forked from AbertayMachineLearningGroup/MQTT_ML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpcap_parser.py
562 lines (464 loc) · 21.4 KB
/
pcap_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import numpy as np
import pandas as pd
import dpkt
from print_packets import *
import time
import sys
import datetime
start_time = time.time()
output_uniflows_separately = True
pkt_num_list = []
time_list = []
ip_src_list = []
ip_dst_list = []
ip_len_list = []
proto_list = []
prt_src_list = []
prt_dst_list = []
tcp_psh_flag_list = []
tcp_rst_flag_list = []
tcp_urg_flag_list = []
def get_mean(l):
if len(l) == 0:
return 0
elif len(l) == 1:
return l[0]
else:
return np.absolute(np.diff(np.sort(l))).mean()
packet_dict = {'pkt_num': pkt_num_list,
'time': time_list,
'ip_src': ip_src_list,
'ip_dst': ip_dst_list,
'ip_len': ip_len_list,
'proto': proto_list,
'prt_src': prt_src_list,
'prt_dst': prt_dst_list,
'tcp_psh': tcp_psh_flag_list,
'tcp_rst': tcp_rst_flag_list,
'tcp_urg': tcp_urg_flag_list}
# All traffic is either TCP or UDP
#f = open('nmap_scan_all_10x_network_sU_Scan.pcap', 'rb')
#f = open('normal_operation.pcap', 'rb')
sliding_window = False
if len(sys.argv) > 1:
print(sys.argv[1])
f = open(sys.argv[1], 'rb')
output_file = sys.argv[1].replace(".pcap", "_WithWindowing.csv")
else:
f = open('bruteforce.pcap', 'rb')
output_file = 'bruteforce.csv'
if len(sys.argv) > 2 and sys.argv[2] == "0":
output_file = sys.argv[1].replace(".pcap", ".csv")
sliding_window = False
pcap = dpkt.pcap.Reader(f)
count = 1
l2count = 0
icmpcount = 0
igmpcount = 0
udpcount=0
tcpcount=0
unknown_transport_layer = 0
for ts, buf in pcap:
if count == 1:
global_t0 = datetime.datetime.utcfromtimestamp(ts)
if (count > 0):
eth = dpkt.ethernet.Ethernet(buf)
if not isinstance(eth.data, dpkt.ip.IP):
#print('Non IP Packet type not supported %s\n' % eth.data.__class__.__name__)
l2count+=1
continue
l3 = eth.data
if isinstance(l3.data, dpkt.icmp.ICMP):
icmpcount+=1
#print("ICMP Packet disarded")
continue
if isinstance(l3.data, dpkt.igmp.IGMP):
igmpcount+=1
continue
###### If packet is icmp then continue
#print(l3)
l4 = l3.data
if not isinstance(l4, dpkt.tcp.TCP) and not isinstance(l4, dpkt.udp.UDP):
unknown_transport_layer += 1
continue
pkt_num_list.append(count)
time_list.append(ts)
ip_src_list.append(inet_to_str(l3.src))
ip_dst_list.append(inet_to_str(l3.dst))
ip_len_list.append(len(eth.data))
#ip_tos_list.append(l3.tos)
if isinstance(l4, dpkt.tcp.TCP):
tcpcount+=1
proto_list.append('TCP')
prt_src_list.append(l4.sport)
prt_dst_list.append(l4.dport)
#syn_flag = ( l4.flags & dpkt.tcp.TH_SYN ) != 0
rst_flag = ( l4.flags & dpkt.tcp.TH_RST ) != 0
psh_flag = ( l4.flags & dpkt.tcp.TH_PUSH) != 0
#ack_flag = ( l4.flags & dpkt.tcp.TH_ACK ) != 0
urg_flag = ( l4.flags & dpkt.tcp.TH_URG ) != 0
tcp_psh_flag_list.append(psh_flag)
tcp_rst_flag_list.append(rst_flag)
tcp_urg_flag_list.append(urg_flag)
if isinstance(l4, dpkt.udp.UDP):
udpcount+=1
proto_list.append('UDP')
prt_src_list.append(l4.sport)
prt_dst_list.append(l4.dport)
# Need to add a value to these to maintain consistent rows across lists - will add zeros
tcp_psh_flag_list.append(False)
tcp_rst_flag_list.append(False)
tcp_urg_flag_list.append(False)
count+=1
print("L2 packets dicarded = ", l2count)
print("ICMP packets dicarded = ", icmpcount)
print("IGMP packets dicarded = ", igmpcount)
print("Unknown Trnsport Layer packets dicarded = ", unknown_transport_layer)
