-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
40 lines (35 loc) · 1.25 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import cv2
import numpy as np
from typing import Dict, List, Any
import requests
async def process_image(image_path: str) -> Dict[str, Any]:
"""Procesira sliko in identificira predmete."""
# Implementacija procesiranja slike
# TODO: Uporabi model za detekcijo objektov
return {
"detected_objects": [],
"count": 0,
"risk_factors": {}
}
def analyze_risk(items: Dict[str, Any], location: str) -> Dict[str, Any]:
"""Analizira tveganje na podlagi predmetov in lokacije."""
risk_score = calculate_base_risk_score(items)
location_factor = get_location_risk_factor(location)
return {
"base_rate": risk_score * location_factor,
"risk_factors": {
"items": items["risk_factors"],
"location": location_factor
}
}
def calculate_base_risk_score(items: Dict[str, Any]) -> float:
"""Izračuna osnovni faktor tveganja."""
base_score = 1.0
for item in items.get("detected_objects", []):
# Implementacija izračuna
pass
return base_score
def get_location_risk_factor(location: str) -> float:
"""Pridobi faktor tveganja za lokacijo."""
# Implementacija pridobivanja faktorja lokacije
return 1.0