diff --git a/docs/results/cl-nagoya/ruri-base/summary.json b/docs/results/cl-nagoya/ruri-base/summary.json new file mode 100644 index 0000000..a7c7b05 --- /dev/null +++ b/docs/results/cl-nagoya/ruri-base/summary.json @@ -0,0 +1,62 @@ +{ + "Classification": { + "amazon_counterfactual_classification": { + "macro_f1": 0.7665550732749669 + }, + "amazon_review_classification": { + "macro_f1": 0.5575876111411316 + }, + "massive_intent_classification": { + "macro_f1": 0.8141210121425055 + }, + "massive_scenario_classification": { + "macro_f1": 0.8848812917656395 + } + }, + "Reranking": { + "esci": { + "ndcg@10": 0.9290942178703699 + } + }, + "Retrieval": { + "jagovfaqs_22k": { + "ndcg@10": 0.7455660589538348 + }, + "jaqket": { + "ndcg@10": 0.5012253145754781 + }, + "mrtydi": { + "ndcg@10": 0.3545113073009125 + }, + "nlp_journal_abs_intro": { + "ndcg@10": 0.8689204088388403 + }, + "nlp_journal_title_abs": { + "ndcg@10": 0.9656989703684407 + }, + "nlp_journal_title_intro": { + "ndcg@10": 0.7531306059721564 + } + }, + "STS": { + "jsick": { + "spearman": 0.8231772134744029 + }, + "jsts": { + "spearman": 0.8342848039994751 + } + }, + "Clustering": { + "livedoor_news": { + "v_measure_score": 0.5427223607801758 + }, + "mewsc16": { + "v_measure_score": 0.5404099864321413 + } + }, + "PairClassification": { + "paws_x_ja": { + "binary_f1": 0.6237623762376238 + } + } +} \ No newline at end of file diff --git a/docs/results/cl-nagoya/ruri-large/summary.json b/docs/results/cl-nagoya/ruri-large/summary.json new file mode 100644 index 0000000..e86c46b --- /dev/null +++ b/docs/results/cl-nagoya/ruri-large/summary.json @@ -0,0 +1,62 @@ +{ + "Classification": { + "amazon_counterfactual_classification": { + "macro_f1": 0.8080806321853091 + }, + "amazon_review_classification": { + "macro_f1": 0.5680171450057119 + }, + "massive_intent_classification": { + "macro_f1": 0.8255898596881264 + }, + "massive_scenario_classification": { + "macro_f1": 0.8956410349938264 + } + }, + "Reranking": { + "esci": { + "ndcg@10": 0.9298524733536755 + } + }, + "Retrieval": { + "jagovfaqs_22k": { + "ndcg@10": 0.7667506664925435 + }, + "jaqket": { + "ndcg@10": 0.6173871224245404 + }, + "mrtydi": { + "ndcg@10": 0.3803302462897418 + }, + "nlp_journal_abs_intro": { + "ndcg@10": 0.8712459719069233 + }, + "nlp_journal_title_abs": { + "ndcg@10": 0.9657898747088243 + }, + "nlp_journal_title_intro": { + "ndcg@10": 0.779665053945222 + } + }, + "STS": { + "jsick": { + "spearman": 0.8199959693684533 + }, + "jsts": { + "spearman": 0.8426164139167538 + } + }, + "Clustering": { + "livedoor_news": { + "v_measure_score": 0.5139491572866559 + }, + "mewsc16": { + "v_measure_score": 0.5225025331595674 + } + }, + "PairClassification": { + "paws_x_ja": { + "binary_f1": 0.6228813559322034 + } + } +} \ No newline at end of file diff --git a/docs/results/cl-nagoya/ruri-small/summary.json b/docs/results/cl-nagoya/ruri-small/summary.json