-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
396 lines (317 loc) · 17.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import, division
import os
import sys
from pprint import pprint
import numpy as np
import torch
import torch.nn as nn
import torch.optim
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
from opt import Options
import src.utils as utils
import src.log as log
from src.model import CVAE_Linear, weight_init
from src.datasets.human36m import Human36M
def loss_function(y, y_gsnn, x, mu, logvar):
L2_cvae = option.alpha * F.mse_loss(y, x)
L2_gsnn = (1 - option.alpha) * F.mse_loss(y_gsnn, x)
L2 = L2_cvae + L2_gsnn
KLD = -0.5 * torch.mean(1 + logvar - mu.pow(2) - logvar.exp())
return L2, L2_cvae, L2_gsnn, KLD
def train_multiposenet(train_loader, model, criterion, optimizer, lr_init=None, lr_now=None, glob_step=None, lr_decay=None, gamma=None, max_norm=True):
model.train()
l2_loss, cvae_loss, gsnn_loss, kl_loss = utils.AverageMeter(), utils.AverageMeter(), utils.AverageMeter(), utils.AverageMeter()
for i, (inps, tars, _) in enumerate(train_loader):
glob_step += 1
if glob_step % lr_decay == 0 or glob_step == 1:
lr_now = utils.lr_decay(optimizer, glob_step, lr_init, lr_decay, gamma)
# forward pass
inputs = Variable(inps.cuda())
targets = Variable(tars.cuda())
out_cvae, out_gsnn, post_mu, post_logvar = model(inputs, targets)
# backward pass
optimizer.zero_grad()
loss_l2, loss_cvae, loss_gsnn, loss_kl = loss_function(out_cvae, out_gsnn, targets, post_mu, post_logvar)
loss_l2 = loss_l2 * option.weight_l2
loss_cvae = loss_cvae * option.weight_l2
loss_gsnn = loss_gsnn * option.weight_l2
loss_kl = loss_kl * option.weight_kl
l2_loss.update(loss_l2.item(), inputs.size(0))
cvae_loss.update(loss_cvae.item(), inputs.size(0))
gsnn_loss.update(loss_gsnn.item(), inputs.size(0))
kl_loss.update(loss_kl.item(), inputs.size(0))
loss = loss_kl + loss_l2
loss.backward()
if max_norm:
nn.utils.clip_grad_norm(model.parameters(), max_norm=1)
optimizer.step()
# update summary
if (i % 100 == 0):
print('({batch}/{size}) | loss l2: {loss_l2:.4f} | loss cvae: {loss_cvae:.4f} | loss gsnn: {loss_gsnn:.4f} | loss kl: {loss_kl:.4f}' \
.format(batch=i + 1,
size=len(train_loader),
loss_l2=l2_loss.avg,
loss_cvae=cvae_loss.avg,
loss_gsnn=gsnn_loss.avg,
loss_kl=kl_loss.avg))
sys.stdout.flush()
return glob_step, lr_now, l2_loss.avg
def test_multiposenet(test_loader, model, criterion, stat_3d, stat_2d, procrustes=False):
model.eval()
l2_loss = utils.AverageMeter()
# global error trackers
all_dist, all_dist_samples, all_dist_ordsamp_weighted, all_dist_ordsamp_weighted_pred = [], [], {}, {}
temp_gt = np.linspace(0.1, 1, num=10) # range of temperatures for softmax in OrdinalScore
temp_pred = np.linspace(0.1, 1, num=10)
for ind, t in enumerate(temp_gt):
all_dist_ordsamp_weighted[ind] = []
all_dist_ordsamp_weighted_pred[ind] = []
for i, (inps, tars, ordinals) in enumerate(test_loader):
if (not i % 20 == 0): # for quick validation during training
continue
inputs = Variable(inps.cuda())
targets = Variable(tars.cuda(async=True))
