-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_smiles.py
226 lines (199 loc) · 8.65 KB
/
train_smiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
from rdkit import Chem
from rdkit.Chem import Draw, AllChem
import torch
from torch.utils.data import DataLoader
import wandb
import numpy as np
from accelerate import Accelerator
from x_transformers import Decoder
from torchvision import transforms
from transformers import AutoImageProcessor, Swinv2Model, ViTModel
from transformers import AutoTokenizer, BertModel, PreTrainedTokenizerFast
from data.contants import RGroupSymbols
from data.smiles_dataset import (Image2SmilesDataset, SmilesRemoveNum, to_canonical,
SmilesReplaceWithR, TransformV1, molecule_abbrevs, ImageTransform, RandomTransform, RandomNoise, cxsmiles_decode)
from model.molecule_model import MolecularExpert
image_size = (384, 384)
image_model_name = 'microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft'
text_model_name = 'bert-base-cased'
accelerator = Accelerator()
if accelerator.is_main_process:
wandb.init(
# set the wandb project where this run will be logged
project='AI for Chemistry-Molecular Image Recognition',
# track hyperparameters and run metadata
config={
'image_model': image_model_name,
'text_model': text_model_name,
'multimodal_model': 'gpt'
}
)
with open('uspto_data/train.txt', 'r') as fp:
train_reaction_smarts = fp.readlines()
train_smiles = set()
for line in train_reaction_smarts:
reaction = Chem.AllChem.ReactionFromSmarts(line.strip())
for mol in reaction.GetReactants():
smiles = Chem.MolToSmiles(mol)
train_smiles.add(smiles)
for mol in reaction.GetProducts():
smiles = Chem.MolToSmiles(mol)
train_smiles.add(smiles)
# if len(train_smiles) > 100:
# break
train_smiles = list(train_smiles)
with open('uspto_data/valid.txt', 'r') as fp:
valid_reaction_smarts = fp.readlines()
valid_smiles = set()
for line in valid_reaction_smarts:
reaction = Chem.AllChem.ReactionFromSmarts(line.strip())
for mol in reaction.GetReactants():
smiles = Chem.MolToSmiles(mol)
valid_smiles.add(smiles)
for mol in reaction.GetProducts():
smiles = Chem.MolToSmiles(mol)
valid_smiles.add(smiles)
# if len(valid_smiles) > 100:
# break
valid_smiles = list(valid_smiles)
smiles_tokenizer = PreTrainedTokenizerFast(tokenizer_file="config/smiles_tokenizer.json")
smiles_tokenizer.mask_token = '[MASK]'
smiles_tokenizer.pad_token = '[EOS]'
smiles_tokenizer.unk_token = '[UNK]'
smiles_tokenizer.sep_token = '[SEP]'
smiles_tokenizer.cls_token = '[CLS]'
smiles_tokenizer.bos_token = '[BOS]'
smiles_tokenizer.eos_token = '[EOS]'
# 加入固定的R基团名字,避免被分词切开
for symbol in RGroupSymbols.keys():
if symbol not in smiles_tokenizer.vocab:
smiles_tokenizer.add_tokens(symbol, special_tokens=True)
# 加入数据增强
smiles_transform = transforms.Compose([SmilesRemoveNum(0.9), SmilesReplaceWithR(0.4, 5)])
image_preprocesser = AutoImageProcessor.from_pretrained(image_model_name)
image_transform = ImageTransform(
transforms.Compose([
RandomTransform(transforms.GaussianBlur((5, 5), 1), 0.0),
transforms.RandomPerspective(0.3, 0.1),
transforms.RandomAdjustSharpness(0, 0.3),
RandomNoise(0.2)
]),
image_preprocesser)
train_transform_smiles = TransformV1(
mol_size=image_size,
smiles_tokenizer=smiles_tokenizer,
smiles_transform=smiles_transform,
mol_transform=molecule_abbrevs,
image_transform=image_transform,
return_graph=False,
num_r_groups_in_text=0)
valid_transform_smiles = TransformV1(
mol_size=image_size,
smiles_tokenizer=smiles_tokenizer,
smiles_transform=smiles_transform,
mol_transform=molecule_abbrevs,
image_transform=ImageTransform(None, image_preprocesser),
return_graph=False,
num_r_groups_in_text=0)
train_set = Image2SmilesDataset(train_smiles, transform=train_transform_smiles)
valid_set = Image2SmilesDataset(valid_smiles, transform=valid_transform_smiles)
train_loader = DataLoader(train_set, batch_size=32, shuffle=False, drop_last=True, num_workers=8)
