-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
118 lines (98 loc) · 3.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain import HuggingFacePipeline, PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import CTransformers
from langchain.chains import RetrievalQA
from auto_gptq import AutoGPTQForCausalLM
import chainlit as cl
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline
# # # # First check if cuda is available otherwise just use cpu
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
# # # # This is a list of pre-prompts
SYSTEM_PROMPT = """
- Your name is Saf-Agent.
- Use the following pieces of information to answer the user's question.
- If you don't know the answer, just say that you don't know and don't try to make up an answer.
Context: {context}
Question: {question}
Only return the helpful answer below and nothing else.
Helpful answer:
"""
# # # # Loading the model
def load_llm():
# I've selected quantized Llama2 7B finetuned on instruction. Other models could be used !
model_name_or_path = "TheBloke/Llama-2-7B-Chat-GPTQ"
mode_basename = "model"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
model_name_or_path,
revision="gptq-4bit-128g-actorder_True",
model_basename=mode_basename,
use_safetensors=True,
trust_remote_code=True,
inject_fused_attention=False,
device=DEVICE,
quantize_config=None,
)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=500,
do_sample=True,
top_p=0.95,
repetition_penalty=1.15,
streamer=streamer,
)
# Load the LLM model here
llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0})
return llm
# # # # QA Model Function
def qa_ai_chat():
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': DEVICE})
db = Chroma(persist_directory='./db', embedding_function=embeddings)
llm = load_llm()
# Prompt template for QA retrieval for each vectorstore
qa_prompt = PromptTemplate(template=SYSTEM_PROMPT,
input_variables=['context', 'question'])
#Retrieval QA Chain
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type='stuff',
retriever=db.as_retriever(search_kwargs={'k': 2, 'threshold':0.5}),
return_source_documents=True,
chain_type_kwargs={'prompt': qa_prompt}
)
return qa
#output function
def final_result(query):
qa_result = qa_ai_chat()
response = qa_result({'query': query})
return response
#chainlit code
@cl.on_chat_start
async def start():
chain = qa_ai_chat()
msg = cl.Message(content="Starting the bot...")
await msg.send()
msg.content = "Hi, I'm Saf-Agent. How can I help?"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message.content, callbacks=[cb])
answer = res["result"]
sources = res["source_documents"][0].metadata
if sources:
answer += f"\n" + str(sources)
else:
answer += "\nNo sources found"
await cl.Message(content=answer).send()