This repository has been archived by the owner on Apr 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathZIFFF_construction.py
executable file
·878 lines (695 loc) · 29.7 KB
/
ZIFFF_construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
from __future__ import print_function
import itertools
import warnings
import math
import atomic_data
import networkx as nx
import numpy as np
from cif2system import PBC3DF_sym
from pymatgen_cif2system import M
from force_field_construction import force_field
from collections import Counter
import gaff
import gaff2
import ZIFFF_constants
metals = atomic_data.metals
mass_key = atomic_data.mass_key
def parameter_loop(options, type_dict):
params = None
for option in options:
try:
params = type_dict[option]
break
except KeyError:
continue
if params != None:
return params
else:
raise(ValueError('No parameters found for', options))
def dihedral_parameter_loop(options, type_dict):
params = None
for option in options:
try:
params = type_dict[option]
break
except KeyError:
continue
if params != None:
return params
else:
message = 'No parameters found for ' + ' '.join(option)
warnings.warn(message)
return None
def read_gaffdat(mode='gaff'):
if mode == 'gaff':
gaff_atom_types = gaff.gaff_atom_types
gaff_LJ_parameters = gaff.gaff_LJ_params
gaff_bonds = gaff.gaff_bonds
gaff_angles = gaff.gaff_angles
gaff_dihedrals = gaff.gaff_dihedrals
gaff_impropers = gaff.gaff_impropers
elif mode == 'gaff2':
gaff_atom_types = gaff2.gaff_atom_types
gaff_LJ_parameters = gaff2.gaff_LJ_params
gaff_bonds = gaff2.gaff_bonds
gaff_angles = gaff2.gaff_angles
gaff_dihedrals = gaff2.gaff_dihedrals
gaff_impropers = gaff2.gaff_impropers
else:
raise ValueError('mode must be gaff or gaff2')
gaff_atom_types = [l.split() for l in gaff_atom_types.split('\n') if len(l.split()) > 0]
gaff_atom_types = dict((l[0], (float(l[1]), float(l[2]))) for l in gaff_atom_types)
gaff_LJ_parameters = [l.split() for l in gaff_LJ_parameters.split('\n') if len(l.split()) > 0]
gaff_LJ_parameters = dict((l[0], (float(l[2]), float(l[1]))) for l in gaff_LJ_parameters)
gaff_bond_list = [(''.join(l[0:5].split()), ''.join(l[5:16].split()), ''.join(l[16:26].split())) for l in gaff_bonds.split('\n') if len(l.split()) > 0]
gaff_bonds = {}
for l in gaff_bond_list:
bond, K, r0 = l
bond = tuple(sorted(bond.split('-')))
gaff_bonds[bond] = (float(K), float(r0))
gaff_angle_list = [(''.join(l[0:8].split()), ''.join(l[8:20].split()), ''.join(l[20:30].split())) for l in gaff_angles.split('\n') if len(l.split()) > 0]
gaff_angles = {}
for l in gaff_angle_list:
angle, K, theta0 = l
angle = tuple(angle.split('-'))
gaff_angles[angle] = (float(K), float(r0))
gaff_dihedral_list = [(''.join(l[0:11].split()), ''.join(l[11:19].split()), ''.join(l[19:31].split()),
''.join(l[31:48].split()), ''.join(l[48:52].split())) for l in gaff_dihedrals.split('\n') if len(l.split()) > 0]
gaff_dihedrals = {}
for l in gaff_dihedral_list:
dihedral, m, K, psi0, n = l
dihedral = tuple(dihedral.split('-'))
try:
gaff_dihedrals[dihedral].extend([float(K)/int(float(m)), int(float(n)), float(psi0)])
except KeyError:
gaff_dihedrals[dihedral] = [float(K)/int(float(m)), int(float(n)), float(psi0)]
gaff_improper_list = [(''.join(l[0:11].split()), ''.join(l[11:33].split()), ''.join(l[33:47].split()),
''.join(l[47:50].split())) for l in gaff_impropers.split('\n') if len(l.split()) > 0]
gaff_impropers = {}
for l in gaff_improper_list:
improper, K, psi0, n = l
improper = tuple(improper.split('-'))
gaff_impropers[improper] = (float(K), int(float(n)), float(psi0))
gaff_data = {'types':gaff_atom_types, 'bonds':gaff_bonds, 'angles':gaff_angles, 'dihedrals':gaff_dihedrals, 'impropers':gaff_impropers, 'LJ_parameters':gaff_LJ_parameters}
return gaff_data
def GAFF_type(atom, data, SG, pure_aromatic_atoms, aromatic_atoms):
"""
returns GAFF atom types, this can be expanded to the full 97 types
apply to atoms in this order:
(1) nitrogens, carbons, halogens
] (2) hydrogens
"""
sym = data['element_symbol']
nbors = [a for a in SG.neighbors(atom)]
nbor_symbols = [SG.nodes[n]['element_symbol'] for n in nbors]
bond_types = [SG.get_edge_data(atom, n)['bond_type'] for n in nbors]
doubleO = False
doubleS = False
for elem, bt in zip(nbor_symbols, bond_types):
if elem == 'O' and bt == 'D':
doubleO = True
elif elem == 'S' and bt == 'D':
doubleS = True
ty = None
hyb = None
if sym == 'C':
# sp1 carbons
if len(nbors) == 2:
ty = 'c1'
hyb = 'sp1'
# sp2 carbons
elif len(nbors) == 3:
# aromatic carbons
if 'A' in bond_types:
# pure aromatic C are in benzene/pyridine (https://github.com/rsdefever/GAFF-foyer)
if atom in pure_aromatic_atoms:
ty = 'ca'
# non-pure aromatic C (anything else with aromatic bond)
else:
ty = 'cc'
elif 'D' in bond_types:
# R-(C=O)-R
if doubleO and not doubleS:
ty = 'c'
# R-(C=S)-R
elif doubleS and not doubleO:
ty = 'cs'
# non-aromatic sp2 carbon
elif not doubleO and not doubleS:
ty = 'c2'
# other cases not considered
else:
ty = None
hyb = 'sp2'
# sp3 carbons
elif len(nbors) == 4:
ty = 'c3'
hyb = 'sp3'
# note that cp, cq, cd, ce, cf, cg, ch, cx, cy, cu, cv, cz are are probably not needed for ZIF-FF
elif sym == 'H':
# make sure to apply this function to hydrogens after all other atoms have been typed
if len(nbors) != 1:
raise ValueError('H with more than one neighbor found')
nbor = nbors[0]
nbor_sym = nbor_symbols[0]
nbor_hyb = SG.nodes[nbor]['hybridization']
if nbor_sym == 'C':
# bonded to aromatic atom
if nbor in aromatic_atoms:
ty = 'ha'
hyb = 'sp1'
else:
# bonded to sp3 carbon, need to add electron withdrawing cases
if nbor_hyb == 'sp3':
ty = 'h1'
hyb = 'sp1'
# bonded to non-aromatic sp2 carbon, need to add electron withdrawing cases
elif nbor_hyb == 'sp2':
ty = 'h4'
hyb = 'sp1'
# bonded to N
elif nbor_sym == 'N':
ty = 'hn'
hyb = 'sp1'
# bonded to O
elif nbor_sym == 'O':
ty = 'ho'
hyb = 'sp1'
else:
ty = None
hyb = None
elif sym == 'F':
# halogens are easy, only one type of each
ty = 'f'
hyb = 'sp1'
elif sym == 'Cl':
# halogens are easy, only one type of each
ty = 'cl'
hyb = 'sp1'
elif sym == 'Br':
# halogens are easy, only one type of each
ty = 'br'
hyb = 'sp1'
elif sym == 'I':
# halogens are easy, only one type of each
ty = 'i'
hyb = 'sp1'
elif sym == 'N':
if len(nbors) == 1:
ty = 'n'
hyb = 'sp1'
elif len(nbors) == 2:
if 'A' in bond_types:
if atom in pure_aromatic_atoms:
ty = 'nb'
else:
ty = 'nc'
else:
ty = 'n2'
hyb = 'sp2'
elif len(nbors) == 3:
# aromatic nitrogens
if 'A' in bond_types and Counter(nbor_symbols)['H'] <= 1:
# N in pyridine
if atom in pure_aromatic_atoms:
ty = 'nb'
# other N with aromatic bonds
else:
ty = 'nc'
# -NH2 bound to an aromatic atom, important for functionalized ZIFs
elif Counter(nbor_symbols)['H'] == 2 and any(n in aromatic_atoms for n in nbors):
ty = 'nh'
# other sp3 N with 3 neighbors
else:
ty = 'n3'
hyb = 'sp3'
elif len(nbors) == 4:
# sp3 N with 4 neighbors
ty = 'n4'
hyb = 'sp3'
# note that nd-n6 (see gaff2.dat) are probably not needed for ZIF-FF
elif sym == 'O':
# O with one neighbor
if len(nbors) == 1:
ty = 'o'
hyb = 'sp1'
if len(nbors) == 2:
# R-OH
if Counter(nbor_symbols)['H'] == 1:
ty = 'oh'
hyb = 'sp2'
# ether and ester O
else:
ty = 'os'
hyb = 'sp2'
# add these if needed
elif sym == 'P':
pass
elif sym == 'S':
pass
if (ty == None or hyb == None) and sym != 'H':
raise ValueError('No GAFF atom type identified for element', sym, 'with neighbors', nbor_symbols)
return ty, hyb
class ZIFFF(force_field):
def __init__(self, system, cutoff, args):
pi = np.pi
a,b,c,alpha,beta,gamma = system['box']
ax = a
ay = 0.0
az = 0.0
bx = b * np.cos(gamma * pi / 180.0)
by = b * np.sin(gamma * pi / 180.0)
bz = 0.0
cx = c * np.cos(beta * pi / 180.0)
cy = (c * b * np.cos(alpha * pi /180.0) - bx * cx) / by
cz = (c ** 2.0 - cx ** 2.0 - cy ** 2.0) ** 0.5
self.unit_cell = np.asarray([[ax,ay,az],[bx,by,bz],[cx,cy,cz]]).T
NMG = system['graph'].copy()
edge_list = list(NMG.edges())
for e0,e1 in edge_list:
sym0 = NMG.nodes[e0]['element_symbol']
sym1 = NMG.nodes[e1]['element_symbol']
if sym0 in metals or sym1 in metals:
NMG.remove_edge(e0,e1)
linkers = nx.connected_components(NMG)
pure_aromatic_atoms = []
aromatic_atoms = []
for linker in linkers:
SG = NMG.subgraph(linker)
all_cycles = nx.simple_cycles(nx.to_directed(SG))
all_cycles = set([tuple(sorted(cy)) for cy in all_cycles if len(cy) > 4])
for cycle in all_cycles:
# rotate the ring normal vec onto the z-axis to determine coplanarity
fcoords = np.array([system['graph'].nodes[c]['fractional_position'] for c in cycle])
element_symbols = [system['graph'].nodes[c]['element_symbol'] for c in cycle]
anchor = fcoords[0]
fcoords = np.array([vec - PBC3DF_sym(anchor, vec)[1] for vec in fcoords])
coords = np.dot(self.unit_cell.T, fcoords.T).T
coords -= np.average(coords, axis=0)
vec0 = coords[0]
vec1 = coords[1]
normal = np.cross(vec0,vec1)
RZ = M(normal, np.array([0.0,0.0,1.0]))
coords = np.dot(RZ, coords.T).T
maxZ = max([abs(z) for z in coords[:,-1]])
# if coplanar make all bond orders 1.5
if maxZ < 0.1:
aromatic_atoms.extend(list(cycle))
if Counter(element_symbols)['C'] == 6:
pure_aromatic_atoms.extend(list(cycle))
elif Counter(element_symbols)['C'] == 5 and Counter(element_symbols)['N'] == 1:
pure_aromatic_atoms.extend(list(cycle))
self.pure_aromatic_atoms = pure_aromatic_atoms
self.aromatic_atoms = aromatic_atoms
args['FF_parameters'] = read_gaffdat(mode='gaff')
self.system = system
self.cutoff = cutoff
self.args = args
