This repository has been archived by the owner on Apr 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathUFF_construction.py
executable file
·599 lines (487 loc) · 21.4 KB
/
UFF_construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from __future__ import print_function
import numpy as np
import math
import itertools
import atomic_data
from force_field_construction import force_field
metals = atomic_data.metals
mass_key = atomic_data.mass_key
class UFF(force_field):
def __init__(self, system, cutoff, args):
self.system = system
self.cutoff = cutoff
self.args = args
def type_atoms(self):
SG = self.system['graph']
types = []
for atom in SG.nodes(data=True):
name, inf = atom
element_symbol = inf['element_symbol']
nbors = list(SG.neighbors(name))
nbor_symbols = [SG.nodes[n]['element_symbol'] for n in nbors]
bond_types = [SG.get_edge_data(name, n)['bond_type'] for n in nbors]
mass = mass_key[element_symbol]
# Atom typing for UFF, this can be made much more robust with pattern matching,
# but this works for most ToBaCCo MOFs, use at your own risk.
ty = None
if 'A' in bond_types and element_symbol != 'O':
ty = element_symbol + '_' + 'R'
hyb = 'resonant'
else:
# Group 1
if element_symbol == 'H':
ty = element_symbol + '_'
hyb = 'sp1'
# Group 6
elif element_symbol in ('C', 'Si'):
if len(element_symbol) == 1:
ty = element_symbol + '_' + str(len(nbors) - 1)
else:
ty = element_symbol + str(len(nbors) - 1)
hyb = 'sp' + str(len(nbors) - 1)
# Group 7
elif element_symbol in ('N'):
ty = element_symbol + '_' + str(len(nbors))
hyb = 'sp' + str(len(nbors))
# Group 8
elif element_symbol in ('O', 'S'):
# oxygen case is complex with the UFF4MOF oxygen types
if element_symbol == 'O':
# =O for example
if len(nbors) == 1:
ty = 'O_1'
hyb = 'sp1'
# -OH, for example
elif len(nbors) == 2 and 'A' not in bond_types and 'D' not in bond_types and not any(i in metals for i in nbor_symbols):
ty = 'O_3'
hyb = 'sp3'
# furan oxygen, for example
elif len(nbors) == 2 and 'A' in bond_types and not any(i in metals for i in nbor_symbols):
ty = 'O_R'
hyb = 'sp2'
# carboxyllic oxygen
elif len(nbors) == 2 and 'D' in bond_types and not any(i in metals for i in nbor_symbols):
ty = 'O_2'
hyb = 'sp2'
# carboxylate oxygen bound to metal node
elif len(nbors) == 2 and any(i in metals for i in nbor_symbols):
ty = 'O_2_M'
hyb = 'sp2'
# central 3-connected oxygen
elif len(nbors) == 3 and all(i in metals for i in nbor_symbols) and 'Zr' not in nbor_symbols:
ty = 'O_2_M'
hyb = 'sp2'
elif len(nbors) == 3 and all(i in metals for i in nbor_symbols) and 'Zr' in nbor_symbols:
ty = 'O_3_M'
hyb = 'sp2'
# node oxygens bound to metals
elif len(nbors) >= 3 and any(i in metals for i in nbor_symbols):
ty = 'O_3_M'
hyb = 'sp2'
else:
raise ValueError('Oxygen with neighbors ' + ' '.join(nbor_symbols) + ' is not parametrized')
# sulfur case is simple
elif element_symbol == 'S':
ty = 'S_' + str(len(nbors) + 1)
hyb = 'sp' + str(len(nbors) + 1)
# Group 9
elif element_symbol in ('F', 'Br'):
if len(element_symbol) == 1:
ty = element_symbol + '_'
else:
ty = element_symbol
hyb = 'sp1'
# Metals
elif element_symbol in metals:
# Cu paddlewheel, just changed equilibrium angle of Cu3+1 to 90.0
if len(nbors) == 5 and element_symbol == 'Cu' and any(i in metals for i in nbor_symbols):
ty = element_symbol + '4+1'
hyb = 'NA'