new file mode 100644 index 0000000..cb591ea --- /dev/null +++ b/docs/results/cl-nagoya/ruri-small/summary.json @@ -0,0 +1,62 @@ +{ + "Classification": { + "amazon_counterfactual_classification": { + "macro_f1": 0.7991935990685706 + }, + "amazon_review_classification": { + "macro_f1": 0.556129066893332 + }, + "massive_intent_classification": { + "macro_f1": 0.8148895285345188 + }, + "massive_scenario_classification": { + "macro_f1": 0.8787774569382543 + } + }, + "Reranking": { + "esci": { + "ndcg@10": 0.9300177985352138 + } + }, + "Retrieval": { + "jagovfaqs_22k": { + "ndcg@10": 0.736494039429321 + }, + "jaqket": { + "ndcg@10": 0.484437639428696 + }, + "mrtydi": { + "ndcg@10": 0.3342716158897666 + }, + "nlp_journal_abs_intro": { + "ndcg@10": 0.8768878489670099 + }, + "nlp_journal_title_abs": { + "ndcg@10": 0.9716879343439146 + }, + "nlp_journal_title_intro": { + "ndcg@10": 0.7608660955794895 + } + }, + "STS": { + "jsick": { + "spearman": 0.8343927017558587 + }, + "jsts": { + "spearman": 0.8213297790184827 + } + }, + "Clustering": { + "livedoor_news": { + "v_measure_score": 0.5096442244018489 + }, + "mewsc16": { + "v_measure_score": 0.5141045788711239 + } + }, + "PairClassification": { + "paws_x_ja": { + "binary_f1": 0.6211267605633802 + } + } +} \ No newline at end of file diff --git a/leaderboard.md b/leaderboard.md index b07dbca..93d3988 100644 --- a/leaderboard.md +++ b/leaderboard.md @@ -7,7 +7,10 @@ The summary shows the average scores within each task. | Model | Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification | |:----------------------------------------------|:----------|:------------|:----------|:-----------------|:------------|:-------------|:---------------------| -| OpenAI/text-embedding-3-large | **73.97** | **74.48** | 82.52 | **77.58** | **93.58** | **53.32** | 62.35 | +| OpenAI/text-embedding-3-large | **73.97** | **74.48** | 82.52 | **77.58** | **93.58** | 53.32 | 62.35 | +| cl-nagoya/ruri-large | 73.45 | 73.02 | 83.13 | 77.43 | 92.99 | 51.82 | 62.29 | +| cl-nagoya/ruri-base | 72.95 | 69.82 | 82.87 | 75.58 | 92.91 | **54.16** | 62.38 | +| cl-nagoya/ruri-small | 72.45 | 69.41 | 82.79 | 76.22 | 93.00 | 51.19 | 62.11 | | intfloat/multilingual-e5-large | 71.65 | 70.98 | 79.70 | 72.89 | 92.96 | 51.24 | 62.15 | | OpenAI/text-embedding-3-small | 70.86 | 66.39 | 79.46 | 73.06 | 92.92 | 51.06 | 62.27 | | pkshatech/GLuCoSE-base-ja | 70.44 | 59.02 | 78.71 | 76.82 | 91.90 | 49.78 | **66.39** | @@ -33,8 +36,11 @@ The summary shows the average scores within each task. ## Retrieval | Model | Avg. | jagovfaqs_22k
(ndcg@10) | jaqket
(ndcg@10) | mrtydi
(ndcg@10) | nlp_journal_abs_intro
(ndcg@10) | nlp_journal_title_abs
(ndcg@10) | nlp_journal_title_intro