batch_size = inputs.shape[0]
z_samples, out_samples = [], []
num_samples = option.numSamples
# generate sample set
for j in range(num_samples):
z = torch.randn(batch_size, option.latent_size).cuda()
z_samples.append(z)
out = model.decode(z, inputs)
out_samples.append(out)
loss_l2, _, _, loss_kl = loss_function(out, out, targets,
torch.zeros((option.test_batch, option.latent_size)).cuda(),
torch.zeros((option.test_batch, option.latent_size)).cuda())
loss_l2 = loss_l2 * option.weight_l2
loss = loss_kl + loss_l2
l2_loss.update(loss_l2.item(), inputs.size(0))
out_samp = torch.cat([torch.unsqueeze(out_sample, dim=0) for out_sample in out_samples])
out_mean = torch.mean(out_samp, dim=0)
tars = targets
# unnormalise everything and slice along used dimensions
inps_unnorm = utils.unNormalizeData(inps.data.cpu().numpy(), stat_2d['mean'], stat_2d['std'], stat_2d['dim_use'])
targets_unnorm = utils.unNormalizeData(tars.data.cpu().numpy(), stat_3d['mean'], stat_3d['std'], stat_3d['dim_use'])
outputs_unnorm = utils.unNormalizeData(out_mean.data.cpu().numpy(), stat_3d['mean'], stat_3d['std'], stat_3d['dim_use'])
outputs_samples_unnorm = np.vstack([utils.unNormalizeData(out_sample.data.cpu().numpy(), stat_3d['mean'], stat_3d['std'], stat_3d['dim_use'])[None] for out_sample in out_samples])
dim_use = np.hstack((np.arange(3), stat_3d['dim_use']))
outputs_samples_use = outputs_samples_unnorm[:, :, dim_use]
outputs_use = outputs_unnorm[:, dim_use]
targets_use = targets_unnorm[:, dim_use]
# procrustes alignment
if (procrustes):
procrustes_outputs_use = np.zeros(outputs_use.shape)
procrustes_outputs_samples_use = np.zeros(outputs_samples_use.shape)
for ba in range(inps.size(0)):
gt = targets_use[ba].reshape(-1, 3)
out = outputs_use[ba].reshape(-1, 3)
_, Z, T, b, c = utils.get_transformation(gt, out, True)
out = (b * out.dot(T)) + c
procrustes_outputs_use[ba, :] = out.reshape(1, 51)
for k in range(num_samples):
out = outputs_samples_use[k, ba].reshape(-1, 3)
_, Z, T, b, c = utils.get_transformation(gt, out, True)
out = (b * out.dot(T)) + c
procrustes_outputs_samples_use[k, ba, :] = out.reshape(1, 51)
outputs_use = procrustes_outputs_use
outputs_samples_use = procrustes_outputs_samples_use
# OrdinalScore
GT_TO_SH_PERM = np.array([utils.H36M_NAMES.index(h) for h in utils.SH_NAMES if h != '' and h in utils.H36M_NAMES])
gt_ord = utils.compute_ordinals(targets_unnorm.reshape(-1, 32, 3)[:, GT_TO_SH_PERM, 2], 1) # compute ground truth ordinal relations
pred_ord = ordinals.data.cpu().numpy() # estimated ordinal relations from OrdinalNet
samp_ord = utils.compute_ordinals(outputs_samples_unnorm.reshape(-1, batch_size, 32, 3)[:, :, GT_TO_SH_PERM, 2], 1) # compute ordinal relations for generated samples
score_ord_gt = utils.compare(samp_ord, gt_ord) # OrdinalScore using GT ordinals
score_ord_pred = utils.compare(samp_ord, utils.postproc(pred_ord)) # OrdinalScore using PRED ordinals
score_ord_softmax_gt = torch.zeros((temp_gt.shape[0], num_samples, batch_size))
weighted_preds_gt = np.zeros((temp_gt.shape[0], batch_size, 51))
