forked from mila-iqia/covid_p2p_risk_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattn.py
88 lines (71 loc) · 3.21 KB
/
attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# https://github.com/juho-lee/set_transformer/blob/master/modules.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class MAB(nn.Module):
EPS = 1e-7
def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False):
super(MAB, self).__init__()
self.dim_V = dim_V
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_Q, dim_V)
self.fc_k = nn.Linear(dim_K, dim_V)
self.fc_v = nn.Linear(dim_K, dim_V)
if ln:
self.ln0 = nn.LayerNorm(dim_V)
self.ln1 = nn.LayerNorm(dim_V)
self.fc_o = nn.Linear(dim_V, dim_V)
def forward(self, Q, K, weights=None):
Q = self.fc_q(Q)
K, V = self.fc_k(K), self.fc_v(K)
dim_split = self.dim_V // self.num_heads
Q_ = torch.cat(Q.split(dim_split, 2), 0)
K_ = torch.cat(K.split(dim_split, 2), 0)
V_ = torch.cat(V.split(dim_split, 2), 0)
A = self._compute_attention_weights(Q_, K_, weights)
O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2)
O = O if getattr(self, "ln0", None) is None else self.ln0(O)
O = O + F.relu(self.fc_o(O))
O = O if getattr(self, "ln1", None) is None else self.ln1(O)
return O
def _compute_attention_weights(self, Q_, K_, weights=None):
if weights is None:
# Simple codepath for unweighted attention
A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2)
else:
# If weights is a tensor, broadcast along all heads
if torch.is_tensor(weights):
weights = [weights] * self.num_heads
assert isinstance(weights, list) and len(weights) == self.num_heads
weights = torch.cat(weights, dim=0)
assert weights.shape[0] == Q_.shape[0]
# Log and clamp weights
log_weights = torch.log(weights.clamp_min(0.) + self.EPS)
attention_scores = Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V)
A = torch.softmax(attention_scores + log_weights, 2)
return A
class SAB(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, ln=False):
super(SAB, self).__init__()
self.mab = MAB(dim_in, dim_in, dim_out, num_heads, ln=ln)
def forward(self, X, weights=None):
return self.mab(X, X, weights)
class ISAB(nn.Module):
def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False):
super(ISAB, self).__init__()
self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out))
nn.init.xavier_uniform_(self.I)
self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln)
self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln)
def forward(self, X, weights=None):
H = self.mab0(self.I.repeat(X.size(0), 1, 1), X, weights)
return self.mab1(X, H, weights)
class PMA(nn.Module):
def __init__(self, dim, num_heads, num_seeds, ln=False):
super(PMA, self).__init__()
self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim))
nn.init.xavier_uniform_(self.S)
self.mab = MAB(dim, dim, dim, num_heads, ln=ln)
def forward(self, X, weights=None):
return self.mab(self.S.repeat(X.size(0), 1, 1), X, weights)