# M3O(CO2H)6 metals, e.g. MIL-100
elif len(nbors) in (5,6) and element_symbol in ('Al', 'Sc', 'V', 'Mn', 'Fe', 'Cr') and not any(i in metals for i in nbor_symbols):
ty = element_symbol + '6+3'
if element_symbol == 'V':
ty = 'V_6+3'
hyb = 'NA'
# IRMOF-1 node
elif len(nbors) == 4 and element_symbol == 'Zn':
ty = 'Zn3+2'
hyb = 'NA'
# Zr node
elif len(nbors) in (7,8) and element_symbol == 'Zr':
ty = 'Zr3+4'
hyb = 'NA'
# if no type can be identified
else:
raise ValueError('No UFF type identified for ' + element_symbol + 'with neighbors ' + ' '.join(nbor_symbols))
types.append((ty, element_symbol, mass))
SG.nodes[name]['force_field_type'] = ty
SG.nodes[name]['hybridization'] = hyb
types = set(types)
Ntypes = len(types)
atom_types = dict((ty[0],i+1) for i,ty in zip(range(Ntypes), types))
atom_element_symbols = dict((ty[0], ty[1]) for ty in types)
atom_masses = dict((ty[0],ty[2]) for ty in types)
self.system['graph'] = SG
self.atom_types = atom_types
self.atom_element_symbols = atom_element_symbols
self.atom_masses = atom_masses
def bond_parameters(self, bond, bond_order):
SG = self.system['graph']
UFF_atom_parameters = self.args['FF_parameters']
i,j = bond
params_i = UFF_atom_parameters[i]
params_j = UFF_atom_parameters[j]
r0_i, theta0_i, x1_i, D1_i, zeta_i, Z1_i, V_i, X_i = params_i
r0_j, theta0_j, x1_j, D1_j, zeta_j, Z1_j, V_j, X_j = params_j
# bond-order correction
rbo = -0.1332 * (r0_i+r0_j) * np.log(bond_order)
# electronegativity correction
ren = r0_i*r0_j * (((np.sqrt(X_i) - np.sqrt(X_j))**2)) / (X_i*r0_i + X_j*r0_j)
# equilibrium distance
r_ij = r0_i + r0_j + rbo - ren
r_ij3 = r_ij * r_ij * r_ij
# force constant (1/2 factor should be included here for LAMMPS)
k_ij = 0.5 * 664.12 * ((Z1_i*Z1_j)/r_ij3)
return ('harmonic', k_ij, r_ij)
def angle_parameters(self, angle, r_ij, r_jk):
UFF_atom_parameters = self.args['FF_parameters']
i,j,k = angle
angle_style = 'cosine/periodic'
params_i = UFF_atom_parameters[i]
params_j = UFF_atom_parameters[j]
params_k = UFF_atom_parameters[k]
r0_i, theta0_i, x1_i, D1_i, zeta_i, Z1_i, V_i, X_i = params_i
r0_j, theta0_j, x1_j, D1_j, zeta_j, Z1_j, V_j, X_j = params_j
r0_k, theta0_k, x1_k, D1_k, zeta_k, Z1_k, V_k, X_k = params_k
# linear
if theta0_j == 180.0:
n = 1
b = 1
# trigonal planar
elif theta0_j == 120.0:
n = 3
b = -1
# square planar or octahedral
elif theta0_j == 90.0:
n = 4
b = 1
# general non-linear
else:
b = 'NA'
n = 'NA'
cosT0 = np.cos(math.radians(theta0_j))
sinT0 = np.sin(math.radians(theta0_j))
r_ik = np.sqrt(r_ij**2.0 + r_jk**2.0 - 2.0*r_ij*r_jk*cosT0)
# force constant
K = ((664.12*Z1_i*Z1_k)/(r_ik**5.0)) * (3.0*r_ij*r_jk*(1.0-cosT0**2.0)-r_ik**2.0*cosT0)
# general non-linear
if theta0_j not in (90.0, 120.0, 180.0):
angle_style = 'fourier'
C2 = 1.0/(4*sinT0**2)
C1 = -4*C2*cosT0
C0 = C2*(2*cosT0**2+1)
return (angle_style, K, C0, C1, C2)
# this is needed to correct the LAMMPS angle energy calculation
K *= 0.5
return (angle_style, K, b, n)
def dihedral_parameters(self, bond, hybridization, element_symbols, nodes):
fft_j, fft_k, bond_order = bond
hyb_j, hyb_k = hybridization
els_j, els_k = element_symbols
node_j, node_k = nodes
SG = self.system['graph']
UFF_atom_parameters = self.args['FF_parameters']
con_j = SG.degree(node_j) - 1
con_k = SG.degree(node_k) - 1
mult = con_j * con_k
if mult == 0.0:
return 'NA'
