forked from trinhan/WDLPipelines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAggregatedBamQCmod.wdl
752 lines (678 loc) · 24.1 KB
/
AggregatedBamQCmod.wdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
version 1.0
## Copyright Broad Institute, 2018
##
## This WDL pipeline implements data processing according to the GATK Best Practices (June 2016)
## for human whole-genome and exome sequencing data.
##
## Runtime parameters are often optimized for Broad's Google Cloud Platform implementation.
## For program versions, see docker containers.
##
## LICENSING :
## This script is released under the WDL source code license (BSD-3) (see LICENSE in
## https://github.com/broadinstitute/wdl). Note however that the programs it calls may
## be subject to different licenses. Users are responsible for checking that they are
## authorized to run all programs before running this script. Please see the docker
## page at https://hub.docker.com/r/broadinstitute/genomes-in-the-cloud/ for detailed
## licensing information pertaining to the included programs.
import "https://raw.githubusercontent.com/trinhan/wgsAlignment/main/Qc.wdl?token=ABVSYKF6LZ23MIS63X5D5RLBASVUW" as QC
#import "DNASeqStructs.wdl"
# WORKFLOW DEFINITION
workflow AggregatedBamQC {
input {
File base_recalibrated_bam
File base_recalibrated_bam_index
String base_name
String BSQR_md5
File? haplotype_database_file
File ref_dict
File ref_fasta
File ref_fasta_index
String preemptible_tries = 3
File? fingerprint_genotypes_file
File? fingerprint_genotypes_index
}
# QC the final BAM (consolidated after scattered BQSR)
call CollectReadgroupBamQualityMetrics {
input:
input_bam = base_recalibrated_bam,
input_bam_index = base_recalibrated_bam_index,
output_bam_prefix = base_name + ".readgroup",
ref_dict = ref_dict,
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
preemptible_tries = preemptible_tries
}
# QC the final BAM some more (no such thing as too much QC)
call CollectAggregationMetrics {
input:
input_bam = base_recalibrated_bam,
input_bam_index = base_recalibrated_bam_index,
output_bam_prefix = base_name,
ref_dict = ref_dict,
ref_fasta = ref_fasta,
ref_fasta_index = ref_fasta_index,
preemptible_tries = preemptible_tries
}
if (defined(haplotype_database_file) && defined(fingerprint_genotypes_file)) {
# Check the sample BAM fingerprint against the sample array
call CheckFingerprint {
input:
input_bam = base_recalibrated_bam,
input_bam_index = base_recalibrated_bam_index,
haplotype_database_file = haplotype_database_file,
genotypes = fingerprint_genotypes_file,
genotypes_index = fingerprint_genotypes_index,
output_basename = base_name,
sample = base_name,
preemptible_tries = preemptible_tries
}
}
# Generate a checksum per readgroup in the final BAM
call CalculateReadGroupChecksum {
input:
input_bam = base_recalibrated_bam,
input_bam_index = base_recalibrated_bam_index,
read_group_md5_filename = BSQR_md5,
preemptible_tries = preemptible_tries
}
output {
File read_group_alignment_summary_metrics = CollectReadgroupBamQualityMetrics.alignment_summary_metrics
File read_group_gc_bias_detail_metrics = CollectReadgroupBamQualityMetrics.gc_bias_detail_metrics
File read_group_gc_bias_pdf = CollectReadgroupBamQualityMetrics.gc_bias_pdf
File read_group_gc_bias_summary_metrics = CollectReadgroupBamQualityMetrics.gc_bias_summary_metrics
File calculate_read_group_checksum_md5 = CalculateReadGroupChecksum.md5_file
File agg_alignment_summary_metrics = CollectAggregationMetrics.alignment_summary_metrics
File agg_bait_bias_detail_metrics = CollectAggregationMetrics.bait_bias_detail_metrics
File agg_bait_bias_summary_metrics = CollectAggregationMetrics.bait_bias_summary_metrics
