-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_features.py
272 lines (218 loc) · 18.1 KB
/
generate_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import print_function
import argparse
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import pickle
import os
from pprint import pprint
from utils import plot_curves, seed_everything
from itertools import chain
import copy
import matplotlib.pyplot as plt
from inspect import signature
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from dataloader import Threshold_Dataset, data_transforms
from models import create_model_resnet10
from models import create_model_resnet152
from models import DotProduct_Classifier
data_root = {'ImageNet': '/BS/max-interpretability/nobackup/data/imagenet',
'Places': '/BS/databases/places2'}
def gen_features_and_probs( args, feature_extractor, classifier, device, loader ):
feature_extractor.eval()
classifier.eval()
total_features = torch.empty((0, 512)).to(device)
# total_probs = torch.empty((0, classifier.num_classes)).to(device)
total_logprobs = torch.empty((0, classifier.num_classes)).to(device)
total_labels = torch.empty((0), dtype=torch.long).to(device)
print('Generating features : {}'.format(len(loader.dataset)))
with torch.no_grad():
for ind, (data, target, _, train_count ) in enumerate(loader):
# print('Doing something.')
sys.stdout.flush()
data, target = data.to(device), target.to(device)
features, _ = feature_extractor(data)
# probs = F.softmax( classifier(features), dim=1 ) # classifier returns logprobs
logprobs = classifier(features) # for specialist use logprobs for logit tuning if required
# for pr curve analysis
total_features = torch.cat((total_features, features))
# total_probs = torch.cat((total_probs, probs))
total_logprobs = torch.cat((total_logprobs, logprobs))
total_labels = torch.cat((total_labels, target))
if (ind % args.log_interval == 0):
print('Progress: {:.2f}%'.format( 100 * (ind + 1) * data.shape[0] / len(loader.dataset) ) )
# break
# return total_features, total_probs, total_labels
return total_features, total_logprobs, total_labels
def main():
########################################################################
######################## training parameters ###########################
########################################################################
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='ImageNet', metavar='N', help='dataset to run experiments on')
parser.add_argument('--batch_size', type=int, default=256, metavar='N', help='input batch size for training (default: 256; note that batch_size 64 gives worse performance for imagenet, so don\'t change this. )')
parser.add_argument('--exp', type=str, default='default', metavar='N', help='name of experiment')
parser.add_argument('--epochs', type=int, default=30, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.01)')
parser.add_argument('--weight_decay', type=float, default=5*1e-4, help='weight_decay (default: 1e-5)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.5)')
parser.add_argument('--step_size', type=float, default=10, metavar='M', help='SGD momentum (default: 0.5)')
parser.add_argument('--gamma', type=float, default=0.1, metavar='M', help='SGD momentum (default: 0.5)')
parser.add_argument('--load_model', type=str, default=None, help='model to initialise from')
parser.add_argument('--model_name', type=str, default=None, help='name of model : manyshot | mediumshot | lowshot | general')
parser.add_argument('--caffe', action='store_true', default=False, help='caffe pretrained model')
parser.add_argument('--test', action='store_true', default=False, help='run in test mode')
parser.add_argument('--ensemble_inference', action='store_true', default=True, help='run in ensemble inference mode') # testing is always in ensemble inference mode anyways !
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--seed', type=int, default=5021, metavar='S', help='random seed (default: 5021)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',help='how many batches to wait before logging training status')
parser.add_argument('--stopping_criterion', type=int, default=30, metavar='N',)
parser.add_argument('--low_threshold', type=int, default=0, metavar='N', )
parser.add_argument('--high_threshold', type=int, default=100000, metavar='N', )
parser.add_argument('--open_ratio', type=int, default=1, help='ratio of closed_set to open_set data', )
parser.add_argument('--picker', type=str, default='simple', help='dataloader or model picker - systematic | simple | generalist : simple uses manyshot, mediumshot, lowshot partitioning; \
systematic uses overlapping classwise equally distributed splits; generalist uses the generalist model', )
parser.add_argument('--index', type=int, default='-1', help='index of specialist, for systematic split : 0:num_block, or for parallel ensemble inference')
parser.add_argument('--ei_mode', type=str, default='parallel', help='ensemble inference mode : sequential | parallel ')
parser.add_argument('--num_learnable', type=int, default='-1', help='number of learnable layers : -1 ( all ) | 1 ( only classifier ) | 2 ( classifier and last fc ) | 3 - 6 ( classifier, fc + $ind - 2$ resnet super-blocks ) ')
parser.add_argument('--sampling', type=str, default=None, help=' sampling : over/under ')
parser.add_argument('--for_OEmodel', action='store_true', default=False, help='run for experts with oe training' )
args = parser.parse_args()
print("\n==================Options=================")
pprint(vars(args), indent=4)
print("==========================================\n")
use_cuda = not args.no_cuda and torch.cuda.is_available()
# torch.manual_seed(args.seed)
# make everything deterministic, reproducible
if (args.seed is not None):
print('Seeding everything with seed {}.'.format(args.seed))
seed_everything(args.seed)
else:
print('Note : Seed is random.')