self.ZIFFF_types = ('C1', 'C2', 'C3', 'N', 'Zn', 'H2', 'H3')
def type_atoms(self):
SG = self.system['graph']
types = []
imidazolate_ring_atoms = []
for atom,data in SG.nodes(data=True):
element_symbol = data['element_symbol']
if element_symbol in ('Zn', 'Cd'):
nborhood = list(nx.ego_graph(SG, atom, radius=2))
imidazolate_ring_atoms.extend(nborhood)
# assign Zn, N, and imidazolate ring types first
imidazolate_gaff_types = {}
for atom in SG.nodes(data=True):
hyb = None
name, inf = atom
element_symbol = inf['element_symbol']
nbors = [a for a in SG.neighbors(name)]
nbor_symbols = [SG.nodes[n]['element_symbol'] for n in nbors]
mass = mass_key[element_symbol]
# one type of Zn
if element_symbol == 'Zn':
ty = 'Zn'
hyb = None
types.append((ty, element_symbol, mass))
SG.node[name]['force_field_type'] = ty
SG.node[name]['hybridization'] = hyb
# imidazolate ring atoms
if name in imidazolate_ring_atoms:
# one type of N
if element_symbol == 'N':
ty = 'N'
hyb = 'sp2'
# three types of C
if element_symbol == 'C':
if Counter(nbor_symbols)['N'] == 2:
ty = 'C1'
hyb = 'sp2'
elif Counter(nbor_symbols)['N'] == 1:
ty = 'C2'
hyb = 'sp2'
types.append((ty, element_symbol, mass))
SG.node[name]['force_field_type'] = ty
SG.node[name]['hybridization'] = hyb
if element_symbol not in metals:
gaff_ty, gaff_hyb = GAFF_type(name, inf, SG, self.pure_aromatic_atoms, self.aromatic_atoms)
imidazolate_gaff_types[ty] = gaff_ty
# type non-imidazolate-ring atoms
for atom in SG.nodes(data=True):
name, inf = atom
if inf['force_field_type'] == '':
element_symbol = inf['element_symbol']
nbors = [a for a in SG.neighbors(name)]
nbor_symbols = [SG.nodes[n]['element_symbol'] for n in nbors]
nbor_types = [SG.nodes[n]['force_field_type'] for n in nbors]
mass = mass_key[element_symbol]
# imidazolate ring atom adjacent that are not hydrogens
if element_symbol != 'H':
if name not in imidazolate_ring_atoms and any(n in imidazolate_ring_atoms for n in nbors):
# special case for ZIF-8 -CH3 group which has an explicit type in ZIF-FF
if element_symbol == 'C' and sorted(nbor_symbols) == ['C', 'H', 'H', 'H'] and 'C1' in nbor_symbols:
ty = 'C1'
hyb = 'sp3'
# other functionalizations are typed for GAFF
else:
ty, hyb = GAFF_type(name, inf, SG, self.pure_aromatic_atoms, self.aromatic_atoms)
elif name not in imidazolate_ring_atoms and not any(n in imidazolate_ring_atoms for n in nbors):
ty, hyb = GAFF_type(name, inf, SG, self.pure_aromatic_atoms, self.aromatic_atoms)
types.append((ty, element_symbol, mass))
SG.node[name]['force_field_type'] = ty
SG.node[name]['hybridization'] = hyb
# type hydrogens last
for atom in SG.nodes(data=True):
name, inf = atom
element_symbol = inf['element_symbol']
nbors = [a for a in SG.neighbors(name)]
nbor_symbols = [SG.nodes[n]['element_symbol'] for n in nbors]
nbor_types = [SG.nodes[n]['force_field_type'] for n in nbors]
mass = mass_key[element_symbol]
# imidazolate ring atom adjacent that are not hydrogens
if element_symbol == 'H':
if 'C2' in nbor_types:
ty = 'H2'
hyb = 'sp1'
elif 'C3' in nbor_types:
ty = 'H3'
hyb = 'sp1'
else:
ty, hyb = GAFF_type(name, inf, SG, self.pure_aromatic_atoms, self.aromatic_atoms)