File agg_gc_bias_detail_metrics = CollectAggregationMetrics.gc_bias_detail_metrics
File agg_gc_bias_pdf = CollectAggregationMetrics.gc_bias_pdf
File agg_gc_bias_summary_metrics = CollectAggregationMetrics.gc_bias_summary_metrics
File agg_insert_size_histogram_pdf = CollectAggregationMetrics.insert_size_histogram_pdf
File agg_insert_size_metrics = CollectAggregationMetrics.insert_size_metrics
File agg_pre_adapter_detail_metrics = CollectAggregationMetrics.pre_adapter_detail_metrics
File agg_pre_adapter_summary_metrics = CollectAggregationMetrics.pre_adapter_summary_metrics
File agg_quality_distribution_pdf = CollectAggregationMetrics.quality_distribution_pdf
File agg_quality_distribution_metrics = CollectAggregationMetrics.quality_distribution_metrics
File agg_error_summary_metrics = CollectAggregationMetrics.error_summary_metrics
File? fingerprint_summary_metrics = CheckFingerprint.summary_metrics
File? fingerprint_detail_metrics = CheckFingerprint.detail_metrics
}
meta {
allowNestedInputs: true
}
}
### List the QC tasks here
task CollectQualityYieldMetrics {
input {
File input_bam
String metrics_filename
Int preemptible_tries
}
Int disk_size = ceil(size(input_bam, "GiB")) + 20
command {
java -Xms2000m -jar /usr/picard/picard.jar \
CollectQualityYieldMetrics \
INPUT=~{input_bam} \
OQ=true \
OUTPUT=~{metrics_filename}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
disks: "local-disk " + disk_size + " HDD"
memory: "3.5 GiB"
preemptible: preemptible_tries
}
output {
File quality_yield_metrics = "~{metrics_filename}"
}
}
# Collect base quality and insert size metrics
task CollectUnsortedReadgroupBamQualityMetrics {
input {
File input_bam
String output_bam_prefix
Int preemptible_tries
}
Int disk_size = ceil(size(input_bam, "GiB")) + 20
command {
java -Xms5000m -jar /usr/picard/picard.jar \
CollectMultipleMetrics \
INPUT=~{input_bam} \
OUTPUT=~{output_bam_prefix} \
ASSUME_SORTED=true \
PROGRAM=null \
PROGRAM=CollectBaseDistributionByCycle \
PROGRAM=CollectInsertSizeMetrics \
PROGRAM=MeanQualityByCycle \
PROGRAM=QualityScoreDistribution \
METRIC_ACCUMULATION_LEVEL=null \
METRIC_ACCUMULATION_LEVEL=ALL_READS
touch ~{output_bam_prefix}.insert_size_metrics
touch ~{output_bam_prefix}.insert_size_histogram.pdf
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
memory: "7 GiB"
disks: "local-disk " + disk_size + " HDD"
preemptible: preemptible_tries
}
output {
File base_distribution_by_cycle_pdf = "~{output_bam_prefix}.base_distribution_by_cycle.pdf"
File base_distribution_by_cycle_metrics = "~{output_bam_prefix}.base_distribution_by_cycle_metrics"
File insert_size_histogram_pdf = "~{output_bam_prefix}.insert_size_histogram.pdf"
File insert_size_metrics = "~{output_bam_prefix}.insert_size_metrics"
File quality_by_cycle_pdf = "~{output_bam_prefix}.quality_by_cycle.pdf"
File quality_by_cycle_metrics = "~{output_bam_prefix}.quality_by_cycle_metrics"
File quality_distribution_pdf = "~{output_bam_prefix}.quality_distribution.pdf"
File quality_distribution_metrics = "~{output_bam_prefix}.quality_distribution_metrics"
}
}
# Collect alignment summary and GC bias quality metrics
task CollectReadgroupBamQualityMetrics {
input {
File input_bam
File input_bam_index
String output_bam_prefix
File ref_dict
File ref_fasta
File ref_fasta_index
Boolean collect_gc_bias_metrics = true
Int preemptible_tries
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB") + size(ref_dict, "GiB")
Int disk_size = ceil(size(input_bam, "GiB") + ref_size) + 20
command {
# These are optionally generated, but need to exist for Cromwell's sake
touch ~{output_bam_prefix}.gc_bias.detail_metrics \
~{output_bam_prefix}.gc_bias.pdf \
