-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmppi_dataset_collector.py
482 lines (439 loc) · 18.3 KB
/
mppi_dataset_collector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import logging
import time
from functools import partial
import imageio
import numpy as np
import torch
import torch.multiprocessing as multiprocessing
import wandb
from tqdm import tqdm
from config import dotdict, get_config, seed_all
from overlay import create_env, setup_logger, start_virtual_display
from planners.mppi_delay import MPPIDelay
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 'cpu'
logger = logging.getLogger()
def get_action_with_encode_obs_time(action_buffer, action, action_delay, nu):
action_buffer = torch.roll(action_buffer, -1, dims=0)
action_buffer[-1, :nu] = action
action_buffer[-1, nu:] = 0
return action_buffer, action_buffer[-(action_delay + 1), :nu]
def get_action(action_buffer, action, action_delay):
action_buffer = torch.roll(action_buffer, -1, dims=0)
action_buffer[-1] = action
return action_buffer, action_buffer[-(action_delay + 1)]
def inner_mppi_with_model_collect_data(
seed,
model_name, # 'nl', 'NN', 'oracle', 'random'
env_name, # pylint: disable=redefined-outer-name
action_delay,
roll_outs=1000,
time_steps=30,
lambda_=1.0,
sigma=1.0,
dt=0.05,
model_seed=11,
save_video=False,
state_constraint=False,
change_goal=False,
encode_obs_time=False,
model=None,
uniq=None,
log_debug=False,
episodes_per_sampler_task=10,
action_buffer_size=4,
config=None, # pylint: disable=redefined-outer-name
iter_=200,
change_goal_flipped_iter_=False,
ts_grid="exp",
intermediate_run=False,
):
if config is None:
config = dict()
config = dotdict(config)
env = create_env(env_name, dt=dt, ts_grid=ts_grid, friction=config.friction) # pyright: ignore
ACTION_LOW = env.action_space.low[0] # pyright: ignore
ACTION_HIGH = env.action_space.high[0] # pyright: ignore
nx = env.get_obs().shape[0] # pyright: ignore
nu = env.action_space.shape[0] # pyright: ignore
dtype = torch.double
gamma = sigma**2
off_diagonal = 0.5 * gamma
mppi_noise_sigma = torch.ones((nu, nu), device=device, dtype=dtype) * off_diagonal + torch.eye(
nu, device=device, dtype=dtype
) * (gamma - off_diagonal)
logger.info(mppi_noise_sigma) # pyright: ignore
mppi_lambda_ = 1.0
random_action_noise = config.collect_expert_random_action_noise
if model is None:
# if model_name == 'nl':
# model = get_nl(env_name, config=config, retrain=False, delay=action_delay, model_seed=model_seed, encode_obs_time=encode_obs_time)
# elif model_name == 'delta_t_rnn':
# model = w_delta_t_rnn(env_name, config=config, retrain=False, delay=action_delay)
# elif model_name == 'node':
# model = get_node(env_name, config=config, retrain=False, delay=action_delay)
if not (model_name == "oracle" or model_name == "random"):
model.double() # pyright: ignore
ts_pred = torch.tensor(dt, device=device, dtype=dtype).view(1, 1).repeat(roll_outs, 1)
if not (model_name == "oracle" or model_name == "random"):
def dynamics( # pyright: ignore
state,
perturbed_action,
encode_obs_time=encode_obs_time,
action_buffer_size=action_buffer_size,
model_name=model_name,
):
if encode_obs_time and model_name == "nl":
perturbed_action = torch.cat(
(
perturbed_action,
torch.flip(torch.arange(action_buffer_size, device=device), (0,))
.view(1, action_buffer_size, 1)
.repeat(perturbed_action.shape[0], 1, 1),
),
dim=2,
)
state_diff_pred = model(state, perturbed_action, ts_pred) # pyright: ignore
state_out = state + state_diff_pred
return state_out
elif model_name == "random":
def dynamics(state, perturbed_action):
pass
elif model_name == "oracle":
