRETTY", false]], "pretty (kstate property)": [[68, "pyk.krepl.repl.KState.pretty", false]], "pretty (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.PRETTY", false]], "pretty() (aprproofshow method)": [[90, "pyk.proof.show.APRProofShow.pretty", false]], "pretty() (equalityproof method)": [[87, "pyk.proof.implies.EqualityProof.pretty", false]], "pretty() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.pretty", false]], "pretty() (refutationproof method)": [[87, "pyk.proof.implies.RefutationProof.pretty", false]], "pretty_bytes() (in module pyk.prelude.bytes)": [[78, "pyk.prelude.bytes.pretty_bytes", false]], "pretty_bytes_str() (in module pyk.prelude.bytes)": [[78, "pyk.prelude.bytes.pretty_bytes_str", false]], "pretty_print() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.pretty_print", false]], "pretty_print() (kprint method)": [[73, "pyk.ktool.kprint.KPrint.pretty_print", false]], "pretty_segments() (aprproofshow method)": [[90, "pyk.proof.show.APRProofShow.pretty_segments", false]], "pretty_segments() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.pretty_segments", false]], "pretty_string() (in module pyk.prelude.string)": [[84, "pyk.prelude.string.pretty_string", false]], "prettyprinter (class in pyk.kast.pretty)": [[21, "pyk.kast.pretty.PrettyPrinter", false]], "print() (aprfailureinfo method)": [[89, "pyk.proof.reachability.APRFailureInfo.print", false]], "print() (prettyprinter method)": [[21, "pyk.kast.pretty.PrettyPrinter.print", false]], "print_node() (nodeprinter method)": [[34, "pyk.kcfg.show.NodePrinter.print_node", false]], "printoutput (class in pyk.kore.tools)": [[64, "pyk.kore.tools.PrintOutput", false]], "prior_loops_cache (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.prior_loops_cache", false]], "prior_loops_cache (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.prior_loops_cache", false]], "prior_loops_cache_update (aprproofresult attribute)": [[89, "pyk.proof.reachability.APRProofResult.prior_loops_cache_update", false]], "priorities (atts attribute)": [[8, "pyk.kast.att.Atts.PRIORITIES", false]], "priorities (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.priorities", false]], "priorities (ksyntaxpriority attribute)": [[16, "pyk.kast.outer.KSyntaxPriority.priorities", false]], "priority (atts attribute)": [[8, "pyk.kast.att.Atts.PRIORITY", false]], "priority (krule property)": [[16, "pyk.kast.outer.KRule.priority", false]], "priorityblock (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.PriorityBlock", false]], "private (atts attribute)": [[8, "pyk.kast.att.Atts.PRIVATE", false]], "process_blue (color attribute)": [[9, "pyk.kast.color.Color.PROCESS_BLUE", false]], "production (atts attribute)": [[8, "pyk.kast.att.Atts.PRODUCTION", false]], "production (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Production", false]], "production_for_cell_sort() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.production_for_cell_sort", false]], "productionitem (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.ProductionItem", false]], "productionlike (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.ProductionLike", false]], "productions (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.productions", false]], "productions (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.productions", false]], "productions (priorityblock attribute)": [[19, "pyk.kast.outer_syntax.PriorityBlock.productions", false]], "profile() (in module pyk.testing.plugin)": [[93, "pyk.testing.plugin.profile", false]], "progam (kproveoutput attribute)": [[74, "pyk.ktool.kprove.KProveOutput.PROGAM", false]], "program (kastinput attribute)": [[73, "pyk.ktool.kprint.KAstInput.PROGRAM", false]], "program (kastoutput attribute)": [[73, "pyk.ktool.kprint.KAstOutput.PROGRAM", false]], "program (krunoutput attribute)": [[75, "pyk.ktool.krun.KRunOutput.PROGRAM", false]], "program (printoutput attribute)": [[64, "pyk.kore.tools.PrintOutput.PROGRAM", false]], "program_file (kinterpreter attribute)": [[68, "pyk.krepl.repl.KInterpreter.program_file", false]], "project (class in pyk.kbuild.project)": [[27, "pyk.kbuild.project.Project", false]], "project (kbuildenv attribute)": [[26, "pyk.kbuild.kbuild.KBuildEnv.project", false]], "project_file (project property)": [[27, "pyk.kbuild.project.Project.project_file", false]], "projection (atts attribute)": [[8, "pyk.kast.att.Atts.PROJECTION", false]], "prompt (baserepl attribute)": [[68, "pyk.krepl.repl.BaseRepl.prompt", false]], "proof (aprproofnodeprinter attribute)": [[90, "pyk.proof.show.APRProofNodePrinter.proof", false]], "proof (class in pyk.proof.proof)": [[88, "pyk.proof.proof.Proof", false]], "proof (impliesproofstep attribute)": [[87, "pyk.proof.implies.ImpliesProofStep.proof", false]], "proof (impliesprover attribute)": [[87, "pyk.proof.implies.ImpliesProver.proof", false]], "proof_data_exists() (proof static method)": [[88, "pyk.proof.proof.Proof.proof_data_exists", false]], "proof_dir (proof attribute)": [[88, "pyk.proof.proof.Proof.proof_dir", false]], "proof_exists() (proof static method)": [[88, "pyk.proof.proof.Proof.proof_exists", false]], "proof_id (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.proof_id", false]], "proof_subdir (proof property)": [[88, "pyk.proof.proof.Proof.proof_subdir", false]], "proofstatus (class in pyk.proof.proof)": [[88, "pyk.proof.proof.ProofStatus", false]], "proofsummary (class in pyk.proof.proof)": [[88, "pyk.proof.proof.ProofSummary", false]], "propagate_up_constraints() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.propagate_up_constraints", false]], "prove() (kprove method)": [[74, "pyk.ktool.kprove.KProve.prove", false]], "prove_claim() (kprove method)": [[74, "pyk.ktool.kprove.KProve.prove_claim", false]], "prove_rpc() (proverpc method)": [[76, "pyk.ktool.prove_rpc.ProveRpc.prove_rpc", false]], "prover (class in pyk.proof.proof)": [[88, "pyk.proof.proof.Prover", false]], "prover (kprove attribute)": [[74, "pyk.ktool.kprove.KProve.prover", false]], "prover_args (kprove attribute)": [[74, "pyk.ktool.kprove.KProve.prover_args", false]], "proverpc (class in pyk.ktool.prove_rpc)": [[76, "pyk.ktool.prove_rpc.ProveRpc", false]], "proxy (logtiming.component attribute)": [[62, "pyk.kore.rpc.LogTiming.Component.PROXY", false]], "prune() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.prune", false]], "prune() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.prune", false]], "prune() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.prune", false]], "public (import attribute)": [[19, "pyk.kast.outer_syntax.Import.public", false]], "public (kimport attribute)": [[16, "pyk.kast.outer.KImport.public", false]], "purple (color attribute)": [[9, "pyk.kast.color.Color.PURPLE", false]], "push_down_rewrites() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.push_down_rewrites", false]], "pyk": [[1, "module-pyk", false]], "pyk.coverage": [[2, "module-pyk.coverage", false]], "pyk.cterm": [[3, "module-pyk.cterm", false]], "pyk.cterm.cterm": [[4, "module-pyk.cterm.cterm", false]], "pyk.cterm.symbolic": [[5, "module-pyk.cterm.symbolic", false]], "pyk.dequote": [[6, "module-pyk.dequote", false]], "pyk.kast": [[7, "module-pyk.kast", false]], "pyk.kast.att": [[8, "module-pyk.kast.att", false]], "pyk.kast.color": [[9, "module-pyk.kast.color", false]], "pyk.kast.formatter": [[10, "module-pyk.kast.formatter", false]], "pyk.kast.inner": [[11, "module-pyk.kast.inner", false]], "pyk.kast.kast": [[12, "module-pyk.kast.kast", false]], "pyk.kast.lexer": [[13, "module-pyk.kast.lexer", false]], "pyk.kast.manip": [[14, "module-pyk.kast.manip", false]], "pyk.kast.markdown": [[15, "module-pyk.kast.markdown", false]], "pyk.kast.outer": [[16, "module-pyk.kast.outer", false]], "pyk.kast.outer_lexer": [[17, "module-pyk.kast.outer_lexer", false]], "pyk.kast.outer_parser": [[18, "module-pyk.kast.outer_parser", false]], "pyk.kast.outer_syntax": [[19, "module-pyk.kast.outer_syntax", false]], "pyk.kast.parser": [[20, "module-pyk.kast.parser", false]], "pyk.kast.pretty": [[21, "module-pyk.kast.pretty", false]], "pyk.kast.rewrite": [[22, "module-pyk.kast.rewrite", false]], "pyk.kast.utils": [[23, "module-pyk.kast.utils", false]], "pyk.kbuild": [[24, "module-pyk.kbuild", false]], "pyk.kbuild.config": [[25, "module-pyk.kbuild.config", false]], "pyk.kbuild.kbuild": [[26, "module-pyk.kbuild.kbuild", false]], "pyk.kbuild.project": [[27, "module-pyk.kbuild.project", false]], "pyk.kbuild.utils": [[28, "module-pyk.kbuild.utils", false]], "pyk.kcfg": [[29, "module-pyk.kcfg", false]], "pyk.kcfg.exploration": [[30, "module-pyk.kcfg.exploration", false]], "pyk.kcfg.explore": [[31, "module-pyk.kcfg.explore", false]], "pyk.kcfg.kcfg": [[32, "module-pyk.kcfg.kcfg", false]], "pyk.kcfg.semantics": [[33, "module-pyk.kcfg.semantics", false]], "pyk.kcfg.show": [[34, "module-pyk.kcfg.show", false]], "pyk.kcfg.store": [[35, "module-pyk.kcfg.store", false]], "pyk.kcfg.tui": [[36, "module-pyk.kcfg.tui", false]], "pyk.kcovr": [[37, "module-pyk.kcovr", false]], "pyk.kdist": [[38, "module-pyk.kdist", false]], "pyk.kdist.api": [[39, "module-pyk.kdist.api", false]], "pyk.kdist.utils": [[40, "module-pyk.kdist.utils", false]], "pyk.kllvm": [[41, "module-pyk.kllvm", false]], "pyk.kllvm.ast": [[42, "module-pyk.kllvm.ast", false]], "pyk.kllvm.compiler": [[43, "module-pyk.kllvm.compiler", false]], "pyk.kllvm.convert": [[44, "module-pyk.kllvm.convert", false]], "pyk.kllvm.hints": [[45, "module-pyk.kllvm.hints", false]], "pyk.kllvm.hints.prooftrace": [[46, "module-pyk.kllvm.hints.prooftrace", false]], "pyk.kllvm.importer": [[47, "module-pyk.kllvm.importer", false]], "pyk.kllvm.load": [[48, "module-pyk.kllvm.load", false]], "pyk.kllvm.load_static": [[49, "module-pyk.kllvm.load_static", false]], "pyk.kllvm.parser": [[50, "module-pyk.kllvm.parser", false]], "pyk.kllvm.runtime": [[51, "module-pyk.kllvm.runtime", false]], "pyk.kllvm.utils": [[52, "module-pyk.kllvm.utils", false]], "pyk.konvert": [[53, "module-pyk.konvert", false]], "pyk.kore": [[54, "module-pyk.kore", false]], "pyk.kore.kompiled": [[55, "module-pyk.kore.kompiled", false]], "pyk.kore.lexer": [[56, "module-pyk.kore.lexer", false]], "pyk.kore.manip": [[57, "module-pyk.kore.manip", false]], "pyk.kore.match": [[58, "module-pyk.kore.match", false]], "pyk.kore.parser": [[59, "module-pyk.kore.parser", false]], "pyk.kore.pool": [[60, "module-pyk.kore.pool", false]], "pyk.kore.prelude": [[61, "module-pyk.kore.prelude", false]], "pyk.kore.rpc": [[62, "module-pyk.kore.rpc", false]], "pyk.kore.syntax": [[63, "module-pyk.kore.syntax", false]], "pyk.kore.tools": [[64, "module-pyk.kore.tools", false]], "pyk.kore_exec_covr": [[65, "module-pyk.kore_exec_covr", false]], "pyk.kore_exec_covr.kore_exec_covr": [[66, "module-pyk.kore_exec_covr.kore_exec_covr", false]], "pyk.krepl": [[67, "module-pyk.krepl", false]], "pyk.krepl.repl": [[68, "module-pyk.krepl.repl", false]], "pyk.ktool": [[69, "module-pyk.ktool", false]], "pyk.ktool.claim_index": [[70, "module-pyk.ktool.claim_index", false]], "pyk.ktool.kfuzz": [[71, "module-pyk.ktool.kfuzz", false]], "pyk.ktool.kompile": [[72, "module-pyk.ktool.kompile", false]], "pyk.ktool.kprint": [[73, "module-pyk.ktool.kprint", false]], "pyk.ktool.kprove": [[74, "module-pyk.ktool.kprove", false]], "pyk.ktool.krun": [[75, "module-pyk.ktool.krun", false]], "pyk.ktool.prove_rpc": [[76, "module-pyk.ktool.prove_rpc", false]], "pyk.prelude": [[77, "module-pyk.prelude", false]], "pyk.prelude.bytes": [[78, "module-pyk.prelude.bytes", false]], "pyk.prelude.collections": [[79, "module-pyk.prelude.collections", false]], "pyk.prelude.k": [[80, "module-pyk.prelude.k", false]], "pyk.prelude.kbool": [[81, "module-pyk.prelude.kbool", false]], "pyk.prelude.kint": [[82, "module-pyk.prelude.kint", false]], "pyk.prelude.ml": [[83, "module-pyk.prelude.ml", false]], "pyk.prelude.string": [[84, "module-pyk.prelude.string", false]], "pyk.prelude.utils": [[85, "module-pyk.prelude.utils", false]], "pyk.proof": [[86, "module-pyk.proof", false]], "pyk.proof.implies": [[87, "module-pyk.proof.implies", false]], "pyk.proof.proof": [[88, "module-pyk.proof.proof", false]], "pyk.proof.reachability": [[89, "module-pyk.proof.reachability", false]], "pyk.proof.show": [[90, "module-pyk.proof.show", false]], "pyk.proof.tui": [[91, "module-pyk.proof.tui", false]], "pyk.testing": [[92, "module-pyk.testing", false]], "pyk.testing.plugin": [[93, "module-pyk.testing.plugin", false]], "pyk.utils": [[94, "module-pyk.utils", false]], "pykbackend (class in pyk.ktool.kompile)": [[72, "pyk.ktool.kompile.PykBackend", false]], "pytest_addoption() (in module pyk.testing.plugin)": [[93, "pyk.testing.plugin.pytest_addoption", false]], "question (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.QUESTION", false]], "raised() (in module pyk.utils)": [[94, "pyk.utils.raised", false]], "raw_sienna (color attribute)": [[9, "pyk.kast.color.Color.RAW_SIENNA", false]], "rbrace (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.RBRACE", false], [56, "pyk.kore.lexer.TokenType.RBRACE", false]], "rbrack (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.RBRACK", false], [56, "pyk.kore.lexer.TokenType.RBRACK", false]], "reachable_nodes() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.reachable_nodes", false]], "read_cfg_data() (kcfg static method)": [[32, "pyk.kcfg.kcfg.KCFG.read_cfg_data", false]], "read_cfg_data() (kcfgstore method)": [[32, "pyk.kcfg.kcfg.KCFGStore.read_cfg_data", false]], "read_kast_definition() (in module pyk.kast.outer)": [[16, "pyk.kast.outer.read_kast_definition", false]], "read_node_data() (kcfg static method)": [[32, "pyk.kcfg.kcfg.KCFG.read_node_data", false]], "read_node_data() (kcfgstore method)": [[32, "pyk.kcfg.kcfg.KCFGStore.read_node_data", false]], "read_proof() (aprproof static method)": [[89, "pyk.proof.reachability.APRProof.read_proof", false]], "read_proof() (proof class method)": [[88, "pyk.proof.proof.Proof.read_proof", false]], "read_proof_data() (aprproof static method)": [[89, "pyk.proof.reachability.APRProof.read_proof_data", false]], "read_proof_data() (equalityproof static method)": [[87, "pyk.proof.implies.EqualityProof.read_proof_data", false]], "read_proof_data() (proof static method)": [[88, "pyk.proof.proof.Proof.read_proof_data", false]], "read_proof_data() (refutationproof static method)": [[87, "pyk.proof.implies.RefutationProof.read_proof_data", false]], "read_subproof() (proof method)": [[88, "pyk.proof.proof.Proof.read_subproof", false]], "read_subproof_data() (proof method)": [[88, "pyk.proof.proof.Proof.read_subproof_data", false]], "reason (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.reason", false]], "reason (branchingresult attribute)": [[62, "pyk.kore.rpc.BranchingResult.reason", false]], "reason (cutpointresult attribute)": [[62, "pyk.kore.rpc.CutPointResult.reason", false]], "reason (depthboundresult attribute)": [[62, "pyk.kore.rpc.DepthBoundResult.reason", false]], "reason (executeresult attribute)": [[62, "pyk.kore.rpc.ExecuteResult.reason", false]], "reason (rewritefailure attribute)": [[62, "pyk.kore.rpc.RewriteFailure.reason", false]], "reason (stuckresult attribute)": [[62, "pyk.kore.rpc.StuckResult.reason", false]], "reason (terminalresult attribute)": [[62, "pyk.kore.rpc.TerminalResult.reason", false]], "reason (timeoutresult attribute)": [[62, "pyk.kore.rpc.TimeoutResult.reason", false]], "reason (vacuousresult attribute)": [[62, "pyk.kore.rpc.VacuousResult.reason", false]], "red (color attribute)": [[9, "pyk.kast.color.Color.RED", false]], "red_orange (color attribute)": [[9, "pyk.kast.color.Color.RED_ORANGE", false]], "red_violet (color attribute)": [[9, "pyk.kast.color.Color.RED_VIOLET", false]], "refutationproof (class in pyk.proof.implies)": [[87, "pyk.proof.implies.RefutationProof", false]], "refutationsummary (class in pyk.proof.implies)": [[87, "pyk.proof.implies.RefutationSummary", false]], "refute_node() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.refute_node", false]], "refuted (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.refuted", false]], "regex (kregexterminal attribute)": [[16, "pyk.kast.outer.KRegexTerminal.regex", false]], "regex (ksyntaxlexical attribute)": [[16, "pyk.kast.outer.KSyntaxLexical.regex", false]], "regex (lexical attribute)": [[19, "pyk.kast.outer_syntax.Lexical.regex", false]], "regex (syntaxlexical attribute)": [[19, "pyk.kast.outer_syntax.SyntaxLexical.regex", false]], "regex (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.REGEX", false]], "relative_position (llvmfunctionevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent.relative_position", false]], "relative_position (llvmhookevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent.relative_position", false]], "remaining_implication (ctermimplies attribute)": [[5, "pyk.cterm.symbolic.CTermImplies.remaining_implication", false]], "remove_alias() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_alias", false]], "remove_attr() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_attr", false]], "remove_attr() (kcfg.node method)": [[32, "pyk.kcfg.kcfg.KCFG.Node.remove_attr", false]], "remove_attrs() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.remove_attrs", false]], "remove_cell_map_items() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.remove_cell_map_items", false]], "remove_cover() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_cover", false]], "remove_edge() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_edge", false]], "remove_generated_cells() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.remove_generated_cells", false]], "remove_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_node", false]], "remove_node() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.remove_node", false]], "remove_semantic_casts() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.remove_semantic_casts", false]], "remove_source_map() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.remove_source_map", false]], "remove_stuck() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_stuck", false]], "remove_subproof() (proof method)": [[88, "pyk.proof.proof.Proof.remove_subproof", false]], "remove_terminal() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.remove_terminal", false]], "remove_useless_constraints() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.remove_useless_constraints", false]], "remove_useless_constraints() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.remove_useless_constraints", false]], "remove_vacuous() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.remove_vacuous", false]], "rename_generated_vars() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.rename_generated_vars", false]], "render_classes() (in module pyk.kcovr)": [[37, "pyk.kcovr.render_classes", false]], "render_coverage_xml() (in module pyk.kcovr)": [[37, "pyk.kcovr.render_coverage_xml", false]], "render_lines() (in module pyk.kcovr)": [[37, "pyk.kcovr.render_lines", false]], "repeat_last() (in module pyk.utils)": [[94, "pyk.utils.repeat_last", false]], "replace() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.replace", false]], "replace_node() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.replace_node", false]], "replace_rewrites_with_implies() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.replace_rewrites_with_implies", false]], "replace_source() (kcfg.cover method)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.replace_source", false]], "replace_source() (kcfg.edge method)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.replace_source", false]], "replace_source() (kcfg.ndbranch method)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.replace_source", false]], "replace_source() (kcfg.split method)": [[32, "pyk.kcfg.kcfg.KCFG.Split.replace_source", false]], "replace_source() (kcfg.successor method)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.replace_source", false]], "replace_target() (kcfg.cover method)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.replace_target", false]], "replace_target() (kcfg.edge method)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.replace_target", false]], "replace_target() (kcfg.ndbranch method)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.replace_target", false]], "replace_target() (kcfg.split method)": [[32, "pyk.kcfg.kcfg.KCFG.Split.replace_target", false]], "replace_target() (kcfg.successor method)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.replace_target", false]], "replace_top() (krewrite method)": [[11, "pyk.kast.inner.KRewrite.replace_top", false]], "replerror": [[68, "pyk.krepl.repl.ReplError", false]], "request() (httptransport method)": [[62, "pyk.kore.rpc.HttpTransport.request", false]], "request() (jsonrpcclient method)": [[62, "pyk.kore.rpc.JsonRpcClient.request", false]], "request() (jsonrpcclientfacade method)": [[62, "pyk.kore.rpc.JsonRpcClientFacade.request", false]], "request() (singlesockettransport method)": [[62, "pyk.kore.rpc.SingleSocketTransport.request", false]], "request() (transport method)": [[62, "pyk.kore.rpc.Transport.request", false]], "require (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Require", false]], "require (krequire attribute)": [[16, "pyk.kast.outer.KRequire.require", false]], "require() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.require", false]], "requires (definition attribute)": [[19, "pyk.kast.outer_syntax.Definition.requires", false]], "requires (kclaim attribute)": [[16, "pyk.kast.outer.KClaim.requires", false]], "requires (kcontext attribute)": [[16, "pyk.kast.outer.KContext.requires", false]], "requires (kdefinition attribute)": [[16, "pyk.kast.outer.KDefinition.requires", false]], "requires (krule attribute)": [[16, "pyk.kast.outer.KRule.requires", false]], "requires (krulelike attribute)": [[16, "pyk.kast.outer.KRuleLike.requires", false]], "reset() (color static method)": [[9, "pyk.kast.color.Color.reset", false]], "reset_code() (color static method)": [[9, "pyk.kast.color.Color.reset_code", false]], "resolve() (claimindex method)": [[70, "pyk.ktool.claim_index.ClaimIndex.resolve", false]], "resolve() (koresymboltable method)": [[55, "pyk.kore.kompiled.KoreSymbolTable.resolve", false]], "resolve() (packagesource method)": [[27, "pyk.kbuild.project.PackageSource.resolve", false]], "resolve() (pathsource method)": [[27, "pyk.kbuild.project.PathSource.resolve", false]], "resolve() (source method)": [[27, "pyk.kbuild.project.Source.resolve", false]], "resolve_all() (claimindex method)": [[70, "pyk.ktool.claim_index.ClaimIndex.resolve_all", false]], "resolve_sorts() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.resolve_sorts", false]], "resource_file_names (project property)": [[27, "pyk.kbuild.project.Project.resource_file_names", false]], "resource_files (project property)": [[27, "pyk.kbuild.project.Project.resource_files", false]], "resources (project attribute)": [[27, "pyk.kbuild.project.Project.resources", false]], "result (llvmhookevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMHookEvent.result", false]], "result (logrewrite attribute)": [[62, "pyk.kore.rpc.LogRewrite.result", false]], "rev (kversion.git attribute)": [[28, "pyk.kbuild.utils.KVersion.Git.rev", false]], "rewritefailure (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.RewriteFailure", false]], "rewriteresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.RewriteResult", false]], "rewrites (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Rewrites", false]], "rewrites() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.rewrites", false]], "rewritesuccess (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.RewriteSuccess", false]], "rewritten_term (rewritesuccess attribute)": [[62, "pyk.kore.rpc.RewriteSuccess.rewritten_term", false]], "rhodamine (color attribute)": [[9, "pyk.kast.color.Color.RHODAMINE", false]], "rhs (krewrite attribute)": [[11, "pyk.kast.inner.KRewrite.rhs", false]], "rhs_body (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.rhs_body", false]], "right (aliasdecl attribute)": [[63, "pyk.kore.syntax.AliasDecl.right", false]], "right (assoc attribute)": [[19, "pyk.kast.outer_syntax.Assoc.RIGHT", false]], "right (atts attribute)": [[8, "pyk.kast.att.Atts.RIGHT", false]], "right (binaryconn attribute)": [[63, "pyk.kore.syntax.BinaryConn.right", false]], "right (binarypred attribute)": [[63, "pyk.kore.syntax.BinaryPred.right", false]], "right (equals attribute)": [[63, "pyk.kore.syntax.Equals.right", false]], "right (iff attribute)": [[63, "pyk.kore.syntax.Iff.right", false]], "right (implies attribute)": [[63, "pyk.kore.syntax.Implies.right", false]], "right (in attribute)": [[63, "pyk.kore.syntax.In.right", false]], "right (kassoc attribute)": [[16, "pyk.kast.outer.KAssoc.RIGHT", false]], "right (rewrites attribute)": [[63, "pyk.kore.syntax.Rewrites.right", false]], "right_assoc() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.right_assoc", false]], "right_assocs (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.right_assocs", false]], "rightassoc (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.RightAssoc", false]], "root (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.root", false]], "rosy_brown (color attribute)": [[9, "pyk.kast.color.Color.ROSY_BROWN", false]], "roundpred (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.RoundPred", false]], "royal_blue (color attribute)": [[9, "pyk.kast.color.Color.ROYAL_BLUE", false]], "royal_purple (color attribute)": [[9, "pyk.kast.color.Color.ROYAL_PURPLE", false]], "rparen (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.RPAREN", false], [17, "pyk.kast.outer_lexer.TokenType.RPAREN", false], [56, "pyk.kore.lexer.TokenType.RPAREN", false]], "rshiftint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.rshiftInt", false]], "rtld_local() (in module pyk.kllvm.importer)": [[47, "pyk.kllvm.importer.rtld_local", false]], "rubine_red (color attribute)": [[9, "pyk.kast.color.Color.RUBINE_RED", false]], "rule (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.rule", false]], "rule (branchingresult attribute)": [[62, "pyk.kore.rpc.BranchingResult.rule", false]], "rule (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Rule", false]], "rule (cutpointresult attribute)": [[62, "pyk.kore.rpc.CutPointResult.rule", false]], "rule (depthboundresult attribute)": [[62, "pyk.kore.rpc.DepthBoundResult.rule", false]], "rule (executeresult attribute)": [[62, "pyk.kore.rpc.ExecuteResult.rule", false]], "rule (kastinput attribute)": [[73, "pyk.ktool.kprint.KAstInput.RULE", false]], "rule (stuckresult attribute)": [[62, "pyk.kore.rpc.StuckResult.rule", false]], "rule (terminalresult attribute)": [[62, "pyk.kore.rpc.TerminalResult.rule", false]], "rule (timeoutresult attribute)": [[62, "pyk.kore.rpc.TimeoutResult.rule", false]], "rule (vacuousresult attribute)": [[62, "pyk.kore.rpc.VacuousResult.rule", false]], "rule_id (aprproof property)": [[89, "pyk.proof.reachability.APRProof.rule_id", false]], "rule_id (rewritefailure attribute)": [[62, "pyk.kore.rpc.RewriteFailure.rule_id", false]], "rule_id (rewriteresult attribute)": [[62, "pyk.kore.rpc.RewriteResult.rule_id", false]], "rule_id (rewritesuccess attribute)": [[62, "pyk.kore.rpc.RewriteSuccess.rule_id", false]], "rule_id (state attribute)": [[62, "pyk.kore.rpc.State.rule_id", false]], "rule_label (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.RULE_LABEL", false]], "rule_labels (ndbranch attribute)": [[32, "pyk.kcfg.kcfg.NDBranch.rule_labels", false]], "rule_labels (step attribute)": [[32, "pyk.kcfg.kcfg.Step.rule_labels", false]], "rule_ordinal (llvmrewriteevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteEvent.rule_ordinal", false]], "rule_ordinal (llvmruleevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRuleEvent.rule_ordinal", false]], "rule_ordinal (llvmsideconditionevententer property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter.rule_ordinal", false]], "rule_ordinal (llvmsideconditioneventexit property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit.rule_ordinal", false]], "rule_predicate (state attribute)": [[62, "pyk.kore.rpc.State.rule_predicate", false]], "rule_substitution (state attribute)": [[62, "pyk.kore.rpc.State.rule_substitution", false]], "rules (kcfg.edge attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.rules", false]], "rules (kcfg.ndbranch attribute)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.rules", false]], "rules (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.rules", false]], "rules (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.rules", false]], "run() (krun method)": [[75, "pyk.ktool.krun.KRun.run", false]], "run() (runtime method)": [[51, "pyk.kllvm.runtime.Runtime.run", false]], "run() (term method)": [[51, "pyk.kllvm.runtime.Term.run", false]], "run_pattern() (krun method)": [[75, "pyk.ktool.krun.KRun.run_pattern", false]], "run_process() (in module pyk.utils)": [[94, "pyk.utils.run_process", false]], "run_process() (krun method)": [[75, "pyk.ktool.krun.KRun.run_process", false]], "runtime (class in pyk.kllvm.runtime)": [[51, "pyk.kllvm.runtime.Runtime", false]], "saddle_brown (color attribute)": [[9, "pyk.kast.color.Color.SADDLE_BROWN", false]], "salmon (color attribute)": [[9, "pyk.kast.color.Color.SALMON", false]], "same_loop() (defaultsemantics method)": [[33, "pyk.kcfg.semantics.DefaultSemantics.same_loop", false]], "same_loop() (kcfgsemantics method)": [[33, "pyk.kcfg.semantics.KCFGSemantics.same_loop", false]], "sandy_brown (color attribute)": [[9, "pyk.kast.color.Color.SANDY_BROWN", false]], "satresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.SatResult", false]], "sea_green (color attribute)": [[9, "pyk.kast.color.Color.SEA_GREEN", false]], "seashell (color attribute)": [[9, "pyk.kast.color.Color.SEASHELL", false]], "section_edge() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.section_edge", false]], "select_code_blocks() (in module pyk.kast.markdown)": [[15, "pyk.kast.markdown.select_code_blocks", false]], "selector (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.Selector", false]], "selector_lexer() (in module pyk.kast.markdown)": [[15, "pyk.kast.markdown.selector_lexer", false]], "selectorparser (class in pyk.kast.markdown)": [[15, "pyk.kast.markdown.SelectorParser", false]], "semantic_rules (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.semantic_rules", false]], "sentence (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Sentence", false]], "sentence (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Sentence", false]], "sentence() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.sentence", false]], "sentence() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.sentence", false]], "sentence_by_unique_id (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.sentence_by_unique_id", false]], "sentence_by_unique_id (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.sentence_by_unique_id", false]], "sentence_to_llvm() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.sentence_to_llvm", false]], "sentence_type (kbubble attribute)": [[16, "pyk.kast.outer.KBubble.sentence_type", false]], "sentences (kflatmodule attribute)": [[16, "pyk.kast.outer.KFlatModule.sentences", false]], "sentences (module attribute)": [[19, "pyk.kast.outer_syntax.Module.sentences", false], [63, "pyk.kore.syntax.Module.sentences", false]], "sep (userlist attribute)": [[19, "pyk.kast.outer_syntax.UserList.sep", false]], "sepia (color attribute)": [[9, "pyk.kast.color.Color.SEPIA", false]], "seqstrict (atts attribute)": [[8, "pyk.kast.att.Atts.SEQSTRICT", false]], "serialize() (term method)": [[51, "pyk.kllvm.runtime.Term.serialize", false]], "set() (color method)": [[9, "pyk.kast.color.Color.set", false]], "set_cell() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.set_cell", false]], "set_empty() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.set_empty", false]], "set_exec_time() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.set_exec_time", false]], "set_item() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.set_item", false]], "set_of() (in module pyk.prelude.collections)": [[79, "pyk.prelude.collections.set_of", false]], "set_pattern() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.set_pattern", false]], "set_var() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.set_var", false]], "set_var_id (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.SET_VAR_ID", false]], "set_var_id() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.set_var_id", false]], "setvarid (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SetVarId", false]], "shorten_hash() (in module pyk.utils)": [[94, "pyk.utils.shorten_hash", false]], "shorten_hashes() (in module pyk.utils)": [[94, "pyk.utils.shorten_hashes", false]], "shortest_distance_between() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.shortest_distance_between", false]], "shortest_path_between() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.shortest_path_between", false]], "shortest_path_to() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.shortest_path_to", false]], "shortest_path_to_node (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.shortest_path_to_node", false]], "show() (aprproofshow method)": [[90, "pyk.proof.show.APRProofShow.show", false]], "show() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.show", false]], "sienna (color attribute)": [[9, "pyk.kast.color.Color.SIENNA", false]], "silver (color attribute)": [[9, "pyk.kast.color.Color.SILVER", false]], "simplification (atts attribute)": [[8, "pyk.kast.att.Atts.SIMPLIFICATION", false]], "simplified_antecedent (impliesproof attribute)": [[87, "pyk.proof.implies.ImpliesProof.simplified_antecedent", false]], "simplified_antecedent (impliesproofresult attribute)": [[87, "pyk.proof.implies.ImpliesProofResult.simplified_antecedent", false]], "simplified_consequent (impliesproof attribute)": [[87, "pyk.proof.implies.ImpliesProof.simplified_consequent", false]], "simplified_consequent (impliesproofresult attribute)": [[87, "pyk.proof.implies.ImpliesProofResult.simplified_consequent", false]], "simplified_constraints (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.simplified_constraints", false]], "simplified_constraints (refutationproof property)": [[87, "pyk.proof.implies.RefutationProof.simplified_constraints", false]], "simplified_equality (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.simplified_equality", false]], "simplify() (ctermsymbolic method)": [[5, "pyk.cterm.symbolic.CTermSymbolic.simplify", false]], "simplify() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.simplify", false]], "simplify() (koreclient method)": [[62, "pyk.kore.rpc.KoreClient.simplify", false]], "simplify() (runtime method)": [[51, "pyk.kllvm.runtime.Runtime.simplify", false]], "simplify_bool() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.simplify_bool", false]], "simplify_bool() (runtime method)": [[51, "pyk.kllvm.runtime.Runtime.simplify_bool", false]], "simplify_config() (kcfgshow static method)": [[34, "pyk.kcfg.show.KCFGShow.simplify_config", false]], "single() (in module pyk.utils)": [[94, "pyk.utils.single", false]], "single_socket (transporttype attribute)": [[62, "pyk.kore.rpc.TransportType.SINGLE_SOCKET", false]], "singlesockettransport (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.SingleSocketTransport", false]], "sky_blue (color attribute)": [[9, "pyk.kast.color.Color.SKY_BLUE", false]], "slate_blue (color attribute)": [[9, "pyk.kast.color.Color.SLATE_BLUE", false]], "slate_gray (color attribute)": [[9, "pyk.kast.color.Color.SLATE_GRAY", false]], "slate_grey (color attribute)": [[9, "pyk.kast.color.Color.SLATE_GREY", false]], "slurp_definitions() (in module pyk.kast.utils)": [[23, "pyk.kast.utils.slurp_definitions", false]], "smt_reset_interval (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.smt_reset_interval", false]], "smt_reset_interval (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.smt_reset_interval", false]], "smt_retry_limit (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.smt_retry_limit", false]], "smt_retry_limit (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.smt_retry_limit", false]], "smt_tactic (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.smt_tactic", false]], "smt_tactic (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.smt_tactic", false]], "smt_timeout (boosterserverargs attribute)": [[62, "pyk.kore.rpc.BoosterServerArgs.smt_timeout", false]], "smt_timeout (koreserverargs attribute)": [[62, "pyk.kore.rpc.KoreServerArgs.smt_timeout", false]], "smtsolvererror": [[62, "pyk.kore.rpc.SmtSolverError", false]], "snow (color attribute)": [[9, "pyk.kast.color.Color.SNOW", false]], "some() (in module pyk.utils)": [[94, "pyk.utils.some", false]], "sort (aliasdecl attribute)": [[63, "pyk.kore.syntax.AliasDecl.sort", false]], "sort (and attribute)": [[63, "pyk.kore.syntax.And.sort", false]], "sort (atts attribute)": [[8, "pyk.kast.att.Atts.SORT", false]], "sort (bottom attribute)": [[63, "pyk.kore.syntax.Bottom.sort", false]], "sort (ceil attribute)": [[63, "pyk.kore.syntax.Ceil.sort", false]], "sort (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Sort", false]], "sort (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Sort", false]], "sort (dv attribute)": [[63, "pyk.kore.syntax.DV.sort", false]], "sort (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.sort", false]], "sort (equals attribute)": [[63, "pyk.kore.syntax.Equals.sort", false]], "sort (evar attribute)": [[63, "pyk.kore.syntax.EVar.sort", false]], "sort (exists attribute)": [[63, "pyk.kore.syntax.Exists.sort", false]], "sort (floor attribute)": [[63, "pyk.kore.syntax.Floor.sort", false]], "sort (forall attribute)": [[63, "pyk.kore.syntax.Forall.sort", false]], "sort (iff attribute)": [[63, "pyk.kore.syntax.Iff.sort", false]], "sort (implies attribute)": [[63, "pyk.kore.syntax.Implies.sort", false]], "sort (in attribute)": [[63, "pyk.kore.syntax.In.sort", false]], "sort (knonterminal attribute)": [[16, "pyk.kast.outer.KNonTerminal.sort", false]], "sort (kproduction attribute)": [[16, "pyk.kast.outer.KProduction.sort", false]], "sort (ksyntaxsort attribute)": [[16, "pyk.kast.outer.KSyntaxSort.sort", false]], "sort (ktoken attribute)": [[11, "pyk.kast.inner.KToken.sort", false]], "sort (kvariable attribute)": [[11, "pyk.kast.inner.KVariable.sort", false]], "sort (mlquant attribute)": [[63, "pyk.kore.syntax.MLQuant.sort", false]], "sort (next attribute)": [[63, "pyk.kore.syntax.Next.sort", false]], "sort (nonterminal attribute)": [[19, "pyk.kast.outer_syntax.NonTerminal.sort", false]], "sort (not attribute)": [[63, "pyk.kore.syntax.Not.sort", false]], "sort (or attribute)": [[63, "pyk.kore.syntax.Or.sort", false]], "sort (rewrites attribute)": [[63, "pyk.kore.syntax.Rewrites.sort", false]], "sort (state attribute)": [[13, "pyk.kast.lexer.State.SORT", false]], "sort (svar attribute)": [[63, "pyk.kore.syntax.SVar.sort", false]], "sort (symboldecl attribute)": [[63, "pyk.kore.syntax.SymbolDecl.sort", false]], "sort (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.SORT", false]], "sort (top attribute)": [[63, "pyk.kore.syntax.Top.sort", false]], "sort (userlist attribute)": [[19, "pyk.kast.outer_syntax.UserList.sort", false]], "sort (varpattern attribute)": [[63, "pyk.kore.syntax.VarPattern.sort", false]], "sort (withsort attribute)": [[63, "pyk.kore.syntax.WithSort.sort", false]], "sort() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.sort", false]], "sort() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.sort", false]], "sort_ac_collections() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.sort_ac_collections", false]], "sort_app() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.sort_app", false]], "sort_assoc_label() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.sort_assoc_label", false]], "sort_decl() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.sort_decl", false]], "sort_strict() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.sort_strict", false]], "sort_table (kompiledkore attribute)": [[55, "pyk.kore.kompiled.KompiledKore.sort_table", false]], "sort_to_llvm() (in module pyk.kllvm.convert)": [[44, "pyk.kllvm.convert.sort_to_llvm", false]], "sort_var() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.sort_var", false]], "sort_vars() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.sort_vars", false]], "sortapp (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SortApp", false]], "sortdecl (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SortDecl", false]], "sortdecl (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SortDecl", false]], "sorts (app attribute)": [[63, "pyk.kore.syntax.App.sorts", false]], "sorts (assoc property)": [[63, "pyk.kore.syntax.Assoc.sorts", false]], "sorts (binarypred property)": [[63, "pyk.kore.syntax.BinaryPred.sorts", false]], "sorts (dv property)": [[63, "pyk.kore.syntax.DV.sorts", false]], "sorts (mlconn property)": [[63, "pyk.kore.syntax.MLConn.sorts", false]], "sorts (mlfixpoint property)": [[63, "pyk.kore.syntax.MLFixpoint.sorts", false]], "sorts (mlpattern property)": [[63, "pyk.kore.syntax.MLPattern.sorts", false]], "sorts (mlquant property)": [[63, "pyk.kore.syntax.MLQuant.sorts", false]], "sorts (mlrewrite property)": [[63, "pyk.kore.syntax.MLRewrite.sorts", false]], "sorts (roundpred property)": [[63, "pyk.kore.syntax.RoundPred.sorts", false]], "sorts (sortapp attribute)": [[63, "pyk.kore.syntax.SortApp.sorts", false]], "sortvar (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SortVar", false]], "source (ast attribute)": [[19, "pyk.kast.outer_syntax.AST.source", false]], "source (atts attribute)": [[8, "pyk.kast.att.Atts.SOURCE", false]], "source (class in pyk.kbuild.project)": [[27, "pyk.kbuild.project.Source", false]], "source (kcfg.cover attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.source", false]], "source (kcfg.edge attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.source", false]], "source (kcfg.edgelike attribute)": [[32, "pyk.kcfg.kcfg.KCFG.EdgeLike.source", false]], "source (kcfg.multiedge attribute)": [[32, "pyk.kcfg.kcfg.KCFG.MultiEdge.source", false]], "source (kcfg.ndbranch attribute)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.source", false]], "source (kcfg.split attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Split.source", false]], "source (kcfg.successor attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.source", false]], "source (ksentence property)": [[16, "pyk.kast.outer.KSentence.source", false]], "source() (target method)": [[39, "pyk.kdist.api.Target.source", false]], "source_dir (project attribute)": [[27, "pyk.kbuild.project.Project.source_dir", false]], "source_file_names (project property)": [[27, "pyk.kbuild.project.Project.source_file_names", false]], "source_files (project property)": [[27, "pyk.kbuild.project.Project.source_files", false]], "source_vars (kcfg.successor property)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.source_vars", false]], "split_config_and_constraints() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.split_config_and_constraints", false]], "split_config_from() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.split_config_from", false]], "split_on_constraints() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.split_on_constraints", false]], "splits (kcfg.split property)": [[32, "pyk.kcfg.kcfg.KCFG.Split.splits", false]], "splits() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.splits", false]], "spring_green (color attribute)": [[9, "pyk.kast.color.Color.SPRING_GREEN", false]], "standard (koreexeclogformat attribute)": [[62, "pyk.kore.rpc.KoreExecLogFormat.STANDARD", false]], "start() (koreserver method)": [[62, "pyk.kore.rpc.KoreServer.start", false]], "state (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.state", false]], "state (baserepl attribute)": [[68, "pyk.krepl.repl.BaseRepl.state", false]], "state (branchingresult attribute)": [[62, "pyk.kore.rpc.BranchingResult.state", false]], "state (class in pyk.kast.lexer)": [[13, "pyk.kast.lexer.State", false]], "state (class in pyk.kast.outer_lexer)": [[17, "pyk.kast.outer_lexer.State", false]], "state (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.State", false]], "state (ctermexecute attribute)": [[5, "pyk.cterm.symbolic.CTermExecute.state", false]], "state (cutpointresult attribute)": [[62, "pyk.kore.rpc.CutPointResult.state", false]], "state (depthboundresult attribute)": [[62, "pyk.kore.rpc.DepthBoundResult.state", false]], "state (executeresult attribute)": [[62, "pyk.kore.rpc.ExecuteResult.state", false]], "state (nextstate attribute)": [[5, "pyk.cterm.symbolic.NextState.state", false]], "state (stuckresult attribute)": [[62, "pyk.kore.rpc.StuckResult.state", false]], "state (terminalresult attribute)": [[62, "pyk.kore.rpc.TerminalResult.state", false]], "state (timeoutresult attribute)": [[62, "pyk.kore.rpc.TimeoutResult.state", false]], "state (vacuousresult attribute)": [[62, "pyk.kore.rpc.VacuousResult.state", false]], "status (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.status", false]], "status (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.Status", false]], "status (equalitysummary attribute)": [[87, "pyk.proof.implies.EqualitySummary.status", false]], "status (proof property)": [[88, "pyk.proof.proof.Proof.status", false]], "status (proofsummary attribute)": [[88, "pyk.proof.proof.ProofSummary.status", false]], "status (refutationsummary attribute)": [[87, "pyk.proof.implies.RefutationSummary.status", false]], "steel_blue (color attribute)": [[9, "pyk.kast.color.Color.STEEL_BLUE", false]], "step (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.Step", false]], "step() (kcfgexplore method)": [[31, "pyk.kcfg.explore.KCFGExplore.step", false]], "step() (runtime method)": [[51, "pyk.kllvm.runtime.Runtime.step", false]], "step() (term method)": [[51, "pyk.kllvm.runtime.Term.step", false]], "step_event (llvmargument property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMArgument.step_event", false]], "step_proof() (aprprover method)": [[89, "pyk.proof.reachability.APRProver.step_proof", false]], "step_proof() (impliesprover method)": [[87, "pyk.proof.implies.ImpliesProver.step_proof", false]], "step_proof() (prover method)": [[88, "pyk.proof.proof.Prover.step_proof", false]], "stopreason (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.StopReason", false]], "store_path (kcfgstore attribute)": [[32, "pyk.kcfg.kcfg.KCFGStore.store_path", false]], "str_dv() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.str_dv", false]], "strict (atts attribute)": [[8, "pyk.kast.att.Atts.STRICT", false]], "string (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.String", false]], "string (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.STRING", false], [17, "pyk.kast.outer_lexer.TokenType.STRING", false], [56, "pyk.kore.lexer.TokenType.STRING", false]], "string() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.string", false]], "string2json() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.string2json", false]], "string_sentence() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.string_sentence", false]], "stringsentence (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.StringSentence", false]], "stringtoken() (in module pyk.prelude.string)": [[84, "pyk.prelude.string.stringToken", false]], "strip_coverage_logger() (in module pyk.coverage)": [[2, "pyk.coverage.strip_coverage_logger", false]], "strtype (class in pyk.kast.att)": [[8, "pyk.kast.att.StrType", false]], "stuck (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.stuck", false]], "stuck (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.Stuck", false]], "stuck (fallbackreason attribute)": [[62, "pyk.kore.rpc.FallbackReason.STUCK", false]], "stuck (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.stuck", false]], "stuck (kcfgnodeattr attribute)": [[32, "pyk.kcfg.kcfg.KCFGNodeAttr.STUCK", false]], "stuck (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.STUCK", false]], "stuckresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.StuckResult", false]], "sub_projects (project property)": [[27, "pyk.kbuild.project.Project.sub_projects", false]], "subint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.subInt", false]], "submit() (koreserverpool method)": [[60, "pyk.kore.pool.KoreServerPool.submit", false]], "subproof_ids (proof property)": [[88, "pyk.proof.proof.Proof.subproof_ids", false]], "subproofs (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.subproofs", false]], "subproofs (proof property)": [[88, "pyk.proof.proof.Proof.subproofs", false]], "subproofs_status (proof property)": [[88, "pyk.proof.proof.Proof.subproofs_status", false]], "subsort_table (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.subsort_table", false]], "subsorts() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.subsorts", false]], "subst (class in pyk.kast.inner)": [[11, "pyk.kast.inner.Subst", false]], "subst (csubst attribute)": [[4, "pyk.cterm.cterm.CSubst.subst", false]], "substitution (impliesresult attribute)": [[62, "pyk.kore.rpc.ImpliesResult.substitution", false]], "substitution (llvmrewriteevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteEvent.substitution", false]], "substitution (llvmruleevent property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRuleEvent.substitution", false]], "substitution (llvmsideconditionevententer property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter.substitution", false]], "substitution (state attribute)": [[62, "pyk.kore.rpc.State.substitution", false]], "successors() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.successors", false]], "summaries (compositesummary attribute)": [[88, "pyk.proof.proof.CompositeSummary.summaries", false]], "summary (aprproof property)": [[89, "pyk.proof.reachability.APRProof.summary", false]], "summary (equalityproof property)": [[87, "pyk.proof.implies.EqualityProof.summary", false]], "summary (proof property)": [[88, "pyk.proof.proof.Proof.summary", false]], "summary (refutationproof property)": [[87, "pyk.proof.implies.RefutationProof.summary", false]], "svar (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SVar", false]], "symbol (app attribute)": [[63, "pyk.kore.syntax.App.symbol", false]], "symbol (atts attribute)": [[8, "pyk.kast.att.Atts.SYMBOL", false]], "symbol (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Symbol", false]], "symbol (symboldecl attribute)": [[63, "pyk.kore.syntax.SymbolDecl.symbol", false]], "symbol() (and class method)": [[63, "pyk.kore.syntax.And.symbol", false]], "symbol() (bottom class method)": [[63, "pyk.kore.syntax.Bottom.symbol", false]], "symbol() (ceil class method)": [[63, "pyk.kore.syntax.Ceil.symbol", false]], "symbol() (dv class method)": [[63, "pyk.kore.syntax.DV.symbol", false]], "symbol() (equals class method)": [[63, "pyk.kore.syntax.Equals.symbol", false]], "symbol() (exists class method)": [[63, "pyk.kore.syntax.Exists.symbol", false]], "symbol() (floor class method)": [[63, "pyk.kore.syntax.Floor.symbol", false]], "symbol() (forall class method)": [[63, "pyk.kore.syntax.Forall.symbol", false]], "symbol() (iff class method)": [[63, "pyk.kore.syntax.Iff.symbol", false]], "symbol() (implies class method)": [[63, "pyk.kore.syntax.Implies.symbol", false]], "symbol() (in class method)": [[63, "pyk.kore.syntax.In.symbol", false]], "symbol() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.symbol", false]], "symbol() (leftassoc class method)": [[63, "pyk.kore.syntax.LeftAssoc.symbol", false]], "symbol() (mlpattern class method)": [[63, "pyk.kore.syntax.MLPattern.symbol", false]], "symbol() (mu class method)": [[63, "pyk.kore.syntax.Mu.symbol", false]], "symbol() (next class method)": [[63, "pyk.kore.syntax.Next.symbol", false]], "symbol() (not class method)": [[63, "pyk.kore.syntax.Not.symbol", false]], "symbol() (nu class method)": [[63, "pyk.kore.syntax.Nu.symbol", false]], "symbol() (or class method)": [[63, "pyk.kore.syntax.Or.symbol", false]], "symbol() (rewrites class method)": [[63, "pyk.kore.syntax.Rewrites.symbol", false]], "symbol() (rightassoc class method)": [[63, "pyk.kore.syntax.RightAssoc.symbol", false]], "symbol() (top class method)": [[63, "pyk.kore.syntax.Top.symbol", false]], "symbol_decl() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.symbol_decl", false]], "symbol_decls (module property)": [[63, "pyk.kore.syntax.Module.symbol_decls", false]], "symbol_id (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.SYMBOL_ID", false]], "symbol_id() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.symbol_id", false]], "symbol_table (kompiledkore attribute)": [[55, "pyk.kore.kompiled.KompiledKore.symbol_table", false]], "symbol_table (prettyprinter property)": [[21, "pyk.kast.pretty.PrettyPrinter.symbol_table", false]], "symboldecl (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SymbolDecl", false]], "symbolid (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.SymbolId", false]], "symbols (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.symbols", false]], "sync() (kbuildenv method)": [[26, "pyk.kbuild.kbuild.KBuildEnv.sync", false]], "sync_files() (in module pyk.kbuild.utils)": [[28, "pyk.kbuild.utils.sync_files", false]], "syntax (state attribute)": [[17, "pyk.kast.outer_lexer.State.SYNTAX", false]], "syntax_module (atts attribute)": [[8, "pyk.kast.att.Atts.SYNTAX_MODULE", false]], "syntax_productions (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.syntax_productions", false]], "syntax_productions (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.syntax_productions", false]], "syntax_sentence() (outerparser method)": [[18, "pyk.kast.outer_parser.OuterParser.syntax_sentence", false]], "syntax_sorts (kflatmodule property)": [[16, "pyk.kast.outer.KFlatModule.syntax_sorts", false]], "syntax_symbols (kdefinition property)": [[16, "pyk.kast.outer.KDefinition.syntax_symbols", false]], "syntaxassoc (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxAssoc", false]], "syntaxdecl (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxDecl", false]], "syntaxdefn (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxDefn", false]], "syntaxlexical (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxLexical", false]], "syntaxpriority (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxPriority", false]], "syntaxsentence (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxSentence", false]], "syntaxsynonym (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.SyntaxSynonym", false]], "tags (ksyntaxassociativity attribute)": [[16, "pyk.kast.outer.KSyntaxAssociativity.tags", false]], "tan (color attribute)": [[9, "pyk.kast.color.Color.TAN", false]], "target (aprproof attribute)": [[89, "pyk.proof.reachability.APRProof.target", false]], "target (aprproofstep attribute)": [[89, "pyk.proof.reachability.APRProofStep.target", false]], "target (class in pyk.kbuild.project)": [[27, "pyk.kbuild.project.Target", false]], "target (class in pyk.kdist.api)": [[39, "pyk.kdist.api.Target", false]], "target (kcfg.cover attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.target", false]], "target (kcfg.edge attribute)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.target", false]], "target (kcfg.edgelike attribute)": [[32, "pyk.kcfg.kcfg.KCFG.EdgeLike.target", false]], "target_ids (kcfg.successor property)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.target_ids", false]], "target_name (targetid attribute)": [[39, "pyk.kdist.api.TargetId.target_name", false]], "target_vars (kcfg.successor property)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.target_vars", false]], "targetid (class in pyk.kdist.api)": [[39, "pyk.kdist.api.TargetId", false]], "targets (kcfg.edgelike property)": [[32, "pyk.kcfg.kcfg.KCFG.EdgeLike.targets", false]], "targets (kcfg.ndbranch property)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.targets", false]], "targets (kcfg.split property)": [[32, "pyk.kcfg.kcfg.KCFG.Split.targets", false]], "targets (kcfg.successor property)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.targets", false]], "targets (project attribute)": [[27, "pyk.kbuild.project.Project.targets", false]], "teal (color attribute)": [[9, "pyk.kast.color.Color.TEAL", false]], "teal_blue (color attribute)": [[9, "pyk.kast.color.Color.TEAL_BLUE", false]], "term (class in pyk.kcfg.tui)": [[36, "pyk.kcfg.tui.Term", false]], "term (class in pyk.kllvm.runtime)": [[51, "pyk.kllvm.runtime.Term", false]], "term (state attribute)": [[62, "pyk.kore.rpc.State.term", false]], "term() (runtime method)": [[51, "pyk.kllvm.runtime.Runtime.term", false]], "terminal (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.terminal", false]], "terminal (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.Terminal", false]], "terminal (kcfgexploration property)": [[30, "pyk.kcfg.exploration.KCFGExploration.terminal", false]], "terminal (kcfgexplorationnodeattr attribute)": [[30, "pyk.kcfg.exploration.KCFGExplorationNodeAttr.TERMINAL", false]], "terminal_ids (kcfgexploration property)": [[30, "pyk.kcfg.exploration.KCFGExploration.terminal_ids", false]], "terminal_rule (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.TERMINAL_RULE", false]], "terminal_rules (aprprover attribute)": [[89, "pyk.proof.reachability.APRProver.terminal_rules", false]], "terminalresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.TerminalResult", false]], "terminals (atts attribute)": [[8, "pyk.kast.att.Atts.TERMINALS", false]], "terms (kapply property)": [[11, "pyk.kast.inner.KApply.terms", false]], "terms (kas property)": [[11, "pyk.kast.inner.KAs.terms", false]], "terms (kinner property)": [[11, "pyk.kast.inner.KInner.terms", false]], "terms (krewrite property)": [[11, "pyk.kast.inner.KRewrite.terms", false]], "terms (ksequence property)": [[11, "pyk.kast.inner.KSequence.terms", false]], "terms (ktoken property)": [[11, "pyk.kast.inner.KToken.terms", false]], "terms (kvariable property)": [[11, "pyk.kast.inner.KVariable.terms", false]], "text (info attribute)": [[36, "pyk.kcfg.tui.Info.text", false]], "text (kore property)": [[63, "pyk.kore.syntax.Kore.text", false]], "text (koretoken attribute)": [[56, "pyk.kore.lexer.KoreToken.text", false]], "text (kversion property)": [[28, "pyk.kbuild.utils.KVersion.text", false]], "text (navwidget attribute)": [[36, "pyk.kcfg.tui.NavWidget.text", false]], "text (token attribute)": [[13, "pyk.kast.lexer.Token.text", false], [17, "pyk.kast.outer_lexer.Token.text", false]], "thistle (color attribute)": [[9, "pyk.kast.color.Color.THISTLE", false]], "tilde (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.TILDE", false]], "time (behaviorview.selected attribute)": [[36, "pyk.kcfg.tui.BehaviorView.Selected.time", false]], "time (graphchunk.selected attribute)": [[36, "pyk.kcfg.tui.GraphChunk.Selected.time", false]], "time (logtiming attribute)": [[62, "pyk.kore.rpc.LogTiming.time", false]], "time (navwidget.selected attribute)": [[36, "pyk.kcfg.tui.NavWidget.Selected.time", false]], "timeout (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.TIMEOUT", false]], "timeoutresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.TimeoutResult", false]], "times (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.TIMES", false]], "timestamp() (in module pyk.kdist.utils)": [[40, "pyk.kdist.utils.timestamp", false]], "to_claim() (refutationproof method)": [[87, "pyk.proof.implies.RefutationProof.to_claim", false]], "to_dict() (anytype method)": [[8, "pyk.kast.att.AnyType.to_dict", false]], "to_dict() (atttype method)": [[8, "pyk.kast.att.AttType.to_dict", false]], "to_dict() (colorstype method)": [[8, "pyk.kast.att.ColorsType.to_dict", false]], "to_dict() (colortype method)": [[8, "pyk.kast.att.ColorType.to_dict", false]], "to_dict() (csubst method)": [[4, "pyk.cterm.cterm.CSubst.to_dict", false]], "to_dict() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.to_dict", false]], "to_dict() (formattype method)": [[8, "pyk.kast.att.FormatType.to_dict", false]], "to_dict() (inttype method)": [[8, "pyk.kast.att.IntType.to_dict", false]], "to_dict() (kast method)": [[12, "pyk.kast.kast.KAst.to_dict", false]], "to_dict() (katt method)": [[8, "pyk.kast.att.KAtt.to_dict", false]], "to_dict() (kbubble method)": [[16, "pyk.kast.outer.KBubble.to_dict", false]], "to_dict() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.to_dict", false]], "to_dict() (kcfg.cover method)": [[32, "pyk.kcfg.kcfg.KCFG.Cover.to_dict", false]], "to_dict() (kcfg.edge method)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.to_dict", false]], "to_dict() (kcfg.ndbranch method)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.to_dict", false]], "to_dict() (kcfg.node