-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
247 lines (209 loc) · 11.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from utils import get_config, get_model_list
from trainer import MUSIC_Trainer
from torch.autograd import Variable
from tqdm import tqdm
import numpy as np
try:
from itertools import izip as zip
except ImportError: # will be 3.x series
pass
import torch
import os
import librosa
import museval
import dsdtools
import soundfile as sf
import cv2
import pickle
class GenerateMusic:
def __init__(self, input_wav, encode, decode, enhance):
super(GenerateMusic, self).__init__()
self.enhance = enhance
self.input_wav = input_wav
self.decode = decode
self.encode = encode
def stft_music(self):
# stft and feature extraction
fft_size = 512
hopsamp = fft_size // 8
stft_full_mixture = librosa.core.stft(self.input_wav, n_fft=fft_size, hop_length=hopsamp, win_length=fft_size)
stft_full_mixture = stft_full_mixture.transpose()
stft_len = stft_full_mixture.shape[0]
stft_mag = abs(stft_full_mixture)
stft_mag = stft_mag[:, 0:-1]
stft_mag_out = stft_mag
if stft_mag.shape[0] % 256 != 0:
stft_mag = np.concatenate((stft_mag[0:len(stft_mag) // 256 * 256, :],
stft_mag[-256:, :]))
stft_angle = np.angle(stft_full_mixture)
stft_mag = np.interp(stft_mag, (stft_mag.min(), stft_mag.max()), (-0, +1))
stft_mag = stft_mag ** 0.3
stft_mag = (stft_mag - 0.5) * 2
stft_images_t = np.reshape(stft_mag, (stft_mag.shape[0] // 256, 256, stft_mag.shape[1]))
stft_images = np.empty((stft_mag.shape[0] // 256, stft_mag.shape[1], 256))
counter = 0
for image in stft_images_t:
stft_images[counter] = image.transpose()
counter += 1
# run through the net and create masks
stft_images = torch.from_numpy(stft_images).type('torch.FloatTensor')
masks_mat = np.empty([0])
with torch.no_grad():
for i, images in enumerate(stft_images):
images = Variable(images.cuda())
images = images.unsqueeze(0)
images = images.unsqueeze(0)
outputs = self.decode(self.encode(images))
if masks_mat.size == 0:
masks_mat = outputs
elif (i == stft_images.shape[0] - 1) and (stft_len % 256 != 0):
overlap_size = 256 - stft_len + masks_mat.shape[3]
masks_mat[:, :, :, -overlap_size:] = masks_mat[:, :, :, -overlap_size:] / 2 + outputs[:, :, :,
:overlap_size] / 2
masks_mat = torch.cat((masks_mat, outputs[:, :, :, overlap_size:]), 3)
else:
masks_mat = torch.cat((masks_mat, outputs), 3)
masks_mat = masks_mat.squeeze()
masks_mat = masks_mat.detach().cpu().numpy()
masks_mat = masks_mat.transpose()
return masks_mat, stft_mag_out, stft_angle
def mask_the_music(self, masks_mat, stft_mag, stft_angle):
# separate original music array to two complementary music arrays e.g. vocals and accompaniment
zeros_vec = np.zeros((masks_mat.shape[0], 1))
masks_mat = masks_mat ** self.enhance
masks_mat = cv2.bilateralFilter(masks_mat, 3, 10, 10)
masked_mag_stft = stft_mag * masks_mat
vocals_mag_stft = stft_mag - masked_mag_stft
vocals_mag_stft = np.concatenate((vocals_mag_stft, zeros_vec), axis=1)
interference_mag_stft = np.concatenate((masked_mag_stft, zeros_vec), axis=1)
vocals_stft = vocals_mag_stft * np.exp(1.0j * stft_angle)
interference_stft = interference_mag_stft * np.exp(1.0j * stft_angle)
fft_size = 512
hopsamp = fft_size // 8
recon_vocals = librosa.core.istft(vocals_stft.transpose(), hop_length=hopsamp, win_length=fft_size,
dtype='float64')
recon_inter = librosa.core.istft(interference_stft.transpose(), hop_length=hopsamp, win_length=fft_size,
dtype='float64')
return recon_vocals, recon_inter
def forward(self):
masks_mat, stft_mag_out, stft_angle = self.stft_music()
recon_vocals, recon_inter = self.mask_the_music(masks_mat, stft_mag_out, stft_angle)
return recon_vocals, recon_inter
def test_stft_dsd(config, checkpoint_dir, output_folder='./outputs/',
method_name='abl_1', target='vocals', is_test=False):
"""
Testing/evaluating the net. For given generator, pruduces sdr, sir and sar for DSD100 dataset.
:param config: path to config file
:param checkpoint_dir: checkpoint_dir: path to generator's saved parameters. In case of evaluating during training,
path to checkpoints directory.
:param output_folder: desired output path
:param method_name: name of method
:param target: desired target (vocals/drums/bass)
:param is_test: flag, when running during training should be False. True for total DSD100 evaluation for a given checkpoint.
:return: stat parameters for the net, added to tensorboard.