# cases taken from the DREIDING paper (same cases, different force constants for UFF)
# they are not done in order to save some lines, I don't know of a better way for doing
# this besides a bunch of conditionals.
if hyb_j == 'sp3' and hyb_k == 'sp3':
# case (a)
phi0 = 60.0
n = 3.0
V_j = UFF_atom_parameters[fft_j][6]
V_k = UFF_atom_parameters[fft_k][6]
V = np.sqrt(V_j*V_k)
# case (h)
if els_j == 'O' and els_k == 'O':
phi0 = 90.0
n = 2.0
V = 2.0
elif els_j == 'S' and els_k == 'S':
phi0 = 90.0
n = 2.0
V = 6.8
elif (hyb_j in ('sp2', 'resonant') and hyb_k == 'sp3') or (hyb_k in ('sp2', 'resonant') and hyb_j == 'sp3'):
# case (b)
phi0 = 180.0
n = 6.0
V = 2.0
# case (i)
if hyb_j == 'sp3' and els_j in ('O', 'S'):
phi0 = 180.0
n = 2.0
U_j = UFF_atom_parameters[fft_j][6]
U_k = UFF_atom_parameters[fft_k][6]
V = 5 * np.sqrt(U_j*U_k) * (1.0 + 4.18 * np.log(bond_order))
elif hyb_k == 'sp3' and els_k in ('O', 'S'):
phi0 = 180.0
n = 2.0
U_j = UFF_atom_parameters[fft_j][6]
U_k = UFF_atom_parameters[fft_k][6]
V = 5 * np.sqrt(U_j*U_k) * (1.0 + 4.18 * np.log(bond_order))
# case (j) not needed for the current ToBaCCo MOFs
# case (c, d, e, f)
elif hyb_j in ('sp2', 'resonant') and hyb_k in ('sp2', 'resonant'):
phi0 = 180.0
n = 2.0
U_j = UFF_atom_parameters[fft_j][6]
U_k = UFF_atom_parameters[fft_k][6]
V = 5 * np.sqrt(U_j*U_k) * (1.0 + 4.18 * np.log(bond_order))
# case (g)
elif hyb_j == 'sp1' or hyb_k == 'sp1':
return 'NA'
elif hyb_j == 'NA' or hyb_k == 'NA':
return 'NA'
# divide by multiplicity and halve to match UFF paper
V /= mult
V *= 0.5
d = -1.0 * np.cos(math.radians(n*phi0))
return ('harmonic', V, int(d), int(n))
def improper_parameters(self, fft_i, O_2_flag):
if fft_i in ('N_R', 'C_R', 'C_2'):
# constants for C_R and N_R
C0 = 1.0
C1 = -1.0
C2 = 0.0
K = 6.0/3.0
al = 1
# constants for bound O_2
if O_2_flag:
K = 50.0/3.0
else:
return None
return ('fourier', K, C0, C1, C2, al)
def pair_parameters(self, charges=False):
UFF_atom_parameters = self.args['FF_parameters']
atom_types = self.atom_types
params = {}
comments = {}
# determine style and special bonds
if charges:
style = 'lj/cut/coul/long'
cutoff = 12.5
sb = 'lj/coul 0.0 0.0 1.0'
else:
style = 'lj/cut'
cutoff = 12.5
sb = 'lj 0.0 0.0 1.0'
for a in atom_types:
ID = atom_types[a]
data = UFF_atom_parameters[a]
x_i = data[2] * (2**(-1.0/6.0))
D_i = data[3]
params[ID] = (style, D_i, x_i)