method)": [[32, "pyk.kcfg.kcfg.KCFG.Node.to_dict", false]], "to_dict() (kcfg.split method)": [[32, "pyk.kcfg.kcfg.KCFG.Split.to_dict", false]], "to_dict() (kcfg.successor method)": [[32, "pyk.kcfg.kcfg.KCFG.Successor.to_dict", false]], "to_dict() (kcfgexploration method)": [[30, "pyk.kcfg.exploration.KCFGExploration.to_dict", false]], "to_dict() (kclaim method)": [[16, "pyk.kast.outer.KClaim.to_dict", false]], "to_dict() (kcontext method)": [[16, "pyk.kast.outer.KContext.to_dict", false]], "to_dict() (kdefinition method)": [[16, "pyk.kast.outer.KDefinition.to_dict", false]], "to_dict() (kflatmodule method)": [[16, "pyk.kast.outer.KFlatModule.to_dict", false]], "to_dict() (kflatmodulelist method)": [[16, "pyk.kast.outer.KFlatModuleList.to_dict", false]], "to_dict() (kimport method)": [[16, "pyk.kast.outer.KImport.to_dict", false]], "to_dict() (kinner method)": [[11, "pyk.kast.inner.KInner.to_dict", false]], "to_dict() (klabel method)": [[11, "pyk.kast.inner.KLabel.to_dict", false]], "to_dict() (knonterminal method)": [[16, "pyk.kast.outer.KNonTerminal.to_dict", false]], "to_dict() (kompiledkore method)": [[55, "pyk.kore.kompiled.KompiledKore.to_dict", false]], "to_dict() (kproduction method)": [[16, "pyk.kast.outer.KProduction.to_dict", false]], "to_dict() (kregexterminal method)": [[16, "pyk.kast.outer.KRegexTerminal.to_dict", false]], "to_dict() (krequire method)": [[16, "pyk.kast.outer.KRequire.to_dict", false]], "to_dict() (krule method)": [[16, "pyk.kast.outer.KRule.to_dict", false]], "to_dict() (ksort method)": [[11, "pyk.kast.inner.KSort.to_dict", false]], "to_dict() (ksortsynonym method)": [[16, "pyk.kast.outer.KSortSynonym.to_dict", false]], "to_dict() (ksyntaxassociativity method)": [[16, "pyk.kast.outer.KSyntaxAssociativity.to_dict", false]], "to_dict() (ksyntaxlexical method)": [[16, "pyk.kast.outer.KSyntaxLexical.to_dict", false]], "to_dict() (ksyntaxpriority method)": [[16, "pyk.kast.outer.KSyntaxPriority.to_dict", false]], "to_dict() (ksyntaxsort method)": [[16, "pyk.kast.outer.KSyntaxSort.to_dict", false]], "to_dict() (kterminal method)": [[16, "pyk.kast.outer.KTerminal.to_dict", false]], "to_dict() (locationtype method)": [[8, "pyk.kast.att.LocationType.to_dict", false]], "to_dict() (logentry method)": [[62, "pyk.kore.rpc.LogEntry.to_dict", false]], "to_dict() (logrewrite method)": [[62, "pyk.kore.rpc.LogRewrite.to_dict", false]], "to_dict() (logtiming method)": [[62, "pyk.kore.rpc.LogTiming.to_dict", false]], "to_dict() (nonetype method)": [[8, "pyk.kast.att.NoneType.to_dict", false]], "to_dict() (optionaltype method)": [[8, "pyk.kast.att.OptionalType.to_dict", false]], "to_dict() (pathtype method)": [[8, "pyk.kast.att.PathType.to_dict", false]], "to_dict() (rewritefailure method)": [[62, "pyk.kore.rpc.RewriteFailure.to_dict", false]], "to_dict() (rewriteresult method)": [[62, "pyk.kore.rpc.RewriteResult.to_dict", false]], "to_dict() (rewritesuccess method)": [[62, "pyk.kore.rpc.RewriteSuccess.to_dict", false]], "to_dict() (strtype method)": [[8, "pyk.kast.att.StrType.to_dict", false]], "to_dict() (subst method)": [[11, "pyk.kast.inner.Subst.to_dict", false]], "to_json() (kast method)": [[12, "pyk.kast.kast.KAst.to_json", false]], "to_json() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.to_json", false]], "to_module() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.to_module", false]], "to_module() (kcfgshow method)": [[34, "pyk.kcfg.show.KCFGShow.to_module", false]], "to_rule() (kcfg.edge method)": [[32, "pyk.kcfg.kcfg.KCFG.Edge.to_rule", false]], "to_rules() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.to_rules", false]], "toggle_option() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.toggle_option", false]], "toggle_view() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.toggle_view", false]], "token (atts attribute)": [[8, "pyk.kast.att.Atts.TOKEN", false]], "token (class in pyk.kast.lexer)": [[13, "pyk.kast.lexer.Token", false]], "token (class in pyk.kast.outer_lexer)": [[17, "pyk.kast.outer_lexer.Token", false]], "token (ktoken attribute)": [[11, "pyk.kast.inner.KToken.token", false]], "token (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.TOKEN", false]], "token() (in module pyk.prelude.utils)": [[85, "pyk.prelude.utils.token", false]], "tokens (format attribute)": [[8, "pyk.kast.att.Format.tokens", false]], "tokentype (class in pyk.kast.lexer)": [[13, "pyk.kast.lexer.TokenType", false]], "tokentype (class in pyk.kast.outer_lexer)": [[17, "pyk.kast.outer_lexer.TokenType", false]], "tokentype (class in pyk.kore.lexer)": [[56, "pyk.kore.lexer.TokenType", false]], "tomato (color attribute)": [[9, "pyk.kast.color.Color.TOMATO", false]], "top (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.Top", false]], "top() (cterm static method)": [[4, "pyk.cterm.cterm.CTerm.top", false]], "top() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.top", false]], "top_cell_initializer() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.top_cell_initializer", false]], "top_down() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.top_down", false]], "top_down() (pattern method)": [[63, "pyk.kore.syntax.Pattern.top_down", false]], "total (atts attribute)": [[8, "pyk.kast.att.Atts.TOTAL", false]], "trace (llvmrewritetrace property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.trace", false]], "translate_coverage() (in module pyk.coverage)": [[2, "pyk.coverage.translate_coverage", false]], "translate_coverage_from_paths() (in module pyk.coverage)": [[2, "pyk.coverage.translate_coverage_from_paths", false]], "transport (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.Transport", false]], "transporttype (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.TransportType", false]], "trusted (atts attribute)": [[8, "pyk.kast.att.Atts.TRUSTED", false]], "try_cell() (cterm method)": [[4, "pyk.cterm.cterm.CTerm.try_cell", false]], "tuple_of() (in module pyk.utils)": [[94, "pyk.utils.tuple_of", false]], "turquoise (color attribute)": [[9, "pyk.kast.color.Color.TURQUOISE", false]], "type (attkey attribute)": [[8, "pyk.kast.att.AttKey.type", false]], "type (koretoken attribute)": [[56, "pyk.kore.lexer.KoreToken.type", false]], "type (llvmeventannotated property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMEventAnnotated.type", false]], "type (token attribute)": [[13, "pyk.kast.lexer.Token.type", false], [17, "pyk.kast.outer_lexer.Token.type", false]], "unapply() (subst method)": [[11, "pyk.kast.inner.Subst.unapply", false]], "unaryconn (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.UnaryConn", false]], "uncovered (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.uncovered", false]], "undo_aliases() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.undo_aliases", false]], "union() (subst method)": [[11, "pyk.kast.inner.Subst.union", false]], "unique() (in module pyk.utils)": [[94, "pyk.utils.unique", false]], "unique_id (atts attribute)": [[8, "pyk.kast.att.Atts.UNIQUE_ID", false]], "unique_id (ksentence property)": [[16, "pyk.kast.outer.KSentence.unique_id", false]], "unit (atts attribute)": [[8, "pyk.kast.att.Atts.UNIT", false]], "unknown_predicate (abortedresult attribute)": [[62, "pyk.kore.rpc.AbortedResult.unknown_predicate", false]], "unknownmoduleerror": [[62, "pyk.kore.rpc.UnknownModuleError", false]], "unknownresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.UnknownResult", false]], "unparse() (anytype method)": [[8, "pyk.kast.att.AnyType.unparse", false]], "unparse() (atttype method)": [[8, "pyk.kast.att.AttType.unparse", false]], "unparse() (colorstype method)": [[8, "pyk.kast.att.ColorsType.unparse", false]], "unparse() (colortype method)": [[8, "pyk.kast.att.ColorType.unparse", false]], "unparse() (format method)": [[8, "pyk.kast.att.Format.unparse", false]], "unparse() (formattype method)": [[8, "pyk.kast.att.FormatType.unparse", false]], "unparse() (inttype method)": [[8, "pyk.kast.att.IntType.unparse", false]], "unparse() (locationtype method)": [[8, "pyk.kast.att.LocationType.unparse", false]], "unparse() (nonetype method)": [[8, "pyk.kast.att.NoneType.unparse", false]], "unparse() (optionaltype method)": [[8, "pyk.kast.att.OptionalType.unparse", false]], "unparse() (pathtype method)": [[8, "pyk.kast.att.PathType.unparse", false]], "unparse() (strtype method)": [[8, "pyk.kast.att.StrType.unparse", false]], "unparse_avoid (atts attribute)": [[8, "pyk.kast.att.Atts.UNPARSE_AVOID", false]], "unparser_for_production() (in module pyk.kast.pretty)": [[21, "pyk.kast.pretty.unparser_for_production", false]], "unrefute_node() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.unrefute_node", false]], "unsatresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.UnsatResult", false]], "up_to_date (proof property)": [[88, "pyk.proof.proof.Proof.up_to_date", false]], "up_to_date() (kbuild method)": [[26, "pyk.kbuild.kbuild.KBuild.up_to_date", false]], "update() (info method)": [[36, "pyk.kcfg.tui.Info.update", false]], "update() (katt method)": [[8, "pyk.kast.att.KAtt.update", false]], "update() (navwidget method)": [[36, "pyk.kcfg.tui.NavWidget.update", false]], "update() (nodeview method)": [[36, "pyk.kcfg.tui.NodeView.update", false]], "update_atts() (withkatt method)": [[8, "pyk.kast.att.WithKAtt.update_atts", false]], "use_directory (kprint attribute)": [[73, "pyk.ktool.kprint.KPrint.use_directory", false]], "use_server() (in module pyk.testing.plugin)": [[93, "pyk.testing.plugin.use_server", false]], "useless_vars_to_dots() (in module pyk.kast.manip)": [[14, "pyk.kast.manip.useless_vars_to_dots", false]], "user_list (atts attribute)": [[8, "pyk.kast.att.Atts.USER_LIST", false]], "userlist (class in pyk.kast.outer_syntax)": [[19, "pyk.kast.outer_syntax.UserList", false]], "vacuous (aprsummary attribute)": [[89, "pyk.proof.reachability.APRSummary.vacuous", false]], "vacuous (class in pyk.kcfg.kcfg)": [[32, "pyk.kcfg.kcfg.Vacuous", false]], "vacuous (ctermexecute attribute)": [[5, "pyk.cterm.symbolic.CTermExecute.vacuous", false]], "vacuous (kcfg property)": [[32, "pyk.kcfg.kcfg.KCFG.vacuous", false]], "vacuous (kcfgnodeattr attribute)": [[32, "pyk.kcfg.kcfg.KCFGNodeAttr.VACUOUS", false]], "vacuous (stopreason attribute)": [[62, "pyk.kore.rpc.StopReason.VACUOUS", false]], "vacuousresult (class in pyk.kore.rpc)": [[62, "pyk.kore.rpc.VacuousResult", false]], "valid (impliesresult attribute)": [[62, "pyk.kore.rpc.ImpliesResult.valid", false]], "valid_id() (in module pyk.kdist.api)": [[39, "pyk.kdist.api.valid_id", false]], "value (attentry attribute)": [[8, "pyk.kast.att.AttEntry.value", false]], "value (dv attribute)": [[63, "pyk.kore.syntax.DV.value", false]], "value (id attribute)": [[63, "pyk.kore.syntax.Id.value", false]], "value (kterminal attribute)": [[16, "pyk.kast.outer.KTerminal.value", false]], "value (nodeattr attribute)": [[32, "pyk.kcfg.kcfg.NodeAttr.value", false]], "value (setvarid attribute)": [[63, "pyk.kore.syntax.SetVarId.value", false]], "value (string attribute)": [[63, "pyk.kore.syntax.String.value", false]], "value (symbolid attribute)": [[63, "pyk.kore.syntax.SymbolId.value", false]], "value (terminal attribute)": [[19, "pyk.kast.outer_syntax.Terminal.value", false]], "var (exists attribute)": [[63, "pyk.kore.syntax.Exists.var", false]], "var (forall attribute)": [[63, "pyk.kore.syntax.Forall.var", false]], "var (mlfixpoint attribute)": [[63, "pyk.kore.syntax.MLFixpoint.var", false]], "var (mlquant attribute)": [[63, "pyk.kore.syntax.MLQuant.var", false]], "var (mu attribute)": [[63, "pyk.kore.syntax.Mu.var", false]], "var (nu attribute)": [[63, "pyk.kore.syntax.Nu.var", false]], "var_occurrences() (in module pyk.kast.inner)": [[11, "pyk.kast.inner.var_occurrences", false]], "var_pattern() (koreparser method)": [[59, "pyk.kore.parser.KoreParser.var_pattern", false]], "variable (tokentype attribute)": [[13, "pyk.kast.lexer.TokenType.VARIABLE", false]], "varpattern (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.VarPattern", false]], "vars (axiom attribute)": [[63, "pyk.kore.syntax.Axiom.vars", false]], "vars (axiomlike attribute)": [[63, "pyk.kore.syntax.AxiomLike.vars", false]], "vars (claim attribute)": [[63, "pyk.kore.syntax.Claim.vars", false]], "vars (sortdecl attribute)": [[63, "pyk.kore.syntax.SortDecl.vars", false]], "vars (symbol attribute)": [[63, "pyk.kore.syntax.Symbol.vars", false]], "vbar (tokentype attribute)": [[17, "pyk.kast.outer_lexer.TokenType.VBAR", false]], "verbose (behaviorview.selected attribute)": [[36, "pyk.kcfg.tui.BehaviorView.Selected.verbose", false]], "verbose (graphchunk.selected attribute)": [[36, "pyk.kcfg.tui.GraphChunk.Selected.verbose", false]], "verbose (navwidget.selected attribute)": [[36, "pyk.kcfg.tui.NavWidget.Selected.verbose", false]], "version (llvmrewritetrace property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace.version", false]], "version (llvmrewritetraceiterator property)": [[46, "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator.version", false]], "version (project attribute)": [[27, "pyk.kbuild.project.Project.version", false]], "version() (kast static method)": [[12, "pyk.kast.kast.KAst.version", false]], "violet (color attribute)": [[9, "pyk.kast.color.Color.VIOLET", false]], "violet_red (color attribute)": [[9, "pyk.kast.color.Color.VIOLET_RED", false]], "walrus (tokentype attribute)": [[56, "pyk.kore.lexer.TokenType.WALRUS", false]], "watch_text() (info method)": [[36, "pyk.kcfg.tui.Info.watch_text", false]], "watch_text() (navwidget method)": [[36, "pyk.kcfg.tui.NavWidget.watch_text", false]], "wheat (color attribute)": [[9, "pyk.kast.color.Color.WHEAT", false]], "white (color attribute)": [[9, "pyk.kast.color.Color.WHITE", false]], "white_smoke (color attribute)": [[9, "pyk.kast.color.Color.WHITE_SMOKE", false]], "wild_strawberry (color attribute)": [[9, "pyk.kast.color.Color.WILD_STRAWBERRY", false]], "with_single_target() (kcfg.multiedge method)": [[32, "pyk.kcfg.kcfg.KCFG.MultiEdge.with_single_target", false]], "with_single_target() (kcfg.ndbranch method)": [[32, "pyk.kcfg.kcfg.KCFG.NDBranch.with_single_target", false]], "with_single_target() (kcfg.split method)": [[32, "pyk.kcfg.kcfg.KCFG.Split.with_single_target", false]], "withattrs (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.WithAttrs", false]], "withkatt (class in pyk.kast.att)": [[8, "pyk.kast.att.WithKAtt", false]], "withsort (class in pyk.kore.syntax)": [[63, "pyk.kore.syntax.WithSort", false]], "wrap_element (atts attribute)": [[8, "pyk.kast.att.Atts.WRAP_ELEMENT", false]], "write() (aliasdecl method)": [[63, "pyk.kore.syntax.AliasDecl.write", false]], "write() (app method)": [[63, "pyk.kore.syntax.App.write", false]], "write() (axiomlike method)": [[63, "pyk.kore.syntax.AxiomLike.write", false]], "write() (definition method)": [[63, "pyk.kore.syntax.Definition.write", false]], "write() (import method)": [[63, "pyk.kore.syntax.Import.write", false]], "write() (kompiledkore method)": [[55, "pyk.kore.kompiled.KompiledKore.write", false]], "write() (kore method)": [[63, "pyk.kore.syntax.Kore.write", false]], "write() (mlpattern method)": [[63, "pyk.kore.syntax.MLPattern.write", false]], "write() (module method)": [[63, "pyk.kore.syntax.Module.write", false]], "write() (sortapp method)": [[63, "pyk.kore.syntax.SortApp.write", false]], "write() (sortdecl method)": [[63, "pyk.kore.syntax.SortDecl.write", false]], "write() (sortvar method)": [[63, "pyk.kore.syntax.SortVar.write", false]], "write() (string method)": [[63, "pyk.kore.syntax.String.write", false]], "write() (symbol method)": [[63, "pyk.kore.syntax.Symbol.write", false]], "write() (symboldecl method)": [[63, "pyk.kore.syntax.SymbolDecl.write", false]], "write() (varpattern method)": [[63, "pyk.kore.syntax.VarPattern.write", false]], "write_cfg_data() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.write_cfg_data", false]], "write_cfg_data() (kcfgstore method)": [[32, "pyk.kcfg.kcfg.KCFGStore.write_cfg_data", false]], "write_proof() (proof method)": [[88, "pyk.proof.proof.Proof.write_proof", false]], "write_proof_data() (aprproof method)": [[89, "pyk.proof.reachability.APRProof.write_proof_data", false]], "write_proof_data() (impliesproof method)": [[87, "pyk.proof.implies.ImpliesProof.write_proof_data", false]], "write_proof_data() (proof method)": [[88, "pyk.proof.proof.Proof.write_proof_data", false]], "xor_bool() (in module pyk.kore.prelude)": [[61, "pyk.kore.prelude.xor_bool", false]], "xorint() (in module pyk.prelude.kint)": [[82, "pyk.prelude.kint.xorInt", false]], "yellow (color attribute)": [[9, "pyk.kast.color.Color.YELLOW", false]], "yellow_green (color attribute)": [[9, "pyk.kast.color.Color.YELLOW_GREEN", false]], "yellow_orange (color attribute)": [[9, "pyk.kast.color.Color.YELLOW_ORANGE", false]], "zero_depth_between() (kcfg method)": [[32, "pyk.kcfg.kcfg.KCFG.zero_depth_between", false]]}, "objects": {"": [[1, 0, 0, "-", "pyk"]], "pyk": [[2, 0, 0, "-", "coverage"], [3, 0, 0, "-", "cterm"], [6, 0, 0, "-", "dequote"], [7, 0, 0, "-", "kast"], [24, 0, 0, "-", "kbuild"], [29, 0, 0, "-", "kcfg"], [37, 0, 0, "-", "kcovr"], [38, 0, 0, "-", "kdist"], [41, 0, 0, "-", "kllvm"], [53, 0, 0, "-", "konvert"], [54, 0, 0, "-", "kore"], [65, 0, 0, "-", "kore_exec_covr"], [67, 0, 0, "-", "krepl"], [69, 0, 0, "-", "ktool"], [77, 0, 0, "-", "prelude"], [86, 0, 0, "-", "proof"], [92, 0, 0, "-", "testing"], [94, 0, 0, "-", "utils"]], "pyk.coverage": [[2, 1, 1, "", "get_rule_by_id"], [2, 1, 1, "", "strip_coverage_logger"], [2, 1, 1, "", "translate_coverage"], [2, 1, 1, "", "translate_coverage_from_paths"]], "pyk.cterm": [[4, 0, 0, "-", "cterm"], [5, 0, 0, "-", "symbolic"]], "pyk.cterm.cterm": [[4, 2, 1, "", "CSubst"], [4, 2, 1, "", "CTerm"], [4, 1, 1, "", "anti_unify"], [4, 1, 1, "", "cterm_build_claim"], [4, 1, 1, "", "cterm_build_rule"]], "pyk.cterm.cterm.CSubst": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__iter__"], [4, 3, 1, "", "add_constraint"], [4, 3, 1, "", "apply"], [4, 4, 1, "", "constraint"], [4, 5, 1, "", "constraints"], [4, 3, 1, "", "from_dict"], [4, 5, 1, "", "subst"], [4, 3, 1, "", "to_dict"]], "pyk.cterm.cterm.CTerm": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "__iter__"], [4, 3, 1, "", "add_constraint"], [4, 3, 1, "", "anti_unify"], [4, 3, 1, "", "bottom"], [4, 3, 1, "", "cell"], [4, 4, 1, "", "cells"], [4, 5, 1, "", "config"], [4, 5, 1, "", "constraints"], [4, 4, 1, "", "free_vars"], [4, 3, 1, "", "from_dict"], [4, 3, 1, "", "from_kast"], [4, 4, 1, "", "hash"], [4, 4, 1, "", "is_bottom"], [4, 4, 1, "", "kast"], [4, 3, 1, "", "match"], [4, 3, 1, "", "match_with_constraint"], [4, 3, 1, "", "remove_useless_constraints"], [4, 3, 1, "", "to_dict"], [4, 3, 1, "", "top"], [4, 3, 1, "", "try_cell"]], "pyk.cterm.symbolic": [[5, 2, 1, "", "CTermExecute"], [5, 2, 1, "", "CTermImplies"], [5, 6, 1, "", "CTermSMTError"], [5, 2, 1, "", "CTermSymbolic"], [5, 2, 1, "", "NextState"], [5, 1, 1, "", "cterm_symbolic"]], "pyk.cterm.symbolic.CTermExecute": [[5, 5, 1, "", "depth"], [5, 5, 1, "", "logs"], [5, 5, 1, "", "next_states"], [5, 5, 1, "", "state"], [5, 5, 1, "", "vacuous"]], "pyk.cterm.symbolic.CTermImplies": [[5, 5, 1, "", "csubst"], [5, 5, 1, "", "failing_cells"], [5, 5, 1, "", "logs"], [5, 5, 1, "", "remaining_implication"]], "pyk.cterm.symbolic.CTermSymbolic": [[5, 3, 1, "", "assume_defined"], [5, 3, 1, "", "execute"], [5, 3, 1, "", "get_model"], [5, 3, 1, "", "implies"], [5, 3, 1, "", "kast_simplify"], [5, 3, 1, "", "kast_to_kore"], [5, 3, 1, "", "kore_to_kast"], [5, 3, 1, "", "minimize_constraints"], [5, 3, 1, "", "simplify"]], "pyk.cterm.symbolic.NextState": [[5, 5, 1, "", "condition"], [5, 5, 1, "", "state"]], "pyk.dequote": [[6, 1, 1, "", "bytes_decode"], [6, 1, 1, "", "bytes_encode"], [6, 1, 1, "", "dequote_bytes"], [6, 1, 1, "", "dequote_string"], [6, 1, 1, "", "dequoted"], [6, 1, 1, "", "enquote_bytes"], [6, 1, 1, "", "enquote_string"], [6, 1, 1, "", "enquoted"]], "pyk.kast": [[8, 0, 0, "-", "att"], [9, 0, 0, "-", "color"], [10, 0, 0, "-", "formatter"], [11, 0, 0, "-", "inner"], [12, 0, 0, "-", "kast"], [13, 0, 0, "-", "lexer"], [14, 0, 0, "-", "manip"], [15, 0, 0, "-", "markdown"], [16, 0, 0, "-", "outer"], [17, 0, 0, "-", "outer_lexer"], [18, 0, 0, "-", "outer_parser"], [19, 0, 0, "-", "outer_syntax"], [20, 0, 0, "-", "parser"], [21, 0, 0, "-", "pretty"], [22, 0, 0, "-", "rewrite"], [23, 0, 0, "-", "utils"]], "pyk.kast.att": [[8, 2, 1, "", "AnyType"], [8, 2, 1, "", "AttEntry"], [8, 2, 1, "", "AttKey"], [8, 2, 1, "", "AttType"], [8, 2, 1, "", "Atts"], [8, 2, 1, "", "ColorType"], [8, 2, 1, "", "ColorsType"], [8, 2, 1, "", "Format"], [8, 2, 1, "", "FormatType"], [8, 2, 1, "", "IntType"], [8, 2, 1, "", "KAtt"], [8, 2, 1, "", "LocationType"], [8, 2, 1, "", "NoneType"], [8, 2, 1, "", "OptionalType"], [8, 2, 1, "", "PathType"], [8, 2, 1, "", "StrType"], [8, 2, 1, "", "WithKAtt"]], "pyk.kast.att.AnyType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.AttEntry": [[8, 5, 1, "", "key"], [8, 5, 1, "", "value"]], "pyk.kast.att.AttKey": [[8, 5, 1, "", "name"], [8, 5, 1, "", "type"]], "pyk.kast.att.AttType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.Atts": [[8, 5, 1, "", "ALIAS"], [8, 5, 1, "", "ALIAS_REC"], [8, 5, 1, "", "ANYWHERE"], [8, 5, 1, "", "ASSOC"], [8, 5, 1, "", "BRACKET"], [8, 5, 1, "", "BRACKET_LABEL"], [8, 5, 1, "", "CELL"], [8, 5, 1, "", "CELL_COLLECTION"], [8, 5, 1, "", "CELL_FRAGMENT"], [8, 5, 1, "", "CELL_NAME"], [8, 5, 1, "", "CELL_OPT_ABSENT"], [8, 5, 1, "", "CIRCULARITY"], [8, 5, 1, "", "COLOR"], [8, 5, 1, "", "COLORS"], [8, 5, 1, "", "COMM"], [8, 5, 1, "", "CONCAT"], [8, 5, 1, "", "CONCRETE"], [8, 5, 1, "", "CONSTRUCTOR"], [8, 5, 1, "", "DEPENDS"], [8, 5, 1, "", "DIGEST"], [8, 5, 1, "", "ELEMENT"], [8, 5, 1, "", "FORMAT"], [8, 5, 1, "", "FRESH_GENERATOR"], [8, 5, 1, "", "FUNCTION"], [8, 5, 1, "", "FUNCTIONAL"], [8, 5, 1, "", "GROUP"], [8, 5, 1, "", "HAS_DOMAIN_VALUES"], [8, 5, 1, "", "HOOK"], [8, 5, 1, "", "IDEM"], [8, 5, 1, "", "IMPURE"], [8, 5, 1, "", "INDEX"], [8, 5, 1, "", "INITIALIZER"], [8, 5, 1, "", "INJECTIVE"], [8, 5, 1, "", "KLABEL"], [8, 5, 1, "", "LABEL"], [8, 5, 1, "", "LEFT"], [8, 5, 1, "", "LOCATION"], [8, 5, 1, "", "MACRO"], [8, 5, 1, "", "MACRO_REC"], [8, 5, 1, "", "MAINCELL"], [8, 5, 1, "", "OVERLOAD"], [8, 5, 1, "", "OWISE"], [8, 5, 1, "", "PREDICATE"], [8, 5, 1, "", "PREFER"], [8, 5, 1, "", "PRIORITIES"], [8, 5, 1, "", "PRIORITY"], [8, 5, 1, "", "PRIVATE"], [8, 5, 1, "", "PRODUCTION"], [8, 5, 1, "", "PROJECTION"], [8, 5, 1, "", "RIGHT"], [8, 5, 1, "", "SEQSTRICT"], [8, 5, 1, "", "SIMPLIFICATION"], [8, 5, 1, "", "SORT"], [8, 5, 1, "", "SOURCE"], [8, 5, 1, "", "STRICT"], [8, 5, 1, "", "SYMBOL"], [8, 5, 1, "", "SYNTAX_MODULE"], [8, 5, 1, "", "TERMINALS"], [8, 5, 1, "", "TOKEN"], [8, 5, 1, "", "TOTAL"], [8, 5, 1, "", "TRUSTED"], [8, 5, 1, "", "UNIQUE_ID"], [8, 5, 1, "", "UNIT"], [8, 5, 1, "", "UNPARSE_AVOID"], [8, 5, 1, "", "USER_LIST"], [8, 5, 1, "", "WRAP_ELEMENT"], [8, 3, 1, "", "keys"]], "pyk.kast.att.ColorType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.ColorsType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.Format": [[8, 3, 1, "", "parse"], [8, 5, 1, "", "tokens"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.FormatType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.IntType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.KAtt": [[8, 5, 1, "", "atts"], [8, 3, 1, "", "discard"], [8, 3, 1, "", "drop_source"], [8, 3, 1, "", "entries"], [8, 3, 1, "", "from_dict"], [8, 3, 1, "", "get"], [8, 3, 1, "", "parse"], [8, 4, 1, "", "pretty"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "update"]], "pyk.kast.att.LocationType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.NoneType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.OptionalType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.PathType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.StrType": [[8, 3, 1, "", "from_dict"], [8, 3, 1, "", "parse"], [8, 3, 1, "", "to_dict"], [8, 3, 1, "", "unparse"]], "pyk.kast.att.WithKAtt": [[8, 5, 1, "", "att"], [8, 3, 1, "", "let_att"], [8, 3, 1, "", "map_att"], [8, 3, 1, "", "update_atts"]], "pyk.kast.color": [[9, 2, 1, "", "Color"]], "pyk.kast.color.Color": [[9, 5, 1, "", "ALICE_BLUE"], [9, 5, 1, "", "ANTIQUE_WHITE"], [9, 5, 1, "", "APRICOT"], [9, 5, 1, "", "AQUA"], [9, 5, 1, "", "AQUAMARINE"], [9, 5, 1, "", "AZURE"], [9, 5, 1, "", "BEIGE"], [9, 5, 1, "", "BISQUE"], [9, 5, 1, "", "BITTERSWEET"], [9, 5, 1, "", "BLACK"], [9, 5, 1, "", "BLANCHED_ALMOND"], [9, 5, 1, "", "BLUE"], [9, 5, 1, "", "BLUE_GREEN"], [9, 5, 1, "", "BLUE_VIOLET"], [9, 5, 1, "", "BRICK_RED"], [9, 5, 1, "", "BROWN"], [9, 5, 1, "", "BURLY_WOOD"], [9, 5, 1, "", "BURNT_ORANGE"], [9, 5, 1, "", "CADET_BLUE"], [9, 5, 1, "", "CARNATION_PINK"], [9, 5, 1, "", "CERULEAN"], [9, 5, 1, "", "CHARTREUSE"], [9, 5, 1, "", "CHOCOLATE"], [9, 5, 1, "", "CORAL"], [9, 5, 1, "", "CORNFLOWER_BLUE"], [9, 5, 1, "", "CORNSILK"], [9, 5, 1, "", "CRIMSON"], [9, 5, 1, "", "CYAN"], [9, 5, 1, "", "DANDELION"], [9, 5, 1, "", "DARKGRAY"], [9, 5, 1, "", "DARK_BLUE"], [9, 5, 1, "", "DARK_CYAN"], [9, 5, 1, "", "DARK_GOLDENROD"], [9, 5, 1, "", "DARK_GRAY"], [9, 5, 1, "", "DARK_GREEN"], [9, 5, 1, "", "DARK_GREY"], [9, 5, 1, "", "DARK_KHAKI"], [9, 5, 1, "", "DARK_MAGENTA"], [9, 5, 1, "", "DARK_OLIVE_GREEN"], [9, 5, 1, "", "DARK_ORANGE"], [9, 5, 1, "", "DARK_ORCHID"], [9, 5, 1, "", "DARK_RED"], [9, 5, 1, "", "DARK_SALMON"], [9, 5, 1, "", "DARK_SEA_GREEN"], [9, 5, 1, "", "DARK_SLATE_BLUE"], [9, 5, 1, "", "DARK_SLATE_GRAY"], [9, 5, 1, "", "DARK_SLATE_GREY"], [9, 5, 1, "", "DARK_TURQUOISE"], [9, 5, 1, "", "DARK_VIOLET"], [9, 5, 1, "", "DEEP_PINK"], [9, 5, 1, "", "DEEP_SKY_BLUE"], [9, 5, 1, "", "DIM_GRAY"], [9, 5, 1, "", "DIM_GREY"], [9, 5, 1, "", "DODGER_BLUE"], [9, 5, 1, "", "EMERALD"], [9, 5, 1, "", "FIRE_BRICK"], [9, 5, 1, "", "FLORAL_WHITE"], [9, 5, 1, "", "FOREST_GREEN"], [9, 5, 1, "", "FUCHSIA"], [9, 5, 1, "", "GAINSBORO"], [9, 5, 1, "", "GHOST_WHITE"], [9, 5, 1, "", "GOLD"], [9, 5, 1, "", "GOLDENROD"], [9, 5, 1, "", "GRAY"], [9, 5, 1, "", "GREEN"], [9, 5, 1, "", "GREEN_YELLOW"], [9, 5, 1, "", "GREY"], [9, 5, 1, "", "HONEYDEW"], [9, 5, 1, "", "HOT_PINK"], [9, 5, 1, "", "INDIAN_RED"], [9, 5, 1, "", "INDIGO"], [9, 5, 1, "", "IVORY"], [9, 5, 1, "", "JUNGLE_GREEN"], [9, 5, 1, "", "KHAKI"], [9, 5, 1, "", "LAVENDER"], [9, 5, 1, "", "LAVENDER_BLUSH"], [9, 5, 1, "", "LAWN_GREEN"], [9, 5, 1, "", "LEMON_CHIFFON"], [9, 5, 1, "", "LIGHTGRAY"], [9, 5, 1, "", "LIGHT_BLUE"], [9, 5, 1, "", "LIGHT_CORAL"], [9, 5, 1, "", "LIGHT_CYAN"], [9, 5, 1, "", "LIGHT_GOLDENROD"], [9, 5, 1, "", "LIGHT_GOLDENROD_YELLOW"], [9, 5, 1, "", "LIGHT_GRAY"], [9, 5, 1, "", "LIGHT_GREEN"], [9, 5, 1, "", "LIGHT_GREY"], [9, 5, 1, "", "LIGHT_PINK"], [9, 5, 1, "", "LIGHT_SALMON"], [9, 5, 1, "", "LIGHT_SEA_GREEN"], [9, 5, 1, "", "LIGHT_SKY_BLUE"], [9, 5, 1, "", "LIGHT_SLATE_BLUE"], [9, 5, 1, "", "LIGHT_SLATE_GRAY"], [9, 5, 1, "", "LIGHT_SLATE_GREY"], [9, 5, 1, "", "LIGHT_STEEL_BLUE"], [9, 5, 1, "", "LIGHT_YELLOW"], [9, 5, 1, "", "LIME"], [9, 5, 1, "", "LIME_GREEN"], [9, 5, 1, "", "LINEN"], [9, 5, 1, "", "MAGENTA"], [9, 5, 1, "", "MAHOGANY"], [9, 5, 1, "", "MAROON"], [9, 5, 1, "", "MEDIUM_AQUAMARINE"], [9, 5, 1, "", "MEDIUM_BLUE"], [9, 5, 1, "", "MEDIUM_ORCHID"], [9, 5, 1, "", "MEDIUM_PURPLE"], [9, 5, 1, "", "MEDIUM_SEA_GREEN"], [9, 5, 1, "", "MEDIUM_SLATE_BLUE"], [9, 5, 1, "", "MEDIUM_SPRING_GREEN"], [9, 5, 1, "", "MEDIUM_TURQUOISE"], [9, 5, 1, "", "MEDIUM_VIOLET_RED"], [9, 5, 1, "", "MELON"], [9, 5, 1, "", "MIDNIGHT_BLUE"], [9, 5, 1, "", "MINT_CREAM"], [9, 5, 1, "", "MISTY_ROSE"], [9, 5, 1, "", "MOCCASIN"], [9, 5, 1, "", "MULBERRY"], [9, 5, 1, "", "NAVAJO_WHITE"], [9, 5, 1, "", "NAVY"], [9, 5, 1, "", "NAVY_BLUE"], [9, 5, 1, "", "OLD_LACE"], [9, 5, 1, "", "OLIVE"], [9, 5, 1, "", "OLIVE_DRAB"], [9, 5, 1, "", "OLIVE_GREEN"], [9, 5, 1, "", "ORANGE"], [9, 5, 1, "", "ORANGE_RED"], [9, 5, 1, "", "ORCHID"], [9, 5, 1, "", "PALE_GOLDENROD"], [9, 5, 1, "", "PALE_GREEN"], [9, 5, 1, "", "PALE_TURQUOISE"], [9, 5, 1, "", "PALE_VIOLET_RED"], [9, 5, 1, "", "PAPAYA_WHIP"], [9, 5, 1, "", "PEACH"], [9, 5, 1, "", "PEACH_PUFF"], [9, 5, 1, "", "PERIWINKLE"], [9, 5, 1, "", "PERU"], [9, 5, 1, "", "PINE_GREEN"], [9, 5, 1, "", "PINK"], [9, 5, 1, "", "PLUM"], [9, 5, 1, "", "POWDER_BLUE"], [9, 5, 1, "", "PROCESS_BLUE"], [9, 5, 1, "", "PURPLE"], [9, 5, 1, "", "RAW_SIENNA"], [9, 5, 1, "", "RED"], [9, 5, 1, "", "RED_ORANGE"], [9, 5, 1, "", "RED_VIOLET"], [9, 5, 1, "", "RHODAMINE"], [9, 5, 1, "", "ROSY_BROWN"], [9, 5, 1, "", "ROYAL_BLUE"], [9, 5, 1, "", "ROYAL_PURPLE"], [9, 5, 1, "", "RUBINE_RED"], [9, 5, 1, "", "SADDLE_BROWN"], [9, 5, 1, "", "SALMON"], [9, 5, 1, "", "SANDY_BROWN"], [9, 5, 1, "", "SEASHELL"], [9, 5, 1, "", "SEA_GREEN"], [9, 5, 1, "", "SEPIA"], [9, 5, 1, "", "SIENNA"], [9, 5, 1, "", "SILVER"], [9, 5, 1, "", "SKY_BLUE"], [9, 5, 1, "", "SLATE_BLUE"], [9, 5, 1, "", "SLATE_GRAY"], [9, 5, 1, "", "SLATE_GREY"], [9, 5, 1, "", "SNOW"], [9, 5, 1, "", "SPRING_GREEN"], [9, 5, 1, "", "STEEL_BLUE"], [9, 5, 1, "", "TAN"], [9, 5, 1, "", "TEAL"], [9, 5, 1, "", "TEAL_BLUE"], [9, 5, 1, "", "THISTLE"], [9, 5, 1, "", "TOMATO"], [9, 5, 1, "", "TURQUOISE"], [9, 5, 1, "", "VIOLET"], [9, 5, 1, "", "VIOLET_RED"], [9, 5, 1, "", "WHEAT"], [9, 5, 1, "", "WHITE"], [9, 5, 1, "", "WHITE_SMOKE"], [9, 5, 1, "", "WILD_STRAWBERRY"], [9, 5, 1, "", "YELLOW"], [9, 5, 1, "", "YELLOW_GREEN"], [9, 5, 1, "", "YELLOW_ORANGE"], [9, 4, 1, "", "ansi_code"], [9, 3, 1, "", "reset"], [9, 3, 1, "", "reset_code"], [9, 3, 1, "", "set"]], "pyk.kast.formatter": [[10, 2, 1, "", "Formatter"], [10, 1, 1, "", "add_brackets"]], "pyk.kast.formatter.Formatter": [[10, 5, 1, "", "definition"], [10, 3, 1, "", "format"]], "pyk.kast.inner": [[11, 2, 1, "", "KApply"], [11, 2, 1, "", "KAs"], [11, 2, 1, "", "KInner"], [11, 2, 1, "", "KLabel"], [11, 2, 1, "", "KRewrite"], [11, 2, 1, "", "KSequence"], [11, 2, 1, "", "KSort"], [11, 2, 1, "", "KToken"], [11, 2, 1, "", "KVariable"], [11, 2, 1, "", "Subst"], [11, 1, 1, "", "bottom_up"], [11, 1, 1, "", "bottom_up_with_summary"], [11, 1, 1, "", "build_assoc"], [11, 1, 1, "", "build_cons"], [11, 1, 1, "", "collect"], [11, 1, 1, "", "flatten_label"], [11, 1, 1, "", "top_down"], [11, 1, 1, "", "var_occurrences"]], "pyk.kast.inner.KApply": [[11, 3, 1, "", "__init__"], [11, 5, 1, "", "args"], [11, 4, 1, "", "arity"], [11, 4, 1, "", "is_cell"], [11, 5, 1, "", "label"], [11, 3, 1, "", "let"], [11, 3, 1, "", "let_terms"], [11, 3, 1, "", "match"], [11, 4, 1, "", "terms"]], "pyk.kast.inner.KAs": [[11, 3, 