-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathTrialModel.py
92 lines (77 loc) · 2.33 KB
/
TrialModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from __future__ import division
from __future__ import print_function
import tqdm
import time
import argparse
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn.functional as F
import torch.optim as optim
from utils import *
from scipy import sparse
from models import *
def Train(model, x, adj, A, optimizer):
'''
Training Specifications
'''
max_epochs = 100
min_loss = 100
for epoch in (range(max_epochs)):
Y = model(x, adj)
loss = CutLoss.apply(Y,A)
# loss = custom_loss(Y, A)
print('Epoch {}: Loss = {}'.format(epoch, loss.item()))
if loss < min_loss:
min_loss = loss.item()
torch.save(model.state_dict(), "./trial_weights.pt")
loss.backward()
optimizer.step()
def Test(model, x, adj, A, *argv):
'''
Test Final Results
'''
model.load_state_dict(torch.load("./trial_weights.pt"))
Y = model(x, adj)
node_idx = test_partition(Y)
print(node_idx)
if argv != ():
if argv[0] == 'debug':
print('Normalized Cut obtained using the above partition is : {0:.3f}'.format(custom_loss(Y,A).item()))
else:
print('Normalized Cut obtained using the above partition is : {0:.3f}'.format(CutLoss.apply(Y,A).item()))
def main():
'''
Adjecency matrix and modifications
'''
A = input_matrix()
# Modifications
A_mod = A + sp.eye(A.shape[0]) # Adding Self Loop
norm_adj = symnormalise(A_mod) # Normalization using D^(-1/2) A D^(-1/2)
adj = sparse_mx_to_torch_sparse_tensor(norm_adj).to('cuda') # SciPy to Torch sparse
As = sparse_mx_to_torch_sparse_tensor(A).to('cuda') # SciPy to sparse Tensor
A = sparse_mx_to_torch_sparse_tensor(A).to_dense().to('cuda') # SciPy to Torch Tensor
print(A)
'''
Declare Input Size and Tensor
'''
N = A.shape[0]
d = 512
torch.manual_seed(100)
x = torch.randn(N, d)
x = x.to('cuda')
'''
Model Definition
'''
gl = [d, 64, 16]
ll = [16, 2]
model = GCN(gl, ll, dropout=0.5).to('cuda')
optimizer = optim.Adam(model.parameters(), lr=5e-4, weight_decay=5e-6)
print(model)
# check_grad(model, x, adj, A, As)
#Train
Train(model, x, adj, As, optimizer)
# Test the best partition
Test(model, x, adj, As)
if __name__ == '__main__':
main()