forked from viswanathgs/The-Little-Schemer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch-05-oh-my-gawd-its-full-of-stars.ss
333 lines (309 loc) · 8.07 KB
/
ch-05-oh-my-gawd-its-full-of-stars.ss
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
;
; Code snippets from "The Little Schemer", 4th edition, by
; Daniel P. Friedman and Matthias Felleisen
;
; ((Chapter 05) "Oh My Gawd*: It's Full of Stars)
;
; Viswanath Sivakumar, aka viswanathgs <[email protected]>
;
; Define atom?
;
; True if S-expression is an atom.
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; Define rember*
;
; Recursively removes atom a from lat.
;
(define rember*
(lambda (a l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) a) (rember* a (cdr l)))
(else (cons (car l) (rember* a (cdr l))))))
(else (cons (rember* a (car l)) (rember* a (cdr l)))))))
;
(rember* 'cup '((coffee) cup ((tea) cup) (and (hick)) cup))
(rember* 'sauce '(((tomato sauce)) ((bean) sauce) (and ((flying)) sauce)))
; Define lat?
;
; True if S-expression is a list of atoms.
;
(define lat?
(lambda (l)
(cond
((null? l) #t)
((atom? (car l)) (lat? (cdr l)))
(else #f))))
;
(lat? '(((tomato sauce)) ((bean) sauce) (and ((flying)) sauce)))
(atom? (car '(((tomato sauce)) ((bean) sauce) (and ((flying)) sauce))))
; Define insertR*
;
; Recursively inserts new to the right of
; every occurrence of old in list l.
;
(define insertR*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old) (cons old (cons new (insertR* new old (cdr l)))))
(else (cons (car l) (insertR* new old (cdr l))))))
(else (cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))
;
(insertR* 'roast 'chuck '((how much (wood))
could
((a (wood) chuck))
(((chuck)))
(if (a) ((wood chuck)))
could chuck wood))
;
; ###############################################
;
; The First Commandment
;
; (final version)
;
; When recurring on a list of atoms, lat, ask
; two questions about it: (null? lat) and else.
; When recurring on a number, n, ask two
; questions about it: (zero? n) and else.
; When recurring on a list of S-expressions, l,
; ask three questions about it: (null? l),
; (atom? (car l)), and else.
;
; ###############################################
;
;
; ###############################################
;
; The Fourth Commandment
;
; (final version)
;
; Always change at least one argument while
; recurring. When recurring on a list of atoms,
; lat, use (cdr lat). When recurring on a
; number, n, use (sub1 n). And when recurring
; on a list of S-expressions, l, use (car l)
; and (cdr l) if neither (null? l) nor
; (atom? (car l)) are true.
;
; It must be changed to be closer to
; termination. The changing argument must be
; tested in the termination condition:
;
; when using cdr, test termination with null?
; and when using sub1, test termination with
; zero?.
;
; ###############################################
;
; Define add1
;
(define add1
(lambda (n)
(+ n 1)))
; Define sub1
;
(define sub1
(lambda (n)
(- n 1)))
; Define o+
;
; Adds two non-negative integers.
;
(define o+
(lambda (n m)
(cond
((zero? m) n)
(else (add1 (o+ n (sub1 m)))))))
; Define o-
;
; Subtracts m from n, where n and
; m are non-negative integers.
;
(define o-
(lambda (n m)
(cond
((zero? m) n)
(else (sub1 (o- n (sub1 m)))))))
; Define occur*
;
; Recursively counts the number of
; occurrences of atom a in l.
;
(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? (car l) a) (add1 (occur* a (cdr l))))
(else (occur* a (cdr l)))))
(else (o+ (occur* a (car l)) (occur* a (cdr l)))))))
;
(occur* 'banana '((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy)))
; Define subst*
;
; Recursively replaces all occurrences
; of old by new in l.
;
(define subst*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old) (cons new (subst* new old (cdr l))))
(else (cons (car l) (subst* new old (cdr l))))))
(else (cons (subst* new old (car l)) (subst* new old (cdr l)))))))
;
(subst* 'orange 'banana '((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy)))
; Define insertL*
;
; Recursively inserts new to the left
; of all occurrences of old in l.
;
(define insertL*
(lambda (new old l)
(cond
((null? l) (quote ()))
((atom? (car l))
(cond
((eq? (car l) old) (cons new (cons old (insertL* new old (cdr l)))))
(else (cons (car l) (insertL* new old (cdr l))))))
(else (cons (insertL* new old (car l)) (insertL* new old (cdr l)))))))
; Define member*
;
; Recursively checks if atom a is a
; member of l.
;
(define member*
(lambda (a l)
(cond
((null? l) #f)
((atom? (car l)) (or (eq? (car l) a) (member* a (cdr l))))
(else (or (member* a (car l)) (member* a (cdr l)))))))
;
(member* 'chips '((potato) (chips ((with) fish) (chips))))
; Define leftmost
;
; Finds the leftmost atom in a non-empty
; list of S-expressions that does not
; contain the empty list.
;
(define leftmost
(lambda (l)
(cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))
;
(leftmost '((potato) (chips ((with) fish) (chips))))
(leftmost '(((hot) (tuna (and))) cheese))
; and
;
(and (atom? (car '(mozzarella pizza))) (eq? (car '(mozzarella pizza)) 'pizza))
(and (atom? (car '((mozzarella mushroom) pizza))) (eq? (car '((mozzarella mushroom) pizza)) 'pizza))
(and (atom? (car '(pizza (tastes good)))) (eq? (car '(pizza (tastes good))) 'pizza))
; Note:
;
; (and a b) = (cond (a b) (else #f))
; (or a b) = (cond (a #t) (else b))
;
; Define o=
;
(define o=
(lambda (n m)
(cond
((zero? n) (zero? m))
((zero? m) #f)
(else (o= (sub1 n) (sub1 m))))))
; Define eqan?
;
; True if a1 and a2 are the same atom.
;
(define eqan?
(lambda (a1 a2)
(cond
((and (number? a1) (number? a2)) (o= a1 a2))
((or (number? a1) (number? a2)) #f)
(else (eq? a1 a2)))))
; Define eqlist?
;
; Checks if two lists of S-expressions
; are equal.
;
(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
((and (atom? (car l1)) (atom? (car l2)))
(and (eqan? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2))))
((or (atom? (car l1)) (atom? (car l2))) #f)
(else
(and (eqlist? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2)))))))
;
(eqlist? '(strawberry ice cream) '(strawberry ice cream))
(eqlist? '(strawberry ice cream) '(strawberry cream ice))
(eqlist? '(banana ((split))) '((banana) (split)))
(eqlist? '(beef ((sausage)) (and (soda))) '(beef ((salami)) (and (soda))))
(eqlist? '(beef ((sausage)) (and (soda))) '(beef ((sausage)) (and (soda))))
; Define equal?
;
; Checks if two S-expressions (an
; S-expression is either an atom or
; a list of S-expressions) are equal.
;
(define equal?
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2)) (eqan? s1 s2))
((or (atom? s1) (atom? s2)) #f)
(else (eqlist? s1 s2)))))
; Define eqlist? (using equal?)
;
(define eqlist?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
(else (and (equal? (car l1) (car l2)) (eqlist? (cdr l1) (cdr l2)))))))
;
; ###############################################
;
; The Sixth Commandment
;
; Simplify only after the function is correct.
;
; ###############################################
;
; Define rember
;
; Removes S-expression s from list l.
;
(define rember
(lambda (s l)
(cond
((null? l) '())
((equal? (car l) s) (cdr l))
(else (cons (car l) (rember s (cdr l)))))))