1, "", "__init__"], [11, 5, 1, "", "alias"], [11, 3, 1, "", "let"], [11, 3, 1, "", "let_terms"], [11, 3, 1, "", "match"], [11, 5, 1, "", "pattern"], [11, 4, 1, "", "terms"]], "pyk.kast.inner.KInner": [[11, 3, 1, "", "from_dict"], [11, 3, 1, "", "from_json"], [11, 3, 1, "", "let_terms"], [11, 3, 1, "", "map_inner"], [11, 3, 1, "", "match"], [11, 4, 1, "", "terms"], [11, 3, 1, "", "to_dict"]], "pyk.kast.inner.KLabel": [[11, 3, 1, "", "__init__"], [11, 3, 1, "", "__iter__"], [11, 3, 1, "", "apply"], [11, 3, 1, "", "from_dict"], [11, 3, 1, "", "let"], [11, 5, 1, "", "name"], [11, 5, 1, "", "params"], [11, 3, 1, "", "to_dict"]], "pyk.kast.inner.KRewrite": [[11, 3, 1, "", "__init__"], [11, 3, 1, "", "__iter__"], [11, 3, 1, "", "apply"], [11, 3, 1, "", "apply_top"], [11, 3, 1, "", "let"], [11, 3, 1, "", "let_terms"], [11, 5, 1, "", "lhs"], [11, 3, 1, "", "match"], [11, 3, 1, "", "replace"], [11, 3, 1, "", "replace_top"], [11, 5, 1, "", "rhs"], [11, 4, 1, "", "terms"]], "pyk.kast.inner.KSequence": [[11, 3, 1, "", "__init__"], [11, 4, 1, "", "arity"], [11, 5, 1, "", "items"], [11, 3, 1, "", "let"], [11, 3, 1, "", "let_terms"], [11, 3, 1, "", "match"], [11, 4, 1, "", "terms"]], "pyk.kast.inner.KSort": [[11, 3, 1, "", "__init__"], [11, 3, 1, "", "from_dict"], [11, 3, 1, "", "let"], [11, 5, 1, "", "name"], [11, 3, 1, "", "to_dict"]], "pyk.kast.inner.KToken": [[11, 3, 1, "", "__init__"], [11, 3, 1, "", "let"], [11, 3, 1, "", "let_terms"], [11, 3, 1, "", "match"], [11, 5, 1, "", "sort"], [11, 4, 1, "", "terms"], [11, 5, 1, "", "token"]], "pyk.kast.inner.KVariable": [[11, 3, 1, "", "__init__"], [11, 3, 1, "", "__lt__"], [11, 3, 1, "", "let"], [11, 3, 1, "", "let_sort"], [11, 3, 1, "", "let_terms"], [11, 3, 1, "", "match"], [11, 5, 1, "", "name"], [11, 5, 1, "", "sort"], [11, 4, 1, "", "terms"]], "pyk.kast.inner.Subst": [[11, 3, 1, "", "__call__"], [11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__init__"], [11, 3, 1, "", "__iter__"], [11, 3, 1, "", "__len__"], [11, 3, 1, "", "__mul__"], [11, 3, 1, "", "apply"], [11, 3, 1, "", "compose"], [11, 3, 1, "", "from_dict"], [11, 3, 1, "", "from_pred"], [11, 4, 1, "", "is_identity"], [11, 3, 1, "", "minimize"], [11, 4, 1, "", "ml_pred"], [11, 4, 1, "", "pred"], [11, 3, 1, "", "to_dict"], [11, 3, 1, "", "unapply"], [11, 3, 1, "", "union"]], "pyk.kast.kast": [[12, 2, 1, "", "KAst"], [12, 1, 1, "", "kast_term"]], "pyk.kast.kast.KAst": [[12, 4, 1, "", "hash"], [12, 3, 1, "", "to_dict"], [12, 3, 1, "", "to_json"], [12, 3, 1, "", "version"]], "pyk.kast.lexer": [[13, 2, 1, "", "State"], [13, 2, 1, "", "Token"], [13, 2, 1, "", "TokenType"], [13, 1, 1, "", "lexer"]], "pyk.kast.lexer.State": [[13, 5, 1, "", "DEFAULT"], [13, 5, 1, "", "SORT"]], "pyk.kast.lexer.Token": [[13, 5, 1, "", "text"], [13, 5, 1, "", "type"]], "pyk.kast.lexer.TokenType": [[13, 5, 1, "", "COLON"], [13, 5, 1, "", "COMMA"], [13, 5, 1, "", "DOTK"], [13, 5, 1, "", "DOTKLIST"], [13, 5, 1, "", "EOF"], [13, 5, 1, "", "ID"], [13, 5, 1, "", "KLABEL"], [13, 5, 1, "", "KSEQ"], [13, 5, 1, "", "LPAREN"], [13, 5, 1, "", "RPAREN"], [13, 5, 1, "", "SORT"], [13, 5, 1, "", "STRING"], [13, 5, 1, "", "TOKEN"], [13, 5, 1, "", "VARIABLE"]], "pyk.kast.manip": [[14, 1, 1, "", "abstract_term_safely"], [14, 1, 1, "", "apply_existential_substitutions"], [14, 1, 1, "", "bool_to_ml_pred"], [14, 1, 1, "", "build_claim"], [14, 1, 1, "", "build_rule"], [14, 1, 1, "", "cell_label_to_var_name"], [14, 1, 1, "", "collapse_dots"], [14, 1, 1, "", "count_vars"], [14, 1, 1, "", "extract_cells"], [14, 1, 1, "", "extract_lhs"], [14, 1, 1, "", "extract_rhs"], [14, 1, 1, "", "extract_subst"], [14, 1, 1, "", "free_vars"], [14, 1, 1, "", "if_ktype"], [14, 1, 1, "", "inline_cell_maps"], [14, 1, 1, "", "is_anon_var"], [14, 1, 1, "", "is_spurious_constraint"], [14, 1, 1, "", "is_term_like"], [14, 1, 1, "", "labels_to_dots"], [14, 1, 1, "", "minimize_rule"], [14, 1, 1, "", "minimize_term"], [14, 1, 1, "", "ml_pred_to_bool"], [14, 1, 1, "", "no_cell_rewrite_to_dots"], [14, 1, 1, "", "normalize_constraints"], [14, 1, 1, "", "normalize_ml_pred"], [14, 1, 1, "", "on_attributes"], [14, 1, 1, "", "propagate_up_constraints"], [14, 1, 1, "", "push_down_rewrites"], [14, 1, 1, "", "remove_attrs"], [14, 1, 1, "", "remove_generated_cells"], [14, 1, 1, "", "remove_semantic_casts"], [14, 1, 1, "", "remove_source_map"], [14, 1, 1, "", "remove_useless_constraints"], [14, 1, 1, "", "rename_generated_vars"], [14, 1, 1, "", "replace_rewrites_with_implies"], [14, 1, 1, "", "set_cell"], [14, 1, 1, "", "simplify_bool"], [14, 1, 1, "", "sort_ac_collections"], [14, 1, 1, "", "sort_assoc_label"], [14, 1, 1, "", "split_config_and_constraints"], [14, 1, 1, "", "split_config_from"], [14, 1, 1, "", "undo_aliases"], [14, 1, 1, "", "useless_vars_to_dots"]], "pyk.kast.markdown": [[15, 2, 1, "", "And"], [15, 2, 1, "", "Atom"], [15, 2, 1, "", "CodeBlock"], [15, 2, 1, "", "Not"], [15, 2, 1, "", "Or"], [15, 2, 1, "", "Selector"], [15, 2, 1, "", "SelectorParser"], [15, 1, 1, "", "code_blocks"], [15, 1, 1, "", "parse_tags"], [15, 1, 1, "", "select_code_blocks"], [15, 1, 1, "", "selector_lexer"]], "pyk.kast.markdown.And": [[15, 3, 1, "", "eval"], [15, 5, 1, "", "ops"]], "pyk.kast.markdown.Atom": [[15, 3, 1, "", "eval"], [15, 5, 1, "", "name"]], "pyk.kast.markdown.CodeBlock": [[15, 5, 1, "", "code"], [15, 5, 1, "", "info"]], "pyk.kast.markdown.Not": [[15, 3, 1, "", "eval"], [15, 5, 1, "", "op"]], "pyk.kast.markdown.Or": [[15, 3, 1, "", "eval"], [15, 5, 1, "", "ops"]], "pyk.kast.markdown.Selector": [[15, 3, 1, "", "eval"]], "pyk.kast.markdown.SelectorParser": [[15, 3, 1, "", "parse"]], "pyk.kast.outer": [[16, 2, 1, "", "KAssoc"], [16, 2, 1, "", "KBubble"], [16, 2, 1, "", "KClaim"], [16, 2, 1, "", "KContext"], [16, 2, 1, "", "KDefinition"], [16, 2, 1, "", "KFlatModule"], [16, 2, 1, "", "KFlatModuleList"], [16, 2, 1, "", "KImport"], [16, 2, 1, "", "KNonTerminal"], [16, 2, 1, "", "KOuter"], [16, 2, 1, "", "KProduction"], [16, 2, 1, "", "KProductionItem"], [16, 2, 1, "", "KRegexTerminal"], [16, 2, 1, "", "KRequire"], [16, 2, 1, "", "KRule"], [16, 2, 1, "", "KRuleLike"], [16, 2, 1, "", "KSentence"], [16, 2, 1, "", "KSortSynonym"], [16, 2, 1, "", "KSyntaxAssociativity"], [16, 2, 1, "", "KSyntaxLexical"], [16, 2, 1, "", "KSyntaxPriority"], [16, 2, 1, "", "KSyntaxSort"], [16, 2, 1, "", "KTerminal"], [16, 1, 1, "", "read_kast_definition"]], "pyk.kast.outer.KAssoc": [[16, 5, 1, "", "LEFT"], [16, 5, 1, "", "NON_ASSOC"], [16, 5, 1, "", "RIGHT"]], "pyk.kast.outer.KBubble": [[16, 5, 1, "", "att"], [16, 5, 1, "", "contents"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "sentence_type"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KClaim": [[16, 5, 1, "", "att"], [16, 5, 1, "", "body"], [16, 4, 1, "", "dependencies"], [16, 5, 1, "", "ensures"], [16, 4, 1, "", "is_circularity"], [16, 4, 1, "", "is_trusted"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "requires"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KContext": [[16, 5, 1, "", "att"], [16, 5, 1, "", "body"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "requires"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KDefinition": [[16, 3, 1, "", "add_cell_map_items"], [16, 3, 1, "", "add_ksequence_under_k_productions"], [16, 3, 1, "", "add_sort_params"], [16, 4, 1, "", "alias_rules"], [16, 4, 1, "", "all_module_names"], [16, 5, 1, "", "all_modules"], [16, 4, 1, "", "all_modules_dict"], [16, 5, 1, "", "att"], [16, 4, 1, "", "brackets"], [16, 4, 1, "", "cell_collection_productions"], [16, 4, 1, "", "constructors"], [16, 3, 1, "", "empty_config"], [16, 3, 1, "", "from_dict"], [16, 4, 1, "", "functions"], [16, 3, 1, "", "greatest_common_subsort"], [16, 3, 1, "", "init_config"], [16, 3, 1, "", "instantiate_cell_vars"], [16, 3, 1, "", "least_common_supersort"], [16, 4, 1, "", "left_assocs"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 4, 1, "", "macro_rules"], [16, 5, 1, "", "main_module"], [16, 5, 1, "", "main_module_name"], [16, 3, 1, "", "module"], [16, 4, 1, "", "module_names"], [16, 4, 1, "", "modules"], [16, 4, 1, "", "overloads"], [16, 4, 1, "", "priorities"], [16, 3, 1, "", "production_for_cell_sort"], [16, 4, 1, "", "productions"], [16, 3, 1, "", "remove_cell_map_items"], [16, 5, 1, "", "requires"], [16, 3, 1, "", "resolve_sorts"], [16, 4, 1, "", "right_assocs"], [16, 4, 1, "", "rules"], [16, 4, 1, "", "semantic_rules"], [16, 4, 1, "", "sentence_by_unique_id"], [16, 3, 1, "", "sort"], [16, 3, 1, "", "sort_strict"], [16, 3, 1, "", "sort_vars"], [16, 4, 1, "", "subsort_table"], [16, 3, 1, "", "subsorts"], [16, 4, 1, "", "symbols"], [16, 4, 1, "", "syntax_productions"], [16, 4, 1, "", "syntax_symbols"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KFlatModule": [[16, 5, 1, "", "att"], [16, 4, 1, "", "cell_collection_productions"], [16, 4, 1, "", "claims"], [16, 4, 1, "", "constructors"], [16, 3, 1, "", "from_dict"], [16, 4, 1, "", "functions"], [16, 5, 1, "", "imports"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 3, 1, "", "map_sentences"], [16, 5, 1, "", "name"], [16, 4, 1, "", "productions"], [16, 4, 1, "", "rules"], [16, 4, 1, "", "sentence_by_unique_id"], [16, 5, 1, "", "sentences"], [16, 4, 1, "", "syntax_productions"], [16, 4, 1, "", "syntax_sorts"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KFlatModuleList": [[16, 3, 1, "", "from_dict"], [16, 3, 1, "", "let"], [16, 5, 1, "", "main_module"], [16, 5, 1, "", "modules"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KImport": [[16, 3, 1, "", "from_dict"], [16, 3, 1, "", "let"], [16, 5, 1, "", "name"], [16, 5, 1, "", "public"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KNonTerminal": [[16, 3, 1, "", "let"], [16, 5, 1, "", "name"], [16, 5, 1, "", "sort"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KProduction": [[16, 4, 1, "", "argument_sorts"], [16, 4, 1, "", "as_subsort"], [16, 5, 1, "", "att"], [16, 4, 1, "", "default_format"], [16, 4, 1, "", "is_prefix"], [16, 4, 1, "", "is_record"], [16, 5, 1, "", "items"], [16, 5, 1, "", "klabel"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 4, 1, "", "non_terminals"], [16, 5, 1, "", "params"], [16, 5, 1, "", "sort"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KProductionItem": [[16, 3, 1, "", "from_dict"]], "pyk.kast.outer.KRegexTerminal": [[16, 3, 1, "", "let"], [16, 5, 1, "", "regex"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KRequire": [[16, 3, 1, "", "from_dict"], [16, 3, 1, "", "let"], [16, 5, 1, "", "require"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KRule": [[16, 5, 1, "", "att"], [16, 5, 1, "", "body"], [16, 5, 1, "", "ensures"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 4, 1, "", "priority"], [16, 5, 1, "", "requires"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KRuleLike": [[16, 5, 1, "", "body"], [16, 5, 1, "", "ensures"], [16, 3, 1, "", "let"], [16, 5, 1, "", "requires"]], "pyk.kast.outer.KSentence": [[16, 3, 1, "", "from_dict"], [16, 4, 1, "", "label"], [16, 4, 1, "", "source"], [16, 4, 1, "", "unique_id"]], "pyk.kast.outer.KSortSynonym": [[16, 5, 1, "", "att"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "new_sort"], [16, 5, 1, "", "old_sort"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KSyntaxAssociativity": [[16, 5, 1, "", "assoc"], [16, 5, 1, "", "att"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "tags"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KSyntaxLexical": [[16, 5, 1, "", "att"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "name"], [16, 5, 1, "", "regex"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KSyntaxPriority": [[16, 5, 1, "", "att"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "priorities"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KSyntaxSort": [[16, 5, 1, "", "att"], [16, 3, 1, "", "let"], [16, 3, 1, "", "let_att"], [16, 5, 1, "", "params"], [16, 5, 1, "", "sort"], [16, 3, 1, "", "to_dict"]], "pyk.kast.outer.KTerminal": [[16, 3, 1, "", "let"], [16, 3, 1, "", "to_dict"], [16, 5, 1, "", "value"]], "pyk.kast.outer_lexer": [[17, 2, 1, "", "Loc"], [17, 2, 1, "", "LocationIterator"], [17, 2, 1, "", "State"], [17, 2, 1, "", "Token"], [17, 2, 1, "", "TokenType"], [17, 1, 1, "", "outer_lexer"]], "pyk.kast.outer_lexer.Loc": [[17, 5, 1, "", "col"], [17, 5, 1, "", "line"]], "pyk.kast.outer_lexer.LocationIterator": [[17, 4, 1, "", "loc"]], "pyk.kast.outer_lexer.State": [[17, 5, 1, "", "ATTR"], [17, 5, 1, "", "BUBBLE"], [17, 5, 1, "", "CONTEXT"], [17, 5, 1, "", "DEFAULT"], [17, 5, 1, "", "KLABEL"], [17, 5, 1, "", "MODNAME"], [17, 5, 1, "", "SYNTAX"]], "pyk.kast.outer_lexer.Token": [[17, 3, 1, "", "let"], [17, 5, 1, "", "loc"], [17, 5, 1, "", "text"], [17, 5, 1, "", "type"]], "pyk.kast.outer_lexer.TokenType": [[17, 5, 1, "", "ATTR_CONTENT"], [17, 5, 1, "", "ATTR_KEY"], [17, 5, 1, "", "BUBBLE"], [17, 5, 1, "", "COLON"], [17, 5, 1, "", "COMMA"], [17, 5, 1, "", "DCOLONEQ"], [17, 5, 1, "", "EOF"], [17, 5, 1, "", "EQ"], [17, 5, 1, "", "GT"], [17, 5, 1, "", "ID_LOWER"], [17, 5, 1, "", "ID_UPPER"], [17, 5, 1, "", "KLABEL"], [17, 5, 1, "", "KW_ALIAS"], [17, 5, 1, "", "KW_CLAIM"], [17, 5, 1, "", "KW_CONFIG"], [17, 5, 1, "", "KW_CONTEXT"], [17, 5, 1, "", "KW_ENDMODULE"], [17, 5, 1, "", "KW_IMPORTS"], [17, 5, 1, "", "KW_LEFT"], [17, 5, 1, "", "KW_LEXICAL"], [17, 5, 1, "", "KW_MODULE"], [17, 5, 1, "", "KW_NONASSOC"], [17, 5, 1, "", "KW_PRIORITY"], [17, 5, 1, "", "KW_PRIVATE"], [17, 5, 1, "", "KW_PUBLIC"], [17, 5, 1, "", "KW_REQUIRES"], [17, 5, 1, "", "KW_RIGHT"], [17, 5, 1, "", "KW_RULE"], [17, 5, 1, "", "KW_SYNTAX"], [17, 5, 1, "", "LBRACE"], [17, 5, 1, "", "LBRACK"], [17, 5, 1, "", "LPAREN"], [17, 5, 1, "", "MODNAME"], [17, 5, 1, "", "NAT"], [17, 5, 1, "", "PLUS"], [17, 5, 1, "", "QUESTION"], [17, 5, 1, "", "RBRACE"], [17, 5, 1, "", "RBRACK"], [17, 5, 1, "", "REGEX"], [17, 5, 1, "", "RPAREN"], [17, 5, 1, "", "RULE_LABEL"], [17, 5, 1, "", "STRING"], [17, 5, 1, "", "TILDE"], [17, 5, 1, "", "TIMES"], [17, 5, 1, "", "VBAR"]], "pyk.kast.outer_parser": [[18, 2, 1, "", "OuterParser"]], "pyk.kast.outer_parser.OuterParser": [[18, 3, 1, "", "definition"], [18, 3, 1, "", "importt"], [18, 3, 1, "", "module"], [18, 3, 1, "", "require"], [18, 3, 1, "", "sentence"], [18, 3, 1, "", "string_sentence"], [18, 3, 1, "", "syntax_sentence"]], "pyk.kast.outer_syntax": [[19, 2, 1, "", "AST"], [19, 2, 1, "", "Alias"], [19, 2, 1, "", "Assoc"], [19, 2, 1, "", "Att"], [19, 2, 1, "", "Claim"], [19, 2, 1, "", "Config"], [19, 2, 1, "", "Context"], [19, 2, 1, "", "Definition"], [19, 2, 1, "", "Import"], [19, 2, 1, "", "Lexical"], [19, 2, 1, "", "Module"], [19, 2, 1, "", "NonTerminal"], [19, 2, 1, "", "PriorityBlock"], [19, 2, 1, "", "Production"], [19, 2, 1, "", "ProductionItem"], [19, 2, 1, "", "ProductionLike"], [19, 2, 1, "", "Require"], [19, 2, 1, "", "Rule"], [19, 2, 1, "", "Sentence"], [19, 2, 1, "", "Sort"], [19, 2, 1, "", "SortDecl"], [19, 2, 1, "", "StringSentence"], [19, 2, 1, "", "SyntaxAssoc"], [19, 2, 1, "", "SyntaxDecl"], [19, 2, 1, "", "SyntaxDefn"], [19, 2, 1, "", "SyntaxLexical"], [19, 2, 1, "", "SyntaxPriority"], [19, 2, 1, "", "SyntaxSentence"], [19, 2, 1, "", "SyntaxSynonym"], [19, 2, 1, "", "Terminal"], [19, 2, 1, "", "UserList"]], "pyk.kast.outer_syntax.AST": [[19, 5, 1, "", "location"], [19, 5, 1, "", "source"]], "pyk.kast.outer_syntax.Alias": [[19, 5, 1, "", "att"], [19, 5, 1, "", "bubble"], [19, 5, 1, "", "label"]], "pyk.kast.outer_syntax.Assoc": [[19, 5, 1, "", "LEFT"], [19, 5, 1, "", "NON_ASSOC"], [19, 5, 1, "", "RIGHT"]], "pyk.kast.outer_syntax.Att": [[19, 5, 1, "", "items"]], "pyk.kast.outer_syntax.Claim": [[19, 5, 1, "", "att"], [19, 5, 1, "", "bubble"], [19, 5, 1, "", "label"]], "pyk.kast.outer_syntax.Config": [[19, 5, 1, "", "att"], [19, 5, 1, "", "bubble"], [19, 5, 1, "", "label"]], "pyk.kast.outer_syntax.Context": [[19, 5, 1, "", "att"], [19, 5, 1, "", "bubble"], [19, 5, 1, "", "label"]], "pyk.kast.outer_syntax.Definition": [[19, 5, 1, "", "modules"], [19, 5, 1, "", "requires"]], "pyk.kast.outer_syntax.Import": [[19, 5, 1, "", "module_name"], [19, 5, 1, "", "public"]], "pyk.kast.outer_syntax.Lexical": [[19, 5, 1, "", "regex"]], "pyk.kast.outer_syntax.Module": [[19, 5, 1, "", "att"], [19, 5, 1, "", "imports"], [19, 5, 1, "", "name"], [19, 5, 1, "", "sentences"]], "pyk.kast.outer_syntax.NonTerminal": [[19, 5, 1, "", "name"], [19, 5, 1, "", "sort"]], "pyk.kast.outer_syntax.PriorityBlock": [[19, 5, 1, "", "assoc"], [19, 5, 1, "", "productions"]], "pyk.kast.outer_syntax.Production": [[19, 5, 1, "", "att"], [19, 5, 1, "", "items"]], "pyk.kast.outer_syntax.ProductionLike": [[19, 5, 1, "", "att"]], "pyk.kast.outer_syntax.Require": [[19, 5, 1, "", "path"]], "pyk.kast.outer_syntax.Rule": [[19, 5, 1, "", "att"], [19, 5, 1, "", "bubble"], [19, 5, 1, "", "label"]], "pyk.kast.outer_syntax.Sort": [[19, 5, 1, "", "args"], [19, 5, 1, "", "name"]], "pyk.kast.outer_syntax.SortDecl": [[19, 5, 1, "", "args"], [19, 5, 1, "", "name"], [19, 5, 1, "", "params"]], "pyk.kast.outer_syntax.StringSentence": [[19, 5, 1, "", "att"], [19, 5, 1, "", "bubble"], [19, 5, 1, "", "label"]], "pyk.kast.outer_syntax.SyntaxAssoc": [[19, 5, 1, "", "assoc"], [19, 5, 1, "", "klabels"]], "pyk.kast.outer_syntax.SyntaxDecl": [[19, 5, 1, "", "att"], [19, 5, 1, "", "decl"]], "pyk.kast.outer_syntax.SyntaxDefn": [[19, 5, 1, "", "blocks"], [19, 5, 1, "", "decl"]], "pyk.kast.outer_syntax.SyntaxLexical": [[19, 5, 1, "", "name"], [19, 5, 1, "", "regex"]], "pyk.kast.outer_syntax.SyntaxPriority": [[19, 5, 1, "", "groups"]], "pyk.kast.outer_syntax.SyntaxSynonym": [[19, 5, 1, "", "att"], [19, 5, 1, "", "new"], [19, 5, 1, "", "old"]], "pyk.kast.outer_syntax.Terminal": [[19, 5, 1, "", "value"]], "pyk.kast.outer_syntax.UserList": [[19, 5, 1, "", "att"], [19, 5, 1, "", "non_empty"], [19, 5, 1, "", "sep"], [19, 5, 1, "", "sort"]], "pyk.kast.parser": [[20, 2, 1, "", "KAstParser"]], "pyk.kast.parser.KAstParser": [[20, 3, 1, "", "eof"], [20, 3, 1, "", "k"], [20, 3, 1, "", "kitem"], [20, 3, 1, "", "klabel"], [20, 3, 1, "", "klist"]], "pyk.kast.pretty": [[21, 2, 1, "", "PrettyPrinter"], [21, 1, 1, "", "assoc_with_unit"], [21, 1, 1, "", "build_symbol_table"], [21, 1, 1, "", "indent"], [21, 1, 1, "", "paren"], [21, 1, 1, "", "unparser_for_production"]], "pyk.kast.pretty.PrettyPrinter": [[21, 5, 1, "", "definition"], [21, 3, 1, "", "print"], [21, 4, 1, "", "symbol_table"]], "pyk.kast.rewrite": [[22, 1, 1, "", "indexed_rewrite"]], "pyk.kast.utils": [[23, 1, 1, "", "parse_outer"], [23, 1, 1, "", "slurp_definitions"]], "pyk.kbuild": [[25, 0, 0, "-", "config"], [26, 0, 0, "-", "kbuild"], [27, 0, 0, "-", "project"], [28, 0, 0, "-", "utils"]], "pyk.kbuild.kbuild": [[26, 2, 1, "", "KBuild"], [26, 2, 1, "", "KBuildEnv"]], "pyk.kbuild.kbuild.KBuild": [[26, 3, 1, "", "definition_dir"], [26, 4, 1, "", "k_version"], [26, 5, 1, "", "kdist_dir"], [26, 3, 1, "", "kompile"], [26, 3, 1, "", "up_to_date"]], "pyk.kbuild.kbuild.KBuildEnv": [[26, 3, 1, "", "create_temp"], [26, 3, 1, "", "kompile"], [26, 5, 1, "", "path"], [26, 5, 1, "", "project"], [26, 3, 1, "", "sync"]], "pyk.kbuild.project": [[27, 2, 1, "", "PackageSource"], [27, 2, 1, "", "PathSource"], [27, 2, 1, "", "Project"], [27, 2, 1, "", "Source"], [27, 2, 1, "", "Target"]], "pyk.kbuild.project.PackageSource": [[27, 5, 1, "", "package"], [27, 3, 1, "", "resolve"]], "pyk.kbuild.project.PathSource": [[27, 5, 1, "", "path"], [27, 3, 1, "", "resolve"]], "pyk.kbuild.project.Project": [[27, 4, 1, "", "all_files"], [27, 5, 1, "", "dependencies"], [27, 3, 1, "", "get_target"], [27, 3, 1, "", "load"], [27, 3, 1, "", "load_from_dir"], [27, 5, 1, "", "name"], [27, 5, 1, "", "path"], [27, 4, 1, "", "project_file"], [27, 4, 1, "", "resource_file_names"], [27, 4, 1, "", "resource_files"], [27, 5, 1, "", "resources"], [27, 5, 1, "", "source_dir"], [27, 4, 1, "", "source_file_names"], [27, 4, 1, "", "source_files"], [27, 4, 1, "", "sub_projects"], [27, 5, 1, "", "targets"], [27, 5, 1, "", "version"]], "pyk.kbuild.project.Source": [[27, 3, 1, "", "from_dict"], [27, 3, 1, "", "resolve"]], "pyk.kbuild.project.Target": [[27, 5, 1, "", "args"], [27, 5, 1, "", "name"]], "pyk.kbuild.utils": [[28, 2, 1, "", "KVersion"], [28, 1, 1, "", "find_file_upwards"], [28, 1, 1, "", "k_version"], [28, 1, 1, "", "sync_files"]], "pyk.kbuild.utils.KVersion": [[28, 2, 1, "", "Git"], [28, 5, 1, "", "PATTERN"], [28, 5, 1, "", "git"], [28, 5, 1, "", "major"], [28, 5, 1, "", "minor"], [28, 3, 1, "", "parse"], [28, 5, 1, "", "patch"], [28, 4, 1, "", "text"]], "pyk.kbuild.utils.KVersion.Git": [[28, 5, 1, "", "ahead"], [28, 5, 1, "", "dirty"], [28, 5, 1, "", "rev"]], "pyk.kcfg": [[30, 0, 0, "-", "exploration"], [31, 0, 0, "-", "explore"], [32, 0, 0, "-", "kcfg"], [33, 0, 0, "-", "semantics"], [34, 0, 0, "-", "show"], [35, 0, 0, "-", "store"], [36, 0, 0, "-", "tui"]], "pyk.kcfg.exploration": [[30, 2, 1, "", "KCFGExploration"], [30, 2, 1, "", "KCFGExplorationNodeAttr"]], "pyk.kcfg.exploration.KCFGExploration": [[30, 3, 1, "", "add_terminal"], [30, 4, 1, "", "explorable"], [30, 3, 1, "", "from_dict"], [30, 3, 1, "", "is_explorable"], [30, 3, 1, "", "is_terminal"], [30, 5, 1, "", "kcfg"], [30, 3, 1, "", "minimize_kcfg"], [30, 3, 1, "", "prune"], [30, 3, 1, "", "remove_node"], [30, 3, 1, "", "remove_terminal"], [30, 4, 1, "", "terminal"], [30, 4, 1, "", "terminal_ids"], [30, 3, 1, "", "to_dict"]], "pyk.kcfg.exploration.KCFGExplorationNodeAttr": [[30, 5, 1, "", "TERMINAL"]], "pyk.kcfg.explore": [[31, 2, 1, "", "KCFGExplore"]], "pyk.kcfg.explore.KCFGExplore": [[31, 3, 1, "", "check_extendable"], [31, 5, 1, "", "cterm_symbolic"], [31, 3, 1, "", "extend_cterm"], [31, 5, 1, "", "id"], [31, 3, 1, "", "implication_failure_reason"], [31, 5, 1, "", "kcfg_semantics"], [31, 3, 1, "", "pretty_print"], [31, 3, 1, "", "section_edge"], [31, 3, 1, "", "simplify"], [31, 3, 1, "", "step"]], "pyk.kcfg.kcfg": [[32, 2, 1, "", "Abstract"], [32, 2, 1, "", "Branch"], [32, 2, 1, "", "KCFG"], [32, 2, 1, "", "KCFGExtendResult"], [32, 2, 1, "", "KCFGNodeAttr"], [32, 2, 1, "", "KCFGStore"], [32, 2, 1, "", "NDBranch"], [32, 2, 1, "", "NodeAttr"], [32, 2, 1, "", "Step"], [32, 2, 1, "", "Stuck"], [32, 2, 1, "", "Vacuous"]], "pyk.kcfg.kcfg.Abstract": [[32, 5, 1, "", "cterm"]], "pyk.kcfg.kcfg.Branch": [[32, 5, 1, "", "constraints"], [32, 5, 1, "", "heuristic"]], "pyk.kcfg.kcfg.KCFG": [[32, 2, 1, "", "Cover"], [32, 2, 1, "", "Edge"], [32, 2, 1, "", "EdgeLike"], [32, 2, 1, "", "MultiEdge"], [32, 2, 1, "", "NDBranch"], [32, 2, 1, "", "Node"], [32, 2, 1, "", "Split"], [32, 2, 1, "", "Successor"], [32, 3, 1, "", "add_alias"], [32, 3, 1, "", "add_attr"], [32, 3, 1, "", "add_node"], [32, 3, 1, "", "add_stuck"], [32, 3, 1, "", "add_successor"], [32, 3, 1, "", "add_vacuous"], [32, 3, 1, "", "aliases"], [32, 3, 1, "", "contains_cover"], [32, 3, 1, "", "contains_edge"], [32, 3, 1, "", "contains_ndbranch"], [32, 3, 1, "", "contains_node"], [32, 3, 1, "", "contains_split"], [32, 3, 1, "", "cover"], [32, 4, 1, "", "covered"], [32, 3, 1, "", "covers"], [32, 3, 1, "", "create_cover"], [32, 3, 1, "", "create_edge"], [32, 3, 1, "", "create_ndbranch"], [32, 3, 1, "", "create_node"], [32, 3, 1, "", "create_split"], [32, 3, 1, "", "discard_attr"], [32, 3, 1, "", "discard_stuck"], [32, 3, 1, "", "discard_vacuous"], [32, 3, 1, "", "edge"], [32, 3, 1, "", "edge_likes"], [32, 3, 1, "", "edges"], [32, 3, 1, "", "extend"], [32, 3, 1, "", "from_claim"], [32, 3, 1, "", "from_dict"], [32, 3, 1, "", "from_json"], [32, 3, 1, "", "get_node"], [32, 3, 1, "", "is_covered"], [32, 3, 1, "", "is_leaf"], [32, 3, 1, "", "is_ndbranch"], [32, 3, 1, "", "is_root"], [32, 3, 1, "", "is_split"], [32, 3, 1, "", "is_stuck"], [32, 3, 1, "", "is_vacuous"], [32, 4, 1, "", "leaves"], [32, 3, 1, "", "let_node"], [32, 3, 1, "", "lift_edge"], [32, 3, 1, "", "lift_edges"], [32, 3, 1, "", "lift_split_edge"], [32, 3, 1, "", "lift_split_split"], [32, 3, 1, "", "lift_splits"], [32, 3, 1, "", "minimize"], [32, 3, 1, "", "ndbranches"], [32, 3, 1, "", "node"], [32, 4, 1, "", "nodes"], [32, 3, 1, "", "path_length"], [32, 3, 1, "", "paths_between"], [32, 3, 1, "", "predecessors"], [32, 3, 1, "", "prune"], [32, 3, 1, "", "reachable_nodes"], [32, 3, 1, "", "read_cfg_data"], [32, 3, 1, "", "read_node_data"], [32, 3, 1, "", "remove_alias"], [32, 3, 1, "", "remove_attr"], [32, 3, 1, "", "remove_cover"], [32, 3, 1, "", "remove_edge"], [32, 3, 1, "", "remove_node"], [32, 3, 1, "", "remove_stuck"], [32, 3, 1, "", "remove_vacuous"], [32, 3, 1, "", "replace_node"], [32, 4, 1, "", "root"], [32, 3, 1, "", "shortest_distance_between"], [32, 3, 1, "", "shortest_path_between"], [32, 3, 1, "", "split_on_constraints"], [32, 3, 1, "", "splits"], [32, 4, 1, "", "stuck"], [32, 3, 1, "", "successors"], [32, 3, 1, "", "to_dict"], [32, 3, 1, "", "to_json"], [32, 3, 1, "", "to_module"], [32, 3, 1, "", "to_rules"], [32, 4, 1, "", "uncovered"], [32, 4, 1, "", "vacuous"], [32, 3, 1, "", "write_cfg_data"], [32, 3, 1, "", "zero_depth_between"]], "pyk.kcfg.kcfg.KCFG.Cover": [[32, 5, 1, "", "csubst"], [32, 3, 1, "", "from_dict"], [32, 3, 1, "", "replace_source"], [32, 3, 1, "", "replace_target"], [32, 5, 1, "", "source"], [32, 5, 1, "", "target"], [32, 3, 1, "", "to_dict"]], "pyk.kcfg.kcfg.KCFG.Edge": [[32, 5, 1, "", "depth"], [32, 3, 1, "", "from_dict"], [32, 3, 1, "", "replace_source"], [32, 3, 1, "", "replace_target"], [32, 5, 1, "", "rules"], [32, 5, 1, "", "source"], [32, 5, 1, "", "target"], [32, 3, 1, "", "to_dict"], [32, 3, 1, "", "to_rule"]], "pyk.kcfg.kcfg.KCFG.EdgeLike": [[32, 5, 1, "", "source"], [32, 5, 1, "", "target"], [32, 4, 1, "", "targets"]], "pyk.kcfg.kcfg.KCFG.MultiEdge": [[32, 5, 1, "", "source"], [32, 3, 1, "", "with_single_target"]], "pyk.kcfg.kcfg.KCFG.NDBranch": [[32, 4, 1, "", "edges"], [32, 3, 1, "", "from_dict"], [32, 3, 1, "", "replace_source"], [32, 3, 1, "", "replace_target"], [32, 5, 1, "", "rules"], [32, 5, 1, "", "source"], [32, 4, 1, "", "targets"], [32, 3, 1, "", "to_dict"], [32, 3, 1, "", "with_single_target"]], "pyk.kcfg.kcfg.KCFG.Node": [[32, 3, 1, "", "add_attr"], [32, 5, 1, "", "attrs"], [32, 5, 1, "", "cterm"], [32, 3, 1, "", "discard_attr"], [32, 4, 1, "", "free_vars"], [32, 3, 1, "", "from_dict"], [32, 5, 1, "", "id"], [32, 3, 1, "", "let"], [32, 3, 1, "", "remove_attr"], [32, 3, 1, "", "to_dict"]], "pyk.kcfg.kcfg.KCFG.Split": [[32, 4, 1, "", "covers"], [32, 3, 1, "", "from_dict"], [32, 3, 1, "", "replace_source"], [32, 3, 1, "", "replace_target"], [32, 5, 1, "", "source"], [32, 4, 1, "", "splits"], [32, 4, 1, "", "targets"], [32, 3, 1, "", "to_dict"], [32, 3, 1, "", "with_single_target"]], "pyk.kcfg.kcfg.KCFG.Successor": [[32, 3, 1, "", "from_dict"], [32, 3, 1, "", "replace_source"], [32, 3, 1, "", "replace_target"], [32, 5, 1, "", "source"], [32, 4, 1, "", "source_vars"], [32, 4, 1, "", "target_ids"], [32, 4, 1, "", "target_vars"], [32, 4, 1, "", "targets"], [32, 3, 1, "", "to_dict"]], "pyk.kcfg.kcfg.KCFGNodeAttr": [[32, 5, 1, "", "STUCK"], [32, 5, 1, "", "VACUOUS"]], "pyk.kcfg.kcfg.KCFGStore": [[32, 4, 1, "", "kcfg_json_path"], [32, 4, 1, "", "kcfg_node_dir"], [32, 3, 1, "", "kcfg_node_path"], [32, 3, 1, "", "read_cfg_data"], [32, 3, 1, "", "read_node_data"], [32, 5, 1, "", "store_path"], [32, 3, 1, "", "write_cfg_data"]], "pyk.kcfg.kcfg.NDBranch": [[32, 5, 1, "", "cterms"], [32, 5, 1, "", "logs"], [32, 5, 1, "", "rule_labels"]], "pyk.kcfg.kcfg.NodeAttr": [[32, 5, 1, "", "value"]], "pyk.kcfg.kcfg.Step": [[32, 5, 1, "", "cterm"], [32, 5, 1, "", "cut"], [32, 5, 1, "", "depth"], [32, 5, 1, "", "logs"], [32, 5, 1, "", "rule_labels"]], "pyk.kcfg.semantics": [[33, 2, 1, "", "DefaultSemantics"], [33, 2, 1, "", "KCFGSemantics"]], "pyk.kcfg.semantics.DefaultSemantics": [[33, 3, 1, "", "abstract_node"], [33, 3, 1, "", "custom_step"], [33, 3, 1, "", "is_terminal"], [33, 3, 1, "", "same_loop"]], "pyk.kcfg.semantics.KCFGSemantics": [[33, 3, 1, "", "abstract_node"], [33, 3, 1, "", "custom_step"], [33, 3, 1, "", "is_terminal"], [33, 3, 1, "", "same_loop"]], "pyk.kcfg.show": [[34, 2, 1, "", "KCFGShow"], [34, 2, 1, "", "NodePrinter"]], "pyk.kcfg.show.KCFGShow": [[34, 3, 1, "", "dot"], [34, 3, 1, "", "dump"], [34, 3, 1, "", "hide_cells"], [34, 5, 1, "", "kprint"], [34, 3, 1, "", "make_unique_segments"], [34, 5, 1, "", "node_printer"], [34, 3, 1, "", "node_short_info"], [34, 3, 1, "", "pretty"], [34, 3, 1, "", "pretty_segments"], [34, 3, 1, "", "show"], [34, 3, 1, "", "simplify_config"], [34, 3, 1, "", "to_module"]], "pyk.kcfg.show.NodePrinter": [[34, 5, 1, "", "full_printer"], [34, 5, 1, "", "kprint"], [34, 5, 1, "", "minimize"], [34, 3, 1, "", "node_attrs"], [34, 3, 1, "", "print_node"]], "pyk.kcfg.store": [[35, 2, 1, "", "OptimizedNodeStore"]], "pyk.kcfg.tui": [[36, 2, 1, "", "BehaviorView"], [36, 2, 1, "", "Constraint"], [36, 2, 1, "", "Custom"], [36, 2, 1, "", "GraphChunk"], [36, 2, 1, "", "Info"], [36, 2, 1, "", "KCFGViewer"], [36, 2, 1, "", "NavWidget"], [36, 2, 1, "", "NodeView"], [36, 2, 1, "", "Status"], [36, 2, 1, "", "Term"]], "pyk.kcfg.tui.BehaviorView": [[36, 2, 1, "", "Selected"], [36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "compose"], [36, 3, 1, "", "on_click"]], "pyk.kcfg.tui.BehaviorView.Selected": [[36, 5, 1, "", "bubble"], [36, 5, 1, "", "handler_name"], [36, 5, 1, "", "no_dispatch"], [36, 5, 1, "", "time"], [36, 5, 1, "", "verbose"]], "pyk.kcfg.tui.Constraint": [[36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "on_click"]], "pyk.kcfg.tui.Custom": [[36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "on_click"]], "pyk.kcfg.tui.GraphChunk": [[36, 2, 1, "", "Selected"], [36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "on_click"], [36, 3, 1, "", "on_enter"], [36, 3, 1, "", "on_leave"]], "pyk.kcfg.tui.GraphChunk.Selected": [[36, 5, 1, "", "bubble"], [36, 5, 1, "", "chunk_id"], [36, 5, 1, "", "handler_name"], [36, 5, 1, "", "no_dispatch"], [36, 5, 1, "", "time"], [36, 5, 1, "", "verbose"]], "pyk.kcfg.tui.Info": [[36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "compose"], [36, 5, 1, "", "text"], [36, 3, 1, "", "update"], [36, 3, 1, "", "watch_text"]], "pyk.kcfg.tui.KCFGViewer": [[36, 5, 1, "", "BINDINGS"], [36, 5, 1, "", "CSS_PATH"], [36, 3, 1, "", "action_keystroke"], [36, 3, 1, "", "compose"], [36, 3, 1, "", "on_graph_chunk_selected"]], "pyk.kcfg.tui.NavWidget": [[36, 5, 1, "", "BINDINGS"], [36, 2, 1, "", "Selected"], [36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "compose"], [36, 5, 1, "", "text"], [36, 3, 1, "", "update"], [36, 3, 1, "", "watch_text"]], "pyk.kcfg.tui.NavWidget.Selected": [[36, 5, 1, "", "bubble"], [36, 5, 1, "", "handler_name"], [36, 5, 1, "", "no_dispatch"], [36, 