(ndcg@10) | |:----------------------------------------------|:----------|:-----------------------------|:----------------------|:----------------------|:-------------------------------------|:-------------------------------------|:---------------------------------------| -| OpenAI/text-embedding-3-large | **74.48** | **72.41** | 48.21 | 34.88 | **99.33** | **96.55** | **95.47** | -| intfloat/multilingual-e5-large | 70.98 | 70.30 | **58.78** | **43.63** | 86.00 | 94.70 | 72.48 | +| OpenAI/text-embedding-3-large | **74.48** | 72.41 | 48.21 | 34.88 | **99.33** | 96.55 | **95.47** | +| cl-nagoya/ruri-large | 73.02 | **76.68** | **61.74** | 38.03 | 87.12 | 96.58 | 77.97 | +| intfloat/multilingual-e5-large | 70.98 | 70.30 | 58.78 | **43.63** | 86.00 | 94.70 | 72.48 | +| cl-nagoya/ruri-base | 69.82 | 74.56 | 50.12 | 35.45 | 86.89 | 96.57 | 75.31 | +| cl-nagoya/ruri-small | 69.41 | 73.65 | 48.44 | 33.43 | 87.69 | **97.17** | 76.09 | | intfloat/multilingual-e5-base | 68.21 | 65.34 | 50.67 | 38.38 | 87.10 | 94.73 | 73.05 | | intfloat/multilingual-e5-small | 67.27 | 64.11 | 49.97 | 36.05 | 85.21 | 95.26 | 72.99 | | OpenAI/text-embedding-3-small | 66.39 | 64.02 | 33.94 | 20.03 | 98.47 | 91.70 | 90.17 | @@ -60,7 +66,10 @@ The summary shows the average scores within each task. | Model | Avg. | jsick
(spearman) | jsts
(spearman) | |:----------------------------------------------|:----------|:----------------------|:---------------------| | cl-nagoya/sup-simcse-ja-large | **83.18** | **83.80** | 82.57 | -| OpenAI/text-embedding-3-large | 82.52 | 81.27 | **83.77** | +| cl-nagoya/ruri-large | 83.13 | 82.00 | **84.26** | +| cl-nagoya/ruri-base | 82.87 | 82.32 | 83.43 | +| cl-nagoya/ruri-small | 82.79 | 83.44 | 82.13 | +| OpenAI/text-embedding-3-large | 82.52 | 81.27 | 83.77 | | cl-nagoya/sup-simcse-ja-base | 82.05 | 82.83 | 81.27 | | cl-nagoya/unsup-simcse-ja-large | 80.56 | 80.15 | 80.98 | | intfloat/multilingual-e5-small | 80.07 | 81.50 | 78.65 | @@ -85,9 +94,12 @@ The summary shows the average scores within each task. ## Classification | Model | Avg. | amazon_counterfactual
(macro_f1) | amazon_review
(macro_f1) | massive_intent
(macro_f1) | massive_scenario
(macro_f1) | |:----------------------------------------------|:----------|:--------------------------------------|:------------------------------|:-------------------------------|:---------------------------------| -| OpenAI/text-embedding-3-large | **77.58** | 77.90 | **60.44** | **80.91** | **91.08** | +| OpenAI/text-embedding-3-large | **77.58** | 77.90 | **60.44** | 80.91 | **91.08** | +| cl-nagoya/ruri-large | 77.43 | 80.81 | 56.80 | **82.56** | 89.56 | | pkshatech/GLuCoSE-base-ja | 76.82 | **82.44** | 58.07 | 78.85 | 87.94 | | oshizo/sbert-jsnli-luke-japanese-base-lite | 76.61 | 79.95 | 57.48 | 80.26 | 88.75 | +| cl-nagoya/ruri-small | 76.22 | 79.92 | 55.61 | 81.49 | 87.88 | +| cl-nagoya/ruri-base | 75.58 | 76.66 | 55.76 | 81.41 | 88.49 | | cl-nagoya/unsup-simcse-ja-large | 74.66 | 76.79 | 55.37 | 79.13 | 87.36 | | MU-Kindai/Japanese-DiffCSE-BERT-base | 73.77 | 78.10 | 51.56 | 78.79 | 86.63 | | cl-nagoya/sup-simcse-ja-large | 73.73 | 73.21 | 54.76 | 79.23 | 87.72 | @@ -114,8 +126,11 @@ The summary shows the average scores within each task. | OpenAI/text-embedding-3-large | **93.58** | **93.58** | | OpenAI/text-embedding-ada-002 | 93.04 | 93.04 | | intfloat/multilingual-e5-small | 93.03 | 93.03 | +| cl-nagoya/ruri-small | 93.00 | 93.00 | +| cl-nagoya/ruri-large | 92.99 | 92.99 | | intfloat/multilingual-e5-large | 92.96 | 92.96 | | OpenAI/text-embedding-3-small | 92.92 | 92.92 | +| cl-nagoya/ruri-base | 92.91 | 92.91 | | intfloat/multilingual-e5-base | 92.85 | 92.85 | | pkshatech/GLuCoSE-base-ja | 91.90 | 91.90 | | cl-nagoya/sup-simcse-ja-base | 91.83 | 91.83 | @@ -137,12 +152,15 @@ The summary shows the average scores within each task. ## Clustering | Model | Avg. | livedoor_news
(v_measure_score) | mewsc16
(v_measure_score) | |:----------------------------------------------|:----------|:-------------------------------------|:-------------------------------| -| OpenAI/text-embedding-3-large | **53.32** | 57.09 | 49.55 | +| cl-nagoya/ruri-base | **54.16** | 54.27 | **54.04** | +| OpenAI/text-embedding-3-large | 53.32 | 57.09 | 49.55 | +| cl-nagoya/ruri-large | 51.82 | 51.39 | 52.25 | | cl-nagoya/sup-simcse-ja-base | 51.79 | 52.67 | 50.91 | | intfloat/multilingual-e5-large | 51.24 | **57.13** | 45.34 | +| cl-nagoya/ruri-small | 51.19 | 50.96 | 51.41 | | OpenAI/text-embedding-3-small | 51.06 | 54.57 | 47.55 | | cl-nagoya/sup-simcse-ja-large | 50.56 | 50.75 | 50.38 | -| oshizo/sbert-jsnli-luke-japanese-base-lite | 50.33 | 46.77 | **53.89** | +| oshizo/sbert-jsnli-luke-japanese-base-lite | 50.33 | 46.77 | 53.89 | | pkshatech/GLuCoSE-base-ja | 49.78 | 49.89 | 49.68 | | cl-nagoya/unsup-simcse-ja-large | 48.41 | 50.90 | 45.92 | | OpenAI/text-embedding-ada-002 | 48.30 | 49.67 | 46.92 | @@ -171,6 +189,7 @@ The summary shows the average scores within each task. | pkshatech/simcse-ja-bert-base-clcmlp | 62.40 | 62.40 | | OpenAI/text-embedding-ada-002 | 62.40 | 62.40 | | MU-Kindai/Japanese-SimCSE-BERT-base-unsup | 62.38 | 62.38 | +| cl-nagoya/ruri-base | 62.38 | 62.38 | | oshizo/sbert-jsnli-luke-japanese-base-lite | 62.38 | 62.38 | | MU-Kindai/Japanese-DiffCSE-BERT-base | 62.38 | 62.38 | | MU-Kindai/Japanese-SimCSE-BERT-base-sup | 62.37 | 62.37 | @@ -179,10 +198,12 @@ The summary shows the average scores within each task. | MU-Kindai/Japanese-MixCSE-BERT-base | 62.33 | 62.33 | | sentence-transformers/LaBSE | 62.33 | 62.33 | | colorfulscoop/sbert-base-ja | 62.31 | 62.31 | +| cl-nagoya/ruri-large | 62.29 | 62.29 | | OpenAI/text-embedding-3-small | 62.27 | 62.27 | | MU-Kindai/Japanese-SimCSE-BERT-large-unsup | 62.27 | 62.27 | | intfloat/multilingual-e5-base | 62.26 | 62.26 | | sentence-transformers/stsb-xlm-r-multilingual | 62.20 | 62.20 | | intfloat/multilingual-e5-small | 62.19 | 62.19 | | intfloat/multilingual-e5-large | 62.15 | 62.15 | +| cl-nagoya/ruri-small | 62.11 | 62.11 |