device = torch.device("cuda" if use_cuda else "cpu")
exp_dir = os.path.join('checkpoint', args.exp)
if not os.path.isdir(exp_dir):
os.makedirs(exp_dir)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# batch size settings : note that these are important for memory and performance reasons
if(args.dataset.lower()=='imagenet' ):
args.batch_size = 256
elif (args.dataset.lower() == 'places' ):
args.batch_size = 32
########################################################################
######################## load data and pre-trained models ##############
########################################################################
# all loaders must have shuffle false so that data is aligned across different models !!!!
# print('Loading train loader.')
# train_loader = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset ),
# use_open = False, transform=data_transforms['train'], picker='experts', sampling=args.sampling ), batch_size = args.batch_size, shuffle = False, **kwargs )
#
# print('Loading val loader.')
# val_loader = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_val.txt'.format(args.dataset, args.dataset),
# use_open=False, transform=data_transforms['val'], picker='experts', sampling=args.sampling), batch_size=args.batch_size, shuffle=False, **kwargs )
# print('Loading test loader.')
# test_loader = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_test.txt'.format(args.dataset, args.dataset),
# use_open=False, transform=data_transforms['test'], picker='experts', sampling=args.sampling), batch_size=args.batch_size, shuffle=False, **kwargs )
# using many/medium/few shot loaders for val sets for reporting metrics - barely used this ever
# print('Loading val loader many shot.')
# val_loader_manyshot = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_val.txt'.format(args.dataset, args.dataset),
# low_threshold = 100,
# use_open = False, transform=data_transforms['val'], picker='experts' ), batch_size=args.batch_size, shuffle=False, **kwargs )
# print('Loading val loader medium shot.')
# val_loader_mediumshot = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_val.txt'.format(args.dataset, args.dataset),
# low_threshold = 20, high_threshold = 100,
# use_open = False, transform=data_transforms['val'], picker='experts' ), batch_size=args.batch_size, shuffle=False, **kwargs )
# print('Loading val loader few shot.')
# val_loader_fewshot = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_val.txt'.format(args.dataset, args.dataset),
# high_threshold = 20,
# use_open = False, transform=data_transforms['val'], picker='experts' ), batch_size=args.batch_size, shuffle=False, **kwargs )
# using many/medium/few shot loaders for test sets for reporting metrics
print('Loading test loader many shot.')
test_loader_manyshot = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_test.txt'.format(args.dataset, args.dataset),
low_threshold = 100,
use_open = False, transform=data_transforms['test'], picker='experts' ), batch_size=args.batch_size, shuffle=False, **kwargs )
print('Loading test loader medium shot.')
test_loader_mediumshot = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_test.txt'.format(args.dataset, args.dataset),
low_threshold = 20, high_threshold = 100,
use_open = False, transform=data_transforms['test'], picker='experts' ), batch_size=args.batch_size, shuffle=False, **kwargs )
print('Loading test loader low shot.')