comments[ID] = [a,a]
self.pair_data = {'params':params, 'style':style, 'special_bonds':sb, 'comments':comments}
def enumerate_bonds(self):
SG = self.system['graph']
bond_order_dict = self.args['bond_orders']
bonds = {}
for e in SG.edges(data=True):
i,j,data = e
fft_i = SG.nodes[i]['force_field_type']
fft_j = SG.nodes[j]['force_field_type']
bond_type = data['bond_type']
# look for the bond order, otherwise use the convention based on the bond type
try:
bond_order = bond_order_dict[(fft_i,fft_j)]
except KeyError:
try:
bond_order = bond_order_dict[(fft_j,fft_i)]
except KeyError:
bond_order = bond_order_dict[bond_type]
bond = tuple(sorted([fft_i, fft_j]) + [bond_order])
# add to list if bond type already exists, else add a new type
try:
bonds[bond].append((i,j))
except KeyError:
bonds[bond] = [(i,j)]
data['bond_order'] = bond_order
bond_params = {}
bond_comments = {}
all_bonds = {}
ID = 0
count = 0
# index bonds by ID
for b in bonds:
ID += 1
bond_order = float(b[2])
bond = (b[0], b[1])
params = self.bond_parameters(bond, bond_order)
bond_params[ID] = list(params)
bond_comments[ID] = list(bond) + ['bond order=' + str(bond_order)]
all_bonds[ID] = bonds[b]
count += len(bonds[b])
self.bond_data = {'all_bonds':all_bonds, 'params':bond_params, 'style':'harmonic', 'count':(count, len(all_bonds)), 'comments':bond_comments}
def enumerate_angles(self):
SG = self.system['graph']
bonds = self.bond_data['all_bonds']
bond_params = self.bond_data['params']
inv_bonds = dict((b,bt) for bt in bonds for b in bonds[bt])
angles = {}
for n in SG.nodes(data=True):
name, data = n
nbors = list(SG.neighbors(name))
for comb in itertools.combinations(nbors, 2):
j = name
i, k = comb
fft_i = SG.nodes[i]['force_field_type']
fft_j = SG.nodes[j]['force_field_type']
fft_k = SG.nodes[k]['force_field_type']
octa_metals = ('Al6+3', 'Sc6+3', 'Ti4+2', 'V_4+2', 'V_6+3', 'Cr4+2',
'Cr6f3', 'Mn6+3', 'Mn4+2', 'Fe6+3', 'Fe4+2', 'Co4+2',
'Cu4+2', 'Zn4+2')
if fft_j in octa_metals:
i_coord = SG.nodes[i]['cartesian_position']
j_coord = SG.nodes[j]['cartesian_position']
k_coord = SG.nodes[k]['cartesian_position']
ij = i_coord - j_coord
jk = j_coord - k_coord
cosine_angle = np.dot(ij,jk) / (np.linalg.norm(ij) * np.linalg.norm(jk))
angle = (180.0/np.pi) * np.arccos(cosine_angle)
sort_ik = sorted([(fft_i,i),(fft_k,k)], key=lambda x:x[0])
fft_i, i = sort_ik[0]
fft_k, k = sort_ik[1]