print("UDP packets = ", udpcount)
print("TCP packets = ", tcpcount)
packet_df = pd.DataFrame(packet_dict)
packet_df.set_index('pkt_num', inplace=True)
# ************Create a list of tuples that identify each indepent flow
tuplist_flowid = {}
flow_count = 0
flow_list_dict = {}
tcpflowcount = 0
udpflowcount = 0
for index in range(len(pkt_num_list)):
mytup = (ip_src_list[index], ip_dst_list[index], prt_src_list[index], prt_dst_list[index], proto_list[index])
str_temp = "_".join(str(v) for v in mytup)
if str_temp not in tuplist_flowid:
tuplist_flowid[str_temp] = flow_count
flow_list_dict[flow_count] = []
flow_count += 1
current_flow_id = tuplist_flowid[str_temp]
flow_tup = (
ip_src_list[index], ip_dst_list[index], prt_src_list[index], prt_dst_list[index], proto_list[index],
pkt_num_list[index], time_list[index], ip_len_list[index], tcp_psh_flag_list[index], tcp_rst_flag_list[index],
tcp_urg_flag_list[index], current_flow_id)
flow_list_dict[current_flow_id].append(flow_tup)
if len(flow_list_dict[current_flow_id]) == 1:
if flow_list_dict[current_flow_id][0][4] == 'TCP':
tcpflowcount+=1
if flow_list_dict[current_flow_id][0][4] == 'UDP':
udpflowcount+=1
del tuplist_flowid
print("\nNumber of flows = ", flow_count)
packet_dict = {'pkt_num': pkt_num_list,
'time': time_list,
'ip_src': ip_src_list,
'ip_dst': ip_dst_list,
'ip_len': ip_len_list,
'proto': proto_list,
'prt_src': prt_src_list,
'prt_dst': prt_dst_list,
'tcp_psh': tcp_psh_flag_list,
'tcp_rst': tcp_rst_flag_list,
'tcp_urg': tcp_urg_flag_list}
print("\nUnique flows = ", len(flow_list_dict))
print("\nflow list list element = ", flow_list_dict[0][0])
if len(flow_list_dict[0]) > 1:
print("\nflow list list element = ", flow_list_dict[0][1])
if len(flow_list_dict[0]) > 2:
print("\nflow list list element = ", flow_list_dict[0][2])
print("UDP flows = ", udpflowcount)
print("TCP flows = ", tcpflowcount)
class uniFlow:
def __init__(self, ip_src, ip_dst, prt_src, prt_dst, proto, num_pkts,
mean_iat, std_iat, min_iat, max_iat, mean_offset, mean_pkt_len,
std_pkt_len, min_pkt_len, max_pkt_len, num_bytes, num_psh_flags,
num_rst_flags, num_urg_flags):
self.ip_src = ip_src
self.ip_dst = ip_dst
self.prt_src = prt_src
self.prt_dst = prt_dst
self.proto = proto
self.num_pkts = num_pkts # num pkts in this flow
self.mean_iat = mean_iat # ave interarrival time
self.std_iat = std_iat # std dev of IAT (jitter-ish)
self.min_iat = min_iat
self.max_iat = max_iat
self.mean_offset = mean_offset
self.mean_pkt_len = mean_pkt_len # ave pckt len per flow
self.std_pkt_len = std_pkt_len # std deviation of packet lengths
self.max_pkt_len = max_pkt_len
self.min_pkt_len = min_pkt_len
self.num_bytes = num_bytes
self.num_psh_flags = num_psh_flags
self.num_rst_flags = num_rst_flags
self.num_urg_flags = num_urg_flags
self.processed = False
meta_list = []
meta_list_time_0 = []
f_count = 0
for key in flow_list_dict:
flow_list = flow_list_dict[key]
pkt = flow_list[0] # get first pkt in the flow
#0 is ip_src
#1 is ip_dst
#2 is prt_src
#3 is prt_dst
#4 is proto
#5 is pkt_num
#6 is time
#7 is ip_len
#8 is tcp_psh_flag
#9 is tcp_rst_flag
#10 is tcp_urg_flag
#11 is flow_id
ip_src = pkt[0]
ip_dst = pkt[1]
prt_src = pkt[2]
prt_dst = pkt[3]
proto = pkt[4]
if proto == 'TCP':
proto = 6
elif proto == 'UDP':
proto = 17
num_pkts = len(flow_list)
# need to calc inter-arrival time and ave pkt length
length_list = []
