-
Notifications
You must be signed in to change notification settings - Fork 37
/
params.json
1 lines (1 loc) · 14.3 KB
/
params.json
1
{"name":"Scientific Programming in Python","tagline":"Lectures for the course \"Scientific Programming in Python\" at Osnabrück University","body":"[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/scientificprogrammingUOS/lectures/master?urlpath=lab)\r\n# Lectures in Scientific Computing in Python\r\nThis repository contains all lectures from the course\r\n*Scientific programming in Python* that is part of the Cognitive Science program\r\nat the University Osnabrück. Each lecture is accompanied by a Jupyter notebook\r\nthat explains each topic with a combination of code and text. You\r\ncan view the notebooks directly on GitHub or run them locally and play\r\nwith the code. If you do not want to install anything, click on the Binder\r\nlogo above to run all the notebooks in a ready to use environment in the cloud.\r\n\r\n## Recordings\r\nAll lecture recordings from 2018 and 2019 can be viewed on [Youtube](https://www.youtube.com/channel/UC_FUSDNAoX8woYbGXaFdtvw) and on the Opencast platform (which is available only to students of the University of Osnabrück).\r\n\r\n| Lecture | YouTube 2018 | Youtube 2019 | Opencast 2018 | Opencast 2019|\r\n|-----------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|\r\n| Introduction | [View](https://www.youtube.com/watch?v=UmVC3XxkXhI&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=1) | [Part 1](https://www.youtube.com/watch?v=uLYuLW_H7c0&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1), [Part 2](https://www.youtube.com/watch?v=835JkTU--9E&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=b0079cbf-51b7-47c1-8a38-21147935d249) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=1581f0ee-b9c7-44ef-a483-0897d3c3de68), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=a7acc8d9-a374-44e7-b538-b98fb2f5f51e)\r\n| Basic Python | [View](https://www.youtube.com/watch?v=awAl94Rx0u8&index=2&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl) | [Part 1](https://www.youtube.com/watch?v=-I37mS8_7Dc&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1), [Part 2](https://www.youtube.com/watch?v=7GdEJkcoHvI&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=f41dc9ef-c846-4f07-a7a8-b87b92cd82f9) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=342723fe-5c97-4d19-9f30-f43c5d0bc9d8), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=1c46a715-f965-4c63-92c1-b6d022d22c52)\r\n| Advanced Python | [View](https://www.youtube.com/watch?v=s01yqt2fxwk&index=3&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl) | [Part 1](https://www.youtube.com/watch?v=L-C9mwFmxpc&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=6), [Part 2](https://www.youtube.com/watch?v=YDHlRnwoWQg&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=7) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=fcb80388-4dc3-4336-bec4-a294ccc096de) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=e0415562-98d4-4a21-95c9-484acb775119), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=a0fd26c4-85a8-48a7-8d3f-f085532b5548)\r\n| Numpy | [View](https://www.youtube.com/watch?v=oxo-3fDJE6M&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=4) | [Part 1](https://www.youtube.com/watch?v=v603JUrsIr4&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=8), [Part 2](https://www.youtube.com/watch?v=DH6FuWjxQiA&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=9) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=f695daea-8ee4-473b-8684-c46cbef62586) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=b1410913-3857-485b-ab6c-2acf89dfce87), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=3921cc73-a4ee-450f-8002-22344b9e3260)\r\n| Matplotlib | [View](https://www.youtube.com/watch?v=VmWEcqdcqa4&index=5&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl) | [Part 1](https://www.youtube.com/watch?v=phfZTV94qp8&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=10), [Part 2](https://www.youtube.com/watch?v=oJy2SyWFc20&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=11) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=3a01b270-efc0-4d38-8457-586ec2fc6886) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=bcc3363e-9ab4-4212-bec8-b89054fe33ae), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=39f91b82-c484-4765-88e1-3df771c9cbbb)\r\n| Basic Pandas | [View](https://www.youtube.com/watch?v=AHXj14joofo&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=6) | [Part 1](https://www.youtube.com/watch?v=P4t3E5PgCI8&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=12), [Part 2](https://www.youtube.com/watch?v=u92m5yRUHJc&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=13) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=0b158123-ecdb-4081-a13a-4a13c57cfeac) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=fefe0cf1-4aed-4bbe-88e0-5902b54c3c41), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=e0015e0f-504d-4ed6-945e-4404a2494d60)\r\n| Pandas: Cleaning Data | [View](https://www.youtube.com/watch?v=Yw2uqr__5-M&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=7) | [Part 1](https://www.youtube.com/watch?v=A_xLroDojDc&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=14), [Part 2](https://www.youtube.com/watch?v=rH0oehOhixY&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=15) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=e077a983-89b3-40f7-818c-4cd34906f41f) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=df86ac4b-332f-4554-8d54-116696ba668b), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=b2c16421-5c00-438a-8e4a-50493062950c)\r\n| Pandas: Analyzing Data & Time Series | [View](https://www.youtube.com/watch?v=QAiFhPNZ4hU&index=8&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl) | [Part 1](https://www.youtube.com/watch?v=sU3SJG_mJL0&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=16), [Part 