-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathzed_v11.py
1079 lines (896 loc) · 38.4 KB
/
zed_v11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
#DJ HAKAN KELES STYLE
import os
import sys
import time
import logging
import random
from random import randint
import math
import statistics
import getopt
from ctypes import *
import numpy as np
import cv2
import pyzed.sl as sl
import joblib
import matplotlib.pyplot as plt
from skimage.feature import hog
from PIL import Image as PImage
import rospy
from std_msgs.msg import Float32
from cv_bridge import CvBridge
from sensor_msgs.msg import Image, LaserScan
from geometry_msgs.msg import Point
from nav_msgs.msg import Odometry
from std_msgs.msg import String
from keras.models import load_model
from cv_bridge import CvBridge, CvBridgeError
# Get the top-level logger object
log = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def adjust_gamma(image, gamma=1.0):
# build a lookup table mapping the pixel values [0, 255] to
# their adjusted gamma values
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
# apply gamma correction using the lookup table
return cv2.LUT(image, table)
def sample(probs):
s = sum(probs)
probs = [a/s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs)-1
def c_array(ctype, values):
arr = (ctype*len(values))()
arr[:] = values
return arr
class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int),
("uc", POINTER(c_float)),
("points", c_int),
("embeddings", POINTER(c_float)),
("embedding_size", c_int),
("sim", c_float),
("track_id", c_int)]
class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]
class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
#lib = CDLL("darknet.so", RTLD_GLOBAL)
hasGPU = True
if os.name == "nt":
cwd = os.path.dirname(__file__)
os.environ['PATH'] = cwd + ';' + os.environ['PATH']
winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll")
winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll")
envKeys = list()
for k, v in os.environ.items():
envKeys.append(k)
try:
try:
tmp = os.environ["FORCE_CPU"].lower()
if tmp in ["1", "true", "yes", "on"]:
raise ValueError("ForceCPU")
else:
log.info("Flag value '"+tmp+"' not forcing CPU mode")
except KeyError:
# We never set the flag
if 'CUDA_VISIBLE_DEVICES' in envKeys:
if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0:
raise ValueError("ForceCPU")
try:
global DARKNET_FORCE_CPU
if DARKNET_FORCE_CPU:
raise ValueError("ForceCPU")
except NameError:
pass
# log.info(os.environ.keys())
# log.warning("FORCE_CPU flag undefined, proceeding with GPU")
if not os.path.exists(winGPUdll):
raise ValueError("NoDLL")
lib = CDLL(winGPUdll, RTLD_GLOBAL)
except (KeyError, ValueError):
hasGPU = False
if os.path.exists(winNoGPUdll):
lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
log.warning("Notice: CPU-only mode")
else:
# Try the other way, in case no_gpu was
# compile but not renamed
lib = CDLL(winGPUdll, RTLD_GLOBAL)
log.warning("Environment variables indicated a CPU run, but we didn't find `" +
winNoGPUdll+"`. Trying a GPU run anyway.")
else:
lib = CDLL("/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/libdarknet/libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
predict = lib.network_predict
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
if hasGPU:
set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]
make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(
c_int), c_int, POINTER(c_int), c_int]
get_network_boxes.restype = POINTER(DETECTION)
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
load_net_custom = lib.load_network_custom
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
load_net_custom.restype = c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
free_image = lib.free_image
free_image.argtypes = [IMAGE]
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
def array_to_image(arr):
import numpy as np
# need to return old values to avoid python freeing memory
arr = arr.transpose(2, 0, 1)
c = arr.shape[0]
h = arr.shape[1]
w = arr.shape[2]
arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
data = arr.ctypes.data_as(POINTER(c_float))
im = IMAGE(w, h, c, data)
return im, arr
def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
if altNames is None:
name_tag = meta.names[i]
else:
name_tag = altNames[i]
res.append((name_tag, out[i]))
res = sorted(res, key=lambda x: -x[1])
return res
def detect(net, meta, image, thresh=.8, hier_thresh=.8, nms=.45, debug=False):
"""
Performs the detection
"""
custom_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
custom_image = cv2.resize(custom_image, (lib.network_width(
net), lib.network_height(net)), interpolation=cv2.INTER_LINEAR)
im, arr = array_to_image(custom_image)
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(
net, image.shape[1], image.shape[0], thresh, hier_thresh, None, 0, pnum, 0)
num = pnum[0]
if nms:
do_nms_sort(dets, num, meta.classes, nms)
res = []
if debug:
log.debug("about to range")
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0:
b = dets[j].bbox
if altNames is None:
name_tag = meta.names[i]
else:
name_tag = altNames[i]
res.append((name_tag, dets[j].prob[i], (b.x, b.y, b.w, b.h), i))
res = sorted(res, key=lambda x: -x[1])
free_detections(dets, num)
return res
netMain = None
metaMain = None
altNames = None
def get_object_depth(depth, bounds, label):
'''
Calculates the median x, y, z position of top slice(area_div) of point cloud
in camera frame.