score_ord_softmax_pred = torch.zeros((temp_gt.shape[0], num_samples, batch_size))
weighted_preds_pred = np.zeros((temp_gt.shape[0], batch_size, 51))
# compute softmax with different temperatures and take average
for ind, t in enumerate(temp_gt):
score_ord_softmax_gt[ind] = F.softmax(t * torch.Tensor((score_ord_gt - score_ord_gt.max(0))), dim=0)
weighted_preds_gt[ind] = (score_ord_softmax_gt[ind].unsqueeze(2).data.cpu().numpy() * outputs_samples_use).sum(axis=0)
score_ord_softmax_pred[ind] = F.softmax(temp_pred[ind] * torch.Tensor((score_ord_pred - score_ord_pred.max(0))), dim=0)
weighted_preds_pred[ind] = (score_ord_softmax_pred[ind].unsqueeze(2).data.cpu().numpy() * outputs_samples_use).sum(axis=0)
# compute error statistics for the mini-batch
sqerr = (outputs_use - targets_use) ** 2
sqerr_samples = (outputs_samples_use - targets_use) ** 2
sqerr_weighted_ord_gt = (weighted_preds_gt - targets_use) ** 2
sqerr_weighted_ord_pred = (weighted_preds_pred - targets_use) ** 2
distance = np.zeros((batch_size, 17))
distance_samples = np.zeros((num_samples, batch_size, 17))
distance_ord_weighted_gt = np.zeros((temp_pred.shape[0], batch_size, 17))
distance_ord_weighted_pred = np.zeros((temp_gt.shape[0], batch_size, 17))
dist_idx = 0
for k in np.arange(0, 17 * 3, 3):
distance[:, dist_idx] = np.sqrt(np.sum(sqerr[:, k:k + 3], axis=1))
distance_samples[:, :, dist_idx] = np.sqrt(np.sum(sqerr_samples[:, :, k:k + 3], axis=2))
for ind, t in enumerate(temp_gt):
distance_ord_weighted_gt[ind, :, dist_idx] = np.sqrt(np.sum(sqerr_weighted_ord_gt[ind, :, k:k + 3], axis=1))
distance_ord_weighted_pred[ind, :, dist_idx] = np.sqrt(np.sum(sqerr_weighted_ord_pred[ind, :, k:k + 3], axis=1))
dist_idx += 1
# append batch error statistics to global error trackers
all_dist.append(distance)
all_dist_samples.append(distance_samples)
for ind, t in enumerate(temp_gt):
all_dist_ordsamp_weighted[ind].append(distance_ord_weighted_gt[ind])
all_dist_ordsamp_weighted_pred[ind].append(distance_ord_weighted_pred[ind])
if (i % 10 == 0):
print('({batch}/{size}) | loss: {loss:.6f}' \
.format(batch=i + 1,
size=len(test_loader),
loss=l2_loss.avg))
sys.stdout.flush()
# compute and report all error metrics
ttl_err_mean = np.mean(np.vstack(all_dist))
joint_err_samples = np.mean(np.concatenate(all_dist_samples, axis=1), axis=2)
best_samples_err = np.min(joint_err_samples, axis=0)
ttl_err_bestsamp = np.mean(best_samples_err)
ttl_err_ord_weighted, ttl_err_ord_weighted_pred = {}, {}
for ind, t in enumerate(temp_gt):
ttl_err_ord_weighted[ind] = np.mean(np.vstack(all_dist_ordsamp_weighted[ind]))
ttl_err_ord_weighted_pred[ind] = np.mean(np.vstack(all_dist_ordsamp_weighted_pred[ind]))
ttl_err_ord_gt, best_temp_gt = np.min(np.array(list(ttl_err_ord_weighted.values()))), 0.1 * ( np.argmin(np.array(list(ttl_err_ord_weighted.values()))) + 1 )
ttl_err_ord_pred, best_temp_pred = np.min(np.array(list(ttl_err_ord_weighted_pred.values()))), 0.1 * (np.argmin(np.array(list(ttl_err_ord_weighted_pred.values()))) + 1 )
print("\n>>> Cumulative errors <<<")