types.append((ty, element_symbol, mass))
SG.node[name]['force_field_type'] = ty
SG.node[name]['hybridization'] = hyb
types = set(types)
Ntypes = len(types)
atom_types = dict((ty[0],i+1) for i,ty in zip(range(Ntypes), types))
atom_element_symbols = dict((ty[0], ty[1]) for ty in types)
atom_masses = dict((ty[0],ty[2]) for ty in types)
#for n,data in SG.nodes(data=True):
#
# sym = data['element_symbol']
# nbors = [a for a in SG.neighbors(name)]
# nbor_symbols = [SG.nodes[n]['element_symbol'] for n in nbors]
#
# if n in self.pure_aromatic_atoms:
# print(sym, nbor_symbols, data['force_field_type'])
self.system['graph'] = SG
self.atom_types = atom_types
self.atom_element_symbols = atom_element_symbols
self.atom_masses = atom_masses
self.imidazolate_gaff_types = imidazolate_gaff_types
def bond_parameters(self, bond):
gaff_bonds = self.args['FF_parameters']['bonds']
i,j = sorted(bond)
if all(t in self.ZIFFF_types for t in (i,j)):
k_ij, r_ij = parameter_loop([bond, bond[::-1]], ZIFFF_constants.ZIFFF_bonds)
params = ('harmonic', k_ij, r_ij)
else:
new_bond = tuple(sorted([self.imidazolate_gaff_types[ty] if ty in self.imidazolate_gaff_types else ty for ty in bond]))
k_ij, r_ij = parameter_loop([bond, bond[::-1], new_bond, new_bond[::-1]], gaff_bonds)
params = ('harmonic', k_ij, r_ij)
return params
def angle_parameters(self, angle):
gaff_angles = self.args['FF_parameters']['angles']
i,j,k = angle
if all(t in self.ZIFFF_types for t in (i,j,k)):
K, theta0 = parameter_loop([angle, angle[::-1]], ZIFFF_constants.ZIFFF_angles)
params = ('harmonic', K, theta0)
else:
new_angle = tuple([self.imidazolate_gaff_types[ty] if ty in self.imidazolate_gaff_types else ty for ty in angle])
K, theta0 = parameter_loop([angle, angle[::-1], new_angle, new_angle[::-1]], gaff_angles)
if K == None:
print(new_angle)
params = ('harmonic', K, theta0)
return params
def dihedral_parameters(self, dihedral):
gaff_dihedrals = self.args['FF_parameters']['dihedrals']
i, j, k, l = dihedral
if all(t in self.ZIFFF_types for t in (i,j,k,l)):
params = dihedral_parameter_loop([dihedral, dihedral[::-1]], ZIFFF_constants.ZIFFF_dihedrals)
if params != None:
K, n, d = params
params = ('fourier', 1, K, n, d)
else:
X_dihedral = ('X', dihedral[1], dihedral[2], 'X')
new_X_dihedral = tuple([self.imidazolate_gaff_types[ty] if ty in self.imidazolate_gaff_types else ty for ty in X_dihedral])
new_dihedral = tuple([self.imidazolate_gaff_types[ty] if ty in self.imidazolate_gaff_types else ty for ty in dihedral])
options = [X_dihedral, X_dihedral[::-1], new_X_dihedral, new_X_dihedral[::-1], dihedral, dihedral[::-1], new_dihedral, new_dihedral[::-1]]
params = dihedral_parameter_loop(options, gaff_dihedrals)
if params != None:
Nterms = len(params)%3
params = tuple(['fourier', Nterms] + params)
return params
def improper_parameters(self, improper):
gaff_impropers = self.args['FF_parameters']['impropers']
i, j, k, l = improper
params = None
if all(t in self.ZIFFF_types for t in (i,j,k,l)):
# the ZIF-FF paper lists the central atom first
improper_combs = [(i,j,k,l),
(i,j,l,k),
(i,k,j,l),
(i,k,l,j),
(i,l,j,k),
(i,l,j,k)]
for imp in improper_combs:
try:
K,n,d = ZIFFF_constants.ZIFFF_impropers[imp]
params = ('cvff', K, -1, 2)
break
except KeyError:
continue
else:
improper_combs = [(j,k,i,l),
(j,l,i,k),
(k,j,i,l),
(k,l,i,j),
(l,j,i,k),
(l,j,i,k)]
for imp in improper_combs:
try:
K,psi0,n = gaff_impropers[imp]
params = ('cvff', K, -1, 2)
break
except KeyError:
continue
if params == None:
i,j,k,l = tuple([self.imidazolate_gaff_types[ty] if ty in self.imidazolate_gaff_types else ty for ty in improper])
improper_combs = [(j,k,i,l),
(j,l,i,k),
(k,j,i,l),
(k,l,i,j),
(l,j,i,k),
(l,j,i,k)]
if i in ('c', 'ca', 'n', 'n2', 'na'):
ximps = [('X',k,i,l),
('X',l,i,k),
('X',j,i,l),
('X',l,i,j),
('X',j,i,k),
('X',j,i,k),
('X', 'X',i,l),
('X', 'X',i,k),
('X', 'X',i,l),
('X', 'X',i,j),
('X', 'X',i,k),
('X', 'X',i,k)]
improper_combs.extend(ximps)
for imp in improper_combs:
try:
K,psi0,n = gaff_impropers[imp]
params = ('cvff', K, -1, 2)
break
except KeyError:
continue
if params == None:
message = 'No improper type identified for ' + ' '.join(list(imp))
warnings.warn(message)
return params
def pair_parameters(self, charges=False):
gaff_LJ_parameters = self.args['FF_parameters']['LJ_parameters']
atom_types = self.atom_types
all_params = {}
comments = {}
# determine style and special bonds
if charges:
style = 'lj/cut/coul/long'
sb = 'lj 0.0 0.0 0.5 coul 0.0 0.0 0.6874'
else:
warnings.warn('ZIF-FF or any AMBER based force-field always uses charges, your results will be incorrect without them')
style = 'lj/cut'
sb = 'lj 0.0 0.0 1.0'
for a in atom_types:
if a in self.ZIFFF_types:
eps,sig,charge = ZIFFF_constants.ZIFFF_LJ_parameters[a]
params = (eps, sig)
all_params[a] = params
else:
eps,rmin = gaff_LJ_parameters[a]
params = (eps, 2 * rmin * (2**(-1.0/6.0)))
all_params[a] = params
comments[a] = [a,a]
self.pair_data = {'params':all_params, 'style':style, 'special_bonds':sb, 'comments':comments}
def enumerate_bonds(self):
SG = self.system['graph']
bonds = {}
for e in SG.edges(data=True):
i,j,data = e
fft_i = SG.node[i]['force_field_type']
fft_j = SG.node[j]['force_field_type']
bond = tuple(sorted([fft_i, fft_j]))
# add to list if bond type already exists, else add a new type
try:
bonds[bond].append((i,j))
except KeyError:
bonds[bond] = [(i,j)]
bond_params = {}
bond_comments = {}
all_bonds = {}
ID = 0
count = 0
# index bonds by ID
for b in bonds:
ID += 1
bond = (b[0], b[1])
params = self.bond_parameters(bond)
bond_params[ID] = list(params)
bond_comments[ID] = list(bond)
all_bonds[ID] = bonds[b]
count += len(bonds[b])
self.bond_data = {'all_bonds':all_bonds, 'params':bond_params, 'style':'harmonic', 'count':(count, len(all_bonds)), 'comments':bond_comments}
def enumerate_angles(self):
SG = self.system['graph']
angles = {}
for n in SG.nodes(data=True):
name, data = n
nbors = list(SG.neighbors(name))
for comb in itertools.combinations(nbors, 2):
j = name
i, k = comb
fft_i = SG.node[i]['force_field_type']
fft_j = SG.node[j]['force_field_type']
fft_k = SG.node[k]['force_field_type']
sort_ik = sorted([(fft_i,i),(fft_k,k)], key=lambda x:x[0])
fft_i, i = sort_ik[0]
fft_k, k = sort_ik[1]
angle = sorted((fft_i, fft_k))
angle = (angle[0], fft_j, angle[1])