test_loader_fewshot = torch.utils.data.DataLoader( Threshold_Dataset(root=data_root[args.dataset], orig_txt='./data/{}_LT/{}_LT_train.txt'.format(args.dataset, args.dataset), txt='./data/{}_LT/{}_LT_test.txt'.format(args.dataset, args.dataset),
high_threshold= 20,
use_open = False, transform=data_transforms['test'], picker='experts' ), batch_size=args.batch_size, shuffle=False, **kwargs )
tot_num_classes = 1000 if args.dataset.lower() == 'imagenet' else 365
if(args.picker=='experts' or args.picker=='generalist'):
if(args.model_name=='manyshot'):
class_mask = test_loader_manyshot.dataset.class_mask
elif (args.model_name == 'mediumshot'):
class_mask = test_loader_mediumshot.dataset.class_mask
elif (args.model_name == 'lowshot'):
class_mask = test_loader_fewshot.dataset.class_mask
elif (args.model_name == 'general'):
class_mask = torch.BoolTensor( [ True for i in range(tot_num_classes) ] )
if (args.dataset.lower() == 'imagenet'):
feature_extractor = create_model(use_selfatt=False, use_fc=True).to(device) # use this for imagenet
if(args.model_name != 'general'):
classifier = DotProduct_Classifier(num_classes=int(class_mask.sum() ), feat_dim=512).to(device) # for experts with oe training
else:
classifier = DotProduct_Classifier(num_classes=1000, feat_dim=512).to(device)
else:
feature_extractor = create_model_resnet152(use_selfatt=False, use_fc=True, caffe=True).to(device) # use this for places. pass caffe=true to load pretrained imagenet model
if (args.model_name != 'general'):
classifier = DotProduct_Classifier(num_classes=int( class_mask.sum() ), feat_dim=512).to(device) # for experts with oe training
else:
classifier = DotProduct_Classifier(num_classes=365, feat_dim=512).to(device)
# load pretrained model
if (args.load_model is not None):
if(not args.caffe):
pretrained_model = torch.load(args.load_model)
weights_feat = pretrained_model['state_dict_best']['feat_model']
weights_feat = {k: weights_feat['module.' + k] if 'module.' + k in weights_feat else weights_feat[k] for k in feature_extractor.state_dict()}
feature_extractor.load_state_dict(weights_feat) # loading feature extractor weights
weights_class = pretrained_model['state_dict_best']['classifier']
if (args.model_name != 'general'):
weights_class = {k: weights_class['module.' + k] if 'module.' + k in weights_class else weights_class[k] for k in classifier.state_dict()}
else:
weights_class = {k: weights_class['module.' + k][:-1] if 'module.' + k in weights_class else weights_class[k][:-1] for k in classifier.state_dict()} # due to a bug, there was an extra neuron for the open class even in the generalist, so must slice it away
classifier.load_state_dict(weights_class)
# #####################################################################################
# ######################## generate features for train set ############################
# #####################################################################################
# results = {}
# train_features, train_probs, train_labels = gen_features_and_probs(args, feature_extractor, classifier, device, train_loader)
# results['features'] = train_features
# # results['probs'] = train_probs # for generalist models
# results['logits'] = train_probs # for specialists we use logits, logprobs above is legacy
# results['labels'] = train_labels
# results['class_mask'] = class_mask
# torch.save(results, os.path.join(exp_dir, 'results_train_{}.pickle'.format(args.model_name)))
# #####################################################################################
# ######################## generate features for val set ##############################
# #####################################################################################
# results = {}
# val_features, val_probs, val_labels = gen_features_and_probs(args, feature_extractor, classifier, device, val_loader)
# results['features'] = val_features
# # results['probs'] = val_probs # for generalist models
# results['logits'] = val_probs # for specialists we use logits, logprobs above is legacy
# results['labels'] = val_labels
# results['class_mask'] = class_mask
# torch.save(results, os.path.join(exp_dir, 'results_val_{}.pickle'.format(args.model_name)))
# #####################################################################################
# ######################## generate features for test set #############################
# #####################################################################################
# # aligned ( screws up labels for specialists ! ) : fix using class_mask. Or use labels already stored to disk in prior experiments.
results = {}
test_features_manyshot, test_probs_manyshot, test_labels_manyshot = gen_features_and_probs(args, feature_extractor, classifier, device, test_loader_manyshot)
test_features_mediumshot, test_probs_mediumshot, test_labels_mediumshot = gen_features_and_probs(args, feature_extractor, classifier, device, test_loader_mediumshot)
test_features_fewshot, test_probs_fewshot, test_labels_fewshot = gen_features_and_probs(args, feature_extractor, classifier, device, test_loader_fewshot)
results['features'] = torch.cat((test_features_manyshot, test_features_mediumshot, test_features_fewshot), dim=0)
# results['probs'] = torch.cat((test_probs_manyshot, test_probs_mediumshot, test_probs_fewshot), dim=0) # for generalist models
results['logits'] = torch.cat((test_probs_manyshot, test_probs_mediumshot, test_probs_fewshot), dim=0) # for specialists we use logits, logprobs above is legacy
results['labels'] = torch.cat((test_labels_manyshot, test_labels_mediumshot, test_labels_fewshot), dim=0)
results['class_mask'] = class_mask
torch.save(results, os.path.join(exp_dir, 'results_test_aligned_{}.pickle'.format(args.model_name)))
if __name__ == '__main__':
main()