print(">>> Mean sample - {:4f} <<<".format(ttl_err_mean))
print(">>> OrdinalScore ( PRED Ordinals ) - {:4f}, temp - {:.1f} <<<".format(ttl_err_ord_pred, best_temp_pred))
print(">>> OrdinalScore ( GT Ordinals ) - {:4f}, temp - {:.1f} <<<".format(ttl_err_ord_gt, best_temp_gt))
print(">>> Oracle - {:4f} <<<".format(ttl_err_bestsamp))
return l2_loss.avg, ttl_err_mean, ttl_err_bestsamp, np.array(list(ttl_err_ord_weighted.values())), np.array(list(ttl_err_ord_weighted_pred.values()))
def main(opt):
start_epoch = 0
err_best = 1000
glob_step = 0
lr_now = opt.lr
# save options
log.save_options(opt, opt.ckpt)
# create model
print(">>> creating model")
model = CVAE_Linear(opt.cvaeSize, opt.latent_size, opt.numSamples_train, opt.alpha, opt.cvae_num_stack)
model.cuda()
model.apply(weight_init)
print(">>> total params: {:.2f}M".format(sum(p.numel() for p in model.parameters()) / 1000000.0))
criterion = nn.MSELoss(size_average=True).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
# load ckpt
if opt.load:
print(">>> loading ckpt from '{}'".format(opt.load))
ckpt = torch.load(opt.load)
start_epoch = ckpt['epoch']
err_best = ckpt['err']
glob_step = ckpt['step']
lr_now = ckpt['lr']
model.load_state_dict(ckpt['state_dict'])
optimizer.load_state_dict(ckpt['optimizer'])
print(">>> ckpt loaded (epoch: {} | err: {})".format(start_epoch, err_best))
if opt.resume:
logger = log.Logger(os.path.join(opt.ckpt, 'log.txt'), resume=True)
else:
logger = log.Logger(os.path.join(opt.ckpt, 'log.txt'))
logger.set_names(['epoch', 'lr', 'loss_train', 'loss_test', 'err_mean', 'err_bestsamp'])
# list of action(s)
actions = utils.define_actions('All')
num_actions = len(actions)
print(">>> actions to use (total: {}):".format(num_actions))
pprint(actions, indent=4)
print(">>>")
# data loading
print(">>> loading data")
# load statistics data
stat_2d = torch.load(os.path.join(opt.data_dir, 'stat_2d.pth.pt'))
stat_3d = torch.load(os.path.join(opt.data_dir, 'stat_3d.pth.pt'))
# test
if opt.test:
err_mean_set, err_bestsamp_set, err_ordsamp_weighted_set, err_ordsamp_weighted_set_pred = [], [], [], []
for action in actions:
print("\n>>> TEST on _{}_".format(action))
test_loader = DataLoader(
dataset=Human36M(actions=action, data_path=opt.data_dir, is_train=False, procrustes=opt.procrustes),
batch_size=opt.test_batch,
shuffle=False,
num_workers=opt.job,
pin_memory=True)
_, err_mean_test, err_bestsamp_test, err_ordsamp_weighted_test, err_ordsamp_weighted_test_pred = test_multiposenet(test_loader, model, criterion, stat_3d, stat_2d, procrustes=opt.procrustes)
err_mean_set.append(err_mean_test)
err_bestsamp_set.append(err_bestsamp_test)
err_ordsamp_weighted_set.append(err_ordsamp_weighted_test)
err_ordsamp_weighted_set_pred.append(err_ordsamp_weighted_test_pred)
err_ordsamp_weighted_set_all = np.stack(err_ordsamp_weighted_set, axis=1)
err_ordsamp_weighted_set_pred_all = np.stack(err_ordsamp_weighted_set_pred, axis=1)
err_ordsamp_weighted_set_all = np.mean(err_ordsamp_weighted_set_all, axis=1)