Arguments:
depth: Point cloud data of whole frame.
bounds: Bounding box for object in pixels.
bounds[0]: x-center
bounds[1]: y-center
bounds[2]: width of bounding box.
bounds[3]: height of bounding box.
Return:
x, y, z: Location of object in meters.
'''
if(label == "Park Yeri"):
area_div = 2
x_vect = []
y_vect = []
z_vect = []
for j in range(int(bounds[0] - area_div), int(bounds[0] + area_div)):
for i in range(int(bounds[1] - area_div), int(bounds[1] + area_div)):
z = depth[i, j, 2]
if not np.isnan(z) and not np.isinf(z):
x_vect.append(depth[i, j, 0])
y_vect.append(depth[i, j, 1])
z_vect.append(z)
try:
x_median = statistics.median(x_vect)
y_median = statistics.median(y_vect)
z_median = statistics.median(z_vect)
except Exception:
x_median = -1
y_median = -1
z_median = -1
pass
else:
area_div = 10
x_vect = []
y_vect = []
z_vect = []
if(int(bounds[0]) > 1700 or int(bounds[0]) < 220 or int(bounds[1]) > 960 or int(bounds[1]) < 121):
x_median = -1
y_median = -1
z_median = -1
else:
for j in range(int(bounds[0] - area_div), int(bounds[0] + area_div)):
for i in range(int(bounds[1] - area_div), int(bounds[1] + area_div)):
z = depth[i, j, 2]
if not np.isnan(z) and not np.isinf(z):
x_vect.append(depth[i, j, 0])
y_vect.append(depth[i, j, 1])
z_vect.append(z)
try:
x_median = statistics.median(x_vect)
y_median = statistics.median(y_vect)
z_median = statistics.median(z_vect)
except Exception:
x_median = -1
y_median = -1
z_median = -1
pass
return x_median, y_median, z_median
cam = sl.Camera()
runtime = sl.RuntimeParameters()
mat = sl.Mat()
point_cloud_mat = sl.Mat()
thresh = 0.6
color_array = 0
left_right_model = joblib.load('/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/hattori.npy')
park_durak_model = joblib.load('/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/durak_park.npy')
traffic_light_model = load_model('/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/traffic_light_model.h5')
must_lr_model = joblib.load('/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/must_r_l.npy')
orientations = 9
pixels_per_cell = (8, 8)
cells_per_block = (2, 2)
threshold = .6
runtime = 0
zed_pose = 0
zed_sensors = 0
def left_right_judgement(img,x_min,x_max,y_min,y_max):
#tespit edilen levhayi ikiye bolduk ama ise yaramadi
#cropped_img_left = img[y_min:y_max, x_min:int(x_min+(box_width)/2)]
#cropped_img_right = img[y_min:y_max, x_min+int(box_width/2):x_max]
cropped_img = img[y_min:y_max, x_min:x_max]
#cropped_img = img
if not all(cropped_img.shape):
return 0
img = PImage.fromarray(cropped_img)
img = img.resize((128,128))
gray= img.convert('L')
# Now we calculate the HOG for negative features
fd = hog(gray, orientations, pixels_per_cell, cells_per_block, block_norm='L2', feature_vector=True)
fd = fd.reshape(1,8100)
sonuc = left_right_model.predict(fd)
return sonuc
def park_durak_judgement(img,x_min,x_max,y_min,y_max):
cropped_img = img[y_min:y_max, x_min:x_max]
#cropped_img = img
if not all(cropped_img.shape):
return 0
img = PImage.fromarray(cropped_img)