# look up bond constants (don't need to calculate again, yay!)
try:
bond_type_ij = inv_bonds[(i,j)]
except KeyError:
bond_type_ij = inv_bonds[(j,i)]
try:
bond_type_jk = inv_bonds[(j,k)]
except KeyError:
bond_type_jk = inv_bonds[(k,j)]
r_ij = bond_params[bond_type_ij][2]
r_jk = bond_params[bond_type_jk][2]
angle = sorted((fft_i, fft_k))
angle = (angle[0], fft_j, angle[1], r_ij, r_jk)
# add to list if angle type already exists, else add a new type
try:
angles[angle].append((i,j,k))
except KeyError:
angles[angle] = [(i,j,k)]
angle_params = {}
angle_comments = {}
all_angles = {}
ID = 0
count = 0
styles = []
# index angles by ID
for a in angles:
ID += 1
fft_i, fft_j, fft_k, r_ij, r_jk = a
angle = (fft_i, fft_j, fft_k)
params = self.angle_parameters(angle, r_ij, r_jk)
styles.append(params[0])
angle_params[ID] = list(params)
angle_comments[ID] = list(angle)
all_angles[ID] = angles[a]
count += len(angles[a])
styles = set(styles)
if len(styles) == 1:
style = list(styles)[0]
else:
style = 'hybrid ' + ' '.join(styles)
self.angle_data = {'all_angles':all_angles, 'params':angle_params, 'style':style, 'count':(count, len(all_angles)), 'comments':angle_comments}
def enumerate_dihedrals(self):
SG = self.system['graph']
dihedrals = {}
dihedral_params = {}
for e in SG.edges(data=True):
j,k = e[0:2]
fft_j = SG.nodes[j]['force_field_type']
fft_k = SG.nodes[k]['force_field_type']
hyb_j = SG.nodes[j]['hybridization']
hyb_k = SG.nodes[k]['hybridization']
els_j = SG.nodes[j]['element_symbol']
els_k = SG.nodes[k]['element_symbol']
bond_order = e[2]['bond_order']
nodes = (j,k)
nbors_j = [n for n in SG.neighbors(j) if n != k]
nbors_k = [n for n in SG.neighbors(k) if n != j]
il_pairs = list(itertools.product(nbors_j, nbors_k))
dihedral_list = [(p[0],j,k,p[1]) for p in il_pairs]
bond = sorted([fft_j, fft_k])
bond = (bond[0], bond[1], bond_order)
hybridization = (hyb_j, hyb_k)
element_symbols = (els_j, els_k)
# here I calculate parameters for each dihedral (I know) but I prefer identifying
# those dihedrals before passing to the final dihedral data construction.
params = self.dihedral_parameters(bond, hybridization, element_symbols, nodes)
if params != 'NA':
try:
dihedrals[bond].extend(dihedral_list)
except KeyError:
dihedrals[bond] = dihedral_list
dihedral_params[bond] = params
all_dihedrals = {}
dihedral_comments = {}
indexed_dihedral_params = {}
ID = 0
count = 0
for d in dihedrals:
ID += 1
dihedral = ('X', d[0], d[1], 'X')
params = dihedral_params[d]
all_dihedrals[ID] = dihedrals[d]
indexed_dihedral_params[ID] = list(dihedral_params[d])
dihedral_comments[ID] = list(dihedral) + ['bond order=' + str(d[2])]
count += len(dihedrals[d])
self.dihedral_data = {'all_dihedrals':all_dihedrals, 'params':indexed_dihedral_params, 'style':'harmonic', 'count':(count, len(all_dihedrals)), 'comments':dihedral_comments}
def enumerate_impropers(self):
SG = self.system['graph']
impropers = {}
for n in SG.nodes(data=True):
i, data = n
nbors = list(SG.neighbors(i))
if len(nbors) == 3:
fft_i = data['force_field_type']
fft_nbors = tuple(sorted([SG.nodes[m]['force_field_type'] for m in nbors]))
O_2_flag = False
# force constant is much larger if j,k, or l is O_2
if 'O_2' in fft_nbors or 'O_2_M' in fft_nbors:
O_2_flag = True
j,k,l = nbors
# only need to consider one combination
imps = [[i, j, k, l]]
try:
impropers[(fft_i, O_2_flag)].extend(imps)
except KeyError:
impropers[(fft_i, O_2_flag)] = imps
all_impropers = {}
improper_params = {}
improper_comments = {}
ID = 0
count = 0
for i in impropers:
fft_i, O_2_flag = i
params = self.improper_parameters(fft_i, O_2_flag)
if params != None:
ID += 1
improper_params[ID] = list(params)
improper_comments[ID] = [i[0], 'X', 'X', 'X', 'O_2 present=' + str(O_2_flag)]
all_impropers[ID] = impropers[i]
count += len(impropers[i])
self.improper_data = {'all_impropers':all_impropers, 'params':improper_params, 'style':'fourier', 'count':(count, len(all_impropers)), 'comments':improper_comments}
def compile_force_field(self, charges=False):
self.type_atoms()
self.pair_parameters(charges)
self.enumerate_bonds()
self.enumerate_angles()
self.enumerate_dihedrals()
self.enumerate_impropers()