5, 1, "", "time"], [36, 5, 1, "", "verbose"]], "pyk.kcfg.tui.NodeView": [[36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "compose"], [36, 3, 1, "", "on_behavior_view_selected"], [36, 3, 1, "", "on_constraint_selected"], [36, 3, 1, "", "on_custom_selected"], [36, 3, 1, "", "on_mount"], [36, 3, 1, "", "on_status_selected"], [36, 3, 1, "", "on_term_selected"], [36, 3, 1, "", "toggle_option"], [36, 3, 1, "", "toggle_view"], [36, 3, 1, "", "update"]], "pyk.kcfg.tui.Status": [[36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "on_click"]], "pyk.kcfg.tui.Term": [[36, 5, 1, "", "can_focus"], [36, 5, 1, "", "can_focus_children"], [36, 3, 1, "", "on_click"]], "pyk.kcovr": [[37, 1, 1, "", "count_lines_covered"], [37, 1, 1, "", "count_lines_file"], [37, 1, 1, "", "count_lines_global"], [37, 1, 1, "", "count_rules_covered"], [37, 1, 1, "", "create_cover_map"], [37, 1, 1, "", "create_rule_map"], [37, 1, 1, "", "create_rule_map_by_file"], [37, 1, 1, "", "create_rule_map_by_line"], [37, 1, 1, "", "main"], [37, 1, 1, "", "parse_args"], [37, 1, 1, "", "render_classes"], [37, 1, 1, "", "render_coverage_xml"], [37, 1, 1, "", "render_lines"]], "pyk.kdist": [[39, 0, 0, "-", "api"], [40, 0, 0, "-", "utils"]], "pyk.kdist.api": [[39, 2, 1, "", "Target"], [39, 2, 1, "", "TargetId"], [39, 1, 1, "", "valid_id"]], "pyk.kdist.api.Target": [[39, 3, 1, "", "build"], [39, 3, 1, "", "context"], [39, 3, 1, "", "deps"], [39, 3, 1, "", "manifest"], [39, 3, 1, "", "source"]], "pyk.kdist.api.TargetId": [[39, 4, 1, "", "full_name"], [39, 3, 1, "", "parse"], [39, 5, 1, "", "plugin_name"], [39, 5, 1, "", "target_name"]], "pyk.kdist.utils": [[40, 1, 1, "", "cwd"], [40, 1, 1, "", "files_for_path"], [40, 1, 1, "", "package_path"], [40, 1, 1, "", "timestamp"]], "pyk.kllvm": [[42, 0, 0, "-", "ast"], [43, 0, 0, "-", "compiler"], [44, 0, 0, "-", "convert"], [45, 0, 0, "-", "hints"], [47, 0, 0, "-", "importer"], [48, 0, 0, "-", "load"], [49, 0, 0, "-", "load_static"], [50, 0, 0, "-", "parser"], [51, 0, 0, "-", "runtime"], [52, 0, 0, "-", "utils"]], "pyk.kllvm.compiler": [[43, 1, 1, "", "compile_kllvm"], [43, 1, 1, "", "compile_runtime"], [43, 1, 1, "", "generate_hints"]], "pyk.kllvm.convert": [[44, 1, 1, "", "definition_to_llvm"], [44, 1, 1, "", "llvm_to_definition"], [44, 1, 1, "", "llvm_to_module"], [44, 1, 1, "", "llvm_to_pattern"], [44, 1, 1, "", "llvm_to_sentence"], [44, 1, 1, "", "llvm_to_sort"], [44, 1, 1, "", "llvm_to_sort_var"], [44, 1, 1, "", "module_to_llvm"], [44, 1, 1, "", "pattern_to_llvm"], [44, 1, 1, "", "sentence_to_llvm"], [44, 1, 1, "", "sort_to_llvm"]], "pyk.kllvm.hints": [[46, 0, 0, "-", "prooftrace"]], "pyk.kllvm.hints.prooftrace": [[46, 2, 1, "", "KoreHeader"], [46, 2, 1, "", "LLVMArgument"], [46, 2, 1, "", "LLVMEventAnnotated"], [46, 2, 1, "", "LLVMEventType"], [46, 2, 1, "", "LLVMFunctionEvent"], [46, 2, 1, "", "LLVMHookEvent"], [46, 2, 1, "", "LLVMRewriteEvent"], [46, 2, 1, "", "LLVMRewriteTrace"], [46, 2, 1, "", "LLVMRewriteTraceIterator"], [46, 2, 1, "", "LLVMRuleEvent"], [46, 2, 1, "", "LLVMSideConditionEventEnter"], [46, 2, 1, "", "LLVMSideConditionEventExit"], [46, 2, 1, "", "LLVMStepEvent"]], "pyk.kllvm.hints.prooftrace.KoreHeader": [[46, 3, 1, "", "__init__"], [46, 5, 1, "", "_kore_header"], [46, 3, 1, "", "create"]], "pyk.kllvm.hints.prooftrace.LLVMArgument": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_argument"], [46, 3, 1, "", "is_kore_pattern"], [46, 3, 1, "", "is_step_event"], [46, 4, 1, "", "kore_pattern"], [46, 4, 1, "", "step_event"]], "pyk.kllvm.hints.prooftrace.LLVMEventAnnotated": [[46, 3, 1, "", "__init__"], [46, 5, 1, "", "_annotated_llvm_event"], [46, 4, 1, "", "event"], [46, 4, 1, "", "type"]], "pyk.kllvm.hints.prooftrace.LLVMEventType": [[46, 3, 1, "", "__init__"], [46, 5, 1, "", "_event_type"], [46, 4, 1, "", "is_initial_config"], [46, 4, 1, "", "is_pre_trace"], [46, 4, 1, "", "is_trace"]], "pyk.kllvm.hints.prooftrace.LLVMFunctionEvent": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_function_event"], [46, 4, 1, "", "args"], [46, 4, 1, "", "name"], [46, 4, 1, "", "relative_position"]], "pyk.kllvm.hints.prooftrace.LLVMHookEvent": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_hook_event"], [46, 4, 1, "", "args"], [46, 4, 1, "", "name"], [46, 4, 1, "", "relative_position"], [46, 4, 1, "", "result"]], "pyk.kllvm.hints.prooftrace.LLVMRewriteEvent": [[46, 4, 1, "", "rule_ordinal"], [46, 4, 1, "", "substitution"]], "pyk.kllvm.hints.prooftrace.LLVMRewriteTrace": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_rewrite_trace"], [46, 4, 1, "", "initial_config"], [46, 3, 1, "", "parse"], [46, 4, 1, "", "pre_trace"], [46, 4, 1, "", "trace"], [46, 4, 1, "", "version"]], "pyk.kllvm.hints.prooftrace.LLVMRewriteTraceIterator": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__iter__"], [46, 3, 1, "", "__next__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_rewrite_trace_iterator"], [46, 3, 1, "", "from_file"], [46, 4, 1, "", "version"]], "pyk.kllvm.hints.prooftrace.LLVMRuleEvent": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_rule_event"], [46, 4, 1, "", "rule_ordinal"], [46, 4, 1, "", "substitution"]], "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventEnter": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_side_condition_event"], [46, 4, 1, "", "rule_ordinal"], [46, 4, 1, "", "substitution"]], "pyk.kllvm.hints.prooftrace.LLVMSideConditionEventExit": [[46, 3, 1, "", "__init__"], [46, 3, 1, "", "__repr__"], [46, 5, 1, "", "_side_condition_end_event"], [46, 4, 1, "", "check_result"], [46, 4, 1, "", "rule_ordinal"]], "pyk.kllvm.importer": [[47, 1, 1, "", "import_from_file"], [47, 1, 1, "", "import_kllvm"], [47, 1, 1, "", "import_runtime"], [47, 1, 1, "", "rtld_local"]], "pyk.kllvm.load_static": [[49, 1, 1, "", "get_kllvm"]], "pyk.kllvm.parser": [[50, 1, 1, "", "parse_definition"], [50, 1, 1, "", "parse_definition_file"], [50, 1, 1, "", "parse_pattern"], [50, 1, 1, "", "parse_pattern_file"], [50, 1, 1, "", "parse_sort"], [50, 1, 1, "", "parse_sort_file"]], "pyk.kllvm.runtime": [[51, 2, 1, "", "Runtime"], [51, 2, 1, "", "Term"]], "pyk.kllvm.runtime.Runtime": [[51, 3, 1, "", "deserialize"], [51, 3, 1, "", "run"], [51, 3, 1, "", "simplify"], [51, 3, 1, "", "simplify_bool"], [51, 3, 1, "", "step"], [51, 3, 1, "", "term"]], "pyk.kllvm.runtime.Term": [[51, 4, 1, "", "pattern"], [51, 3, 1, "", "run"], [51, 3, 1, "", "serialize"], [51, 3, 1, "", "step"]], "pyk.kllvm.utils": [[52, 1, 1, "", "get_requires"]], "pyk.kore": [[55, 0, 0, "-", "kompiled"], [56, 0, 0, "-", "lexer"], [57, 0, 0, "-", "manip"], [58, 0, 0, "-", "match"], [59, 0, 0, "-", "parser"], [60, 0, 0, "-", "pool"], [61, 0, 0, "-", "prelude"], [62, 0, 0, "-", "rpc"], [63, 0, 0, "-", "syntax"], [64, 0, 0, "-", "tools"]], "pyk.kore.kompiled": [[55, 2, 1, "", "KompiledKore"], [55, 2, 1, "", "KoreSortTable"], [55, 2, 1, "", "KoreSymbolTable"]], "pyk.kore.kompiled.KompiledKore": [[55, 3, 1, "", "add_injections"], [55, 3, 1, "", "for_definition"], [55, 3, 1, "", "from_dict"], [55, 3, 1, "", "load"], [55, 3, 1, "", "load_from_json"], [55, 3, 1, "", "load_from_kore"], [55, 5, 1, "", "sort_table"], [55, 5, 1, "", "symbol_table"], [55, 3, 1, "", "to_dict"], [55, 3, 1, "", "write"]], "pyk.kore.kompiled.KoreSortTable": [[55, 3, 1, "", "for_definition"], [55, 3, 1, "", "is_subsort"], [55, 3, 1, "", "meet"]], "pyk.kore.kompiled.KoreSymbolTable": [[55, 3, 1, "", "for_definition"], [55, 3, 1, "", "infer_sort"], [55, 3, 1, "", "pattern_sorts"], [55, 3, 1, "", "resolve"]], "pyk.kore.lexer": [[56, 2, 1, "", "KoreToken"], [56, 2, 1, "", "TokenType"], [56, 1, 1, "", "kore_lexer"]], "pyk.kore.lexer.KoreToken": [[56, 5, 1, "", "text"], [56, 5, 1, "", "type"]], "pyk.kore.lexer.TokenType": [[56, 5, 1, "", "COLON"], [56, 5, 1, "", "COMMA"], [56, 5, 1, "", "EOF"], [56, 5, 1, "", "ID"], [56, 5, 1, "", "KW_ALIAS"], [56, 5, 1, "", "KW_AXIOM"], [56, 5, 1, "", "KW_CLAIM"], [56, 5, 1, "", "KW_ENDMODULE"], [56, 5, 1, "", "KW_HOOKED_SORT"], [56, 5, 1, "", "KW_HOOKED_SYMBOL"], [56, 5, 1, "", "KW_IMPORT"], [56, 5, 1, "", "KW_MODULE"], [56, 5, 1, "", "KW_SORT"], [56, 5, 1, "", "KW_SYMBOL"], [56, 5, 1, "", "KW_WHERE"], [56, 5, 1, "", "LBRACE"], [56, 5, 1, "", "LBRACK"], [56, 5, 1, "", "LPAREN"], [56, 5, 1, "", "ML_AND"], [56, 5, 1, "", "ML_BOTTOM"], [56, 5, 1, "", "ML_CEIL"], [56, 5, 1, "", "ML_DV"], [56, 5, 1, "", "ML_EQUALS"], [56, 5, 1, "", "ML_EXISTS"], [56, 5, 1, "", "ML_FLOOR"], [56, 5, 1, "", "ML_FORALL"], [56, 5, 1, "", "ML_IFF"], [56, 5, 1, "", "ML_IMPLIES"], [56, 5, 1, "", "ML_IN"], [56, 5, 1, "", "ML_LEFT_ASSOC"], [56, 5, 1, "", "ML_MU"], [56, 5, 1, "", "ML_NEXT"], [56, 5, 1, "", "ML_NOT"], [56, 5, 1, "", "ML_NU"], [56, 5, 1, "", "ML_OR"], [56, 5, 1, "", "ML_REWRITES"], [56, 5, 1, "", "ML_RIGHT_ASSOC"], [56, 5, 1, "", "ML_TOP"], [56, 5, 1, "", "RBRACE"], [56, 5, 1, "", "RBRACK"], [56, 5, 1, "", "RPAREN"], [56, 5, 1, "", "SET_VAR_ID"], [56, 5, 1, "", "STRING"], [56, 5, 1, "", "SYMBOL_ID"], [56, 5, 1, "", "WALRUS"]], "pyk.kore.manip": [[57, 1, 1, "", "conjuncts"], [57, 1, 1, "", "free_occs"]], "pyk.kore.match": [[58, 1, 1, "", "app"], [58, 1, 1, "", "arg"], [58, 1, 1, "", "args"], [58, 1, 1, "", "case_symbol"], [58, 1, 1, "", "inj"], [58, 1, 1, "", "kore_bool"], [58, 1, 1, "", "kore_bytes"], [58, 1, 1, "", "kore_id"], [58, 1, 1, "", "kore_int"], [58, 1, 1, "", "kore_list_of"], [58, 1, 1, "", "kore_map_of"], [58, 1, 1, "", "kore_set_of"], [58, 1, 1, "", "kore_str"], [58, 1, 1, "", "match_app"], [58, 1, 1, "", "match_dv"], [58, 1, 1, "", "match_inj"], [58, 1, 1, "", "match_left_assoc"], [58, 1, 1, "", "match_list"], [58, 1, 1, "", "match_map"], [58, 1, 1, "", "match_set"], [58, 1, 1, "", "match_symbol"]], "pyk.kore.parser": [[59, 2, 1, "", "KoreParser"]], "pyk.kore.parser.KoreParser": [[59, 3, 1, "", "alias_decl"], [59, 3, 1, "", "andd"], [59, 3, 1, "", "app"], [59, 3, 1, "", "axiom"], [59, 3, 1, "", "bottom"], [59, 3, 1, "", "ceil"], [59, 3, 1, "", "claim"], [59, 3, 1, "", "definition"], [59, 3, 1, "", "dv"], [59, 3, 1, "", "elem_var"], [59, 4, 1, "", "eof"], [59, 3, 1, "", "equals"], [59, 3, 1, "", "exists"], [59, 3, 1, "", "floor"], [59, 3, 1, "", "forall"], [59, 3, 1, "", "hooked_sort_decl"], [59, 3, 1, "", "hooked_symbol_decl"], [59, 3, 1, "", "id"], [59, 3, 1, "", "iff"], [59, 3, 1, "", "implies"], [59, 3, 1, "", "importt"], [59, 3, 1, "", "inn"], [59, 3, 1, "", "left_assoc"], [59, 3, 1, "", "ml_pattern"], [59, 3, 1, "", "module"], [59, 3, 1, "", "mu"], [59, 3, 1, "", "multi_or"], [59, 3, 1, "", "next"], [59, 3, 1, "", "nott"], [59, 3, 1, "", "nu"], [59, 3, 1, "", "orr"], [59, 3, 1, "", "pattern"], [59, 3, 1, "", "rewrites"], [59, 3, 1, "", "right_assoc"], [59, 3, 1, "", "sentence"], [59, 3, 1, "", "set_var"], [59, 3, 1, "", "set_var_id"], [59, 3, 1, "", "sort"], [59, 3, 1, "", "sort_app"], [59, 3, 1, "", "sort_decl"], [59, 3, 1, "", "sort_var"], [59, 3, 1, "", "string"], [59, 3, 1, "", "symbol"], [59, 3, 1, "", "symbol_decl"], [59, 3, 1, "", "symbol_id"], [59, 3, 1, "", "top"], [59, 3, 1, "", "var_pattern"]], "pyk.kore.pool": [[60, 2, 1, "", "KoreServerPool"]], "pyk.kore.pool.KoreServerPool": [[60, 3, 1, "", "close"], [60, 3, 1, "", "submit"]], "pyk.kore.prelude": [[61, 1, 1, "", "and_bool"], [61, 1, 1, "", "bool_dv"], [61, 1, 1, "", "bytes_dv"], [61, 1, 1, "", "dv"], [61, 1, 1, "", "eq_bool"], [61, 1, 1, "", "eq_int"], [61, 1, 1, "", "ge_int"], [61, 1, 1, "", "generated_counter"], [61, 1, 1, "", "generated_top"], [61, 1, 1, "", "gt_int"], [61, 1, 1, "", "implies_bool"], [61, 1, 1, "", "init_generated_top_cell"], [61, 1, 1, "", "inj"], [61, 1, 1, "", "int_dv"], [61, 1, 1, "", "json2string"], [61, 1, 1, "", "json_entry"], [61, 1, 1, "", "json_key"], [61, 1, 1, "", "json_list"], [61, 1, 1, "", "json_object"], [61, 1, 1, "", "json_to_kore"], [61, 1, 1, "", "jsons"], [61, 1, 1, "", "k"], [61, 1, 1, "", "k_config_var"], [61, 1, 1, "", "kore_to_json"], [61, 1, 1, "", "kseq"], [61, 1, 1, "", "le_int"], [61, 1, 1, "", "list_pattern"], [61, 1, 1, "", "lt_int"], [61, 1, 1, "", "map_pattern"], [61, 1, 1, "", "ne_bool"], [61, 1, 1, "", "ne_int"], [61, 1, 1, "", "not_bool"], [61, 1, 1, "", "or_bool"], [61, 1, 1, "", "set_pattern"], [61, 1, 1, "", "str_dv"], [61, 1, 1, "", "string2json"], [61, 1, 1, "", "top_cell_initializer"], [61, 1, 1, "", "xor_bool"]], "pyk.kore.rpc": [[62, 2, 1, "", "AbortedResult"], [62, 2, 1, "", "BoosterServer"], [62, 2, 1, "", "BoosterServerArgs"], [62, 2, 1, "", "BranchingResult"], [62, 2, 1, "", "CutPointResult"], [62, 6, 1, "", "DefaultError"], [62, 2, 1, "", "DepthBoundResult"], [62, 6, 1, "", "DuplicateModuleError"], [62, 2, 1, "", "ExecuteResult"], [62, 2, 1, "", "FallbackReason"], [62, 2, 1, "", "GetModelResult"], [62, 2, 1, "", "HttpTransport"], [62, 6, 1, "", "ImplicationError"], [62, 2, 1, "", "ImpliesResult"], [62, 6, 1, "", "InvalidModuleError"], [62, 2, 1, "", "JsonRpcClient"], [62, 2, 1, "", "JsonRpcClientFacade"], [62, 6, 1, "", "JsonRpcError"], [62, 2, 1, "", "KoreClient"], [62, 6, 1, "", "KoreClientError"], [62, 2, 1, "", "KoreExecLogFormat"], [62, 2, 1, "", "KoreServer"], [62, 2, 1, "", "KoreServerArgs"], [62, 2, 1, "", "KoreServerInfo"], [62, 2, 1, "", "LogEntry"], [62, 2, 1, "", "LogOrigin"], [62, 2, 1, "", "LogRewrite"], [62, 2, 1, "", "LogTiming"], [62, 6, 1, "", "ParseError"], [62, 6, 1, "", "PatternError"], [62, 2, 1, "", "RewriteFailure"], [62, 2, 1, "", "RewriteResult"], [62, 2, 1, "", "RewriteSuccess"], [62, 2, 1, "", "SatResult"], [62, 2, 1, "", "SingleSocketTransport"], [62, 6, 1, "", "SmtSolverError"], [62, 2, 1, "", "State"], [62, 2, 1, "", "StopReason"], [62, 2, 1, "", "StuckResult"], [62, 2, 1, "", "TerminalResult"], [62, 2, 1, "", "TimeoutResult"], [62, 2, 1, "", "Transport"], [62, 2, 1, "", "TransportType"], [62, 6, 1, "", "UnknownModuleError"], [62, 2, 1, "", "UnknownResult"], [62, 2, 1, "", "UnsatResult"], [62, 2, 1, "", "VacuousResult"], [62, 1, 1, "", "kore_server"]], "pyk.kore.rpc.AbortedResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"], [62, 5, 1, "", "unknown_predicate"]], "pyk.kore.rpc.BoosterServerArgs": [[62, 5, 1, "", "bug_report"], [62, 5, 1, "", "command"], [62, 5, 1, "", "fallback_on"], [62, 5, 1, "", "haskell_log_entries"], [62, 5, 1, "", "haskell_log_format"], [62, 5, 1, "", "haskell_threads"], [62, 5, 1, "", "interim_simplification"], [62, 5, 1, "", "kompiled_dir"], [62, 5, 1, "", "llvm_kompiled_dir"], [62, 5, 1, "", "log_axioms_file"], [62, 5, 1, "", "log_context"], [62, 5, 1, "", "module_name"], [62, 5, 1, "", "no_post_exec_simplify"], [62, 5, 1, "", "not_log_context"], [62, 5, 1, "", "port"], [62, 5, 1, "", "smt_reset_interval"], [62, 5, 1, "", "smt_retry_limit"], [62, 5, 1, "", "smt_tactic"], [62, 5, 1, "", "smt_timeout"]], "pyk.kore.rpc.BranchingResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.CutPointResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.DefaultError": [[62, 5, 1, "", "code"], [62, 5, 1, "", "data"], [62, 5, 1, "", "message"]], "pyk.kore.rpc.DepthBoundResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.DuplicateModuleError": [[62, 5, 1, "", "module_name"]], "pyk.kore.rpc.ExecuteResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.FallbackReason": [[62, 5, 1, "", "ABORTED"], [62, 5, 1, "", "BRANCHING"], [62, 5, 1, "", "STUCK"]], "pyk.kore.rpc.GetModelResult": [[62, 3, 1, "", "from_dict"]], "pyk.kore.rpc.HttpTransport": [[62, 3, 1, "", "close"], [62, 3, 1, "", "command"], [62, 3, 1, "", "description"], [62, 3, 1, "", "request"]], "pyk.kore.rpc.ImplicationError": [[62, 5, 1, "", "context"], [62, 5, 1, "", "error"]], "pyk.kore.rpc.ImpliesResult": [[62, 3, 1, "", "from_dict"], [62, 5, 1, "", "implication"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "predicate"], [62, 5, 1, "", "substitution"], [62, 5, 1, "", "valid"]], "pyk.kore.rpc.InvalidModuleError": [[62, 5, 1, "", "context"], [62, 5, 1, "", "error"]], "pyk.kore.rpc.JsonRpcClient": [[62, 3, 1, "", "close"], [62, 3, 1, "", "request"]], "pyk.kore.rpc.JsonRpcClientFacade": [[62, 3, 1, "", "close"], [62, 3, 1, "", "request"]], "pyk.kore.rpc.KoreClient": [[62, 3, 1, "", "add_module"], [62, 3, 1, "", "close"], [62, 3, 1, "", "execute"], [62, 3, 1, "", "get_model"], [62, 3, 1, "", "implies"], [62, 5, 1, "", "port"], [62, 3, 1, "", "simplify"]], "pyk.kore.rpc.KoreExecLogFormat": [[62, 5, 1, "", "ONELINE"], [62, 5, 1, "", "STANDARD"]], "pyk.kore.rpc.KoreServer": [[62, 3, 1, "", "close"], [62, 4, 1, "", "host"], [62, 4, 1, "", "pid"], [62, 4, 1, "", "port"], [62, 3, 1, "", "start"]], "pyk.kore.rpc.KoreServerArgs": [[62, 5, 1, "", "bug_report"], [62, 5, 1, "", "command"], [62, 5, 1, "", "haskell_log_entries"], [62, 5, 1, "", "haskell_log_format"], [62, 5, 1, "", "haskell_threads"], [62, 5, 1, "", "kompiled_dir"], [62, 5, 1, "", "log_axioms_file"], [62, 5, 1, "", "module_name"], [62, 5, 1, "", "port"], [62, 5, 1, "", "smt_reset_interval"], [62, 5, 1, "", "smt_retry_limit"], [62, 5, 1, "", "smt_tactic"], [62, 5, 1, "", "smt_timeout"]], "pyk.kore.rpc.KoreServerInfo": [[62, 5, 1, "", "host"], [62, 5, 1, "", "pid"], [62, 5, 1, "", "port"]], "pyk.kore.rpc.LogEntry": [[62, 3, 1, "", "from_dict"], [62, 3, 1, "", "to_dict"]], "pyk.kore.rpc.LogOrigin": [[62, 5, 1, "", "BOOSTER"], [62, 5, 1, "", "KORE_RPC"], [62, 5, 1, "", "LLVM"], [62, 3, 1, "", "__format__"]], "pyk.kore.rpc.LogRewrite": [[62, 3, 1, "", "from_dict"], [62, 5, 1, "", "origin"], [62, 5, 1, "", "result"], [62, 3, 1, "", "to_dict"]], "pyk.kore.rpc.LogTiming": [[62, 2, 1, "", "Component"], [62, 5, 1, "", "component"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "time"], [62, 3, 1, "", "to_dict"]], "pyk.kore.rpc.LogTiming.Component": [[62, 5, 1, "", "BOOSTER"], [62, 5, 1, "", "KORE_RPC"], [62, 5, 1, "", "PROXY"]], "pyk.kore.rpc.ParseError": [[62, 5, 1, "", "error"]], "pyk.kore.rpc.PatternError": [[62, 5, 1, "", "context"], [62, 5, 1, "", "error"]], "pyk.kore.rpc.RewriteFailure": [[62, 3, 1, "", "from_dict"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule_id"], [62, 3, 1, "", "to_dict"]], "pyk.kore.rpc.RewriteResult": [[62, 3, 1, "", "from_dict"], [62, 5, 1, "", "rule_id"], [62, 3, 1, "", "to_dict"]], "pyk.kore.rpc.RewriteSuccess": [[62, 3, 1, "", "from_dict"], [62, 5, 1, "", "rewritten_term"], [62, 5, 1, "", "rule_id"], [62, 3, 1, "", "to_dict"]], "pyk.kore.rpc.SatResult": [[62, 5, 1, "", "model"]], "pyk.kore.rpc.SingleSocketTransport": [[62, 3, 1, "", "close"], [62, 3, 1, "", "command"], [62, 3, 1, "", "description"], [62, 3, 1, "", "request"]], "pyk.kore.rpc.SmtSolverError": [[62, 5, 1, "", "error"], [62, 5, 1, "", "pattern"]], "pyk.kore.rpc.State": [[62, 3, 1, "", "from_dict"], [62, 4, 1, "", "kore"], [62, 5, 1, "", "predicate"], [62, 5, 1, "", "rule_id"], [62, 5, 1, "", "rule_predicate"], [62, 5, 1, "", "rule_substitution"], [62, 5, 1, "", "substitution"], [62, 5, 1, "", "term"]], "pyk.kore.rpc.StopReason": [[62, 5, 1, "", "ABORTED"], [62, 5, 1, "", "BRANCHING"], [62, 5, 1, "", "CUT_POINT_RULE"], [62, 5, 1, "", "DEPTH_BOUND"], [62, 5, 1, "", "STUCK"], [62, 5, 1, "", "TERMINAL_RULE"], [62, 5, 1, "", "TIMEOUT"], [62, 5, 1, "", "VACUOUS"], [62, 3, 1, "", "__format__"]], "pyk.kore.rpc.StuckResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.TerminalResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.TimeoutResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.rpc.Transport": [[62, 3, 1, "", "close"], [62, 3, 1, "", "command"], [62, 3, 1, "", "description"], [62, 3, 1, "", "request"]], "pyk.kore.rpc.TransportType": [[62, 5, 1, "", "HTTP"], [62, 5, 1, "", "SINGLE_SOCKET"]], "pyk.kore.rpc.UnknownModuleError": [[62, 5, 1, "", "module_name"]], "pyk.kore.rpc.VacuousResult": [[62, 5, 1, "", "depth"], [62, 3, 1, "", "from_dict"], [62, 5, 1, "", "logs"], [62, 5, 1, "", "next_states"], [62, 5, 1, "", "reason"], [62, 5, 1, "", "rule"], [62, 5, 1, "", "state"]], "pyk.kore.syntax": [[63, 2, 1, "", "AliasDecl"], [63, 2, 1, "", "And"], [63, 2, 1, "", "App"], [63, 2, 1, "", "Assoc"], [63, 2, 1, "", "Axiom"], [63, 2, 1, "", "AxiomLike"], [63, 2, 1, "", "BinaryConn"], [63, 2, 1, "", "BinaryPred"], [63, 2, 1, "", "Bottom"], [63, 2, 1, "", "Ceil"], [63, 2, 1, "", "Claim"], [63, 2, 1, "", "DV"], [63, 2, 1, "", "Definition"], [63, 2, 1, "", "EVar"], [63, 2, 1, "", "Equals"], [63, 2, 1, "", "Exists"], [63, 2, 1, "", "Floor"], [63, 2, 1, "", "Forall"], [63, 2, 1, "", "Id"], [63, 2, 1, "", "Iff"], [63, 2, 1, "", "Implies"], [63, 2, 1, "", "Import"], [63, 2, 1, "", "In"], [63, 2, 1, "", "Kore"], [63, 2, 1, "", "LeftAssoc"], [63, 2, 1, "", "MLConn"], [63, 2, 1, "", "MLFixpoint"], [63, 2, 1, "", "MLPattern"], [63, 2, 1, "", "MLPred"], [63, 2, 1, "", "MLQuant"], [63, 2, 1, "", "MLRewrite"], [63, 2, 1, "", "MLSyntaxSugar"], [63, 2, 1, "", "Module"], [63, 2, 1, "", "Mu"], [63, 2, 1, "", "MultiaryConn"], [63, 2, 1, "", "Next"], [63, 2, 1, "", "Not"], [63, 2, 1, "", "Nu"], [63, 2, 1, "", "NullaryConn"], [63, 2, 1, "", "Or"], [63, 2, 1, "", "Pattern"], [63, 2, 1, "", "Rewrites"], [63, 2, 1, "", "RightAssoc"], [63, 2, 1, "", "RoundPred"], [63, 2, 1, "", "SVar"], [63, 2, 1, "", "Sentence"], [63, 2, 1, "", "SetVarId"], [63, 2, 1, "", "Sort"], [63, 2, 1, "", "SortApp"], [63, 2, 1, "", "SortDecl"], [63, 2, 1, "", "SortVar"], [63, 2, 1, "", "String"], [63, 2, 1, "", "Symbol"], [63, 2, 1, "", "SymbolDecl"], [63, 2, 1, "", "SymbolId"], [63, 2, 1, "", "Top"], [63, 2, 1, "", "UnaryConn"], [63, 2, 1, "", "VarPattern"], [63, 2, 1, "", "WithAttrs"], [63, 2, 1, "", "WithSort"], [63, 1, 1, "", "kore_term"]], "pyk.kore.syntax.AliasDecl": [[63, 5, 1, "", "alias"], [63, 5, 1, "", "attrs"], [63, 5, 1, "", "left"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "param_sorts"], [63, 5, 1, "", "right"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.And": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "ops"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.App": [[63, 5, 1, "", "args"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "sorts"], [63, 5, 1, "", "symbol"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.Assoc": [[63, 5, 1, "", "app"], [63, 4, 1, "", "ctor_patterns"], [63, 4, 1, "", "pattern"], [63, 4, 1, "", "patterns"], [63, 4, 1, "", "sorts"]], "pyk.kore.syntax.Axiom": [[63, 5, 1, "", "attrs"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "vars"]], "pyk.kore.syntax.AxiomLike": [[63, 5, 1, "", "pattern"], [63, 5, 1, "", "vars"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.BinaryConn": [[63, 5, 1, "", "left"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "right"]], "pyk.kore.syntax.BinaryPred": [[63, 5, 1, "", "left"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "right"], [63, 4, 1, "", "sorts"]], "pyk.kore.syntax.Bottom": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Ceil": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "op_sort"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Claim": [[63, 5, 1, "", "attrs"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "vars"]], "pyk.kore.syntax.DV": [[63, 4, 1, "", "ctor_patterns"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "sort"], [63, 4, 1, "", "sorts"], [63, 3, 1, "", "symbol"], [63, 5, 1, "", "value"]], "pyk.kore.syntax.Definition": [[63, 5, 1, "", "attrs"], [63, 4, 1, "", "axioms"], [63, 3, 1, "", "compute_ordinals"], [63, 3, 1, "", "get_axiom_by_ordinal"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "modules"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.EVar": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 5, 1, "", "name"], [63, 5, 1, "", "sort"]], "pyk.kore.syntax.Equals": [[63, 5, 1, "", "left"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "op_sort"], [63, 5, 1, "", "right"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Exists": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"], [63, 5, 1, "", "var"]], "pyk.kore.syntax.Floor": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "op_sort"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Forall": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"], [63, 5, 1, "", "var"]], "pyk.kore.syntax.Id": [[63, 5, 1, "", "value"]], "pyk.kore.syntax.Iff": [[63, 5, 1, "", "left"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "right"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Implies": [[63, 5, 1, "", "left"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "right"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Import": [[63, 5, 1, "", "attrs"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "module_name"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.In": [[63, 5, 1, "", "left"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "op_sort"], [63, 5, 1, "", "right"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Kore": [[63, 4, 1, "", "text"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.LeftAssoc": [[63, 5, 1, "", "app"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "of"], [63, 4, 1, "", "pattern"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.MLConn": [[63, 4, 1, "", "sorts"]], "pyk.kore.syntax.MLFixpoint": [[63, 4, 1, "", "ctor_patterns"], [63, 5, 1, "", "pattern"], [63, 4, 1, "", "patterns"], [63, 4, 1, "", "sorts"], [63, 5, 1, "", "var"]], "pyk.kore.syntax.MLPattern": [[63, 4, 1, "", "ctor_patterns"], [63, 3, 1, "", "of"], [63, 4, 1, "", "sorts"], [63, 3, 1, "", "symbol"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.MLPred": [[63, 5, 1, "", "op_sort"]], "pyk.kore.syntax.MLQuant": [[63, 4, 1, "", "ctor_patterns"], [63, 5, 1, "", "pattern"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "sort"], [63, 4, 1, "", "sorts"], [63, 5, 1, "", "var"]], "pyk.kore.syntax.MLRewrite": [[63, 4, 1, "", "sorts"]], "pyk.kore.syntax.Module": [[63, 5, 1, "", "attrs"], [63, 4, 1, "", "axioms"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "name"], [63, 5, 1, "", "sentences"], [63, 4, 1, "", "symbol_decls"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.Mu": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "of"], [63, 5, 1, "", "pattern"], [63, 3, 1, "", "symbol"], [63, 5, 1, "", "var"]], "pyk.kore.syntax.MultiaryConn": [[63, 5, 1, "", "ops"], [63, 4, 1, "", "patterns"]], "pyk.kore.syntax.Next": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "pattern"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Not": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "pattern"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Nu": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "of"], [63, 5, 1, "", "pattern"], [63, 3, 1, "", "symbol"], [63, 5, 1, "", "var"]], "pyk.kore.syntax.NullaryConn": [[63, 4, 1, "", "patterns"]], "pyk.kore.syntax.Or": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "ops"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.Pattern": [[63, 3, 1, "", "bottom_up"], [63, 4, 1, "", "dict"], [63, 3, 1, "", "from_dict"], [63, 3, 1, "", "from_json"], [63, 4, 1, "", "json"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "map_patterns"], [63, 4, 1, "", "patterns"], [63, 3, 1, "", "top_down"]], "pyk.kore.syntax.Rewrites": [[63, 5, 1, "", "left"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "right"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.RightAssoc": [[63, 5, 1, "", "app"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "of"], [63, 4, 1, "", "pattern"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.RoundPred": [[63, 5, 1, "", "pattern"], [63, 4, 1, "", "patterns"], [63, 4, 1, "", "sorts"]], "pyk.kore.syntax.SVar": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 5, 1, "", "name"], [63, 5, 1, "", "sort"]], "pyk.kore.syntax.SetVarId": [[63, 5, 1, "", "value"]], "pyk.kore.syntax.Sort": [[63, 4, 1, "", "dict"], [63, 3, 1, "", "from_dict"], [63, 3, 1, "", "from_json"], [63, 4, 1, "", "json"], [63, 5, 1, "", "name"]], "pyk.kore.syntax.SortApp": [[63, 4, 1, "", "dict"], [63, 3, 1, "", "let"], [63, 5, 1, "", "name"], [63, 5, 1, "", "sorts"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.SortDecl": [[63, 5, 1, "", "attrs"], [63, 5, 1, "", "hooked"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "name"], [63, 5, 1, "", "vars"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.SortVar": [[63, 4, 1, "", "dict"], [63, 3, 1, "", "let"], [63, 5, 1, "", "name"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.String": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "value"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.Symbol": [[63, 3, 1, "", "let"], [63, 5, 1, "", "name"], [63, 5, 1, "", "vars"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.SymbolDecl": [[63, 5, 1, "", "attrs"], [63, 5, 1, "", "hooked"], [63, 3, 1, "", "let"], [63, 3, 1, "", "let_attrs"], [63, 5, 1, "", "param_sorts"], [63, 5, 1, "", "sort"], [63, 5, 1, "", "symbol"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.SymbolId": [[63, 5, 1, "", "value"]], "pyk.kore.syntax.Top": [[63, 3, 1, "", "let"], [63, 3, 1, "", "let_patterns"], [63, 3, 1, "", "let_sort"], [63, 3, 1, "", "of"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "symbol"]], "pyk.kore.syntax.UnaryConn": [[63, 5, 1, "", "pattern"], [63, 4, 1, "", "patterns"]], "pyk.kore.syntax.VarPattern": [[63, 5, 1, "", "name"], [63, 4, 1, "", "patterns"], [63, 5, 1, "", "sort"], [63, 3, 1, "", "write"]], "pyk.kore.syntax.WithAttrs": [[63, 5, 1, "", "attrs"], [63, 3, 1, "", "let_attrs"], [63, 3, 1, "", "map_attrs"]], "pyk.kore.syntax.WithSort": [[63, 3, 1, "", "let_sort"], [63, 3, 1, "", "map_sort"], [63, 5, 1, "", "sort"]], "pyk.kore.tools": [[64, 2, 1, "", "PrintOutput"], [64, 1, 1, "", "kore_print"]], "pyk.kore.tools.PrintOutput": [[64, 5, 1, "", "BINARY"], [64, 5, 1, "", "JSON"], [64, 5, 1, "", "KAST"], [64, 5, 1, "", "KORE"], [64, 5, 1, "", "LATEX"], [64, 5, 1, "", "NONE"], [64, 5, 1, "", "PRETTY"], [64, 5, 1, "", "PROGRAM"]], "pyk.kore_exec_covr": [[66, 0, 0, "-", "kore_exec_covr"]], "pyk.kore_exec_covr.kore_exec_covr": [[66, 2, 1, "", "HaskellLogEntry"], [66, 1, 1, "", "build_rule_dict"], [66, 1, 1, "", "parse_rule_applications"]], "pyk.kore_exec_covr.kore_exec_covr.HaskellLogEntry": [[66, 5, 1, "", "DEBUG_APPLIED_REWRITE_RULES"], [66, 5, 1, "", "DEBUG_APPLY_EQUATION"]], "pyk.krepl": [[68, 0, 0, "-", "repl"]], "pyk.krepl.repl": [[68, 2, 1, "", "BaseRepl"], [68, 2, 1, "", "Interpreter"], [68, 2, 1, "", "KInterpreter"], [68, 2, 1, "", "KRepl"], [68, 2, 1, "", "KState"], [68, 6, 1, "", "ReplError"]], "pyk.krepl.repl.BaseRepl": [[68, 5, 1, "", "CAT_BUILTIN"], [68, 5, 1, "", "CAT_DEBUG"], [68, 3, 1, "", "do_load"], [68, 3, 1, "", "do_show"], [68, 3, 1, "", "do_step"], [68, 5, 1, "", "interpreter"], [68, 5, 1, "", "prompt"], [68, 5, 1, "", "state"]], "pyk.krepl.repl.Interpreter": [[68, 