-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils.py
270 lines (218 loc) · 7.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import math
import numpy as np
import torch
import scipy.sparse as sp
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn.functional as F
import torch.nn as nn
from models import *
def input_matrix():
'''
Returns a test sparse SciPy adjecency matrix
'''
# N = 8
# data = np.ones(2 * 11)
# row = np.array([0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,6,6,6,7,7])
# col = np.array([1,2,0,2,3,0,1,3,1,2,4,3,5,6,7,4,6,4,5,7,4,6])
N = 7
data = np.ones(2 * 9)
row = np.array([0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6])
col = np.array([2, 3, 4, 6, 0, 4, 5, 6, 0, 4, 5, 1, 2, 3, 2, 3, 1, 2])
# N = 3
# data = np.array([1/2,1/2,1/3,1/3])
# row = np.array([0,1,1,2])
# col = np.array([1,0,2,1])
A = sp.csr_matrix((data, (row, col)), shape=(N, N))
return A
def check_grad(model, x, adj, A, As):
Y = model(x, adj)
Y.register_hook(print)
print(Y)
print('\n')
loss1 = CutLoss.apply(Y,As)
loss = custom_loss(Y, A)
print('\n')
loss.backward()
print('\n')
loss1.backward()
# test_backward(Y,As)
# test = torch.autograd.gradcheck(CutLoss.apply, (Y.double(), As.double()), check_sparse_nnz=True)
class SparseMM(torch.autograd.Function):
"""
Sparse x dense matrix multiplication with autograd support.
Implementation by Soumith Chintala:
https://discuss.pytorch.org/t/
does-pytorch-support-autograd-on-sparse-matrix/6156/7
"""
@staticmethod
def forward(ctx, M1, M2):
ctx.save_for_backward(M1, M2)
return torch.mm(M1, M2)
@staticmethod
def backward(ctx, g):
M1, M2 = ctx.saved_tensors
g1 = g2 = None
if ctx.needs_input_grad[0]:
g1 = torch.mm(g, M2.t())
if ctx.needs_input_grad[1]:
g2 = torch.mm(M1.t(), g)
return g1, g2
class GCN(torch.nn.Module):
def __init__(self, gl, ll, dropout):
super(GCN, self).__init__()
if ll[0] != gl[-1]:
assert 'Graph Conv Last layer and Linear first layer sizes dont match'
# self.gc1 = GraphConvolution(nfeat, nhid)
# self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
self.graphlayers = nn.ModuleList([GraphConvolution(gl[i], gl[i+1], bias=True) for i in range(len(gl)-1)])
self.linlayers = nn.ModuleList([nn.Linear(ll[i], ll[i+1]) for i in range(len(ll)-1)])
def forward(self, H, A):
# x = F.relu(self.gc1(x, adj))
# x = F.dropout(x, self.dropout, training=self.training)
# x = self.gc2(x, adj)
for idx, hidden in enumerate(self.graphlayers):
H = F.relu(hidden(H,A))
if idx < len(self.graphlayers) - 2:
H = F.dropout(H, self.dropout, training=self.training)
H_emb = H
for idx, hidden in enumerate(self.linlayers):
H = F.relu(hidden(H))
# print(H)
return F.softmax(H, dim=1)
def __repr__(self):
return str([self.graphlayers[i] for i in range(len(self.graphlayers))] + [self.linlayers[i] for i in range(len(self.linlayers))])
def custom_loss(Y, A):
'''
loss function described in https://arxiv.org/abs/1903.00614
arguments:
Y_ij : Probability that a node i belongs to partition j
A : dense adjecency matrix
Returns:
Loss : Y/Gamma * (1 - Y)^T dot A
'''
D = torch.sum(A, dim=1)
Gamma = torch.mm(Y.t(), D.unsqueeze(1))
# print(Gamma)
loss = torch.sum(torch.mm(torch.div(Y.float(), Gamma.t()), (1 - Y).t().float()) * A.float())
return loss
# loss = custom_loss(Y, A)
def to_sparse(x):
""" converts dense tensor x to sparse format """
x_typename = torch.typename(x).split('.')[-1]
sparse_tensortype = getattr(torch.sparse, x_typename)
indices = torch.nonzero(x)
if len(indices.shape) == 0: # if all elements are zeros
return sparse_tensortype(*x.shape)
indices = indices.t()
values = x[tuple(indices[i] for i in range(indices.shape[0]))]
return sparse_tensortype(indices, values, x.size())
def custom_loss_sparse(Y, A):
'''
loss function described in https://arxiv.org/abs/1903.00614
arguments:
Y_ij : Probability that a node i belongs to partition j
A : sparse adjecency matrix
Returns:
Loss : Y/Gamma * (1 - Y)^T dot A
'''
D = torch.sparse.sum(A, dim=1).to_dense()
Gamma = torch.mm(Y.t(), D.unsqueeze(1).float())
YbyGamma = torch.div(Y, Gamma.t())
Y_t = (1 - Y).t()
loss = torch.tensor([0.])
