forked from mila-iqia/covid_p2p_risk_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
144 lines (126 loc) · 5.59 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from functools import reduce
from addict import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules import EntityMasker
def get_class(key):
KEY_CLASS_MAPPING = {
"infectiousness": InfectiousnessLoss,
"contagion": ContagionLoss,
}
return KEY_CLASS_MAPPING[key]
class EntityMaskedLoss(nn.Module):
def __init__(self, loss_cls):
super(EntityMaskedLoss, self).__init__()
self.loss_fn = loss_cls(reduction="none")
assert isinstance(self.loss_fn, (nn.MSELoss, nn.BCEWithLogitsLoss))
def forward(self, input, target, mask):
assert input.dim() == 3
assert mask.dim() == 2
loss_elements = self.loss_fn(input, target)
masked_loss_elements = (
loss_elements[..., 0] if loss_elements.dim() == 3 else loss_elements
) * (mask[..., 0] if mask.dim() == 3 else mask)
reduced_loss = (masked_loss_elements.sum(-1) / mask.sum(-1)).mean()
return reduced_loss
class InfectiousnessLoss(nn.Module):
def __init__(self):
super(InfectiousnessLoss, self).__init__()
self.masked_mse = EntityMaskedLoss(nn.MSELoss)
def forward(self, model_input, model_output):
assert model_output.latent_variable.dim() == 3, (
"Infectiousness Loss can only be used on (temporal) "
"set-valued latent variables."
)
# This will block gradients to the entities that are invalid
return self.masked_mse(
model_output.latent_variable[:, :, 0:1],
model_input.infectiousness_history,
model_input["valid_history_mask"],
)
class ContagionLoss(nn.Module):
def __init__(self, allow_multiple_exposures=True):
"""
Parameters
----------
allow_multiple_exposures : bool
If this is set to False, only one encounter can be the contagion,
in which case, we use a softmax + cross-entropy loss. If set to True,
multiple events can be contagions, in which case we use sigmoid +
binary cross entropy loss.
"""
super(ContagionLoss, self).__init__()
self.allow_multiple_exposures = allow_multiple_exposures
self.masked_bce = EntityMaskedLoss(nn.BCEWithLogitsLoss)
self.masker = EntityMasker(mode="logsum")
def forward(self, model_input, model_output):
contagion_logit = model_output.encounter_variables[:, :, 0:1]
if self.allow_multiple_exposures:
# encounter_variables.shape = BM1
return self.masked_bce(
contagion_logit, model_input.encounter_is_contagion, model_input.mask
)
else:
# Mask with masker (this blocks gradients by multiplying it with 0)
self.masker(contagion_logit, model_input.mask)
B, M, C = contagion_logit.shape
# Now, one of the encounters could have been the exposure event -- or not.
# To account for this, we use a little trick and append a 0-logit to the
# encounter variables before passing through a softmax. This 0-logit acts
# as a logit sink, and enables us to avoid an extra pooling operation in
# the transformer architecture.
logit_sink = torch.zeros(
(B, 1), dtype=contagion_logit.dtype, device=contagion_logit.device,
)
# full_logit.shape = B(1+M)
full_logit = torch.cat([logit_sink, contagion_logit[:, :, 0]], dim=1)
target_onehots = self._prepare_single_exposure_targets(
model_input.encounter_is_contagion
)
# Now compute the softmax loss
return F.cross_entropy(full_logit, target_onehots)
@staticmethod
def _prepare_single_exposure_targets(target_onehots):
if target_onehots.dim() == 3:
target_onehots = target_onehots[:, :, 0]
assert target_onehots.dim() == 2
# none_hot_mask.shape = (B,)
nonehot_mask = torch.eq(target_onehots.max(1).values, 0.0)
# We add the 1 because all index is moved one element to the right due to
# the logit sink in the `full_logit`.
target_idxs = torch.argmax(target_onehots, dim=1) + 1
# Set the target_idx to 0 where none-hot
target_idxs[nonehot_mask] = 0
return target_idxs
class WeightedSum(nn.Module):
def __init__(self, losses: dict, weights: dict = None):
super(WeightedSum, self).__init__()
self.losses = nn.ModuleDict(losses)
if weights is None:
# noinspection PyUnresolvedReferences
weights = {key: 1.0 for key in self.losses.keys()}
self.weights = weights
# noinspection PyTypeChecker
assert len(self.losses) == len(self.weights)
def forward(self, model_input, model_output):
# noinspection PyUnresolvedReferences
unweighted_losses = {
key: loss(model_input, model_output) for key, loss in self.losses.items()
}
weighted_losses = {
key: self.weights[key] * loss for key, loss in unweighted_losses.items()
}
output = Dict()
output.unweighted_losses = unweighted_losses
output.weighted_losses = weighted_losses
output.loss = reduce(lambda x, y: x + y, list(weighted_losses.values()))
return output
@classmethod
def from_config(cls, config):
losses = {}
weights = {}
for key in config["kwargs"]:
losses[key] = get_class(key)(**config["kwargs"][key])
weights[key] = config["weights"].get(key, 1.0)
return cls(losses=losses, weights=weights)