~{output_bam_prefix}.gc_bias.summary_metrics
java -Xms5000m -jar /usr/picard/picard.jar \
CollectMultipleMetrics \
INPUT=~{input_bam} \
REFERENCE_SEQUENCE=~{ref_fasta} \
OUTPUT=~{output_bam_prefix} \
ASSUME_SORTED=true \
PROGRAM=null \
PROGRAM=CollectAlignmentSummaryMetrics \
~{true='PROGRAM="CollectGcBiasMetrics"' false="" collect_gc_bias_metrics} \
METRIC_ACCUMULATION_LEVEL=null \
METRIC_ACCUMULATION_LEVEL=READ_GROUP
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
memory: "7 GiB"
disks: "local-disk " + disk_size + " HDD"
preemptible: preemptible_tries
}
output {
File alignment_summary_metrics = "~{output_bam_prefix}.alignment_summary_metrics"
File gc_bias_detail_metrics = "~{output_bam_prefix}.gc_bias.detail_metrics"
File gc_bias_pdf = "~{output_bam_prefix}.gc_bias.pdf"
File gc_bias_summary_metrics = "~{output_bam_prefix}.gc_bias.summary_metrics"
}
}
# Collect quality metrics from the aggregated bam
task CollectAggregationMetrics {
input {
File input_bam
File input_bam_index
String output_bam_prefix
File ref_dict
File ref_fasta
File ref_fasta_index
Boolean collect_gc_bias_metrics = true
Int preemptible_tries
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB") + size(ref_dict, "GiB")
Int disk_size = ceil(size(input_bam, "GiB") + ref_size) + 20
command {
# These are optionally generated, but need to exist for Cromwell's sake
touch ~{output_bam_prefix}.gc_bias.detail_metrics \
~{output_bam_prefix}.gc_bias.pdf \
~{output_bam_prefix}.gc_bias.summary_metrics \
~{output_bam_prefix}.insert_size_metrics \
~{output_bam_prefix}.insert_size_histogram.pdf
java -Xms5000m -jar /usr/picard/picard.jar \
CollectMultipleMetrics \
INPUT=~{input_bam} \
REFERENCE_SEQUENCE=~{ref_fasta} \
OUTPUT=~{output_bam_prefix} \
ASSUME_SORTED=true \
PROGRAM=null \
PROGRAM=CollectAlignmentSummaryMetrics \
PROGRAM=CollectInsertSizeMetrics \
PROGRAM=CollectSequencingArtifactMetrics \
PROGRAM=QualityScoreDistribution \
~{true='PROGRAM="CollectGcBiasMetrics"' false="" collect_gc_bias_metrics} \
METRIC_ACCUMULATION_LEVEL=null \
METRIC_ACCUMULATION_LEVEL=SAMPLE \
METRIC_ACCUMULATION_LEVEL=LIBRARY
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
memory: "7 GiB"
disks: "local-disk " + disk_size + " HDD"
preemptible: preemptible_tries
}
output {
File alignment_summary_metrics = "~{output_bam_prefix}.alignment_summary_metrics"
File bait_bias_detail_metrics = "~{output_bam_prefix}.bait_bias_detail_metrics"
File bait_bias_summary_metrics = "~{output_bam_prefix}.bait_bias_summary_metrics"
File gc_bias_detail_metrics = "~{output_bam_prefix}.gc_bias.detail_metrics"
File gc_bias_pdf = "~{output_bam_prefix}.gc_bias.pdf"
File gc_bias_summary_metrics = "~{output_bam_prefix}.gc_bias.summary_metrics"
File insert_size_histogram_pdf = "~{output_bam_prefix}.insert_size_histogram.pdf"
File insert_size_metrics = "~{output_bam_prefix}.insert_size_metrics"
File pre_adapter_detail_metrics = "~{output_bam_prefix}.pre_adapter_detail_metrics"
File pre_adapter_summary_metrics = "~{output_bam_prefix}.pre_adapter_summary_metrics"
File quality_distribution_pdf = "~{output_bam_prefix}.quality_distribution.pdf"
File quality_distribution_metrics = "~{output_bam_prefix}.quality_distribution_metrics"
File error_summary_metrics = "~{output_bam_prefix}.error_summary_metrics"
}
}
task ConvertSequencingArtifactToOxoG {
input {
File pre_adapter_detail_metrics
File bait_bias_detail_metrics
String base_name
File ref_dict
File ref_fasta
File ref_fasta_index
Int preemptible_tries
Int memory_multiplier = 1
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB") + size(ref_dict, "GiB")
Int disk_size = ceil(size(pre_adapter_detail_metrics, "GiB") + size(bait_bias_detail_metrics, "GiB") + ref_size) + 20