# Need to partial ts as dt !
if env_name == "oderl-pendulum":
from oracle import pendulum_dynamics_dt_delay
dynamics = pendulum_dynamics_dt_delay # pyright: ignore
elif env_name == "oderl-cartpole":
from oracle import cartpole_dynamics_dt_delay
dynamics = cartpole_dynamics_dt_delay # pyright: ignore
elif env_name == "oderl-acrobot":
from oracle import acrobot_dynamics_dt_delay
dynamics = acrobot_dynamics_dt_delay # pyright: ignore
dynamics = partial(dynamics, ts=ts_pred, delay=action_delay) # pyright: ignore
def running_cost(state, action):
if state_constraint:
reward = env.diff_obs_reward_( # pyright: ignore
state,
exp_reward=False,
state_constraint=state_constraint, # pyright: ignore
) + env.diff_ac_reward_( # pyright: ignore
action
)
elif change_goal:
global change_goal_flipped # pylint: disable=global-variable-not-assigned
reward = env.diff_obs_reward_( # pyright: ignore
state,
exp_reward=False,
change_goal=change_goal, # pyright: ignore
change_goal_flipped=change_goal_flipped, # pyright: ignore
) + env.diff_ac_reward_( # pyright: ignore
action
)
else:
reward = env.diff_obs_reward_(state, exp_reward=False) + env.diff_ac_reward_(action) # pyright: ignore
cost = -reward
# if state_constraint:
# cost = cost + (state[:,0] > 0.0).float() * - torch.nan_to_num(torch.log(1.0-state[:,0]))
# cost = cost + torch.exp((state[:,0] > 0.0).float() * state[:,0] * 10.0)
# cost = cost + (state[:,0] > 0.0).float() * state[:,0] * 10.0
# cost = cost * (1.0 + 10.0 * (state[:,0] > 0.0).float() * state[:,0])
# cost = cost - torch.nan_to_num(torch.log(1.0-state[:,0]))
return cost
mppi_gym = MPPIDelay(
dynamics, # pyright: ignore
running_cost,
nx,
mppi_noise_sigma,
num_samples=roll_outs,
horizon=time_steps,
device=device, # pyright: ignore
lambda_=mppi_lambda_,
u_min=torch.tensor(ACTION_LOW),
u_max=torch.tensor(ACTION_HIGH),
u_scale=ACTION_HIGH, # /2.0
encode_obs_time=config.encode_obs_time, # pyright: ignore
dt=dt,
)
if save_video:
start_virtual_display()
videos_folder = "./logs/new_videos"
from pathlib import Path
Path(videos_folder).mkdir(parents=True, exist_ok=True)
filename = f"{videos_folder}/{env_name}_{model_name}_{uniq}.mp4"
fps = int(1 / dt)
def step_env(env, action, action_buffer, action_delay, obs_noise):
at = torch.from_numpy(action).to(device)
if encode_obs_time:
action_buffer, at = get_action_with_encode_obs_time(action_buffer, at, action_delay=action_delay, nu=nu)
else:
action_buffer, at = get_action(action_buffer, at, action_delay=action_delay)
def g(state, t):
return at
returns = env.integrate_system(2, g, s0=torch.tensor(env.state).to(device), return_states=True)
state = returns[-1][-1]
reward = returns[2][-1]
tsn = returns[-2][-1, -1]
if encode_obs_time:
action_buffer[:, nu:] += tsn
action_buffer[-1, nu:] = 0
state += torch.randn_like(state) * obs_noise
env.set_state_(state.cpu().numpy())
state_out = env.get_obs()
if env.time_step >= env.n_steps:
logger.info( # pyright: ignore
"You are calling 'step()' even though this "
"environment has already returned done = True. You "
"should always call 'reset()' once you receive "
"'done = True'"
)
env.time_step += 1
done = True if env.time_step >= env.n_steps else False
return state_out, reward, done, action_buffer, tsn
def loop():
s0 = []
a0 = []
sn = []
ts = []
ACTION_LOW = env.action_space.low[0] # pyright: ignore
ACTION_HIGH = env.action_space.high[0] # pyright: ignore
if encode_obs_time:
action_buffer = torch.zeros((action_buffer_size, nu + 1), dtype=torch.double, device=device)
action_buffer[:, nu:] = (torch.flip(torch.arange(4), (0,)) * dt).view(-1, 1)
else:
action_buffer = torch.zeros((action_buffer_size, nu), dtype=torch.double, device=device)
it = 0
total_reward = 0
env.reset()
start_time = time.perf_counter()
mppi_gym.reset()
while it < iter_:
if change_goal_flipped_iter_ < it:
# pylint: disable-next=unused-variable,redefined-outer-name
change_goal_flipped = True # noqa
state = env.get_obs() # pyright: ignore
s0.append(state)
command_start = time.perf_counter()
if model_name != "random":
action = mppi_gym.command(state, action_buffer)
if random_action_noise is not None:
action += (
(torch.rand(nu, device=device) - 0.5) * 2.0 * env.action_space.high[0] # pyright: ignore
) * random_action_noise
action = action.clip(min=ACTION_LOW, max=ACTION_HIGH)
else:
action = torch.from_numpy(env.action_space.sample())
# a0.append(torch.concat(action_buffer, action))
elapsed = time.perf_counter() - command_start
state, reward, done, action_buffer, tsn = step_env( # pylint: disable=unused-variable
env,
action.detach().cpu().numpy(),
action_buffer,
action_delay=action_delay,
obs_noise=config.observation_noise, # pylint: disable=no-member
)
sn.append(state)
a0.append(action_buffer)
ts.append(tsn)
total_reward += reward
# print(f"action taken: {action.detach().cpu().numpy()} cost received: {-reward} |
# state {state.flatten()} time taken: {elapsed}s | {int(it/iter_*100)}% Complete \t | iter={it}")
if log_debug:
# pylint: disable-next=logging-fstring-interpolation
logger.info( # pyright: ignore
f"action taken: {action.detach().cpu().numpy()} cost received: {-reward} | state {state.flatten()} "
f"time taken: {elapsed}s | {int(it/iter_*100)}% Complete \t | iter={it}"
)
if save_video:
video.append_data( # pyright: ignore
env.render(mode="rgb_array", last_act=action.detach().cpu().numpy()) # pyright: ignore
)
it += 1
total_reward = total_reward.detach().cpu().item() # pyright: ignore
ddict = {
"model_name": model_name,
"env_name": env_name,
"roll_outs": roll_outs,
"time_steps": time_steps,
"uniq": uniq,
"episode_elapsed_time": time.perf_counter() - start_time,
"dt": dt,
"delay": action_delay,
"planner": "mpc",
"total_reward": total_reward,
}
if save_video:
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Video] Watch video at : {filename}") # pyright: ignore
if intermediate_run:
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Intermediate Result] {str(ddict)}") # pyright: ignore
else:
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Result] {str(ddict)}") # pyright: ignore
s0 = torch.from_numpy(np.stack(s0))
sn = torch.from_numpy(np.stack(sn))
a0 = torch.stack(a0).cpu()
ts = torch.stack(ts).cpu()
return ddict, (s0, a0, sn, ts)
episodes = []
for j in range(episodes_per_sampler_task): # pylint: disable=unused-variable
with torch.no_grad():
if save_video:
with imageio.get_writer(filename, fps=fps) as video:
result, episode_buffer = loop() # pylint: disable=unused-variable
episodes.append(episode_buffer)
else:
result, episode_buffer = loop()
episodes.append(episode_buffer)
return episodes
def mppi_with_model_collect_data(
model_name, # 'nl', 'NN', 'oracle', 'random'
env_name, # pylint: disable=redefined-outer-name
action_delay,
roll_outs=1000,
time_steps=30,
lambda_=1.0,
sigma=1.0,
dt=0.05,
model_seed=11,
save_video=False,
state_constraint=False,
change_goal=False,
encode_obs_time=False,
model=None,
uniq=None,
log_debug=False,
collect_samples=1e6,
action_buffer_size=4,
config_in=None,
debug_main=False,
ts_grid="exp",
intermediate_run=False,
):
if config_in is None:
config_in = dict()
MODELS = ["nl", "oracle", "random", "delta_t_rnn", "node", "latent_ode"]
assert model_name in MODELS
config = dotdict(dict(config_in)) # pylint: disable=redefined-outer-name
file_name = (
f"replay_buffer_env-name-{env_name}_delay-{action_delay}_model-name-{model_name}"
f"_encode-obs-time-{encode_obs_time}_action-buffer-size-{action_buffer_size}_ts-grid-{ts_grid}_"
f"random-action-noise-{config.collect_expert_random_action_noise}_"
f"observation-noise-{config.observation_noise}_friction-{config.friction}.pt"