err_ordsamp_weighted_set_pred_all = np.mean(err_ordsamp_weighted_set_pred_all, axis=1)
best_temp_gt, best_val = np.argmin(err_ordsamp_weighted_set_all), np.min(err_ordsamp_weighted_set_all)
best_temp_pred, best_val_pred = np.argmin(err_ordsamp_weighted_set_pred_all), np.min(err_ordsamp_weighted_set_pred_all)
# print('Gt best temp : {:1f}, best val : {:.4f}'.format((best_temp_gt + 1) * 0.1, best_val))
# print('Pred best temp : {:1f}, best val : {:.4f}'.format((best_temp_pred + 1) * 0.1, best_val_pred))
err_ordsamp_weighted_set = np.stack(err_ordsamp_weighted_set, axis=1)[best_temp_gt]
err_ordsamp_weighted_set_pred = np.stack(err_ordsamp_weighted_set_pred, axis=1)[best_temp_pred]
print("\n\n>>>>>> TEST results:")
for action in actions:
print("{}".format(action), end='\t')
print("\n")
for err in err_mean_set:
print("{:.4f}".format(err), end='\t')
print(">>>\nERRORS - Mean : {:.4f}".format(np.array(err_mean_set).mean()))
for err in err_ordsamp_weighted_set_pred:
print("{:.4f}".format(err), end='\t')
print(">>>\nERRORS - OrdinalScore ( PRED Ordinals ) : {:.4f}".format(np.array(err_ordsamp_weighted_set_pred).mean()))
for err in err_ordsamp_weighted_set:
print("{:.4f}".format(err), end='\t')
print(">>>\nERRORS - OrdinalScore ( GT Ordinals ) : {:.4f}".format(np.array(err_ordsamp_weighted_set).mean()))
for err in err_bestsamp_set:
print("{:.4f}".format(err), end='\t')
print(">>>\nERRORS - Oracle : {:.4f}".format(np.array(err_bestsamp_set).mean()))
sys.exit()
# load dadasets for training
train_loader = DataLoader(
dataset=Human36M(actions=actions, data_path=opt.data_dir, procrustes=opt.procrustes),
batch_size=opt.train_batch,
shuffle=True,
num_workers=opt.job, )
test_loader = DataLoader(
dataset=Human36M(actions=actions, data_path=opt.data_dir, is_train=False, procrustes=opt.procrustes),
batch_size=opt.test_batch,
shuffle=False,
num_workers=opt.job, )
print(">>> data loaded !")
cudnn.benchmark = True
for epoch in range(start_epoch, opt.epochs):
print('==========================')
print('>>> epoch: {} | lr: {:.5f}'.format(epoch + 1, lr_now))
glob_step, lr_now, loss_train = train_multiposenet(
train_loader, model, criterion, optimizer,
lr_init=opt.lr, lr_now=lr_now, glob_step=glob_step, lr_decay=opt.lr_decay, gamma=opt.lr_gamma,
max_norm=opt.max_norm)
loss_test, err_mean, err_bestsamp,_, _ = test_multiposenet(test_loader, model, criterion, stat_3d, stat_2d, procrustes=opt.procrustes)
logger.append([epoch + 1, lr_now, loss_train, loss_test, err_mean, err_bestsamp],
['int', 'float', 'float', 'float', 'float', 'float'])
is_best = err_bestsamp < err_best
err_best = min(err_bestsamp, err_best)
if is_best:
log.save_ckpt({'epoch': epoch + 1,
'lr': lr_now,
'step': glob_step,
'err': err_best,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
ckpt_path=opt.ckpt,
is_best=True)
else:
log.save_ckpt({'epoch': epoch + 1,
'lr': lr_now,
'step': glob_step,
'err': err_best,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()},
ckpt_path=opt.ckpt,
is_best=False)
logger.close()
if __name__ == "__main__":
option = Options().parse()
main(option)