idx = A._indices()
for i in range(idx.shape[1]):
loss += torch.dot(YbyGamma[idx[0,i],:], Y_t[:,idx[1,i]])
return loss
def RandLargeGraph(N,c):
'''
Creates large random graphs with c fraction connections compared to the actual graph size
'''
i = (torch.LongTensor(2,int(c * N)).random_(0, N))
v = 1. * torch.ones(int(c * N))
return torch.sparse.FloatTensor(i, v, torch.Size([N, N]))
def test_backward(Y,A):
'''
This a function to debug if the gradients from the CutLoss class match the actual gradients
'''
idx = A._indices()
data = A._values()
D = torch.sparse.sum(A, dim=1).to_dense()
Gamma = torch.mm(Y.t(), D.unsqueeze(1))
# print(Gamma.shape)
gradient = torch.zeros_like(Y, requires_grad=True)
# print(gradient.shape)
# print(idx)
for i in range(gradient.shape[0]):
for j in range(gradient.shape[1]):
# if i == 1 and j == 0:
alpha_ind = (idx[0, :] == i).nonzero()
alpha = idx[1, alpha_ind]
A_i_alpha = data[alpha_ind]
temp = A_i_alpha/ torch.pow(Gamma[j], 2) * ( Gamma[j] * (1 - 2 * Y[alpha, j]) - D[i] * ( Y[i, j] * (1 - Y[alpha, j]) + (1 - Y[i, j]) * (Y[alpha, j]) ) )
gradient[i, j] = torch.sum(temp)
l_idx = list(idx.t())
l2 = []
l2_val = []
# [l2.append(mem) for mem in l_idx if((mem[0] != i).item() and (mem[1] != i).item())]
for ptr, mem in enumerate(l_idx):
if ((mem[0] != i).item() and (mem[1] != i).item()):
l2.append(mem)
l2_val.append(data[ptr])
extra_gradient = 0
if(l2 != []):
for val, mem in zip(l2_val, l2):
extra_gradient += (-D[i] * torch.sum(Y[mem[0],j] * (1 - Y[mem[1],j]) / torch.pow(Gamma[j],2))) * val
gradient[i,j] += extra_gradient
print(gradient)
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def symnormalise(M):
"""
symmetrically normalise sparse matrix
arguments:
M: scipy sparse matrix
returns:
D^{-1/2} M D^{-1/2}
where D is the diagonal node-degree matrix
"""
d = np.array(M.sum(1))
dhi = np.power(d, -1 / 2).flatten()
dhi[np.isinf(dhi)] = 0.
DHI = sp.diags(dhi) # D half inverse i.e. D^{-1/2}
return (DHI.dot(M)).dot(DHI)
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def test_partition(Y):
_, idx = torch.max(Y, 1)
return idx
def Train_dense(model, x, adj, A, optimizer):
'''
Training Specifications
'''
max_epochs = 100
min_loss = 100
for epoch in (range(max_epochs)):
Y = model(x, adj)
# loss = CutLoss.apply(Y,A)
loss = custom_loss(Y, A)
print('Epoch {}: Loss = {}'.format(epoch, loss.item()))
if loss < min_loss:
min_loss = loss.item()
torch.save(model.state_dict(), "./trial_weights.pt")
loss.backward()
optimizer.step()