3, 1, "", "init_state"], [68, 3, 1, "", "next_state"]], "pyk.krepl.repl.KInterpreter": [[68, 5, 1, "", "definition_dir"], [68, 3, 1, "", "init_state"], [68, 3, 1, "", "next_state"], [68, 5, 1, "", "program_file"]], "pyk.krepl.repl.KRepl": [[68, 3, 1, "", "do_load"], [68, 5, 1, "", "intro"]], "pyk.krepl.repl.KState": [[68, 5, 1, "", "definition_dir"], [68, 5, 1, "", "pattern"], [68, 4, 1, "", "pretty"]], "pyk.ktool": [[70, 0, 0, "-", "claim_index"], [71, 0, 0, "-", "kfuzz"], [72, 0, 0, "-", "kompile"], [73, 0, 0, "-", "kprint"], [74, 0, 0, "-", "kprove"], [75, 0, 0, "-", "krun"], [76, 0, 0, "-", "prove_rpc"]], "pyk.ktool.claim_index": [[70, 2, 1, "", "ClaimIndex"]], "pyk.ktool.claim_index.ClaimIndex": [[70, 5, 1, "", "claims"], [70, 3, 1, "", "from_module_list"], [70, 3, 1, "", "labels"], [70, 5, 1, "", "main_module_name"], [70, 3, 1, "", "resolve"], [70, 3, 1, "", "resolve_all"]], "pyk.ktool.kfuzz": [[71, 1, 1, "", "fuzz"], [71, 1, 1, "", "kintegers"]], "pyk.ktool.kompile": [[72, 2, 1, "", "PykBackend"], [72, 1, 1, "", "kompile"]], "pyk.ktool.kompile.PykBackend": [[72, 5, 1, "", "BOOSTER"], [72, 5, 1, "", "HASKELL"], [72, 5, 1, "", "KORE"], [72, 5, 1, "", "LLVM"], [72, 5, 1, "", "MAUDE"]], "pyk.ktool.kprint": [[73, 2, 1, "", "KAstInput"], [73, 2, 1, "", "KAstOutput"], [73, 2, 1, "", "KPrint"], [73, 1, 1, "", "gen_glr_parser"]], "pyk.ktool.kprint.KAstInput": [[73, 5, 1, "", "BINARY"], [73, 5, 1, "", "JSON"], [73, 5, 1, "", "KAST"], [73, 5, 1, "", "KORE"], [73, 5, 1, "", "PROGRAM"], [73, 5, 1, "", "RULE"]], "pyk.ktool.kprint.KAstOutput": [[73, 5, 1, "", "BINARY"], [73, 5, 1, "", "JSON"], [73, 5, 1, "", "KAST"], [73, 5, 1, "", "KORE"], [73, 5, 1, "", "LATEX"], [73, 5, 1, "", "NONE"], [73, 5, 1, "", "PRETTY"], [73, 5, 1, "", "PROGRAM"]], "pyk.ktool.kprint.KPrint": [[73, 5, 1, "", "backend"], [73, 4, 1, "", "definition"], [73, 5, 1, "", "definition_dir"], [73, 4, 1, "", "definition_hash"], [73, 3, 1, "", "kast_to_kore"], [73, 3, 1, "", "kore_to_kast"], [73, 3, 1, "", "kore_to_pretty"], [73, 5, 1, "", "main_module"], [73, 3, 1, "", "parse_token"], [73, 3, 1, "", "pretty_print"], [73, 5, 1, "", "use_directory"]], "pyk.ktool.kprove": [[74, 2, 1, "", "KProve"], [74, 2, 1, "", "KProveOutput"]], "pyk.ktool.kprove.KProve": [[74, 3, 1, "", "get_claim_index"], [74, 3, 1, "", "get_claim_modules"], [74, 3, 1, "", "get_claims"], [74, 5, 1, "", "main_file"], [74, 3, 1, "", "prove"], [74, 3, 1, "", "prove_claim"], [74, 5, 1, "", "prover"], [74, 5, 1, "", "prover_args"]], "pyk.ktool.kprove.KProveOutput": [[74, 5, 1, "", "BINARY"], [74, 5, 1, "", "JSON"], [74, 5, 1, "", "KAST"], [74, 5, 1, "", "KORE"], [74, 5, 1, "", "LATEX"], [74, 5, 1, "", "NONE"], [74, 5, 1, "", "PRETTY"], [74, 5, 1, "", "PROGAM"]], "pyk.ktool.krun": [[75, 2, 1, "", "KRun"], [75, 2, 1, "", "KRunOutput"], [75, 1, 1, "", "llvm_interpret"], [75, 1, 1, "", "llvm_interpret_raw"]], "pyk.ktool.krun.KRun": [[75, 5, 1, "", "command"], [75, 3, 1, "", "krun"], [75, 3, 1, "", "run"], [75, 3, 1, "", "run_pattern"], [75, 3, 1, "", "run_process"]], "pyk.ktool.krun.KRunOutput": [[75, 5, 1, "", "BINARY"], [75, 5, 1, "", "JSON"], [75, 5, 1, "", "KAST"], [75, 5, 1, "", "KORE"], [75, 5, 1, "", "LATEX"], [75, 5, 1, "", "NONE"], [75, 5, 1, "", "PRETTY"], [75, 5, 1, "", "PROGRAM"]], "pyk.ktool.prove_rpc": [[76, 2, 1, "", "ProveRpc"]], "pyk.ktool.prove_rpc.ProveRpc": [[76, 3, 1, "", "prove_rpc"]], "pyk.prelude": [[78, 0, 0, "-", "bytes"], [79, 0, 0, "-", "collections"], [80, 0, 0, "-", "k"], [81, 0, 0, "-", "kbool"], [82, 0, 0, "-", "kint"], [83, 0, 0, "-", "ml"], [84, 0, 0, "-", "string"], [85, 0, 0, "-", "utils"]], "pyk.prelude.bytes": [[78, 1, 1, "", "bytesToken"], [78, 1, 1, "", "bytesToken_from_str"], [78, 1, 1, "", "pretty_bytes"], [78, 1, 1, "", "pretty_bytes_str"]], "pyk.prelude.collections": [[79, 1, 1, "", "list_empty"], [79, 1, 1, "", "list_item"], [79, 1, 1, "", "list_of"], [79, 1, 1, "", "map_empty"], [79, 1, 1, "", "map_item"], [79, 1, 1, "", "map_of"], [79, 1, 1, "", "set_empty"], [79, 1, 1, "", "set_item"], [79, 1, 1, "", "set_of"]], "pyk.prelude.k": [[80, 1, 1, "", "inj"]], "pyk.prelude.kbool": [[81, 1, 1, "", "andBool"], [81, 1, 1, "", "boolToken"], [81, 1, 1, "", "impliesBool"], [81, 1, 1, "", "notBool"], [81, 1, 1, "", "orBool"]], "pyk.prelude.kint": [[82, 1, 1, "", "absInt"], [82, 1, 1, "", "addInt"], [82, 1, 1, "", "andInt"], [82, 1, 1, "", "divInt"], [82, 1, 1, "", "eqInt"], [82, 1, 1, "", "euclidDivInt"], [82, 1, 1, "", "euclidModInt"], [82, 1, 1, "", "expInt"], [82, 1, 1, "", "expModInt"], [82, 1, 1, "", "geInt"], [82, 1, 1, "", "gtInt"], [82, 1, 1, "", "intToken"], [82, 1, 1, "", "leInt"], [82, 1, 1, "", "lshiftInt"], [82, 1, 1, "", "ltInt"], [82, 1, 1, "", "maxInt"], [82, 1, 1, "", "minInt"], [82, 1, 1, "", "modInt"], [82, 1, 1, "", "mulInt"], [82, 1, 1, "", "neqInt"], [82, 1, 1, "", "notInt"], [82, 1, 1, "", "orInt"], [82, 1, 1, "", "rshiftInt"], [82, 1, 1, "", "subInt"], [82, 1, 1, "", "xorInt"]], "pyk.prelude.ml": [[83, 1, 1, "", "is_bottom"], [83, 1, 1, "", "is_top"], [83, 1, 1, "", "mlAnd"], [83, 1, 1, "", "mlBottom"], [83, 1, 1, "", "mlCeil"], [83, 1, 1, "", "mlEquals"], [83, 1, 1, "", "mlEqualsFalse"], [83, 1, 1, "", "mlEqualsTrue"], [83, 1, 1, "", "mlExists"], [83, 1, 1, "", "mlImplies"], [83, 1, 1, "", "mlNot"], [83, 1, 1, "", "mlOr"], [83, 1, 1, "", "mlTop"]], "pyk.prelude.string": [[84, 1, 1, "", "pretty_string"], [84, 1, 1, "", "stringToken"]], "pyk.prelude.utils": [[85, 1, 1, "", "token"]], "pyk.proof": [[87, 0, 0, "-", "implies"], [88, 0, 0, "-", "proof"], [89, 0, 0, "-", "reachability"], [90, 0, 0, "-", "show"], [91, 0, 0, "-", "tui"]], "pyk.proof.implies": [[87, 2, 1, "", "EqualityProof"], [87, 2, 1, "", "EqualitySummary"], [87, 2, 1, "", "ImpliesProof"], [87, 2, 1, "", "ImpliesProofResult"], [87, 2, 1, "", "ImpliesProofStep"], [87, 2, 1, "", "ImpliesProver"], [87, 2, 1, "", "RefutationProof"], [87, 2, 1, "", "RefutationSummary"]], "pyk.proof.implies.EqualityProof": [[87, 4, 1, "", "constraint"], [87, 4, 1, "", "constraints"], [87, 4, 1, "", "dict"], [87, 4, 1, "", "equality"], [87, 3, 1, "", "from_claim"], [87, 3, 1, "", "from_dict"], [87, 4, 1, "", "lhs_body"], [87, 3, 1, "", "pretty"], [87, 3, 1, "", "read_proof_data"], [87, 4, 1, "", "rhs_body"], [87, 4, 1, "", "simplified_constraints"], [87, 4, 1, "", "simplified_equality"], [87, 4, 1, "", "sort"], [87, 4, 1, "", "summary"]], "pyk.proof.implies.EqualitySummary": [[87, 5, 1, "", "admitted"], [87, 5, 1, "", "id"], [87, 4, 1, "", "lines"], [87, 5, 1, "", "status"]], "pyk.proof.implies.ImpliesProof": [[87, 5, 1, "", "antecedent"], [87, 5, 1, "", "bind_universally"], [87, 4, 1, "", "can_progress"], [87, 3, 1, "", "commit"], [87, 5, 1, "", "consequent"], [87, 5, 1, "", "csubst"], [87, 4, 1, "", "dict"], [87, 3, 1, "", "from_dict"], [87, 3, 1, "", "get_steps"], [87, 4, 1, "", "own_status"], [87, 5, 1, "", "simplified_antecedent"], [87, 5, 1, "", "simplified_consequent"], [87, 3, 1, "", "write_proof_data"]], "pyk.proof.implies.ImpliesProofResult": [[87, 5, 1, "", "csubst"], [87, 5, 1, "", "simplified_antecedent"], [87, 5, 1, "", "simplified_consequent"]], "pyk.proof.implies.ImpliesProofStep": [[87, 5, 1, "", "proof"]], "pyk.proof.implies.ImpliesProver": [[87, 3, 1, "", "close"], [87, 3, 1, "", "failure_info"], [87, 3, 1, "", "init_proof"], [87, 5, 1, "", "kcfg_explore"], [87, 5, 1, "", "proof"], [87, 3, 1, "", "step_proof"]], "pyk.proof.implies.RefutationProof": [[87, 4, 1, "", "dict"], [87, 3, 1, "", "from_dict"], [87, 4, 1, "", "last_constraint"], [87, 4, 1, "", "pre_constraints"], [87, 3, 1, "", "pretty"], [87, 3, 1, "", "read_proof_data"], [87, 4, 1, "", "simplified_constraints"], [87, 4, 1, "", "summary"], [87, 3, 1, "", "to_claim"]], "pyk.proof.implies.RefutationSummary": [[87, 5, 1, "", "id"], [87, 4, 1, "", "lines"], [87, 5, 1, "", "status"]], "pyk.proof.proof": [[88, 2, 1, "", "CompositeSummary"], [88, 2, 1, "", "FailureInfo"], [88, 2, 1, "", "Proof"], [88, 2, 1, "", "ProofStatus"], [88, 2, 1, "", "ProofSummary"], [88, 2, 1, "", "Prover"], [88, 1, 1, "", "parallel_advance_proof"]], "pyk.proof.proof.CompositeSummary": [[88, 4, 1, "", "lines"], [88, 5, 1, "", "summaries"]], "pyk.proof.proof.Proof": [[88, 3, 1, "", "add_subproof"], [88, 3, 1, "", "admit"], [88, 5, 1, "", "admitted"], [88, 4, 1, "", "can_progress"], [88, 3, 1, "", "commit"], [88, 4, 1, "", "dict"], [88, 4, 1, "", "digest"], [88, 4, 1, "", "failed"], [88, 5, 1, "", "failure_info"], [88, 3, 1, "", "fetch_subproof"], [88, 3, 1, "", "fetch_subproof_data"], [88, 3, 1, "", "from_dict"], [88, 3, 1, "", "get_steps"], [88, 5, 1, "", "id"], [88, 4, 1, "", "json"], [88, 4, 1, "", "own_status"], [88, 4, 1, "", "passed"], [88, 3, 1, "", "proof_data_exists"], [88, 5, 1, "", "proof_dir"], [88, 3, 1, "", "proof_exists"], [88, 4, 1, "", "proof_subdir"], [88, 3, 1, "", "read_proof"], [88, 3, 1, "", "read_proof_data"], [88, 3, 1, "", "read_subproof"], [88, 3, 1, "", "read_subproof_data"], [88, 3, 1, "", "remove_subproof"], [88, 4, 1, "", "status"], [88, 4, 1, "", "subproof_ids"], [88, 4, 1, "", "subproofs"], [88, 4, 1, "", "subproofs_status"], [88, 4, 1, "", "summary"], [88, 4, 1, "", "up_to_date"], [88, 3, 1, "", "write_proof"], [88, 3, 1, "", "write_proof_data"]], "pyk.proof.proof.ProofStatus": [[88, 5, 1, "", "FAILED"], [88, 5, 1, "", "PASSED"], [88, 5, 1, "", "PENDING"]], "pyk.proof.proof.ProofSummary": [[88, 5, 1, "", "id"], [88, 4, 1, "", "lines"], [88, 5, 1, "", "status"]], "pyk.proof.proof.Prover": [[88, 3, 1, "", "advance_proof"], [88, 3, 1, "", "close"], [88, 3, 1, "", "failure_info"], [88, 3, 1, "", "init_proof"], [88, 3, 1, "", "step_proof"]], "pyk.proof.reachability": [[89, 2, 1, "", "APRFailureInfo"], [89, 2, 1, "", "APRProof"], [89, 2, 1, "", "APRProofBoundedResult"], [89, 2, 1, "", "APRProofExtendResult"], [89, 2, 1, "", "APRProofResult"], [89, 2, 1, "", "APRProofStep"], [89, 2, 1, "", "APRProofSubsumeResult"], [89, 2, 1, "", "APRProofTerminalResult"], [89, 2, 1, "", "APRProver"], [89, 2, 1, "", "APRSummary"]], "pyk.proof.reachability.APRFailureInfo": [[89, 5, 1, "", "failing_nodes"], [89, 5, 1, "", "failure_reasons"], [89, 3, 1, "", "from_proof"], [89, 5, 1, "", "models"], [89, 5, 1, "", "path_conditions"], [89, 5, 1, "", "pending_nodes"], [89, 3, 1, "", "print"]], "pyk.proof.reachability.APRProof": [[89, 3, 1, "", "add_bounded"], [89, 3, 1, "", "add_exec_time"], [89, 3, 1, "", "as_rule"], [89, 3, 1, "", "as_rules"], [89, 5, 1, "", "bmc_depth"], [89, 4, 1, "", "bounded"], [89, 4, 1, "", "can_progress"], [89, 4, 1, "", "circularities_module_name"], [89, 5, 1, "", "circularity"], [89, 3, 1, "", "commit"], [89, 3, 1, "", "construct_node_refutation"], [89, 4, 1, "", "dependencies_module_name"], [89, 4, 1, "", "dict"], [89, 5, 1, "", "error_info"], [89, 4, 1, "", "exec_time"], [89, 4, 1, "", "failing"], [89, 3, 1, "", "formatted_exec_time"], [89, 3, 1, "", "from_claim"], [89, 3, 1, "", "from_dict"], [89, 3, 1, "", "from_spec_modules"], [89, 3, 1, "", "get_refutation_id"], [89, 3, 1, "", "get_steps"], [89, 5, 1, "", "init"], [89, 3, 1, "", "is_bounded"], [89, 3, 1, "", "is_failing"], [89, 3, 1, "", "is_init"], [89, 3, 1, "", "is_pending"], [89, 3, 1, "", "is_refuted"], [89, 3, 1, "", "is_target"], [89, 5, 1, "", "logs"], [89, 4, 1, "", "module_name"], [89, 5, 1, "", "node_refutations"], [89, 3, 1, "", "nonzero_depth"], [89, 4, 1, "", "own_status"], [89, 3, 1, "", "path_constraints"], [89, 4, 1, "", "pending"], [89, 5, 1, "", "prior_loops_cache"], [89, 3, 1, "", "prune"], [89, 3, 1, "", "read_proof"], [89, 3, 1, "", "read_proof_data"], [89, 3, 1, "", "refute_node"], [89, 4, 1, "", "rule_id"], [89, 3, 1, "", "set_exec_time"], [89, 3, 1, "", "shortest_path_to"], [89, 4, 1, "", "summary"], [89, 5, 1, "", "target"], [89, 3, 1, "", "unrefute_node"], [89, 3, 1, "", "write_proof_data"]], "pyk.proof.reachability.APRProofExtendResult": [[89, 5, 1, "", "extend_result"]], "pyk.proof.reachability.APRProofResult": [[89, 5, 1, "", "node_id"], [89, 5, 1, "", "prior_loops_cache_update"]], "pyk.proof.reachability.APRProofStep": [[89, 5, 1, "", "bmc_depth"], [89, 5, 1, "", "circularity"], [89, 5, 1, "", "circularity_rule_id"], [89, 5, 1, "", "module_name"], [89, 5, 1, "", "node"], [89, 5, 1, "", "nonzero_depth"], [89, 5, 1, "", "prior_loops_cache"], [89, 5, 1, "", "proof_id"], [89, 5, 1, "", "shortest_path_to_node"], [89, 5, 1, "", "target"]], "pyk.proof.reachability.APRProofSubsumeResult": [[89, 5, 1, "", "csubst"]], "pyk.proof.reachability.APRProver": [[89, 5, 1, "", "always_check_subsumption"], [89, 3, 1, "", "close"], [89, 5, 1, "", "counterexample_info"], [89, 5, 1, "", "cut_point_rules"], [89, 5, 1, "", "direct_subproof_rules"], [89, 5, 1, "", "execute_depth"], [89, 3, 1, "", "failure_info"], [89, 5, 1, "", "fast_check_subsumption"], [89, 3, 1, "", "init_proof"], [89, 5, 1, "", "kcfg_explore"], [89, 5, 1, "", "main_module_name"], [89, 3, 1, "", "step_proof"], [89, 5, 1, "", "terminal_rules"]], "pyk.proof.reachability.APRSummary": [[89, 5, 1, "", "admitted"], [89, 5, 1, "", "bmc_depth"], [89, 5, 1, "", "bounded"], [89, 5, 1, "", "failing"], [89, 5, 1, "", "formatted_exec_time"], [89, 5, 1, "", "id"], [89, 4, 1, "", "lines"], [89, 5, 1, "", "nodes"], [89, 5, 1, "", "pending"], [89, 5, 1, "", "refuted"], [89, 5, 1, "", "status"], [89, 5, 1, "", "stuck"], [89, 5, 1, "", "subproofs"], [89, 5, 1, "", "terminal"], [89, 5, 1, "", "vacuous"]], "pyk.proof.show": [[90, 2, 1, "", "APRProofNodePrinter"], [90, 2, 1, "", "APRProofShow"]], "pyk.proof.show.APRProofNodePrinter": [[90, 3, 1, "", "node_attrs"], [90, 5, 1, "", "proof"]], "pyk.proof.show.APRProofShow": [[90, 3, 1, "", "dot"], [90, 3, 1, "", "dump"], [90, 5, 1, "", "kcfg_show"], [90, 3, 1, "", "pretty"], [90, 3, 1, "", "pretty_segments"], [90, 3, 1, "", "show"]], "pyk.proof.tui": [[91, 2, 1, "", "APRProofBehaviorView"], [91, 2, 1, "", "APRProofViewer"]], "pyk.proof.tui.APRProofBehaviorView": [[91, 5, 1, "", "can_focus"], [91, 5, 1, "", "can_focus_children"], [91, 3, 1, "", "compose"]], "pyk.proof.tui.APRProofViewer": [[91, 3, 1, "", "compose"], [91, 3, 1, "", "on_mount"]], "pyk.testing": [[93, 0, 0, "-", "plugin"]], "pyk.testing.plugin": [[93, 1, 1, "", "bug_report"], [93, 1, 1, "", "kompile"], [93, 1, 1, "", "profile"], [93, 1, 1, "", "pytest_addoption"], [93, 1, 1, "", "use_server"]], "pyk.utils": [[94, 2, 1, "", "BugReport"], [94, 2, 1, "", "Chainable"], [94, 2, 1, "", "FrozenDict"], [94, 2, 1, "", "POSet"], [94, 1, 1, "", "abs_or_rel_to"], [94, 1, 1, "", "add_indent"], [94, 1, 1, "", "case"], [94, 1, 1, "", "check_absolute_path"], [94, 1, 1, "", "check_dir_path"], [94, 1, 1, "", "check_file_path"], [94, 1, 1, "", "check_relative_path"], [94, 1, 1, "", "check_type"], [94, 1, 1, "", "compare_short_hashes"], [94, 1, 1, "", "deconstruct_short_hash"], [94, 1, 1, "", "ensure_dir_path"], [94, 1, 1, "", "exit_with_process_error"], [94, 1, 1, "", "filter_none"], [94, 1, 1, "", "find_common_items"], [94, 1, 1, "", "gen_file_timestamp"], [94, 1, 1, "", "hash_file"], [94, 1, 1, "", "hash_str"], [94, 1, 1, "", "intersperse"], [94, 1, 1, "", "is_hash"], [94, 1, 1, "", "is_hexstring"], [94, 1, 1, "", "is_relative_to"], [94, 1, 1, "", "maybe"], [94, 1, 1, "", "merge_with"], [94, 1, 1, "", "none"], [94, 1, 1, "", "nonempty_str"], [94, 1, 1, "", "not_none"], [94, 1, 1, "", "raised"], [94, 1, 1, "", "repeat_last"], [94, 1, 1, "", "run_process"], [94, 1, 1, "", "shorten_hash"], [94, 1, 1, "", "shorten_hashes"], [94, 1, 1, "", "single"], [94, 1, 1, "", "some"], [94, 1, 1, "", "tuple_of"], [94, 1, 1, "", "unique"]], "pyk.utils.BugReport": [[94, 3, 1, "", "add_command"], [94, 3, 1, "", "add_file"], [94, 3, 1, "", "add_file_contents"]], "pyk.utils.POSet": [[94, 5, 1, "", "image"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "attribute", "Python attribute"], "6": ["py", "exception", "Python exception"]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:attribute", "6": "py:exception"}, "terms": {"": [6, 8, 11, 14, 16, 32, 36, 39, 63, 66, 88, 89, 91], "0": [5, 10, 13, 15, 17, 28, 36, 46, 56, 62, 71, 89], "1": [5, 13, 15, 17, 28, 31, 51, 56, 62, 88], "10": [13, 17, 28, 56, 89], "11": [13, 17, 56], "12": [13, 17, 56], "128": 94, "13": [13, 17, 56], "14": [13, 17, 56], "15": [17, 56, 89], "16": [17, 56], "17": [17, 56], "18": [17, 56], "19": [17, 56], "2": [5, 13, 17, 21, 31, 56, 62, 89], "20": [17, 32, 56, 89], "2019": 89, "21": [17, 56], "22": [17, 56], "23": [17, 56], "23638": 89, "24": [17, 56], "25": [17, 56], "26": [17, 56], "27": [17, 56], "28": [17, 56], "29": [17, 56], "3": [5, 13, 17, 56], "30": [17, 56], "31": [17, 56], "32": [17, 56], "33": [17, 56], "34": [17, 56], "35": [17, 56], "36": [17, 56], "37": [17, 56], "38": [17, 56], "39": [17, 56], "4": [5, 13, 17, 56], "40": [17, 56], "41": [17, 56], "42": [17, 56], "43": [17, 56], "44": [17, 56], "5": [13, 17, 56, 89], "50": 71, "6": [13, 17, 56, 94], "7": [13, 17, 56], "8": [9, 13, 17, 56], "9": [13, 17, 28, 56], "9a": 28, "A": [4, 11, 14, 17, 32, 36, 46, 70, 71, 89], "And": [1, 7, 15, 32, 54, 59, 63], "For": 88, "If": [17, 32, 46, 70, 71, 75, 88], "In": [1, 54, 59, 63], "It": [46, 66, 71], "Not": [1, 7, 15, 54, 59, 63], "Or": [1, 7, 15, 54, 59, 63], "The": [4, 11, 14, 16, 17, 32, 34, 46, 71, 75, 82, 88], "These": 88, "Will": 71, "_": [11, 82], "__call__": [7, 11], "__format__": [54, 62], "__getitem__": [7, 11], "__init__": [3, 4, 7, 11, 45, 46], "__iter__": [3, 4, 7, 11, 45, 46], "__len__": [7, 11], "__lt__": [7, 11], "__mul__": [7, 11], "__next__": [45, 46], "__repr__": [45, 46], "__str__": 62, "_annotated_llvm_ev": [45, 46], "_argument": [45, 46], "_configuration_": 4, "_cterm": 31, "_divint_": 82, "_event_typ": [45, 46], "_exec_tim": 89, "_function_ev": [45, 46], "_hook_ev": [45, 46], "_io": 9, "_kore_head": [45, 46], "_modint_": 82, "_path": 32, "_rewrite_trac": [45, 46], "_rewrite_trace_iter": [45, 46], "_rule_ev": [45, 46], "_self": 94, "_side_condition_end_ev": [45, 46], "_side_condition_ev": [45, 46], "_summari": 88, "_target": 32, "_xorint_": 82, "abc": [8, 12, 15, 19, 27, 32, 33, 39, 46, 62, 63, 68, 88], "abort": [54, 62], "abortedresult": [1, 54, 62], "about": [4, 11, 66], "abov": 89, "abs_or_rel_to": [0, 1, 94], "absint": [1, 77, 82], "abstract": [1, 4, 8, 11, 12, 14, 15, 16, 27, 29, 32, 33, 39, 46, 62, 63, 68, 88], "abstract_label": 14, "abstract_nod": [29, 33], "abstract_term_saf": [1, 7, 14], "access": 4, "achiev": 4, "across": 32, "action": 36, "action_keystrok": [29, 36], "actual": [2, 16, 62], "ad": [4, 16], "add": [4, 46], "add_alia": [29, 32], "add_attr": [29, 32], "add_bound": [86, 89], "add_bracket": [1, 7, 10], "add_cell_map_item": [7, 16], "add_command": [1, 94], "add_constraint": [3, 4], "add_exec_tim": [86, 89], "add_fil": [1, 94], "add_file_cont": [1, 94], "add_ind": [0, 1, 94], "add_inject": [54, 55], "add_ksequence_under_k_product": [7, 16], "add_modul": [54, 62, 88], "add_nod": [29, 32], "add_sort_param": [7, 16], "add_stuck": [29, 32], "add_subproof": [86, 88], "add_successor": [29, 32], "add_termin": [29, 30], "add_vacu": [29, 32], "addint": [1, 77, 82], "addit": 4, "adit": 46, "admit": [86, 87, 88, 89], "advanc": 88, "advance_proof": [86, 88], "af": 89, "after": [46, 71, 88], "against": 16, "ahead": [24, 28], "algorithm": 16, "alia": [1, 5, 7, 8, 11, 13, 15, 16, 17, 19, 32, 54, 56, 62, 63], "alias": [29, 32], "alias_decl": [54, 59], "alias_rec": [7, 8], "alias_rul": [7, 16], "aliasdecl": [1, 54, 59, 63], "alice_blu": [7, 9], "aliceblu": 9, "all": [4, 11, 16, 32, 36, 46, 70, 88, 89], "all_fil": [24, 27], "all_modul": [7, 16], "all_module_nam": [7, 16], "all_modules_dict": [7, 16], "allow": [16, 32, 89], "allow_unicod": 6, "allrul": 2, "also": [46, 71], "always_check_subsumpt": [86, 89], "always_upd": 36, "amount": 14, "an": [4, 9, 11, 13, 14, 16, 17, 19, 32, 34, 46, 56, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75, 88, 89], "analysi": 4, "and_bool": [1, 54, 61], "andbool": [1, 77, 81], "andd": [54, 59], "andint": [1, 77, 82], "ani": [4, 8, 11, 12, 16, 27, 30, 32, 39, 40, 46, 51, 55, 61, 62, 63, 68, 71, 72, 87, 88, 89, 94], "annot": 46, "annotated_llvm_ev": 46, "anoth": [2, 16, 32], "ansi_cod": [7, 9], "anteced": [5, 31, 62, 81, 83, 86, 87], "anti_unifi": [1, 3, 4], "antique_whit": [7, 9], "antiquewhit": 9, "anytyp": [1, 7, 8], "anywher": [7, 8], "api": [1, 38], "app": [1, 36, 54, 58, 59, 61, 63], "appli": [2, 3, 4, 7, 11, 14, 66, 88], "applic": [11, 34, 66], "apply_existential_substitut": [1, 7, 14], "apply_top": [7, 11], "approach": 16, "aprfailureinfo": [1, 86, 89], "apricot": [7, 9], "aprproof": [1, 86, 89, 90, 91], "aprproofbehaviorview": [1, 86, 91], "aprproofboundedresult": [1, 86, 89], "aprproofextendresult": [1, 86, 89], "aprproofnodeprint": [1, 86, 90], "aprproofresult": [1, 86, 89], "aprproofshow": [1, 86, 90], "aprproofstep": [1, 86, 89], "aprproofsubsumeresult": [1, 86, 89], "aprproofterminalresult": [1, 86, 89], "aprproofview": [1, 86, 91], "aprprov": [1, 86, 88, 89], "aprsummari": [1, 86, 89], "aqua": [7, 9], "aquamarin": [7, 9], "ar": [4, 11, 14, 16, 32, 46, 66, 68, 70, 88], "arcnam": 94, "arg": [1, 7, 11, 19, 24, 27, 39, 45, 46, 54, 58, 60, 61, 62, 63, 68, 74, 94], "arg_sort": 83, "argument": [11, 16, 46, 68, 71], "argument_sort": [7, 16], "ariti": [7, 11], "around": 46, "as_rul": [73, 86, 89], "as_subsort": [7, 16], "assertionerror": [32, 71], "assign": [4, 11, 16], "assoc": [1, 7, 8, 16, 19, 54, 63], "assoc_join": 21, "assoc_with_unit": [1, 7, 21], "associ": [11, 16, 46, 88], "assume_defin": [3, 5], "assume_state_defin": 62, "ast": [1, 7, 11, 14, 16, 19, 41, 46], "atom": [1, 7, 15], "att": [1, 7, 16, 19, 32], "attach": 4, "attempt": [11, 14], "attentri": [1, 7, 8], "attkei": [1, 7, 8], "attr": [7, 17, 29, 32, 54, 63], "attr_cont": [7, 17], "attr_kei": [7, 17], "attribut": [8, 16, 36, 46], "atttyp": [1, 7, 8], "automat": [14, 21], "avail": [36, 88], "avoid": 88, "awai": 14, "axiom": [1, 46, 52, 54, 59, 63], "axiomlik": [1, 54, 63], "azur": [7, 9], "b": [6, 32, 51, 78, 81], "b_id": 32, "back": 14, "backend": [66, 69, 72, 73, 75], "bare": 4, "base": [4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 39, 46, 51, 55, 56, 59, 60, 62, 63, 64, 66, 68, 70, 72, 73, 74, 75, 76, 82, 87, 88, 89, 90, 91, 94], "base_nam": 14, "baseexcept": 94, "baserepl": [1, 67, 68], "basic": 4, "becaus": 16, "becom": [32, 88], "been": [14, 17, 62], "befor": 46, "begin": 88, "behaviorview": [1, 29, 36], "beig": [7, 9], "being": [4, 16, 88], "best": [16, 21], "between": [4, 14], "bin": 43, "binari": [46, 54, 64, 69, 73, 74, 75], "binaryconn": [1, 54, 63], "binarypr": [1, 54, 63], "bind": [11, 29, 36], "bind_univers": [5, 86, 87], "bindingtyp": 36, "bisqu": [7, 9], "bittersweet": [7, 9], "black": [7, 9], "blanched_almond": [7, 9], "blanchedalmond": 9, "block": [7, 19, 51], "blue": [7, 9], "blue_green": [7, 9], "blue_violet": [7, 9], "bluegreen": 9, "blueviolet": 9, "bmc_depth": [86, 89], "bodi": [7, 16, 83], "bool": [4, 5, 6, 10, 11, 14, 15, 16, 19, 20, 21, 23, 26, 28, 30, 31, 32, 33, 34, 36, 39, 43, 46, 51, 55, 58, 59, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 81, 83, 85, 87, 88, 89, 90, 91, 94], "bool_dv": [1, 54, 61], "bool_to_ml_pr": [1, 7, 14], "boolean": [11, 46], "booltoken": [1, 77, 81], "booster": [54, 62, 69, 72], "boosterserv": [1, 54, 62], "boosterserverarg": [1, 54, 62], "both": [4, 11], "bottom": [1, 3, 4, 11, 54, 59, 63], "bottom_up": [1, 7, 11, 54, 63], "bottom_up_with_summari": [1, 7, 11], "bound": [4, 14, 16, 62, 86, 89], "bound_var": 57, "bracket": [7, 8, 10, 16], "bracket_label": [7, 8], "bracketlabel": 8, "branch": [1, 5, 29, 32, 54, 62], "branchingresult": [1, 54, 62], "brick_r": [7, 9], "brickr": 9, "brown": [7, 9], "bubbl": [7, 17, 19, 29, 36], "bug_report": [1, 5, 54, 62, 73, 74, 75, 92, 93, 94], "bug_report_id": 62, "bug_report_request": 62, "bugreport": [0, 1, 5, 62, 73, 74, 75, 93, 94], "build": [11, 21, 38, 39, 66], "build_assoc": [1, 7, 11], "build_claim": [1, 7, 14], "build_con": [1, 7, 11], "build_rul": [1, 7, 14], "build_rule_dict": [1, 65, 66], "build_symbol_t": [1, 7, 21], "built": 68, "bulk": 66, "burly_wood": [7, 9], "burlywood": 9, "burnt_orang": [7, 9], "burntorang": 9, "byte": [1, 6, 46, 51, 58, 61, 77, 85], "bytes_decod": [0, 1, 6], "bytes_dv": [1, 54, 61], "bytes_encod": [0, 1, 6], "bytestoken": [1, 77, 78], "bytestoken_from_str": [1, 77, 78], "c": [32, 33, 36], "c1": 33, "c2": 33, "c_1": 32, "c_n": 32, "cadet_blu": [7, 9], "cadetblu": 9, "call": [16, 36, 71], "callabl": [8, 11, 14, 16, 21, 36, 58, 60, 63, 71, 73, 74, 75, 76, 88, 91, 94], "callback": 11, "calledprocesserror": [75, 94], "can": [4, 11, 14, 34, 88], "can_focu": [29, 36, 86, 91], "can_focus_children": [29, 36, 86, 91], "can_progress": [86, 87, 88, 89], "cannot": 70, "carnation_pink": [7, 9], "carnationpink": 9, "case": [0, 1, 11, 58, 71, 94], "case_symbol": [1, 54, 58], "cat_builtin": [67, 68], "cat_debug": [67, 68], "ccopt": 43, "ceil": [1, 54, 59, 63], "cell": [3, 4, 7, 8, 11, 14, 16, 58, 61], "cell_collect": [7, 8], "cell_collection_product": [7, 16], "cell_frag": [7, 8], "cell_label_to_var_nam": [1, 7, 14], "cell_nam": [7, 8], "cell_opt_abs": [7, 8], "cell_valu": 14, "cell_vari": 14, "cellcollect": 8, "cellfrag": 8, "cellnam": 8, "celloptabs": 8, "central": 32, "cerulean": [7, 9], "cfg": [31, 34], "cfg_dir": 32, "cfgid": 34, "chainabl": [0, 1, 94], "chang": [36, 88], "charact": 17, "chartreus": [7, 9], "check": [4, 11, 46, 71, 72, 75, 88, 89, 94], "check_absolute_path": [0, 1, 94], "check_dir_path": [0, 1, 94], "check_exit_cod": 71, "check_extend": [29, 31], "check_file_path": [0, 1, 94], "check_func": 71, "check_relative_path": [0, 1, 94], "check_result": [45, 46], "check_typ": [0, 1, 94], "children": [11, 36, 91], "chocol": [7, 9], "chunk": [16, 34], "chunk_id": [29, 36], "chunk_num_block": 94, "circular": [7, 8, 16, 86, 88, 89], "circularities_module_nam": [86, 89], "circularity_rule_id": [86, 89], "claim": [1, 4, 7, 14, 16, 19, 32, 54, 59, 63, 69, 70, 74, 87, 89], "claim_id": [4, 14, 74, 87], "claim_index": [1, 69], "claim_label": 74, "claimindex": [1, 69, 70, 74], "class": [4, 5, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 39, 46, 51, 55, 56, 59, 60, 62, 63, 64, 66, 68, 70, 72, 73, 74, 75, 76, 87, 88, 89, 90, 91, 94], "classmethod": [8, 62, 63, 87, 88, 89], "classvar": [28, 36, 62], "claus": [4, 14, 16, 46], "clear": 71, "click": 36, "close": [54, 60, 62, 70, 86, 87, 88, 89], "cmap": 75, "cmd": 68, "code": [7, 15, 54, 62, 71], "code_block": [1, 7, 15], "codeblock": [1, 7, 15], "coincid": 63, "coinduct": 16, "col": [7, 17], "collapse_dot": [1, 7, 14], "collect": [1, 7, 11, 14, 16, 57, 77], "colon": [7, 13, 17, 54, 56], "color": [1, 7, 8, 64], "colorstyp": [1, 7, 8], "colortyp": [1, 7, 8], "column": 17, "come": 11, "comm": [7, 8], "comma": [7, 13, 17, 54, 56], "command": [54, 62, 68, 69, 72, 73, 74, 75], "comment": 94, "commit": [86, 87, 88, 89], "compare_short_hash": [0, 1, 94], "comparison": 11, "compil": [1, 28, 41], "compile_kllvm": [1, 41, 43], "compile_runtim": [1, 41, 43], "complet": 16, "completedprocess": [75, 94], "compon": [4, 16, 54, 62], "compos": [7, 11, 29, 36, 86, 91], "composeresult": [36, 91], "compositesummari": [1, 86, 88, 89], "comput": [11, 16], "compute_ordin": [54, 63], "con": 11, "concat": [7, 8], "concaten": 60, "concret": [7, 8, 71], "cond_1": 32, "cond_b": 32, "cond_i": 32, "cond_n": 32, "condit": [3, 4, 5, 14, 16, 46, 88], "conditiion": 4, "config": [1, 3, 4, 7, 14, 19, 24, 34, 61], "configur": [4, 14, 16, 46, 68], "configurarion": 46, "conflict": [11, 16], "conjunct": [1, 54, 57, 83], "consequ": [5, 31, 62, 81, 83, 86, 87], "consid": [4, 16, 70], "constrain": 4, "constrained_term": 14, "constraint": [1, 3, 4, 5, 14, 29, 32, 36, 86, 87], "constraint_on": 36, "construct": [4, 11, 46, 63], "construct_node_refut": [86, 89], "constructor": [7, 8, 16], "contain": [4, 8, 14, 15, 16, 32, 36, 46, 66, 71], "contains_cov": [29, 32], "contains_edg": [29, 32], "contains_ndbranch": [29, 32], "contains_nod": [29, 32], "contains_split": [29, 32], "content": [2, 4, 7, 14, 16], "context": [1, 7, 16, 17, 19, 38, 39, 54, 62], "contextmanag": [60, 62, 76, 88], "convent": [4, 14], "convert": [1, 41], "copi": 11, "coral": [7, 9], "cornflower_blu": [7, 9], "cornflowerblu": 9, "cornsilk": [7, 9], "correspond": [34, 46], "could": 16, "count": 11, "count_lines_cov": [0, 1, 37], "count_lines_fil": [0, 1, 37], "count_lines_glob": [0, 1, 37], "count_rules_cov": [0, 1, 37], "count_var": [1, 7, 14], "counter": 14, "counterexample_info": [86, 89], "cover": [29, 32], "cover_map": 37, "cover_map_fil": 37, "coverag": [0, 1], "creat": [36, 45, 46, 88], "create_cov": [29, 32], "create_cover_map": [0, 1, 37], "create_edg": [29, 32], "create_ndbranch": [29, 32], "create_nod": [29, 32], "create_prov": 88, "create_rule_map": [0, 1, 37], "create_rule_map_by_fil": [0, 1, 37], "create_rule_map_by_lin": [0, 1, 37], "create_serv": 60, "create_split": [29, 32], "create_temp": [24, 26], "created_nod": 32, "crimson": [7, 9], "css": 36, "css_path": [29, 36], "csspathtyp": 36, "csubst": [1, 3, 4, 5, 29, 32, 86, 87, 89], "csubst1": 4, "csubst2": 4, "cterm": [0, 1, 29, 31, 32, 33, 74], "cterm_build_claim": [1, 3, 4], "cterm_build_rul": [1, 3, 4], "cterm_symbol": [1, 3, 5, 29, 31], "ctermexecut": [1, 3, 5], "ctermimpli": [1, 3, 5], "ctermsmterror": [1, 3, 5], "ctermsymbol": [1, 3, 5, 31], "ctl": 89, "ctor_pattern": [54, 63], "current": [68, 88], "custom": [1, 29, 36], "custom_on": 36, "custom_step": [29, 33], "custom_view": [36, 91], "cut": [29, 32, 62], "cut_point_rul": [5, 31, 54, 62, 86, 89], "cutpointresult": [1, 54, 62], "cwd": [1, 38, 40, 72, 94], "cyan": [7, 9], "d": [8, 11, 16], "d1": 94, "d2": 94, "dandelion": [7, 9], "dark_blu": [7, 9], "dark_cyan": [7, 9], "dark_goldenrod": [7, 9], "dark_grai": [7, 9], "dark_green": [7, 9], "dark_grei": [7, 9], "dark_khaki": [7, 9], "dark_magenta": [7, 9], "dark_olive_green": [7, 9], "dark_orang": [7, 9], "dark_orchid": [7, 9], "dark_r": [7, 9], "dark_salmon": [7, 9], "dark_sea_green": [7, 9], "dark_slate_blu": [7, 9], "dark_slate_grai": [7, 9], "dark_slate_grei": [7, 9], "dark_turquois": [7, 9], "dark_violet": [7, 9], "darkblu": 9, "darkcyan": 9, "darkgoldenrod": 9, "darkgrai": [7, 9], "darkgreen": 9, "darkgrei": 9, "darkkhaki": 9, "darkmagenta": 9, "darkolivegreen": 9, "darkorang": 9, "darkorchid": 9, "darkr": 9, "darksalmon": 9, "darkseagreen": 9, "darkslateblu": 9, "darkslategrai": 9, "darkslategrei": 9, "darkturquois": 9, "darkviolet": 9, "data": [2, 4, 54, 61, 62, 88], "datastructur": 16, "date": 88, "dcoloneq": [7, 17], "dct": [4, 