time_list = []
psh_list = []
rst_list = []
urg_list = []
for p in flow_list:
length_list.append(p[7])
time_list.append(p[6])
psh_list.append(p[8])
rst_list.append(p[9])
urg_list.append(p[10])
mean_pkt_len = sum(length_list) / num_pkts
pkt_len_arry = np.array(length_list)
std_pkt_len = float(np.std(pkt_len_arry))
min_pkt_len = float(min(pkt_len_arry))
max_pkt_len = float(max(pkt_len_arry))
num_bytes = sum(length_list)
num_psh_flags = sum(psh_list)
num_rst_flags = sum(rst_list)
num_urg_flags = sum(urg_list)
if num_pkts > 1:
time_list.sort(reverse = True) # put times in descending order
t_diff = abs(np.diff(time_list))
mean_iat = sum(t_diff) / (num_pkts - 1)
std_iat = np.std(t_diff) # std dev of IAT
min_iat = min(t_diff)
max_iat = max(t_diff)
# Kenzi's apparently good feature is the mean time between the first
# packet and each sucessive packet: (t2-t1) + (t3-t1) + (t4-t1) / n
time_list.sort() # sort into ascending order now
t0 = time_list[0]
time_total = 0.0
for f in range(1, num_pkts):
time_total += abs(t0 - time_list[f])
mean_offset = time_total / (num_pkts - 1)
else:
mean_iat = 0.0
std_iat = 0.0
min_iat = 0.0
max_iat = 0.0
mean_offset = 0.0
uniflow = uniFlow(ip_src, ip_dst, prt_src, prt_dst, proto, num_pkts, mean_iat,
std_iat, min_iat, max_iat, mean_offset, mean_pkt_len, std_pkt_len,
min_pkt_len, max_pkt_len, num_bytes, num_psh_flags,
num_rst_flags, num_urg_flags)
meta_list.append(uniflow)
meta_list_time_0.append((datetime.datetime.utcfromtimestamp(time_list[0]) - global_t0).seconds // 60)
f_count +=1
def uniFlow2df(uniflow):
df = pd.DataFrame(columns=['ip_src', 'ip_dst', 'prt_src', 'prt_dst', 'proto', 'num_pkts',
'mean_iat', 'std_iat', 'min_iat', 'max_iat', 'mean_offset', 'mean_pkt_len',
'std_pkt_len', 'min_pkt_len', 'max_pkt_len', 'num_bytes',
'num_psh_flags', 'num_rst_flags', 'num_urg_flags'])
df.loc[0,'ip_src'] = str(uniflow.ip_src)
df.loc[0,'ip_dst'] = str(uniflow.ip_dst)
df.loc[0,'prt_src'] = int(uniflow.prt_src)
df.loc[0,'prt_dst'] = int(uniflow.prt_dst)
df.loc[0,'proto'] = int(uniflow.proto)
df.loc[0,'num_pkts'] = int(uniflow.num_pkts)
df.loc[0,'mean_iat'] = float(uniflow.mean_iat)
df.loc[0,'std_iat'] = float(uniflow.std_iat)
df.loc[0,'min_iat'] = float(uniflow.min_iat)
df.loc[0,'max_iat'] = float(uniflow.max_iat)
df.loc[0,'mean_offset'] = float(uniflow.mean_offset)
df.loc[0,'mean_pkt_len'] = float(uniflow.mean_pkt_len)
df.loc[0,'std_pkt_len'] = float(uniflow.std_pkt_len)
df.loc[0,'min_pkt_len'] = float(uniflow.min_pkt_len)
df.loc[0,'max_pkt_len'] = float(uniflow.max_pkt_len)
df.loc[0,'num_bytes'] = int(uniflow.num_bytes)
df.loc[0,'num_psh_flags'] = int(uniflow.num_psh_flags)
df.loc[0,'num_rst_flags'] = int(uniflow.num_rst_flags)
df.loc[0,'num_urg_flags'] = int(uniflow.num_urg_flags)
return df
if output_uniflows_separately:
#feature_df = pd.DataFrame()
feature_df = pd.DataFrame(columns=['ip_src', 'ip_dst', 'prt_src', 'prt_dst', 'proto',
'num_pkts', 'mean_iat', 'std_iat', 'min_iat',
'max_iat', 'mean_offset', 'mean_pkt_len', 'num_bytes', 'num_psh_flags',
'num_rst_flags', 'num_urg_flags'])
for flow in meta_list:
flow_df = uniFlow2df(flow)
feature_df = feature_df.append(flow_df, ignore_index=True, sort=False)
#feature_df.to_csv('robert_stealth.csv', sep=',')
feature_df.to_csv('uniflow_' + output_file, sep=',')
print('\nAll uniflows processed')
# No convert uniflows into biflows
#ßfor uniflow in feature_df:
##################################
