-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmodels.py
118 lines (86 loc) · 2.92 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
Custom models for training on cifar10 and mnist
BasicCNN and BasicNN
"""
import torch.nn.functional as F
import torch.nn as nn
class BasicCNN(nn.Module):
def __init__(self):
super(BasicCNN, self).__init__()
"""
input - (3, 32, 32)
block 1 - (32, 32, 32)
maxpool - (32, 16, 16)
block 2 - (64, 16, 16)
maxpool - (64, 8, 8)
block 3 - (128, 8, 8)
maxpool - (128, 4, 4)
block 4 - (128, 4, 4)
avgpool - (128, 1, 1), reshpe to (128,)
fc - (128,) -> (10,)
"""
# block 1
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
# block 2
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
# block 3
self.conv5 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv6 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
# block 4
self.conv7 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv8 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Linear(256, 10)
def forward(self, x):
# block 1
x = F.relu(self.conv1(x))
x = F.relu(self.bn1(self.conv2(x)))
# maxpool
x = F.max_pool2d(x, 2)
# block 2
x = F.relu(self.conv3(x))
x = F.relu(self.bn2(self.conv4(x)))
# maxpool
x = F.max_pool2d(x, 2)
# block 3
x = F.relu(self.conv5(x))
x = F.relu(self.bn3(self.conv6(x)))
# maxpool
x = F.max_pool2d(x, 2)
# block 4
x = F.relu(self.conv7(x))
x = F.relu(self.bn4(self.conv8(x)))
# avgpool and reshape to 1D
x = self.avgpool(x)
x = x.view(x.size(0), -1)
# fc
x = self.fc(x)
return x
class BasicNN(nn.Module):
def __init__(self):
super(BasicNN, self).__init__()
self.fc1 = nn.Linear(28*28, 512)
self.bn1 = nn.BatchNorm1d(512)
self.fc2 = nn.Linear(512, 512)
self.bn2 = nn.BatchNorm1d(512)
self.fc3 = nn.Linear(512, 256)
self.bn3 = nn.BatchNorm1d(256)
self.fc4 = nn.Linear(256, 128)
self.bn4 = nn.BatchNorm1d(128)
self.fc5 = nn.Linear(128, 64)
self.bn5 = nn.BatchNorm1d(64)
self.fc6 = nn.Linear(64, 10)
def forward(self, x):
x = F.relu(self.bn1(self.fc1(x)))
x = F.relu(self.bn2(self.fc2(x)))
x = F.relu(self.bn3(self.fc3(x)))
x = F.relu(self.bn4(self.fc4(x)))
x = F.relu(self.bn5(self.fc5(x)))
x = self.fc6(x)
return x