Int memory_size = ceil(4 * memory_multiplier)
Int java_memory_size = (memory_size - 1) * 1000
command {
input_base=$(dirname ~{pre_adapter_detail_metrics})/~{base_name}
java -Xms~{java_memory_size}m \
-jar /usr/picard/picard.jar \
ConvertSequencingArtifactToOxoG \
--INPUT_BASE $input_base \
--OUTPUT_BASE ~{base_name} \
--REFERENCE_SEQUENCE ~{ref_fasta}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
memory: "~{memory_size} GiB"
disks: "local-disk " + disk_size + " HDD"
preemptible: preemptible_tries
}
output {
File oxog_metrics = "~{base_name}.oxog_metrics"
}
}
# Check that the fingerprints of separate readgroups all match
task CrossCheckFingerprints {
input {
Array[File] input_bams
Array[File] input_bam_indexes
File haplotype_database_file
String metrics_filename
Float total_input_size
Int preemptible_tries
Float lod_threshold
String cross_check_by
}
Int disk_size = ceil(total_input_size) + 20
command <<<
java -Dsamjdk.buffer_size=131072 \
-XX:GCTimeLimit=50 -XX:GCHeapFreeLimit=10 -Xms3000m \
-jar /usr/picard/picard.jar \
CrosscheckFingerprints \
OUTPUT=~{metrics_filename} \
HAPLOTYPE_MAP=~{haplotype_database_file} \
EXPECT_ALL_GROUPS_TO_MATCH=true \
INPUT=~{sep=' INPUT=' input_bams} \
LOD_THRESHOLD=~{lod_threshold} \
CROSSCHECK_BY=~{cross_check_by}
>>>
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "3.5 GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File cross_check_fingerprints_metrics = "~{metrics_filename}"
}
}
# Check that the fingerprint of the sample BAM matches the sample array
task CheckFingerprint {
input {
File input_bam
File input_bam_index
String output_basename
File? haplotype_database_file
File? genotypes
File? genotypes_index
String sample
Int preemptible_tries
}
Int disk_size = ceil(size(input_bam, "GiB")) + 20
# Picard has different behavior depending on whether or not the OUTPUT parameter ends with a '.', so we are explicitly
# passing in where we want the two metrics files to go to avoid any potential confusion.
String summary_metrics_location = "~{output_basename}.fingerprinting_summary_metrics"
String detail_metrics_location = "~{output_basename}.fingerprinting_detail_metrics"
command <<<
java -Dsamjdk.buffer_size=131072 \
-XX:GCTimeLimit=50 -XX:GCHeapFreeLimit=10 -Xms3g \
-jar /usr/picard/picard.jar \
CheckFingerprint \
INPUT=~{input_bam} \
SUMMARY_OUTPUT=~{summary_metrics_location} \
DETAIL_OUTPUT=~{detail_metrics_location} \
GENOTYPES=~{genotypes} \
HAPLOTYPE_MAP=~{haplotype_database_file} \
SAMPLE_ALIAS="~{sample}" \
IGNORE_READ_GROUPS=true
>>>
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "3.5 GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File summary_metrics = summary_metrics_location
File detail_metrics = detail_metrics_location
}
}
task CheckPreValidation {
input {
File duplication_metrics
File chimerism_metrics
Float max_duplication_in_reasonable_sample
Float max_chimerism_in_reasonable_sample
Int preemptible_tries
}
command <<<
set -o pipefail
set -e
grep -A 1 PERCENT_DUPLICATION ~{duplication_metrics} > duplication.csv
grep -A 3 PCT_CHIMERAS ~{chimerism_metrics} | grep -v OF_PAIR > chimerism.csv
python <<CODE
import csv
with open('duplication.csv') as dupfile:
reader = csv.DictReader(dupfile, delimiter='\t')
for row in reader:
with open("duplication_value.txt","w") as file:
file.write(row['PERCENT_DUPLICATION'])
file.close()
with open('chimerism.csv') as chimfile:
reader = csv.DictReader(chimfile, delimiter='\t')
for row in reader:
with open("chimerism_value.txt","w") as file:
file.write(row['PCT_CHIMERAS'])
file.close()
CODE
>>>
runtime {
docker: "us.gcr.io/broad-gotc-prod/python:2.7"