2](https://www.youtube.com/watch?v=_OsV2hlPAIQ&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=17) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=4f440f84-8de7-4336-8f3f-b8f5764d84f3) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=d2a54683-4c1f-4b0e-976a-649e21bc9f00), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=5bbdc5c5-723c-4608-993d-2882c0638547)\r\n| Debugging in Pycharm | | [View](https://www.youtube.com/watch?v=RKgCuN3jg0w&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=18) | | [View](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=6e0b9236-a71f-45fb-be6f-8128eb9c11ee)\r\n| Statistical Visualization (ggplot, seaborn) | [View](https://www.youtube.com/watch?v=k371NeL-7tM&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=9) | [Part 1](https://www.youtube.com/watch?v=bIVrkNMjOx8&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=21), [Part 2](https://www.youtube.com/watch?v=3wkbry7YiAI&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=22) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=79bce1f2-48e3-407b-8a1d-caf2a74e5517) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=cef6e799-ac3f-4612-ba85-505e5ca6ef9d), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=f3f364cf-fcfe-464c-91f4-35580bbe1d2d)\r\n| Statistical Modeling (statsmodels) | [View](https://www.youtube.com/watch?v=1Ba9LmyJ1ko&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=10)| [Part 1](https://www.youtube.com/watch?v=npM0J-e-35s&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=23), [Part 2](https://www.youtube.com/watch?v=WXR-AEjOUNI&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=24&t=0s)| [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=634cd5c8-0227-4c19-9400-e348b53b2bf0) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=90d3b2ee-f346-4932-84c1-69de535fc901), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=40f29cc0-b24b-427c-bf83-548411644450)\r\n| Experiments (expyriment) | [View](https://www.youtube.com/watch?v=YEt6Eww26s4&index=11&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl)| [Part 1](https://www.youtube.com/watch?v=9lR2Uk0nRD0&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=19), [Part 2](https://www.youtube.com/watch?v=RTwzombMuls&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=20) | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=a34a0164-19da-406b-b1e1-3570ebcdc8d4) | [Part 1](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=f4510a77-f4d7-4065-9426-360a7f848d6e), [Part 2](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=8114a025-fbcf-49f9-8ba8-cfc47755a1db)\r\n| Study: A to Z, Scikit-Learn, Parallelism | [View](https://www.youtube.com/watch?v=BV35GhsqmuE&list=PL7Rs54JKuEjFRyyhtJy2eDOhqTtmWpXzl&index=12)| | [View](https://video4.virtuos.uos.de/engage/theodul/ui/core.html?cid=a18d5bd1b862d194bcd7b56bca95c32f&id=6d4e5f5e-727f-4834-80db-4322a86b0a96) | |\r\n| Interactive Visualization (Widgets, Altair) | | [View](https://www.youtube.com/watch?v=o1ApUz6dEi8&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=25) | | [View](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=2a67645e-8aab-4444-8e9a-8455dfff107c)\r\n| Data Exploration, Performance-Optimization | | [View](https://www.youtube.com/watch?v=b_hL6ITo0aM&list=PL7Rs54JKuEjE5PV8m3ksRuq_-DxLP8Kq1&index=26) | | [View](https://video4.virtuos.uni-osnabrueck.de/paella/ui/watch.html?cid=48c679d3c81e6414ab61bba835ecae97&id=ccb55af9-2081-445f-a76e-7b36fa4313e0)\r\n\r\nTo view the Jupyter Notebooks corresponding to the videos of the respective years, access this repository's state from [2018](https://github.com/scientificprogrammingUOS/lectures/tree/v2018) or [2019](https://github.com/scientificprogrammingUOS/lectures/tree/v2019), respectively. To access the videos in the better Opencast-player, make sure you're logged into Myuos before clicking the link.\r\n\r\n## Installation\r\nCreate a virtual Python environment, name e.g. *scientific*, for example using `conda`.\r\n\r\n $ conda env create -f environment.yml\r\n\r\nActivate the environment\r\n\r\n $ conda activate scientific\r\n\r\nyou might see some error like `your shell has not been set up to use conda activate`. Follow the instructions given in your shell to make it work.\r\n\r\nthen start JupyterLab\r\n\r\n $ jupyter lab\r\n\r\nJupyterLab should open in your browser. From there you can navigate to the notebooks\r\nand interact with them.\r\n\r\n\r\n## Contributing\r\nBefore committing changes, run the whole notebook from top to bottom using (for `fish`)\r\n\r\n $ env RUNALL=1 jupyter nbconvert --execute --allow-errors --inplace lecture.ipynb\r\n\r\nfor `bash`\r\n\r\n $ export RUNALL=1 jupyter nbconvert --execute --allow-errors --inplace lecture.ipynb\r\n\r\n\r\nTo make new interactive exercises install [jupyter-solutions](https://github.com/rmotr/jupyterlab-solutions) and set up as teacher, by setting\r\n\r\n c.JupyterLabRmotrSolutions.role = \"teacher\"\r\n\r\nin the repositories `jupyter_notebook_config.py`.\r\n\r\nOnly use markdown headers to structure the lectures. Numbering will be automatically handled by the [jupyterlab-toc extension](https://github.com/jupyterlab/jupyterlab-toc).\r\nAlso use markdown to talk about the content of the lecture and the next cells. Use comments only if you want to highlight something in a specific line of code.\r\nIf you write comments, write them in full sentences.\r\n\r\nUse [`nbdime`](https://github.com/jupyter/nbdime) to make working with notebooks and git easier\r\n\r\n pip install nbdime\r\n nbdime config-git --enable \r\n\r\n## Acknowledgments\r\n* Some parts of this lecture base on Jake VanderPlas' [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/), which is a very good source for Scientific Python.\r\n* Thanks to [Auss Abbood](https://github.com/aauss) for making 2018's videos YouTube ready!\r\n","note":"Don't delete this file! It's used internally to help with page regeneration."}