# Combine uniflows into biflows
df_biflow = pd.DataFrame(columns=['ip_src', 'ip_dst', 'prt_src', 'prt_dst', 'proto', 'fwd_num_pkts', 'bwd_num_pkts',
'fwd_mean_iat', 'bwd_mean_iat', 'fwd_std_iat', 'bwd_std_iat', 'fwd_min_iat', 'bwd_min_iat',
'fwd_max_iat', 'bwd_max_iat','fwd_mean_offset', 'bwd_mean_offset', 'fwd_mean_pkt_len', 'bwd_mean_pkt_len',
'fwd_std_pkt_len', 'bwd_std_pkt_len', 'fwd_min_pkt_len', 'bwd_min_pkt_len',
'fwd_max_pkt_len', 'bwd_max_pkt_len', 'fwd_num_bytes', 'bwd_num_bytes',
'fwd_num_psh_flags', 'bwd_num_psh_flags',
'fwd_num_rst_flags', 'bwd_num_rst_flags', 'fwd_num_urg_flags', 'bwd_num_urg_flags'])
#feature_df['processed'] = False
#feature_row = feature_df.iloc[0,:].copy()
# process the TCP flows
print('\nProcessing TCP flows')
sibilings_counts = {}
delta_avg = {}
bi_flow_time = []
num_uniflows = len(meta_list)
for row_num in range(num_uniflows):
current = meta_list[row_num]
current_time = meta_list_time_0[row_num]
if (current.processed == False):
ip_src=current.ip_src
ip_dst=current.ip_dst
prt_src=current.prt_src
prt_dst = current.prt_dst
proto = current.proto
# Get reverse tuple values
rev_ip_src = ip_dst
rev_ip_dst = ip_src
rev_prt_src = prt_dst
rev_prt_dst = prt_src
for inner_row in range(row_num, num_uniflows):
if (current.processed == True):
continue;
inner = meta_list[inner_row]
inner_ip_src=inner.ip_src
inner_ip_dst=inner.ip_dst
inner_prt_src=inner.prt_src
inner_prt_dst = inner.prt_dst
inner_proto = inner.proto
if (rev_ip_src == inner_ip_src) and (rev_ip_dst == inner_ip_dst) and (rev_prt_src == inner_prt_src) and (rev_prt_dst == inner_prt_dst) and (proto == inner_proto):
# matching flow found!
meta_list[row_num].processed = True
meta_list[inner_row].processed = True
biflowlist = [str(current_time)+'_'+current.ip_src, current.ip_src, current.ip_dst, current.prt_src, current.prt_dst, current.proto,
current.num_pkts, inner.num_pkts, current.mean_iat, inner.mean_iat, current.std_iat,
inner.std_iat, current.min_iat, inner.min_iat, current.max_iat, inner.max_iat,current.mean_offset, inner.mean_offset,
current.mean_pkt_len, inner.mean_pkt_len, current.std_pkt_len, inner.std_pkt_len,
current.min_pkt_len, inner.min_pkt_len, current.max_pkt_len, inner.max_pkt_len,
current.num_bytes, inner.num_bytes, current.num_psh_flags, inner.num_psh_flags,
current.num_rst_flags, inner.num_rst_flags, current.num_urg_flags, inner.num_urg_flags]
columns_list=['sec_ip_src', 'ip_src', 'ip_dst', 'prt_src', 'prt_dst',
'proto', 'fwd_num_pkts', 'bwd_num_pkts',
'fwd_mean_iat', 'bwd_mean_iat', 'fwd_std_iat',
'bwd_std_iat', 'fwd_min_iat', 'bwd_min_iat',
'fwd_max_iat', 'bwd_max_iat', 'fwd_mean_offset', 'bwd_mean_offset', 'fwd_mean_pkt_len',
'bwd_mean_pkt_len', 'fwd_std_pkt_len', 'bwd_std_pkt_len',
'fwd_min_pkt_len', 'bwd_min_pkt_len',
'fwd_max_pkt_len', 'bwd_max_pkt_len', 'fwd_num_bytes',
'bwd_num_bytes', 'fwd_num_psh_flags', 'bwd_num_psh_flags',
'fwd_num_rst_flags', 'bwd_num_rst_flags', 'fwd_num_urg_flags',
'bwd_num_urg_flags']
df_biflow = df_biflow.append(pd.DataFrame([biflowlist], columns = columns_list), ignore_index=True, sort=False)
else:
continue
else:
continue
print('\nProcessing UDP flows')
# Process the UDP flows
for row_num in range(num_uniflows):
current = meta_list[row_num]
current_time = meta_list_time_0[row_num]
if (current.processed == False):
ip_src=current.ip_src
ip_dst=current.ip_dst
prt_src=current.prt_src