preemptible: preemptible_tries
memory: "2 GiB"
}
output {
Float duplication_rate = read_float("duplication_value.txt")
Float chimerism_rate = read_float("chimerism_value.txt")
Boolean is_outlier_data = duplication_rate > max_duplication_in_reasonable_sample || chimerism_rate > max_chimerism_in_reasonable_sample
}
}
task ValidateSamFile {
input {
File input_bam
File? input_bam_index
String report_filename
File ref_dict
File ref_fasta
File ref_fasta_index
Int? max_output
Array[String]? ignore
Boolean? is_outlier_data
Int preemptible_tries
Int memory_multiplier = 1
Int additional_disk = 20
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB") + size(ref_dict, "GiB")
Int disk_size = ceil(size(input_bam, "GiB") + ref_size) + additional_disk
Int memory_size = ceil(7 * memory_multiplier)
Int java_memory_size = (memory_size - 1) * 1000
command {
java -Xms~{java_memory_size}m -jar /usr/picard/picard.jar \
ValidateSamFile \
INPUT=~{input_bam} \
OUTPUT=~{report_filename} \
REFERENCE_SEQUENCE=~{ref_fasta} \
~{"MAX_OUTPUT=" + max_output} \
IGNORE=~{default="null" sep=" IGNORE=" ignore} \
MODE=VERBOSE \
~{default='SKIP_MATE_VALIDATION=false' true='SKIP_MATE_VALIDATION=true' false='SKIP_MATE_VALIDATION=false' is_outlier_data} \
IS_BISULFITE_SEQUENCED=false
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "~{memory_size} GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File report = "~{report_filename}"
}
}
# Note these tasks will break if the read lengths in the bam are greater than 250.
task CollectWgsMetrics {
input {
File input_bam
File input_bam_index
String metrics_filename
File wgs_coverage_interval_list
File ref_fasta
File ref_fasta_index
Int read_length
Int preemptible_tries
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB")
Int disk_size = ceil(size(input_bam, "GiB") + ref_size) + 20
command {
java -Xms2000m -jar /usr/picard/picard.jar \
CollectWgsMetrics \
INPUT=~{input_bam} \
VALIDATION_STRINGENCY=SILENT \
REFERENCE_SEQUENCE=~{ref_fasta} \
INCLUDE_BQ_HISTOGRAM=true \
INTERVALS=~{wgs_coverage_interval_list} \
OUTPUT=~{metrics_filename} \
USE_FAST_ALGORITHM=true \
READ_LENGTH=~{read_length}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "3 GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File metrics = "~{metrics_filename}"
}
}
# Collect raw WGS metrics (commonly used QC thresholds)
task CollectRawWgsMetrics {
input {
File input_bam
File input_bam_index
String metrics_filename
File wgs_coverage_interval_list
File ref_fasta
File ref_fasta_index
Int read_length
Int preemptible_tries
Int memory_multiplier = 1
Int additional_disk = 20
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB")
Int disk_size = ceil(size(input_bam, "GiB") + ref_size) + additional_disk
Int memory_size = ceil((if (disk_size < 110) then 5 else 7) * memory_multiplier)
String java_memory_size = (memory_size - 1) * 1000
command {
java -Xms~{java_memory_size}m -jar /usr/picard/picard.jar \
CollectRawWgsMetrics \
INPUT=~{input_bam} \
VALIDATION_STRINGENCY=SILENT \
REFERENCE_SEQUENCE=~{ref_fasta} \
INCLUDE_BQ_HISTOGRAM=true \
INTERVALS=~{wgs_coverage_interval_list} \
OUTPUT=~{metrics_filename} \
USE_FAST_ALGORITHM=true \
READ_LENGTH=~{read_length}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "~{memory_size} GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File metrics = "~{metrics_filename}"
}
}
task CollectHsMetrics {
input {
File input_bam
File input_bam_index
File ref_fasta
File ref_fasta_index
String metrics_filename
File target_interval_list
File bait_interval_list
Int preemptible_tries
Int memory_multiplier = 1
Int additional_disk = 20
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB")