11, 12, 27, 30, 32, 55, 62, 63, 87, 88, 89], "debug": [26, 72], "debug_applied_rewrite_rul": [65, 66], "debug_apply_equ": [65, 66], "debugappliedrewriterul": 66, "debugapplyequ": 66, "debugg": [68, 75], "decl": [7, 19, 44], "declar": [16, 44], "deconstruct_short_hash": [0, 1, 94], "decor": 68, "deep_pink": [7, 9], "deep_sky_blu": [7, 9], "deeppink": 9, "deepskyblu": 9, "default": [7, 8, 13, 17, 36, 58, 94], "default_format": [7, 16], "default_host": 62, "default_port": 62, "default_transport": 62, "defaulterror": [1, 54, 62], "defaultsemant": [1, 29, 33], "defin": [11, 16], "definit": [1, 2, 5, 7, 8, 10, 14, 16, 18, 19, 21, 23, 44, 46, 50, 54, 55, 59, 63, 66, 69, 71, 73, 75], "definition_dir": [5, 24, 26, 37, 43, 55, 62, 64, 67, 68, 69, 71, 73, 74, 75], "definition_fil": 23, "definition_hash": [69, 73], "definition_to_llvm": [1, 41, 44], "defn": [32, 87, 89], "deleted_nod": 32, "delimit": 94, "dep": [38, 39], "depend": [7, 8, 14, 16, 24, 27, 70, 88], "dependencies_module_nam": [86, 89], "depth": [3, 5, 29, 31, 32, 51, 54, 62, 74, 75], "depth_bound": [54, 62], "depthboundresult": [1, 54, 62], "dequot": [0, 1], "dequote_byt": [0, 1, 6], "dequote_str": [0, 1, 6], "descript": [36, 54, 62], "deseri": [4, 11, 41, 46, 51], "design": 32, "desir": [2, 11], "destin": 2, "determin": [16, 71], "di": 16, "dict": [4, 8, 11, 12, 14, 16, 21, 23, 27, 30, 31, 32, 37, 39, 46, 54, 55, 57, 62, 63, 66, 71, 79, 86, 87, 88, 89, 94], "dictionari": [4, 11, 16, 21, 46, 66], "die": 4, "digest": [7, 8, 86, 88], "digraph": [34, 90], "dim_grai": [7, 9], "dim_grei": [7, 9], "dimgrai": 9, "dimgrei": 9, "direct_rul": 89, "direct_subproof_rul": [86, 89], "directli": [14, 32], "directori": [2, 75], "dirti": [24, 28], "disallow": 32, "discard": [4, 7, 8], "discard_attr": [29, 32], "discard_stuck": [29, 32], "discard_vacu": [29, 32], "discret": 88, "disjunct": 83, "disk": [16, 88], "dispatch": 62, "dividend": 82, "divint": [1, 77, 82], "divisior": 82, "divisor": 82, "do": [4, 14, 88], "do_load": [67, 68], "do_show": [67, 68], "do_step": [67, 68], "dodger_blu": [7, 9], "dodgerblu": 9, "doe": 16, "doesn": 71, "doi": 89, "domain": [11, 71], "dot": [14, 29, 34, 86, 90], "dotk": [7, 13], "dotklist": [7, 13], "dotvar": 61, "down": 36, "downward": 11, "drop_sourc": [7, 8], "dst": 2, "dst_all_rul": 2, "dst_definit": 2, "dst_kompiled_dir": 2, "dump": [29, 34, 86, 90], "dump_dir": [34, 90], "duplicatemoduleerror": [1, 54, 62], "dure": 88, "dv": [1, 54, 58, 59, 61, 63], "each": [4, 11, 14, 32, 34, 71, 88, 89], "ebnf": 16, "edg": [29, 32, 34], "edge_lik": [29, 32], "edgelik": [29, 32], "effect": 11, "effort": [16, 21], "either": [4, 11, 16, 32, 46], "elem_var": [54, 59], "element": [7, 8, 11, 16, 36], "emain": 16, "emerald": [7, 9], "empti": [4, 11, 16, 66], "empty_config": [7, 16], "encod": [2, 9, 21], "end": [36, 46], "enquot": [0, 1, 6], "enquote_byt": [0, 1, 6], "enquote_str": [0, 1, 6], "ensur": [4, 7, 14, 16, 46, 68], "ensure_dir_path": [0, 1, 94], "enter": 46, "entir": 16, "entri": [7, 8], "enum": [9, 13, 16, 17, 19, 46, 56, 62, 64, 66, 72, 73, 74, 75, 88], "enumer": [9, 13, 16, 17, 19, 56, 62, 64, 66, 72, 73, 74, 75, 88], "env": 94, "eof": [7, 13, 17, 20, 54, 56, 59], "eq": [7, 17], "eq_bool": [1, 54, 61], "eq_int": [1, 54, 61], "eqint": [1, 77, 82], "equal": [1, 36, 54, 59, 63, 86, 87], "equalityproof": [1, 86, 87], "equalitysummari": [1, 86, 87], "equals_": 11, "equival": 32, "er": 62, "err": 94, "error": [54, 62], "error_info": [86, 89], "eucliddivint": [1, 77, 82], "euclidmodint": [1, 77, 82], "eval": [7, 15], "evalu": [16, 46], "evar": [1, 54, 57, 59, 61, 62, 63, 71], "even": [4, 14, 36, 88], "event": [45, 46], "event_typ": 46, "eventtyp": 46, "everi": 11, "ex": 46, "exact": 11, "exampl": [16, 88], "except": [5, 62, 63, 68, 89], "exclud": 70, "exclude_claim_label": 74, "exec_process": 94, "exec_tim": [36, 86, 89], "execut": [3, 4, 5, 46, 54, 62, 68, 71, 75, 88, 89], "execute_depth": [31, 86, 89], "executeresult": [1, 54, 62], "exist": [1, 4, 11, 54, 59, 63, 71], "existing_var_nam": 14, "exit": [46, 71], "exit_with_process_error": [0, 1, 94], "expand_macro": 75, "expect": [4, 16, 68], "expint": [1, 77, 82], "explor": [1, 29], "explore_context": 76, "expmodint": [1, 77, 82], "expon": 82, "express": 16, "extend": [29, 32, 89], "extend_cterm": [29, 31], "extend_result": [32, 86, 89], "extra_modul": 21, "extra_unparsing_modul": [21, 73, 74, 75], "extract": [11, 66], "extract_cel": [1, 7, 14], "extract_lh": [1, 7, 14], "extract_rh": [1, 7, 14], "extract_subst": [1, 7, 14], "f": [8, 11, 14, 16, 28, 63, 94], "f1": 94, "f2": 94, "f3": 94, "f4": 94, "fail": [11, 16, 75, 86, 88, 89], "fail_fast": 88, "failing_cel": [3, 5], "failing_nod": [86, 89], "failur": [4, 16, 71], "failure_info": [86, 87, 88, 89], "failure_reason": [5, 86, 89], "failureinfo": [1, 86, 87, 88, 89], "fallback_on": [5, 54, 62], "fallbackreason": [1, 5, 54, 62], "fals": [4, 5, 14, 19, 21, 26, 32, 34, 36, 43, 63, 70, 71, 72, 73, 75, 83, 87, 88, 89, 90, 94], "fast_check_subsumpt": [86, 89], "faster": 46, "fetch_subproof": [86, 88], "fetch_subproof_data": [86, 88], "field": [5, 13, 15, 17, 36, 56, 62, 88], "file": [2, 9, 16, 36, 46, 66, 94], "file_nam": 28, "files_for_path": [1, 38, 40], "fill": 16, "filter": 14, "filter_non": [0, 1, 94], "final": [4, 5, 8, 11, 12, 14, 15, 16, 19, 26, 27, 28, 32, 39, 46, 55, 62, 63, 68, 94], "final_config": 14, "final_constraint": 14, "final_cterm": 4, "final_node_id": 89, "find": [4, 14, 16], "find_common_item": [0, 1, 94], "find_file_upward": [1, 24, 28], "finish": 88, "finput": 94, "fire_brick": [7, 9], "firebrick": 9, "first": 11, "fixturerequest": 93, "flat": 11, "flatten": [4, 11], "flatten_label": [1, 7, 11], "float": [36, 62, 89], "floor": [1, 54, 59, 63], "floral_whit": [7, 9], "floralwhit": 9, "fn": 60, "fo": 11, "focu": [36, 91], "focus": 16, "for_definit": [54, 55], "foral": [1, 54, 59, 63], "force_kast": 73, "force_reread": 88, "forest_green": [7, 9], "forestgreen": 9, "form": 16, "format": [1, 7, 8, 10, 11, 16, 46, 62], "format_spec": 62, "formatt": [1, 7], "formatted_exec_tim": [86, 89], "formattyp": [1, 7, 8], "formula": 89, "fqn": 39, "frame": 14, "free": [4, 11], "free_occ": [1, 54, 57], "free_var": [1, 3, 4, 7, 14, 29, 32], "fresh": 14, "fresh_gener": [7, 8], "freshgener": 8, "from": [2, 4, 11, 14, 16, 36, 46, 70, 71, 75, 88], "from_claim": [29, 32, 86, 87, 89], "from_dict": [3, 4, 7, 8, 11, 16, 24, 27, 29, 30, 32, 54, 55, 62, 63, 86, 87, 88, 89], "from_fil": [45, 46], "from_json": [7, 11, 29, 32, 54, 63], "from_kast": [3, 4], "from_module_list": [69, 70], "from_pr": [7, 11], "from_proof": [86, 89], "from_sort": 80, "from_spec_modul": [86, 89], "frontend": [4, 14, 16], "frozendict": [0, 1, 8, 11, 16, 27, 32, 62, 70, 89, 94], "frozenset": [4, 14, 16, 32, 89, 94], "fuchsia": [7, 9], "full_nam": [38, 39], "full_print": [29, 34, 90], "function": [2, 7, 8, 11, 14, 16, 32, 46, 88], "function_ev": 46, "further": 32, "futur": 60, "fuzz": [1, 69, 71], "g": [28, 36], "gainsboro": [7, 9], "ge_int": [1, 54, 61], "geint": [1, 77, 82], "gen_file_timestamp": [0, 1, 94], "gen_glr_pars": [1, 69, 73], "gener": [2, 4, 8, 11, 14, 16, 21, 46, 66, 68, 71, 75, 88, 94], "generate_hint": [1, 41, 43], "generated_count": [1, 54, 61], "generated_top": [1, 54, 61], "generatedcount": 14, "generatedtop": 14, "generatedtopcel": 83, "get": [2, 7, 8, 11, 88], "get_axiom_by_ordin": [54, 63], "get_claim": [69, 74], "get_claim_index": [69, 74], "get_claim_modul": [69, 74], "get_kllvm": [1, 41, 49], "get_model": [3, 5, 54, 62], "get_nod": [29, 32], "get_refutation_id": [86, 89], "get_requir": [1, 41, 52], "get_rule_by_id": [0, 1, 2], "get_step": [86, 87, 88, 89], "get_target": [24, 27], "getmodelresult": [1, 54, 62], "ghost_whit": [7, 9], "ghostwhit": 9, "git": [24, 28], "give": [4, 14], "given": [2, 4, 5, 11, 14, 16, 21, 32, 34, 46, 70], "glb": 16, "go": 36, "gold": [7, 9], "goldenrod": [7, 9], "grai": [7, 9], "grammar": 16, "graphchunk": [1, 29, 36], "greatest": 16, "greatest_common_subsort": [7, 16], "green": [7, 9], "green_yellow": [7, 9], "greenyellow": 9, "grei": [7, 9], "group": [7, 8, 19], "gt": [7, 17], "gt_int": [1, 54, 61], "gtint": [1, 77, 82], "guarante": 32, "h": [36, 94], "ha": [2, 17, 62, 89], "halt": 88, "hand": [11, 14], "handler": 36, "handler_nam": [29, 36], "has_domain_valu": [7, 8], "hasdomainvalu": 8, "hash": [3, 4, 7, 12], "hash_fil": [0, 1, 94], "hash_str": [0, 1, 94], "haskel": [66, 69, 72], "haskell_arg": 74, "haskell_backend_oneline_log_fil": 66, "haskell_log_entri": [5, 54, 62], "haskell_log_format": [5, 54, 62], "haskell_thread": [54, 62], "haskelllogentri": [1, 65, 66], "have": [14, 16, 32, 71], "head": [4, 11], "header": 46, "header_path": 46, "help": [16, 68], "here": 16, "heurist": [11, 29, 32], "hide": 36, "hide_cel": [29, 34], "hint": [1, 41, 43], "hints_file_nam": 43, "home": 36, "honeydew": [7, 9], "hook": [7, 8, 46, 54, 63], "hook_ev": 46, "hooked_sort_decl": [54, 59], "hooked_symbol_decl": [54, 59], "hopefulli": 16, "horizont": 36, "host": [54, 62], "hot_pink": [7, 9], "hotpink": 9, "how": 16, "http": [54, 62, 89], "httptransport": [1, 54, 62], "i": [4, 11, 14, 16, 17, 32, 34, 36, 46, 68, 70, 71, 82, 88], "i1": 82, "i2": 82, "i3": 82, "id": [1, 2, 5, 7, 13, 16, 29, 31, 32, 36, 54, 56, 59, 63, 86, 87, 88, 89, 91], "id_low": [7, 17], "id_upp": [7, 17], "idem": [7, 8], "ident": [11, 14], "identifi": [2, 16, 32, 34], "if_ktyp": [1, 7, 14], "iff": [1, 54, 59, 63], "ignor": 89, "ignore_warn": 72, "imag": [1, 94], "implement": 89, "impli": [1, 3, 5, 54, 59, 62, 63, 86], "implic": [54, 62], "implication_failure_reason": [29, 31], "implicationerror": [1, 54, 62], "implies_bool": [1, 54, 61], "impliesbool": [1, 77, 81], "impliesproof": [1, 86, 87], "impliesproofresult": [1, 86, 87], "impliesproofstep": [1, 86, 87], "impliesprov": [1, 86, 87], "impliesresult": [1, 54, 62], "import": [1, 7, 16, 18, 19, 32, 41, 54, 59, 63], "import_from_fil": [1, 41, 47], "import_kllvm": [1, 41, 47], "import_runtim": [1, 41, 47], "importt": [7, 18, 54, 59], "impur": [7, 8], "in_modul": 73, "includ": [16, 70], "include_depend": 74, "include_dir": [23, 74], "include_sourc": 23, "indent": [1, 7, 10, 21, 94], "index": [7, 8, 70, 95], "indexed_rewrit": [1, 7, 22], "indian_r": [7, 9], "indianr": 9, "indic": [32, 46, 71], "indigo": [7, 9], "indirectli": 14, "individu": 16, "infer_sort": [54, 55], "infinit": 89, "info": [1, 7, 15, 29, 36], "inform": [2, 4, 11, 17, 46, 66, 68], "inherit": 16, "init": [36, 86, 89], "init_config": [7, 14, 16], "init_constraint": 14, "init_cterm": 4, "init_generated_top_cel": [1, 54, 61], "init_proof": [86, 87, 88, 89], "init_st": [67, 68], "initi": [4, 7, 8, 14, 16, 17, 36, 46, 88], "initial_config": [45, 46], "initial_var": 14, "initvar": 16, "inj": [1, 54, 58, 61, 77, 80], "inject": [7, 8, 14, 16, 71], "inlin": 14, "inline_cell_map": [1, 7, 14], "inn": [54, 59], "inner": [1, 7], "input": [4, 11, 14, 16, 71, 75, 94], "input_fil": 75, "input_kore_fil": 43, "insert": 16, "inspect": 16, "instanc": [4, 46], "instanti": [4, 11, 16, 68, 82], "instantiate_cell_var": [7, 16], "instead": [11, 16, 71], "int": [4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 28, 30, 31, 32, 35, 37, 40, 46, 51, 58, 60, 61, 62, 63, 66, 68, 71, 74, 75, 82, 85, 88, 89, 94], "int_": 82, "int__": 82, "int_dv": [1, 54, 61], "integ": [71, 82], "interim_simplif": [5, 54, 62], "interpret": [1, 4, 67, 68, 71, 75], "interspers": [0, 1, 94], "intro": [67, 68], "introduc": 89, "inttoken": [1, 77, 82], "inttyp": [1, 7, 8], "invalidmoduleerror": [1, 54, 62], "io": [9, 63], "is_anon_var": [1, 7, 14], "is_bottom": [1, 3, 4, 77, 83], "is_bound": [86, 89], "is_cel": [7, 11], "is_circular": [7, 16], "is_cov": [29, 32], "is_explor": [29, 30], "is_fail": [86, 89], "is_hash": [0, 1, 94], "is_hexstr": [0, 1, 94], "is_ident": [7, 11], "is_init": [86, 89], "is_initial_config": [45, 46], "is_kore_pattern": [45, 46], "is_leaf": [29, 32], "is_ndbranch": [29, 32], "is_pend": [86, 89], "is_pre_trac": [45, 46], "is_prefix": [7, 16], "is_record": [7, 16], "is_refut": [86, 89], "is_relative_to": [0, 1, 94], "is_root": [29, 32], "is_split": [29, 32], "is_spurious_constraint": [1, 7, 14], "is_step_ev": [45, 46], "is_stuck": [29, 32], "is_subsort": [54, 55], "is_target": [86, 89], "is_term_lik": [1, 7, 14], "is_termin": [29, 30, 33], "is_top": [1, 77, 83], "is_trac": [45, 46], "is_trust": [7, 16], "is_vacu": [29, 32], "isn": 16, "isol": 16, "item": [7, 11, 16, 19, 58, 70, 81], "iter": [2, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 30, 31, 32, 34, 36, 37, 39, 40, 43, 46, 47, 55, 56, 61, 62, 63, 70, 72, 73, 74, 75, 79, 81, 83, 87, 88, 89, 90, 91, 94], "its": [4, 14, 46], "itself": 16, "ivori": [7, 9], "join": [11, 32], "json": [1, 2, 21, 54, 61, 63, 64, 69, 73, 74, 75, 86, 88], "json2str": [1, 54, 61], "json_entri": [1, 54, 61], "json_fil": 55, "json_kei": [1, 54, 61], "json_list": [1, 54, 61], "json_object": [1, 54, 61], "json_to_kor": [1, 54, 61], "jsonrpcclient": [1, 54, 62], "jsonrpcclientfacad": [1, 54, 62], "jsonrpcerror": [1, 54, 62], "jungle_green": [7, 9], "junglegreen": 9, "just": [11, 34], "k": [1, 4, 7, 11, 14, 16, 20, 21, 23, 54, 58, 61, 66, 68, 71, 77, 79, 94], "k_": 11, "k_config_var": [1, 54, 61], "k_version": [1, 24, 26, 28], "ka": [1, 7, 11], "kappli": [1, 7, 11, 14, 81, 82, 83, 87], "kassoc": [1, 7, 16], "kast": [0, 1, 3, 4, 5, 54, 64, 69, 73, 74, 75, 82], "kast_simplifi": [3, 5], "kast_term": [1, 7, 12], "kast_to_kor": [3, 5, 69, 73], "kastinput": [1, 69, 73], "kastoutput": [1, 69, 73], "kastpars": [1, 7, 20], "katt": [1, 7, 8, 14, 16, 32], "kbool": [1, 77], "kbubbl": [1, 7, 16], "kbuild": [0, 1], "kbuildenv": [1, 24, 26], "kcfg": [0, 1, 89, 90], "kcfg_explor": [31, 86, 87, 89], "kcfg_json_path": [29, 32], "kcfg_node_dir": [29, 32], "kcfg_node_path": [29, 32], "kcfg_semant": [29, 31], "kcfg_show": [86, 90], "kcfgelem": [36, 91], "kcfgexplor": [1, 29, 30, 31, 76, 87, 89], "kcfgexplorationnodeattr": [1, 29, 30], "kcfgextendresult": [1, 29, 31, 32, 33, 89], "kcfgnodeattr": [1, 29, 32], "kcfgsemant": [1, 29, 31, 33], "kcfgshow": [1, 29, 34, 90], "kcfgstore": [1, 29, 32], "kcfgviewer": [1, 29, 36, 91], "kclaim": [1, 4, 7, 14, 16, 32, 70, 74, 87, 89], "kcontext": [1, 7, 16], "kcovr": [0, 1], "kdef": 4, "kdefinit": [1, 2, 4, 5, 7, 10, 11, 14, 16, 21, 23, 32, 66, 73, 87, 89], "kdist": [0, 1], "kdist_dir": [24, 26], "keep": [4, 14], "keep_cel": 14, "keep_nod": [30, 32, 89], "keep_valu": 4, "keep_var": [4, 14], "kei": [4, 7, 8, 11, 16, 36, 58, 61], "key_displai": 36, "keyboard": 36, "keystrok": 36, "kflatmodul": [1, 7, 16, 21, 32, 34, 73, 74, 75], "kflatmodulelist": [1, 7, 16, 70, 74, 89], "kframework": 8, "kfuzz": [1, 69], "khaki": [7, 9], "ki": [11, 14], "kimport": [1, 7, 16, 32], "kinner": [1, 4, 5, 7, 10, 11, 14, 16, 20, 22, 31, 32, 34, 73, 75, 79, 80, 81, 82, 83, 87, 89], "kint": [1, 77], "kinteg": [1, 69, 71], "kinterpret": [1, 67, 68], "kitem": [7, 11, 20, 61, 83], "klabel": [1, 7, 8, 11, 13, 16, 17, 19, 20, 21], "klist": [7, 20], "kllvm": [0, 1], "knontermin": [1, 7, 16], "know": 34, "kompil": [1, 2, 24, 26, 54, 66, 69, 75, 92, 93], "kompiled_dir": [54, 62], "kompiledkor": [1, 54, 55], "konvert": [0, 1], "kore": [0, 1, 8, 46, 69, 71, 72, 73, 74, 75], "kore_bool": [1, 54, 58], "kore_byt": [1, 54, 58], "kore_cli": 5, "kore_exec_covr": [0, 1], "kore_fil": 55, "kore_head": 46, "kore_id": [1, 54, 58], "kore_int": [1, 54, 58], "kore_lex": [1, 54, 56], "kore_list_of": [1, 54, 58], "kore_map_of": [1, 54, 58], "kore_pattern": [45, 46], "kore_print": [1, 54, 64], "kore_rpc": [54, 62], "kore_rpc_command": 5, "kore_serv": [1, 54, 62], "kore_set_of": [1, 54, 58], "kore_str": [1, 54, 58], "kore_term": [1, 54, 63], "kore_to_json": [1, 54, 61], "kore_to_kast": [3, 5, 69, 73], "kore_to_pretti": [69, 73], "korecli": [1, 5, 54, 62], "koreclienterror": [1, 54, 62], "koreexeclogformat": [1, 5, 54, 62], "korehead": [41, 45, 46], "korepars": [1, 54, 59], "koreserv": [1, 54, 60, 62, 88], "koreserverarg": [1, 54, 62], "koreserverinfo": [1, 54, 62], "koreserverpool": [1, 54, 60], "koresortt": [1, 54, 55], "koresymbolt": [1, 54, 55], "koretoken": [1, 54, 56], "kouter": [1, 7, 16], "kprint": [1, 29, 34, 36, 69, 74, 75, 87, 90, 91], "kproduct": [1, 7, 16, 21], "kproductionitem": [1, 7, 16], "kprove": [1, 69, 76], "kproveoutput": [1, 69, 74], "kregextermin": [1, 7, 16], "krepl": [0, 1], "krequir": [1, 7, 16], "krewrit": [1, 7, 11, 22], "krule": [1, 2, 4, 7, 14, 16, 66, 74, 89], "krulelik": [1, 7, 16, 32], "krun": [1, 69], "krunoutput": [1, 69, 75], "ksentenc": [1, 7, 16], "kseq": [1, 7, 13, 54, 61], "ksequenc": [1, 7, 11, 16], "ksort": [1, 7, 11, 14, 16, 71, 73, 80, 83, 87], "ksortsynonym": [1, 7, 16], "kstate": [1, 67, 68], "ksyntaxassoci": [1, 7, 16], "ksyntaxlex": [1, 7, 16], "ksyntaxprior": [1, 7, 16], "ksyntaxsort": [1, 7, 16], "ktermin": [1, 7, 16], "ktoken": [1, 7, 11, 16, 73, 78, 81, 82, 84, 85], "ktool": [0, 1], "ktype": 14, "kvariabl": [1, 7, 11, 14, 83], "kversion": [1, 24, 28], "kw_alia": [7, 17, 54, 56], "kw_axiom": [54, 56], "kw_claim": [7, 17, 54, 56], "kw_config": [7, 17], "kw_context": [7, 17], "kw_endmodul": [7, 17, 54, 56], "kw_hooked_sort": [54, 56], "kw_hooked_symbol": [54, 56], "kw_import": [7, 17, 54, 56], "kw_left": [7, 17], "kw_lexic": [7, 17], "kw_modul": [7, 17, 54, 56], "kw_nonassoc": [7, 17], "kw_prioriti": [7, 17], "kw_privat": [7, 17], "kw_public": [7, 17], "kw_requir": [7, 17], "kw_right": [7, 17], "kw_rule": [7, 17], "kw_sort": [54, 56], "kw_symbol": [54, 56], "kw_syntax": [7, 17], "kw_where": [54, 56], "kwarg": [60, 72, 89, 94], "l1": 94, "l2": 94, "label": [4, 7, 8, 11, 14, 16, 19, 32, 69, 70], "labels_to_dot": [1, 7, 14], "last": 17, "last_constraint": [86, 87], "latex": [54, 64, 69, 73, 74, 75], "lattic": 16, "lavend": [7, 9], "lavender_blush": [7, 9], "lavenderblush": 9, "lawn_green": [7, 9], "lawngreen": 9, "layout": 36, "lbrace": [7, 17, 54, 56], "lbrack": [7, 17, 54, 56], "le": 62, "le_int": [1, 54, 61], "leaf": 14, "least": [32, 71], "least_common_supersort": [7, 16], "leav": [4, 14, 29, 32], "left": [7, 8, 11, 14, 16, 19, 36, 54, 61, 63, 82], "left_assoc": [7, 16, 54, 59], "left_char": 94, "leftassoc": [1, 54, 58, 59, 63], "leint": [1, 77, 82], "lemma": 74, "lemon_chiffon": [7, 9], "lemonchiffon": 9, "length": 11, "let": [7, 11, 16, 17, 29, 32, 54, 63], "let_att": [7, 8, 16], "let_attr": [54, 63], "let_nod": [29, 32], "let_pattern": [54, 63], "let_sort": [7, 11, 54, 63], "let_term": [7, 11], "lexer": [1, 7, 54], "lexic": [1, 7, 16, 19], "lexicograph": 11, "lh": [4, 7, 11, 14, 94], "lhs_bodi": [86, 87], "lift": 32, "lift_edg": [29, 32], "lift_split": [29, 32], "lift_split_edg": [29, 32], "lift_split_split": [29, 32], "light_blu": [7, 9], "light_cor": [7, 9], "light_cyan": [7, 9], "light_goldenrod": [7, 9], "light_goldenrod_yellow": [7, 9], "light_grai": [7, 9], "light_green": [7, 9], "light_grei": [7, 9], "light_pink": [7, 9], "light_salmon": [7, 9], "light_sea_green": [7, 9], "light_sky_blu": [7, 9], "light_slate_blu": [7, 9], "light_slate_grai": [7, 9], "light_slate_grei": [7, 9], "light_steel_blu": [7, 9], "light_yellow": [7, 9], "lightblu": 9, "lightcor": 9, "lightcyan": 9, "lightgoldenrod": 9, "lightgoldenrodyellow": 9, "lightgrai": [7, 9], "lightgreen": 9, "lightgrei": 9, "lightpink": 9, "lightsalmon": 9, "lightseagreen": 9, "lightskyblu": 9, "lightslateblu": 9, "lightslategrai": 9, "lightslategrei": 9, "lightsteelblu": 9, "lightyellow": 9, "like": [16, 66], "lime": [7, 9], "lime_green": [7, 9], "limegreen": 9, "limit": 4, "line": [7, 17, 34, 66, 86, 87, 88, 89, 94], "linen": [7, 9], "list": [2, 4, 11, 14, 16, 20, 27, 28, 30, 32, 34, 36, 37, 40, 46, 57, 59, 62, 70, 74, 76, 87, 88, 89, 90, 94], "list_empti": [1, 77, 79], "list_item": [1, 77, 79], "list_of": [1, 77, 79], "list_pattern": [1, 54, 61], "liter": [16, 82], "llvm": [46, 54, 62, 69, 72, 75], "llvm_definition_dir": [5, 62], "llvm_event": 46, "llvm_function_ev": 46, "llvm_hook_ev": 46, "llvm_interpret": [1, 69, 75], "llvm_interpret_raw": [1, 69, 75], "llvm_kompiled_dir": [54, 62], "llvm_rewrite_trac": 46, "llvm_rewrite_trace_iter": 46, "llvm_rule_ev": 46, "llvm_side_condition_end_ev": 46, "llvm_side_condition_ev": 46, "llvm_to_definit": [1, 41, 44], "llvm_to_modul": [1, 41, 44], "llvm_to_pattern": [1, 41, 44], "llvm_to_sent": [1, 41, 44], "llvm_to_sort": [1, 41, 44], "llvm_to_sort_var": [1, 41, 44], "llvmargument": [41, 45, 46], "llvmeventannot": [41, 45, 46], "llvmeventtyp": [41, 45, 46], "llvmfunctionev": [41, 45, 46], "llvmhookev": [41, 45, 46], "llvmrewriteev": [41, 45, 46], "llvmrewritetrac": [41, 45, 46], "llvmrewritetraceiter": [41, 45, 46], "llvmruleev": [41, 45, 46], "llvmsideconditioneventent": [41, 45, 46], "llvmsideconditioneventexit": [41, 45, 46], "llvmstepev": [41, 45, 46], "lmc": 89, "load": [1, 24, 27, 36, 41, 54, 55, 68], "load_from_dir": [24, 27], "load_from_json": [54, 55], "load_from_kor": [54, 55], "load_stat": [1, 41], "loc": [1, 7, 17], "locat": [7, 8, 17, 19, 66, 71], "locationiter": [1, 7, 17], "locationtyp": [1, 7, 8], "log": [3, 5, 29, 31, 32, 54, 62, 66, 86, 89], "log_axioms_fil": [5, 54, 62], "log_context": [54, 62], "log_failed_rewrit": 62, "log_successful_rewrit": 62, "log_tim": 62, "logentri": [1, 5, 31, 32, 54, 62, 89], "logger": 94, "logic": [11, 89], "logorigin": [1, 54, 62], "logrewrit": [1, 54, 62], "logtim": [1, 54, 62], "long": 88, "loop": [32, 88, 89], "lower": 16, "lowest": 16, "lparen": [7, 13, 17, 54, 56], "lshiftint": [1, 77, 82], "lt_int": [1, 54, 61], "ltint": [1, 77, 82], "lub": 16, "m": [32, 36], "macro": [7, 8, 16], "macro_rec": [7, 8], "macro_rul": [7, 16], "magenta": [7, 9], "mahogani": [7, 9], "mai": [16, 36, 88, 91], "main": [0, 1, 16, 37], "main_fil": [23, 69, 72, 74], "main_modul": [7, 16, 23, 69, 73], "main_module_nam": [7, 16, 69, 70, 86, 89], "maincel": [7, 8], "major": [24, 28], "make": [4, 14, 46], "make_unique_seg": [29, 34], "manifest": [38, 39], "manip": [1, 7, 54], "manipul": 4, "map": [8, 11, 12, 14, 16, 21, 27, 30, 32, 37, 39, 61, 62, 63, 66, 70, 71, 75, 87, 88, 89, 94], "map_att": [7, 8], "map_attr": [54, 63], "map_empti": [1, 77, 79], "map_inn": [7, 11], "map_item": [1, 77, 79], "map_of": [1, 77, 79], "map_pattern": [1, 54, 61, 63], "map_sent": [7, 16], "map_sort": [54, 63], "markdown": [1, 7], "maroon": [7, 9], "match": [1, 3, 4, 7, 11, 16, 54], "match_app": [1, 54, 58], "match_dv": [1, 54, 58], "match_inj": [1, 54, 58], "match_left_assoc": [1, 54, 58], "match_list": [1, 54, 58], "match_map": [1, 54, 58], "match_set": [1, 54, 58], "match_symbol": [1, 54, 58], "match_with_constraint": [3, 4], "maud": [69, 72], "maude_port": 5, "max_depth": 62, "max_exampl": 71, "max_iter": 88, "max_valu": 71, "max_work": [60, 88], "maxim": 75, "maximum": [71, 88], "maxint": [1, 77, 82], "mayb": [0, 1, 94], "md_selector": [23, 74], "mean": [16, 89], "medium_aquamarin": [7, 9], "medium_blu": [7, 9], "medium_orchid": [7, 9], "medium_purpl": [7, 9], "medium_sea_green": [7, 9], "medium_slate_blu": [7, 9], "medium_spring_green": [7, 9], "medium_turquois": [7, 9], "medium_violet_r": [7, 9], "mediumaquamarin": 9, "mediumblu": 9, "mediumorchid": 9, "mediumpurpl": 9, "mediumseagreen": 9, "mediumslateblu": 9, "mediumspringgreen": 9, "mediumturquois": 9, "mediumvioletr": 9, "meet": [54, 55], "melon": [7, 9], "merge_with": [0, 1, 94], "messag": [5, 36, 54, 62], "method": [46, 62, 68], "midnight_blu": [7, 9], "midnightblu": 9, "min_valu": 71, "minim": [5, 7, 11, 14, 29, 32, 34, 36, 90, 91], "minimize_constraint": [3, 5], "minimize_kcfg": [29, 30], "minimize_rul": [1, 7, 14], "minimize_term": [1, 7, 14], "minimum": 71, "minint": [1, 77, 82], "minor": [24, 28], "mint_cream": [7, 9], "mintcream": 9, "miss": 16, "misty_ros": [7, 9], "mistyros": 9, "ml": [1, 63, 77], "ml_and": [54, 56], "ml_bottom": [54, 56], "ml_ceil": [54, 56], "ml_dv": [54, 56], "ml_equal": [54, 56], "ml_exist": [54, 56], "ml_floor": [54, 56], "ml_foral": [54, 56], "ml_iff": [54, 56], "ml_impli": [54, 56], "ml_in": [54, 56], "ml_left_assoc": [54, 56], "ml_mu": [54, 56], "ml_next": [54, 56], "ml_not": [54, 56], "ml_nu": [54, 56], "ml_or": [54, 56], "ml_pattern": [54, 59], "ml_pred": [7, 11], "ml_pred_to_bool": [1, 7, 14], "ml_rewrit": [54, 56], "ml_right_assoc": [54, 56], "ml_top": [54, 56], "mland": [1, 4, 77, 83], "mlbottom": [1, 77, 83], "mlceil": [1, 77, 83], "mlconn": [1, 54, 63], "mlequal": [1, 77, 83], "mlequalsfals": [1, 77, 83], "mlequalstru": [1, 77, 83], "mlexist": [1, 77, 83], "mlfixpoint": [1, 54, 63], "mlimpli": [1, 77, 83], "mlnot": [1, 77, 83], "mlor": [1, 77, 83], "mlpattern": [1, 54, 59, 63], "mlpred": [1, 54, 63], "mlquant": [1, 54, 63], "mlrewrit": [1, 54, 63], "mlsyntaxsugar": [1, 54, 63], "mltop": [1, 77, 83], "moccasin": [7, 9], "mode": 9, "model": [54, 62, 86, 89], "modifi": 88, "modint": [1, 77, 82], "modnam": [7, 17], "modul": [0, 1, 3, 7, 24, 29, 38, 41, 45, 54, 65, 67, 69, 77, 86, 92, 95], "module_fil": 47, "module_list": 70, "module_nam": [5, 7, 16, 19, 31, 32, 34, 47, 54, 62, 63, 86, 89], "module_to_llvm": [1, 41, 44], "moduletyp": [47, 51], "modulu": 82, "more": [4, 11, 16, 46, 68, 88], "mostli": 46, "mount": 36, "move": 11, "moving_average_step_timeout": 62, "mu": [1, 54, 59, 63], "mul": 16, "mulberri": [7, 9], "mulint": [1, 77, 82], "multi_or": [54, 59], "multiaryconn": [1, 54, 63], "multiedg": [29, 32], "multithread": 88, "must": [16, 88], "mutablemap": 35, "n": [16, 32, 58], "n1": 58, "n2": 58, "n3": 58, "n4": 58, "name": [4, 7, 8, 9, 11, 14, 15, 16, 19, 24, 27, 36, 45, 46, 54, 63, 83], "name_as_id": 62, "namedtupl": [5, 13, 15, 17, 56, 62], "namespac": 68, "nat": [7, 17], "navajo_whit": [7, 9], "navajowhit": 9, "navi": [7, 9], "navwidget": [1, 29, 36], "navy_blu": [7, 9], "navyblu": 9, "ndbranch": [1, 29, 32], "ne_bool": [1, 54, 61], "ne_int": [1, 54, 61], "necessarili": 16, "need": [2, 14, 16, 46, 88], "neqint": [1, 77, 82], "new": [4, 7, 11, 16, 19, 36, 46, 88], "new_constraint": 4, "new_sort": [7, 16], "next": [1, 46, 54, 59, 63], "next_stat": [3, 5, 54, 62, 67, 68], "nextstat": [1, 3, 5], "nice": 14, "nid": 89, "no_cell_rewrite_to_dot": [1, 7, 14], "no_dispatch": [29, 36], "no_exc_wrap": 72, "no_pattern": 75, "no_post_exec_simplifi": [5, 54, 62], "node": [11, 14, 29, 30, 31, 32, 34, 35, 36, 86, 89, 90], "node_1_id": 32, "node_2_id": 32, "node_attr": [29, 34, 86, 90], "node_delta": [34, 90], "node_id": [30, 31, 32, 86, 89], "node_print": [29, 34, 36, 90, 91], "node_refut": [86, 89], "node_short_info": [29, 34], "node_text": 36, "nodeattr": [1, 29, 30, 32], "nodeidlik": [30, 31, 32, 34, 89, 90], "nodeprint": [1, 29, 34, 36, 90, 91], "nodeview": [1, 29, 36], "non": [2, 16, 19], "non_assoc": [7, 16, 19], "non_empti": [7, 19], "non_termin": [7, 16], "nonassoc": 16, "none": [0, 1, 4, 5, 8, 9, 11, 14, 15, 16, 17, 18, 19, 21, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 43, 46, 47, 51, 52, 54, 55, 58, 60, 61, 62, 63, 64, 68, 69, 70, 71, 72, 73, 74, 75, 87, 88, 89, 90, 91, 93, 94], "nonempty_str": [0, 1, 94], "nonetyp": [1, 7, 8], "nontermin": [1, 7, 16, 19], "nonzero_depth": [86, 89], "normalize_constraint": [1, 7, 14], "normalize_ml_pr": [1, 7, 14], "not_bool": [1, 54, 61], "not_log_context": [54, 62], "not_non": [0, 1, 94], "notbool": [1, 77, 81], "note": 89, "notint": [1, 77, 82], "nott": [54, 59], "nth": 46, "ntype": 68, "nu": [1, 54, 59, 63], "nullaryconn": [1, 54, 63], "number": [5, 13, 15, 17, 46, 56, 62, 71, 75, 88], "obj": [8, 40], "object": [4, 5, 8, 10, 15, 18, 20, 21, 26, 27, 28, 30, 31, 32, 34, 39, 46, 51, 55, 59, 62, 63, 68, 73, 76, 87, 88, 89, 90, 94], "obtain": 4, "occur": [11, 46], "occurr": 11, "of_typ": 16, "often": 66, "old": [7, 19, 36], "old_id": 62, "old_lac": [7, 9], "old_sort": [7, 16], "oldlac": 9, "oliv": [7, 9], "olive_drab": [7, 9], "olive_green": [7, 9], "olivedrab": 9, "olivegreen": 9, "omit_cel": [34, 90], "on_attribut": [1, 7, 14], "on_behavior_view_select": [29, 36], "on_click": [29, 36], "on_constraint_select": [29, 36], "on_custom_select": [29, 36], "on_ent": [29, 36], "on_graph_chunk_select": [29, 36], "on_leav": [29, 36], "on_mount": [29, 36, 86, 91], "on_nav_widget_select": 36, "on_status_select": [29, 36], "on_term_select": [29, 36], "onc": [11, 14, 32], "one": [2, 4, 11, 16, 32, 36, 66, 71, 88], "onelin": [5, 54, 62], "ones": [16, 88], "onli": [14, 17], "op": [7, 15, 54, 63], "op_sort": [54, 63], "oper": [11, 16, 88], "operand": 82, "opinion": 21, "optimize_memori": 32, "optimizednodestor": [1, 29, 35], "option": [4, 11, 46, 76, 88, 89], "optionaltyp": [1, 7, 8], "or_bool": [1, 54, 61], "orang": [7, 9], "orange_r": [7, 9], "orbool": [1, 77, 81], "orchid": [7, 9], "order": [16, 70], "ordin": [46, 63], "org": [8, 89], "origin": [4, 11, 14, 16, 54, 62], "orint": [1, 77, 82], "orr": [54, 59], "other": [4, 11, 14, 16, 89, 94], "otherwis": [11, 16], "out": [2, 16, 21], "outer": [1, 7, 21], "outer_lex": [1, 7], "outer_pars": [1, 7], "outer_syntax": [1, 7], "outerpars": [1, 7, 18], "output": [63, 64, 71, 75], "output_dir": [26, 39, 72], "output_fil": 64, "over": [4, 46, 70, 71], "overload": [7, 8, 11, 16], "overridden": 62, "owis": [7, 8], "own_statu": [86, 87, 88, 89], "p": [28, 60, 63, 88, 94], "p1": 94, "p2": 94, "p3": 94, "p4": 94, "packag": [0, 27, 95], "package_path": [1, 38, 40], "packagesourc": [1, 24, 27], "page": [36, 95], "pagedown": 36, "pageup": 36, "pair": 16, "pale_goldenrod": [7, 9], "pale_green": [7, 9], "pale_turquois": [7, 9], "pale_violet_r": [7, 9], "palegoldenrod": 9, "palegreen": 9, "paleturquois": 9, "palevioletr": 9, "papaya_whip": [7, 9], "papayawhip": 9, "paper": 89, "parallel": 88, "parallel_advance_proof": [1, 86, 88], "param": [7, 11, 16, 19, 62], "param_sort": [54, 63], "paramet": [2, 4, 11, 14, 16, 21, 32, 36, 46, 70, 71, 75, 82, 88], "parametr": 16, "paren": [1, 7, 21], "pars": [7, 8, 15, 24, 28, 38, 39, 45, 46, 68], "parse_arg": [0, 1, 37], "parse_definit": [1, 41, 50], "parse_definition_fil": [1, 41, 50], "parse_out": [1, 7, 23], "parse_pattern": [1, 41, 50], "parse_pattern_fil": [1, 41, 50], "parse_rule_appl": [1, 65, 66], "parse_sort": [1, 41, 50], "parse_sort_fil": [1, 41, 50], "parse_tag": [1, 7, 15], "parse_token": [69, 73], "parseabl": [4, 14], "parseable_output": 34, "parseerror": [1, 54, 62], "parser": [1, 7, 16, 41, 46, 54, 93], "parser_fil": 73, "partial": 16, "pass": [71, 86, 88], "patch": [24, 28], "patch_symbol_t": [21, 73, 74, 75], "path": [2, 5, 7, 8, 16, 18, 19, 23, 24, 26, 27, 28, 32, 34, 36, 37, 39, 40, 43, 46, 47, 49, 50, 55, 62, 64, 66, 68, 70, 71, 72, 73, 74, 75, 87, 88, 89, 90, 93, 94], "path_condit": [5, 86, 89], "path_constraint": [86, 