valid_loader = DataLoader(valid_set, batch_size=1, shuffle=False, drop_last=True)
image_model = Swinv2Model.from_pretrained(image_model_name)
tokenizer = None# AutoTokenizer.from_pretrained(text_model_name)
text_model = None# BertModel.from_pretrained(text_model_name)
gpt = Decoder(
dim = 768,
depth = 6,
heads = 8
)
raw_model = MolecularExpert(False, image_model, tokenizer, text_model, smiles_tokenizer, gpt, max_seq_len=512)
accelerator.print(raw_model)
total_step = 100001
def linear_lr_with_warmup(total_step, warmup_rate=0.05):
def lr_scheduler(step):
step = step / accelerator.state.num_processes
wanmup_step = int(total_step*warmup_rate)
if step < wanmup_step:
return step / wanmup_step + 1e-6
else:
return 1 - (step - wanmup_step) / (total_step - warmup_rate)
return lr_scheduler
optim = torch.optim.Adam(raw_model.parameters(), lr=4e-4)
scheduler = torch.optim.lr_scheduler.LambdaLR(optim, linear_lr_with_warmup(total_step))
train_loader, valid_loader, model, optim, scheduler = accelerator.prepare(
train_loader, valid_loader, raw_model, optim, scheduler
)
train_loader_iter = iter(train_loader)
valid_loader_iter = iter(valid_loader)
for step in range(total_step):
batch = next(train_loader_iter)
optim.zero_grad()
out = model(batch, is_train=True)
losses = model.get_smiles_loss(out, batch)
accelerator.backward(losses['total_loss'])
optim.step()
scheduler.step()
if step % 100 == 0 and accelerator.is_main_process:
for k, v in losses.items():
wandb.log({'Losses/{}'.format(k): v})
current_lr = optim.param_groups[0]['lr']
wandb.log({'Training/lr': current_lr})
wandb.log({'Training/Global Step': step})
accelerator.print('Step: {}, Loss: {}'.format(step, losses['total_loss']))
if step % 500 == 0 and step > 0 and accelerator.is_main_process:
raw_images = []
cutted_images = []
pred_images = []
for val_step in range(5):
data = next(valid_loader_iter)
pred = model(data, is_train=False)
raw_smiles = data['smiles'][0]
raw_mol = Chem.MolFromSmiles(raw_smiles)
if raw_mol is None:
raw_mol = Chem.MolFromSmiles('* |$Failed$|')
raw_image = Draw.MolToImage(raw_mol, size=image_size)
raw_image = wandb.Image(raw_image, caption=raw_smiles)
raw_images.append(raw_image)
cutted_image = torch.permute(data['image'][0], (1, 2, 0))
cutted_image = cutted_image.cpu().numpy()
text = data['text'][0]
image_mean = np.asarray([[image_preprocesser.image_mean]])
image_std = np.asarray([[image_preprocesser.image_std]])
cutted_image = wandb.Image(np.clip(cutted_image * image_std + image_mean, 0, 1), caption=text)
cutted_images.append(cutted_image)
pred_smiles = pred['smiles']
pred_smiles = ''.join(pred_smiles.split(' '))
pred_smiles = cxsmiles_decode(pred_smiles, smiles_tokenizer)
pred_mol = Chem.MolFromSmiles(pred_smiles)
if pred_mol is None:
pred_mol = Chem.MolFromSmiles('* |$Failed$|')
pred_image = Draw.MolToImage(pred_mol, size=image_size)
pred_image = wandb.Image(pred_image, caption=pred_smiles)
pred_images.append(pred_image)
wandb.log({'raw molecular': raw_images, 'cutted molecular': cutted_images, 'pred molecular': pred_images})
if step % 2000 == 0 and step > 0 and accelerator.is_main_process:
if not os.path.isdir('saved_ckpt'):
os.mkdir('saved_ckpt')
torch.save(raw_model.state_dict(), 'saved_ckpt/{}.pt'.format(step))
if step % 10000 == 0 and step > 0 and accelerator.is_main_process:
canonical_cxsmiles = []
canonical_decoded_cxsmiles = []
correct_num = 0
for val_step in range(200):
data = next(valid_loader_iter)
pred = model(data, is_train=False)
raw_smiles = data['smiles'][0]
raw_smiles = to_canonical(raw_smiles)
pred_smiles = pred['smiles']
pred_smiles = ''.join(pred_smiles.split(' '))
pred_smiles = cxsmiles_decode(pred_smiles, smiles_tokenizer)
pred_smiles = to_canonical(pred_smiles)
canonical_cxsmiles.append(raw_smiles)
canonical_decoded_cxsmiles.append(pred_smiles)
if raw_smiles == pred_smiles:
correct_num += 1
wandb.log({'Training/Accuracy': correct_num/200})
if accelerator.is_main_process:
wandb.finish()