img = img.resize((128,128))
gray= img.convert('L')
# Now we calculate the HOG for negative features
fd = hog(gray, orientations, pixels_per_cell, cells_per_block, block_norm='L2', feature_vector=True)
fd = fd.reshape(1,8100)
sonuc = park_durak_model.predict(fd)
return sonuc
def traffic_light_judgement(img, x_min,x_max,y_min,y_max):
if not all(img.shape):
return 0
img = img[y_min:y_max, x_min:x_max]
desired_dim=(32,32)
try:
img_resized = cv2.resize(img, desired_dim, interpolation=cv2.INTER_LINEAR)
except:
file.write(str(np.array(img).shape) + "\n")
img_ = np.expand_dims(np.array(img_resized), axis=0)
predicted_state =np.argmax(traffic_light_model.predict(img_), axis=-1)
return predicted_state
def must_left_right_judgement(img, x_min,x_max,y_min,y_max):
cropped_img = img[y_min:y_max, x_min:x_max]
#cropped_img = img
if not all(cropped_img.shape):
return 0
img = PImage.fromarray(cropped_img)
img = img.resize((128,128))
gray= img.convert('L')
# Now we calculate the HOG for negative features
fd = hog(gray, orientations, pixels_per_cell, cells_per_block, block_norm='L2', feature_vector=True)
fd = fd.reshape(1,8100)
sonuc = must_lr_model.predict(fd)
return sonuc
def main():
global color_array
global cam
global runtime
global mat
global point_cloud_mat
global thresh
global runtime
global zed_pose
global zed_sensors
darknet_path="/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/libdarknet/"
config_path = "/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/ismet_yolov3_v2.cfg"
weight_path = "/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/ismet_yolov3_v2_10000.weights"
meta_path = "/home/ismet/otonom_ws/src/zed_package/src/zed-yolo/zed_python_sample/yolo_data/coco.data"
svo_path = None
zed_id = 0
help_str = 'darknet_zed.py -c <config> -w <weight> -m <meta> -t <threshold> -s <svo_file> -z <zed_id>'
try:
opts, args = getopt.getopt(
[], "hc:w:m:t:s:z:", ["config=", "weight=", "meta=", "threshold=", "svo_file=", "zed_id="])
except getopt.GetoptError:
log.exception(help_str)
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
log.info(help_str)
sys.exit()
elif opt in ("-c", "--config"):
config_path = arg
elif opt in ("-w", "--weight"):
weight_path = arg
elif opt in ("-m", "--meta"):
meta_path = arg
elif opt in ("-t", "--threshold"):
thresh = float(arg)
elif opt in ("-s", "--svo_file"):
svo_path = arg
elif opt in ("-z", "--zed_id"):
zed_id = int(arg)
input_type = sl.InputType()
if svo_path is not None:
log.info("SVO file : " + svo_path)
input_type.set_from_svo_file(svo_path)
else:
# Launch camera by id
input_type.set_from_camera_id(zed_id)
init = sl.InitParameters()
init.camera_resolution = sl.RESOLUTION.HD1080
init.camera_fps = 15 # Use HD720 video mode (default fps: 60)
init.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP
init.coordinate_units = sl.UNIT.METER # Set units in meters
init.depth_mode = sl.DEPTH_MODE.ULTRA
#cam.enable_streaming()
if not cam.is_opened():
log.info("Opening ZED Camera...")