prt_dst = current.prt_dst
proto = current.proto
# Get reverse tuple values
rev_ip_src = ip_dst
rev_ip_dst = ip_src
rev_prt_src = prt_dst
rev_prt_dst = prt_src
if proto == 17:
meta_list[row_num].processed = True
# UDP flows have no reverse direction so i have filled the redundant fields with
# dupicate forward direction data
biflowlist = [str(current_time)+'_'+current.ip_src,current.ip_src, current.ip_dst, current.prt_src, current.prt_dst, current.proto,
current.num_pkts, current.num_pkts, current.mean_iat, current.mean_iat, current.std_iat,
current.std_iat, current.min_iat, current.min_iat, current.max_iat, current.max_iat, current.mean_offset, current.mean_offset,
current.mean_pkt_len, current.mean_pkt_len, current.std_pkt_len, current.std_pkt_len,
current.min_pkt_len, current.min_pkt_len, current.max_pkt_len, current.max_pkt_len,
current.num_bytes, current.num_bytes, current.num_psh_flags, current.num_psh_flags,
current.num_rst_flags, current.num_rst_flags, current.num_urg_flags, current.num_urg_flags]
columns_list=['sec_ip_src','ip_src', 'ip_dst', 'prt_src', 'prt_dst',
'proto', 'fwd_num_pkts', 'bwd_num_pkts',
'fwd_mean_iat', 'bwd_mean_iat', 'fwd_std_iat',
'bwd_std_iat', 'fwd_min_iat', 'bwd_min_iat',
'fwd_max_iat', 'bwd_max_iat','fwd_mean_offset', 'bwd_mean_offset','fwd_mean_pkt_len',
'bwd_mean_pkt_len', 'fwd_std_pkt_len', 'bwd_std_pkt_len',
'fwd_min_pkt_len', 'bwd_min_pkt_len',
'fwd_max_pkt_len', 'bwd_max_pkt_len', 'fwd_num_bytes',
'bwd_num_bytes', 'fwd_num_psh_flags', 'bwd_num_psh_flags',
'fwd_num_rst_flags', 'bwd_num_rst_flags', 'fwd_num_urg_flags',
'bwd_num_urg_flags']
df_biflow = df_biflow.append(pd.DataFrame([biflowlist], columns = columns_list), ignore_index=True, sort=False)
else:
continue
del pkt_num_list
del proto_list
del prt_dst_list
del prt_src_list
del tcp_psh_flag_list
del tcp_rst_flag_list
del time_list
del ip_dst_list
del ip_src_list
del ip_len_list
del tcp_urg_flag_list
del packet_df
del packet_dict
del meta_list
del flow_list
del flow_list_dict
if 'feature_df' in globals():
del feature_df
# Now add flow-bundle data
# Add the numbe of flowws from each IP address and measure of the
# variability of destination port numbers that packets are sent to
# we will sort the port numbers in order then take the mean difference
# a value of 1 should indicate an incremental port scanner
print('Number of bi flows = {}'.format(np.size(df_biflow, axis = 0)))
df_biflow['num_src_flows'] = 0
df_biflow['src_ip_dst_prt_delta'] = 0
biflow_column = 'sec_ip_src'
if sliding_window == False:
biflow_column = 'ip_src'
addr_dict = dict(df_biflow[biflow_column].value_counts())
print(addr_dict)
print('-------------')
print( dict(df_biflow['ip_src'].value_counts()))
print('\nComputing number of flows per source')
for key, value in addr_dict.items():
df_biflow.loc[df_biflow[biflow_column] == key, 'num_src_flows'] = value
print('\nComputing number of port destinations per source')
for key, value in addr_dict.items():
rows = df_biflow[df_biflow[biflow_column] == key]['prt_dst']
l = list(rows)
l.sort()
ave_diff = 0
if len(l) == 1:
ave_diff = l[0]
elif len(l) > 0:
ave_diff = np.absolute(np.diff(l)).mean()
df_biflow.loc[df_biflow[biflow_column] == key, 'src_ip_dst_prt_delta']= ave_diff
df_biflow.to_csv('biflow_' + output_file, sep=',')
# normal.pcap has 3305 packets and 1719 unique flows
print('Parsing the file took {} seconds'.format(time.time() - start_time))