-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmppi_optim.yaml
36 lines (35 loc) · 895 Bytes
/
mppi_optim.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
program: mppi_with_model.py
method: bayes
metric:
goal: maximize
name: total_reward
parameters:
mppi_roll_outs:
# distribution: log_uniform
# # min: 0.0
# # max: 1.0
# # q: 1
values: [1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144]
mppi_time_steps:
# distribution: q_log_uniform
# min: 1
# max: 6
# q: 1
values: [1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144]
mppi_lambda:
# distribution: q_log_uniform
# min: -3
# max: 2
# q: 0.0001
values: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
mppi_sigma:
# distribution: q_log_uniform
# min: -3
# max: 2
# q: 0.0001
values: [0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 0.8, 1.0, 1.5, 2.0, 10.0, 100.0, 1000.0]
early_terminate:
type: hyperband
s: 2
eta: 3
max_iter: 27