)
if not config.collect_expert_force_generate_new_data:
# try:
final_data = torch.load(f"./offlinedata/{file_name}")
return final_data
# except FileNotFoundError as e:
# logger.info(f'[Replay buffer not found] Unable to find replay buffer -
# will generate a new one \t| file_name={file_name}')
global change_goal_flipped # pylint: disable=global-variable-undefined
change_goal_flipped = False
timelen = 10 # seconds
if change_goal:
timelen = timelen * 2.0
iter_ = timelen / dt
change_goal_flipped_iter_ = iter_ / 2.0
multi_inner_mppi_with_model_collect_data = partial(
inner_mppi_with_model_collect_data,
model_name=model_name, # 'nl', 'NN', 'oracle', 'random'
env_name=env_name,
action_delay=action_delay,
roll_outs=roll_outs,
time_steps=time_steps,
lambda_=lambda_,
sigma=sigma,
dt=dt,
model_seed=model_seed,
save_video=save_video,
state_constraint=state_constraint,
change_goal=change_goal,
encode_obs_time=encode_obs_time,
model=model,
uniq=uniq,
log_debug=log_debug,
episodes_per_sampler_task=config.collect_expert_episodes_per_sampler_task, # pyright: ignore
action_buffer_size=action_buffer_size,
config=dict(config),
ts_grid=ts_grid,
iter_=iter_, # pyright: ignore
change_goal_flipped_iter_=change_goal_flipped_iter_, # pyright: ignore
intermediate_run=intermediate_run,
)
total_episodes_needed = int(collect_samples / iter_)
task_inputs = [
run_seed
for run_seed in range(
int(total_episodes_needed / config.collect_expert_episodes_per_sampler_task) # pyright: ignore
)
]
episodes = []
if not debug_main:
pool_outer = multiprocessing.Pool(config.collect_expert_cores_per_env_sampler)
for i, result in tqdm( # pylint: disable=unused-variable
enumerate(pool_outer.imap_unordered(multi_inner_mppi_with_model_collect_data, task_inputs)),
total=len(task_inputs),
smoothing=0,
):
# print("INFO: Completed run {} of {}".format(i + 1, len(task_inputs)))
# logger.info("INFO: Completed run {} of {}".format(i + 1, len(task_inputs)))
episodes.extend(result)
else:
for i, task in tqdm(enumerate(task_inputs), total=len(task_inputs)):
result = multi_inner_mppi_with_model_collect_data(task)
# logger.info("INFO: Completed run {} of {}".format(i + 1, len(task_inputs)))
episodes.extend(result)
s0 = []
sn = []
a0 = []
ts = []
for episode in episodes:
(es0, ea0, esn, ets) = episode
s0.append(es0)
sn.append(esn)
a0.append(ea0)
ts.append(ets)
s0 = torch.cat(s0, dim=0)
sn = torch.cat(sn, dim=0)
a0 = torch.cat(a0, dim=0)
ts = torch.cat(ts, dim=0).view(-1, 1)
final_data = (s0, a0, sn, ts)
torch.save(final_data, f"./offlinedata/{file_name}")
pool_outer.close() # pyright: ignore
return final_data
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
defaults = get_config()
defaults["save_video"] = False
defaults["collect_expert_force_generate_new_data"] = True
# defaults['ts_grid'] = 'fixed'
# defaults['friction'] = False
wandb.init(config=defaults, project=defaults["wandb_project"], mode="disabled") # pyright: ignore
config = wandb.config
seed_all(0)
logger = setup_logger(__file__)
# for env_name in ['oderl-cartpole', 'oderl-acrobot', 'oderl-pendulum']:
for env_name in ["oderl-cartpole"]:
for delay in range(4):
# pylint: disable-next=logging-fstring-interpolation
logger.info(f"[Collecting data expert data] env_name={env_name} \t | delay={delay}") # pyright: ignore
results = mppi_with_model_collect_data(
model_name="oracle", # 'oracle', 'nl', 'nl', 'node'
action_delay=delay,
env_name=env_name,
roll_outs=config.mppi_roll_outs,
time_steps=config.mppi_time_steps,
lambda_=config.mppi_lambda,
sigma=config.mppi_sigma,
dt=config.dt,
collect_samples=1e6,
uniq=0,
debug_main=False,
encode_obs_time=config.encode_obs_time,
ts_grid=config.ts_grid,
config_in=config,
log_debug=False,
save_video=config.save_video,
)
logger.info("Fin.") # pyright: ignore