forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_retro.py
244 lines (203 loc) · 8.09 KB
/
pretrain_retro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
"""Pretrain Retro."""
from functools import partial
import torch
from megatron.training import get_args
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.training import print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core import tensor_parallel
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.utils import get_blend_from_list
from megatron.core.datasets.retro.query.retro_dataset import get_retro_datasets
from megatron.core.datasets.retro.query.multi_split_gpt_dataset import MultiSplitGPTDataset, MultiSplitGPTDatasetConfig
from megatron.core.enums import ModelType
from megatron.core.models.retro import get_retro_decoder_block_spec, RetroConfig, RetroModel
from megatron.core.models.retro.utils import get_all_true_mask
from megatron.training import pretrain
from megatron.training.utils import get_ltor_masks_and_position_ids
from pretrain_gpt import (
is_dataset_built_on_rank,
loss_func,
model_provider as default_model_provider,
train_valid_test_datasets_provider as gpt_train_valid_test_datasets_provider,
)
def get_retro_config():
return core_transformer_config_from_args(get_args(), RetroConfig)
def core_model_provider(pre_process=True, post_process=True):
"""Build the model using Megatron-Core."""
args = get_args()
config = get_retro_config()
# NOTE: Experimental customization feature
if args.spec is not None:
block_spec = import_module(args.spec)()
else:
block_spec = get_retro_decoder_block_spec(config, use_transformer_engine=True)
print_rank_0('building GPT model ...')
model = RetroModel(
config=config,
transformer_layer_spec=block_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent
)
return model
def model_provider(pre_process=True, post_process=True):
"""Build the model.
Select between two different model classes:
1. Default model (uses megatron.legacy.models/gpt_model.py).
2. Core model (uses megatron/core/models/retro/model.py).
"""
args = get_args()
if not args.use_legacy_models and args.retro_add_retriever:
provider = core_model_provider
else:
provider = default_model_provider
model = provider(pre_process=pre_process, post_process=post_process)
return model
def get_batch(data_iterator):
"""Generate a batch"""
args = get_args()
tokenizer = get_tokenizer()
config = get_retro_config()
# Items and their type.
keys = ['text']
if args.retro_add_retriever:
keys.append('neighbor_tokens')
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
if args.retro_add_retriever:
# note: [bs * l * k, r]
# note: 2x == neighbor, continuation
neighbor_tokens = data_b['neighbor_tokens'] \
.view(-1, config.retro_retrieved_length).long()
_, _, neighbor_position_ids = get_ltor_masks_and_position_ids(
neighbor_tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
neighbor_attention_mask = get_all_true_mask(
(1, 1, config.retro_retrieved_length, config.retro_retrieved_length),
neighbor_tokens.device)
return tokens, labels, loss_mask, attention_mask, position_ids, \
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids
else:
return tokens, labels, loss_mask, attention_mask, position_ids
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator').start()
if args.retro_add_retriever:
tokens, labels, loss_mask, attention_mask, position_ids, \
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
get_batch(data_iterator)
else:
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
data_iterator)
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
None, None, None
timers('batch-generator').stop()
# Model call.
if args.use_legacy_models:
forward_kwargs = {
"retriever_input_ids" : neighbor_tokens,
"retriever_position_ids" : neighbor_position_ids,
"retriever_attn_mask" : neighbor_attention_mask,
}
else:
if args.retro_add_retriever:
forward_kwargs = {
"context_input_ids" : neighbor_tokens,
"context_position_ids" : neighbor_position_ids,
"context_mask" : neighbor_attention_mask,
}
else:
forward_kwargs = {}
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels, **forward_kwargs)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_valid_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
# Dataset config.
retro_config = get_retro_config()
data_config = MultiSplitGPTDatasetConfig(
random_seed=args.seed,
sequence_length=args.seq_length,
blend=get_blend_from_list(args.data_path),
blend_per_split=[
get_blend_from_list(args.train_data_path),
get_blend_from_list(args.valid_data_path),
get_blend_from_list(args.test_data_path)
],
split=args.split,
split_preprocessing=retro_config.retro_split_preprocessing,
path_to_cache=args.data_cache_path,
return_document_ids=False,
tokenizer=get_tokenizer(),
reset_position_ids=args.reset_position_ids,
reset_attention_mask=args.reset_attention_mask,
eod_mask_loss=args.eod_mask_loss,
)
# GPT datasets.
print_rank_0(" > multi-split gpt datasets.")
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
MultiSplitGPTDataset,
train_valid_test_num_samples,
is_dataset_built_on_rank,
data_config,
).build()
gpt_datasets = {
"train" : (train_ds, train_valid_test_num_samples[0]),
"valid" : (valid_ds, train_valid_test_num_samples[1]),
"test" : (test_ds, train_valid_test_num_samples[2]),
}
# Retro datasets.
if args.retro_add_retriever:
return get_retro_datasets(
config=retro_config,
gpt_datasets=gpt_datasets,
sample_length=args.seq_length,
eod_token_id=get_tokenizer().eod,
)
# Multi-split GPT datasets.
else:
return (
gpt_datasets["train"][0],
gpt_datasets["valid"][0],
gpt_datasets["test"][0],
)
if __name__ == "__main__":
# Temporary for transition to core datasets.
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.retro_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})