status = cam.open(init)
if status != sl.ERROR_CODE.SUCCESS:
log.error(repr(status))
exit()
py_transform = sl.Transform() # First create a Transform object for TrackingParameters object
tracking_parameters = sl.PositionalTrackingParameters(_init_pos=py_transform)
err = cam.enable_positional_tracking(tracking_parameters)
if err != sl.ERROR_CODE.SUCCESS:
exit(1)
# Track the camera position during 1000 frames
zed_pose = sl.Pose()
zed_sensors = sl.SensorsData()
runtime = sl.RuntimeParameters()
# Use STANDARD sensing mode
runtime.sensing_mode = sl.SENSING_MODE.STANDARD
mat = sl.Mat()
point_cloud_mat = sl.Mat()
# Import the global variables. This lets us instance Darknet once,
# then just call performDetect() again without instancing again
global metaMain, netMain, altNames # pylint: disable=W0603
assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
if not os.path.exists(config_path):
raise ValueError("Invalid config path `" +
os.path.abspath(config_path)+"`")
if not os.path.exists(weight_path):
raise ValueError("Invalid weight path `" +
os.path.abspath(weight_path)+"`")
if not os.path.exists(meta_path):
raise ValueError("Invalid data file path `" +
os.path.abspath(meta_path)+"`")
if netMain is None:
netMain = load_net_custom(config_path.encode(
"ascii"), weight_path.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = load_meta(meta_path.encode("ascii"))
if altNames is None:
# In thon 3, the metafile default access craps out on Windows (but not Linux)
# Read the names file and create a list to feed to detect
try:
with open(meta_path) as meta_fh:
meta_contents = meta_fh.read()
import re
match = re.search("names *= *(.*)$", meta_contents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as names_fh:
names_list = names_fh.read().strip().split("\n")
altNames = [x.strip() for x in names_list]
except TypeError:
pass
except Exception:
pass
log.info("Running...")
key = ''
x_orta = 0
y_orta = 0
SOLA_DONULMEZ = "sola donulmez"
SOLA_DONULMEZ_CTR = 0
SAGA_DONULMEZ = "saga donulmez"
SAGA_DONULMEZ_CTR = 0
GIRILMEZ = "girilmez"
GIRILMEZ_CTR = 0
ILERIDEN_SAGA_MECBURI_YON = "ileriden sola mecburi yon"
ILERIDEN_SAGA_MECBURI_YON_CTR = 0
ILERIDEN_SOLA_MECBURI_YON = "ileriden saga mecburi yon"
ILERIDEN_SOLA_MECBURI_YON_CTR = 0
ILERI_VE_SAGA_MECBURI_YON = "ileri Ve saga mecburi yon"
ILERI_VE_SAGA_MECBURI_YON_CTR = 0
ILERI_VE_SOLA_MECBURI_YON = "ileri Ve sola mecburi yon"
ILERI_VE_SOLA_MECBURI_YON_CTR = 0
DURAK = "Durak"
DURAK_CTR = 0
PARK_YERI = "Park Yeri"
PARK_YERI_CTR = 0
PARK_YASAK = "Park Yasak"
PARK_YASAK_CTR = 0
KIRMIZI_ISIK = "kirmizi isik"
KIRMIZI_ISIK_CTR = 0
YESIL_ISIK = "yesil isik"
YESIL_ISIK_CTR = 0
def SEBASTIAN_VETTEL():
global x_orta
global y_orta
global SOLA_DONULMEZ
global SOLA_DONULMEZ_CTR
global SAGA_DONULMEZ
global SAGA_DONULMEZ_CTR
global GIRILMEZ
global GIRILMEZ_CTR
global ILERIDEN_SAGA_MECBURI_YON
global ILERIDEN_SAGA_MECBURI_YON_CTR
global ILERIDEN_SOLA_MECBURI_YON
global ILERIDEN_SOLA_MECBURI_YON_CTR
global ILERI_VE_SAGA_MECBURI_YON
global ILERI_VE_SAGA_MECBURI_YON_CTR
global ILERI_VE_SOLA_MECBURI_YON