"""
dsd = dsdtools.DB(root_dir='../../data/datasets/music/DSD100')
tracks = dsd.load_dsd_tracks(subsets='Test')
config = get_config(config)
trainer = MUSIC_Trainer(config)
enhance = 9
if ~is_test:
tracks = [tracks[i] for i in [17, 41, 6, 23, 31]]
last_gen_name = get_model_list(checkpoint_dir, "gen")
state_dict = torch.load(last_gen_name)
trainer.gen.load_state_dict(state_dict['gen'])
trainer.cuda()
trainer.eval()
encode, decode = trainer.gen.encode, trainer.gen.decode
recon_list = []
sdr_list, sir_list, sar_list = [], [], []
sdr_list_inter, sir_list_inter, sar_list_inter =[], [], []
print(method_name)
for track in tqdm(tracks):
sample_rate = 20480
music_array, music_array_ref, music_array_inter = music_track(track, target)
music_array_samp = librosa.resample(music_array.transpose(), track.rate, sample_rate)
masker_l = GenerateMusic(music_array_samp[0, :], encode, decode, enhance=enhance) # default was 8
recon_vocals_l, recon_inter_l = masker_l.forward()
masker_r = GenerateMusic(music_array_samp[1, :], encode, decode, enhance=enhance)
recon_vocals_r, recon_inter_r = masker_r.forward()
recon_vocals = np.vstack((recon_vocals_l, recon_vocals_r))
recon_inter = np.vstack((recon_inter_l, recon_inter_r))
recon_vocals = librosa.resample(recon_vocals, sample_rate, track.rate)
recon_inter = librosa.resample(recon_inter, sample_rate, track.rate)
recon_vocals = recon_vocals.transpose()
recon_inter = recon_inter.transpose()
recon_list.append(recon_vocals)
if len(music_array_ref) > len(recon_vocals):
len_diff = len(music_array_ref) - len(recon_vocals)
recon_vocals = np.concatenate((recon_vocals, recon_vocals[-len_diff:, :]))
recon_inter = np.concatenate((recon_inter, recon_inter[-len_diff:, :]))
elif len(music_array_ref) < len(recon_vocals):
recon_vocals = recon_vocals[0:len(music_array_ref), :]
recon_inter = recon_inter[0:len(music_array_ref), :]
reference_music = np.array([music_array_ref, music_array_inter])
estimates_music = np.array([recon_vocals, recon_inter])
sdr_b, _, sir_b, sar_b, _ = museval.metrics.bss_eval_images_framewise(reference_music, estimates_music,
window=1323000, hop=661500)
sdr, sir, sar = sdr_b[0], sir_b[0], sar_b[0]
sdr_inter, sir_inter, sar_inter = sdr_b[1], sir_b[1], sar_b[1]
sdr, sir, sar = np.mean(sdr[~np.isnan(sdr)]), np.mean(sir[~np.isnan(sir)]), np.mean(sar[~np.isnan(sar)])
sdr_inter, sir_inter, sar_inter = np.mean(sdr_inter[~np.isnan(sdr_inter)]), \
np.mean(sir_inter[~np.isnan(sir_inter)]), np.mean(sar_inter[~np.isnan(sar_inter)])
sdr_list.append(sdr), sir_list.append(sir), sar_list.append(sar)
sdr_list_inter.append(sdr_inter), sir_list_inter.append(sir_inter), sar_list_inter.append(sar_inter)
sdr_max = max(sdr_list)
sdr_max_loc = sdr_list.index(sdr_max)
sir_max = max(sir_list)
sir_max_loc = sir_list.index(sir_max)
sdr_median, sir_median, sar_median = np.median(sdr_list), np.median(sir_list), np.median(sar_list)
sdr_median_inter, sir_median_inter, sar_median_inter = np.median(sdr_list_inter), \
np.median(sir_list_inter), np.median(sar_list_inter)
output_folder = output_folder + method_name
if not os.path.exists(output_folder):
print("Creating directory: {}".format(output_folder))
os.makedirs(output_folder)
stats = [sdr_median, sir_median, sar_median, sdr_median_inter, sir_median_inter, sar_median_inter]
stats_name = ['sdr_median', 'sir_median', 'sar_median', 'sdr_median_inter', 'sir_median_inter', 'sar_median_inter']
with open(os.path.join(output_folder, 'stats_final_test.txt'), 'w') as f:
for stat_name, stat in zip(stats_name, stats):
f.write("%s\n" % stat_name), f.write("%s\n" % stat)
print(stat_name + ': ' + str(stat))
stats_dic = {'sdr': sdr_list, 'sir': sir_list, 'sar': sar_list, 'sdr_inter': sdr_list_inter,
'sir_inter': sir_list_inter, 'sar_inter': sar_list_inter}
outfile = os.path.join(output_folder, 'final_results')
save_obj(stats_dic, outfile)
music_2_write = recon_list[sdr_max_loc]
music_2_write_sec = recon_list[sir_max_loc]
sf.write(os.path.join(output_folder, 'best_sdr_iter_' + tracks[sdr_max_loc].filename + '.wav'), music_2_write, track.rate)
sf.write(os.path.join(output_folder, 'best_sir_iter_' + tracks[sir_max_loc].filename + '.wav'), music_2_write_sec, track.rate)
return sdr_median, sir_median, sar_median, sdr_max, sir_max
def music_track(track, target):
music_array = track.audio
if target == 'vocals':
music_array_ref = track.targets['vocals'].audio
music_array_inter = track.targets['accompaniment'].audio
elif target == 'drums':
music_array_ref = track.targets['drums'].audio
music_array_inter = track.targets['vocals'].audio
music_array_inter += track.targets['bass'].audio
music_array_inter += track.targets['other'].audio
elif target == 'bass':
music_array_ref = track.targets['bass'].audio
music_array_inter = track.targets['vocals'].audio
music_array_inter += track.targets['drums'].audio
music_array_inter += track.targets['other'].audio
else:
raise('Not a valid target!')
return music_array, music_array_ref, music_array_inter
def save_obj(obj, name):
with open(name + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(name):
with open(name + '.pkl', 'rb') as f:
return pickle.load(f)
if __name__ == '__main__':
test_stft_dsd(config='./configs/vocals_new.yaml',
checkpoint_dir='./data/singing_outputs/outputs/vocals_new/checkpoints/',
output_folder='./outputs/',
method_name='method_1', target='vocals', is_test=True)