# add to list if angle type already exists, else add a new type
try:
angles[angle].append((i,j,k))
except KeyError:
angles[angle] = [(i,j,k)]
angle_params = {}
angle_comments = {}
all_angles = {}
ID = 0
count = 0
styles = []
# index angles by ID
for a in angles:
ID += 1
fft_i, fft_j, fft_k = a
angle = (fft_i, fft_j, fft_k)
params = self.angle_parameters(angle)
styles.append(params[0])
angle_params[ID] = list(params)
angle_comments[ID] = list(angle)
all_angles[ID] = angles[a]
count += len(angles[a])
styles = set(styles)
if len(styles) == 1:
style = list(styles)[0]
else:
style = 'hybrid ' + ' '.join(styles)
self.angle_data = {'all_angles':all_angles, 'params':angle_params, 'style':style, 'count':(count, len(all_angles)), 'comments':angle_comments}
def enumerate_dihedrals(self):
SG = self.system['graph']
dihedrals = {}
dihedral_params = {}
for e in SG.edges(data=True):
j = e[0]
k = e[1]
fft_j = SG.node[j]['force_field_type']
fft_k = SG.node[k]['force_field_type']
nbors_j = [n for n in SG.neighbors(j) if n != k]
nbors_k = [n for n in SG.neighbors(k) if n != j]
il_pairs = list(itertools.product(nbors_j, nbors_k))
dihedral_list = [(SG.node[p[0]]['force_field_type'],fft_j,fft_k,SG.node[p[1]]['force_field_type']) for p in il_pairs]
for dihedral in dihedral_list:
params = self.dihedral_parameters(dihedral)
if params != None:
try:
dihedrals[dihedral].append(dihedral)
except KeyError:
dihedrals[dihedral] = [dihedral]
dihedral_params[dihedral] = params
all_dihedrals = {}
dihedral_comments = {}
indexed_dihedral_params = {}
ID = 0
count = 0
for d in dihedrals:
ID += 1
params = dihedral_params[d]
all_dihedrals[ID] = dihedrals[d]
indexed_dihedral_params[ID] = list(dihedral_params[d])
dihedral_comments[ID] = list(d)
count += len(dihedrals[d])
self.dihedral_data = {'all_dihedrals':all_dihedrals, 'params':indexed_dihedral_params, 'style':'harmonic', 'count':(count, len(all_dihedrals)), 'comments':dihedral_comments}
def enumerate_impropers(self):
SG = self.system['graph']
impropers = {}
for n in SG.nodes(data=True):
i, data = n
nbors = list(SG.neighbors(i))
if len(nbors) == 3:
nbors = sorted([(m,SG.node[m]['force_field_type']) for m in nbors], key=lambda x:x[1])
fft_nbors = [m[1] for m in nbors]
nbors = [m[0] for m in nbors]
fft_i = data['force_field_type']
j,k,l = nbors
imp = [i, j, k, l]
fft_j, fft_k, fft_l = fft_nbors
imp_type = (fft_i, fft_j, fft_k, fft_l)
try:
impropers[imp_type].append(imp)
except KeyError:
impropers[imp_type] = [imp]
all_impropers = {}
improper_params = {}
improper_comments = {}
ID = 0
count = 0
for i in impropers:
params = self.improper_parameters(i)
if params != None:
ID += 1
improper_params[ID] = list(params)
improper_comments[ID] = list(i)
all_impropers[ID] = impropers[i]
count += len(impropers[i])
self.improper_data = {'all_impropers':all_impropers, 'params':improper_params, 'style':'fourier', 'count':(count, len(all_impropers)), 'comments':improper_comments}
def compile_force_field(self, charges=False):
self.type_atoms()
self.pair_parameters(charges)
self.enumerate_bonds()
self.enumerate_angles()
self.enumerate_dihedrals()
self.enumerate_impropers()