global ILERI_VE_SOLA_MECBURI_YON_CTR
global DURAK
global DURAK_CTR
global PARK_YERI
global PARK_YERI_CTR
global PARK_YASAK
global PARK_YASAK_CTR
global KIRMIZI_ISIK
global KIRMIZI_ISIK_CTR
global YESIL_ISIK
global YESIL_ISIK_CTR
LIMIT = 3
SANIYE = 7
states = ['red', 'yellow', 'green', 'off']
label = ''
start_time = time.time() # start time of the loop
err = cam.grab(runtime)
distance = 0
if err == sl.ERROR_CODE.SUCCESS:
cam.retrieve_image(mat, sl.VIEW.LEFT)
image = mat.get_data()
raw_image = image.copy()
image = adjust_gamma(image, 2)
cam.retrieve_measure(
point_cloud_mat, sl.MEASURE.XYZRGBA)
depth = point_cloud_mat.get_data()
park_yeri = []
park_yeri_distance = []
# Do the detection
detections = detect(netMain, metaMain, image, thresh)
log.info(chr(27) + "[2J"+"**** " + str(len(detections)) + " Results ****")
detected_objects = ""
for detection in detections:
label = detection[0]
label = str(label)
confidence = detection[1]
bounds = detection[2]
y_extent = int(bounds[3])
x_extent = int(bounds[2])
# Coordinates are around the center
x_coord = int(bounds[0] - bounds[2]/2)
y_coord = int(bounds[1] - bounds[3]/2)
#boundingBox = [[x_coord, y_coord], [x_coord, y_coord + y_extent], [x_coord + x_extent, y_coord + y_extent], [x_coord + x_extent, y_coord]]
thickness = 1
x, y, z = get_object_depth(depth, bounds, label)
if((label=='sola donulmez') or (label=='saga donulmez')):
#cv2.imshow("result",image)
result = left_right_judgement(image,x_coord ,x_coord + x_extent,y_coord,y_coord + y_extent)
if(result):
label = "sola donulmez"
else:
label = "saga donulmez"
if((label == 'Durak') or (label == "Park Yeri")):
result = park_durak_judgement(image,x_coord ,x_coord + x_extent,y_coord,y_coord + y_extent)
if(result):
label = "Park Yeri"
else:
label = "Durak"
if((label == 'ileriden sola mecburi yon') or (label == "ileriden saga mecburi yon") or (label == "Sola Mecburi Yon") or (label == "Saga Mecburi Yon")):
result = must_left_right_judgement(image,x_coord ,x_coord + x_extent,y_coord,y_coord + y_extent)
if(result):
label = "ileriden sola mecburi yon"
else:
label = "ileriden saga mecburi yon"
"""if((label == 'yesil isik') or (label == "kirmizi isik") or (label == "sari isik") or (label == "Trafik Lambasi")):
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
result = traffic_light_judgement(image,x_coord ,x_coord + x_extent,y_coord,y_coord + y_extent)
for idx in result:
result = (states[idx])
if(result == "green"):
label = "yesil isik"
elif(result == "red"):
label == "kirmizi isik"""
pstring = label+": "+ str(np.rint(100 * confidence))+"%"
log.info(pstring)
distance = math.sqrt(x * x + y * y + z * z)
if(label == "Park Yeri"):
x_orta = x_coord + x_extent / 2
y_orta = y_coord + y_extent / 2
park_yeri.append(int(x_orta))
park_yeri_distance.append(distance)
sign_coord.x = x
sign_coord.y = y
sign_coord.z = z
distance = "{:.2f}".format(distance)
cv2.rectangle(image, (x_coord - thickness, y_coord - thickness),
(x_coord + x_extent + thickness, y_coord + (18 + thickness*4)),
(37,66,0), -1)
cv2.putText(image, label + " " + (str(distance) + " m"),
