-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathcontent_encoder.py
167 lines (133 loc) · 4.81 KB
/
content_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Copyright (c) 2020, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Encode DB content.
"""
import difflib
from mo_future import string_types
from rapidfuzz import fuzz
import src.utils.utils as utils
from src.utils.utils import deprecated
class Match(object):
def __init__(self, start, size):
self.start = start
self.size = size
def is_span_separator(c):
return c in '\'"()`,.?! '
def split(s):
return [c.lower() for c in s.strip()]
def prefix_match(s1, s2):
i, j = 0, 0
for i in range(len(s1)):
if not is_span_separator(s1[i]):
break
for j in range(len(s2)):
if not is_span_separator(s2[j]):
break
if i < len(s1) and j < len(s2):
return s1[i] == s2[j]
elif i >= len(s1) and j >= len(s2):
return True
else:
return False
def get_effecitve_match_source(s, start, end):
_start = -1
for i in range(start, start - 2, -1):
if i < 0:
_start = i + 1
break
if is_span_separator(s[i]):
_start = i
break
if _start < 0:
return None
_end = -1
for i in range(end - 1, end + 3):
if i >= len(s):
_end = i - 1
break
if is_span_separator(s[i]):
_end = i
break
if _end < 0:
return None
while(_start < len(s) and is_span_separator(s[_start])):
_start += 1
while(_end >= 0 and is_span_separator(s[_end])):
_end -= 1
return Match(_start, _end - _start + 1)
def get_matched_entries(s, field_values, m_theta=0.85, s_theta=0.85):
if not field_values:
return None
if isinstance(s, str):
n_grams = split(s)
else:
n_grams = s
matched = dict()
for field_value in field_values:
if not isinstance(field_value, string_types):
continue
fv_tokens = split(field_value)
sm = difflib.SequenceMatcher(None, n_grams, fv_tokens)
match = sm.find_longest_match(0, len(n_grams), 0, len(fv_tokens))
if match.size > 0:
source_match = get_effecitve_match_source(n_grams, match.a, match.a + match.size)
if source_match and source_match.size > 1:
match_str = field_value[match.b:match.b + match.size]
source_match_str = s[source_match.start:source_match.start+source_match.size]
c_match_str = match_str.lower().strip()
c_source_match_str = source_match_str.lower().strip()
c_field_value = field_value.lower().strip()
if c_match_str and not utils.is_number(c_match_str) and not utils.is_common_db_term(c_match_str):
if utils.is_stopword(c_match_str) or utils.is_stopword(c_source_match_str) or \
utils.is_stopword(c_field_value):
continue
if c_source_match_str.endswith(c_match_str + '\'s'):
match_score = 1.0
else:
if prefix_match(c_field_value, c_source_match_str):
match_score = fuzz.ratio(c_field_value, c_source_match_str) / 100
else:
match_score = 0
if (utils.is_commonword(c_match_str) or utils.is_commonword(c_source_match_str) or
utils.is_commonword(c_field_value)) and match_score < 1:
continue
s_match_score = match_score
if match_score >= m_theta and s_match_score >= s_theta:
if field_value.isupper() and match_score * s_match_score < 1:
continue
matched[match_str] = (field_value, source_match_str, match_score, s_match_score, match.size)
if not matched:
return None
else:
return sorted(matched.items(), key=lambda x:(1e16 * x[1][2] + 1e8 * x[1][3] + x[1][4]), reverse=True)
@deprecated
def split_old(s):
return [' '] + [c.lower() for c in s.strip()] + [' ']
@deprecated
def source_match_score(s, start, end):
_start = -1
for i in range(start, start-2, -1):
if i < 0:
_start = i + 1
break
if not s[i].strip():
_start = i
break
if _start < 0:
return 0
_end = -1
for i in range(end-1, end + 3):
if i >= len(s):
_end = i - 1
break
if not s[i].strip() or s[i] == ',':
_end = i
break
if _end < 0:
return 0
fuzzy_match_size = _end + 1 - _start
fuzzy_match_score = (end - start) / fuzzy_match_size
return fuzzy_match_score