forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_gpt.sh
164 lines (137 loc) · 3.97 KB
/
pretrain_gpt.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/bin/bash
#SBATCH <SLURM OPTIONS> --nodes=128 --exclusive --ntasks-per-node=8 --job-name=megatron_gpt3_175b
export CUDA_DEVICE_MAX_CONNECTIONS=8
DIR=`pwd`
DATETIME=`date +'date_%y-%m-%d_time_%H-%M-%S'`
mkdir -p $DIR/logs
# VOCAB_SIZE is either 32k, 64k, 128k or 256k
if [ -z "$VOCAB_SIZE" ]; then
VOCAB_SIZE=256k
fi
DATASET="/tmp/vp_sample_dataset_v${VOCAB_SIZE}/dataset/c4_text_document"
TOKENIZER="/tmp/vp_sample_dataset_v${VOCAB_SIZE}/tokenizer/vp_sample_dataset.model"
if [ ! -e "$DATASET"".idx" ]; then
wget https://huggingface.co/datasets/mtyeung/vocab_parallel_sample_dataset/resolve/main/vp_sample_dataset_v${VOCAB_SIZE}.tar.gz
tar -xvf vp_sample_dataset_v${VOCAB_SIZE}.tar.gz -C /tmp
fi
# Running locally
if [ -z "$WORLD_SIZE" ]; then
export WORLD_SIZE=1
export RANK=0
export MASTER_ADDR=localhost
export MASTER_PORT=10086
fi
if [ -z "$GPUS_PER_NODE" ]; then
GPUS_PER_NODE=$(nvidia-smi --list-gpus | wc -l)
fi
if [ -z "$EXIT_INTERVAL" ]; then
EXIT_INTERVAL=1000
fi
WORLD_SIZE_IN_GPUS=$(( $WORLD_SIZE * $GPUS_PER_NODE ))
if [ -z "$PIPELINE_SIZE" ]; then
PIPELINE_SIZE=$(( $WORLD_SIZE_IN_GPUS))
LAYERS=$(( $PIPELINE_SIZE * 4))
MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=$(( $PIPELINE_SIZE * 3 * $MICRO_BATCH_SIZE ))
HIDDEN_SIZE=4096
ATTENTION_HEADS=32
fi
profile_ranks="0"
for ((i = 1; i < $WORLD_SIZE_IN_GPUS; i++)); do
profile_ranks="$profile_ranks $i"
done
if [ -z "$ZERO_BUBBLE_TIMER_START" ]; then
ZERO_BUBBLE_TIMER_START=100
ZERO_BUBBLE_TIMER_END=110
fi
if [ -z "$EVAL_INTERVAL" ]; then
EVAL_INTERVAL=10000
fi
if [ -z "$TP_SIZE" ]; then
TP_SIZE=1
fi
if [ -z "$SEQ_LENGTH" ]; then
SEQ_LENGTH=2048
fi
if [ -z "$IMM_SIZE" ]; then
IMM_SIZE=$(( 4 * $HIDDEN_SIZE ))
fi
options=" \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PIPELINE_SIZE \
--num-layers $LAYERS \
--hidden-size $HIDDEN_SIZE \
--ffn-hidden-size $IMM_SIZE \
--num-attention-heads $ATTENTION_HEADS \
--exit-interval $EXIT_INTERVAL \
--seq-length $SEQ_LENGTH \
--max-position-embeddings $SEQ_LENGTH \
--micro-batch-size $MICRO_BATCH_SIZE \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples 146484375 \
--lr-decay-samples 126953125 \
--lr-warmup-samples 183105 \
--lr 6.0e-5 \
--min-lr 6.0e-6 \
--lr-decay-style cosine \
--log-interval 10 \
--eval-iters 40 \
--eval-interval $EVAL_INTERVAL \
--data-path ${DATASET} \
--tokenizer-type GPTSentencePieceTokenizer \
--tokenizer-model ${TOKENIZER} \
--split 98,2,0 \
--clip-grad 8.0 \
--weight-decay 0.1 \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--init-method-std 0.006 \
--no-barrier-with-level-1-timing \
--profile-step-start 22 \
--profile-step-end 23 \
--profile-ranks $profile_ranks \
--use-flash-attn \
--sequence-parallel \
--untie-embeddings-and-output-weights \
--attention-dropout 0 \
--hidden-dropout 0 \
--use-cpu-initialization \
--use-distributed-optimizer \
--initial-loss-scale 65536 \
--no-create-attention-mask-in-dataloader"
if [ -z "$FP32" ]; then
options="$options --fp16"
fi
if [ ! -z "$PROFILED" ]; then
options="$options --profile"
fi
if [ ! -z "$VOCAB_PARALLEL" ]; then
options="$options --enable-vocab-parallel"
if [ ! -z "$INTERLACED_SCHEDULE" ]; then
options="$options --use-interlaced-schedule"
fi
if [ ! -z "$FB_SPLIT" ]; then
options="$options --disable-backward-fusion"
fi
fi
if [ ! -z "$ENABLE_LAYER_REDISTRIBUTION" ]; then
options="$options --enable-layer-redistribution \
--final-stage-num-layers $FINAL_STAGE_LAYERS"
fi
run_cmd="torchrun --nnodes $WORLD_SIZE \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
--nproc_per_node=$GPUS_PER_NODE ${DIR}/pretrain_gpt.py $@ ${options}"
if [ ! -z "$PROFILED" ]; then
run_cmd="nsys profile -s none -t nvtx,cuda \
--output $AIP_RUN_NAME.$RANK.nsys-rep \
--force-overwrite true \
--capture-range=cudaProfilerApi \
--capture-range-end=stop \
$run_cmd"
fi
echo $run_cmd
# sleep 100000
eval $run_cmd
set +x