-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEEG_PostProc.m
196 lines (181 loc) · 7.4 KB
/
EEG_PostProc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function EEG_PostProc(work_dir)
%EEG time frequency decomposition and wavelet analysis
%% Set Necessary Parameters for Post-Processing
%assume pwd as working dir if not specified
if nargin<1
work_dir=pwd;
elseif strcmpi(work_dir(end),'/')
work_dir=work_dir(1:end-1);
end
load([work_dir,'/workspace.mat']);
addpath(genpath(params.Script_dir));
EEG_addeegscripts;
%% Extract Conditions (RawDataSet.mat)
clear n;
for n = 1:numPhase
%load .set file from pre-processing
EEG = pop_loadset('filepath',[params.Save_dir Phase{n,1}, ...
'/'],'filename',[params.subjectID,'-Analysis-Ready.set']);
%passing necessary EEG paramters to a structure of RawDataSet
%RawDataSet stores only necessary parameters from EEG for analysis
RawDataSet.(Phase{n,1})=CopyField(EEG,{'pnts','xmax','xmin','chaninfo',...
'chanlocs','srate'});
%preparing folders for data analysis
mkdir([params.Save_dir Phase{n,1} '/Conditions/']);
%make vectors of each condition
[Vector_struct,numCond,cond_code,cond_name]=...
EEG_makeVector(EEG,Task,Condition,Phase(n,:),...
'acc',Accuracy,'rmempty',1); %#ok<USENS,ASGLU>
RawDataSet.(Phase{n,1}).idx=Vector_struct.idx;
clear Vector_struct;
% Separating into conditions for each phase
for cond=1:numCond
clear EEG;
%load preproc .set file
EEG = pop_loadset('filepath',[params.Save_dir Phase{n,1},'/'],...
'filename',[params.subjectID,'-Analysis-Ready.set']);
%select trials with current condition
EEG = pop_select( EEG, 'trial', ...
RawDataSet.(Phase{n,1}).idx.(Condition{cond,1}));
EEG = pop_saveset(EEG,...
'filepath',[params.Save_dir Phase{n,1} '/Conditions/'],...
'filename',[params.subjectID,'-',Phase{n,1},'_',...
Condition{cond,1},'_all.set']);
%passing necessary EEG data to a structure
RawDataSet.(Phase{n,1}).data.(Condition{cond,1})=EEG.data;
end
end
save([params.Save_dir,'workspace.mat'],...
'numCond','cond_code','cond_name','-append');
%save a copy of the extracted conditions in a .mat format
mkdir([params.Save_dir,'Data/']);
save([params.Save_dir,'Data/RawDataSet.mat'],'RawDataSet');
%% Time-Frequency Analysis (ERSP-*.mat,ITC-*.mat)
%NEED TO MODIFY: use time intervals for modaf(?)
% need to increase time resolution(?)
% need to modify to loop phase (check)
%set parameters
if ~exist('RawDataSet','var')%in case RawDataSet is not present
load([params.Save_dir,'Data/RawDataSet.mat']);
end
if ~exist('Dict','var')%in case Dict is not present
load([params.Module_dir,'defaultParams.mat']);
end
freqs_in=Dict.Frequency.(params.bandInterest).frequency;
cycles=Dict.Frequency.(params.bandInterest).cycles;
clear n Dict taskSet;
for n=1:numPhase
disp(['Current Phase: ',Phase{n,1}]);
%Time Frequency Decomposition
[ERSP.(Phase{n,1}),ITC.(Phase{n,1}),powbase,times_out,freqs_out]=...
EEG_TimeFreq(RawDataSet.(Phase{n,1}),Phase(n,:),Condition,...
params.subjectID,freqs_in,cycles,...
'TimeStep',5,'contrast','on');
%save the parameters
TFparams.(Phase{n,1}).powbase=powbase;
TFparams.(Phase{n,1}).times_out=times_out;
TFparams.(Phase{n,1}).freqs_out=freqs_out;
end
save([params.Save_dir,'Data/ERSP_', params.subjectID,'_',...
num2str(min(freqs_out)),'-',num2str(max(freqs_out)),'Hz','.mat'],...
'ERSP');
save([params.Save_dir,'Data/ITC_', params.subjectID,'_',...
num2str(min(freqs_out)),'-',num2str(max(freqs_out)),'Hz','.mat'],...
'ITC');
save([params.Save_dir,'workspace.mat'],'TFparams','-append');
%% Exploration 1: Spectrogram
% load([params.Save_dir 'Data/ERSP_',params.subjectID,'_',...