89], "path_length": [29, 32], "pathlik": [2, 16], "paths_between": [29, 32], "pathsourc": [1, 24, 27], "pathtyp": [1, 7, 8], "pattern": [1, 5, 7, 11, 24, 28, 41, 44, 46, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 63, 64, 67, 68, 71, 73, 75], "pattern_sort": [54, 55], "pattern_to_llvm": [1, 41, 44], "patternerror": [1, 54, 62], "peach": [7, 9], "peach_puff": [7, 9], "peachpuff": 9, "pend": [86, 88, 89], "pending_nod": [86, 89], "perform": [4, 11, 32, 36, 46, 88], "periwinkl": [7, 9], "peru": [7, 9], "pgm": 75, "phi": 89, "pid": [54, 62], "piec": 16, "pine_green": [7, 9], "pinegreen": 9, "pink": [7, 9], "pipe_stderr": [75, 94], "pipe_stdout": 94, "place": [16, 32], "plu": [7, 17], "plugin": [1, 92], "plugin_nam": [38, 39], "plum": [7, 9], "pmap": 75, "point": 62, "pool": [1, 54, 88], "port": [5, 54, 62], "poset": [0, 1, 94], "posit": [11, 16, 36, 46], "posixpath": 36, "possibl": [4, 32], "possibli": 14, "post": [16, 36], "potenti": [4, 11, 14, 16], "powder_blu": [7, 9], "powderblu": 9, "pre": [16, 46], "pre_constraint": [86, 87], "pre_trac": [45, 46], "preced": [32, 70], "precis": 4, "pred": [7, 11, 14], "predecessor": [29, 32], "predefin": 14, "predic": [7, 8, 11, 54, 62], "prefer": [7, 8, 11], "prefix": 16, "prelud": [0, 1, 54], "present": [11, 32], "pretti": [1, 7, 8, 14, 29, 34, 54, 64, 67, 68, 69, 73, 74, 75, 78, 84, 86, 87, 90], "pretty_byt": [1, 77, 78], "pretty_bytes_str": [1, 77, 78], "pretty_print": [29, 31, 69, 73], "pretty_seg": [29, 34, 86, 90], "pretty_str": [1, 77, 84], "prettyprint": [1, 7, 21], "previous": 32, "print": [7, 14, 21, 34, 46, 86, 89], "print_nod": [29, 34], "printer": 21, "printoutput": [1, 54, 64], "prior_loops_cach": [86, 89], "prior_loops_cache_upd": [86, 89], "prioriti": [4, 7, 8, 14, 16, 32, 36, 89], "priorityblock": [1, 7, 19], "privat": [7, 8], "process": [46, 66, 75], "process_blu": [7, 9], "processblu": 9, "prod": 21, "produc": [2, 66, 88], "product": [1, 7, 8, 16, 19], "production_for_cell_sort": [7, 16], "productionitem": [1, 7, 16, 19], "productionlik": [1, 7, 19], "profil": [1, 92, 93], "progam": [69, 74], "program": [4, 54, 64, 68, 69, 73, 74, 75], "program_fil": [67, 68], "project": [1, 7, 8, 24, 26, 66], "project_dir": 27, "project_fil": [24, 27], "project_path": 27, "prompt": [67, 68], "proof": [0, 1, 16, 46, 76], "proof_data_exist": [86, 88], "proof_dir": [86, 87, 88, 89], "proof_exist": [86, 88], "proof_id": [36, 86, 88, 89], "proof_statu": 36, "proof_subdir": [86, 88], "proofstatu": [1, 86, 87, 88, 89], "proofsummari": [1, 86, 87, 88, 89], "prooftrac": [41, 45], "propagate_up_constraint": [1, 7, 14], "proper": 16, "properti": [4, 8, 9, 11, 12, 16, 17, 21, 26, 27, 28, 30, 32, 39, 46, 51, 59, 62, 63, 68, 71, 73, 87, 88, 89], "prove": [16, 69, 74], "prove_claim": [69, 74], "prove_rpc": [1, 69], "proven": 16, "proveopt": 76, "prover": [1, 16, 69, 74, 86, 87, 88, 89], "prover_arg": [69, 74], "proverpc": [1, 69, 76], "provid": 46, "proxi": [54, 62], "prune": [29, 30, 32, 70, 86, 89], "psi": 89, "public": [7, 16, 19], "purpl": [7, 9], "push_down_rewrit": [1, 7, 14], "put": [4, 14], "pykbackend": [1, 69, 72], "pytest_addopt": [1, 92, 93], "python": [11, 21], "q": 36, "question": [7, 17, 32], "quit": 36, "r": [70, 94], "r1": 94, "r2": 94, "r3": 94, "r4": 94, "race": 88, "rais": [0, 1, 32, 46, 70, 71, 75, 94], "random": 71, "raw_sienna": [7, 9], "rawsienna": 9, "rbrace": [7, 17, 54, 56], "rbrack": [7, 17, 54, 56], "re": [28, 88], "reach": 46, "reachabl": [1, 86], "reachable_nod": [29, 32], "reactiv": 36, "read": [16, 88], "read_cfg_data": [29, 32], "read_kast_definit": [1, 7, 16], "read_node_data": [29, 32], "read_proof": [86, 88, 89], "read_proof_data": [86, 87, 88, 89], "read_subproof": [86, 88], "read_subproof_data": [86, 88], "reason": [54, 62], "rec": 8, "receiv": [36, 91], "reciev": 16, "recov": [4, 14], "recurs": 14, "red": [7, 9], "red_orang": [7, 9], "red_violet": [7, 9], "redorang": 9, "redviolet": 9, "refer": 88, "refut": [86, 89], "refutationproof": [1, 86, 87, 89], "refutationsummari": [1, 86, 87], "refute_nod": [86, 89], "regex": [7, 16, 17, 19], "region": 34, "regular": 16, "rel": 46, "relat": [70, 94], "relative_posit": [45, 46], "remaining_impl": [3, 5], "remov": [4, 11, 14, 16, 32], "remove_alia": [29, 32], "remove_attr": [1, 7, 14, 29, 32], "remove_cell_map_item": [7, 16], "remove_cov": [29, 32], "remove_edg": [29, 32], "remove_generated_cel": [1, 7, 14], "remove_nod": [29, 30, 32], "remove_semantic_cast": [1, 7, 14], "remove_source_map": [1, 7, 14], "remove_stuck": [29, 32], "remove_subproof": [86, 88], "remove_termin": [29, 30], "remove_useless_constraint": [1, 3, 4, 7, 14], "remove_vacu": [29, 32], "renam": [4, 14], "rename_generated_var": [1, 7, 14], "render_class": [0, 1, 37], "render_coverage_xml": [0, 1, 37], "render_lin": [0, 1, 37], "repaint": 36, "repeat_last": [0, 1, 94], "repeatedli": 32, "repl": [1, 67], "replac": [7, 11, 14], "replace_nod": [29, 32], "replace_rewrites_with_impli": [1, 7, 14], "replace_sourc": [29, 32], "replace_target": [29, 32], "replace_top": [7, 11], "replerror": [1, 67, 68], "report": 66, "repres": [4, 11, 16, 46, 89], "represent": [4, 11, 21, 46, 88], "req": 62, "request": [54, 62, 93], "requir": [1, 4, 7, 14, 16, 18, 19, 46, 62, 88], "reset": [7, 9], "reset_cod": [7, 9], "resolv": [24, 27, 54, 55, 69, 70], "resolve_al": [69, 70], "resolve_sort": [7, 16], "resourc": [24, 27], "resource_fil": [24, 27], "resource_file_nam": [24, 27], "respect": 5, "result": [4, 11, 16, 45, 46, 54, 62, 70, 75, 87, 88, 89], "return": [2, 4, 11, 14, 16, 17, 21, 32, 34, 36, 46, 62, 63, 70, 71, 75, 82, 88], "rev": [24, 28], "revers": 32, "rewrit": [1, 7, 11, 16, 46, 54, 59, 63, 66, 75], "rewrite_trac": 46, "rewrite_trace_iter": 46, "rewritefailur": [1, 54, 62], "rewriteresult": [1, 54, 62], "rewritesuccess": [1, 54, 62], "rewritten_term": [54, 62], "rh": [4, 7, 11, 14, 94], "rhodamin": [7, 9], "rhs_bodi": [86, 87], "right": [7, 8, 11, 14, 16, 19, 36, 54, 61, 63, 68, 82], "right_assoc": [7, 16, 54, 59], "right_char": 94, "rightassoc": [1, 54, 59, 61, 63], "rl": [14, 16], "root": [29, 32], "rosy_brown": [7, 9], "rosybrown": 9, "roundpr": [1, 54, 63], "royal_blu": [7, 9], "royal_purpl": [7, 9], "royalblu": 9, "royalpurpl": 9, "rparen": [7, 13, 17, 54, 56], "rpc": [1, 54], "rr": 62, "rshiftint": [1, 77, 82], "rtld_local": [1, 41, 47], "rubin": 9, "rubine_r": [7, 9], "rule": [1, 2, 4, 7, 14, 16, 19, 29, 32, 46, 54, 62, 66, 69, 73], "rule_ev": 46, "rule_id": [2, 4, 14, 54, 62, 86, 89], "rule_label": [7, 17, 29, 32], "rule_map": 37, "rule_map_fil": 37, "rule_ordin": [45, 46], "rule_pred": [54, 62], "rule_substitut": [54, 62], "run": [41, 51, 69, 71, 75], "run_pattern": [69, 75], "run_process": [0, 1, 69, 75, 94], "runtim": [1, 41, 47], "runtimeerror": [71, 75], "s1": 58, "s2": 58, "s3": 58, "s4": 58, "saddle_brown": [7, 9], "saddlebrown": 9, "salmon": [7, 9], "same": [14, 89], "same_loop": [29, 33], "sandy_brown": [7, 9], "sandybrown": 9, "saniti": 4, "satresult": [1, 54, 62], "scroll": 36, "scroll_end": 36, "scroll_hom": 36, "scrollabl": 36, "scrollablecontain": [36, 91], "sea_green": [7, 9], "seagreen": 9, "search": [71, 95], "search_fin": 75, "searchstrategi": 71, "seashel": [7, 9], "second": 11, "section": 31, "section_edg": [29, 31], "see": [4, 16], "seem": 66, "segment": 34, "select": [29, 36], "select_code_block": [1, 7, 15], "selector": [1, 7, 15], "selector_lex": [1, 7, 15], "selectorpars": [1, 7, 15], "self": [4, 11, 16, 68, 88], "semant": [1, 2, 16, 29], "semantic_rul": [7, 16], "semanticcast": 14, "sent": 71, "sentenc": [1, 7, 16, 18, 19, 44, 54, 59, 63], "sentence_by_unique_id": [7, 16], "sentence_to_llvm": [1, 41, 44], "sentence_typ": [7, 16], "sep": [7, 19], "sepia": [7, 9], "seqstrict": [7, 8], "sequenc": [11, 16, 19, 32], "serial": [4, 11, 41, 46, 51], "set": [4, 7, 9, 11, 14, 15, 16, 30, 32, 68, 71], "set_cel": [1, 7, 14], "set_empti": [1, 77, 79], "set_exec_tim": [86, 89], "set_item": [1, 77, 79], "set_of": [1, 77, 79], "set_pattern": [1, 54, 61], "set_var": [54, 59], "set_var_id": [54, 56, 59], "setvarid": [1, 54, 63], "share": 88, "shell": 68, "shorten_hash": [0, 1, 94], "shortest_distance_between": [29, 32], "shortest_path_between": [29, 32], "shortest_path_to": [86, 89], "shortest_path_to_nod": [86, 89], "should": [4, 11, 14, 71, 88], "show": [1, 29, 36, 68, 86], "side": [4, 11, 14, 46], "side_condition_end_ev": 46, "side_condition_ev": 46, "sienna": [7, 9], "silver": [7, 9], "similar": 11, "simpl": [11, 16], "simplif": [7, 8, 66], "simplifi": [3, 5, 29, 31, 41, 51, 54, 62], "simplified_anteced": [86, 87], "simplified_consequ": [86, 87], "simplified_constraint": [86, 87], "simplified_equ": [86, 87], "simplify_bool": [1, 7, 14, 41, 51], "simplify_config": [29, 34], "sinc": 89, "singl": [0, 1, 4, 32, 94], "single_socket": [54, 62], "singlesockettransport": [1, 54, 62], "size": 21, "skip_initi": 66, "skip_project": 66, "sky_blu": [7, 9], "skyblu": 9, "slate_blu": [7, 9], "slate_grai": [7, 9], "slate_grei": [7, 9], "slateblu": 9, "slategrai": 9, "slategrei": 9, "slurp_definit": [1, 7, 23], "smt_reset_interv": [54, 62], "smt_retry_limit": [5, 54, 62], "smt_tactic": [5, 54, 62], "smt_timeout": [5, 54, 62], "smtsolvererror": [1, 54, 62], "snow": [7, 9], "so": [4, 11, 14, 32, 34], "some": [0, 1, 94], "someth": 16, "somewher": 16, "sort": [1, 7, 8, 11, 13, 14, 16, 19, 44, 50, 51, 54, 55, 58, 59, 61, 63, 70, 71, 73, 83, 86, 87], "sort1": [16, 55, 61, 83], "sort2": [16, 55, 61, 83], "sort_ac_collect": [1, 7, 14], "sort_app": [54, 59], "sort_assoc_label": [1, 7, 14], "sort_collect": [21, 34, 73, 90], "sort_decl": [54, 59], "sort_strict": [7, 16], "sort_tabl": [54, 55], "sort_to_llvm": [1, 41, 44], "sort_var": [7, 16, 54, 59], "sortapp": [1, 54, 59, 63], "sortdecl": [1, 7, 19, 54, 59, 63], "sortvar": [1, 44, 54, 59, 63], "sortvari": 44, "sourc": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 46, 47, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 94], "source_dir": [24, 27, 28, 37], "source_fil": [24, 27, 37], "source_file_nam": [24, 27], "source_id": [31, 32], "source_node_id": 32, "source_var": [29, 32], "space": 34, "spawn": 88, "spec_fil": 74, "spec_label": 89, "spec_modul": 89, "spec_module_nam": 74, "special": 16, "specif": [4, 11, 14, 16], "specifi": 89, "speed": 16, "split": [4, 14, 29, 32], "split_config_and_constraint": [1, 7, 14], "split_config_from": [1, 7, 14], "split_on_constraint": [29, 32], "spring_green": [7, 9], "springgreen": 9, "sr": 88, "src": [2, 36], "src_all_rul": 2, "src_kompiled_dir": 2, "src_rules_fil": 2, "src_rules_list": 2, "ss": 58, "standalon": 16, "standard": [54, 62], "start": [11, 36, 54, 62, 75], "start_dir": 28, "start_serv": 5, "state": [1, 3, 4, 5, 7, 13, 14, 17, 54, 62, 67, 68], "state1": 4, "state2": 4, "static": [4, 9, 11, 12, 16, 26, 27, 28, 30, 32, 34, 36, 39, 46, 55, 62, 63, 70, 87, 88, 89], "statu": [1, 29, 36, 86, 87, 88, 89], "status_on": 36, "stdout": 9, "steel_blu": [7, 9], "steelblu": 9, "stefanescu": 89, "step": [1, 29, 31, 32, 41, 46, 51, 68, 75, 87, 88, 89], "step_ev": [45, 46], "step_proof": [86, 87, 88, 89], "step_timeout": 62, "still": 88, "stopiter": 46, "stopreason": [1, 54, 62], "store": [1, 4, 11, 29], "store_path": [29, 32], "str": [2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 30, 31, 32, 34, 36, 37, 39, 40, 43, 46, 47, 50, 55, 56, 57, 58, 59, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 78, 83, 84, 85, 87, 88, 89, 90, 91, 94], "str_dv": [1, 54, 61], "strategi": [71, 88], "stream": 46, "strict": [7, 8], "string": [1, 2, 7, 11, 13, 16, 17, 21, 46, 54, 56, 59, 63, 75, 77], "string2json": [1, 54, 61], "string_sent": [7, 18], "stringsent": [1, 7, 18, 19], "stringtoken": [1, 77, 84], "strip": 2, "strip_coverage_logg": [0, 1, 2], "strtype": [1, 7, 8], "structur": [4, 14, 16, 32], "stuck": [1, 29, 32, 54, 62, 86, 89], "stuckresult": [1, 54, 62], "style": [16, 36], "sub_project": [24, 27], "subclass": 68, "subint": [1, 77, 82], "submit": [54, 60, 88], "submodul": 0, "subpackag": 0, "subproof": [86, 87, 88, 89], "subproof_id": [86, 87, 88, 89], "subproofs_statu": [86, 88], "subsort": [7, 16, 55], "subsort_t": [7, 16], "subst": [1, 3, 4, 5, 7, 11, 14, 87], "subst1": 4, "subst2": 4, "subst_strategi": 71, "substitut": [4, 11, 14, 45, 46, 54, 62, 71], "succ": 32, "successor": [29, 32, 36, 89], "summar": 11, "summari": [11, 86, 87, 88, 89], "supersort": 16, "suppli": [4, 11, 14, 16], "svar": [1, 54, 59, 63], "symbol": [1, 3, 4, 7, 8, 11, 16, 21, 46, 54, 58, 59, 63], "symbol_decl": [54, 55, 59, 63], "symbol_id": [54, 55, 56, 59], "symbol_t": [7, 21, 54, 55], "symboldecl": [1, 54, 55, 59, 63], "symbolic_config": 14, "symbolid": [1, 54, 63], "symbolt": [21, 73, 74, 75], "sync": [24, 26], "sync_fil": [1, 24, 28], "synonym": 16, "syntact": [11, 16], "syntax": [1, 7, 16, 17, 21, 54], "syntax_modul": [7, 8], "syntax_product": [7, 16], "syntax_sent": [7, 18], "syntax_sort": [7, 16], "syntax_symbol": [7, 16], "syntaxassoc": [1, 7, 19], "syntaxdecl": [1, 7, 19], "syntaxdefn": [1, 7, 19], "syntaxlex": [1, 7, 19], "syntaxmodul": 8, "syntaxprior": [1, 7, 19], "syntaxsent": [1, 7, 18, 19], "syntaxsynonym": [1, 7, 19], "t": [8, 16, 36, 58, 60, 68, 70, 71, 94], "tabl": 21, "tag": [7, 16], "tail": [4, 11], "take": [70, 75, 88], "tan": [7, 9], "target": [1, 24, 27, 29, 32, 38, 39, 86, 89], "target_dir": [28, 43, 47], "target_id": [29, 31, 32], "target_nam": [26, 27, 38, 39], "target_node_id": 32, "target_var": [29, 32], "targetid": [1, 38, 39], "teal": [7, 9], "teal_blu": [7, 9], "tealblu": 9, "tell": 34, "temp_dir": [72, 73], "templat": 71, "temppathfactori": 93, "term": [1, 7, 10, 11, 14, 16, 21, 29, 34, 36, 41, 51, 54, 62, 63, 71, 75, 80, 82, 83], "term1": 83, "term2": 83, "term_on": 36, "termin": [1, 7, 8, 11, 16, 19, 29, 30, 62, 86, 89], "terminal_id": [29, 30], "terminal_rul": [5, 31, 54, 62, 86, 89], "terminalresult": [1, 54, 62], "test": [0, 1, 71], "text": [7, 8, 13, 15, 16, 17, 21, 24, 28, 29, 36, 50, 54, 56, 59, 63], "textiowrapp": 9, "th": 16, "than": [4, 16], "thei": [11, 34, 88], "them": [16, 32], "therefor": 32, "thi": [4, 11, 14, 16, 17, 32, 34, 46, 63, 71, 88, 89], "thistl": [7, 9], "those": [14, 66, 88], "thread": 88, "through": 14, "throw": 71, "thrown": 71, "tild": [7, 17], "time": [7, 17, 29, 36, 54, 62], "timeout": [54, 62], "timeoutresult": [1, 54, 62], "timestamp": [1, 38, 40, 88], "tmp_path": 93, "tmp_path_factori": 93, "to_claim": [86, 87], "to_dict": [3, 4, 7, 8, 11, 12, 16, 29, 30, 32, 54, 55, 62], "to_json": [7, 12, 29, 32], "to_modul": [29, 32, 34, 90], "to_rul": [29, 32], "to_sort": 80, "togeth": 11, "toggl": 36, "toggle_opt": [29, 36], "toggle_view": [29, 36], "token": [1, 7, 8, 11, 13, 16, 17, 77, 78, 82, 84, 85], "tokentyp": [1, 7, 13, 17, 54, 56], "tomato": [7, 9], "tool": [1, 54], "top": [1, 3, 4, 11, 54, 59, 63], "top_cell_initi": [1, 54, 61], "top_down": [1, 7, 11, 54, 63], "topmost": 16, "topolog": 70, "total": [7, 8], "trace": [45, 46, 89], "trace_path": 46, "trace_rewrit": 5, "track": 17, "transform": [11, 14, 32], "transit": [16, 70], "translat": 2, "translate_coverag": [0, 1, 2], "translate_coverage_from_path": [0, 1, 2], "transport": [1, 54, 62], "transporttyp": [1, 54, 62], "travers": [11, 14, 66], "trivial": 4, "true": [5, 6, 10, 16, 19, 21, 23, 32, 34, 36, 55, 66, 70, 71, 72, 73, 74, 75, 89, 90, 91, 94], "trust": [7, 8, 16], "try_cel": [3, 4], "tui": [1, 29, 86], "tupl": [4, 5, 8, 11, 14, 15, 16, 19, 27, 31, 32, 34, 37, 55, 57, 58, 61, 62, 63, 75, 79, 87, 88, 89, 90, 94], "tuple_of": [0, 1, 94], "turn": 11, "turquois": [7, 9], "two": [4, 11, 16], "txt": 2, "typ": 94, "type": [7, 8, 11, 13, 14, 16, 17, 45, 46, 54, 56, 62, 88, 94], "type_inference_mod": [72, 74], "typed": 11, "typeddict": 62, "typeinferencemod": [72, 74], "typic": 16, "u": 8, "unalia": [21, 73], "unappli": [7, 11], "unaryconn": [1, 54, 63], "unbound": 4, "uncov": [29, 32], "under": 16, "underli": [11, 46], "undo_alias": [1, 7, 14], "undon": [4, 14], "unhid": 36, "union": [7, 11], "uniqu": [0, 1, 2, 4, 16, 94], "unique_id": [7, 8, 16], "unit": [7, 8, 11, 21], "unknown": [34, 66], "unknown_pred": [54, 62], "unknownmoduleerror": [1, 54, 62], "unknownresult": [1, 54, 62], "unless": 62, "unpars": [7, 8, 16, 21], "unparse_avoid": [7, 8], "unparseavoid": 8, "unparser_for_product": [1, 7, 21], "unrefute_nod": [86, 89], "unsaf": 14, "unsatresult": [1, 54, 62], "unstructur": 4, "until": 46, "unus": 14, "up": [11, 16, 32, 36, 68, 88], "up_to_d": [24, 26, 86, 88], "updat": [7, 8, 11, 29, 36, 88], "update_att": [7, 8], "upload": 88, "upper": 16, "uptodate_check_method": 88, "upward": 11, "us": [4, 11, 14, 16, 34, 46, 62, 63, 71, 88], "use_directori": [69, 73, 74, 75], "use_serv": [1, 92, 93], "useless": 14, "useless_vars_to_dot": [1, 7, 14], "user": [16, 36, 89], "user_list": [7, 8], "userlist": [1, 7, 8, 19], "useserv": 93, "utf": 9, "util": [0, 1, 7, 24, 38, 41, 77], "v": [14, 28, 58, 79, 94], "vacuou": [1, 3, 5, 29, 32, 54, 62, 86, 89], "vacuousresult": [1, 54, 62], "val": 61, "valid": [54, 62, 70], "valid_id": [1, 38, 39], "valu": [4, 7, 8, 9, 11, 13, 16, 17, 19, 29, 30, 32, 36, 54, 56, 58, 61, 62, 63, 64, 66, 71, 72, 73, 74, 75, 88, 94], "valuat": 11, "value_typ": 8, "valueerror": 70, "var": [44, 54, 61, 63, 83], "var_map": [4, 14], "var_occurr": [1, 7, 11], "var_pattern": [54, 59], "varabl": 14, "variabl": [4, 7, 11, 13, 14, 16, 32, 71, 88], "variant": 11, "varpattern": [1, 54, 59, 63], "vbar": [7, 17], "verbos": [29, 36, 39, 43, 72], "veri": 16, "version": [7, 12, 24, 27, 34, 45, 46], "vert": 36, "vertic": 36, "via": 88, "violet": [7, 9], "violet_r": [7, 9], "violetr": 9, "w": [8, 9, 14, 63, 70], "wa": [2, 17, 32, 46, 63], "walru": [54, 56], "want": 34, "warn": 72, "warnings_to_error": 72, "watch_text": [29, 36], "watcher": 36, "we": 66, "weak": 83, "well": 11, "wheat": [7, 9], "when": [4, 14, 36, 46], "where": [4, 14, 16], "whether": [11, 16, 32, 34], "which": [2, 4, 11, 14, 16, 17, 32, 34, 71, 88], "white": [7, 9], "white_smok": [7, 9], "whitesmok": 9, "whose": 14, "widget": [36, 91], "wild_strawberri": [7, 9], "wildstrawberri": 9, "with_argpars": 68, "with_depend": 70, "with_inj": 71, "with_ml_symbol": 55, "with_single_target": [29, 32], "withattr": [1, 54, 63], "withkatt": [1, 7, 8, 16], "without": [14, 32], "withsort": [1, 54, 63], "work": [16, 46, 88], "worker": 88, "wrap": [16, 46], "wrap_el": [7, 8], "wrapel": 8, "wrapper": [16, 46], "write": [54, 55, 63], "write_cfg_data": [29, 32], "write_proof": [86, 88], "write_proof_data": [86, 87, 88, 89], "written": 88, "x": [85, 94], "xor_bool": [1, 54, 61], "xorint": [1, 77, 82], "yellow": [7, 9], "yellow_green": [7, 9], "yellow_orang": [7, 9], "yellowgreen": 9, "yelloworang": 9, "yet": 17, "yield": 46, "you": [2, 34], "zero_depth_between": [29, 32]}, "titles": ["pyk", "pyk package", "pyk.coverage module", "pyk.cterm package", "pyk.cterm.cterm module", "pyk.cterm.symbolic module", "pyk.dequote module", "pyk.kast package", "pyk.kast.att module", "pyk.kast.color module", "pyk.kast.formatter module", "pyk.kast.inner module", "pyk.kast.kast module", "pyk.kast.lexer module", "pyk.kast.manip module", "pyk.kast.markdown module", "pyk.kast.outer module", "pyk.kast.outer_lexer module", "pyk.kast.outer_parser module", "pyk.kast.outer_syntax module", "pyk.kast.parser module", "pyk.kast.pretty module", "pyk.kast.rewrite module", "pyk.kast.utils module", "pyk.kbuild package", "pyk.kbuild.config module", "pyk.kbuild.kbuild module", "pyk.kbuild.project module", "pyk.kbuild.utils module", "pyk.kcfg package", "pyk.kcfg.exploration module", "pyk.kcfg.explore module", "pyk.kcfg.kcfg module", "pyk.kcfg.semantics module", "pyk.kcfg.show module", "pyk.kcfg.store module", "pyk.kcfg.tui module", "pyk.kcovr module", "pyk.kdist package", "pyk.kdist.api module", "pyk.kdist.utils module", "pyk.kllvm package", "pyk.kllvm.ast module", "pyk.kllvm.compiler module", "pyk.kllvm.convert module", "pyk.kllvm.hints package", "pyk.kllvm.hints.prooftrace module", "pyk.kllvm.importer module", "pyk.kllvm.load module", "pyk.kllvm.load_static module", "pyk.kllvm.parser module", "pyk.kllvm.runtime module", "pyk.kllvm.utils module", "pyk.konvert package", "pyk.kore package", "pyk.kore.kompiled module", "pyk.kore.lexer module", "pyk.kore.manip module", "pyk.kore.match module", "pyk.kore.parser module", "pyk.kore.pool module", "pyk.kore.prelude module", "pyk.kore.rpc module", "pyk.kore.syntax module", "pyk.kore.tools module", "pyk.kore_exec_covr package", "pyk.kore_exec_covr.kore_exec_covr module", "pyk.krepl package", "pyk.krepl.repl module", "pyk.ktool package", "pyk.ktool.claim_index module", "pyk.ktool.kfuzz module", "pyk.ktool.kompile module", "pyk.ktool.kprint module", "pyk.ktool.kprove module", "pyk.ktool.krun module", "pyk.ktool.prove_rpc module", "pyk.prelude package", "pyk.prelude.bytes module", "pyk.prelude.collections module", "pyk.prelude.k module", "pyk.prelude.kbool module", "pyk.prelude.kint module", "pyk.prelude.ml module", "pyk.prelude.string module", "pyk.prelude.utils module", "pyk.proof package", "pyk.proof.implies module", "pyk.proof.proof module", "pyk.proof.reachability module", "pyk.proof.show module", "pyk.proof.tui module", "pyk.testing package", "pyk.testing.plugin module", "pyk.utils module", "Welcome to pyk\u2019s documentation!"], "titleterms": {"": 95, "api": 39, "ast": 42, "att": 8, "byte": 78, "claim_index": 70, "collect": 79, "color": 9, "compil": 43, "config": 25, "content": 95, "convert": 44, "coverag": 2, "cterm": [3, 4, 5], "dequot": 6, "document": 95, "explor": [30, 31], "formatt": 10, "hint": [45, 46], "impli": 87, "import": 47, "indic": 95, "inner": 11, "k": 80, "kast": [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], "kbool": 81, "kbuild": [24, 25, 26, 27, 28], "kcfg": [29, 30, 31, 32, 33, 34, 35, 36], "kcovr": 37, "kdist": [38, 39, 40], "kfuzz": 71, "kint": 82, "kllvm": [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52], "kompil": [55, 72], "konvert": 53, "kore": [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], "kore_exec_covr": [65, 66], "kprint": 73, "kprove": 74, "krepl": [67, 68], "krun": 75, "ktool": [69, 70, 71, 72, 73, 74, 75, 76], "lexer": [13, 56], "load": 48, "load_stat": 49, "manip": [14, 57], "markdown": 15, "match": 58, "ml": 83, "modul": [2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 94], "outer": 16, "outer_lex": 17, "outer_pars": 18, "outer_syntax": 19, "packag": [1, 3, 7, 24, 29, 38, 41, 45, 53, 54, 65, 67, 69, 77, 86, 92], "parser": [20, 50, 59], "plugin": 93, "pool": 60, "prelud": [61, 77, 78, 79, 80, 81, 82, 83, 84, 85], "pretti": 21, "project": 27, "proof": [86, 87, 88, 89, 90, 91], "prooftrac": 46, "prove_rpc": 76, "pyk": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], "reachabl": 89, "repl": 68, "rewrit": 22, "rpc": 62, "runtim": 51, "semant": 33, "show": [34, 90], "store": 35, "string": 84, "submodul": [1, 3, 7, 24, 29, 38, 41, 45, 54, 65, 67, 69, 77, 86, 92], "subpackag": [1, 41], "symbol": 5, "syntax": 63, "tabl": 95, "test": [92, 93], "tool": 64, "tui": [36, 91], "util": [23, 28, 40, 52, 85, 94], "welcom": 95}}) \ No newline at end of file diff --git a/sitemap.xml b/sitemap.xml new file mode 100644 index 00000000000..4bc5bb7ccb1 --- /dev/null +++ b/sitemap.xml @@ -0,0 +1,711 @@ + + + + https://kframework.org/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/index.html + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/exports/K.pdf + 0.5 + 2024-06-27 + monthly + + + https://kframework.org/exports/K.epub + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/exports/K.mobi + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/exports/K.html + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/01_installing/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/02_basics/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/03_parsing/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/04_disambiguation/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/05_modules/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/06_ints_and_bools/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/07_side_conditions/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/08_literate_programming/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/09_unparsing/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/10_strings/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/11_casts/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/12_syntactic_lists/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/13_rewrite_rules/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/14_evaluation_order/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/15_configurations/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/16_collections/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/17_cell_multiplicity/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/18_equality_and_conditionals/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/19_debugging/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/20_backends/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/21_symbolic_execution/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/1_basic/22_proofs/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/01_macros/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/02_fresh_constants/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/03_klabels/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/04_overloading/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/05_matching_logic/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/06_function_context/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/07_record_productions/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/08_fun_and_let/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/09_as/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/10_matching_operator/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/11_evaluation_order/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/12_floats_and_machine_ints/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/13_substitution/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/14_io/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/15_string_buffers_and_bytes/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/16_kore/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/2_intermediate/17_debugging_proofs/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/docs/user_manual/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/docs/cheat_sheet/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/docs/ktools/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/domains/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/kast/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/prelude/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/ffi/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/json/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/rat/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/include/kframework/builtin/substitution/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/overview/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_1/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_2/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_3/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_4/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_5/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_6/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_7/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_8/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/1_lambda/lesson_9/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/2_imp/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/2_imp/lesson_1/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/2_imp/lesson_2/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/2_imp/lesson_3/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/2_imp/lesson_4/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/2_imp/lesson_5/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_1/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_2/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_3/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_4/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_5/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/3_lambda++/lesson_6/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_1/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_2/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_3/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_4/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_5/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_6/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_7/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/4_imp++/lesson_8/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_1/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_2/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_3/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_4/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_5/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_6/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_7/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_8/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/1_k/5_types/lesson_9/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/1_simple/1_untyped/simple-untyped/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/1_static/simple-typed-static/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/1_simple/2_typed/2_dynamic/simple-typed-dynamic/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/2_kool/1_untyped/kool-untyped/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/1_dynamic/kool-typed-dynamic/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/2_kool/2_typed/2_static/kool-typed-static/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/1_environment/fun-untyped/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/3_fun/1_untyped/2_substitution/fun-untyped/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/pl-tutorial/2_languages/4_logik/basic/logik/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/projects/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/editor_support/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/faq/ + 1.0 + 2024-06-27 + monthly + + + https://kframework.org/k-distribution/k-tutorial/3_advanced/ + 1.0 + 2024-06-27 + monthly + + \ No newline at end of file