(x_coord + (thickness * 4), y_coord + (10 + thickness * 4)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.rectangle(image, (x_coord - thickness, y_coord - thickness),
(x_coord + x_extent + thickness, y_coord + y_extent + thickness),
(37,66,0), int(thickness*2))
if(label == SOLA_DONULMEZ):
SOLA_DONULMEZ_CTR += 1
if(SOLA_DONULMEZ_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
SOLA_DONULMEZ_CTR = 0
elif(label == SAGA_DONULMEZ):
SAGA_DONULMEZ_CTR += 1
if(SAGA_DONULMEZ_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
SAGA_DONULMEZ_CTR = 0
elif(label == ILERIDEN_SAGA_MECBURI_YON):
ILERIDEN_SAGA_MECBURI_YON_CTR += 1
if(ILERIDEN_SAGA_MECBURI_YON_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
ILERIDEN_SAGA_MECBURI_YON_CTR = 0
elif(label == ILERIDEN_SOLA_MECBURI_YON):
ILERIDEN_SOLA_MECBURI_YON_CTR += 1
if(ILERIDEN_SOLA_MECBURI_YON_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
ILERIDEN_SOLA_MECBURI_YON_CTR = 0
elif(label == GIRILMEZ):
GIRILMEZ_CTR += 1
if(GIRILMEZ_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
GIRILMEZ_CTR = 0
elif(label == DURAK):
DURAK_CTR += 1
if(DURAK_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
#DURAK_CTR = 0
elif(label == PARK_YASAK):
PARK_YASAK_CTR += 1
if(PARK_YASAK_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
#PARK_YASAK_CTR = 0
elif(label == PARK_YERI):
PARK_YERI_CTR += 1
if(PARK_YERI_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
#PARK_YASAK_CTR = 0
elif(label == ILERI_VE_SAGA_MECBURI_YON):
ILERI_VE_SAGA_MECBURI_YON_CTR += 1
if(ILERI_VE_SAGA_MECBURI_YON_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
ILERI_VE_SAGA_MECBURI_YON_CTR = 0
elif(label == ILERI_VE_SOLA_MECBURI_YON):
ILERI_VE_SOLA_MECBURI_YON_CTR += 1
if(ILERI_VE_SOLA_MECBURI_YON_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
ILERI_VE_SOLA_MECBURI_YON_CTR = 0
elif(label == KIRMIZI_ISIK):
KIRMIZI_ISIK_CTR += 1
if(KIRMIZI_ISIK_CTR >= 0):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
#KIRMIZI_ISIK_CTR = 0
elif(label == YESIL_ISIK):
YESIL_ISIK_CTR += 1
if(YESIL_ISIK_CTR >= LIMIT):
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
#YESIL_ISIK_CTR = 0
if(x == -1 and y == -1 and z == -1):
pass
elif (distance == '1.73'):
pass
elif len(detected_objects) < 3:
pass
else:
detected_objects += label + "," + str(x)[0:4]+ ","+ str(y)[0:4] + "," + str(z)[0:4] + ","+ str(distance) + ";"
cv2.imshow("ZED", image)
key = cv2.waitKey(5)
log.info("FPS: {}".format(1.0 / (time.time() - start_time)))
else:
key = cv2.waitKey(5)
if len(park_yeri) > 0:
park_yeri_pixel = max(park_yeri)
else:
park_yeri_pixel = 0
if len(park_yeri_distance) > 0:
park_yeri_uzaklik= min(park_yeri_distance)
else:
park_yeri_uzaklik = 0
label_and_distance = label + ' ' +str(distance)
return raw_image, label_and_distance, sign_coord, detected_objects, park_yeri_pixel, park_yeri_uzaklik
s_time = time.time()
zed_odom_speed = None
previous_pos = np.array([0, 0, 0], dtype=np.float32)
def SAINZ():
global s_time
global zed_odom_speed
global previous_pos
global runtime
global zed_pose
global cam
global zed_sensors
if cam.grab(runtime) == sl.ERROR_CODE.SUCCESS:
# Get the pose of the left eye of the camera with reference to the world frame
cam.get_position(zed_pose, sl.REFERENCE_FRAME.WORLD)
cam.get_sensors_data(zed_sensors, sl.TIME_REFERENCE.IMAGE)
zed_imu = zed_sensors.get_imu_data()
# Display the translation and timestamp
py_translation = sl.Translation()
tx = round(zed_pose.get_translation(py_translation).get()[0], 3)
ty = round(zed_pose.get_translation(py_translation).get()[1], 3)
tz = round(zed_pose.get_translation(py_translation).get()[2], 3)
#print("Translation: Tx: {0}, Ty: {1}, Tz {2}, Timestamp: {3}\n".format(tx, ty, tz, zed_pose.timestamp.get_milliseconds()))
pose_msg.x = odometry_msg.pose.pose.position.x = tx
pose_msg.y = odometry_msg.pose.pose.position.y = ty
pose_msg.z = odometry_msg.pose.pose.position.z = tz
initial_time = time.time()
diff = s_time - initial_time
odometry_msg.twist.twist.linear.z = round((previous_pos[0]-pose_msg.z) / diff, 3)
odometry_msg.twist.twist.linear.x = round((previous_pos[1]-pose_msg.x) / diff, 3)
odometry_msg.twist.twist.linear.y = round((previous_pos[2]-pose_msg.y) / diff, 3)
previous_pos[0] = pose_msg.z
previous_pos[1] = pose_msg.x
previous_pos[2] = pose_msg.y
""" zed_odom_speed = math.sqrt(pow(previous_pos[0]-pose_msg.x , 2)+
pow(previous_pos[1]-pose_msg.y , 2))
zed_odom_speed /= diff
previous_pos[0] = momentary_x
previous_pos[1] = momentary_y """
s_time = initial_time
# Display the orientation quaternion
py_orientation = sl.Orientation()
odometry_msg.pose.pose.orientation.x = ox = round(zed_pose.get_orientation(py_orientation).get()[0], 3)
odometry_msg.pose.pose.orientation.y = oy = round(zed_pose.get_orientation(py_orientation).get()[1], 3)
odometry_msg.pose.pose.orientation.z = oz = round(zed_pose.get_orientation(py_orientation).get()[2], 3)
odometry_msg.pose.pose.orientation.w = ow = round(zed_pose.get_orientation(py_orientation).get()[3], 3)
#print("Orientation: Ox: {0}, Oy: {1}, Oz {2}, Ow: {3}\n".format(ox, oy, oz, ow))
#Display the IMU acceleratoin
acceleration = [0,0,0]
zed_imu.get_linear_acceleration(acceleration)
ax = round(acceleration[0], 3)
ay = round(acceleration[1], 3)
az = round(acceleration[2], 3)
#print("IMU Acceleration: Ax: {0}, Ay: {1}, Az {2}\n".format(ax, ay, az))
#Display the IMU angular velocity
a_velocity = [0,0,0]
zed_imu.get_angular_velocity(a_velocity)
odometry_msg.twist.twist.angular.x = vx = round(a_velocity[0], 3)
odometry_msg.twist.twist.angular.y = vy = round(a_velocity[1], 3)
odometry_msg.twist.twist.angular.z = vz = round(a_velocity[2], 3)
#print("IMU Angular Velocity: Vx: {0}, Vy: {1}, Vz {2}\n".format(vx, vy, vz))
# Display the IMU orientation quaternion
zed_imu_pose = sl.Transform()
ox = round(zed_imu.get_pose(zed_imu_pose).get_orientation().get()[0], 3)
oy = round(zed_imu.get_pose(zed_imu_pose).get_orientation().get()[1], 3)
oz = round(zed_imu.get_pose(zed_imu_pose).get_orientation().get()[2], 3)
ow = round(zed_imu.get_pose(zed_imu_pose).get_orientation().get()[3], 3)
#print("IMU Orientation: Ox: {0}, Oy: {1}, Oz {2}, Ow: {3}\n".format(ox, oy, oz, ow))
return pose_msg, odometry_msg