% num2str(min(freqs_out)),'-',num2str(max(freqs_out)),'Hz.mat']);
% load([params.Save_dir 'Data/ITC_',params.subjectID,'_',...
% num2str(min(freqs_out)),'-',num2str(max(freqs_out)),'Hz.mat']);
load([params.Module_dir,'defaultParams.mat'],'Dict');
cond_type =Dict.Conditions;%a list of condition types
Region = fieldnames(Dict.(['Region',num2str(elecs.numChan)]));
clear c n k;
if ~exist([params.Save_dir,'Spectrogram_',params.bandInterest],'dir')
mkdir([params.Save_dir,'Spectrogram_',params.bandInterest]);
end
% Phase x Condition x Brain Region x Freq x Time
for n = 1:numPhase%Phase level
%load in necessary parameters for each Phase
times_out=TFparams.(Phase{n,1}).times_out;
freqs_out=TFparams.(Phase{n,1}).freqs_out;
for c = 1:length(cond_type) %Condition level
%find index available electrodes (ones having freq x time data)
ERSP_avail_elecs=find(...
~cellfun(@isempty,ERSP.(Phase{n,1}).(cond_type{c}).lead));
for k=1:length(Region) %Brain Region level
%get electrodes that are both available and
get_elecs=intersect(Dict.(['Region',num2str(...
elecs.numChan)]).(Region{k}),ERSP_avail_elecs);
%store the freq x time data to the spectogram
ERSP_Spectrogram.(Phase{n,1}).(cond_type{c}).(Region{k})=...
ERSP.(Phase{n,1}).(cond_type{c}).lead(get_elecs);
%average freq x time spectogram across all electrodes at a
%region
ERSP_Spectrogram_elecs_avg.(Phase{n,1}).(cond_type{c}).(...
Region{k})=EEG_meanSpect(ERSP_Spectrogram.(...
Phase{n,1}).(cond_type{c}).(Region{k}));
%generating a spectogram image
plot_name=[Phase{n,1},'-'....
cond_type{c},'-',Region{k}];%title of the plot
EEG_PlotSpectrogram(...
ERSP_Spectrogram_elecs_avg.(Phase{n,1}).(...
cond_type{c}).(Region{k}),times_out,freqs_out,...
[params.Save_dir,'Spectrogram_',...
params.bandInterest,'/',plot_name,'.tif'],...
'title',plot_name);
%Save the selected electrode at current PhasexCondxRegion
elecs.spect_elecs.(Phase{n,1}).(cond_type{c}).(Region{k})=...
get_elecs;
end
end
end
save([params.Save_dir,'Data/','ERSP_Spectrogram.mat'],...
'ERSP_Spectrogram','ERSP_Spectrogram_elecs_avg');
save([params.Save_dir,'workspace.mat'], 'elecs','-append');
%% Exploration 2: HeadPlot (on hold)
% mkdir([params.Save_dir,'HeadPlot']);
% load([params.Save_dir,'Data/RawDataSet']);
% load([params.Save_dir,'Data/ERSP_Spectrogram.mat']);
% % set scale
% scale_limits = [-1.5 1.5];
% %create headplot spline
% clear n;
% for n = 1:numPhase
% headplot('setup',RawDataSet.(Phase{n,1}).chanlocs,...
% [Phase{n,1},'headplot.spl']);
%
% figure;
% headplot(EEG.data,'headplot.spl','view',[0 90],...
% 'maplimits',scale_limits,'cbar',0,'electrodes','off');
% %saveas([params.Save_dir,'HeadPlot/',Phase{n,1},'-HeadPlot.tif'],...
% %'tiff');
% end
%
%
% EEG = pop_loadset('/nfs/erp-stroop/Glenn-Mar11/Cued_Stroop/sc-generic_set.set');
%
% % remove electrode locations by matching electrode number with EEG.chanlocs
% %.type
%
% bad_elecs = find(isnan(cue_mean_gamma_struct(:,1))')
%
% elecs = cellfun(@str2num,{EEG.chanlocs.type})
%
% remove_elecs = []
% for b=1:length(bad_elecs)
% if ~isempty(find(elecs == bad_elecs(b)))
% remove_elecs(end+1) = find(elecs == bad_elecs(b))
% end
% end
%
% EEG = pop_select( EEG, 'nochannel', remove_elecs);
%
% cue_mean_gamma_struct(bad_elecs,:) = []
%
% EEG.data = mean(cue_mean_gamma_struct,2)
%
% headplot('setup', EEG.chanlocs, 'headplot.spl');
%
% figure; headplot(EEG.data,'headplot.spl','view',[0 90],'maplimits',scale_limits,'cbar',0,'electrodes','off')