Int disk_size = ceil(size(input_bam, "GiB") + ref_size) + additional_disk
# Try to fit the input bam into memory, within reason.
Int rounded_bam_size = ceil(size(input_bam, "GiB") + 0.5)
Int rounded_memory_size = ceil((if (rounded_bam_size > 10) then 10 else rounded_bam_size) * memory_multiplier)
Int memory_size = if rounded_memory_size < 7 then 7 else rounded_memory_size
Int java_memory_size = (memory_size - 1) * 1000
# There are probably more metrics we want to generate with this tool
command {
java -Xms~{java_memory_size}m -jar /usr/picard/picard.jar \
CollectHsMetrics \
INPUT=~{input_bam} \
REFERENCE_SEQUENCE=~{ref_fasta} \
VALIDATION_STRINGENCY=SILENT \
TARGET_INTERVALS=~{target_interval_list} \
BAIT_INTERVALS=~{bait_interval_list} \
METRIC_ACCUMULATION_LEVEL=null \
METRIC_ACCUMULATION_LEVEL=SAMPLE \
METRIC_ACCUMULATION_LEVEL=LIBRARY \
OUTPUT=~{metrics_filename}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "~{memory_size} GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File metrics = metrics_filename
}
}
# Generate a checksum per readgroup
task CalculateReadGroupChecksum {
input {
File input_bam
File input_bam_index
String read_group_md5_filename
Int preemptible_tries
}
Int disk_size = ceil(size(input_bam, "GiB")) + 20
command {
java -Xms1000m -jar /usr/picard/picard.jar \
CalculateReadGroupChecksum \
INPUT=~{input_bam} \
OUTPUT=~{read_group_md5_filename}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "2 GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File md5_file = "~{read_group_md5_filename}"
}
}
# Validate a (g)VCF with -gvcf specific validation
task ValidateVCF {
input {
File input_vcf
File input_vcf_index
File ref_fasta
File ref_fasta_index
File ref_dict
File dbsnp_vcf
File dbsnp_vcf_index
File calling_interval_list
Int preemptible_tries
Boolean is_gvcf = true
String gatk_docker = "us.gcr.io/broad-gatk/gatk:4.1.8.0"
}
Float ref_size = size(ref_fasta, "GiB") + size(ref_fasta_index, "GiB") + size(ref_dict, "GiB")
Int disk_size = ceil(size(input_vcf, "GiB") + size(dbsnp_vcf, "GiB") + ref_size) + 20
command {
gatk --java-options -Xms6000m \
ValidateVariants \
-V ~{input_vcf} \
-R ~{ref_fasta} \
-L ~{calling_interval_list} \
~{true="-gvcf" false="" is_gvcf} \
--validation-type-to-exclude ALLELES \
--dbsnp ~{dbsnp_vcf}
}
runtime {
docker: gatk_docker
preemptible: preemptible_tries
memory: "7 GiB"
bootDiskSizeGb: 15
disks: "local-disk " + disk_size + " HDD"
}
}
# Collect variant calling metrics from GVCF output
task CollectVariantCallingMetrics {
input {
File input_vcf
File input_vcf_index
String metrics_basename
File dbsnp_vcf
File dbsnp_vcf_index
File ref_dict
File evaluation_interval_list
Boolean is_gvcf = true
Int preemptible_tries
}
Int disk_size = ceil(size(input_vcf, "GiB") + size(dbsnp_vcf, "GiB")) + 20
command {
java -Xms2000m -jar /usr/picard/picard.jar \
CollectVariantCallingMetrics \
INPUT=~{input_vcf} \
OUTPUT=~{metrics_basename} \
DBSNP=~{dbsnp_vcf} \
SEQUENCE_DICTIONARY=~{ref_dict} \
TARGET_INTERVALS=~{evaluation_interval_list} \
~{true="GVCF_INPUT=true" false="" is_gvcf}
}
runtime {
docker: "us.gcr.io/broad-gotc-prod/picard-cloud:2.23.8"
preemptible: preemptible_tries
memory: "3 GiB"
disks: "local-disk " + disk_size + " HDD"
}
output {
File summary_metrics = "~{metrics_basename}.variant_calling_summary_metrics"
File detail_metrics = "~{metrics_basename}.variant_calling_detail_metrics"
}
}